WO2006104064A1 - 窒化ガリウム成長用基板及びその製造方法 - Google Patents

窒化ガリウム成長用基板及びその製造方法 Download PDF

Info

Publication number
WO2006104064A1
WO2006104064A1 PCT/JP2006/306067 JP2006306067W WO2006104064A1 WO 2006104064 A1 WO2006104064 A1 WO 2006104064A1 JP 2006306067 W JP2006306067 W JP 2006306067W WO 2006104064 A1 WO2006104064 A1 WO 2006104064A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gallium nitride
gan
ions
film
Prior art date
Application number
PCT/JP2006/306067
Other languages
English (en)
French (fr)
Inventor
Junichi Yanagisawa
Masaya Toda
Yoichi Akasaka
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Priority to JP2007510467A priority Critical patent/JPWO2006104064A1/ja
Publication of WO2006104064A1 publication Critical patent/WO2006104064A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Definitions

  • the present invention relates to a gallium nitride growth substrate for growing a gallium nitride film and a method for manufacturing the same.
  • gallium nitride substrates have been used as substrates for light-emitting diodes and laser diodes that emit blue or ultraviolet light. Since gallium nitride substrates are difficult to form G a N (gallium nitride) films on Si substrates or glass substrates, G a N can be used on S i C substrates and sapphire substrates that have approximate lattice constants. A film is formed.
  • G a N gallium nitride
  • gallium nitride substrates employ SiC substrates and sapphire substrates as substrates, the fields that can be applied to deno and ice are limited and problematic.
  • SiC substrate and the sapphire substrate are expensive, there is a problem that the cost of the gallium nitride substrate becomes high.
  • An object of the present invention is to provide a gallium nitride-grown ffl substrate capable of realizing an inexpensive gallium nitride substrate having a wide range of application fields to devices, and a method for manufacturing the same. Disclosure of the invention
  • the present inventors formed a GaN-containing layer containing GaN on the substrate, and used the GaN-containing layer as a seed crystal. I came up with the idea of growing a G a N film.
  • amorphous GaN is formed inside the SiN film by irradiating the surface of the SiN (silicon nitride) film with Gaion at an energy of 75 keV (SAAlmeida et al “Bond formation in ion beam synthesized amorphous gallium nitride,“ Thin Solid Films ”, 1999, 343-344 p.632-636).
  • GaN was not formed on the surface of the Si N film by the method of irradiating the surface of the Si N film with Ga ion at a high energy of 75 keV.
  • annealing is performed on the SiN film after the Ga ion irradiation, so that Ga existing in the SiN film is attracted to the surface of the SiN film to form GaN on the surface layer portion. Annealing is required to manufacture the gallium nitride substrate.
  • G a N is applied to the surface layer portion including the surface of the SiN film with respect to the surface of the SiN film. Irradiate G a ion with energy that will result in the formation of a G a N containing layer o
  • an SiN film is formed on a substrate.
  • a substrate used in various fields such as an Si substrate, a glass substrate, or a gallium arsenide substrate should be adopted as the substrate. I can do it.
  • the Si and N bonds are separated by the implanted Ga ions, and the separated N and Ga are separated.
  • a GaN-containing layer containing GaN is formed on the surface layer portion of the SiN film.
  • the formation of a GaN-containing layer in the surface layer of the SiN film has been confirmed by experiments described later.
  • a GaN film is grown on the surface of the GaN-containing layer of the gallium nitride growth substrate obtained by the above-described manufacturing method, thereby producing the gallium nitride substrate of the present invention. At this time, the GaN film can be easily grown using the GaN-containing layer as a seed crystal.
  • a substrate used in various fields can be adopted as a substrate for a gallium nitride growth substrate, it can be applied to devices in a wide range of fields.
  • an Si substrate, a glass substrate, or a gallium arsenide substrate is used as the substrate, the cost can be reduced as compared with a conventional gallium nitride substrate having an SiC substrate or a sapphire substrate.
  • the energy is set to 4.0 keV or less.
  • the irradiation energy of Ga ions is set to a value larger than 4. OkeV, the amount of GaN formed on the surface layer of the SiN film decreases. Therefore, it is desirable to set the irradiation energy of Ga ions to 4. Oke V or less.
  • FIG. 1 is a process diagram showing a method for manufacturing a gallium nitride substrate according to the present invention.
  • FIG. 2 is a diagram for explaining the operation of the manufacturing method.
  • FIG. 3 is a graph showing a Ga signal obtained by performing XPS analysis on the gallium nitride growth substrate according to the present invention.
  • Figure 4 shows the Ga signal obtained by performing XPS analysis on four types of gallium nitride growth substrates and conventional gallium nitride substrates fabricated by changing the conditions during irradiation of Ga ion. It is a graph showing.
  • Figure 5 shows the Ga signal obtained by XPS analysis for four types of gallium nitride growth substrates and conventional gallium nitride substrates fabricated by changing the irradiation energy of Ga ions. It is a graph to represent.
  • Figure 6 shows XPS analysis of a substrate irradiated with Ga ions at 0.1 keV and 0.2 keV, a gallium nitride substrate as a reference substrate, and a SiN substrate not irradiated with Ga ions. It is a graph showing the signal of N obtained.
  • Figure 7 shows the results obtained by XPS analysis for a gallium nitride growth substrate annealed at 500 ° C, a non-annealed gallium nitride growth substrate, and a conventional gallium nitride substrate. It is a graph showing the signal of Ga.
  • FIG. 8 is a graph showing a Ga signal obtained by performing XPS analysis on a gallium nitride growth substrate that has been annealed at 650 ° C.
  • FIG. 8 is a graph showing a Ga signal obtained by performing XPS analysis on a gallium nitride growth substrate that has been annealed at 650 ° C.
  • Figure 9 shows the reflection high-energy electron diffraction pattern on the surface of the substrate for gallium nitride growth before annealing.
  • FIG. 10 shows the reflection high-energy electron diffraction pattern of the surface of the gallium nitride growth substrate after annealing at 650 ° C.
  • Fig. 11 shows the X-ray diffraction spectrum of the surface of the gallium nitride substrate obtained after the GaN film was actually grown on the surface of the gallium nitride growth substrate by the MBE method.
  • Figure 12 shows the scanning type of the Ga ion unirradiated region on the surface of a gallium nitride substrate with a gallium nitride growth substrate prepared by setting the irradiation amount of Ga ions to 3 ⁇ 10 15 ions / cm 2. It is an electron micrograph.
  • FIG. 13 is a scanning electron micrograph of a Ga ion irradiation region on the surface of the gallium nitride substrate.
  • G a ion unirradiated area of scanning electron irradiation amount 6 X 10 15 / cm 2 or set to fabricated gallium nitride growth substrate comprises gallium nitride substrate surface of the Ga ion It is a micrograph.
  • Figure 15 shows a scanning electron microscope of the Ga ion irradiated area on the surface of the above gallium nitride substrate. It is a microscopic photograph.
  • FIG. 17 represents the X-ray diffraction pattern of the Ga ion irradiation region on the surface of the gallium nitride substrate.
  • Figure 18 shows the X-ray diffraction of the non-irradiated area of Ga ions on the surface of a gallium nitride substrate with a gallium nitride growth substrate fabricated with a Ga ion irradiation dose of 6 10 15 cm 2. It represents a pattern.
  • FIG. 19 shows the X-ray diffraction pattern of the Ga ion irradiation region on the surface of the gallium nitride substrate.
  • Figure 20 shows the Ga signal obtained by XPS analysis of a gallium nitride substrate with a gallium nitride growth substrate fabricated with a Ga ion irradiation dose of 3 10 15 ions / cm 2. It is a graph showing.
  • Figure 21 shows the G a obtained by XPS analysis of a gallium nitride substrate with a gallium nitride growth substrate fabricated with a Ga ion irradiation dose of 6 ⁇ 10 15 Z cm 2. It is a graph showing the signal of. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a method for manufacturing a gallium nitride substrate according to the present invention.
  • a Si substrate First, on the surface of a Si substrate, an S of several hundred A thick consisting of Si and N is formed by a CVD (Chemical Vapor Deposition) method.
  • An iN film is formed (process P 1).
  • the SiN film can be easily formed on various substrates, it is possible to adopt a substrate used in various fields as a substrate, not only a Si substrate, but also a glass substrate.
  • a gallium arsenide substrate or the like can be used.
  • An SiN film can be formed by a film growth method.
  • the surface of the SiN film is irradiated with Ga ions with an energy of 100 eV using a known ion implantation apparatus to produce a substrate for gallium nitride growth (step P 2).
  • a voltage of 100 V is applied to the ion source to generate Ga ions.
  • the chamber one and vacuum of 1.3 X 10- 6 Pa.
  • the irradiation energy of Ga ions is not limited to 100 eV, but within the range in which the bond between Si and N is cut off at the surface layer of the SiN film and the cut N and Ga are bonded as described later. Set to a value.
  • the lowest energy at which the bond between Si and N is broken is considered to be about 10 eV.
  • irradiation with G a ion in a nitrogen gas atmosphere 1.3x 10- 2 Pa possible der is, further, in the atmosphere, by energizing the tungsten filler main cement provided in the chamber one It is also possible to irradiate with Ga ions while generating nitrogen radicals.
  • a GaN film is grown on the surface of the gallium nitride growth substrate fabricated as described above by MBE (Molecular Beam Epitaxy) method (process P 3).
  • MBE Molecular Beam Epitaxy
  • the GaN film can be grown not only by the MBE method but also by a known thin film growth method such as a MOCVD (Metal Organic Chemical Vapor Deposition) method.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the SiN film (2) is formed on the surface of the Si substrate (1) as shown in FIG.
  • the process P2 at the surface layer portion of the SiN film (2), the bond between Si and N is separated by the kinetic energy of Ga ions implanted into the SiN film (2), and the separated N And Ga combine to form a GaN-containing layer (3) containing GaN in the surface layer as shown in FIG.
  • the film thickness of the GaN-containing layer (3) is about 10 to several tens of A.
  • the GaN film (4) is formed on the surface of the GaN-containing layer (3) using the GaN-containing layer (3) as a seed crystal.
  • the substrate is used in various fields as a substrate.
  • the Si substrate (1) can be applied to devices in a wide range of fields. For example, it is applied to blue light emitting diodes and blue laser diodes. It is also possible to provide a light emitting part and a light receiving part on two gallium nitride substrates, respectively, and to apply to the communication part of two high frequency compatible substrates that can handle high frequency signals.
  • the gallium nitride substrate according to the present invention since the 3: [substrate (1) is employed, the gallium nitride substrate can be used in a conventional Si semiconductor manufacturing process, and an electronic device Development of new devices that fuse optical devices with optical devices is expected.
  • the Si substrate (1) is inexpensive, the cost can be reduced to 1 / 1000-1 / 100 times that of the conventional sapphire substrate. Therefore, it is possible to realize an inexpensive blue light emitting diode, and the spread of displays and traffic lights having a blue light emitting diode is expected.
  • the GaN film grows on the entire surface of the sapphire substrate. Unnecessary parts had to be scraped off, but according to the manufacturing method of the present invention, by irradiating a part of the surface of the SiN film (2) with Ga ions, only the irradiated part of the GaN film (4) Can grow.
  • S i S i0 2 film and S iNx (x> 0) on the substrate front surface of the substrate film are sequentially laminated and irradiated with the energy of G a ions 60 eV.
  • the substrate temperature was set to room temperature without heating the substrate, and the inside of the chamber was evacuated to 1.3 ⁇ 10 6 Pa.
  • the irradiation time of Ga ions was set to 1 to 60 minutes, and 1 ⁇ 10 15 to 5 ⁇ 10 16 Ga ions were irradiated per lcm 2 .
  • the S iN x film formed on the surface of the S i0 2 film is sufficiently thick so that the S i0 2 film does not adversely affect the experimental results.
  • the bonding state of Ga in the surface layer of the substrate was analyzed by XPS analysis (X-ray photoelectron spectroscopy). However, since the gallium nitride growth substrate is an insulator, the measured values were corrected for charge-up due to photoelectron emission.
  • Fig. 3 shows the evaluation results for the above-prepared gallium nitride growth substrate, in which the photoelectron intensity emitted from the Ga 3d orbit is plotted.
  • the three vertical lines in the figure are the photoelectrons emitted from the 3 d orbital of Ga, which is bonded to 0, Ga, which is bonded to N, and Ga which is bonded to Ga. This represents the combined energy.
  • the photoelectron binding energy from G a that is bonded to N is about 20.2 eV.
  • a substrate for gallium nitride growth (b) was fabricated by irradiating the surface of the substrate having the same structure as in Experiment 1 with the tungsten filament energized with Ga ions. At this time, the irradiation energy of Ga ions, the substrate temperature, the atmospheric pressure in the chamber, and the irradiation time of Ga ion were set to the same values as in Experiment 1.
  • a substrate (c) for growing gallium nitride was fabricated by irradiating the surface of the substrate having the same structure as in Experiment 1 with Ga ions in a nitrogen gas atmosphere of 1.3 10 to 2 Pa. At this time, the irradiation energy of the Ga ions, the substrate temperature, and the irradiation time of the Ga ions were set to the same values as in Experiment 1.
  • the surface of the substrate while energizing the tungsten filament is irradiated with a G a Ion was produced nitride Gariumu growth substrate (d).
  • the irradiation energy of the Ga ions, the substrate temperature, and the irradiation time of the Ga ions were set to the same values as in Experiment 1.
  • a GaN film was epitaxially grown on a sapphire substrate to produce a gallium nitride substrate (e).
  • the five bonded substrates (a) to (e) were analyzed for the binding state of Ga by XPS analysis as in Experiment 1.
  • FIG. 4 shows the evaluation results for the above five types of substrates (a) to (e), in which the photoelectron intensity emitted from the 3 d orbit of Ga is plotted. Note that the four vertical lines in the figure show the photoelectrons emitted from the 3 d orbitals of Ga, which is bonded to 0, Ga, which is bonded to N, and Ga, which is bonded to each other. It represents the binding energy.
  • the photoelectron intensity peaks near the photoelectron binding energy from Ga, which is bonded to N.
  • the peak of the photoelectron intensity is from the coupling energy of the photoelectrons from Ga bonded to N to the photoelectrons from Ga bonded to Ga. Slightly shifted to the binding energy side. This is thought to be due to the excessive dose of Ga ions.
  • the photoelectron intensity peak is slightly shifted from the photoelectron binding energy from Ga, which is bound to N, to the one side of photoelectron binding energy from Ga, which is bound to 0. Yes. This is thought to be because oxygen contained in nitrogen gas was combined with Ga.
  • the intensity of the photoelectrons becomes a beak near the binding energy of the photoelectrons from Ga that is bonded to N. This is thought to be because Ga, which was incident on the substrate but did not react with N, was combined with nitrogen activated by energization of the tungsten filament, forming a GaN film on the surface of the substrate.
  • gallium nitride growth substrates Four types were fabricated by changing the irradiation energy of Ga ions to 0.1 keV, 0.2 keV, 4.0 keV, and 5. OkeV.
  • a substrate having the same structure as in Experiment 1 was used, and the substrate temperature, the pressure in the chamber, and the irradiation time of Ga ions were set to the same values as in Experiment 1.
  • a GaN film was epitaxially grown on a sapphire substrate to produce a gallium nitride substrate.
  • the five bonded substrates were analyzed for the binding state of Ga by XPS analysis as in Experiment 1.
  • XP was applied to the substrate irradiated with Ga ions at 0.1 keV and 0.2 keV, the gallium nitride substrate as the reference substrate, and the SiN substrate not irradiated with Ga ions, respectively.
  • the binding state of N was analyzed by S analysis.
  • Evaluation results Figure 5 shows the evaluation results for the above five types of substrates, and plots the photoelectron intensities emitted from the Ga 3d orbitals.
  • the three vertical solid lines in the figure are photoelectrons emitted from the 3 d orbitals of Ga, which is bonded to 0, Ga, which is bonded to N, and Ga, which is bonded to each other. It represents the binding energy.
  • the photoelectron intensity peaks near the photoelectron binding energy from Ga bonded to N.
  • the photoelectron intensity is a beak in the vicinity of the photoelectron binding energy from Ga bonded to N. This indicates that in the surface layer portion of the SiN film, most of the injected Ga was combined with N, and a GaN-containing layer containing GaN was formed.
  • the photoelectron intensity beak is greatly shifted to the photoelectron binding energy side from Ga, which is bonded to Ga, and G is bonded to N.
  • the photoelectron binding energy from a is lower than the substrate irradiated with energy of 0.1 keV, 0.2 keV and 4.0 keV.
  • the photoelectron intensity peaks near the binding energy of photoelectrons from N bonded to Ga, and is emitted from N. From the photoelectron signal, it can be said that the injected Ga was combined with N to form a GaN-containing layer containing GaN.
  • Two substrates for gallium nitride growth were fabricated by irradiating the surface of the substrate with the same structure as in Experiment 1 with Ga ions at an energy of 0.2 keV. At this time, the substrate temperature, the pressure inside the chamber, and the irradiation time of Ga ions were set to the same values as in Experiment 1.
  • a GaN film was epitaxially grown on a sapphire substrate to produce a gallium nitride substrate.
  • one of the two gallium nitride growth substrates prepared was annealed at 500 ° C for 5 minutes.
  • the bonding state of Ga was analyzed for the gallium nitride growth substrate that had not been annealed, the gallium nitride growth substrate that had been annealed, and the gallium nitride substrate, respectively, in the same manner as in Experiment 1.
  • Fig. 7 shows the evaluation results for the above three types of substrates, plotting the photoelectron intensity emitted from the Ga 3d orbit. Note that the three vertical lines in the figure indicate the coupling of photoelectrons emitted from the 3 d orbitals of Ga, which is bonded to 0, Ga, which is bonded to N, and Ga, which is bonded to each other. It represents energy.
  • G is bonded to N
  • the photoelectron intensity peaks near the photoelectron binding energy from a.
  • the photoelectron is near the binding energy of the photons from Ga bonded to N. The intensity is at its peak.
  • a substrate for gallium nitride growth was fabricated by irradiating the surface of the substrate having the same structure as in Experiment 1 with Ga ions at an energy of 0.5 keV. At this time, IX 10 15 to 6 X 10 15 Ga ions were irradiated per 1 cm 2 . The substrate temperature and the pressure in the chamber were set to the same values as in Experiment 1.
  • the fabricated gallium nitride growth substrate was annealed at 650 ° C for 5 minutes.
  • the reflection high-energy electron diffraction (RHEED) pattern of the surface of the substrate for gallium nitride growth was observed before and after annealing.
  • FIG. 8 shows a substrate for the growth of gallium nitride that has been annealed as described above. It represents the XPS analysis results, and is a plot of the photoelectron intensity emitted from the Ga 3d orbitals.
  • the substrate When a G a N film is grown on the surface of a gallium nitride growth substrate by the MBE method or the like, the substrate may be heated to about 650 C, but as shown in FIG. Since the photoelectron intensity is a beak near the photoelectron binding energy from (about 20.2 eV), even if the substrate is heated to about 650 ° C when growing the GaN film, the Ga and N It can be said that the GaN film can be easily grown by using the GaN-containing layer as a seed crystal without disconnecting the bond.
  • Fig. 9 shows the reflection high-energy electron diffraction pattern on the surface of the gallium nitride growth substrate before annealing
  • Fig. 10 shows the reflection high-energy electron diffraction pattern on the surface of the gallium nitride growth substrate after annealing. ing.
  • the reflected high-energy electron diffraction pattern on the surface of the substrate for gallium nitride growth before annealing shows a so-called halo pattern in which no particular feature is seen in the radial direction as shown in FIG.
  • the GaN-containing layer of the gallium nitride growth substrate before annealing is not crystalline, indicating that it is in an amorphous state.
  • a ring-shaped pattern appears in the radial direction as shown in FIG. It shows that the GaN-containing layer of the gallium nitride growth substrate after processing is in a polycrystalline state.
  • the annealing treatment promotes crystallization of the GaN-containing layer of the gallium nitride growth substrate because the GaN-containing layer of the gallium nitride growth substrate has changed from an amorphous state to a polycrystalline state by the annealing treatment. This makes it possible to grow the GaN film more easily.
  • a substrate for gallium nitride growth was fabricated by irradiating the surface of the substrate having the same structure as Experiment 1 with Ga ions at an energy of 0.5 keV. At this time, IX per 1 cm 2 10 15 to 6 ⁇ 10 15 Ga ions were irradiated. The substrate temperature and the pressure in the chamber were set to the same values as in Experiment 1.
  • a GaN film was fabricated by growing a GaN film on the surface of the fabricated gallium nitride growth substrate by the MBE method.
  • the substrate temperature was set to 650 ° C.
  • the to nitrogen radicals atmosphere mainly MB E chamber in one
  • a pressure in the switch Yanba It was set to about 1.0 x 10- 2 P a.
  • the flux amount of the G a is set to approximately 3.9 X 10- 5 Pa vacuum degree terms.
  • the X-ray diffraction spectrum of the surface of the fabricated gallium nitride substrate was measured.
  • FIG. 11 shows an X-ray diffraction spectrum of the surface of the gallium nitride substrate. As shown in the figure, a diffraction peak appears at the position of hexagonal (h-) GaN, which indicates that hexagonal GaN has grown on the surface of the substrate for gallium nitride growth by the MBE method.
  • a portion of the surface of the substrate having the same structure as in Experiment 1 is irradiated with 3 x 10 15 Ga ions per 1 cm 2 , and gallium nitride is grown with Ga ion irradiated and unirradiated regions.
  • a substrate for manufacturing (a) was prepared. At this time, the irradiation energy of Ga ions was set to 0.5 keV. The substrate temperature and the pressure inside the chamber were set to the same values as in Experiment 1.
  • a substrate for gallium nitride growth (b) having a Ga ion irradiated region and an unirradiated region was fabricated by irradiation with Ga ions. At this time, the irradiation energy of Ga ions was set to 0.5 keV. The substrate temperature and the pressure inside the chamber were set to the same values as in Experiment 1.
  • Two types of gallium nitride substrates (a) and (b) were prepared by growing GaN films on the surfaces of the two types of gallium nitride growth substrates (a) and (b) by MBE. At this time, the substrate temperature, the pressure inside the MBE chamber, and the flux of Ga were set to the same values as in Experiment 6.
  • the irradiated region and unirradiated region of G aion on the surface of the two types of gallium nitride substrates (a) and (b) were observed with a scanning electron microscope (SEM).
  • the X-ray diffraction spectra of the surfaces of the above two types of gallium nitride substrates (a) and (b) were measured.
  • FIG. 12 shows a scanning electron micrograph of the Ga ion unirradiated region on the surface of the gallium nitride substrate (a), while FIG. 13 shows a scanning electron micrograph of the Ga ion irradiated region on the surface of the substrate.
  • FIG. 14 shows a scanning electron micrograph of a Ga ion non-irradiated region on the surface of the gallium nitride substrate (b), while FIG. 15 shows a scanning electron of the Ga ion irradiated region on the surface of the substrate. Represents a photomicrograph. As shown in FIG.
  • a GaN film made of crystal grains having the same size as the Ga ion unirradiated region shown in FIG. 12 is grown.
  • a GaN film composed of crystal grains smaller than the Ga ion non-irradiated region shown in FIG. 14 is grown in the Ga ion irradiated region of the gallium nitride substrate (b). .
  • the Ga ion irradiation dose is set to 3 ⁇ 10 15 ions / cm 2
  • the Ga ion irradiation does not adversely affect the crystal growth of the Ga N film.
  • the irradiation dose is set to 6 ⁇ 10 15 ions / cm 2
  • the irradiation with Ga ions has an adverse effect on the crystal growth of the GaN film, in that the crystal grains become smaller.
  • FIG. 16 shows the X-ray diffraction pattern of the Ga ion unirradiated region on the surface of the gallium nitride substrate (a), while FIG. 17 shows the X-ray diffraction pattern of the Ga ion irradiated region on the surface of the substrate.
  • FIG. 18 shows the X-ray diffraction pattern of the Ga ion unirradiated region on the surface of the gallium nitride substrate (b), while FIG. 19 shows the X-ray diffraction pattern of the Ga ion irradiated region on the surface of the substrate. It represents.
  • the half width of the diffraction peak is approximately the same in the Ga ion irradiated region and the unirradiated region, whereas in the gallium nitride substrate (b) As shown in Fig. 18 and Fig. 19, the half width of the diffraction peak in the Ga ion irradiated region is larger than that in the unirradiated region. This is because the crystallinity is disturbed by the Ga ion irradiation. It is shown that.
  • the irradiation amount of Ga ions when the irradiation amount of Ga ions is set to 3 ⁇ 10 15 ions / cm 2 , the irradiation of Ga ions does not adversely affect the crystal growth of the Ga N film. If you set the amount of radiation to 6 X 10 1 5 pieces / cm 2, the irradiation of G a Ion would adversely affect that disturbing the crystallinity of crystal growth of G a N film.
  • Figures 20 and 21 show the XPS analysis of the gallium nitride substrates (a) and (b), respectively. It shows the results, and plots the intensity of the photoelectrons emitted from the Ga 3d orbit.
  • the photoelectron intensity peaks near the binding energy of photoelectrons from G a that is bonded to N.
  • the reason why the peak position slightly deviates from the vicinity of the binding energy is that correction for the charging effect at the time of measurement is insufficient.
  • the gallium nitride substrate (b) as shown in Fig. 21, although the photoelectron intensity is a beak in the vicinity of the photoelectron binding energy from Ga bonded to N, it is bonded between Ga.
  • the intensity of the photoelectron is higher than that of the gallium nitride substrate (a) near the photoelectron binding energy from Ga.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 本発明に係る窒化ガリウム成長用基板は、基板上にSiN膜を形成する工程P1と、該SiN膜の表面に対して該SiN膜の表面を含む表層部にGaNを含むGaN含有層が形成されることとなるエネルギーでGaイオンを照射する工程P2とを経て得られる。

Description

明 細 書 窒化ガリゥム成長用基板及びその製造方法 技術分野
本発明は、 窒化ガリゥム膜を成長させる窒化ガリゥム成長用基板及びその製造 方法に関するものである。 脊景技術
従来、 青色光や紫外光を発する発光ダイオードやレーザダイオードの基板とし て、 窒化ガリウム基板が用いられている。 窒化ガリウム基板は、 S i基板ゃガラ ス基板等に G a N (窒化ガリウム)膜を形成することが困難であるため、 格子定数 が近似している S i C基板やサファイア基板に G a N膜を形成して構成されてい る。 尚、 基板上に G a N膜を形成する種々の方法が提案されている(例えば、 日本 国特許第 3 2 2 6 7 9 6号公報及び日本国特許第 3 0 9 4 9 6 5号公報参照)。 しかしながら、 従来の窒化ガリウム基板においては、 基板として S i C基板や サフアイァ基板が採用されているため、 デノ、'ィスへの応用が可能な分野が狭レ、問 題があった。 又、 S i C基板やサファイア基板は高価であるため、 窒化ガリウム 基板のコストが高くなる問題があつた。
本発明の目的は、 デバイスへの応用分野が広い安価な窒化ガリウム基板を実現 することが可能な窒化ガリゥム成長 ffl基板及びその製造方法を提供することであ る。 発明の開示
そこで、 本発明者らは、 上記課題を解決すべく鋭意研究を行なった結果、 基板 上に G a Nを含む G a N含有層を形成しておき、 該 G a N含有層を種結晶として G a N膜を成長させることに想到した。
ところで、 S iN (シリコン窒化)膜の表面に 75 ke Vのエネルギーで Gaィ オンを照射することによって S iN膜の内部にアモルファス GaNが形成される ことが報告されてレヽる (S.A.Almeida et al.、 「Bond formation in ion beam synthesized amorphous gallium nitridej、 "Thin Solid Films"誌、 1999 年、 343-344巻 p.632-636)。
しかし、 彼らの研究によれば、 S iN膜の表面に 75 keVの高いエネルギー で G aィォンを照射する方法によっては、 S i N膜の表層部に GaNが形成され ないことが判明した。
そこで、 Gaイオンの照射後に S iN膜にァニール処理を施すことにより、 該 S iN膜の内部に存在する Gaを S iN膜の表面に引き寄せて表層部に GaNを 形成することが考えられるが、 窒化ガリゥム基板の製造にァニール処理が必要と なる。
本発明に係る窒化ガリウム成長用基板の製造においては、 基板上に S iN膜を 形成した後、 該 S iN膜の表面に対して、 該 S iN膜の表面を含む表層部に G a Nを含む G a N含有層が形成されることとなるエネルギーで G aィォンを照射す る o
上記製造方法においては、 先ず、 基板上に S iN膜が形成される。 ここで、 S iN膜は、 種々の基板に容易に成膜することが可能であるので、 基板として、 種々の分野で用いられる基板、 例えば S i基板、 ガラス基板或いはガリウムヒ素 基板を採用することが出来る。
次に、 前記 S iN膜の表面に Gaイオンが照射されることによって、 S iN膜 の表層部では、 打ち込まれた Gaイオンにより S iと Nの結合が切り離されて、 切り離された Nと Gaが結合し、 S iN膜の表層部には、 GaNを含む GaN含 有層が形成される。 尚、 S iN膜の表層部に GaN含有層が形成されることは、 後述の実験により確認されている。 その後、 上記製造方法によって得られた窒化ガリゥム成長用基板の G a N含有 層の表面に GaN膜を成長させて、 本発明の窒化ガリウム基板を作製する。 この とき、 GaN含有層を種結晶として、 GaN膜を容易に成長させることが出来る。 本発明によれば、 窒化ガリゥム成長用基板の基板として種々の分野で用いられ る基板を採用することが出来るので、 幅広い分野でデバイスへの応用が可能とな る。 又、 基板として S i基板、 ガラス基板或いはガリウムヒ素基板を採用すれば、 S i C基板やサファイア基板を具えた従来の窒化ガリウム基板に比べてコストを 低下させることが出来る。
具体的には、 前記エネルギーは、 4.0 ke V以下に設定される。 G aイオンの 照射エネルギーを 4. OkeVよりも大きな値に設定すると、 SiN膜の表層部に 形成される GaNの量が減少する。 従って、 G aイオンの照射エネルギーは、 4. Oke V以下に設定することが望ましい。
上述の如く、 本発明によれば、 デバイスへの応用分野が広い安価な窒化ガリウ ム基板を実現することが出来る。 図面の簡単な説明
図 1は、 本発明に係る窒化ガリゥム基板の製造方法を表わす工程図である。
図 2は、 上記製造方法の作用を説明する図である。
図 3は、 本発明に係る窒化ガリゥム成長用基板について XPS分析を行なって 得られた G aのシグナルを表わすグラフである。
図 4は、 G aィォンの照射時の条件を変えて作製した 4種類の窒化ガリ ム成 長用基板と従来の窒化ガリゥム基板についてそれそれ XP S分析を行なって得ら れた G aのシグナルを表わすグラフである。
図 5は、 G aイオンの照射エネルギーを変化させて作製した 4種類の窒化ガリ ゥム成長用基板と従来の窒化ガリゥム基板についてそれそれ XP S分析を行なつ て得られた G aのシグナルを表わすグラフである。 図 6は、 Gaイオンを 0.1 ke V及び 0.2 ke Vで照射した基板と、 リファ レンス基板としての窒化ガリゥム基板と、 G aイオンを照射していない S iN基 板についてそれそれ XPS分析を行なって得られた Nのシグナルを表わすグラフ である。
図 7は、 500°Cでァニール処理を施した窒化ガリウム成長用基板、 ァニール 処理を施していない窒化ガリゥム成長用基板、 及び従来の窒化ガリゥム基板につ いてそれそれ XP S分析を行なって得られた G aのシグナルを表わすグラフであ る。
図 8は、 650°Cでァニール処理を施した窒化ガリウム成長用基板について X P S分析を行なって得られた G aのシグナルを表わすグラフである。
図 9は、 ァニール処理前の窒化ガリゥム成長用基板の表面の反射高速電子線回 折パターンを表わしている。
図 10は、 650°Cでのァニール処理後の窒化ガリウム成長用基板の表面の反 射高速電子線回折パターンを表わしている。
図 11は、 MBE法により窒化ガリウム成長用基板の表面に実際に GaN膜を 成長させた後に得られる窒化ガリゥム基板の表面の X線回折スぺクトルを表わし ている。
図 12は、 G aイオンの照射量を 3 X 1015個/ cm2に設定して作製された 窒化ガリゥム成長用基板を具えた窒化ガリゥム基板の表面の G aィオン未照射領 域の走査型電子顕微鏡写真である。
図 13は、 '上記窒化ガリウム基板の表面の G aイオン照射領域の走査型電子顕 微鏡写真である。
図 14は、 Gaイオンの照射量を 6 X 1015個/ c m2に設定して作製された 窒化ガリウム成長用基板を具えた窒化ガリウム基板の表面の G aイオン未照射領 域の走査型電子顕微鏡写真である。
図 15は、 上記窒化ガリゥム基板の表面の G aィォン照射領域の走査型電子顕 微鏡写真である。
図 16は、 Gaイオンの照射量を 3x 1015個/ c m2に設定して作製された 窒化ガリウム成長用基板を具えた窒化ガリゥム基板の表面の G aイオン未照射領 域の X線回折パターンを表わしている。
図 17は、 上記窒化ガリウム基板の表面の Gaイオン照射領域の X線回折パ夕 —ンを表わしている。
図 18は、 G aイオンの照射量を 6 1015個ノ cm2に設定して作製された 窒化ガリウム成長用基板を具えた窒化ガリウム基板の表面の G aイオン未照射領 域の X線回折パターンを表わしている。
図 19は、 上記窒化ガリウム基板の表面の G aイオン照射領域の X線回折パ夕 ーンを表わしている。
図 20は、 G aイオンの照射量を 3 1015個/ cm2に設定して作製された 窒化ガリゥム成長用基板を具えた窒化ガリゥム基板について XP S分析を行なつ て得られた Gaのシグナルを表わすグラフである。
図 21は、 G aイオンの照射量を 6 X 1015個 Z cm2に設定して作製された 窒化ガリゥム成長用基板を具えた窒化ガリゥム基板について XP S分析を行なつ て得られた G aのシグナルを表わすグラフである。 発明を実施するための最良の形態
以下、 本発明の実施の形態につき、 図面に沿って具体的に説明する。
図 1は、 本発明に係る窒化ガリウム基板の製造方法を表わしており、 先ず、 S i基板の表面に、 CVD(Chemical Vapour Deposition)法によって S i及び Nか らなる厚さ数百 Aの S iN膜を形成する(工程 P 1 )。 ここで、 S iN膜は種々の 基板に容易に成膜することが出来るので、 基板としては、 種々の分野で用いられ る基板を採用することが可能であり、 Si基板に限らず、 ガラス基板やガリウム ヒ素基板等を採用することが出来る。 尚、 CVD法に限らず、 その他の周知の薄 膜成長方法によって、 S iN膜を形成することが可能である。
次に、 S iN膜の表面に、 公知のイオン注入装置を用いて G aイオンを 100 eVのエネルギーで照射して、 窒化ガリゥム成長用基板を作製する(工程 P 2 )。 このとき、 イオン源には、 100 Vの電圧を印加して Gaイオンを発生させる。 又、 基板を加熱することなく基板温度を室温に設定すると共に、 チャンバ一内を 1.3 X 10— 6Paの真空状態とする。 尚、 Gaイオンの照射エネルギーは、 1 00 e Vに限らず、 後述の如く S iN膜の表層部において S iと Nの結合が切り 離され、 切り離された Nと Gaが結合する範囲内の値に設定される。 SiとNの 結合が切り離される最低のエネルギーは 10 eV程度と考えられる。 又、 例えば 1.3x 10— 2 Paの窒素ガス雰囲気中で G aイオンを照射することも可能であ り、 更に、 該雰囲気中で、 チャンバ一内に設けられているタングステンフィラメ ントに通電して窒素ラジカルを発生させた状態で G aイオンを照射することも可 能である。
その後、 上述の如く作製された窒化ガリウム成長用基板の表面に、 MBE (Molecular Beam Epitaxy)法によって G aN膜を成長させる(工程 P 3 )。 尚、 M BE法に限らず、 MO CVD (Metal Organic Chemical Vapour Deposition)法等 の周知の薄膜成長方法によって、 G a N膜を成長させることが可能である。
上記製造方法においては、 工程 P 1によって、 図 2 (a) の如く Si基板(1) の表面に S iN膜(2)が形成される。 次に、 工程 P 2によって、 SiN膜(2)の 表層部において、 該 S iN膜(2)に打ち込まれた Gaイオンの運動エネルギーに より S iと Nの結合が切り離され、 切り離された Nと Gaが結合して、 同図(b) の如く該表層部に G a Nを含む G a N含有層(3)が形成されることになる。 ここ で、 G a N含有層(3)の膜厚は、 10〜数十 A程度である。 その後、 工程 P3に よって、 該 GaN含有層(3)を種結晶として、 該 GaN含有層(3)の表面に Ga N膜(4 )が形成されることになる。
上記本発明に係る窒化ガリウム基板においては、 基板として種々の分野で用い られている S i基板( 1 )が採用されているので、 幅広い分野でデバイスへの応用 が可能である。 例えば、 青色系発光ダイオードや青色系レーザダイオードに応用 される。 又、 2枚の窒化ガリウム基板にそれそれ発光部及び受光部を設けて、 高 周波信号に対応可能な 2枚の高周波数対応基板の通信部に応用することも可能で ある。
又、 上記本発明に係る窒化ガリウム基板においては、 3:[基板(1)が採用され ているので、 該窒化ガリウム基板を従来の S i半導体の製造工程で用いることが 可能であり、 電子デバイスと光デバイスを融合した新しいデバイスの開発が期待 される。
更に、 S i基板( 1 )は安価であるので、 コストを従来のサファイア基板の 1/ 1000- 1/100倍に低く抑えることが出来る。 従って、 安価な青色系発光 ダイォードを実現することが可能であり、 青色系発光ダイォードを具えたデイス プレイや信号機の普及が期待される。
更に又、 従来の製造方法においては、 G a N膜の成膜時に薄膜成長方法として MOCVD法を採用した場合、 サファイア基板の全表面に GaN膜が成長するた め、 GaN膜を成長させた後に不要な部分を削り取らねばならなかったが、 本発 明の製造方法によれば、 Gaイオンを S iN膜( 2 )の表面の一部に照射すること によって該照射部分にのみ GaN膜(4)を成長させることが出来る。
次に、 本発明の効果を確認するために行なった実験について説明する。
実験 1
(1) 窒化ガリウム成長用基板の作製
S i基板上に S i02膜及び S iNx(x>0)膜が順次積層されている基板の表 面に、 G aイオンを 60 eVのエネルギーで照射した。 このとき、 基板を加熱す ることなく基板温度を室温に設定すると共に、 チャンバ一内を 1.3x 10_6P aの真空状態とした。 又、 Gaイオンの照射時間を 1〜60分に設定して、 l c m2当たり 1 X 1015〜5 X 1016個の Gaイオンを照射した。 尚、 S i基板上 に S i 02膜が形成されているが、 該 S i02膜の表面に形成されている S iNx 膜は十分に厚いため、 該 S i02膜が実験結果に悪影響を及ぼすことはない。
(2) 評価方法
上述の如く作製された窒化ガリゥム成長用基板の表面にスパッ夕リングを施す ことなく、 XPS分析法(X線光電子分光分析法)によって該基板の表層部の Ga の結合状態を分析した。 但し、 窒化ガリウム成長用基板は絶縁物であるため、 測 定値には、 光電子の放出によるチャージアップに対する補正を施した。
(3) 評価結果
図 3は、 上記作製された窒化ガリゥム成長用基板についての評価結果を表わし ており、 Gaの 3 d軌道から放出される光電子の強度をプロットしたものである。 尚、 図中の 3本の縦線はそれそれ、 0と結合している Ga、 Nと結合している G a及び G aどうしで結合している G aの 3 d軌道から放出される光電子の結合ェ ネルギーを表わしている。 Nと結合している G aからの光電子の結合エネルギー は 20.2 e V程度である。
図示の如く、 光電子の結合エネルギーが 20 eV付近で光電子の強度がピーク となっていることから、 上記窒化ガリウム成長用基板の表層部には、 多くの Ga
Nが存在すると言える。
実験 2
(1) 窒化ガリウム成長用基板の作製
基板(a)
実験 1と同様にして、 窒化ガリウム成長用基板(a)を作製した。
基板( b )
タングステンフィラメントに通電した状態で実験 1と同じ構造を有する基板の 表面に Gaイオンを照射して、 窒化ガリウム成長用基板(b)を作製した。 このと き、 G aイオンの照射エネルギー、 基板温度、 チャンバ一内の気圧、 及び Gaィ オンの照射時間は、 実験 1と同じ値に設定した。 基板( C )
1.3 1 0一2 P aの窒素ガス雰囲気中で実験 1と同じ構造を有する基板の表 面に Gaイオンを照射して、 窒化ガリウム成長用基板( c )を作製した。 このとき、 G aイオンの照射エネルギー、 基板温度及び G aイオンの照射時間は、 実験 1と 同じ値に設定した。
基板( d )
1.3 1 0— 2P aの窒素ガス雰囲気中で、 タングステンフィラメントに通電 した状態で基板の表面に G aィォンを照射して、 窒化ガリゥム成長用基板( d )を 作製した。 このとき、 G aイオンの照射エネルギー、 基板温度及び G aイオンの 照射時間は、 実験 1と同じ値に設定した。
基板( e )
リファレンス基板として、 サファイア基板上に GaN膜をェピタキシャル成長 させて窒化ガリゥム基板( e )を作製した。
( 2 ) 評価方法
作製した 5種類の基板(a)〜(e )について夫々、 実験 1と同様に、 XP S分析 法によって G aの結合状態を分析した。
( 3 ) 評価結果
図 4は、 上記 5種類の基板(a)〜(e)についての評価結果を表わしており、 G aの 3 d軌道から放出される光電子の強度をプロットしたものである。 尚、 図中 の 4本の縦線はそれそれ、 0と結合している Ga、 Nと結合している Ga及び G aどうしで結合している G aの 3 d軌道から放出される光電子の結合エネルギー を表わしている。
リファレンス基板としての基板(e)については、 Nと結合している G aからの 光電子の結合エネルギー付近で光電子の強度がピークとなっている。
基板(a)(b)については、 光電子の強度のピークが、 Nと結合している Gaか らの光電子の結合ェネルギ一から G aどうしで結合している G aからの光電子の 結合エネルギー側に僅かにずれている。 これは、 G aイオンの照射量が過多であ つたためと考えられる。
基板(c)については、 光電子の強度のピークが、 Nと結合している G aからの 光電子の結合エネルギーから 0と結合している G aからの光電子の結合エネルギ 一側に僅かにずれている。 これは、 窒素ガスに含まれている酸素が G aと結合し たためと考えられる。
基板(d)については、 Nと結合している G aからの光電子の結合エネルギー付 近で光電子の強度がビークとなっている。 これは、 基板に入射したものの Nと反 応しなかった Gaがタングステンフイラメントの通電により活性化した窒素と結 合して、 基板の表面に GaN膜が形成されたためと考えられる。
実験 3
(1) 窒化ガリウム成長用基板の作製
G aイオンの照射エネルギーを 0.1 k e V、 0.2 k e V、 4.0keV及び 5. OkeVと変えて、 4種類の窒化ガリウム成長用基板を作製した。 実験 1と同じ 構造を有する基板を用い、 基板温度、 チャンバ一内の気圧、 及び G aイオンの照 射時間は実験 1と同じ値に設定した。
又、 リファレンス基板として、 サファイア基板上に GaN膜をェピタキシャル 成長させて窒化ガリウム基板を作製した。
(2) 評価方法
作製した 5種類の基板について夫々、 実験 1と同様に、 XPS分析法によって G aの結合状態を分析した。
又、 上記 5種類の基板の内、 Gaイオンを 0.1 ke V及び 0.2 ke Vで照射 した基板と、 リファレンス基板としての窒化ガリウム基板と、 G aイオンを照射 していない S iN基板について夫々、 XP S分析法によって Nの結合状態を分析 した。
(3) 評価結果 図 5は、 上記 5種類の基板についての評価結果を表しており、 G aの 3d軌道 から放出される光電子の強度をプロットしたものである。 尚、 図中の 3本の縦の 実線はそれそれ、 0と結合している Ga、 Nと結合している Ga及び Gaどうし で結合している G aの 3 d軌道から放出される光電子の結合エネルギーを表わし ている。
リファレンス基板としての窒化ガリゥム基板については、 Nと結合している G aからの光電子の結合エネルギー付近で光電子の強度がピークとなっている。
0&ィォンを0. lkeV、 0.2 ke V及び 4.0 ke Vのエネルギーで照射し た基板については、 Nと結合している G aからの光電子の結合エネルギー付近で 光電子の強度がビークとなっており、 これは、 S iN膜の表層部では注入された G aの殆どが Nと結合して、 G a Nを含む G a N含有層が形成されたことを示し ている。
これに対して、 5. OkeVで照射した基板については、 光電子の強度のビーク が Gaどうしで結合している G aからの光電子の結合エネルギー側に大きくずれ ており、 Nと結合している G aからの光電子の結合エネルギーでは、 0.1keV、 0.2 ke V及び 4.0 k e Vのエネルギーで照射した基板に比べて強度が低くな つている。
上述の結果から、 5. OkeVで照射した基板の表層部には、 G aイオンの照射 によって GaNが形成されるものの、 その量は、 0.1keV、 0.2 k e V及び 4.0 keVのエネルギーで照射した基板に比べて少ないと言える。 従って、 Ga イオンの照射エネルギーは、 4.0 k eV以下 (こ設定することが望ましいと言える。 図 6は、 Gaイオンを 0.1 ke V及び 0.2 ke Vで照射した基板と、 リファ レンス基板としての窒化ガリウム基板と、 G aイオンを照射していない S iN基 板についての評価結果を表わしており、 Nの 1 s軌道から放出される光電子の強 度をプロットしたものである。 尚、 S iと結合している Nからの光電子の結合ェ ネルギ一は、 397.4 eV付近でピークとなり、 G aと結合している Nからの光 電子の結合エネルギーは、 396.7 eV付近でビークとなる。
G aイオンを 0.1 ke V及び 0.2 k e Vのエネルギーで照射した基板につい ては、 G aと結合している Nからの光電子の結合エネルギー付近で光電子の強度 がピークとなっており、 Nから放出される光電子のシグナルからも、 注入された G aが Nと結合して G a Nを含む G a N含有層が形成されたと言える。
実験 4
(1) 窒化ガリウム成長用基板の作製
実験 1と同じ構造を有する基板の表面に G aイオンを 0.2 keVのエネルギー で照射して、 2枚の窒化ガリウム成長用基板を作製した。 このとき、 基板温度、 チャンバ一内の気圧、 及び Gaイオンの照射時間は、 実験 1と同じ値に設定した。 又、 リファレンス基板として、 サファイア基板上に GaN膜をェピタキシャル 成長させて窒化ガリウム基板を作製した。
( 2 ) ァニール処理
窒素ガス雰囲気中において、 作製した 2枚の窒化ガリウム成長用基板の内、 1 枚の基板に 500°Cで 5分間ァニール処理を施した。
(3) 評価方法
ァニール処理を施していない窒化ガリゥム成長用基板、 ァニール処理を施した 窒化ガリウム成長用基板及び窒化ガリウム基板について夫々、 実験 1と同様に、 X P S分析法によって G aの結合状態を分析した。
(4) 評価結果
図 7ほ、 上記 3種類の基板についての評価結果を表わしており、 G aの 3d軌 道から放出される光電子の強度をプロットしたものである。 尚、 図中の 3本の縦 線はそれそれ、 0と結合している Ga、 Nと結合している Ga及び Gaどうしで 結合している G aの 3 d軌道から放出される光電子の結合エネルギーを表わして いる。
リファレンス基板としての窒化ガリゥム基板については、 Nと結合している G aからの光電子の結合エネルギー付近で光電子の強度がピークとなっている。 ァニール処理を施した窒化ガリゥム成長用基板に.ついても、 ァニール処理を施 していない窒化ガリウム成長用基板と同様に、 Nと結合している G aからの光電 子の結合エネルギー付近で光電子の強度がピークとなっている。
窒化ガリウム成長用基板の表面に MB E法等によって G a N膜を成長させる際 には、 該基板を加熱するのであるが、 上述の如く 500°Cでァニール処理を施し た基板についても Nと結合している G aからの光電子の結合エネルギー付近で光 電子の強度がピークとなっていることから、 GaN膜を成長させる際に基板を 5 00 °C程度まで加熱したとしても G aと Nの結合が切り離されることはなく、 G a N含有層を種結晶として GaN膜を容易に成長させることが出来ると言える。 実験 5
( 1 ) 窒化ガリゥム成長用基板の作製
実験 1と同じ構造を有する基板の表面に G aイオンを 0.5 ke Vのエネルギー で照射して、 窒化ガリウム成長用基板を作製した。 このとき、 1 cm2当たり I X 1015〜6 X 1015個の Gaイオンを照射した。 又、 基板温度、 及びチャンバ一 内の気圧は、 実験 1と同じ値に設定した。
( 2 ) ァニール処理
真空中において、 作製した窒化ガリウム成長用基板に 650°Cで 5分間ァニー ル処理を施した。
(3) 評価方法
ァニール処理を施した窒化ガリウム威長用基板について、 実験 1と同様に、 X P S分析法によって G aの結合状態を分析した。
又、 ァニール処理の前後に窒化ガリゥム成長用基板表面の反射高速電子線回折 (RHEED)パターンを観察した。
(4) 評価結果
図 8は、 上述の如くァニール処理を施した窒化ガリゥム成長用基板についての XP S分析結果を表わしており、 Gaの 3 d軌道から放出される光電子の強度を プロットしたものである。
窒化ガリウム成長用基板の表面に MB E法等によって G a N膜を成長させる際 には、 該基板を 650 C程度まで加熱することがあるが、 図示の如く、 Nと結合 している G aからの光電子の結合エネルギー付近( 20.2 eV付近)で光電子の強 度がビークとなっていることから、 GaN膜を成長させる際に基板を 650°C程 度まで加熱したとしても G aと Nの結合が切り離されることはなく、 G a N含有 層を種結晶として GaN膜を容易に成長させることが出来ると言える。
又、 図 9は、 ァニール処理前の窒化ガリウム成長用基板表面の反射高速電子線 回折パターンを表わし、 図 10は、 ァニール処理後の窒化ガリウム成長用基板表 面の反射高速電子線回折パターンを表わしている。
ァニール処理前の窒化ガリゥム成長用基板表面の反射高速電子線回折パターン は、 図 9に示す如く特定の方向ゃ動径方向に特徴の見られない所謂ハローパター ンを示しており、 このことは、 ァニール処理前の窒化ガリウム成長用基板の G a N含有層は、 結晶性を有しておらず、 アモルファス状態であることを示している。 一方、 ァニール処理後の窒化ガリゥム成長用基板表面の反射高速電子線回折パ夕 ーンには、 図 10に示す如く、 動径方向にリング状のパターンが現れており、 こ のことは、 ァニール処理後の窒化ガリウム成長用基板の GaN含有層は多結晶状 態であることを示している。 この様に、 ァニール処理によって窒化ガリウム成長 用基板の GaN含有層がアモルファス状態から多結晶状態に変化していることか ら、 ァニール処理により窒化ガリウム成長用基板の GaN含有層の結晶化が促進 され、 これによつて GaN膜をより容易に成長させることが可能になると言える。 実験 6
( 1 ) 窒化ガリゥム成長用基板の作製
実験 1と同じ構造を有する基板の表面に G aイオンを 0.5 keVのエネルギー で照射して、 窒化ガリウム成長用基板を作製した。 このとき、 1 cm2当たり I X 1015〜6 x 1015個の Gaイオンを照射した。 又、 基板温度、 及びチャンバ一 内の気圧は、 実験 1と同じ値に設定した。
(2) GaN膜の成膜
作製した窒化ガリゥム成長用基板の表面に MB E法により G a N膜を成長させ て、 窒化ガリウム基板を作製した。 このとき、 基板温度を 650°Cに設定した。 又、 MBEチャンバ一内のベース真空度を約 2.6 X 10— 7P aに設定し、 Ga N膜成長時には、 主に MB Eチャンバ一内を窒素ラジカル雰囲気にするため、 チ ヤンバー内の気圧を約 1.0 x 10— 2 P aに設定した。 更に、 G aのフラックス 量は、 真空度換算で約 3.9 X 10— 5Paに設定した。
(3) 評価方法
作製した窒化ガリゥム基板の表面の X線回折スぺクトルを測定した。
(4) 評価結果
図 1 1は、 上記窒化ガリウム基板の表面の X線回折スペクトルを表わしている。 図示の如く、 六方晶(h— )GaNの位置に回折ピークが現れており、 このことは、 MB E法によって窒化ガリゥム成長用基板の表面に六方晶 GaNが成長したこと を示している。
実験 7
( 1 ) 窒化ガリウム成長用基板の作製
基板( a )
実験 1と同じ構造を有する基板の表面の一部に 1 cm2当たり 3 x 1015個の G aイオンを照射して、 G aイオンの照射領域と未照射領域とを有する窒化ガリ ゥム成長用基板(a)を作製した。 このとき、 G aイオンの照射エネルギーは、 0. 5 keVに設定した。 又、 基板温度、 及びチャンバ一内の気圧は、 実験 1と同じ 値に設定した。
基板(b)
実験 1と同じ構造を有する基板の表面の一部に 1 cm2当たり 6 x 1015個の G aイオンを照射して、 G aイオンの照射領域と未照射領域とを有する窒化ガリ ゥム成長用基板(b)を作製した。 このとき、 G aイオンの照射エネルギーは、 0. 5 keVに設定した。 又、 基板温度、 及びチャンバ一内の気圧は、 実験 1と同じ 値に設定した。
(2) GaN膜の成膜
作製した 2種類の窒化ガリゥム成長用基板(a )(b)の表面に MB E法により G aN膜を成長させて、 2種類の窒化ガリウム基板(a)(b)を作製した。 このとき、 基板温度、 MB Eチャンバ一内の気圧、 及び G aのフラックス量は、 実験 6と同 じ値に設定した。
(3) 評価方法
評価方法 1
上記 2種類の窒化ガリゥム基板( a )( b )の表面の G aィオンの照射領域及び未 照射領域を走査型電子顕微鏡( S EM)で観察した。
評価方法 2
上記 2種類の窒化ガリゥム基板(a)(b)の表面の X線回折スぺクトルを測定し た。
評価方法 3
上記 2種類の窒化ガリウム基板(a)(b)について、 実験 1と同様に、 XP S分 析法によって G aの結合状態を分析した。
(4) 評価結果
評価結果 1
図 12は、 窒化ガリウム基板(a)の表面の Gaイオン未照射領域の走査型電子 顕微鏡写真を表わす一方、 図 13は、 該基板の表面の G aイオン照射領域の走査 型電子顕微鏡写真を表わしている。 又、 図 14は、 窒化ガリウム基板(b)の表面 の G aイオン未照射領域の走査型電子顕微鏡写真を表わす一方、 図 15は、 該基 板の表面の G aィォン照射領域の走査型電子顕微鏡写真を表わしている。 図 13に示す如く、 窒化ガリウム基板(a)の Gaイオン照射領域には、 図 12 に示す G aィオン未照射領域と略同じ大きさの結晶粒からなる G a N膜が成長し ているのに対し、 図 15に示す如く、 窒化ガリウム基板(b)の Gaイオン照射領 域には、 図 14に示す G aィォン未照射領域よりも小さい結晶粒からなる G a N 膜が成長している。 この様に、 Gaイオンの照射量を 3 X 1015個/ cm2に設 定した場合には、 G aイオンの照射は G a N膜の結晶成長に悪影響を与えないが、 G aイオンの照射量を 6 x 1015個/ cm2に設定した場合には、 G aイオンの 照射は G a N膜の結晶成長に結晶粒が小さくなるという悪影響を与えることにな る。
評価結果 2
図 16は、 窒化ガリウム基板(a)の表面の G aイオン未照射領域の X線回折パ ターンを表わす一方、 図 17は、 該基板の表面の Gaイオン照射領域の X線回折 パターンを表わしている。 又、 図 18は、 窒化ガリウム基板(b)の表面の Gaィ オン未照射領域の X線回折パターンを表わす一方、 図 19は、 該基板の表面の G aイオン照射領域の X線回折パターンを表わしている。
窒化ガリウム基板(a)については、 図 16及び図 17に示す如く、 Gaイオン 照射領域と未照射領域とで回折ピークの半値幅が略同じであるのに対し、 窒化ガ リウム基板(b)については、 図 18及び図 19に示す如く、 Gaイオン照射領域 での回折ピークの半値幅は未照射領域よりも大きくなつており、 このことは、 G aイオンの照射によって結晶性に乱れが生じたことを示している。 この様に、 G aイオンの照射量を 3 X 1015個/ cm2に設定した場合には、 G aイオンの照 射は G a N膜の結晶成長に悪影響を与えないが、 G aイオンの照射量を 6 X 101 5個/ c m2に設定した場合には、 G aィォンの照射は G a N膜の結晶成長に結晶 性に乱れを生じさせるという悪影響を与えることになる。
評価結果 3
図 20及び図 2 1は夫々、 窒化ガリゥム基板(a)(b)についての XP S分析の 結果を表わしており、 G aの 3 d軌道から放出される光電子の強度をプロッ 卜し たものである。
窒化ガリウム基板(a)については、 図 20に示す如く、 Nと結合している G a からの光電子の結合エネルギー付近で光電子の強度がピークとなっている。 尚、 ピークの位置が該結合エネルギー付近から僅かにずれているのは、 測定時の帯電 効果に対する補正が不十分であるためである。 これに対し、 窒化ガリウム基板 (b )については、 図 2 1に示す如く、 Nと結合している Gaからの光電子の結合 エネルギー付近で光電子の強度がビークとなっているものの、 Gaどうしで結合 している G aからの光電子の結合エネルギー付近で光電子の強度が窒化ガリゥム 基板(a)に比べて高くなつている。 このことから、 Gaイオンの照射量を 6 X 1 015個/ cm2に設定した場合、 Nと結合しなかった G aどうしが結合して窒化 ガリゥム成長用基板の表層部に存在することとなり、 これによつてその後の G a N膜の成長が妨げられることになると考えられる。
上記評価結果 1〜3から、 G aイオンの照射エネルギーを 0.5 keVに設定し た場合には、 G aイオンの照射量を 6 X 1015個/ cm2未満に設定することが 望ましいと言える。

Claims

請 求 の 範 囲
1. GaN膜を成長させる基板であって、 基板上に S iN膜が形成され、 該 S i N膜の表層部には、 G aイオンが照射されることによって GaNを含む GaN含 有層が形成されていることを特徴とする窒化ガリウム成長用基板。
2. GaN膜を成長させる基板を製造する方法であって、 基板上に SiN膜を形 成した後、 該 S iN膜の表面に対して、 該 S iN膜の表面を含む表層部に GaN を含む GaN含有層が形成されることとなるエネルギーで G aイオンを照射する ことを特徴とする窒化ガリウム成長用基板の製造方法。
3. 前記エネルギーは、 4 keV以下である請求の範囲第 2項に記載の窒化ガリ ゥム成長用基板の製造方法。
4. 基板上に S iN膜が形成され、 該 SiN膜の表層部には、 Gaイオンが照射 されることによって GaNを含む GaN含有層が形成され、 該 GaN含有層の表 面に G a N膜が形成されていることを特徴とする窒化ガリウム基板。
5. 基板上に S iN膜を形成した後、 該 S iN膜の表面に対して、 該 SiN膜の 表面を含む表層部に GaNを含む GaN含有層が形成されることとなるエネルギ —で G aイオンを照射し、 該 G a N含有層の表面に G a N膜を成長させることを 特徴とする窒化ガリゥム基板の製造方法。
6. 前記エネルギーは、 4 keV以下である請求の範囲第 5項に記載の窒化ガリ ゥム基板の製造方法。
PCT/JP2006/306067 2005-03-28 2006-03-20 窒化ガリウム成長用基板及びその製造方法 WO2006104064A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510467A JPWO2006104064A1 (ja) 2005-03-28 2006-03-20 窒化ガリウム成長用基板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-090957 2005-03-28
JP2005090957 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006104064A1 true WO2006104064A1 (ja) 2006-10-05

Family

ID=37053322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306067 WO2006104064A1 (ja) 2005-03-28 2006-03-20 窒化ガリウム成長用基板及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2006104064A1 (ja)
WO (1) WO2006104064A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044706A (ja) * 2013-08-28 2015-03-12 住友電気工業株式会社 窒化物半導体成長用基板
JP2019087709A (ja) * 2017-11-10 2019-06-06 学校法人 名城大学 窒化物半導体発光素子の製造方法、及び窒化物半導体発光素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155608A (ja) * 1986-12-18 1988-06-28 Seiko Instr & Electronics Ltd 化合物半導体のエピタキシヤル成長方法
JPH08288215A (ja) * 1995-04-17 1996-11-01 Nippon Steel Corp 半導体基板の製造方法およびその半導体基板
JPH10287497A (ja) * 1997-04-09 1998-10-27 Matsushita Electron Corp 窒化ガリウム結晶の製造方法
JP2002270515A (ja) * 2001-03-07 2002-09-20 Stanley Electric Co Ltd 半導体装置およびその製造方法
WO2003103062A1 (fr) * 2002-06-04 2003-12-11 Nitride Semiconductors Co.,Ltd. Dispositif semi-conducteur a base de nitrure de gallium et son procede de fabrication
JP2005268460A (ja) * 2004-03-18 2005-09-29 Air Water Inc 単結晶SiC基板の製造方法および単結晶SiC基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155608A (ja) * 1986-12-18 1988-06-28 Seiko Instr & Electronics Ltd 化合物半導体のエピタキシヤル成長方法
JPH08288215A (ja) * 1995-04-17 1996-11-01 Nippon Steel Corp 半導体基板の製造方法およびその半導体基板
JPH10287497A (ja) * 1997-04-09 1998-10-27 Matsushita Electron Corp 窒化ガリウム結晶の製造方法
JP2002270515A (ja) * 2001-03-07 2002-09-20 Stanley Electric Co Ltd 半導体装置およびその製造方法
WO2003103062A1 (fr) * 2002-06-04 2003-12-11 Nitride Semiconductors Co.,Ltd. Dispositif semi-conducteur a base de nitrure de gallium et son procede de fabrication
JP2005268460A (ja) * 2004-03-18 2005-09-29 Air Water Inc 単結晶SiC基板の製造方法および単結晶SiC基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KITAMURA T. ET AL: "Formation of GaN layer on SiN using low-energy Ga ion implantation", THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, EXTENDED ABSTRACTS (THE 52ND SPRING MEETING,2005), no. 2, 29 March 2005 (2005-03-29), pages 851 - 29A-YN-8, XP003005272 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044706A (ja) * 2013-08-28 2015-03-12 住友電気工業株式会社 窒化物半導体成長用基板
JP2019087709A (ja) * 2017-11-10 2019-06-06 学校法人 名城大学 窒化物半導体発光素子の製造方法、及び窒化物半導体発光素子

Also Published As

Publication number Publication date
JPWO2006104064A1 (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4613373B2 (ja) Iii族ナイトライド化合物半導体薄膜の形成方法および半導体素子の製造方法
US9991414B2 (en) Method of forming a composite substrate
US7968363B2 (en) Manufacture method for ZnO based semiconductor crystal and light emitting device using same
JP3945782B2 (ja) 半導体発光素子及びその製造方法
JP4631946B2 (ja) Iii族窒化物半導体層貼り合わせ基板の製造方法
JP2000319092A (ja) 高絶縁性単結晶窒化ガリウム薄膜の作製装置
US8882971B2 (en) Sputtering apparatus and manufacturing method of semiconductor light-emitting element
KR20090093887A (ko) 단결정 박막을 갖는 기판의 제조 방법
US8154018B2 (en) Semiconductor device, its manufacture method and template substrate
JP5621199B2 (ja) Si(1−v−w−x)CwAlxNv基材の製造方法、エピタキシャルウエハの製造方法、Si(1−v−w−x)CwAlxNv基材およびエピタキシャルウエハ
CN111883651A (zh) 一种制备高质量氮化铝模板的方法
JP4565062B2 (ja) 薄膜単結晶の成長方法
KR101458629B1 (ko) ZnO계 화합물 반도체 층의 제조방법
CN114717660A (zh) 氮化铝单晶复合衬底及其制法、应用、应力和/或极化控制方法
WO2006104064A1 (ja) 窒化ガリウム成長用基板及びその製造方法
JPWO2006088261A1 (ja) InGaN層生成方法及び半導体素子
CN109830429B (zh) 一种双光路脉冲激光在Si(100)基片上沉积InGaN薄膜的方法
JP4780757B2 (ja) 亜鉛酸化物結晶の分子線エピタキシ(mbe)成長装置及びそれを使用した製造方法
JP4549573B2 (ja) Iii族窒化物薄膜の形成方法
JP2676967B2 (ja) ヘテロ接合素子及びその製造方法
JP3847682B2 (ja) 酸化物基板上への集積回路装置の製造方法及び装置
JP2014500842A (ja) 基板上に成長したiii族窒化物層
JP2005260093A (ja) 窒化ガリウムのヘテロエピタキシャル成長方法
JP2011044665A (ja) Iii族窒化物半導体層接合基板およびiii族窒化物半導体デバイスの製造方法
KR100576984B1 (ko) 질화물 박막 중간층을 이용한 실리콘 기판상의 단결정산화아연 박막 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510467

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730015

Country of ref document: EP

Kind code of ref document: A1