WO2006104044A1 - アントリルアリーレン誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

アントリルアリーレン誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2006104044A1
WO2006104044A1 PCT/JP2006/305983 JP2006305983W WO2006104044A1 WO 2006104044 A1 WO2006104044 A1 WO 2006104044A1 JP 2006305983 W JP2006305983 W JP 2006305983W WO 2006104044 A1 WO2006104044 A1 WO 2006104044A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
light emitting
general formula
emitting layer
Prior art date
Application number
PCT/JP2006/305983
Other languages
English (en)
French (fr)
Inventor
Mineyuki Kubota
Masakazu Funahashi
Chishio Hosokawa
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP06729931A priority Critical patent/EP1864962A4/en
Priority to JP2007510454A priority patent/JPWO2006104044A1/ja
Publication of WO2006104044A1 publication Critical patent/WO2006104044A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/64Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings with a bridged ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/72Spiro hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/30Phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/48Chrysenes; Hydrogenated chrysenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/90Ring systems containing bridged rings containing more than four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an anthryl arylene derivative, an organic electoluminescence device material using the same, and an organic electoluminescence device, and more specifically, a long lifetime with high emission luminance and emission efficiency.
  • the present invention relates to a novel organic electoluminescence device and a novel anthryl arylene derivative for realizing the same.
  • An organic electroluminescent device (hereinafter, electroluminescent device may be abbreviated as EL) is applied with an electric field to generate recombination energy between holes injected from an anode and electrons injected from a cathode. It is a self-luminous element that utilizes the principle that a fluorescent substance emits light. Report of low-voltage driven organic EL devices using stacked devices by Eastman Kodak's CW Tang, etc. (CW Tang, SA Vanslyke, Applied Physics Letters, 51 ⁇ , 913, 1987, etc.) Since then, research on organic EL devices using organic materials as constituent materials has been actively conducted. Tang et al.
  • the device structure of the organic EL device includes a hole transport (injection) layer, a two-layer type of electron transporting light emitting layer, or a hole transport (injection) layer, light emitting layer, and electron transport (injection) layer.
  • the three-layer type is well known. In such a multilayer structure element, the element structure and the formation method have been devised in order to increase the recombination efficiency between injected holes and electrons.
  • chelate complexes such as tris (8-quinolinolato) aluminum complex
  • luminescent materials such as coumarin derivatives, tetraphenol butadiene derivatives, bisstyryl arylene derivatives, oxadiazole derivatives and the like are known. From then on, blue power to red It is reported that light emission in the visible region can be obtained, and realization of a color display element is expected (for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • Patent Document 4 discloses a device using a phenylanthracene derivative as a light emitting material. Further, Patent Document 5 discloses a material having a naphthyl group at 9th and 10th positions of anthracene. Such anthracene derivatives are used as blue light emitting materials
  • Patent Document 6 discloses a material having a fluoranthene group at positions 9 and 10 of anthracene. Such anthracene derivatives are used as blue light-emitting materials, but there has been a demand for improvement in device lifetime.
  • Patent Document 7 discloses that various anthracene derivatives are used as hole transport materials! However, evaluation as a luminescent material has not been made yet.
  • Patent Document 8 discloses that an element using an asymmetric anthracene derivative as a blue light emitting material has high luminous efficiency and a long lifetime. Although these asymmetric anthracene derivatives are excellent blue light-emitting materials, some of their derivatives have a slightly low glass transition temperature (Tg), and there is a need for improvement.
  • Tg glass transition temperature
  • Patent Document 1 Japanese Patent Laid-Open No. 8-239655
  • Patent Document 2 JP-A-7-183561
  • Patent Document 3 Japanese Patent Laid-Open No. 3-200289
  • Patent Document 4 JP-A-8-12600
  • Patent Document 5 JP-A-11-3782
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-257074
  • Patent Document 7 Japanese Patent Laid-Open No. 2000-182776
  • Patent Document 8 WO 2004-18587
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a long-life organic EL device having high luminous efficiency. Furthermore, as a luminescent material used in the organic EL device of the present invention, it has a sufficient glass transition temperature and is particularly suitable for an anthryl arylene derivative. The object is to provide a conductor.
  • anthryl arylene derivatives represented by the following general formulas (I) to ( ⁇ ) have an improved glass transition temperature.
  • the first solution of the problem in the present invention is an anthryl arylene derivative represented by the following general formulas (i) to (m).
  • a second solution to the problem in the present invention is to use an organic EL device material containing an anthryl arylene derivative represented by the above general formulas (I) to ( ⁇ ) alone or as a component of a mixture. .
  • a third solution of the problem in the present invention is to provide an organic electroluminescent device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode. At least one layer is to manufacture an organic electoluminescence device containing the organic EL device material.
  • the present invention has been made to solve the above-mentioned problems, and can provide a long-life organic EL device with high luminous efficiency. Furthermore, it is possible to provide a particularly suitable anthryl arylene derivative having a sufficient glass transition temperature as a light emitting material used in the organic EL device of the present invention.
  • the first invention of the present invention is an anthryl arylene derivative represented by the general formulas (i) to (m).
  • Ar 1 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, a force rubazolylene group represented by the following general formula (A), Or a triptyselen group represented by the following general formula (B).
  • Ar 2 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, a force rubazolylene group represented by the following general formula (A), a triptyselen group represented by the following general formula (B), or the following It is a fluorenylene group represented by the general formula (C). [0013] [I ⁇ 4]
  • Ri to R 5 are each independently a hydrogen atom, an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkyl group, a cycloalkyl group, an alkoxy group, It represents an aralkyl group, an aryloxy group, an aryloxy group, an alkoxycarbo group, a silyl group, a carboxy group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group.
  • R 1 to R 5 may be a linking group.
  • each R independently represents an aromatic hydrocarbon group, an aromatic heterocyclic group, an alkyl group, a cycloalkyl group, an alkoxy group.
  • a to m each independently represent an integer of 0 to 4.
  • p, q, r and s each independently represent an integer of 0 to 3, and the substituents R on each benzene ring may be the same or different.
  • Ar 1 and Ar 2 in the general formulas (I) to (III) are substituted or non-substituted aromatic hydrocarbon groups having 6 to 50 nuclear carbon atoms, R aromatic hydrocarbon groups, and the above general formula
  • Specific examples of the aromatic hydrocarbon group of Ri to R 5 in (A) to (C) include a phenol group, a naphthyl group, an anthryl group, a phenanthryl group, a naphthacenyl group, a pyrenyl group, and a chrysyl group. Groups such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a pyrenyl group. I can get lost.
  • aromatic hydrocarbon groups may be further substituted with a substituent.
  • substituents include alkyl groups (methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group).
  • Specific examples of the aromatic heterocyclic group represented by ⁇ ⁇ include 1 pyrrolyl group, 2 pyrrolyl group, 3 pyrrolyl group, pyrazyl group, 2 pyridyl group, 3 pyridyl group, 4 pyridyl group, 1 Indolyl group, 2-Indolyl group, 3-Indolyl group, 4-Indolyl group, 5-Indolyl group, 6-Indolyl group, 7-Indolyl group, 1-Isoindolyl group, 2-Isoindolyl group, 3-Isoindolyl group, 4 — Isoindolyl group, 5 Isoindolyl group, 6 Isoindolyl group, 7 Isoindolyl group, 2 Furyl group, 3 Furyl group, 2 Benzofural group, 3 Benz
  • R in general formulas (I) to ( ⁇ ) and Ri to R 5 in general formulas (A) to (C) are groups represented by OY.
  • Examples of Y include alkyl Specific example similar to the group Is mentioned.
  • Specific examples of the aralkyl group represented by ⁇ ⁇ include benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylisopropyl group, 2-phenylisopropyl group, and phenyl-butyl.
  • a naphthylmethyl group 1 ⁇ naphthylethyl group, 2-a naphthylethyl group, 1 a naphthylisopropyl group, 2-a naphthylisopropyl group, 13 naphthylmethyl group, 1- ⁇ naphthylethyl group, 2- ⁇ naphthylethyl group, 1— ⁇ -naphthyl isopropyl group, 2- ⁇ -naphthyl isopropyl group, 1-pyrrolylmethyl group, 2-(1-pyryl) ethyl group, ⁇ -methylbenzyl group, m-methylbenzyl group, o methylbenzyl group, p Benzynole group, m-Chlorobenzobenzore group, o Chlorobenzobenzole group, p Bromobenzyl group, m-Bromobenzyl group, o Bromobenzyl group, p Benz
  • R in the general formulas (I) to (III) and in the general formulas (A) to (C)! The aryloxy group ⁇ 1 to! ⁇ Is represented as —OY ′, and examples of Y ′ include phenyl group, 1-naphthyl group, 2-naphthyl group, 1 anthryl group, 2 anthryl group, and 9 anthryl group.
  • R in general formulas (I) to (III) and in general formulas (A) to (C)! The aryl group which is ⁇ ⁇ is represented as SY ′, and examples of Y ′ include the same examples as Y ′ of the aryloxy group.
  • R in the general formulas (I) to ( ⁇ ) and Ri to R 5 in the general formulas (A) to (C) are represented as COOZ, and examples of Z include the alkyl group and A similar example is given.
  • silyl group which is R in the general formulas (I) to ( ⁇ ⁇ ⁇ ⁇ ) and Ri to R 5 in the general formulas (A) to (C) include, for example, a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a butyl group. A dimethylsilyl group, a propyldimethylsilyl group, etc. are mentioned.
  • R in the general formulas (I) to ( ⁇ ) and Ri to R 5 in the general formulas (A) to (C) include fluorine, chlorine, bromine and iodine.
  • examples of the substituent of Ri to R 5 include the same examples as the substituents of ⁇ to ⁇ : 3 .
  • anthryl arylene derivative of this invention is demonstrated.
  • the anthryl arylene derivatives of the general formulas ( ⁇ ) to ( ⁇ ) can be produced, for example, according to any one of the following synthesis schemes Schemes 1 to 3.
  • Ha ⁇ Hal 8 is a halogen atom
  • R ′ is a hydrogen atom.
  • R ′ is a substituted or unsubstituted alkyl group, Comprising:
  • the adjacent alkyl groups may couple
  • the reaction can be carried out even if all aryl halides halogenated with the same type of halogen atom are used.
  • selective reaction only desired reaction sites are more reactive than other halogen atoms, and aryl compounds that are halogenated with halogen atoms (reactivity: I> Br> Cl>> F). It is possible to perform the reaction with higher selectivity by using.
  • the halogen atom of the halogenated aryl compound is a more reactive halogen atom than the halogen atom of the halogenated aryl boronic acid. Is preferred.
  • the reaction is usually carried out under normal pressure and in an inert atmosphere such as nitrogen, argon or helium. If necessary, the reaction can also be carried out under pressurized conditions.
  • the reaction temperature is in the range of 15 to 300 ° C, particularly preferably 30 to 200 ° C.
  • reaction solvent examples include water, aromatic hydrocarbons such as benzene, toluene and xylene, ethers such as 1,2-dimethoxyethane, jetyl ether, methyl-butyl ether, tetrahydrofuran and dioxane, pentane, hexane, Saturated hydrocarbons such as heptane, octane, cyclohexane, dichloromethane, chloroform, carbon tetrachloride, halogens such as 1,2-dichloroethane, 1, 1,1 trichloroethane, acetonitrile, benzo-tolyl Nitriles such as ethyl acetate, methyl acetate, butyl acetate, etc., amides such as N, N dimethylformamide, N, N dimethylacetamide, N-methylpyrrolidone, etc.
  • aromatic hydrocarbons such as benzene, toluene
  • the amount of the solvent used is 3 to 50 times by weight, particularly preferably 4 to 20 times by weight with respect to allylboronic acid and its derivatives.
  • the base used in the reaction is sodium carbonate, potassium carbonate, sodium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, magnesium carbonate, lithium carbonate, potassium fluoride, cesium fluoride, cesium chloride, cesium bromide.
  • Particularly preferred is sodium carbonate.
  • the amount of these bases to be used is in the range of 0.7 to 10 molar equivalents, particularly preferably 0.9 to 6 molar equivalents relative to allylic boronic acid and its derivatives.
  • Catalysts used in the reaction are tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, dichloro [bis (diphenylphosphino) ethane] palladium, dichloro [bis (diphenylphosphino) propane.
  • tetrakis (triphenylphosphine) paradium Particularly preferred is tetrakis (triphenylphosphine) paradium.
  • the amount of these catalysts to be used is in the range of 0.001 to 1 molar equivalent, particularly preferably 0.01 to 0.1 molar equivalent, relative to the halogenated anthracene derivative.
  • halogen atom of the halogen compound examples include an iodine atom, a bromine atom, a chlorine atom, and a fluorine atom, and an iodine atom and a bromine atom are particularly preferable.
  • the borated oxidation reaction is carried out by a known method (Japan Society for Chemistry, Experimental Chemistry 4th Edition, 24-24, 61-90, J. Org. Chem., Vol. 60, 7508 (1995), etc.) Is possible.
  • a known method Japan Society for Chemistry, Experimental Chemistry 4th Edition, 24-24, 61-90, J. Org. Chem., Vol. 60, 7508 (1995), etc.
  • Is possible Is possible.
  • the reaction via lithiation of a halogen aryl compound or Grignard reaction it is usually carried out in an inert atmosphere such as nitrogen, argon, helium, etc., and an inert solvent is used as the reaction solvent.
  • saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, ethers such as 1,2-dimethoxyethane, jetyl ether, methyl-butyl ether, tetrahydrofuran, dioxane, benzene, toluene, xylene
  • Aromatic hydrocarbons such as single or mixed solvent Can be.
  • jetyl ether and toluene Particularly preferred are jetyl ether and toluene.
  • the amount of the solvent used is 3 to 50 times by weight, particularly preferably 4 to 20 times by weight with respect to the halogen aryl compound.
  • an alkyl metal reagent such as n-butyllithium, t-butyllithium, phenyllithium or methyllithium, or an amide base such as lithium diisopropylamide or lithium bistrimethylsilylamide can be used. Particularly preferred is n-butylyl lithium.
  • the Grignard reagent can be prepared by reacting a halogenated aryl compound with metallic magnesium.
  • trialkyl borate trimethyl borate, triethyl borate, triisopropyl borate, tributyl borate and the like can be used. Particularly preferred are trimethyl borate and triisopropyl borate.
  • the amount of lithiating agent and magnesium metal used is 1 to 10 molar equivalents, particularly preferably 1 to 2 molar equivalents relative to the halogenated compound, and the amount of trialkyl borate used is based on the halogenated aryl compound. 1 to 10 molar equivalents, particularly preferably 1 to 5 molar equivalents.
  • the reaction temperature is ⁇ 100 to 50 ° C., particularly preferably ⁇ 75 to 10 ° C.
  • the anthryl arylene derivative of the present invention is preferably a light-emitting material for an organic EL device, and particularly preferably a host material for an organic EL device.
  • the organic EL device of the present invention is an organic electoluminescence device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between an anode and a cathode, wherein the organic thin film layer is represented by the general formula ( ⁇ ) It contains at least one selected from the anthryl arylene derivatives described in (i) alone or as a component of a mixture.
  • the light emitting layer further contains an arylamine compound and / or a styrylamine compound.
  • Ar 3 is a group selected from a phenyl group, a biphenyl group, a terfel group, a stilbene group, a distyryl group, and Ar 4 and Ar 5 are each a hydrogen atom or a carbon atom.
  • An aromatic hydrocarbon group having a number of 6 to 20, Ar 4 and Ar 5 may be substituted.
  • p is an integer from 1 to 4. More preferably, at least one of Ar 4 or Ar 5 is substituted with a styryl group.
  • examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, and a terphenyl group.
  • arylamine compound a compound represented by the following general formula (B) is preferable.
  • Ar 6 to Ar is a substituted or unsubstituted aryl group having 5 to 40 nuclear carbon atoms.
  • Q is an integer of 1 to 4.
  • aryl group having 5 to 40 nuclear carbon atoms for example, a phenol group, a naphthyl group, an anthral group, a phenanthryl group, a pyryl group, a diol group, a biphenyl group, Group, phthalyl group, pyrrolyl group, fulleryl group, thiofol group, benzothiol group, oxadiazolyl group, difuranthranyl group, indolyl group, carbazolyl group, pyridyl group, benzoquinolyl group, Fluoranthuric group, acenaphthofluoranthuric group, stilbene group, perylyl group, chrysyl group, picerl group, triphenylenyl group, rubisyl group, benzoanthracel group, phenolanthra -Aryl group, bisanthracyl group, or aryl group represented by the following general formulas (
  • Preferred examples of the substituent for the aryl group include an alkyl group having 1 to 6 carbon atoms (ethyl group, methyl group, i-propyl group, n-propyl group, sbutyl group, t-butyl group).
  • Pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc. C1-C6 alkoxy group (ethoxy group, methoxy group, i-propoxy group, n-propoxy group, s-butoxy group, t-butoxy group) Group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 5 to 40 nuclear carbon atoms, amino group substituted with aryl group having 5 to 40 nuclear carbon atoms And an ester group having an aryl group having 5 to 40 nuclear carbon atoms, an ester group having an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, a halogen atom, and the like.
  • Anode Z Inorganic semiconductor layer Z Insulating layer Z Light emitting layer Z Insulating layer Z Cathode
  • the force for which the configuration of (8) is preferably used is not limited to these.
  • the anthryl arylene compound of the present invention may be used in any of the organic layers described above, but the light emission band or the positive hole in these constituent elements. Preferred to be contained in the transport zone. Particularly preferred is the case where it is contained in the light emitting layer. The amount to be included is 30 to: LOO mol% force.
  • This organic EL element is usually produced on a translucent substrate.
  • This translucent substrate is a substrate that supports the organic EL element, and the translucency of the light transmission in the visible region having a wavelength of 400 to 700 nm is preferably 50% or more, which is smoother. It is preferable to use a substrate.
  • a translucent substrate for example, a glass plate, a synthetic resin plate, or the like is preferably used.
  • the glass plate include soda lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the synthetic resin plate include polycarbonate resin, acrylic resin, polyethylene terephthalate resin, polyethersulfide resin, and polysulfone resin.
  • the anode plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • anode materials used in the present invention include indium tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), a mixture of ITO and cerium oxide (ITCO), and a mixture of IZO and cerium oxide.
  • ITO indium tin oxide
  • IZO indium oxide and zinc oxide
  • ITO and cerium oxide ITO and cerium oxide
  • IZO indium oxide and cerium oxide
  • ICO indium oxide and cerium oxide
  • AZO acid ⁇ zinc and acid ⁇ aluminum
  • NESA acid ⁇ tin
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode should be several hundred ⁇ preferable.
  • the film thickness of the anode is a force depending on the material. Usually, it is selected in the range of 10 nm to l ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer comprises
  • Injection function function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the negative electrode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Luminescent function provides a field for recombination of electrons and holes, and has a function to connect this to light emission.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • a film can be classified from a thin film (accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and functional differences resulting from it.
  • JP-A-57-51781 after binding a binder such as a resin and a material compound into a solution by dissolving them in a solvent, this is prepared by a spin coating method or the like.
  • the light emitting layer can also be formed by forming a thin film.
  • a known light emitting material other than the light emitting material comprising the anthryl arylene derivative of the present invention may be included in the light emitting layer as desired.
  • the hole injecting / transporting layer is a layer that helps injecting holes into the light emitting layer and transports them to the light emitting region, and has a high hole mobility and usually has an ion energy of 5.5 eV or less. And small.
  • a material that transports holes to the light-emitting layer with a lower electric field strength is preferred.
  • the mobility force of holes for example, 10 4 ⁇ : L0 6 V / cm electric field application sometimes, it is preferable in even without least 10- 4 cm 2 ZV 'seconds. Examples of such a material are those conventionally used as a charge transport material for holes over a photoconductive material, and known materials used for a hole injection layer of an organic EL element. Select and use any Can do.
  • Tyryl anthracene derivatives see JP 56-46234, etc.
  • fluorenone derivatives see JP 54-110837, etc.
  • hydrazone derivatives US Pat. No.
  • Porphyrin compounds (disclosed in JP-A-63-29556965), aromatic tertiary amine compounds and styrylamine compounds (US) Patent No. 4, 127, 412, JP-A 53-27033, 54-58445, 54-149634, 54-64299, 55-79450, 55-144250 gazette, 56-119132 gazette, 61-295 558 gazette, 61-98353 gazette, 63-295695 gazette, etc.), especially using aromatic tertiary amine compounds Favored ,.
  • NPD N-bis (N— (1-naphthyl) -N ferroamino) biphenol having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule.
  • -4 (hereinafter abbreviated as NPD) and three tri-amine units described in JP-A-4-308688 are connected in a starburst type 4, 4 ', 4 "-Tris (N- (3-methylphenol) -N-phenylamino) triphenylamine (hereinafter abbreviated as MTDATA).
  • inorganic compounds such as p-type Si and p-type SiC can be used as the material for the hole injection layer.
  • the hole injection and transport layer can be formed by thin-filming the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 ⁇ to 5 / ⁇ .
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light-emitting layer, and preferably has a conductivity of 10 0 _ 1 Q SZcm or more.
  • Examples of the material for the organic semiconductor layer include thioolefin oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, allylamin dendrimers, and the like. of A conductive dendrimer or the like can be used.
  • the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility
  • the adhesion improving layer is the electron injection layer.
  • it is a layer that also has a material strength with good adhesion to the cathode.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several m.
  • 10 4 to 10 V / cm it is preferred electron mobility when an electric field is applied are the least 10- 5 cm 2 ZVs than.
  • 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is suitable.
  • Specific examples of the above-mentioned metal complexes of 8-hydroxyquinoline or its derivatives include metal chelate oxinoid compounds including chelates of oxine (generally 8-quinolinol or 8-hydroxyquinoline) such as tris (8 —Quinolinol) Aluminum can be used as an electron injection material.
  • examples of the oxadiazole derivative include electron transfer compounds represented by the following general formula.
  • Ar 1 And Ar 9 each represents a substituted or unsubstituted aryl group, which may be the same as or different from each other.
  • Ar 4 , Ar 8 represents a substituted or unsubstituted arylene group, which may be the same or different from each other.
  • the aryl group includes a phenyl group, a biphenyl group, an anthryl group, and a perylenyl group.
  • a pyrenyl group is mentioned.
  • Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthracene group, a peryleneylene group, and a pyrenylene group. Also
  • substituents examples include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group.
  • This electron transfer compound is preferably a thin film forming material.
  • electron-transmitting compound examples include the following.
  • AA 3 is independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted aryl group.
  • Ar 2 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted carbon atom having 3 to 60 carbon atoms
  • any one of Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms. .
  • ⁇ L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group. It is a substituted fluorenylene group.
  • R is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • is an integer of 0 to 5, and when ⁇ is 2 or more, a plurality of Rs may be the same or different and adjacent to each other
  • a plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond and having 6 to 60 carbon atoms which may have a substituent.
  • a fluorolenylene group, and Ar 1 is A divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 2 is an aryl group having 6 to 60 carbon atoms which may have a substituent or A nitrogen-containing heterocyclic derivative represented by the following formula: a heteroaryl group having 3 to 60 carbon atoms, which may have a substituent.
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkoxy group, an alkyloxy group, a hydroxy group, a substituted or It is an unsubstituted aryl group, a substituted or unsubstituted heterocycle, or a structure in which X and ⁇ are combined to form a saturated or unsaturated ring, and R to R are independently hydrogen, halogen, or halogen.
  • Atoms substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkyl carbo yl groups, aryl carbo groups.
  • R to R and Z are each independently a hydrogen atom, saturated or unsaturated carbonization
  • Hydrogen group, aromatic hydrocarbon group, heterocyclic group, substituted amino group, substituted boryl group, alkoxy X, Y and Z are each independently saturated or unsaturated.
  • N represents an integer of 1 to 3, and when n is 2 or more, Z may be different.
  • n is 1, X, Y
  • R acetyl group, R force hydrogen atom or substituted boryl group, and n is 3.
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula (K), and L represents a halogen atom, a substituted or unsubstituted alkyl group, substituted or unsubstituted Substituted cycloalkyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, OR ⁇ R 1 is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted Or an unsubstituted aryl group or a substituted or unsubstituted heterocyclic group. ) Or — O Ga Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ). ]
  • rings A 1 and A 2 are 6-membered aryl rings condensed with each other and may have a substituent.
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the formation energy during complex formation is low, the metal and ligand of the formed metal complex And the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A 1 and A 2 that form the ligand of the general formula (K) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, A substituted or unsubstituted alkyl group such as a methyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, phenyl group, naphthyl group, 3 — Substitution of methylphenyl group, 3-methoxyphenyl group, 3-fluorophenyl group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3--trifluorophenyl group, etc.
  • aryl group methoxy group, n -butoxy group, t -butoxy group, trichloromethoxy group, trifluoroethoxy group, pentafluoropropoxy group, 2, 2, 3, 3-terafluoro Propoxy group, 1, 1, 1, 3, 3, 3 Hexafluoro 2-propyloxy group, 6- (Perfluoroethyl) Hexyloxy group substituted or unsubstituted alkoxy group, phenoxy group, p-trophenoxy group, p-t-butylphenoxy group, 3- Substituted or unsubstituted aryloxy group such as fluorophenoxy group, pentafluorophenyl group, 3-trifluoromethylphenoxy group, methylthio group, ethylthio group, t-butylthio group, hexylthio group , Octylthio group, trifluoromethylthio group and the like substituted or unsubstituted aryl
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, for example, alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1).
  • 95eV) Force Group force At least one selected alkali metal, Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV) ) Force group force It is particularly preferred that the work function in which at least one alkaline earth metal is selected is 2.9 eV or less.
  • a more preferable reducing dopant is at least one alkali metal selected from the group power consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. It is.
  • alkali metals can improve emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • a reducing dopant having a work function of 2.9 eV or less a combination of these two or more alkali metals is also preferred.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • an insulator at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides may be used. Preferred. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferred alkali metal strength rucogates include, for example, Li 0, K 0, Na S, Na Se and Na 2 O, and are preferred.
  • New alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, CsF, LiCl, KC1, and NaCl.
  • Preferred alkaline earth metal halides include, for example, CaF, BaF, SrF, MgF, and
  • Examples include fluorides such as BeF and halides other than fluorides.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the above-mentioned alkali metal chalcogenides, alkaline earth metal strength alkoxides, alkali metal halides and alkaline earth metal halides.
  • the cathode a material having a low work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
  • electrode materials are sodium, sodium-potassium alloy, magnesium, lithium, cesium.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance for the light emission of the cathode is preferably larger than 10%.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / b or less, and the film thickness is usually ⁇ ! ⁇ 1 ⁇ m, preferably 50 to 200 nm.
  • an organic EL element applies an electric field to an ultrathin film, pixel defects are likely to occur due to leakage or short circuit.
  • an insulating thin film layer may be inserted between the pair of electrodes.
  • Examples of the material used for the insulating layer include acid aluminum, lithium fluoride, lithium oxide, fluorescesium, acid cesium, acid magnesium, fluoric magnesium, acid calcium, calcium fluoride, Examples thereof include aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. A mixture or laminate of these may be used.
  • the organic EL device of the present invention for example, an anode, a light emitting layer, a hole injection layer as required, and an electron injection as required by the above materials and methods.
  • the layer may be formed and finally the cathode may be formed.
  • the organic EL element can be fabricated in the reverse order from the cathode to the anode.
  • an organic EL device having a structure in which an anode, a Z hole injection layer, a Z light emitting layer, a Z electron injection layer, and a Z cathode are sequentially provided on a transparent substrate will be described.
  • a thin film made of an anode material is formed on a suitable light-transmitting substrate by an evaporation method or a sputtering method so as to have a thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, and used as an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a homogeneous film can be obtained immediately and pinholes are generated. It is preferable to form by a vacuum vapor deposition method.
  • the deposition conditions are the compound used (material of the hole injection layer), and the desired hole injection layer. Although it depends on the crystal structure and recombination structure, etc., generally the deposition source temperature is 50 to 450 ° C, the degree of vacuum is 10-7: LO- 3 Torr, the deposition rate is 0.01-50 nmZ seconds, the substrate temperature is 50-300 ° C, It is preferable to select the thickness in the range of 5 nm to 5 ⁇ m.
  • the light emitting layer can also be formed by thinning the light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting using the light emitting material according to the present invention. It is preferable to form by point vacuum deposition method, such as it is easy to obtain pinholes as soon as it is obtained.
  • the vapor deposition condition varies depending on the compound used, but can generally be selected from the same condition range as that of the hole injection layer.
  • the film thickness is preferably in the range of 10 to 40 nm.
  • an electron injection layer is provided on the light emitting layer. Also in this case, like the hole injection layer and the light emitting layer, it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • a cathode is laminated to obtain an organic EL element.
  • the cathode also has a metallic force, and vapor deposition and sputtering can be used. However, vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
  • the above organic EL device is preferably manufactured from the anode to the cathode consistently by a single vacuum.
  • the method of forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is a vacuum deposition method, a molecular beam deposition method (MBE method) or a dating method of a solution dissolved in a solvent, It can be formed by a known method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited, but is usually preferably in the range of several nm to 1 ⁇ m in order to improve defects such as pinholes and efficiency.
  • the object was identified as AN-4.
  • the solution was acidified with 10% dilute hydrochloric acid, extracted with ethyl acetate, and washed with saturated brine. After drying over anhydrous sodium sulfate, the solvent was distilled off with an evaporator. The obtained white solid was washed with methylene chloride and dried to obtain 10 g of 1-phenylnaphthalene-4-boronic acid as white crystals (yield 80%).
  • 1-phenylnaphthalene-4 boronic acid 11.6 g and 3 bromoiodobenzene 14.5 g were dissolved in toluene 160 mL and DME 30 mL, and tetrakistriphenylphosphine palladium 1.79 g was added. Further, 90 mL of 2M-sodium carbonate aqueous solution was added and heated to reflux for 8 hours. After leaving overnight, the mixture was extracted with toluene, washed with saturated saline, and then the solvent was distilled off with an evaporator.
  • This compound was identified as AN-96.
  • a glass substrate with a transparent electrode having a thickness of 25 mm X 75 mm X 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after cleaning is mounted on the substrate holder of the vacuum deposition apparatus.
  • N with a thickness of 60 nm, covers the transparent electrode on the surface where the transparent electrode line is formed.
  • N one bis (N, N, one diphenyl 4-amino) — N, N diphenyl— 4, 4, — diamino-1, 1, —bi-phenyl membrane (hereinafter abbreviated as “TPD232 membrane”) was formed.
  • This TPD232 film functions as a hole injection layer.
  • N, N, ⁇ ', ⁇ , and tetra (20 nm thick) are formed on this TPD232 film.
  • —Biphenyl A “TBDB layer” below the one diaminobiphenylene layer was formed. This film functions as a hole transport layer.
  • AN-10 having a film thickness of 40 nm was deposited to form a film.
  • This film functions as a light emitting layer.
  • Alq film with a thickness of 10 nm was formed on this film. This functions as an electron injection layer. Thereafter, Li (Li source: manufactured by Saesgetta Co., Ltd.), which is a reducing point, and Alq were vapor-deposited twice to form an Alq: Li film (film thickness lOnm) as an electron injection layer (cathode). On this Alq: Li film, metal A1 was vapor-deposited to form a metal cathode to form an organic EL light emitting device. When this device was subjected to an energization test, a blue light emission of 660 cdZm 2 was obtained at a voltage of 6.93 V and a current density of lOmAZcm 2 . Table 1 shows the results of measuring the half-life of this organic EL device with an initial luminance of 1 OOOcd / m 2 . Table 1 shows the glass transition temperature (Tg) of the host material AN-10.
  • An organic EL device was produced in exactly the same manner as in Example 1 except that the compounds shown in Table 1 were used instead of AN-10 as the material for the light emitting layer. And the initial luminance LOOOcdZm 2 shows the result of measuring the half life of the organic EL device are shown in Table 1.
  • Table 1 shows the glass transition temperature (Tg) of each host material.
  • Example 1 As the material of the light emitting layer, the amine compound BD1 was used instead of the amine compound BD1.
  • An organic EL device was prepared in the same manner except that BD2 was used, and the half-life was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Table 1 shows the glass transition temperature (Tg) of the host material AN-10.
  • Example 1 an organic EL device was prepared in the same manner as in Example 1 except that Amine Compound BD3 was used instead of Amine Compound BD1 as the material for the light-emitting layer, and the half-life was achieved in the same manner as Example 1. Was measured. The results are shown in Table 1.
  • Table 1 shows the glass transition temperature (Tg) of the host material AN-10.
  • An organic EL device was produced in exactly the same manner as in Example 1 except that the compounds shown in Table 1 were used as the material for the light emitting layer instead of AN-10. And the initial luminance LOOOcdZm 2 shows the result of measuring the half life of the organic EL device are shown in Table 1.
  • Table 1 shows the glass transition temperature (Tg) of each host material.
  • An organic EL device was produced in exactly the same manner as in Example 1 except that the compounds shown in Table 1 were used as the material for the light emitting layer instead of AN-10. And the initial luminance LOOOcdZm 2 shows the result of measuring the half life of the organic EL device are shown in Table 1. In addition, the glass transition of each host material Table 1 shows the temperature (Tg).
  • An organic EL device was produced in exactly the same manner as in Example 1, except that an-3 was used instead of AN-10 as the material for the light emitting layer, and the amine compound BD2 was used instead of the amine compound BD1.
  • the initial luminance in the 1 OOOcdZm 2 shows the result of measuring the half life of the organic EL device are shown in Table 1.
  • Table 1 shows the glass transition temperature (Tg) of an-3, the host material.
  • An organic EL device was fabricated in exactly the same manner as in Example 1, except that an-11 was used instead of AN-10 as the material for the light emitting layer. And the initial luminance lOOOcd / m 2 shows the result of measuring the half life of the organic EL device are shown in Table 1.
  • Table 1 shows the glass transition temperature (Tg) of each host material.
  • An organic EL device using the compounds an-3 and an-9 described in Comparative Examples has a long lifetime but a low glass transition temperature.
  • Compounds in which aromatic hydrocarbon groups are introduced into these compounds an —1, an-2, and an-10 had a significant decrease in force life to increase the glass transition temperature.
  • the exemplified compounds AN-10, AN-52, and AN-53, in which the site for introducing the aromatic hydrocarbon group was devised achieved a longer life while improving the glass transition temperature.
  • the compound an-5 described in the comparative example has a high glass transition temperature and a relatively long life, but the compound an-6, an an- 6 introduced with an aromatic hydrocarbon group to further improve the glass transition temperature, an- In 7, the glass transition temperature was improved, but the lifetime was greatly reduced.
  • the exemplified compound AN-32 which devised a site for introducing an aromatic hydrocarbon group, greatly improved the glass transition temperature and achieved a longer lifetime. AN-32 has a long life compared to an-8 described in the comparative example.
  • Compound AN-23 which is obtained by introducing an aromatic hydrocarbon group into Compound an-4 described in Comparative Example, and its analog AN-22 also have a significantly improved glass transition temperature and a long life.
  • the inventors of the present invention have studied the introduction site for the introduction of an aromatic group that is effective for increasing the glass transition temperature (Tg). It was found that the glass transition temperature can be improved while maintaining the above, and when it is introduced to a site other than those shown below, the glass transition temperature is improved, but the device life is greatly shortened.
  • the anthryl arylene derivative of the present invention has a higher glass transition temperature and a longer lifetime as compared with the prior art.
  • the light emitting material used in the organic EL device of the present invention is an anthryl arylene derivative having a sufficient glass transition temperature
  • the organic EL device using the anthryl arylene derivative of the present invention is Long life with high luminous efficiency.
  • the organic EL device of the present invention is useful as a light source for flat light emitters such as wall-mounted televisions and display backlights that are highly practical. It can also be used as an organic EL device, a hole injecting / transporting material, and a charge transporting material for electrophotographic photoreceptors and organic semiconductors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Luminescent Compositions (AREA)

Abstract

 特定構造を有するアントリルアリーレン誘導体、並びに、陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、前記アントリルアリーレン誘導体を単独もしくは混合物の成分として含有することによって、発光効率が高く、長寿命の有機EL素子を提供し、さらには本発明の有機EL素子に用いられる発光材料として、十分なガラス転移温度を有し、特に好適なアントリルアリーレン誘導体を提供する。                                                                                   

Description

明 細 書
アントリルァリーレン誘導体、有機エレクト口ルミネッセンス素子用材料、及 びそれを用いた有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は、アントリルァリーレン誘導体、それを利用した有機エレクト口ルミネッセン ス素子材料、及び有機エレクト口ルミネッセンス素子に関し、さら〖こ詳しくは、発光輝 度及び発光効率が高ぐ長寿命な有機エレクト口ルミネッセンス素子及びそれを実現 する新規なアントリルァリーレン誘導体に関するものである。
背景技術
[0002] 有機エレクト口ルミネッセンス素子(以下エレクト口ルミネッセンスを ELと略記すること がある)は、電界を印加することにより、陽極より注入された正孔と陰極より注入された 電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子 である。イーストマン 'コダック社の C. W. Tang等による積層型素子による低電圧駆 動有機 EL素子の報告(C. W. Tang, S. A. Vanslyke,アプライドフィジックスレタ ーズ (Applied Physics Letters) , 51卷、 913頁、 1987年等)がなされて以来、 有機材料を構成材料とする有機 EL素子に関する研究が盛んに行われている。 Tan g等は、トリス(8—キノリノラト)アルミニウムを発光層に、トリフエ-ルジァミン誘導体を 正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を 高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生 成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。 この例のように有機 EL素子の素子構造としては、正孔輸送 (注入)層、電子輸送性 発光層の二層型、又は正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型等 力 く知られている。こうした積層型構造素子では注入された正孔と電子の再結合効 率を高めるため、素子構造や形成方法の工夫がなされている。
[0003] また、発光材料としてはトリス(8—キノリノラト)アルミニウム錯体等のキレート錯体、 クマリン誘導体、テトラフエ-ルブタジエン誘導体、ビススチリルァリーレン誘導体、ォ キサジァゾール誘導体等の発光材料が知られており、それからは青色力 赤色まで の可視領域の発光が得られることが報告されており、カラー表示素子の実現が期待 されている(例えば、特許文献 1、特許文献 2、及び特許文献 3等)。
また、発光材料としてフエ二ルアントラセン誘導体を用いた素子が特許文献 4に開 示されている。さらにアントラセンの 9, 10位にナフチル基を有する材料が特許文献 5 に開示されている。このようなアントラセン誘導体は青色発光材料として用いられるが
、素子寿命の改善が求められていた。
[0004] さらにアントラセンの 9, 10位にフルオランテン基を有する材料が特許文献 6に開示 されている。このようなアントラセン誘導体は青色発光材料として用いられるが、素子 寿命の改善が求められていた。
また特許文献 7に種々のアントラセン誘導体を正孔輸送材料として用いることが開 示されて!/ヽる。しカゝしながら発光材料としての評価は未だ成されて ヽなかった。
特許文献 8には、非対称アントラセン誘導体を青色発光材料として用いた素子が、 発光効率が高く長寿命であることが開示されている。これら非対称アントラセン誘導 体は優れた青色発光材料であるものの、その一部の誘導体はガラス転移温度 (Tg) がやや低 ヽと 、う欠点を有しており、その改善が望まれて 、た。
[0005] 特許文献 1 :特開平 8— 239655号公報
特許文献 2 :特開平 7— 183561号公報
特許文献 3:特開平 3 - 200289号公報
特許文献 4:特開平 8 - 12600号公報
特許文献 5:特開平 11― 3782号公報
特許文献 6:特開 2001— 257074号公報
特許文献 7:特開 2000— 182776号公報
特許文献 8: WO 2004- 18587号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、前記の課題を解決するためなされたもので、発光効率が高ぐ長寿命の 有機 EL素子を提供することを目的とする。さらには本発明の有機 EL素子に用いられ る発光材料として、十分なガラス転移温度を有し、特に好適なアントリルァリーレン誘 導体を提供することを目的とする。
課題を解決するための手段
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記一般式 (I )〜 (ΠΙ)で表されるアントリルァリーレン誘導体はガラス転移温度が向上し、それを発 光材料として用いると、発光効率が高ぐ長寿命な有機 EL素子を作製することが可 能であることを見出した。
すなわち、本発明における課題の第一の解決法は、下記一般式 (i)〜(m)で表さ れるアントリルァリーレン誘導体である。
[化 1]
Figure imgf000004_0001
Figure imgf000004_0002
Figure imgf000005_0001
( I I I )
[0008] 本発明における課題の第二の解決法は、上記一般式 (I)〜 (ΠΙ)で表されるアントリ ルァリーレン誘導体を単独もしくは混合物の成分として含有する有機 EL素子材料を 用いることである。
[0009] 本発明における課題の第三の解決法は、陰極と陽極間に少なくとも発光層を含む 一層又は複数層からなる有機薄膜層が挟持されている有機エレクト口ルミネッセンス 素子において、該有機薄膜層の少なくとも一層が、上記有機 EL素子材料を含有す る有機エレクト口ルミネッセンス素子を製造することである。 発明の効果
[0010] 本発明は、前記の課題を解決するためなされたもので、発光効率が高ぐ長寿命の 有機 EL素子を提供することができる。さらには本発明の有機 EL素子に用いられる発 光材料として、十分なガラス転移温度を有し、特に好適なアントリルァリーレン誘導体 を提供することが可能になる。
発明を実施するための最良の形態
[ooii] 本発明の第一の発明は、上記一般式 (i)〜(m)で表されるアントリルァリーレン誘 導体である。
[0012] 一般式 (I)〜 (III)にお 、て、 Ar1は置換もしくは無置換の核炭素数 6〜50の芳香族 炭化水素基、下記一般式 (A)で示す力ルバゾリレン基、又は下記一般式 (B)で示す トリプチセ-レン基である。 Ar2は置換もしくは無置換の核炭素数 6〜50の芳香族炭 化水素基、下記一般式 (A)で示す力ルバゾリレン基、下記一般式 (B)で示すトリプチ セ-レン基、又は下記一般式(C)で示すフルォレニレン基である。 [0013] [ィ匕 4]
Figure imgf000006_0001
( A ) ( B ) ( C )
[0014] 前記一般式 (A)〜(C)において、 Ri〜R5はそれぞれ独立に、水素原子、芳香族炭 化水素基、芳香族複素環基、アルキル基、シクロアルキル基、アルコキシ基、ァラル キル基、ァリールォキシ基、ァリールチオ基、アルコキシカルボ-ル基、シリル基、力 ルボキシル基、ハロゲン原子、シァノ基、ニトロ基、又はヒドロキシル基を示す。又、 R1 〜R5は連結基でもよい。
[0015] 前記一般式 (Ι)〜(ΠΙ)及び (A)〜(C)において、 Rはそれぞれ独立に、芳香族炭 化水素基、芳香族複素環基、アルキル基、シクロアルキル基、アルコキシ基、ァラル キル基、ァリールォキシ基、ァリールチオ基、アルコキシカルボ-ル基、シリル基、力 ルボキシル基、ハロゲン原子、シァノ基、ニトロ基、又はヒドロキシル基を示す。
前記一般式 (I)及び (A)〜(C)にお 、て、 R及び 〜 がアルキル基の時、隣接 するアルキル基どうしで結合し、縮合環を形成しても良 、。
a〜mは、それぞれ独立に 0〜4の整数を示す。 p, q, r及び sは、それぞれ独立に 0 〜3の整数を示し、それぞれのベンゼン環上の置換基 Rはそれぞれ同じでも異なつ ていても良い。
X, Υ, Zはそれぞれ独立に、水素、核炭素数 6〜30の芳香族炭化水素基、又は核 炭素数 5〜30の芳香族複素環基を示すが、 p = q=r = 0の時、 Yは水素ではない。
[0016] 一般式 (I)〜(III)における Ar1及び Ar2である核炭素数 6〜50の置換もしくは無置 換の芳香族炭化水素基、 Rの芳香族炭化水素基及び前記一般式 (A)〜 (C)におけ る Ri〜R5の芳香族炭化水素基の具体例としては、フエ-ル基、ナフチル基、アントリ ル基、フヱナントリル基、ナフタセニル基、ピレニル基、クリセ-ル基等が挙げられ、好 ましくは、フエニル基、ナフチル基、アントリル基、フエナントリル基、ピレニル基等が挙 げられる。
なお、これらの芳香族炭化水素基は、さらに置換基により置換されているのも良ぐ 好ましい置換基として、アルキル基 (メチル基、ェチル基、プロピル基、イソプロピル 基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n— へキシル基、 n—へプチル基、 n—ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェ チル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1, 2—ジヒドロキシェ チル基、 1, 3 ジヒドロキシイソプロピル基、 2, 3 ジヒドロキシー t ブチル基、 1, 2 , 3 トリヒドロキシプロピノレ基、クロロメチノレ基、 1 クロロェチノレ基、 2 クロロェチノレ 基、 2 クロ口イソブチル基、 1, 2 ジクロロェチル基、 1, 3 ジクロロイソプロピル基 、 2, 3 ジクロロー t—ブチル基、 1, 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブチル基、 1, 2—ジブロモェ チル基、 1, 3 ジブロモイソプロピル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3— トリブロモプロピル基、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2— ョードイソブチル基、 1, 2 ジョードエチル基、 1, 3 ジョードイソプロピル基、 2, 3 ジョードー t—ブチル基、 1, 2, 3 トリョードプロピル基、アミノメチル基、 1ーァミノ ェチル基、 2—アミノエチル基、 2—ァミノイソブチル基、 1, 2—ジアミノエチル基、 1, 3 ジァミノイソプロピル基、 2, 3 ジァミノ一 t ブチル基、 1, 2, 3 トリァミノプロピ ル基、シァノメチル基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノイソブチ ル基、 1, 2 ジシァノエチル基、 1, 3 ジシァノイソプロピル基、 2, 3 ジシァノー t —ブチル基、 1, 2, 3 トリシアノプロピル基、ニトロメチル基、 1— -トロェチル基、 2 -トロェチル基、 2 -トロイソブチル基、 1, 2 ジニトロェチル基、 1, 3 ジニトロ イソプロピル基、 2, 3 ジニトロ— t—ブチル基、 1, 2, 3 トリニトロプロピル基、シク 口プロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、 4ーメチルシク 口へキシル基、 1—ァダマンチル基、 2—ァダマンチル基、 1 ノルボル-ル基、 2—ノ ルボルニル基等)、炭素数 1〜6のアルコキシ基 (エトキシ基、メトキシ基、 i—プロポキ シ基、 n—プロポキシ基、 s—ブトキシ基、 t—ブトキシ基、ペントキシ基、へキシルォキ シ基、シクロペントキシ基、シクロへキシルォキシ基等)、核原子数 5〜40のァリール 基、核原子数 5〜40のァリール基で置換されたァミノ基、核原子数 5〜40のァリール 基を有するエステル基、炭素数 1〜6のアルキル基を有するエステル基、シァノ基、二 トロ基、ハロゲン原子等が挙げられる。
一般式 (I)〜 (III)における R及び一般式 (A)〜(C)における!^〜 である芳香族 複素環基の具体例としては、 1 ピロリル基、 2 ピロリル基、 3 ピロリル基、ピラジュ ル基、 2 ピリジ-ル基、 3 ピリジ-ル基、 4 ピリジ-ル基、 1 インドリル基、 2—ィ ンドリル基、 3—インドリル基、 4—インドリル基、 5—インドリル基、 6—インドリル基、 7 —インドリル基、 1—イソインドリル基、 2—イソインドリル基、 3—イソインドリル基、 4— イソインドリル基、 5 イソインドリル基、 6 イソインドリル基、 7 イソインドリル基、 2 フリル基、 3 フリル基、 2 べンゾフラ-ル基、 3 べンゾフラ-ル基、 4一べンゾ フラ-ル基、 5 べンゾフラ-ル基、 6 べンゾフラ-ル基、 7 べンゾフラ-ル基、 1 イソべンゾフラ-ル基、 3—イソべンゾフラ-ル基、 4 イソべンゾフラ-ル基、 5—ィ ソベンゾフラ -ル基、 6—イソべンゾフラ-ル基、 7—イソべンゾフラ-ル基、キノリル基 、 3—キノリル基、 4 キノリル基、 5—キノリル基、 6—キノリル基、 7—キノリル基、 8— キノリル基、 1 イソキノリル基、 3 イソキノリル基、 4 イソキノリル基、 5 イソキノリ ル基、 6 イソキノリル基、 7 イソキノリル基、 8 イソキノリル基、 2 キノキサリニル 基、 5 キノキサリニル基、 6 キノキサリニル基、 1一力ルバゾリル基、 2—力ルバゾリ ル基、 3—力ルバゾリル基、 4一力ルバゾリル基、 9一力ルバゾリル基、 1 フエナントリ ジ-ル基、 2—フエナントリジ-ル基、 3—フエナントリジ-ル基、 4—フエナントリジ- ル基、 6—フエナントリジ-ル基、 7—フエナントリジ-ル基、 8—フエナントリジ-ル基、 9 フエナントリジ-ル基、 10 フエナントリジ-ル基、 1—アタリジ-ル基、 2—アタリ ジ-ル基、 3—アタリジニル基、 4—アタリジニル基、 9—アタリジニル基、 1, 7 フエナ ントロリン— 2—ィル基、 1, 7 フエナント口リン— 3—ィル基、 1, 7 フエナント口リン —4—ィル基、 1, 7 フエナント口リン一 5—ィル基、 1, 7 フエナント口リン一 6—ィル 基、 1, 7 フ mナン卜 Pジン 8—ィノレ基、 1, 7 フ mナン卜 Pジン 9ーィノレ基、 1, 7 —フエナント口リン— 10—ィル基、 1, 8 フエナント口リン— 2—ィル基、 1, 8 フエナ ントロリン— 3—ィル基、 1, 8 フエナント口リン— 4—ィル基、 1, 8 フエナント口リン —5—ィル基、 1, 8 フエナント口リン— 6—ィル基、 1, 8 フエナント口リン— 7—ィル 基、 1, 8 フエナント口リン一 9—ィル基、 1, 8 フエナント口リン一 10—ィル基、 1, 9 —フエナント口リン— 2—ィル基、 1, 9 フエナント口リン— 3—ィル基、 1, 9 フエナ ントロリン— 4—ィル基、 1, 9 フエナント口リン— 5—ィル基、 1, 9 フエナント口リン —6—ィル基、 1, 9 フエナント口リン— 7—ィル基、 1, 9 フエナント口リン— 8—ィル 基、 1, 9—フエナント口リン— 10—ィル基、 1, 10—フエナント口リン— 2—ィル基、 1, 10 フエナント口リン— 3—ィル基、 1, 10 フエナント口リン— 4—ィル基、 1, 10 フ ェナント口リン一 5—ィル基、 2, 9 フエナント口リン一 1—ィル基、 2, 9 フエナント口 リン一 3—ィル基、 2, 9 フエナント口リン一 4—ィル基、 2, 9 フエナント口リン一 5— ィル基、 2, 9 フエナント口リン一 6—ィル基、 2, 9 フエナント口リン一 7—ィル基、 2 , 9 フエナント口リン一 8—ィル基、 2, 9 フエナント口リン一 10—ィル基、 2, 8 フ ェナント口リン一 1—ィル基、 2, 8 フエナント口リン一 3—ィル基、 2, 8 フエナント口 リン 4ーィル基、 2, 8 フエナント口リン一 5—ィル基、 2, 8 フエナント口リン一 6— ィル基、 2, 8 フエナント口リン一 7—ィル基、 2, 8 フエナント口リン一 9—ィル基、 2 , 8 フエナント口リン一 10—ィル基、 2, 7 フエナント口リン一 1—ィル基、 2, 7 フ ェナント口リン一 3—ィル基、 2, 7 フエナント口リン一 4—ィル基、 2, 7 フエナント口 リン 5—ィル基、 2, 7 フエナント口リン一 6—ィル基、 2, 7 フエナント口リン一 8— ィル基、 2, 7 フエナント口リン一 9—ィル基、 2, 7 フエナント口リン一 10—ィル基、 1 フエナジ-ル基、 2—フエナジ-ル基、 1 フエノチアジ-ル基、 2—フエノチアジ -ル基、 3 フエノチアジ-ル基、 4 フエノチアジ-ル基、 10 フエノチアジ-ル基 、 1 フエノキサジ-ル基、 2 フエノキサジ-ル基、 3 フエノキサジ-ル基、 4 フエ ノキサジニル基、 10 フエノキサジニル基、 2—ォキサゾリル基、 4ーォキサゾリル基、 5—ォキサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザ- ル基、 2 チェ-ル基、 3 チェ-ル基、 2 メチルピロ一ルー 1ーィル基、 2 メチル ピロ一ルー 3—ィル基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5—ィ ル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2—ィル基、 3 メチル ピロ一ルー 4ーィル基、 3 メチルピロ一ルー 5—ィル基、 2 t—ブチルピロ一ルー 4 ーィル基、 3—(2 フエ-ルプロピル)ピロ一ルー 1ーィル基、 2—メチルー 1 インド リル基、 4ーメチルー 1 インドリル基、 2—メチルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2 t ブチル 1 インドリル基、 4 t ブチル 1 インドリル基、 2 t —ブチル 3—インドリル基、 4—t—ブチル 3—インドリル基等が挙げられる。
[0019] 一般式 (I)〜(III)における R及び一般式 (A)〜(C)における!^〜 であるアルキ ル基の具体例としては、メチル基、ェチル基、プロピル基、イソプロピル基、 n—ブチ ル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n—へキシル基、 n—へプチル基、 n—ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒ ドロキシェチル基、 2 ヒドロキシイソブチル基、 1, 2 ジヒドロキシェチル基、 1, 3— ジヒドロキシイソプロピル基、 2, 3 ジヒドロキシ一 t—ブチル基、 1, 2, 3 トリヒドロキ シプロピル基、クロロメチル基、 1—クロ口ェチル基、 2—クロ口ェチル基、 2—クロロイ ソブチル基、 1, 2 ジクロロェチル基、 1, 3 ジクロロイソプロピル基、 2, 3 ジクロ ロー t ブチル基、 1, 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル 基、 2 ブロモェチル基、 2 ブロモイソブチル基、 1, 2 ジブロモェチル基、 1, 3— ジブロモイソプロピル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3 トリブロモプロピ ル基、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソブチル 基、 1, 2 ジョードエチル基、 1, 3 ジョードイソプロピル基、 2, 3 ジョードー t— ブチル基、 1, 2, 3 トリョードプロピル基、アミノメチル基、 1—アミノエチル基、 2 ァ ミノェチル基、 2 ァミノイソブチル基、 1, 2 ジアミノエチル基、 1, 3 ジァミノイソプ 口ピル基、 2, 3 ジァミノ一 t—ブチル基、 1, 2, 3 トリァミノプロピル基、シァノメチ ル基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1, 2—ジシ ァノエチル基、 1, 3 ジシァノイソプロピル基、 2, 3 ジシァノー t—ブチル基、 1, 2 , 3 トリシアノプロピル基、ニトロメチル基、 1— -トロェチル基、 2 -トロェチル基、 2 -トロイソブチル基、 1, 2 ジ-トロェチル基、 1, 3 ジ-トロイソプロピル基、 2, 3 ジニトロ— t—ブチル基、 1, 2, 3 トリ-トロプロピル基等が挙げられる。
[0020] 一般式 (I)〜(III)における R及び一般式 (A)〜(C)における!^〜 であるシクロア ルキル基の具体例としては、例えば、シクロプロピル基、シクロブチル基、シクロペン チル基、シクロへキシル基、 4ーメチルシクロへキシル基、 1ーァダマンチル基、 2 ァ ダマンチル基、 1 ノルボルニル基、 2—ノルボル-ル基等が挙げられる。
一般式 (I)〜(ΠΙ)における R及び一般式 (A)〜(C)における Ri〜R5であるアルコキ シ基は、 OYで表される基であり、 Yの例としては、前記アルキル基と同様の具体例 が挙げられる。
[0021] 一般式 (I)〜(III)における R及び一般式 (A)〜(C)における!^〜 であるァラルキ ル基の具体例としては、ベンジル基、 1 フエ-ルェチル基、 2—フエ-ルェチル基、 1—フエ-ルイソプロピル基、 2—フエ-ルイソプロピル基、フエ-ルー t ブチル基、 a ナフチルメチル基、 1 α ナフチルェチル基、 2— a ナフチルェチル基、 1 a ナフチルイソプロピル基、 2— a ナフチルイソプロピル基、 13 ナフチルメ チル基、 1— β ナフチルェチル基、 2 - β ナフチルェチル基、 1— β ナフチル イソプロピル基、 2— β—ナフチルイソプロピル基、 1—ピロリルメチル基、 2— ( 1—ピ 口リル)ェチル基、 ρ—メチルベンジル基、 m—メチルベンジル基、 o メチルベンジル 基、 p クロ口べンジノレ基、 m—クロ口べンジノレ基、 o クロ口べンジノレ基、 p ブロモ ベンジル基、 m—ブロモベンジル基、 o ブロモベンジル基、 p ョードベンジル基、 m—ョードベンジル基、 o ョードベンジル基、 p ヒドロキシベンジル基、 m—ヒドロキ シベンジル基、 o ヒドロキシベンジル基、 p ァミノべンジル基、 m—ァミノべンジル 基、 o ァミノべンジノレ基、 p 二トロべンジノレ基、 m—二トロべンジノレ基、 o 二トロべ ンジル基、 p シァノベンジル基、 m シァノベンジル基、 o シァノベンジル基、 1 ヒドロキシ - 2—フエ-ルイソプロピル基、 1—クロ口一 2—フエ-ルイソプロピル基等 が挙げられる。
[0022] 一般式 (I)〜(III)における R及び一般式 (A)〜(C)における!^1〜!^であるァリール ォキシ基は、—OY'と表され、 Y'の例としてはフエニル基、 1—ナフチル基、 2—ナフ チル基、 1 アントリル基、 2 アントリル基、 9 アントリル基、 1—フエナントリル基、 2 フエナントリル基、 3—フエナントリル基、 4 フエナントリル基、 9 フエナントリル基 、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9 ナフタセ-ル基、 1ーピレ-ル基、 2 —ピレ-ル基、 4 ピレ-ル基、 2 ビフエ-ルイル基、 3 ビフエ-ルイル基、 4 ビ フエ-ルイル基、 p ターフェ-ルー 4—ィル基、 p ターフェ-ルー 3—ィル基、 p— ターフェ-ルー 2—ィル基、 m—ターフェ-ルー 4—ィル基、 m—ターフェ-ルー 3— ィル基、 m—ターフェ-ルー 2—ィル基、 o トリル基、 m—トリル基、 ρ トリル基、 ρ— t ブチルフエ-ル基、 p— (2 フエ-ルプロピル)フエ-ル基、 3—メチルー 2 ナフ チル基、 4—メチル 1—ナフチル基、 4—メチル 1—アントリル基、 4,一メチルビフ ェ-ルイル基、 4"—tーブチルー p—ターフェ-ルー 4ーィル基、 2 ピロリル基、 3— ピロリル基、ピラジュル基、 2 ピリジニル基、 3 ピリジ-ル基、 4 ピリジニル基、 2 —インドリル基、 3—インドリル基、 4—インドリル基、 5—インドリル基、 6—インドリル基 、 7—インドリル基、 1—イソインドリル基、 3—イソインドリル基、 4—イソインドリル基、 5 イソインドリル基、 6 イソインドリル基、 7 イソインドリル基、 2 フリル基、 3 フリ ル基、 2 べンゾフラ-ル基、 3 べンゾフラ-ル基、 4一べンゾフラ-ル基、 5 ベン ゾフラ-ル基、 6 べンゾフラ-ル基、 7 べンゾフラ-ル基、 1 イソべンゾフラ-ル 基、 3—イソべンゾフラ-ル基、 4 イソべンゾフラ-ル基、 5—イソべンゾフラ-ル基、 6 イソべンゾフラ-ル基、 7 イソべンゾフラ-ル基、 2 キノリル基、 3 キノリル基 、 4 キノリル基、 5 キノリル基、 6 キノリル基、 7 キノリル基、 8 キノリル基、 1 イソキノリル基、 3—イソキノリル基、 4 イソキノリル基、 5—イソキノリル基、 6—イソキ ノリル基、 7 イソキノリル基、 8 イソキノリル基、 2 キノキサリニル基、 5 キノキサリ -ル基、 6 キノキサリ-ル基、 1一力ルバゾリル基、 2—力ルバゾリル基、 3—力ルバ ゾリル基、 4一力ルバゾリル基、 1—フエナントリジ-ル基、 2—フエナントリジ-ル基、 3 —フエナントリジ-ル基、 4—フエナントリジ-ル基、 6—フエナントリジ-ル基、 7—フエ ナントリジ-ル基、 8—フエナントリジ-ル基、 9—フエナントリジ-ル基、 10—フエナン トリジニル基、 1—アタリジニル基、 2—アタリジニル基、 3—アタリジ-ル基、 4—アタリ ジ-ル基、 9—アタリジ-ル基、 1, 7—フエナント口リンー2—ィル基、 1, 7—フエナン トロリン— 3—ィル基、 1, 7 フエナント口リン— 4—ィル基、 1, 7 フエナント口リン— 5—ィル基、 1, 7 フエナント口リン— 6—ィル基、 1, 7 フエナント口リン— 8—ィル基 、 1, 7 フエナント口リン— 9—ィル基、 1, 7 フエナント口リン— 10—ィル基、 1, 8— フエナント口リン— 2—ィル基、 1, 8 フエナント口リン— 3—ィル基、 1, 8 フエナント 口リン— 4—ィル基、 1 , 8 フエナント口リン— 5—ィル基、 1, 8 フエナント口リン— 6 —ィル基、 1, 8 フエナント口リン— 7—ィル基、 1, 8 フエナント口リン— 9—ィル基 、 1, 8 フエナント口リン— 10—ィル基、 1, 9 フエナント口リン— 2—ィル基、 1, 9— フエナント口リン— 3—ィル基、 1, 9 フエナント口リン— 4—ィル基、 1, 9 フエナント 口リン— 5—ィル基、 1 , 9 フエナント口リン— 6—ィル基、 1, 9 フエナント口リン— 7 —ィル基、 1, 9 フエナント口リン— 8—ィル基、 1, 9 フエナント口リン— 10—ィル基 、 1, 10 フエナント口リン— 2—ィル基、 1, 10 フエナント口リン— 3—ィル基、 1, 1 0 フエナント口リン— 4—ィル基、 1, 10 フエナント口リン— 5—ィル基、 2, 9 フエ ナント口リン一 1—ィル基、 2, 9 フエナント口リン一 3—ィル基、 2, 9 フエナントロリ ン一 4—ィル基、 2, 9 フエナント口リン一 5—ィル基、 2, 9 フエナント口リン一 6—ィ ル基、 2, 9—フエナント口リンー7—ィル基、 2, 9—フエナント口リンー8—ィル基、 2, 9 フエナント口リン一 10—ィル基、 2, 8 フエナント口リン一 1—ィル基、 2, 8 フエ ナント口リン一 3—ィル基、 2, 8 フエナント口リン一 4—ィル基、 2, 8 フエナントロリ ン一 5—ィル基、 2, 8 フエナント口リン一 6—ィル基、 2, 8 フエナント口リン一 7—ィ ル基、 2, 8—フエナント口リンー9ーィル基、 2, 8—フエナント口リン 10—ィル基、 2 , 7 フエナント口リン一 1—ィル基、 2, 7 フエナント口リン一 3—ィル基、 2, 7 フエ ナント口リン一 4—ィル基、 2, 7 フエナント口リン一 5—ィル基、 2, 7 フエナントロリ ン一 6—ィル基、 2, 7 フエナント口リン一 8—ィル基、 2, 7 フエナント口リン一 9—ィ ル基、 2, 7 フエナント口リン 10—ィル基、 1 フエナジ-ル基、 2 フエナジ-ル 基、 1 フエノチアジ-ル基、 2 フエノチアジ-ル基、 3 フエノチアジ-ル基、 4ーフ エノチアジ-ル基、 1 フエノキサジ-ル基、 2 フエノキサジ-ル基、 3 フエノキサ ジニル基、 4 フエノキサジニル基、 2—ォキサゾリル基、 4ーォキサゾリル基、 5—ォ キサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェ-ル基、 3 チェ-ル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一 ルー 3—ィル基、 2—メチルピロール— 4—ィル基、 2—メチルピロール— 5—ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2—ィル基、 3 メチルピロ一 ルー 4—ィル基、 3—メチルピロール— 5—ィル基、 2— t—ブチルピロール— 4—ィル 基、 3—(2 フエ-ルプロピル)ピロ一ルー 1ーィル基、 2—メチルー 1 インドリル基 、 4ーメチルー 1 インドリル基、 2—メチルー 3 インドリル基、 4ーメチルー 3 インド リル基、 2 t ブチル 1 インドリル基、 4 t ブチル 1 インドリル基、 2 tーブチ ル 3—インドリル基、 4 t—ブチル 3—インドリル基等が挙げられる。
一般式 (I)〜(III)における R及び一般式 (A)〜(C)における!^〜 であるァリール チォ基は、 SY'と表され、 Y'の例としては、前記ァリールォキシ基の Y'と同様の例 が挙げられる。 一般式 (I)〜(ΠΙ)における R及び一般式 (A)〜(C)における Ri〜R5であるアルコキ シカルボ-ル基は、 COOZと表され、 Zの例としては、前記アルキル基と同様の例 が挙げられる。
一般式 (I)〜(ΠΙ)における R及び一般式 (A)〜(C)における Ri〜R5であるシリル基 の具体例としては、例えば、トリメチルシリル基、トリェチルシリル基、 t ブチルジメチ ルシリル基、ビュルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。 一般式 (I)〜(ΠΙ)における R及び一般式 (A)〜(C)における Ri〜R5であるハロゲン 原子は、フッ素、塩素、臭素、ヨウ素等が挙げられる。
また、前記 Ri〜R5の置換基としては、前記 Α 〜Αι:3の置換基と同様の例が挙げら れる。
[0024] 一般式 (I)〜 (ΠΙ)で表されるアントリルァリーレン誘導体の具体例を下記に示すが
、これら例示化合物に限定されるものではない。
[0025] [化 5]
Figure imgf000015_0001
AN一"
Figure imgf000016_0001
[0027] [ィ匕 7]
Figure imgf000017_0001
[0028] [化 8]
Figure imgf000018_0001
AN一 47 AN— 48 [0029] [ィ匕 9]
Figure imgf000019_0001
AN -59 AN一 60
[0030] [化 10]
Figure imgf000020_0001
AN一 71 AN一 72
Figure imgf000021_0001
AN -84
AN一 83 [0032] [化 12]
Figure imgf000022_0001
[0033] [化 13]
Figure imgf000023_0001
AN— 99 AN— 104
Figure imgf000024_0001
Figure imgf000024_0002
AN— 1 1 5
次に、本発明のアントリルァリーレン誘導体の製造方法について説明する。一般式 (Ι)〜(ΠΙ)のアントリルァリーレン誘導体は、例えば、以下の合成スキーム Scheme 1〜3の 、ずれかによつて製造できる。
なお、下記スキームにおいて、 Ha^ Hal8はハロゲン原子であり、 R'は水素原子 又は置換もしくは無置換のアルキル基であって、隣接するアルキル基同士は結合し ていてもよい。
[化 15]
ffi0037l
Figure imgf000026_0001
Figure imgf000027_0001
[0038] Schemel〜3〖こ示すよう〖こ、ハロゲン化反応、ホウ酸化反応、及び鈴木カップリン グ反応等を適宜組合わせて段階的に実施することにより、一般式 (I)〜 (ΠΙ)で表され るアントリルァリーレン化合物を合成することが出来る。
2箇所以上ハロゲン化されたァリール化合物とボロン酸誘導体を位置選択的に反 応させる場合は、全て同種のハロゲン原子でハロゲンィ匕されたァリールイ匕合物を用 いても反応は可能である力 より位置選択的に反応させる場合は、希望の反応部位 のみを他のハロゲン原子に比べてより反応性の高 、ハロゲン原子 (反応性: I > Br > Cl> >F)でハロゲン化したァリールイ匕合物を用いたほうが、より高い選択性で反応 を行うことが出来る。また、ハロゲン化ァリール化合物とハロゲン化ァリールボロン酸 の反応を行う際には、ハロゲン化ァリールボロン酸のハロゲン原子に比べて、ハロゲ ン化ァリールイ匕合物のハロゲン原子がより反応性の高いハロゲン原子である方が好 ましい。
[0039] 鈴木カップリング反応は、これまでに数多くの報告(Chem. Rev. , Vol. 95, No.
7, 2457 (1995)等)がなされており、これらに記載の反応条件で実施することが出 来る。
反応は通常、常圧下、窒素、アルゴン、ヘリウム等の不活性雰囲気下で実施される 力 必要に応じて加圧条件下に実施することも出来る。反応温度は 15〜300°Cの範 囲であるが、特に好ましくは 30〜200°Cである。
反応溶媒としては、水、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、 1, 2 ージメトキシェタン、ジェチルエーテル、メチルー t ブチルエーテル、テトラヒドロフラ ン、ジォキサン等のエーテル類、ペンタン、へキサン、ヘプタン、オクタン、シクロへキ サン等の飽和炭化水素類、ジクロロメタン、クロ口ホルム、四塩化炭素、 1, 2—ジクロ ロェタン、 1, 1, 1 トリクロロェタンなどのハロゲン類、ァセトニトリル、ベンゾ-トリル 等の二トリル類、酢酸ェチル、酢酸メチル、酢酸ブチル等のエステル類、 N, N ジメ チルホルムアミド、 N, N ジメチルァセトアミド、 N—メチルピロリドン等のアミド類など を単一又は混合して使用することが出来る。特に好ましくは、トルエン、 1, 2—ジメト キシェタン、ジォキサン、及び水である。溶媒の使用量はァリールボロン酸及びその 誘導体に対して 3〜50重量倍、特に好ましくは 4〜20重量倍である。 反応に用いる塩基は、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム水酸化力リウ ム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸マグネシウム、、炭酸リチウム、ふつ 化カリウム、フッ化セシウム、塩化セシウム、臭化セシウム、炭酸セシウム、リン酸力リウ ム、メトキシナトリウム、 t ブトキシカリウム、 t ブトキシナトリウム、 t ブトキシリチウム 等である。特に好ましくは炭酸ナトリウムである。これらの塩基の使用量はァリールボ ロン酸及びその誘導体に対して 0. 7〜10モル当量の範囲であり、特に好ましくは 0. 9〜6モル当量である。
[0040] 反応に用いる触媒は、テトラキス(トリフエ-ルホスフィン)パラジウム、ジクロロビス(ト リフエ-ルホスフィン)パラジウム、ジクロロ [ビス(ジフエ-ルホスフイノ)ェタン]パラジゥ ム、ジクロロ [ビス(ジフエ-ルホスフイノ)プロパン]パラジウム、ジクロロ [ビス(ジフエ- ルホスフイノ)ブタン]パラジウム、、ジクロロ [ビス(ジフエ-ルホスフイノ)フエ口セン]パラ ジゥム等のパラジウム触媒、テトラキス(トリフエ-ルホスフィン)ニッケル、ジクロロビス( トリフエ-ルホスフィン)ニッケル、ジクロロ [ビス(ジフエ-ルホスフイノ)ェタン]ニッケル 、ジクロロ [ビス(ジフエ-ノレホスフイノ)プロパン]ニッケル、ジクロロ [ビス(ジフエ-ノレホ スフイノ)ブタン]ニッケル、、ジクロロ [ビス(ジフエ-ルホスフイノ)フエ口セン]ニッケル 等のニッケル触媒等である。特に好ましくはテトラキス(トリフエ-ルホスフィン)パラジ ゥムである。これらの触媒の使用量はハロゲン化アントラセン誘導体に対して 0. 001 〜1モル当量の範囲であり、特に好ましくは 0. 01〜0. 1モル当量である。
ハロゲンィ匕合物のハロゲン原子としてはヨウ素原子、臭素原子、塩素原子、フッ素 原子をあげることが出来るが、特に好ましくはヨウ素原子、臭素原子である。
[0041] ホウ酸化反応は、既知の方法(日本ィ匕学会編 ·実験化学講座第 4版 24卷 61〜90 頁や J. Org. Chem. , Vol. 60, 7508 (1995)等)により実施することが可能である 。例えばハロゲンィ匕ァリール化合物のリチォ化もしくはグリニャール反応を経由する 反応の場合、通常、窒素、アルゴン、ヘリウム等の不活性雰囲気下で実施され、反応 溶媒としては不活性溶媒が用いられる。例えばペンタン、へキサン、ヘプタン、ォクタ ン、シクロへキサン等の飽和炭化水素類、 1, 2—ジメトキシェタン、ジェチルエーテ ル、メチルー t ブチルエーテル、テトラヒドロフラン、ジォキサン等のエーテル類、ベ ンゼン、トルエン、キシレン等の芳香族炭化水素類を単一もしくは混合溶媒として用 いることが出来る。特に好ましくはジェチルエーテル及びトルエンである。溶媒の使 用量はハロゲンィ匕ァリールイ匕合物に対し 3〜50重量倍、特に好ましくは 4〜20重量 倍である。
[0042] リチォ化剤としては n ブチルリチウム、 t ブチルリチウム、フエ-ルリチウム、メチ ルリチウム等のアルキル金属試薬、リチウムジイソプロピルアミド、リチウムビストリメチ ルシリルアミド等のアミド塩基を用いることが出来る。特に好ましくは n—プチルリチウ ムである。また、グリニャール試薬はハロゲンィ匕ァリールイ匕合物と金属マグネシウムの 反応により調製することが出来る。ホウ酸トリアルキルとしてはホウ酸トリメチル、ホウ酸 トリェチル、ホウ酸トリイソプロピル、ホウ酸トリブチル等を使用することが出来る。特に 好ましくはホウ酸トリメチル、ホウ酸トリイソプロピルである。
リチォ化剤及び金属マグネシウムの使用量はハロゲンィ匕ァリールイ匕合物に対し 1〜 10モル当量、特に好ましくは 1〜2モル当量であり、ホウ酸トリアルキルの使用量はハ ロゲン化ァリール化合物に対し 1〜10モル当量、特に好ましくは 1〜5モル当量であ る。反応温度は— 100〜50°C特に好ましくは— 75〜10°Cである。
[0043] 本発明のアントリルァリーレン誘導体は、有機 EL素子用発光材料であると好ましく 、また有機 EL素子用ホスト材料であると特に好ま 、。
本発明の有機 EL素子は、陽極と陰極間に少なくとも発光層を含む一層又は複数 層からなる有機薄膜層が挟持されている有機エレクト口ルミネッセンス素子において、 前記有機薄膜層が前記一般式 (Ι)〜(ΠΙ)に記載のアントリルァリーレン誘導体から 選ばれる少なくとも 1種類を単独もしくは混合物の成分として含有する。
また、本発明の有機 EL素子は、前記発光層が、さらにァリールアミンィ匕合物及び Ζ 又はスチリルアミンィ匕合物を含有すると好ま U、。
[0044] スチリルァミン化合物としては、下記一般式 (Α)で表されるものが好ま 、。
[化 17]
Figure imgf000030_0001
( A ) (式中、 Ar3は、フエ-ル基、ビフエ-ル基、ターフェ-ル基、スチルベン基、ジスチリ ルァリール基カゝら選ばれる基であり、 Ar4及び Ar5は、それぞれ水素原子又は炭素数 が 6〜20の芳香族炭化水素基であり、
Figure imgf000031_0001
Ar4及び Ar5は置換されていてもよい。 p は 1〜4の整数である。さらに好ましくは Ar4又は Ar5の少なくとも一方はスチリル基で 置換されている。 )
ここで、炭素数が 6〜20の芳香族炭化水素基としては、フエニル基、ナフチル基、 アントラニル基、フエナントリル基、ターフェニル基等が挙げられる。
ァリールアミンィ匕合物としては、下記一般式 (B)で表されるものが好ま 、。
[化 18]
Figure imgf000031_0002
(式中、 Ar6〜Ar。は、置換もしくは無置換の核炭素数 5〜40のァリール基である。 q は 1〜4の整数である。 )
[0046] ここで、核炭素数が 5〜40のァリール基としては、例えば、フエ-ル基、ナフチル基 、アントラ-ル基、フエナントリル基、ピレ-ル基、コ口-ル基、ビフヱ-ル基、ターフェ -ル基、ピロ一リル基、フラ-ル基、チオフヱ-ル基、ベンゾチオフヱ-ル基、ォキサ ジァゾリル基、ジフ 二ルアントラニル基、インドリル基、カルバゾリル基、ピリジル基、 ベンゾキノリル基、フルオランテュル基、ァセナフトフルオランテュル基、スチルベン 基、ペリレ-ル基、クリセ-ル基、ピセ-ル基、トリフエ-レニル基、ルビセ-ル基、ベ ンゾアントラセ-ル基、フエ-ルアントラ-ル基、ビスアントラセ-ル基、又は下記一般 式 (C) , (D)で示されるァリール基等が挙げられ、ナフチル基、アントラ-ル基、クリセ -ル基、ピレニル基、又は一般式 (D)で示されるァリール基が好ましい。
[0047] [化 19]
Figure imgf000032_0001
(一般式 (C)において、 rは 1〜3の整数である。 )
[0048] なお、前記ァリール基の好ましい置換基としては、炭素数 1〜6のアルキル基 (ェチ ル基、メチル基、 i—プロピル基、 n—プロピル基、 s ブチル基、 t—ブチル基、ペン チル基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭素数 1〜6のアル コキシ基(エトキシ基、メトキシ基、 i プロポキシ基、 n プロポキシ基、 s ブトキシ基 、 t—ブトキシ基、ペントキシ基、へキシル才キシ基、シクロペントキシ基、シクロへキシ ルォキシ基等)、核炭素数 5〜40のァリール基、核炭素数 5〜40のァリール基で置 換されたアミノ基、核炭素数 5〜40のァリール基を有するエステル基、炭素数 1〜6の アルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子等が挙げられる。
[0049] 以下、本発明の有機 EL素子構成について説明する。
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔注入層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子注入層 Z陰極
(4)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極
(5)陽極 Z有機半導体層 Z発光層 Z陰極
(6)陽極 Z有機半導体層 Z電子障壁層 Z発光層 Z陰極
(7)陽極 Z有機半導体層 Z発光層 Z付着改善層 Z陰極
(8)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
do)陽極 Z無機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(11)陽極 Z有機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(12)陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z絶縁層 Z陰極 (13)陽極 z絶縁層 z正孔注入層 z正孔輸送層 z発光層 z電子注入層 z陰極 などの構造を挙げることができる。
これらの中で通常(8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
また、本発明の有機 EL素子において、本発明のアントリルァリーレンィ匕合物は、上 記のどの有機層に用いられてもよ 、が、これらの構成要素の中の発光帯域もしくは正 孔輸送帯域に含有されて 、ることが好ま 、。特に好ましくは発光層に含有されて!ヽ る場合である。含有させる量は 30〜: LOOモル%力 選ばれる。
[0050] この有機 EL素子は、通常透光性の基板上に作製する。この透光性基板は有機 EL 素子を支持する基板であり、その透光性については、波長 400〜700nmの可視領 域の光の透過率が 50%以上であるものが望ましぐさらに平滑な基板を用いるのが 好ましい。
このような透光性基板としては、例えば、ガラス板、合成樹脂板などが好適に用いら れる。ガラス板としては、特にソーダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、 鉛ガラス、アルミノケィ酸ガラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英な どで成形された板が挙げられる。また、合成樹脂板としては、ポリカーボネート榭脂、 アクリル榭脂、ポリエチレンテレフタレート榭脂、ポリエーテルスルフイド榭脂、ポリスル ホン榭脂などの板が挙げられる。
[0051] 次に、陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、 4 . 5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料 の具体例としては、酸化インジウム錫 (ITO)、酸化インジウムと酸ィ匕亜鉛の混合物 (I ZO)、 ITOと酸化セリウムの混合物(ITCO)、 IZOと酸化セリウムの混合物(IZCO)、 酸化インジウムと酸ィ匕セリウムの混合物 (ICO)、酸ィ匕亜鉛と酸ィ匕アルミニウムの混合 物 (AZO)、酸ィ匕錫 (NESA)、金、銀、白金、銅等が適用できる。
陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させる こと〖こより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また陽極のシート抵抗は、数百 ΩΖ口以下が 好ましい。陽極の膜厚は材料にもよる力 通常 10nm〜l μ m、好ましくは 10〜200n mの範囲で選択される。
[0052] 本発明の有機 EL素子においては、発光層は、
(i)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰 極又は電子注入層より電子を注入することができる機能
(ii)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(iii)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 を有する。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また特開昭 57— 51781号公報に開示されているように、榭脂等の結着剤と材料ィ匕 合物とを溶剤に溶力して溶液とした後、これをスピンコート法等により薄膜ィ匕すること によっても、発光層を形成することができる。
本発明の目的が損なわれない範囲で、所望により、発光層に、本発明のアントリル ァリーレン誘導体からなる発光材料以外の他の公知の発光材料を含有させてもよぐ また、本発明の発光材料を含む発光層に、他の公知の発光材料を含む発光層を積 層してちょい。
[0053] 次に、正孔注入'輸送層は、発光層への正孔注入を助け、発光領域まで輸送する 層であって、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さい。 このような正孔注入 ·輸送層としてはより低い電界強度で正孔を発光層に輸送する材 料が好ましぐさらに正孔の移動度力 例えば 104〜: L06V/cmの電界印加時に、少 なくとも 10—4cm2ZV'秒であるものが好ましい。このような材料としては、従来、光導 伝材料にぉ ヽて正孔の電荷輸送材料として慣用されて ヽるものや、有機 EL素子の 正孔注入層に使用されて 、る公知のものの中から任意のものを選択して用いること ができる。
具体例としては、例えば、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等 参照)、ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダ ゾール誘導体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体( 米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544 号明細書、特公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号 公報、同 55— 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55 — 156953号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン 誘導体 (米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 5 5— 88064号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 5108 6号公報、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、 同 54— 112637号公報、同 55— 74546号公報等参照)、フ -レンジァミン誘導体 (米国特許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号 公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報 、同 54— 119925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450 号明細書、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658 , 520号明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4 , 012, 376号明細書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許 第 1, 110, 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等 に開示のもの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フ ルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特 許第 3, 717, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、 同 55— 52064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11 350号公報、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチル ベン誘導体 (特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 146 42号公報、同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、 同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94 462号公報、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘 導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公 報)、ァニリン系共重合体 (特開平 2— 282263号公報)、特開平 1 211399号公報 に開示されている導電性高分子オリゴマー (特にチォフェンオリゴマー)等を挙げるこ とがでさる。
正孔注入層の材料としては上記のものを使用することができる力 ポルフィリン化合 物 (特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級ァミン化合物及 びスチリルァミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033号 公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号公報、同 5 5— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295 558号公報、同 61— 98353号公報、同 63— 295695号公報等参照)、特に芳香族 第三級ァミン化合物を用いることが好ま 、。
また米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内に 有する、例えば 4, 4,—ビス(N— (1—ナフチル)—N フエ-ルァミノ)ビフエ-ル( 以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ- ルァミンユニットが 3つスターバースト型に連結された 4, 4',4"—トリス(N— (3—メチ ルフエ-ル)—N—フエ-ルァミノ)トリフエ-ルァミン(以下 MTDATAと略記する)等 を挙げることができる。
また、 p型 Si、 p型 SiC等の無機化合物も正孔注入層の材料として使用することがで きる。
正孔注入、輸送層は上述した化合物を、例えば真空蒸着法、スピンコート法、キヤ スト法、 LB法等の公知の方法により薄膜ィ匕することにより形成することができる。正孔 注入、輸送層としての膜厚は特に制限はないが、通常は 5ηπι〜5 /ζ πιである。
また、有機半導体層は発光層への正孔注入又は電子注入を助ける層であって、 1 0_1QSZcm以上の導電率を有するものが好適である。このような有機半導体層の材 料としては、含チオフヱンオリゴマーゃ特開平 8— 193191号公報に開示してある含 ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の 導電性デンドリマー等を用いることができる。
[0056] 次に、電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送 する層であって、電子移動度が大きぐまた付着改善層は、この電子注入層の中で 特に陰極との付着が良い材料力もなる層である。
また、有機 EL素子は発光した光が電極 (この場合は陰極)により反射するため、直 接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干 渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は 数 nm〜数 mの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避ける ために、 104〜10V/cmの電界印加時に電子移動度が少なくとも 10— 5cm2ZVs以 上であることが好ましい。
電子注入層に用いられる材料としては、 8—ヒドロキシキノリン又はその誘導体の金 属錯体やォキサジァゾール誘導体が好適である。上記 8—ヒドロキシキノリン又はそ の誘導体の金属錯体の具体例としては、ォキシン(一般に 8—キノリノール又は 8—ヒ ドロキシキノリン)のキレートを含む金属キレートォキシノイドィ匕合物、例えばトリス(8— キノリノール)アルミニウムを電子注入材料として用いることができる。
[0057] 一方、ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合 物が挙げられる。
[化 20]
N-
A 、0' —。— Ar 8人 0
(式中、 Ar1
Figure imgf000037_0001
及び Ar9はそれぞれ置換又は無置換のァリール基 を示し、それぞれ互いに同一であっても異なっていてもよい。また Ar4
Figure imgf000037_0002
Ar8は置 換又は無置換のァリーレン基を示し、それぞれ同一であっても異なって 、てもよ 、) ここでァリール基としてはフエ-ル基、ビフエ-ル基、アントラ-ル基、ペリレニル基、 ピレニル基が挙げられる。また、ァリーレン基としてはフエ-レン基、ナフチレン基、ビ フエ-レン基、アントラ-レン基、ペリレニレン基、ピレニレン基などが挙げられる。また
、置換基としては炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基又はシ ァノ基等が挙げられる。この電子伝達ィ匕合物は薄膜形成性のものが好まし 、。
上記電子伝達性ィ匕合物の具体例としては下記のものを挙げることができる。
[化 21]
Figure imgf000038_0001
さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式 (E)〜Ci )で表されるちのち用いることがでさる。
[化 22]
Figure imgf000038_0002
(一般式 (E)及び (F)中、 A A3は、それぞれ独立に、窒素原子又は炭素原子であ る。
Ar1は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar1及び Ar2のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合環 基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基である。
ΐλ L2及び Lは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜60 のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、又は 置換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしくは 無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜20 のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 ηは 0〜5の整数であり、 ηが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成していてもよい。)で表される含窒素複素環誘導体。
[0060] HAr-L-Ar'-Ar2 (G)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し て!、てもよ 、炭素数 3〜60のへテロアリーレン基又は置換基を有して!/、てもよ!/、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァリール基又 は置換基を有して 、てもよ 、炭素数 3〜60のへテロアリール基である。 )で表される 含窒素複素環誘導体。
[0061] [化 23]
Figure imgf000040_0001
(H )
[0062] (式中、 X及び Yは、それぞれ独立に炭素数 1〜6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Υが結合して飽 和又は不飽和の環を形成した構造であり、 R〜Rは、それぞれ独立に水素、ハロゲ
1 4
ン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリ ールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アル キルカルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリールォキ シカルボニル基、ァゾ基、アルキルカルボ-ルォキシ基、ァリールカルボ-ルォキシ 基、アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、スルフィ- ル基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリール基、へ テロ環基、ァルケ-ル基、アルキ-ル基、ニトロ基、ホルミル基、ニトロソ基、ホルミル ォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチォ シァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮合 した構造である。 )で表されるシラシクロペンタジェン誘導体。
[0063] [化 24]
Figure imgf000040_0002
(式中、 R〜R及び Zは、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ 基又はァリールォキシ基を示し、 X、 Y及び Zは、それぞれ独立に、飽和もしくは不飽
1
和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、アルコキシ基又は ァリールォキシ基を示し、 Zと Zの置換基は相互に結合して縮合環を形成してもよく
1 2
、 nは 1〜3の整数を示し、 nが 2以上の場合、 Zは異なってもよい。但し、 nが 1、 X、 Y
1
及び Rカ チル基であって、 R力 水素原子又は置換ボリル基の場合、及び nが 3で
2 8
Zがメチル基の場合を含まない。)で表されるボラン誘導体。
1
[0065] [化 25]
Figure imgf000041_0001
( J )
[0066] [式中、 Q1及び Q2は、それぞれ独立に、下記一般式 (K)で示される配位子を表し、 L は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 O R^R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基であ る。)又は— O Ga Q3 (Q4) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配位子を 表す。 ]
[0067] [化 26]
Figure imgf000041_0002
[式中、環 A1及び A2は、置換基を有してよい互いに縮合した 6員ァリール環構造であ る。]
この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式 (K)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、プチ ル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル 基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フエ-ル 基、ナフチル基、 3—メチルフエ-ル基、 3—メトキシフエ-ル基、 3—フルオロフェ- ル基、 3—トリクロロメチルフエ-ル基、 3—トリフルォロメチルフエ-ル基、 3— -トロフ ェニル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 t—ブト キシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキシ基、 2 , 2, 3, 3—テ卜ラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3 へキサフルォロ 2 プ 口ポキシ基、 6— (パーフルォロェチル)へキシルォキシ基等の置換もしくは無置換の アルコキシ基、フエノキシ基、 p -トロフエノキシ基、 p—t—ブチルフエノキシ基、 3— フルオロフエノキシ基、ペンタフルォロフエ-ル基、 3—トリフルォロメチルフエノキシ基 等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 t—プチ ルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の置換もし くは無置換のアルキルチオ基、フエ-ルチオ基、 p -トロフエ-ルチオ基、 p—t—ブ チルフヱ-ルチオ基、 3—フルオロフヱ-ルチオ基、ペンタフルオロフヱ-ルチオ基、 3—トリフルォロメチルフエ-ルチオ基等の置換もしくは無置換のァリールチオ基、シ ァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、ェチルァミノ基、ジェチ ルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエ-ルァミノ基等のモノ又はジ 置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)アミノ基、ビス ァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のァシルァミノ基、水 酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメチルカルバモイル基、ェチ ルカルバモイル基、ジェチルカルバモイル基、プロィピルカルバモイル基、ブチルカ ルバモイル基、フエ-ルカルバモイル基等の力ルバモイル基、カルボン酸基、スルフ オン酸基、イミド基、シクロペンタン基、シクロへキシル基等のシクロアルキル基、フエ -ル基、ナフチル基、ビフエ-ル基、アントラ-ル基、フエナントリル基、フルォレ -ル 基、ピレニル基等のァリール基、ピリジ-ル基、ビラジニル基、ピリミジニル基、ピリダ ジニル基、トリアジニル基、インドリ-ル基、キノリニル基、アタリジ-ル基、ピロリジ- ル基、ジォキサニル基、ピベリジ-ル基、モルフオリジ-ル基、ピペラジニル基、トリア チニル基、カルバゾリル基、フラニル基、チオフェニル基、ォキサゾリル基、ォキサジ ァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリ ル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ブラニル基等の複素環基 等がある。また、以上の置換基同士が結合してさらなる 6員ァリール環もしくは複素環 を形成しても良い。
本発明の有機 EL素子の好ま 、形態に、電子を輸送する領域又は陰極と有機層 の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントと は、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性 を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類 金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲンィ匕物、アルカリ 土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は 希土類金属のハロゲン化物、アルカリ金属の炭酸塩、アルカリ土類金属の炭酸塩、 アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体か らなる群力も選択される少なくとも一つの物質を好適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV) 力 なる群力 選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV) 、 Sr (仕事関数: 2. 0〜2. 5eV)、及び Ba (仕事関数: 2. 52eV)力 なる群力 選択 される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下のも のが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csか らなる群力 選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又 は Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元能力が 高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光輝度の 向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパントとし て、これら 2種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合 わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせである ことが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮するこ とができ、電子注入域への添加により、有機 EL素子における発光輝度の向上や長 寿命化が図られる。
[0070] 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上さ せることができる。このような絶縁体としては、アルカリ金属カルコゲ -ド、アルカリ土 類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン 化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい 。電子注入層がこれらのアルカリ金属カルコゲ-ド等で構成されていれば、電子注入 性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属力 ルコゲ-ドとしては、例えば、 Li 0、 K 0、 Na S、 Na Se及び Na Oが挙げられ、好ま
2 2 2 2 2
しいアルカリ土類金属カルコゲ-ドとしては、例えば、 CaO、 BaO、 SrO、 BeO、 BaS 、及び CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例 えば、 LiF、 NaF、 KF、 CsF、 LiCl、 KC1及び NaCl等が挙げられる。また、好ましい アルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgF及び
2 2 2 2
BeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
2
また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又 は酸ィ匕窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子 輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好 ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が 形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、この ような無機化合物としては、上述したアルカリ金属カルコゲ -ド、アルカリ土類金属力 ルコゲ -ド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が 挙げられる。
[0071] 次に、陰極としては、仕事関数の小さい (4eV以下)金属、合金、電気伝導性化合 物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具 体例としては、ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、セシウム 、マグネシウム '銀合金、アルミニウム Z酸化アルミニウム、 AlZLi 0、 Al/LiO、 Al
2 2
ZLiF、アルミニウム 'リチウム合金、インジウム、希土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せること〖こより、作製することができる。
ここで、発光層からの発光を陰極力 取り出す場合、陰極の発光に対する透過率 は 10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百 Ω /ロ以 下が好ましぐさらに、膜厚は通常 ΙΟηπ!〜 1 μ m、好ましくは 50〜200nmである。
[0072] また、一般に、有機 EL素子は、超薄膜に電界を印加するために、リークやショート による画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄 膜層を挿入しても良い。
絶縁層に用いられる材料としては、例えば、酸ィ匕アルミニウム、弗化リチウム、酸化リ チウム、弗ィヒセシウム、酸ィヒセシウム、酸ィヒマグネシウム、弗ィヒマグネシウム、酸ィ匕カ ルシゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマ- ゥム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられる。これらの混合物や積層物を用いてもよい。
[0073] 次に、本発明の有機 EL素子を作製する方法にっ 、ては、例えば上記の材料及び 方法により陽極、発光層、必要に応じて正孔注入層、及び必要に応じて電子注入層 を形成し、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で 有機 EL素子を作製することもできる。
以下、透光性基板上に、陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極が順次 設けられた構成の有機 EL素子の作製例について説明する。
まず、適当な透光性基板上に、陽極材料からなる薄膜を 1 μ m以下、好ましくは 10 〜200nmの範囲の膜厚になるように、蒸着法あるいはスパッタリング法により形成し 、陽極とする。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きるが、均質な膜が得られやすぐかつピンホールが発生しにくい等の点力 真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物 (正孔注入層の材料)、目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7〜: LO— 3Torr、蒸着速度 0. 01〜50nmZ秒、基板温度 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。
[0074] 次に、この正孔注入層上に発光層を設ける。この発光層の形成も、本発明に係る 発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法 により、発光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐか つピンホールが発生しにく 、等の点力 真空蒸着法により形成することが好ま U、。 真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異 なるが、一般的に正孔注入層の形成と同様な条件範囲の中から選択することができ る。膜厚は 10〜40nmの範囲が好ましい。
[0075] 次に、この発光層上に電子注入層を設ける。この場合にも正孔注入層、発光層と同 様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は 正孔注入層、発光層と同様の条件範囲から選択することができる。
そして、最後に陰極を積層して有機 EL素子を得ることができる。陰極は金属力も構 成されるもので、蒸着法、スパッタリングを用いることができる。しかし、下地の有機物 層を製膜時の損傷力 守るためには真空蒸着法が好まし 、。
以上の有機 EL素子の作製は、一回の真空引きで、一貫して陽極から陰極まで作 製することが好ましい。
[0076] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式 (1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解かした溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、ピンホール等の 欠陥や、効率を良くするため、通常は数 nmから 1 μ mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また逆の極性で電圧を印加しても 電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が + 、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形は 任意でよい。
実施例
[0077] 以下、本発明を実施例をもとに詳細に説明するが、本発明はその要旨を越えない 限り、以下の実施例に限定されない。
[0078] 合成実施例 1 (AN - 4の合成)
アルゴン雰囲気下、 3, 5—ジブ口モヨードベンゼンとフエ-ルボロン酸から合成した 3, 5 ジブロモビフエ-ル 20gを無水 THF200mLに溶解し、 70°Cに冷却した。 1 . 6M ノルマルブチルリチウムへキサン溶液 42mLを滴下し、 30分攪拌した。 1, 2 —ジョ一ドエタン 19gを投入し、 5時間攪拌した。一晩放置後、水、塩化メチレンをカロ え、更に亜硫酸水素ナトリウムを黒褐色の反応液が黄色になるまで添加した。有機層 を抽出し、水、飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥し、エバポレーター にて溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン )にて精製することで、 3 ブロモ 5 ョードビフエ-ル 19. 5gを無色オイルとして得 た (収率 85%)。
アルゴン雰囲気下、得られた 3ーブロモー 5ーョードビフエ-ル i2g、 1 ナフタレン ボロン酸 5. 7g、テトラキストリフエ-ルホスフィンパラジウム 1. lgをトルエン lOOmLに 溶解し、更に 2M—炭酸ナトリウム水溶液 55mLを加えて、 7時間加熱還流した。放冷 後、有機層を抽出し、水、飽和食塩水にて洗浄後、無水硫酸ナトリウムで乾燥し、ェ バポレーターにて溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶 媒:へキサン/トルエン = 5/1)にて精製することで、 3—ブロモ 5— (ナフタレン一
1—ィル)ビフヱ-ル 8. lgを白色固体として得た (収率 67%)。
アルゴン雰囲気下、得られた 3ーブロモー 5 (ナフタレン 1 ィル)ビフエ-ル 7.
6g、既知の方法により得られた、 10— (ナフタレン— 2—ィル)アントラセン— 9 ボロ ン酸 8g、テトラキストリフエ-ルホスフィンパラジウム 0. 95gを 1, 2 ジメトキシェタン( DME) 80mL及びトルエン 10mLに溶解し、更に 2M—炭酸ナトリウム水溶液 40mL を加えて、 9. 5時間加熱還流した。一晩放置後、析出晶をろ別し、水、メタノールで 洗浄、加熱トルエンで洗浄することで、 目的の化合物 (AN— 4) 6. 6gを白色固体とし て得た(収率 54%)。得られた化合物の FD— MS (フィールドディソープシヨンマス分 析)を測定したところ、 C H = 582に対し mZz = 582が得られたことから、この化合
46 30
物を AN— 4と同定した。
[0079] 合成実施例 2 (AN— 10の合成)
合成実施例 1にお 、て、 1—ナフタレンボロン酸の代わりに 2—ナフタレンボロン酸 を用いた他は同様の操作を行 、、 目的の化合物 (AN— 10)を白色固体として得た( 収率 55%)。得られた化合物の FD— MS (フィールドディソープシヨンマス分析)を測 定したところ、 C H = 582に対し mZz = 582が得られたことから、この化合物を AN
46 30
10と同定した。
[0080] 合成実施例 3 (AN— 14の合成)
市販の 2, 6 ジブ口モナフタレン 12g、市販の 3 ビフエ-ルボロン酸 l lg、及びト ルェン 180mLを混合した。更にテトラキストリフエ-ルホスフィンパラジウム 5. 7gと 2 M—炭酸ナトリウム水溶液 90mLをカ卩え、アルゴン置換した。 7. 5時間加熱還流した 後、放冷し、析出晶をろ別、トルエン抽出した。有機層を水、飽和食塩水にて洗浄し た後、無水硫酸ナトリウムにて乾燥した。エバポレーターにて溶媒を留去した後、残 渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン Zトルエン = 5Z1)にて 精製することで、 2— (ビフエ-ルー 3—ィル) 6 ブロモナフタレン 7. 8gを白色固 体として得た (収率 51%)。
得られた 2— (ビフエ-ルー 3—ィル)—6 ブロモナフタレン 5. 2g、既知の方法に より合成した 3— (9—フエ-ルアントラセン— 10—ィル)フエ-ルボロン酸 6. 4g、 DM E60mL、及びトルエン 20mLを混合した。更にテトラキストリフエ-ルホスフィンパラジ ゥム 0. 67gと 2M—炭酸ナトリウム水溶液 60mLを加え、アルゴン置換した。 10時間 加熱還流した後、放冷し、析出晶をろ別した。結晶を水、メタノールで洗浄した後、加 熱トルエンで洗浄することで、 目的の化合物 (AN— 14) 7. Ogを白色固体として得た (収率 74%)。得られた化合物の FD— MS (フィールドディソープシヨンマス分析)を 測定したところ、 C H =658に対し mZz = 658が得られたことから、この化合物を
52 34
AN— 14と同定した。 合成実施例 4 (AN— 22の合成)
既知の方法、もしくは 2 ブロモ 6 ョードナフタレンとフエニルボロン酸との反応 により合成した 2 ブロモ 6 フエ-ルナフタレン 12gに無水エーテル 90mL及び 無水トルエン 30mLをカ卩え、アルゴン置換した。 40。Cに冷却し、 1. 6M ノルマル ブチルリチウムへキサン溶液 29mLを滴下し、一時間攪拌した。ー且— 5°Cまで昇温 し、再び— 40°Cに冷却した後、ボロン酸トリイソプロピルエステル 29mLをエーテルに 希釈し、滴下した。 4時間攪拌した後、一晩放置した。 10%希塩酸にて酸性ィ匕した後 、白色固体をろ別し、水、へキサンにて洗浄した。乾燥後の白色結晶重量は 6. 8gで あった。ろ過母液を飽和食塩水にて洗浄し、無水硫酸ナトリウムで乾燥後、エバポレ 一ターにて溶媒を留去した。得られた淡黄色固体を塩化メチレンにて洗浄し、乾燥 することで白色結晶 3. lgを得た。先の白色結晶と合わせ、 2 フエ二ルナフタレン— 6—ボロン酸 9. 9gを得た(収率 94%)。
アルゴン雰囲気下、得られた 2 フエ-ルナフタレン 6 ボロン酸 6. 5gと 3 ブロ モヨードベンゼン 7. 8gをトルエン lOOmL及び DME20mLに溶解し、テトラキストリフ ェ-ルホスフィンパラジウム 0. 95gを加えた。更に 2M—炭酸ナトリウム水溶液 50mL を加えて、 8時間加熱還流した。一晩放置後、トルエン抽出し、飽和食塩水で洗浄し た後、エバポレーターにて溶媒を留去した。加熱トルエンに溶解し、再結晶を行うこと で、 2— (3—ブロモフエ-ル)— 6—フエ-ルナフタレン 6. 7gを白色結晶として得た( 収率 71%)。
アルゴン雰囲気下、既知の方法により得られた 10 (4 ナフタレン 1ーィルーフ ェ -ル)アントラセン 9 ボロン酸 6g、上記方法により得られた 2—(3 ブロモフエ -ル) 6 フエ-ルナフタレン 5. lgを DME80mLに分散し、テトラキストリフエ-ル ホスフィンパラジウム 0. 5g、及び 2M—炭酸ナトリウム水溶液 24mLを加え、 8時間加 熱還流した。一晩放置後、析出晶をろ別し、水、メタノールで洗浄、加熱トルエンで洗 浄することで、 目的の化合物 (AN— 22) 5. 8gを白色固体として得た (収率 62%)。 得られたィ匕合物の FD— MS (フィールドディソープシヨンマス分析)を測定したところ 、C H =658に対し mZz = 658が得られたことから、この化合物を AN— 22と同定
52 34
した。 [0082] 合成実施例 5 (AN— 23の合成)
既知の方法、もしくは 1 ブロモ 4 ョードナフタレンとフエニルボロン酸との反応 により合成した 1ーブロモー 4 フエ-ルナフタレン 14gに無水エーテル 130mL及び 無水トルエン 50mLをカ卩え、アルゴン置換した。 40。Cに冷却し、 1. 6M ノルマル ブチルリチウムへキサン溶液 37mLを滴下し、一時間攪拌した。ー且、 5°Cまで昇 温し、再び— 40°Cに冷却した後、ボロン酸トリイソプロピルエステル 34mLをエーテル に希釈し、滴下した。 3. 5時間攪拌した後、一晩放置した。 10%希塩酸にて酸性ィ匕 した後、酢酸ェチルで抽出し、飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後 、エバポレーターにて溶媒を留去した。得られた白色固体を塩化メチレンにて洗浄し 、乾燥することで 1 フエ二ルナフタレンー4 ボロン酸 10gを白色結晶として得た (収 率 80%)。
アルゴン雰囲気下、 1—フエ-ルナフタレン— 4 ボロン酸 11. 6gと 3 ブロモヨ一 ドベンゼン 14. 5gをトルエン 160mL及び DME30mLに溶解し、テトラキストリフエ- ルホスフィンパラジウム 1. 79gを加えた。更に 2M—炭酸ナトリウム水溶液 90mLをカロ えて、 8時間加熱還流した。一晩放置後、トルエン抽出し、飽和食塩水で洗浄した後 、エバポレーターにて溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展 開溶媒:へキサン Zトルエン =5Zl)にて精製することで、 1 (3—プロモフヱ-ル) 4 フエ二ルナフタレン 10. 4gを白色固体として得た(収率 62%)。
アルゴン雰囲気下、既知の方法により得られた 10 (4 ナフタレン 1ーィルーフ ェ -ル)アントラセン一 9一ボロン酸 5. 6g、上記方法により得られた 1一 (3 ブロモフ ェニノレ) 4 フエニノレナフタレン 4. 5gを DME70mL〖こ分散し、テトラキストリフエ二 ルホスフィンパラジウム 0. 7g、及び 2M—炭酸ナトリウム水溶液 30mLをカ卩え、 7時間 加熱還流した。一晩放置後、析出晶をろ別し、水、メタノールで洗浄、加熱トルエンで 洗浄することで、 目的の化合物 (AN— 23) 6. 7gを淡黄色固体として得た (収率 81 %)。得られたィ匕合物の FD— MS (フィールドディソープシヨンマス分析)を測定したと ころ、 C H =658に対し mZz = 658が得られたことから、この化合物を AN— 23と
52 34
同定した。
[0083] 合成実施例 6 (AN— 28の合成) 合成実施例 4において、 10— (4 ナフタレン 1ーィルーフエ-ル)アントラセン 9 ボロン酸の代わりに 10— (ナフタレン一 2—ィル)アントラセン一 9 ボロン酸を用 V、た他は同様の操作を行!ヽ、 目的の化合物 (AN— 28)を灰白色固体として得た (収 率 79%)。得られた化合物の FD— MS (フィールドディソープシヨンマス分析)を測定 したところ、 C H = 582に対し mZz = 582が得られたことから、この化合物を AN—
46 30
28と同定した。
合成実施例 7 (AN— 32の合成)
2, 6 ジブ口モナフタレン、もしくは 2 ブロモー 6 ョードナフタレンと 1 ナフタレ ンボロン酸との反応により合成した 2 ブロモー 6 (ナフタレン 1 ィル)ナフタレ ン 5. 4gに無水エーテル 20mL及び無水トルエン 30mLを加え、アルゴン置換した。
30°Cに冷却し、 1. 6M ノルマルブチルリチウムへキサン溶液 l lmLを滴下し、 一時間攪拌した。ー且、 10°Cまで昇温した後、 70°Cに冷却し、ボロン酸トリイソ プロピルエステル 11 mLをエーテルに希釈し、滴下した。 3. 5時間攪拌した後、ー晚 放置した。 10%希塩酸にて酸性ィ匕した後、エーテルで抽出し、飽和食塩水で洗浄し た。無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を留去した。得られた白 色固体を塩化メチレンにて洗浄し、乾燥することで 2— (ナフタレン一 1—ィル)ナフタ レン 6 ボロン酸 3. 2gを白色結晶として得た (収率 67%)。
アルゴン雰囲気下、 2— (ナフタレン一 1—ィル)ナフタレン一 6 ボロン酸 3. 2gと 4
—ブロモヨードベンゼン 2. 8gをトルエン 30mLに溶解し、テトラキストリフエニルホスフ インパラジウム 0. 23gを加えた。更に 2M—炭酸ナトリウム水溶液 28mLをカ卩えて、 8.
5時間加熱還流した。一晩放置後、トルエン抽出し、飽和食塩水で洗浄した後、エバ ポレーターにて溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒
:トルエン =)にて精製することで、 2— (4—ブロモフエ-ル) 6— (ナフタレン一 1— ィル)ナフタレン 3. 6gを淡黄色固体として得た (収率 83%)。
アルゴン雰囲気下、既知の方法により得られた 10—(ナフタレン 2—ィル)アントラ センー9 ボロン酸 4. 64g、上記方法により得られた 2—(4 ブロモフエニル)ー6— (ナフタレン一 1—ィル)ナフタレン 4. 55gを DME40mLに分散し、テトラキストリフエ -ルホスフィンパラジウム 0. 26g、及び 2M—炭酸ナトリウム水溶液 25mLをカ卩え、 8 時間加熱還流した。析出晶をろ別し、水、メタノールで洗浄した後、加熱トルエンで洗 浄することで、 目的の化合物 (AN— 32) 5. Ogを灰白色固体として得た (収率 71%) 。得られたィ匕合物の FD— MS (フィールドディソープシヨンマス分析)を測定したとこ ろ、 C H =632に対し mZz = 632が得られたことから、この化合物を AN— 32と同
50 32
し 7こ。
[0085] 合成実施例 8 (AN— 49の合成)
市販の 3—ブロモヨードベンゼン l lg、市販の 3—ビフエ-ルボロン酸 8. 7g、及びト ルェン 130mLを混合した。更にテトラキストリフエ-ルホスフィンパラジウム 0. 9gと 2 M—炭酸ナトリウム水溶液 75mLをカ卩え、アルゴン置換した。 8時間加熱還流した後、 放冷し、析出晶をろ別、トルエン抽出した。有機層を水、飽和食塩水にて洗浄した後 、無水硫酸ナトリウムにて乾燥した。エバポレーターにて溶媒を留去した後、残渣をシ リカゲルカラムクロマトグラフィー(展開溶媒:へキサン)にて精製することで、 3—プロ モー m—ターフェ-ル 11. 8gを白色固体として得た(収率 96%)。
得られた 3—ブロモー m—ターフェ-ル 5. lg、既知の方法により合成した 10—(フ ェナントレン一 9—ィル)アントラセン一 9—ボロン酸 7. 9g、 DME52mLを混合した。 更にテトラキストリフエ-ルホスフィンパラジウム 0. 95gと 2M-炭酸ナトリウム水溶液 3 OmLをカ卩え、アルゴン置換した。 7. 5時間加熱還流した後、放冷し、析出晶をろ別し た。結晶を水、メタノールで洗浄した後、シリカゲルカラムクロマトグラフィー(展開溶 媒:へキサン Zトルエン =4Zl)にて精製することで、 目的の化合物 (AN— 49) 8. 6 gを白色固体として得た(収率 90%)。得られた化合物の FD— MS (フィールドデイソ ープシヨンマス分析)を測定したところ、 C H = 582に対し mZz = 582力得られた
46 30
ことから、この化合物を AN— 49と同定した。
[0086] 合成実施例 9 (AN— 52の合成)
アルゴン雰囲気下、既知の方法により得られた 10—(6—フエ-ルナフタレンー2— ィル)アントラセン— 9—ボロン酸 l lg、市販の 3—ブロモビフエ-ル 5. 7gを DME80 mL、及びトルエン 20mLに分散し、テトラキストリフエ-ルホスフィンパラジウム 1. 13g 、及び 2M—炭酸ナトリウム水溶液 45mLをカ卩え、 9時間加熱還流した。一晩放置後、 析出晶をろ別し、水、メタノールで洗浄した後、加熱トルエンで洗浄することで、 目的 の化合物 (AN— 52) 6. lgを淡黄色固体として得た (収率 47%)。得られた化合物の FD— MS (フィールドディソープシヨンマス分析)を測定したところ、 C H = 532に
42 28 対し mZz = 532が得られたことから、この化合物を AN— 52と同定した。
[0087] 合成実施例 10 (AN— 53の合成)
アルゴン雰囲気下、既知の方法により得られた 10—(6 フエ-ルナフタレンー2— ィル)アントラセン一 9—ボロン酸 8. 4g、 2— (3—ブロモフエ-ル)ナフタレン 5. 35g を DME80mL、及びトルエン 30mLに分散し、テトラキストリフエ-ルホスフィンパラジ ゥム 0. 87g、及び 2M—炭酸ナトリウム水溶液 40mLを加え、 9時間加熱還流した。 一晩放置後、析出晶をろ別し、水、メタノールで洗浄した後、加熱トルエンで洗浄す ることで、 目的の化合物 (AN— 53) 6. 9gを淡黄色固体として得た (収率 63%)。得 られた化合物の FD— MS (フィールドディソープシヨンマス分析)を測定したところ、 C H = 582に対し mZz = 582が得られたことから、この化合物を AN— 53と同定し
46 30
た。
[0088] 合成実施例 11 (AN— 85の合成)
アルゴン雰囲気下、合成実験例 4で得られた 2 フエ-ルナフタレン 6 ボロン酸 8gと 4 ブロモ 3' ョードビフエニル 11. 6gをトルエン 150mLに溶解し、テトラキ ストリフエ-ルホスフィンパラジウム 0. 75gを加えた。更に 2M—炭酸ナトリウム水溶液 49mLをカ卩えて、 8時間加熱還流した。ー晚放置後、トルエン抽出し、飽和食塩水で 洗浄した後、エバポレーターにて溶媒を留去した。加熱トルエンに溶解し、再結晶を 行うことで、 4 ブロモ 3'— (4 フエ-ルナフタレン一 1ィル)ビフエ-ル 9. 3gを白 色結晶として得た (収率 66%)。
アルゴン雰囲気下、既知の方法により得られた 10—(ナフタレン 2—ィル)アントラ センー9 ボロン酸 6. 2g、上記方法により得られた 4ーブロモー 3'—(4 フエ-ル ナフタレン一 1—ィル)ビフエ-ル 7gを DMElOOmLに分散し、テトラキストリフエ-ル ホスフィンパラジウム 0. 38g、及び 2M—炭酸ナトリウム水溶液 25mLをカ卩え、 8時間 加熱還流した。一晩放置後、析出晶をろ別し、水、メタノールで洗浄、加熱トルエンで 洗浄することで、 目的の化合物 (AN— 85) 6. 7gをベージュ色固体として得た (収率 63%)。得られた化合物の FD— MS (フィールドディソープシヨンマス分析)を測定し たところ、 C H =658に対し mZz = 658が得られたことから、この化合物を AN— 8
52 34
5と同定した。
[0089] 合成実施例 12 (AN— 89の合成)
アルゴン雰囲気下、既知の方法により得られた 10一 (3一(ナフタレン一 2—ィル)フ ェ -ル)アントラセン一 9 ボロン酸 9. 2g、 2, 6 ジブ口モナフタレンと 2 ナフタレン ボロン酸より既知の方法により得られた 2 ブロモー 6 (ナフタレン 2 ィル)ナフ タレン 6gを DME150mLに分散し、テトラキストリフエ-ルホスフィンパラジウム 0. 42 g、及び 2M—炭酸ナトリウム水溶液 27mLをカ卩え、 8時間加熱還流した。一晩放置後 、析出晶をろ別し、水、メタノールで洗浄、加熱トルエンで洗浄することで、 目的の化 合物 (AN— 89) 7. 2gを淡黄色固体として得た (収率 63%)。得られた化合物の FD — MS (フィールドディソープシヨンマス分析)を測定したところ、 C H =632に対し
50 32
mZz = 632が得られたことから、この化合物を AN— 89と同定した。
[0090] 合成実施例 13 (AN— 92の合成)
アルゴン雰囲気下、既知の方法により得られた 3—(9 (ナフタレン 2 ィル)ァ ントラセン一 10—ィル)フエ-ルボロン酸 8. 4g、 2 ブロモ 6— (ナフタレン一 2—ィ ル)ナフタレン 6gを DME150mLに分散し、テトラキストリフエ-ルホスフィンパラジゥ ム 0. 42g、及び 2M—炭酸ナトリウム水溶液 27mLを加え、 8時間加熱還流した。一 晚放置後、析出晶をろ別し、水、メタノールで洗浄、加熱トルエンで洗浄することで、 目的の化合物 (AN— 92) 6. 7gを淡黄色固体として得た (収率 58%)。得られた化 合物の FD— MS (フィールドディソープシヨンマス分析)を測定したところ、 C H =6
50 32
32に対し mZz = 632が得られたことから、この化合物を AN— 92と同定した。
[0091] 合成実施例 14 (AN— 95の合成)
アルゴン雰囲気下、既知の方法により得られた 10一 (3一(ナフタレン一 2—ィル)フ ェ -ル)アントラセン一 9 ボロン酸 9. 9g、 2 ブロモ 6— (3—ビフエ-ル)ナフタレ ン 7gを DME150mLに分散し、テトラキストリフエ-ルホスフィンパラジウム 0. 45g、 及び 2M—炭酸ナトリウム水溶液 30mLをカ卩え、 7. 5時間加熱還流した。一晩放置後 、析出晶をろ別し、水、メタノールで洗浄、加熱トルエンで洗浄することで、 目的の化 合物 (AN— 95) 7. 2gを淡黄色固体として得た (収率 56%)。得られた化合物の FD — MS (フィールドディソープシヨンマス分析)を測定したところ、 C H =658に対し
52 34
mZz = 658が得られたことから、この化合物を AN— 95と同定した。
[0092] 合成実施例 15 (AN— 96の合成)
合成実施例 14において、 10— (3— (ナフタレン— 2—ィル)フエ-ル)アントラセン — 9 ボロン酸の代わりに 10— (4— (ナフタレン一 1 ィル)フエ-ル)アントラセン一 9 ボロン酸を用いた他は同様の操作を行 、、 目的の化合物 (AN— 96)をクリーム 色固体として得た(収率 61%)。得られた化合物の FD— MS (フィールドディソープシ ヨンマス分析)を測定したところ、 C H =658に対し
52 34 mZz = 658が得られたことから
、この化合物を AN— 96と同定した。
[0093] 合成実施例 16 (AN— 99の合成)
アルゴン雰囲気下、既知の方法により得られた 4一(9 (ナフタレン 2 ィル)ァ ントラセン一 10—ィル)フエ-ルボロン酸 9. 8g、 1, 4 ジブ口モナフタレンと 2 ナフ タレンボロン酸より既知の方法により得られた 1ーブロモー 4 (ナフタレン 2—ィル )ナフタレン 7gを DME150mLに分散し、テトラキストリフエ-ルホスフィンパラジウム 0 . 49g、及び 2M—炭酸ナトリウム水溶液 32mLをカ卩え、 8時間加熱還流した。一晩放 置後、析出晶をろ別し、水、メタノールで洗浄、加熱トルエンで洗浄することで、 目的 の化合物 (AN— 99) 7. 6gを淡黄色固体として得た (収率 57%)。得られた化合物の FD— MS (フィールドディソープシヨンマス分析)を測定したところ、 C H =632に
50 32 対し mZz = 632が得られたことから、この化合物を AN— 99と同定した。
[0094] 実施例 1 (AN- 10の評価)
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を 覆うようにして膜厚 60nmの N, N,一ビス(N, N,一ジフエ-ルー 4 ァミノフエ-ル) — N, N ジフエ-ル— 4, 4,—ジァミノ— 1, 1,—ビフエ-ル膜(以下「TPD232膜」 と略記する。)を成膜した。この TPD232膜は、正孔注入層として機能する。 TPD23 2膜の成膜に続けて、この TPD232膜上に膜厚 20nmの N, N, Ν' , Ν,—テトラ(4 —ビフエ-ル)一ジアミノビフエ-レン層以下「TBDB層」を成膜した。この膜は正孔 輸送層として機能する。さらに膜厚 40nmの AN— 10を蒸着し成膜した。同時に発光 分子として、下記のスチリル基を有するァミン化合物 BD1を AN— 10に対し、重量比 AN— 10 : BD1 =40 : 2で蒸着した。この膜は、発光層として機能する。この膜上に 膜厚 10nmの Alq膜を成膜した。これは、電子注入層として機能する。この後還元性ト '、一パントである Li (Li源:サエスゲッタ一社製)と Alqを二元蒸着させ、電子注入層 ( 陰極)として Alq: Li膜 (膜厚 lOnm)を形成した。この Alq: Li膜上に金属 A1を蒸着さ せ金属陰極を形成し有機 EL発光素子を形成した。この素子に通電試験を行ったとこ ろ、電圧 6. 93V、電流密度 lOmAZcm2にて 660cdZm2の青色発光が得られた。 初期輝度を 1 OOOcd/m2にしてこの有機 EL素子の半減寿命を測定した結果を表 1 に示す。また、ホスト材料である AN— 10のガラス転移温度 (Tg)を表 1に示す。
[化 27]
Figure imgf000056_0001
T P D 2 3 2 T B D B
Figure imgf000056_0002
B D A 1 q
[0095] 実施例 2〜6
発光層の材料として AN— 10の代わりに表 1に記載の化合物を用いた以外は実施例 1と全く同様に有機 EL素子を作製した。初期輝度を lOOOcdZm2にしてこの有機 EL 素子の半減寿命を測定した結果を表 1に示す。また、各ホスト材料のガラス転移温度 (Tg)を表 1に示す。
[0096] 実施例 7
実施例 1にお 、て発光層の材料として、アミンィ匕合物 BD1の代わりにアミンィ匕合物 BD2を用いた以外は同様にして有機 EL素子を作成し、実施例 1と同様にして半減 寿命を測定した。それらの結果を表 1に示す。また、ホスト材料である AN— 10のガラ ス転移温度 (Tg)を表 1に示す。
[化 28]
Figure imgf000057_0001
[0097] 実施例 8
実施例 1にお 、て発光層の材料として、アミンィ匕合物 BD1の代わりにアミンィ匕合物 BD3を用いた以外は同様にして有機 EL素子を作成し、実施例 1と同様にして半減 寿命を測定した。それらの結果を表 1に示す。また、ホスト材料である AN— 10のガラ ス転移温度 (Tg)を表 1に示す。
[化 29]
Figure imgf000057_0002
[0098] 実施例 9〜14
発光層の材料として AN— 10の代わりに表 1に記載の化合物を用いた以外は実施 例 1と全く同様に有機 EL素子を作製した。初期輝度を lOOOcdZm2にしてこの有機 EL素子の半減寿命を測定した結果を表 1に示す。また、各ホスト材料のガラス転移 温度 (Tg)を表 1に示す。
[0099] 比較例 1〜10
発光層の材料として AN— 10の代わりに表 1に記載の化合物を用いた以外は実施 例 1と全く同様に有機 EL素子を作製した。初期輝度を lOOOcdZm2にしてこの有機 EL素子の半減寿命を測定した結果を表 1に示す。また、各ホスト材料のガラス転移 温度 (Tg)を表 1に示す。
[0100] 比較例 11
発光層の材料として AN-10の代わりに an-3を、ァミン化合物 BD1の代わりにアミ ン化合物 BD2を用いた以外は実施例 1と全く同様に有機 EL素子を作製した。初期 輝度を 1 OOOcdZm2にしてこの有機 EL素子の半減寿命を測定した結果を表 1に示 す。また、ホスト材料である an— 3のガラス転移温度 (Tg)を表 1に示す。
[0101] 比較例 12
発光層の材料として AN— 10の代わりに an- 11を用いた以外は実施例 1と全く同様 に有機 EL素子を作製した。初期輝度を lOOOcd/m2にしてこの有機 EL素子の半減 寿命を測定した結果を表 1に示す。また、各ホスト材料のガラス転移温度 (Tg)を表 1 に示す。
[0102] 比較例で用いた化合物の化学構造は下記に示すとおりである。
[化 30]
Figure imgf000058_0001
[0103] [表 1] 表 1
Figure imgf000059_0001
比較例に記載の化合物 an— 3、 an— 9を用 、た有機 EL素子は長寿命であるが、 ガラス転移温度が低い。これらの化合物に芳香族炭化水素基を導入した化合物 an —1、 an— 2、及び an— 10はガラス転移温度が向上する力 寿命が大きく低下した。 一方、芳香族炭化水素基を導入する部位を工夫した例示化合物 AN— 10、 AN— 5 2、及び AN— 53はガラス転移温度を向上しつつ、更なる長寿命化が達成された。 また、比較例に記載の化合物 an— 5はガラス転移温度が高ぐ比較的長寿命であ るが、ガラス転移温度を更に向上すべく芳香族炭化水素基を導入した化合物 an— 6 、 an— 7では、ガラス転移温度が向上したものの、寿命が大きく低下した。一方、芳香 族炭化水素基を導入する部位を工夫した例示化合物 AN— 32はガラス転移温度が 大きく向上し、更なる長寿命化が達成された。また、 AN— 32は比較例に記載の an —8と比較しても、長寿命である。
更に比較例に記載の化合物 an— 4に芳香族炭化水素基を導入した化合物 AN— 23、及びその類縁体 AN— 22もガラス転移温度が大きく向上し、長寿命であった。 本発明者らはガラス転移温度 (Tg)を高める為に有効である芳香族基の導入に関 して、導入部位 ¾|¾意検討した結果、下記に示す部位へ導入した場合にのみ素子 寿命を保持しつつガラス転移温度を向上することが可能であり、下記に示した部位以 外へ導入した場合はガラス転移温度は向上するものの、素子寿命が大きく短寿命化 することを見出した。
(a)一般式 (I)〜 (ΠΙ)における Ar2に一つ以上の芳香族炭化水素基、又は芳香族 複素環基を導入した時、すなわち(q=r = 0、かつ Yが水素原子)ではない時
(b)一般式 (I)〜 (ΠΙ)における Ar2へ上記芳香族基を導入しな 、時、すなわち(q = r=0、かつ Yが水素原子)である時は、次の場合に限られる。
ァ.一般式 (Π)において s≠0、又は Zが水素原子ではない。
ィ.一般式 (I)〜(ΠΙ)にお 、て 半 0、又は Xが水素原子ではな 、。
これらの結果力 判るように本発明のアントリルァリーレン誘導体は従来技術に比べ て、高ガラス転移温度であり長寿命である。
産業上の利用可能性
以上詳細に説明したように、本発明の有機 EL素子に用いられる発光材料は、十分 なガラス転移温度を有するアントリルァリーレン誘導体であって、本発明のアントリル ァリーレン誘導体を用いた有機 EL素子は、発光効率が高ぐ長寿命である。このた め、本発明の有機 EL素子は、実用性が高ぐ壁掛テレビ等の平面発光体やディスプ レイのバックライト等の光源として有用である。有機 EL素子、正孔注入'輸送材料、さ らには電子写真感光体や有機半導体の電荷輸送材料としても用いることができる。

Claims

請求の範囲
下記一般式 (I)で表されるアントリルァリーレン誘導体。
Figure imgf000062_0001
[一般式 (I)において、 Ar1は置換もしくは無置換の核炭素数 6〜50の芳香族炭化水 素基、下記一般式 (A)で示す力ルバゾリレン基、又は下記一般式 (B)で示すトリプチ セ-レン基である。 Ar2は置換もしくは無置換の核炭素数 6〜50の芳香族炭化水素 基、下記一般式 (A)で示す力ルバゾリレン基、下記一般式 (B)で示すトリプチセ-レ ン基、又は下記一般式 (C)で示すフルォレニレン基である。
[化 2]
Figure imgf000062_0002
( A ) ( B ) ( C )
{前記一般式 (A)〜(C)において、 Ri〜R5はそれぞれ独立に、水素原子、芳香族炭 化水素基、芳香族複素環基、アルキル基、シクロアルキル基、アルコキシ基、ァラル キル基、ァリールォキシ基、ァリールチオ基、アルコキシカルボ-ル基、シリル基、力 ルボキシル基、ハロゲン原子、シァノ基、ニトロ基、又はヒドロキシル基を示す。又、 R1 〜R5は連結基でもよい。 }
前記一般式 (I)及び (A)〜(C)において、 Rはそれぞれ独立に、芳香族炭化水素 基、芳香族複素環基、アルキル基、シクロアルキル基、アルコキシ基、ァラルキル基、 ァリールォキシ基、ァリールチオ基、アルコキシカルボ-ル基、シリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、又はヒドロキシル基を示す。
前記一般式 (I)及び (A)〜(C)にお 、て、 R及び 〜 がアルキル基の時、隣接 するアルキル基どうしで結合し、縮合環を形成しても良 、。
a〜mは、それぞれ独立に 0〜4の整数を示す。 p, q, r及び sは、それぞれ独立に 0 〜3の整数を示し、それぞれのベンゼン環上の置換基 Rは同じでも異なっていても良 い。
X, Υ, Zはそれぞれ独立に、水素原子、核炭素数 6〜30の芳香族炭化水素基、又 は核炭素数 5〜30の芳香族複素環基を示す力 p = q=r = 0の時、 Yは水素原子で はない。 ]
下記一般式 (Π)で表される請求項 1に記載のアントリルァリーレン誘導体。
[化 3]
Figure imgf000063_0001
[一般式 (Π)において、
Figure imgf000063_0002
R、 a〜m、 p、 q、 r、 s、 X、 Y、及び Zは前記と同じ である]
下記一般式 (ΠΙ)で表される請求項 1に記載のアントリルァリーレン誘導体。
[化 4]
Figure imgf000064_0001
( I I I )
[一般式 (III)において、
Figure imgf000064_0002
R、 a〜m、 p、 q、 r、 X、及び Yは前記と同じである ]
[4] 陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくとも 一層力 請求項 1〜3に記載のアントリルァリーレン誘導体を単独もしくは混合物の成 分として含有する有機エレクト口ルミネッセンス素子。
[5] 前記発光層が、請求項 1〜3に記載のアントリルァリーレン誘導体を単独もしくは混 合物の成分として含有する請求項 4に記載の有機エレクト口ルミネッセンス素子。
[6] 前記発光層が、請求項 1〜3に記載のアントリルァリーレン誘導体を主成分として含 有する請求項 5記載の有機エレクト口ルミネッセンス素子。
[7] 前記発光層が、さらにァリールアミンィ匕合物を含有する請求項 5記載の有機エレクト ロノレミネッセンス素子。
[8] 前記発光層が、さらにスチリルアミン化合物を含有する請求項 5記載の有機エレクト ロノレミネッセンス素子 n
PCT/JP2006/305983 2005-03-28 2006-03-24 アントリルアリーレン誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子 WO2006104044A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06729931A EP1864962A4 (en) 2005-03-28 2006-03-24 ANTHRYLARYENE DERIVATIVE, MATERIAL FOR AN ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DEVICE THEREFOR
JP2007510454A JPWO2006104044A1 (ja) 2005-03-28 2006-03-24 アントリルアリーレン誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-092604 2005-03-28
JP2005092604 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006104044A1 true WO2006104044A1 (ja) 2006-10-05

Family

ID=37053302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305983 WO2006104044A1 (ja) 2005-03-28 2006-03-24 アントリルアリーレン誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US7985491B2 (ja)
EP (1) EP1864962A4 (ja)
JP (1) JPWO2006104044A1 (ja)
KR (1) KR20070114760A (ja)
CN (1) CN101151231A (ja)
TW (1) TW200704746A (ja)
WO (1) WO2006104044A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143857A (ja) * 2006-12-12 2008-06-26 Tosoh Corp ベンゾフルオレン誘導体の製造方法およびその中間体
EP2045231A1 (en) 2007-10-03 2009-04-08 Canon Kabushiki Kaisha Binaphthyl compound and organic light emitting element using the same
JP2009514812A (ja) * 2005-10-21 2009-04-09 エルジー・ケム・リミテッド 新規のビナフタレン誘導体、その製造方法およびそれを用いた有機電子素子
JP2009167175A (ja) * 2007-12-21 2009-07-30 Semiconductor Energy Lab Co Ltd アントラセン誘導体、およびアントラセン誘導体を用いた発光材料、発光素子、発光装置、並びに電子機器
JP2010209211A (ja) * 2009-03-10 2010-09-24 Mitsubishi Chemicals Corp 有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2015018883A (ja) * 2013-07-09 2015-01-29 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
JP2015065325A (ja) * 2013-09-25 2015-04-09 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器
US9136479B2 (en) 2007-03-23 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Organic compound, anthracene derivative, and light-emitting element, light-emitting device, and electronic device using the anthracene derivative
US9287507B2 (en) 2012-02-14 2016-03-15 UDC Ireland Organic electroluminescent element, compounds and materials used for the organic electroluminescent element, and light-emitting, display and illuminating devices using the elements

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980395B (zh) * 2003-12-19 2014-05-07 出光兴产株式会社 有机电致发光器件
US8174185B2 (en) * 2007-12-21 2012-05-08 E I Du Pont De Nemours And Company Charge transport materials for luminescent applications
KR100946411B1 (ko) * 2008-03-28 2010-03-09 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고있는 유기 발광 소자
KR101115255B1 (ko) 2008-07-11 2012-02-15 주식회사 엘지화학 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
EP2376593A4 (en) * 2008-12-12 2013-03-06 Du Pont PHOTO-ACTIVE COMPOSITION AND ELECTRONIC DEVICE USING THE COMPOSITION
KR20100109050A (ko) * 2009-03-31 2010-10-08 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광소자
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
JP5047314B2 (ja) * 2010-01-15 2012-10-10 富士フイルム株式会社 有機電界発光素子
JP2013540699A (ja) 2010-08-11 2013-11-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電気活性化合物および組成物、ならびにその組成物を用いて作製した電子デバイス
JP5837611B2 (ja) 2010-12-15 2015-12-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 電気活性材料およびそのような材料を用いて製造されるデバイス
TW201229003A (en) * 2010-12-17 2012-07-16 Du Pont Anthracene derivative compounds for electronic applications
TW201229204A (en) * 2010-12-17 2012-07-16 Du Pont Anthracene derivative compounds for electronic applications
EP2655347A1 (en) 2010-12-20 2013-10-30 E.I. Du Pont De Nemours And Company Triazine derivatives for electronic applications
EP2655339A1 (en) 2010-12-21 2013-10-30 E.I. Du Pont De Nemours And Company Electronic device including a pyrimidine compound
US8962160B2 (en) 2012-12-26 2015-02-24 Feng-Wen Yen Material for organic electroluminescent device
US9048437B2 (en) 2013-01-29 2015-06-02 Luminescence Technology Corporation Organic compound for organic electroluminescent device
JP6693053B2 (ja) * 2015-06-03 2020-05-13 セイコーエプソン株式会社 発光素子、発光装置、認証装置および電子機器
EP4437814A1 (de) * 2021-11-25 2024-10-02 Merck Patent GmbH Materialien für elektronische vorrichtungen

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182776A (ja) * 1998-12-09 2000-06-30 Eastman Kodak Co 有機系多層型エレクトロルミネセンス素子
WO2001072673A1 (fr) * 2000-03-29 2001-10-04 Idemitsu Kosan Co., Ltd. Derive d'anthracene et dispositifs electroluminescents organiques fabriques avec ceux-ci
JP2001335516A (ja) * 1999-11-08 2001-12-04 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2002038524A1 (fr) * 2000-11-08 2002-05-16 Idemitsu Kosan Co., Ltd. Element electroluminescent organique
JP2002329580A (ja) * 2001-02-22 2002-11-15 Canon Inc 有機発光素子
JP2004002297A (ja) * 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004018588A1 (ja) * 2002-07-19 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及び有機発光媒体
WO2004018587A1 (ja) * 2002-08-23 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及びアントラセン誘導体
JP2005019327A (ja) * 2003-06-27 2005-01-20 Tdk Corp 有機el素子材料の選択方法、有機el素子の製造方法及び有機el素子
JP2005015420A (ja) * 2003-06-27 2005-01-20 Canon Inc 置換アントリル誘導体およびそれを使用した有機発光素子
WO2005091686A1 (ja) * 2004-03-19 2005-09-29 Chisso Corporation 有機電界発光素子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897138B2 (ja) 1989-06-30 1999-05-31 株式会社リコー 電界発光素子
JP3200889B2 (ja) 1991-10-23 2001-08-20 ソニー株式会社 画像の振動補正装置
JPH07138561A (ja) 1993-11-17 1995-05-30 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
DE69511755T2 (de) * 1994-04-26 2000-01-13 Tdk Corp Phenylanthracenderivat und organisches EL-Element
JP3816969B2 (ja) 1994-04-26 2006-08-30 Tdk株式会社 有機el素子
JP3724833B2 (ja) 1995-03-06 2005-12-07 出光興産株式会社 有機エレクトロルミネッセンス素子
JP3588978B2 (ja) 1997-06-12 2004-11-17 凸版印刷株式会社 有機薄膜el素子
US6361886B2 (en) * 1998-12-09 2002-03-26 Eastman Kodak Company Electroluminescent device with improved hole transport layer
JP4429438B2 (ja) * 1999-01-19 2010-03-10 出光興産株式会社 アミノ化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP4274667B2 (ja) 2000-03-10 2009-06-10 三井化学株式会社 炭化水素化合物および有機電界発光素子
JP4170655B2 (ja) * 2002-04-17 2008-10-22 出光興産株式会社 新規芳香族化合物及びそれを利用した有機エレクトロルミネッセンス素子
JP4025136B2 (ja) * 2002-07-31 2007-12-19 出光興産株式会社 アントラセン誘導体、有機エレクトロルミネッセンス素子用発光材料及び有機エレクトロルミネッセンス素子
EP1582516B1 (en) 2003-01-10 2013-07-17 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
US7887931B2 (en) * 2003-10-24 2011-02-15 Global Oled Technology Llc Electroluminescent device with anthracene derivative host
JP5015459B2 (ja) * 2003-12-01 2012-08-29 出光興産株式会社 非対称モノアントラセン誘導体、有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
JPWO2005121057A1 (ja) * 2004-06-09 2008-04-10 出光興産株式会社 アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2006085434A1 (ja) * 2005-02-10 2006-08-17 Idemitsu Kosan Co., Ltd. ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182776A (ja) * 1998-12-09 2000-06-30 Eastman Kodak Co 有機系多層型エレクトロルミネセンス素子
JP2001335516A (ja) * 1999-11-08 2001-12-04 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2001072673A1 (fr) * 2000-03-29 2001-10-04 Idemitsu Kosan Co., Ltd. Derive d'anthracene et dispositifs electroluminescents organiques fabriques avec ceux-ci
WO2002038524A1 (fr) * 2000-11-08 2002-05-16 Idemitsu Kosan Co., Ltd. Element electroluminescent organique
JP2002329580A (ja) * 2001-02-22 2002-11-15 Canon Inc 有機発光素子
JP2004002297A (ja) * 2002-04-11 2004-01-08 Idemitsu Kosan Co Ltd 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004018588A1 (ja) * 2002-07-19 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及び有機発光媒体
WO2004018587A1 (ja) * 2002-08-23 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及びアントラセン誘導体
JP2005019327A (ja) * 2003-06-27 2005-01-20 Tdk Corp 有機el素子材料の選択方法、有機el素子の製造方法及び有機el素子
JP2005015420A (ja) * 2003-06-27 2005-01-20 Canon Inc 置換アントリル誘導体およびそれを使用した有機発光素子
WO2005091686A1 (ja) * 2004-03-19 2005-09-29 Chisso Corporation 有機電界発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1864962A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514812A (ja) * 2005-10-21 2009-04-09 エルジー・ケム・リミテッド 新規のビナフタレン誘導体、その製造方法およびそれを用いた有機電子素子
US8951831B2 (en) 2005-10-21 2015-02-10 Lg Chem, Ltd. Binaphthalene derivatives, preparation method thereof and organic electronic device using the same
US8674138B2 (en) 2005-10-21 2014-03-18 Lg Chem. Ltd. Binaphthalene derivatives, preparation method thereof and organic electronic device using the same
JP2008143857A (ja) * 2006-12-12 2008-06-26 Tosoh Corp ベンゾフルオレン誘導体の製造方法およびその中間体
US9136479B2 (en) 2007-03-23 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Organic compound, anthracene derivative, and light-emitting element, light-emitting device, and electronic device using the anthracene derivative
US8084937B2 (en) 2007-10-03 2011-12-27 Canon Kabushiki Kaisha Binaphthyl compound and organic light emitting element using the same
EP2045231A1 (en) 2007-10-03 2009-04-08 Canon Kabushiki Kaisha Binaphthyl compound and organic light emitting element using the same
JP2017224827A (ja) * 2007-12-21 2017-12-21 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
US9070883B2 (en) 2007-12-21 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light-emitting material, light-emitting element, light-emitting device, and electronic device using the same
JP7195399B2 (ja) 2007-12-21 2022-12-23 株式会社半導体エネルギー研究所 膜及び電子機器
JP2022031751A (ja) * 2007-12-21 2022-02-22 株式会社半導体エネルギー研究所 膜及び電子機器
US8603644B2 (en) 2007-12-21 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light-emitting material, light-emitting element, light-emitting device, and electronic device using the same
JP2019165227A (ja) * 2007-12-21 2019-09-26 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
JP2014012730A (ja) * 2007-12-21 2014-01-23 Semiconductor Energy Lab Co Ltd 化合物
JP2015164191A (ja) * 2007-12-21 2015-09-10 株式会社半導体エネルギー研究所 発光素子
JP2009167175A (ja) * 2007-12-21 2009-07-30 Semiconductor Energy Lab Co Ltd アントラセン誘導体、およびアントラセン誘導体を用いた発光材料、発光素子、発光装置、並びに電子機器
US9972790B2 (en) 2007-12-21 2018-05-15 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, and light-emitting material, light-emitting element, light-emitting device, and electronic device using the same
JP2016175912A (ja) * 2007-12-21 2016-10-06 株式会社半導体エネルギー研究所 化合物
CN103265474A (zh) * 2007-12-21 2013-08-28 株式会社半导体能源研究所 蒽衍生物和发光材料,发光元件,发光器件及使用发光器件的电子器件
JP2010209211A (ja) * 2009-03-10 2010-09-24 Mitsubishi Chemicals Corp 有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
US9287507B2 (en) 2012-02-14 2016-03-15 UDC Ireland Organic electroluminescent element, compounds and materials used for the organic electroluminescent element, and light-emitting, display and illuminating devices using the elements
JP2015018883A (ja) * 2013-07-09 2015-01-29 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
JP2015065325A (ja) * 2013-09-25 2015-04-09 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器

Also Published As

Publication number Publication date
US7985491B2 (en) 2011-07-26
JPWO2006104044A1 (ja) 2008-09-04
KR20070114760A (ko) 2007-12-04
US20070088185A1 (en) 2007-04-19
CN101151231A (zh) 2008-03-26
TW200704746A (en) 2007-02-01
EP1864962A4 (en) 2009-04-01
EP1864962A1 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
WO2006104044A1 (ja) アントリルアリーレン誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
KR101152999B1 (ko) 방향족 아민 유도체 및 이를 이용한 유기 전기 발광 소자
US7763761B2 (en) Asymmetric pyrene derivative and organic electroluminescence device employing the same
WO2006085434A1 (ja) ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2007125714A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007114358A1 (ja) ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007018007A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006001333A1 (ja) 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant
WO2009084268A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2005121057A1 (ja) アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2007111263A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007116828A1 (ja) ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
WO2007063993A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007553A1 (ja) ビフェニル誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2006073059A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007017995A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006006505A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008001551A1 (fr) Dérivé d'amine aromatique et dispositif a électroluminescence organique utilisant celui-ci

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009868.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510454

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006729931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077021603

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 4291/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729931

Country of ref document: EP