WO2006103775A1 - 4足歩行ロボット - Google Patents

4足歩行ロボット Download PDF

Info

Publication number
WO2006103775A1
WO2006103775A1 PCT/JP2005/006147 JP2005006147W WO2006103775A1 WO 2006103775 A1 WO2006103775 A1 WO 2006103775A1 JP 2005006147 W JP2005006147 W JP 2005006147W WO 2006103775 A1 WO2006103775 A1 WO 2006103775A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
upper leg
walking robot
horizontal
walking
Prior art date
Application number
PCT/JP2005/006147
Other languages
English (en)
French (fr)
Inventor
Atsuo Takanishi
Yoichi Takamoto
Katsuyuki Baba
Hideki Nishizawa
Original Assignee
Tmsuk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tmsuk Co., Ltd. filed Critical Tmsuk Co., Ltd.
Priority to US11/579,448 priority Critical patent/US7598695B2/en
Priority to CNA2005800161680A priority patent/CN1956822A/zh
Priority to PCT/JP2005/006147 priority patent/WO2006103775A1/ja
Priority to EP05727962A priority patent/EP1864763A4/en
Publication of WO2006103775A1 publication Critical patent/WO2006103775A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the present invention relates to a four-legged walking robot having four legs and moving each leg by itself.
  • robots that move by themselves have been developed, such as those having wheels, those having a chatter, those having legs.
  • Multi-legged walking robots with two legs, three legs, four legs, six legs, etc. have been developed as walking robots having legs.
  • a quadruped walking robot with four legs has high stability in walking motion, and the robot is made in the shape of a four-legged animal, such as a dog or a cat.
  • Various developments have been made.
  • the walking motion of a quadruped walking robot is, for example, after moving the other leg as a free leg to another point with the feet of the three legs grounded and supporting the weight of the torso etc.
  • the robot is grounded and walks and moves while supporting the weight of the robot by alternately switching between the grounding leg and the free leg.
  • each leg has a first rotation axis and a second rotation.
  • the foot of the four-legged walking bot in Patent Document 1 includes a first unit disposed on the side of the torso, a second unit attached to the first unit via the first joint, and a second unit. It consists of a third unit that is attached via the second joint part.
  • the first joint part has a first rotation shaft having an axial direction parallel to the side surface of the fuselage and the side surface of the fuselage.
  • a second rotating shaft having an axial direction in a perpendicular direction, and also a force.
  • the second joint portion includes a third rotation shaft that is parallel to the second rotation shaft.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-11679
  • the conventional multi-legged walking robot has the following problems.
  • the present invention solves the above-described conventional problems, and reduces the number of driving parts to reduce the manufacturing cost and reduce the weight while reducing the degree of freedom of the leg parts.
  • the object is to provide a quadruped walking robot that can perform stable walking motion.
  • a quadruped walking robot of the present invention has the following configuration.
  • the quadruped walking robot according to claim 1 of the present invention has four legs on the side portion of the torso.
  • a four-legged walking robot wherein the leg portion is disposed in the trunk portion so as to be pivotable in the horizontal direction, and the horizontal pivot portion disposed in the trunk portion in the horizontal direction.
  • a horizontal turning drive unit that is pivotally driven, an upper upper leg portion that is pivotally mounted on the horizontal turning portion so as to be pivotable in the vertical direction, and a horizontal turning unit that is disposed substantially parallel to a lower portion of the upper upper leg portion.
  • a lower upper leg portion pivotally attached to the upper and lower portions, an upper leg rotation driving portion disposed on the horizontal turning portion and configured to rotate the upper upper leg portion in the vertical direction,
  • a lower leg portion in which a distal end portion of the upper upper leg portion and a distal end portion of the lower upper leg portion are vertically supported by an upper end portion; and a lower end portion of the lower leg portion Comprising a disposed a ground portion, wherein the lower the legs, has a configuration in which an elastic stretchable portion which expands and contracts elastically in the arranged by length-side direction in the middle portion.
  • This configuration has the following effects. (1) By driving the upper leg rotation drive part of the leg part and turning the upper upper leg part upward or downward, the lower leg part is moved upward to form a free leg or downward. Can be moved and grounded. In addition, when the leg is a free leg, the leg can be swung forward or backward by driving the horizontal swivel drive and turning the horizontal swivel to the right or left. .
  • the elastic expansion and contraction part elastically expands and contracts, so that the inclination of the lower leg part can be changed with respect to the upper upper leg part, and the posture of the leg part is made to correspond to the movement of the body part and the posture at that time. Therefore, a stable walking can be performed even with a two-drive system having two drive parts for one leg part without allowing the grounding part to slide on the ground.
  • the leg part is a two-drive system with two drive parts
  • the lower upper leg part has an elastic expansion / contraction part, realizing a normal three-drive system and walking motion close to three degrees of freedom. can do.
  • the quadruped walking robot has four legs on both the front and rear sides of the torso, and the grounding part of the three legs is grounded to support the weight of the torso Then, after moving the other leg as a free leg to another point and grounding it, the crawl walking movement to perform walking by switching the ground leg and the free leg alternately for each leg or Of the four legs, a pair of diagonal legs, for example, the right leg of the front and the left leg of the rear are the free legs and the other leg is the ground leg, and the legs of the free leg A trot walking operation that performs walking can be performed by alternately switching between the leg and the leg of the grounding leg.
  • elastic expansion and contraction part It is preferable to provide a lock mechanism that secures the sliding part to the tubular part so that it does not expand and contract, and when performing trot walking, it is preferable to operate the lock mechanism and fix the elastic part.
  • the part includes a tubular part disposed along the longitudinal direction of the lower upper leg part, a sliding part slidably inserted into the tubular part, and a panel member inserted into the tubular part. The one with, is used.
  • a motor such as a gear motor is used as the horizontal turning drive unit and the upper leg rotation drive unit. Further, the horizontal turning part and the upper upper leg part can be turned by turning a turning shaft fixed to the horizontal turning part and the upper upper leg part via one or a plurality of gears.
  • a quadruped walking robot according to claim 2 of the present invention is the tubular robot according to claim 1, wherein the elastic telescopic part is disposed along the longitudinal direction of the lower upper leg part. And a panel member that is slidably inserted into the tubular portion, and a panel member that is inserted into the tubular portion and biases the sliding portion in the expansion and contraction direction. And then.
  • the elastic stretchable portion elastically expands and contracts. Therefore, the posture of the leg can be changed according to the movement of the trunk and the posture at that time, and stable walking can be performed.
  • the quadruped walking robot according to claim 3 of the present invention is the invention according to claim 1 or 2, wherein the elastic telescopic portion is disposed on the elastic telescopic portion of each leg portion. It has a structure with a locking mechanism for fixing and releasing the fixing.
  • the elastic mechanism can be fixed and released by the lock mechanism so as not to expand and contract. For example, when performing trot walking, fix the elastic expansion and contraction part so that the lower leg part does not tilt toward the torso part due to movement of the torso part, etc. Thus, a stable trot walking operation can be performed.
  • the lock mechanism portion a lock hole drilled in the tubular portion, and a lock hole inserted into the lock hole.
  • a lock that can be locked by inserting the insertion pin into the lock hole, a solenoid, an insertion pin that is fixed to the movable part of the solenoid, and a lock that is formed on the elastic expansion and contraction part and into which the insertion pin is inserted.
  • a hole is provided with a lock groove, and the insertion pin is inserted into the lock groove when the solenoid is energized to lock it.
  • the quadruped walking robot according to claim 4 of the present invention is the invention according to claim 3, wherein the lock mechanism portion is inserted into the lock hole and the lock hole formed in the tubular portion. Have a configuration with an insertion pin!
  • the sliding part can be prevented from sliding into the tubular part by inserting the insertion pin into the lock hole, and the fixing of the sliding part can be released by removing the insertion pin from the lock hole. Can do.
  • the elastic expansion and contraction part elastically expands and contracts, so that the inclination of the lower leg part can be changed with respect to the upper upper leg part, and the posture of the leg part corresponds to the movement of the trunk part and the posture at that time.
  • the grounding part does not slide on the ground.
  • the leg part of one leg has 2 drive parts. 2 Even in the drive system, stable walking is possible. A leg walking robot can be provided.
  • the leg part is a two-drive system with two drive parts
  • the lower upper leg part has an elastic expansion / contraction part, realizing a normal three-drive system and a walking motion close to three degrees of freedom. It is possible to provide a quadruped walking robot with excellent stability of walking motion and capable of smooth walking.
  • the elastic mechanism can be fixed and released by the lock mechanism so as not to expand and contract.
  • fix the elastic expansion and contraction part so that the lower leg does not tilt toward the body part by moving the body part, etc. Therefore, it is possible to provide a quadruped walking robot that can perform a stable trot walking motion, can perform various walking motions simply by actuating or releasing the lock mechanism, and has excellent walking motion diversity.
  • the sliding part can be prevented from sliding into the tubular part by inserting the insertion pin into the lock hole, and the fixing of the sliding part can be released by removing the insertion pin from the lock hole.
  • FIG. 1 is a perspective view of a main part showing a front leg portion of a quadruped walking robot according to a first embodiment.
  • FIG. 2 Rear view of legs of quadruped walking robot in embodiment 1.
  • FIG. 3 (a) Schematic diagram illustrating the crawl walking motion of the quadruped walking robot in Embodiment 1. (b) Schematic diagram illustrating the crawl walking motion of the quadruped walking robot in Embodiment 1. (c) Implementation (D) Schematic explaining the crawl walking motion of the quadruped walking robot in Embodiment 1. (e) Quadruped walking robot in Embodiment 1. Schematic explaining the crawling walking movement
  • FIG. 4 (a) Explains the ZMP control during crawl walking of the quadruped walking robot in Embodiment 1. (B) Schematic diagram explaining ZMP control during crawl walking of the quadruped walking robot in Embodiment 1
  • FIG. 5 (a) Schematic diagram illustrating the operation of the elastic telescopic unit of the quadruped walking robot according to the first embodiment. (B) The operation of the elastic telescopic unit of the quadruped walking robot according to the first exemplary embodiment.
  • FIG. 7 is a partial cross-sectional side view showing another example of the lock mechanism.
  • FIG. 1 is a main part perspective view showing a front leg part of the quadruped walking robot in the first embodiment
  • FIG. 2 is a rear view of the leg part of the quadruped walking robot in the first embodiment.
  • 1 is a quadruped walking robot according to the first embodiment
  • 2 is an upper body plate 2a and a lower body plate 2b arranged in parallel vertically and has a wide portion 2d at the front end portion and the rear end portion.
  • the body part, 20a is the left and right leg parts of the front part of the quadruped walking robot 1, 4 is the horizontal turning part provided horizontally on the side of the wide part 2d of the body part 2 and 5 is the body part 2 2 is a horizontal turning drive unit that is fitted and fixed in a rectangular fixing hole 2c drilled in the upper body plate 2a of the horizontal turning unit 4, and 6 is a horizontal drive shaft 5a of the horizontal turning drive unit 5 (Fig. 2).
  • the horizontal swivel unit 4 is composed of an upper swivel plate 4a on the upper surface, a lower swivel plate 4b on the lower surface, and side swivel plates 4c and 4d on both sides. And is supported by the upper body plate 2a and the lower body plate 2b of the body portion so as to be rotatable.
  • 9 is an upper upper leg that is pivotally supported by the horizontal swivel 4 at one end and is pivotally supported in the vertical direction, and 9a is fixed to one end of the upper upper leg 9 and is rotatable to the side swivels 4c and 4d.
  • the upper upper leg pivot shaft 10 is pivotally supported on the upper pivot leg 10, and the upper leg 10 is fitted and fixed in a rectangular fixing hole 4 e drilled in the side pivot plate 4 c to rotate the upper upper leg 9.
  • Rotation drive unit 11 is disposed substantially parallel to the lower part of the upper upper leg 9 and is a lower upper leg pivotally supported by the horizontal swivel 4 at one end, 11a is the lower upper leg Lower upper leg pivot shaft fixed to one end of 11 and pivotally supported by side swivel plates 4c, 4d, 12 is an elastic expansion / contraction section disposed at the middle of lower upper leg 11 12a is a tubular part disposed along the longitudinal direction of the lower upper leg part 11 and fixed to the lower leg part member ib, 12b is fixed to the horizontal turning part side member 11c of the lower upper leg part 11 and is tubular.
  • Lower lower leg shaft fixed to the other end of the upper leg 11 and pivotally supported on the lower part of the upper lower leg shaft 14 of the lower leg 13, 16 is a support provided in plural along the longitudinal direction at the lower end of the lower leg 13
  • a buffering portion 17 also serves as a panel member mounted around the pin and each support pin, and 17 is a grounding portion that is disposed at the lower portion of the buffering portion 16 and the lower portion is formed in a curved surface shape.
  • 5a is a drive shaft of the horizontal turning drive unit 5 and a horizontal drive shaft to which the horizontal drive gear 6 is fixed
  • 9b is an upper leg driven gear fixed to the upper upper leg rotation shaft 9a
  • 10a is an upper leg drive shaft that is the drive shaft of the upper leg rotation drive unit
  • 10b is an upper leg drive side gear fixed to the upper leg drive shaft 10a and meshed with the upper leg driven side gear 9b
  • 12c is a tubular part It is a panel member that is inserted into the inside of 12a and has one end fixed to the bottom of the tubular portion 12a and the other end fixed to the tip of the sliding portion 12b.
  • gear motors are used as the horizontal turning drive unit 5 and the upper leg rotation drive unit 10.
  • the horizontal drive side 5 is driven to rotate the horizontal drive side gear 6 in the direction of arrow ⁇ , and the horizontal drive side gear 6 is driven.
  • the horizontal driven gear 7 meshed with is rotated clockwise by seeing the upward force, and the horizontal swivel unit 4 is rotated clockwise. As a result, the leg 3 turns forward.
  • the movement of the lower leg 13 in the vertical direction and the turning motion of the leg 3 in the horizontal direction can be performed simultaneously.
  • the grounding portion 17 draws a substantially arc-shaped locus.
  • 3 (a) to 3 (e) are schematic diagrams for explaining the crawl walking operation of the quadruped walking robot in the first embodiment.
  • 1 is a quadruped walking robot
  • 2 is a lunar body ⁇ ⁇
  • 3a, 3b, 3c is a leg ⁇ ⁇ 17, 17a, 17b, 17c is a grounding heel of each leg ⁇ 3a, 3b, 3c It is.
  • the lower leg 13 of the leg 3 is moved upward and the leg 3 is turned in the forward direction.
  • the leg part 3 is a free leg and the grounding part 17 is separated from the ground force.
  • the legs 3a, 3b, 3c are grounding legs, and the grounding parts 17a, 17b, 17c are grounded to support the body part 2 at three points.
  • the lower leg 13 is moved downward and the grounding part 17 is grounded.
  • the other legs 3a, 3b, 3c are connected to the legs 3c (FIG. 3 (c)) in the same manner as the legs 3 described above.
  • ⁇ Leg 3a (Fig. 3 (d)) ⁇ Leg 3b (Fig. 3 (e)) in this order, and the other three legs support the body 2 as a grounding leg.
  • the four-legged walking robot 1 performs crawl walking in the forward direction by turning the leg portions 3a, 3b, 3c as swing legs in the forward direction, sequentially sending them out in the forward direction and grounding them.
  • FIG. 4 (a) and 4 (b) are schematic diagrams for explaining the ZMP control during crawling walking of the quadruped walking robot according to the first embodiment.
  • 18a is a support polygon that is a triangle with the ground contact portions 17a, 17b, and 17c on the ground as vertices
  • 18b is a support polygon that is a triangle with the ground contact portions 17, 17a, and 17b on the ground as vertices
  • 19a and 19b are ZMP (Zero Moment Point) points on the ground where the sum of moments due to gravity and inertial force of each part of the quadruped walking robot 1 is 0.
  • 20a and 20b are inside the support polygons 18a and 18b.
  • the preset ZMP is set to be located at
  • the setting ZMP2 Oa, 20b is set inside the support polygons 18a, 18b, and is set to a position where smooth walking can be performed, for example, a position where the center of gravity does not shake greatly during crawl walking.
  • the leg 3 is a free leg, and the legs 3a, 3b, 3c are grounding legs.
  • the grounding parts 17a, 17b, 17c are grounded and support the body part 2 at three points. Since the ZMP19a in this three-point support state matches the preset ZMP20a, the quadruped walking robot 1 will not fall.
  • the control device (not shown) first starts the leg 3 , 3a, 3b ZMP19b when 3 points are supported by the grounding parts 17, 17a, 17b is calculated.
  • ZMP19a is calculated by the position and attitude force ZMP equation of body part 2.
  • the control device sets the horizontal swing drive unit 5 and the upper leg rotation drive unit 10 of each of the legs 3, 3a, 3b, which are grounding legs, so that the calculated ZMP 19b matches the preset setting ZMP 20b.
  • the horizontal turning drive part 5 of each leg part 3, 3a, 3b is driven, and each leg part 3, 3a, 3b is turned backward and turned.
  • the trunk portion 2 is moved in the forward direction by turning the legs 3, 3a, 3b backward.
  • the posture of the body part 2 can be tilted left and right by driving the upper leg rotation drive part 10 of the leg parts 3, 3a, 3b.
  • control device is designed to support the ZMP19b of the quadruped walking robot 1. While moving the crawl while controlling the posture of the body part 2 so as to coincide with the setting ZMP20b set inside the vehicle, it moves forward.
  • FIGS. 5 (a) and 5 (b) are schematic diagrams for explaining the operation of the elastic telescopic part of the quadruped walking robot according to the first embodiment.
  • a and B are a plan view and a side view, respectively.
  • L1 is the distance between the side part of the body part 2 and the grounding part 17
  • L2 is the turning radius of the leg part 3 in the horizontal direction.
  • the grounding portion 17 of the leg portion 3 is grounded diagonally to the left of the body portion 2.
  • the leg part 3 ' is flat with respect to the side part of the body part 2' as shown in FIG. 5 (b). It becomes almost right angle. Since the distance L1 between the side of the body part ⁇ and the grounding part 17 is substantially the same as the state before the advance shown in FIG. 5 (a), the distance L1 is smaller than the turning radius L2 of the leg part 3. For this reason, the elastic elastic part 12 provided in the lower upper leg part 11 is contracted, and the grounding part 17 side of the lower leg part 13 is inclined toward the side part of the body part 2 '.
  • the quadruped walking robot 1 in the first embodiment is a two-drive system having two driving parts 5 and 10 for one leg part 3 and has two degrees of freedom, so that it is in a grounded state.
  • the posture of a certain leg 3 cannot be set to an arbitrary posture, the posture of the lower leg 13 of the leg can be changed in accordance with the movement of the body ⁇ by extending and contracting the elastic stretchable part 12 as described above. Therefore, it is possible to walk stably without the ground contact portion 17 sliding on the ground.
  • a pair of diagonal legs for example, legs 3, 3c, out of the legs 3, 3a, 3b, 3c, is taken as one set, and the set of legs. It is also possible to perform a trot walking motion by alternately switching the pair of free legs and grounding legs with the other leg parts 3a and 3b as grounding legs.
  • the ZMP control for trot walking is performed by using a pair of legs that are grounded and a pair of legs, for example, a straight strip area connecting the grounding parts 17 of the legs 3 and 3c as a supporting polygon.
  • the elastic telescopic portion 12 is expanded and contracted by the lock mechanism portion, and the grounding portion 17 side of the lower leg portion 13 is directed to the side portion of the body portion 2 '. It is also possible to fix the expansion / contraction of the elastic expansion / contraction part 12 so as not to tilt.
  • the lock mechanism will be described with reference to FIG.
  • FIG. 6 is a partial sectional side view of the lock mechanism portion.
  • 11 is a lower upper leg part
  • 12 is an elastic expansion / contraction part
  • 12a is a tubular part
  • 12b is a sliding part
  • 12c is a panel member
  • 21 is a lock mechanism part
  • 22 is arranged on the outer wall of the tubular part 12a
  • 23 is a solenoid part disposed in the casing part 22
  • 24 is an insertion pin fixed to the movable part of the solenoid part
  • 25 is a lock hole drilled in the tubular part 12a
  • 26 Is a lock groove provided at a position communicating with the lock hole 25 with a predetermined expansion / contraction length of the sliding portion 12b.
  • the solenoid portion 23 can insert the insertion pin 24 into the lock hole 25 and the lock groove 26 by energization, or can remove the inserted insertion pin 24.
  • the sliding portion 12b can be fixed to the tubular portion 12a and the elastic expansion / contraction portion 12 can be fixed so as not to expand and contract.
  • the elastic stretchable portion 12 provided on the lower upper leg portion 11 does not stretch, so that the lower leg portion 13 does not tilt toward the trunk portion 2 due to the movement of the trunk portion 2 or the like.
  • the position and posture of the body part 2 are controlled with two points supported by diagonal legs, so it is sufficient that the leg part of the leg has two degrees of freedom,
  • the elastic expansion / contraction part 12 so that it does not expand / contract, the lower leg part 13 can maintain a substantially vertical posture without tilting.
  • Part 2 does not fluctuate and can perform stable trot walking.
  • the elastic expansion / contraction part 12 can be elastically expanded / contracted by the panel member 12c, so that the control device (not shown) By controlling the current flowing through the solenoid portion 23, the elastic stretchable portion 12 can be released and fixed so that the elastic stretchable portion 12 does not expand and contract, and stable crawl walking can be performed as described above. In this way, when selecting whether to perform crawl walking or trot walking, it is possible to select whether the elastic expansion / contraction part 12 is expanded or contracted according to the walking motion.
  • the lock mechanism unit will be described with reference to FIG.
  • FIG. 7 is a partial sectional side view showing another example of the lock mechanism.
  • reference numeral 21 ′ denotes a lock mechanism portion
  • 27 denotes a lock hole drilled in the tube wall of the tubular portion 12 a
  • 28 denotes an insertion pin inserted into the lock hole 27.
  • the elastic expansion / contraction part 12 can be manually fixed and released so as not to expand and contract. Removes the insertion pin 28 from the lock hole 27 and inserts the insertion pin 28 into the lock hole 27 for trot walking, making it a 4-legged walking robot 1! Walking can be performed.
  • the quadruped walking robot 1 Since the quadruped walking robot 1 according to the first embodiment is configured as described above, it has the following operations.
  • the upper leg rotation drive unit 10 of the leg 3 is driven to rotate the upper leg drive side gear 10b, and the upper leg driven side gear 9b engaged with the upper leg drive side gear 10b is rotated to rotate the upper upper side.
  • the leg portion 9 By rotating the leg portion 9 upward or downward, the lower leg portion 13 can be moved upward to be a free leg or moved downward to be grounded.
  • the horizontal turning drive 5 is driven to rotate the horizontal drive side gear 6, and the horizontal driven gear 7 meshed with the horizontal drive side gear 6 is rotated to rotate the horizontal turning unit.
  • the leg 3 can be turned forward or backward.
  • the elastic stretchable part 12 is slid along the inner wall of the tubular part 12a with the sliding part 12b inserted into the tubular part 12a, and is urged by the panel member 12c inserted in the tubular part 12a. Elastically expands and contracts.
  • the elastic telescopic part 12 expands and contracts, so that the inclination of the lower leg part 13 can be varied with respect to the upper upper leg part 9, and the posture of the leg part 3 is changed to the trunk part. Since it can be changed corresponding to the posture of 2, the ground contact portion 17 can walk stably without sliding on the ground.
  • the insertion pin 24 is inserted into the lock hole 25 and the hook groove 26, and the sliding portion 12b is fixed to the tubular portion 12a to elastically expand and contract the portion 12.
  • the lower leg 13 does not tilt toward the body 2 due to movement of the body 2 or the like, so that it is stable and stable even when supported at two points. Trot Walking is possible.
  • the control device can control and fix the elastic expansion / contraction part 12 so as not to expand / contract by controlling the current flowing through the solenoid part 23. In this case, it can be unfixed and switched according to walking motion.
  • the present invention relates to a quadruped walking robot that has four legs and moves by itself by moving each leg.
  • the number of driving parts is reduced. It is possible to provide a quadruped walking robot that can perform stable walking motion even if the degree of freedom of the leg portion is reduced while realizing a reduction in manufacturing cost and weight reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Description

4足歩行ロボット
技術分野
[0001] 本発明は、 4つの脚部を有し、各々の脚部を動力して自力で移動する 4足歩行ロボ ットに関するものである。
背景技術
[0002] 従来、自力で移動するロボットとして、車輪を有するもの、キヤタビラを有するもの、 脚部を有するもの等が開発されている。脚部を有する歩行ロボットとしては、 2足、 3足 、 4足、 6足等の多足歩行ロボットが開発されている。特に 4つの脚部を有する 4足歩 行ロボットは、歩行動作の安定性が高いこと、ロボットが 4足の動物、例えば犬や猫等 を象って製作されること等の理由カゝら近年種々開発されている。
4足歩行ロボットの歩行動作としては、例えば、 3つの脚部の足先を接地させて胴体 等の重量を支持した状態で、他の 1の足を遊脚として他の地点に移動させた後、接 地させ、このような接地脚と遊脚を各々の脚部で交互に切り替えることによりロボットの 重量を支持しつつ、歩行、移動を行っている。
このような 4足歩行ロボットとしては、特許文献 1に、胴体の側面に対して複数本の 足すなわち脚部が設けられた多足歩行ロボットにおいて、各足に第 1回動軸、第 2回 動軸、及び第 3回動軸が設けられた構成が記載されている。特許文献 1の 4足歩行口 ボットの足は、胴体の側面に配設された第 1ユニットと、第 1ユニットに対し第 1関節部 を介して取り付けられる第 2ユニットと、第 2ユニットに対し第 2関節部を介して取り付 けられる第 3ユニットから構成され、第 1関節部は、胴体の側面に対して平行な方向 に軸方向を有する第 1回動軸と、胴体の側面に対して垂直な方向に軸方向を有する 第 2回動軸と、力もなる。また、第 2関節部は、第 2回動軸と平行な第 3回動軸からなる
[0003] 特許文献 1 :特開 2002— 11679号公報
発明の開示
発明が解決しょうとする課題 [0004] し力しながら、上記従来の多足歩行ロボットでは以下のような課題を有していた。
(1)特許文献 1の多足歩行ロボットは、第 1,第 2,第 3回動軸を回動させるために、回 動軸を駆動するためのモータ等の駆動部を各々に設ける必要があり、 4足で合計 12 個の駆動部が必要になるため、駆動部の数が増加し、製造コストが高騰すると共に 重量が増加すると 、う課題を有して 、た。
(2)また、駆動部の数を少なくするために、単に回動軸の数を少なくしただけでは、 足の自由度が減少し、足先を任意の位置に移動させることができなくなるので、安定 した歩行制御が行えず、特に、安定した歩行を行うための ZMP制御を行う場合は、 接地脚の足先を任意の位置に移動させることができないのでバランスが悪くなつたり 歩行中に足先が地面を滑って歩行が安定しなかったりする等の不具合が生じるとい う課題を有していた。
[0005] 本発明は、上記従来の課題を解決するもので、駆動部の数を少なくして製造コスト の低下及び重量の軽減ィヒを実現しつつ、脚部の自由度を減少させても安定した歩 行動作を行うことができる 4足歩行ロボットを提供することを目的とする。
課題を解決するための手段
[0006] 上記課題を解決するために本発明の 4足歩行ロボットは、以下の構成を有している 本発明の請求項 1に記載の 4足歩行ロボットは、胴体部の側部に 4脚部を有する 4 足歩行ロボットであって、前記脚部が、前記胴体部に水平方向に旋回自在に配設さ れた水平旋回部と、前記胴体部に配設され前記水平旋回部を水平方向に回動駆動 する水平旋回駆動部と、前記水平旋回部に上下方向に回動自在に軸着された上側 上脚部と、前記上側上脚部の下部に略平行に配設され前記水平旋回部に上下方向 に回動自在に軸着された下側上脚部と、前記水平旋回部に配設され前記上側上脚 部を上下方向に回動駆動する上脚回動駆動部と、前記上側上脚部の先端部と前記 下部側上脚部の先端部とが上端部に上下に軸支された下脚部と、前記下脚部の下 端部に配設された接地部と、を備え、前記下側上脚部が、その中間部に配設され長 手方向に弾性的に伸縮する弾性伸縮部を備えた構成を有している。
[0007] この構成により、以下のような作用を有する。 (1)脚部の上脚回動駆動部を駆動して、上側上脚部を上方向又は下方向に回動さ せることで、下脚部を上方向へ移動させ遊脚としたり下方向へ移動させ接地させたり することができる。また、脚部が遊脚のときに、水平旋回駆動部を駆動して水平旋回 部を右方向又は左方向へ回動させることで、脚部を前進方向や後退方向へ旋回さ せることができる。
(2)脚部の下脚部を上方へ移動させ遊脚とし、脚部を前進方向へ旋回させ、接地さ せる動作を、各々の脚部について順次行うクロール歩行動作を行うことにより、 4足歩 行ロボットを前進、後退、転回させることができる。その際に、遊脚とした脚部の他の 3 つの脚部で胴体部を支持しながら、制御装置により 4足歩行ロボットの各部の重力と 性力によるモーメントの総和が 0となる地面上の点である ZMP (ゼロモーメントポィ ント)が接地脚の接地部を頂点とする三角形、いわゆる支持多角形の内部に位置す るように胴体部の姿勢を制御することにより、安定した歩行動作を行うことができる。
(3)弾性伸縮部が弾性的に伸縮することにより、下脚部の傾きを上側上脚部に対し て可変させることができ、脚部の姿勢を胴体部の移動やその際の姿勢に対応させて 可変させることができるので、接地部が地面上を滑ることなぐ 1脚の脚部について 2 の駆動部を有する 2駆動系であっても安定した歩行を行うことができる。
(4) 1の脚部について 2の駆動部を有する 2駆動系であるので、 3駆動系に比べ駆動 部の数を減少させることができ、製造コストを低減できると共に重量を軽量ィ匕すること ができる。
(5)脚部が 2の駆動部を有する 2駆動系であるが、下側上脚部が弾性伸縮部を有す ることにより、通常の 3駆動系、 3自由度に近い歩行動作を実現することができる。 ここで、 4足歩行ロボットは、胴体部の前部及び後部の両側部に 4つの脚部が設け られ、その内の 3の脚部の接地部を接地させて胴体部の重量を支持した状態で、他 の 1の脚部を遊脚として他の地点に移動させた後、接地させ、このような接地脚と遊 脚を各々の脚部について交互に切り替えることにより歩行を行うクロール歩行動作や 、 4つの脚部の内、対角上の一対の脚部、例えば前部の右側部と後部の左側部の脚 部を遊脚とし、他の脚部を接地脚として、遊脚の脚部と接地脚の脚部とを交互に切り 替えることにより歩行を行うトロット歩行動作等を行うことができる。なお、弾性伸縮部 の摺動部を管状部に固定して伸縮しないようにするロック機構部を設け、トロット歩行 動作を行う場合は、ロック機構部を作動させて弾性伸縮部を固定することが好ま Uヽ 弾性伸縮部としては、下側上脚部の長手方向に沿って配設された管状部と、管状 部に摺動自在に挿入された摺動部と、管状部の内部に装入されたパネ部材と、を備 えたものが用いられる。
水平旋回駆動部や上脚回動駆動部としては、ギアモータ等のモータが用いられる 。また、 1乃至複数のギアを介して水平旋回部や上側上脚部に固定された回動軸を 回動させ、水平旋回部や上側上脚部を回動させることもできる。
[0009] 本発明の請求項 2に記載の 4足歩行ロボットは、請求項 1に記載の発明において、 前記弾性伸縮部が、前記下側上脚部の長手方向に沿って配設された管状部と、前 記管状部に摺動自在に挿入された摺動部と、前記管状部の内部に装入され前記摺 動部を伸縮方向に付勢するパネ部材と、を備えた構成を有して 、る。
[0010] この構成により、請求項 1の作用に加え、以下のような作用を有する。
(1)管状部に挿入された摺動部が、管状部の内壁に沿って摺動すると共に管状部に 装入されたパネ部材により付勢されることで弾性伸縮部が弾性的に伸縮するので、 脚部の姿勢を胴体部の移動やその際の姿勢に対応させて可変させることができ、安 定した歩行を行うことができる。
[0011] 本発明の請求項 3に記載の 4足歩行ロボットは、請求項 1又は 2に記載の発明にお いて、各々の前記脚部の前記弾性伸縮部に配設され前記弾性伸縮部を固定及び固 定解除するロック機構部を備えた構成を有して 、る。
[0012] この構成により、請求項 1又は 2の作用にカ卩え、以下のような作用を有する。
(1)ロック機構部により弾性伸縮部を伸縮しないように固定及び固定解除することが できるので、 4足歩行ロボットがクロール歩行動作を行う場合は固定解除して弾性伸 縮部を弾性的に伸縮させ安定した歩行動作を行うことができ、例えばトロット歩行動 作を行う場合は、弾性伸縮部を固定し、胴体部の移動等により下脚部が胴体部に向 力つて傾かな 、ようにすることで、安定したトロット歩行動作を行うことができる。
[0013] ここで、ロック機構部としては、管状部に穿設されたロック孔と、ロック孔に挿入され る挿入ピンとを備え、挿入ピンをロック孔に挿し込むことによりロックできるものや、ソレ ノイドと、ソレノイドの可動部に固定された挿入ピンと、弾性伸縮部に形成され挿入ピ ンが挿入されるロック孔ゃロック溝と、を備え、ソレノイドへの通電により挿入ピンがロッ ク孔ゃロック溝に差し込まれロックするもの等が用いられる。
[0014] 本発明の請求項 4に記載の 4足歩行ロボットは、請求項 3に記載の発明において、 前記ロック機構部が、前記管状部に穿設されたロック孔と、前記ロック孔に挿入される 挿入ピンとを備えた構成を有して!/、る。
[0015] この構成により、請求項 3の作用に加え、以下のような作用を有する。
(1)挿入ピンをロック孔に挿入することにより摺動部が管状部内部へ摺動することを 止めることができ、挿入ピンをロック孔カも抜くことにより摺動部の固定を解除すること ができる。
発明の効果
[0016] 以上説明したように本発明の 4足歩行ロボットによれば、以下のような有利な効果が 得られる。
請求項 1に記載の発明によれば、
(1) 1の脚部について 2の駆動部を有する 2駆動系であるので、 3駆動系に比べ駆動 部の数を減少させることができ、製造コストを低減できると共に重量を軽量ィ匕すること ができる足歩行ロボットを提供することができる。
(2)弾性伸縮部が弾性的に伸縮することにより、下脚部の傾きを上側上脚部に対し て可変させることができ、脚部の姿勢を胴体部の移動やその際の姿勢に対応させて 可変させることができるので、接地部が地面上を滑ることなぐ 1脚の脚部について 2 の駆動部を有する 2駆動系であっても安定した歩行を行うことができる安定性に優れ た 4足歩行ロボットを提供することができる。
(3)脚部が 2の駆動部を有する 2駆動系であるが、下側上脚部が弾性伸縮部を有す ることにより、通常の 3駆動系、 3自由度に近い歩行動作を実現することができ、歩行 動作の安定性に優れスムーズな歩行が可能な 4足歩行ロボットを提供することができ る。
[0017] 請求項 2に記載の発明によれば、請求項 1の効果に加え、 (1)管状部に挿入された摺動部が管状部の内壁に沿って摺動すると共に管状部に 装入されたパネ部材により付勢されることで、弾性伸縮部が弾性的に伸縮するので、 脚部の姿勢を胴体部の移動やその際の姿勢に対応させて可変させることができ、安 定した歩行を行うことができる安定性に優れた 4足歩行ロボットを提供することができ る。
[0018] 請求項 3に記載の発明によれば、請求項 1又は 2の効果に加え、
(1)ロック機構部により弾性伸縮部を伸縮しないように固定及び固定解除することが できるので、 4足歩行ロボットがクロール歩行動作を行う場合は固定解除して弾性伸 縮部を弾性的に伸縮させ安定した歩行動作を行うことができ、例えばトロット歩行動 作を行う場合は、弾性伸縮部を固定し、胴体部の移動等により下脚部が胴体部に向 力つて傾かないようにすることで、安定したトロット歩行動作を行うことができ、ロック機 構部を作動又は解除するだけで種々の歩行動作が可能で歩行動作の多様性に優 れた 4足歩行ロボットを提供することができる。
[0019] 請求項 4に記載の発明によれば、請求項 3の効果に加え、
(1)挿入ピンをロック孔に挿入することにより摺動部が管状部内部へ摺動することを 止めることができ、挿入ピンをロック孔カも抜くことにより摺動部の固定を解除すること ができ、簡単に歩行動作の切り替えが可能な 4足歩行ロボットを提供することができる 図面の簡単な説明
[0020] [図 1]実施の形態 1における 4足歩行ロボットの前部の脚部を示す要部斜視図
[図 2]実施の形態 1における 4足歩行ロボットの脚部の背面図
[図 3] (a)実施の形態 1における 4足歩行ロボットのクロール歩行動作を説明する模式 図 (b)実施の形態 1における 4足歩行ロボットのクロール歩行動作を説明する模式 図 (c)実施の形態 1における 4足歩行ロボットのクロール歩行動作を説明する模式 図 (d)実施の形態 1における 4足歩行ロボットのクロール歩行動作を説明する模式 図 (e)実施の形態 1における 4足歩行ロボットのクロール歩行動作を説明する模式 図
[図 4] (a)実施の形態 1における 4足歩行ロボットのクロール歩行時の ZMP制御を説 明する模式図 (b)実施の形態 1における 4足歩行ロボットのクロール歩行時の ZMP 制御を説明する模式図
[図 5] (a)本実施の形態 1における 4足歩行ロボットの弾性伸縮部の動作を説明する 模式図 (b)本実施の形態 1における 4足歩行ロボットの弾性伸縮部の動作を説明す る模式図
[図 6]ロック機構部の一部断面要部側面図
[図 7]ロック機構部の他の例を示す一部断面要部側面図
符号の説明
1 4足歩行ロボット
2 胴体部
2a 上側胴体板
2b 下側胴体板
2c 固定孔
2d 幅広部
20a, 3b, 3c 脚部
4 水平旋回部
4a 上側旋回板
4b 下側旋回板
4c, 4d 側部旋回板
4e 固定孔
5 水平旋回駆動部
5a 水平駆動軸
6 水平駆動側ギア
7 水平従動側ギア
8 水平旋回軸
9 上側上脚部
9a 上側上脚部回動軸
9b 上脚従動側ギア 10 上脚回動駆動部
10a 上脚駆動軸
10b 上脚駆動側ギア
11 下側上脚部
11a 下側上脚回動軸
l ib 下脚部側部材
11c 水平旋回部側部材
12 弾性伸縮部
12a 管状部
12b 摺動部
12c パネ部材
13 下脚部
13a, 13b 下脚板
14 上側下脚軸
15 下側下脚軸
16 緩衝部
17, 17a, 17b, 17c 接地咅
18a, 18b 支持多角形
19a, 19b ZMP
20a, 20b 設定 ZMP
21 ロック機構部
22 ケーシング部
23 ソレノイド咅
24, 28 揷人ピン
25, 27 ロック孑し
26 ロック溝
発明を実施するための最良の形態
以下、本発明の一実施の形態について、図 1乃至図 7を用いて説明する (実施の形態 1)
図 1は本実施の形態 1における 4足歩行ロボットの前部の脚部を示す要部斜視図で あり、図 2は本実施の形態 1における 4足歩行ロボットの脚部の背面図である。なお、 本実施の形態 1においては、 4足歩行ロボットの前部の 1の脚部のみについて説明し ているが、各脚部は同様の構成であるので、他の脚部については説明を省略する。 図中、 1は本実施の形態 1における 4足歩行ロボット、 2は上下に平行に配設された 上側胴体板 2a及び下側胴体板 2bからなり前端部及び後端部に幅広部 2dを有する 胴体部、 20aは 4足歩行ロボット 1の前部の左右の脚部、 4は胴体部 2の幅広部 2dの 側部に水平方向に旋回自在に設けられた水平旋回部、 5は胴体部 2の上側胴体板 2 aに穿設された矩形の固定孔 2cに嵌合固定され、水平旋回部 4を旋回駆動する水平 旋回駆動部、 6は水平旋回駆動部 5の水平駆動軸 5a (図 2参照)に固定された水平 駆動側ギア、 7は水平駆動側ギア 6に歯合した水平従動側ギア、 8は水平従動側ギア 7に固定された水平旋回軸である。水平旋回部 4は、上面の上側旋回板 4a,下面の 下側旋回板 4b,及び両側部の側部旋回板 4c, 4dからなり、水平旋回軸 8は、その上 下端部が上側旋回板 4aと下側旋回板 4bに固定されていると共に、胴体部の 2の上 側胴体板 2aと下側胴体板 2bに回動自在に軸支されて 、る。
9は一端部で水平旋回部 4に上下方向に回動自在に軸支された上側上脚部、 9a は上側上脚部 9の一端部に固定され側部旋回板 4c, 4dに回動自在に軸支された上 側上脚部回動軸、 10は側部旋回板 4cに穿設された矩形の固定孔 4eに嵌合固定さ れ、上側上脚部 9を回動駆動する上脚回動駆動部、 11は上側上脚部 9の下部に略 平行に配設され一端部で水平旋回部 4に回動自在に軸支された下側上脚部、 11a は下側上脚部 11の一端部に固定され側部旋回板 4c, 4dに回動自在に軸支された 下側上脚回動軸、 12は下側上脚部 11の中間部に配設された弾性伸縮部、 12aは 下側上脚部 11の長手方向に沿って配設され下脚部側部材 l ibに固定された管状 部、 12bは下側上脚部 11の水平旋回部側部材 11cに固定され管状部 12aに摺動自 在に挿入された摺動部、 13は上部が上側上脚部 9及び下側上脚部 11の他端部に 軸支された下脚部、 13a, 13bは下脚部 13の前面及び後面の下脚板、 14は上側上 脚部 9の他端部に固定され下脚部 13の上端部に軸支された上側下脚軸、 15は下側 上脚部 11の他端部に固定され下脚部 13の上側下脚軸 14の下部に軸支された下側 下脚軸、 16は下脚部 13の下端部に長手方向に沿って複数設けられた支持ピンと各 々の支持ピンに環装されたパネ部材カもなる緩衝部、 17は緩衝部 16の下部に配設 され下部が湾曲面状に形成された接地部である。
[0024] 図 2において、 5aは水平旋回駆動部 5の駆動軸であり水平駆動ギア 6が固定された 水平駆動軸、 9bは上側上脚回動軸 9aに固定された上脚従動側ギア、 10aは上脚回 動駆動部 10の駆動軸である上脚駆動軸、 10bは上脚駆動軸 10aに固定され上脚従 動側ギア 9bに歯合した上脚駆動側ギア、 12cは管状部 12aの内部に装入され一端 部が管状部 12aの底部に固定され他端部が摺動部 12bの先端部に固定されたパネ 部材である。
ここで、水平旋回駆動部 5及び上脚回動駆動部 10としてはギアモータが用いられる
[0025] 以上のように構成された本実施の形態 1における 4足歩行ロボット 1について、以下 その歩行動作を図 1及び図 2を用いて説明する。
まず、脚部 3を接地した状態から遊脚とし、水平方向に旋回させた後接地させる脚 部基本動作について説明する。
図 1及び図 2に示すように、接地部 17が地面に接地した状態から、下脚部 13を上 方向へ上げ、脚部 3を遊脚とするには、上脚回動駆動部 10を駆動して上脚駆動側ギ ァ 10bを図 2において矢印 y方向に回転させ、上脚駆動側ギア 10bに歯合した上脚 従動側ギア 9bを矢印右回りに回転させ上側上脚部 9を上方向に回動させる。これに 伴って下脚部 13は上方向へ移動する。なお、下側上脚部 11は上側上脚部 9の上方 向への回動に伴って上方向へ回動するため下脚部 13は接地部 17が下向きの姿勢 を保つことができる。
脚部 3を遊脚とした状態で、脚部 3を水平方向に旋回させるには、水平旋回駆動部 5を駆動して水平駆動側ギア 6を矢印 β方向に回転させ、水平駆動側ギア 6に歯合し た水平従動側ギア 7を上方力 見て右回りに回転させ水平旋回部 4を右回りへ回動 させる。これにより脚部 3は前方へ旋回する。
脚部 3を所定位置まで旋回させると、上脚回動駆動部 10を駆動して上脚駆動側ギ ァ 10bを図 2において右回り(矢印 X方向)に回転させ、上脚従動側ギア 9bを左回り に回転させ上側上脚部 9を下方向に回動させ、下脚部 13は下方向へ移動させ、接 地部 17を接地させる。
なお、円滑な歩行動作を行うために、下脚部 13の上下方向への移動と脚部 3の水 平方向の旋回動作は同時に行うこともできる。このとき、接地部 17は略円弧状の軌跡 を描く。
[0026] 次に、以上説明した脚部基本動作を各々の脚部について順次繰り返し行うことによ るクロール歩行動作をついて図 3を用いて説明する。
図 3 (a)乃至図 3 (e)は本実施の形態 1における 4足歩行ロボットのクロール歩行動 作を説明する模式図である。
図 3において、 1は 4足歩行ロボット、 2は月同体咅^ 3, 3a, 3b, 3cは脚咅^ 17, 17a , 17b, 17cは各脚咅 3a, 3b, 3cの足先の接地咅である。
図 3 (a)に示すように、 4足歩行ロボット 1が停止している状態では、接地部 17, 17a , 17b, 17cは地面に接地している。
図 3 (b)に示すように、脚部 3の下脚部 13を上方へ移動させると共に、脚部 3を前進 方向へ旋回させる。このとき、脚部 3は遊脚であり接地部 17は地面力も離れている。 また、脚部 3a, 3b, 3cは接地脚であり接地部 17a, 17b, 17cは接地し胴体部 2を 3 点で支持している。脚部 3を前進方向へ旋回させた後、下脚部 13を下方へ移動させ 接地部 17を接地させる。
続いて、図 3 (c)乃至図 3 (e)に示すように、上述した脚部 3と同様にして他の脚部 3 a, 3b, 3cを、脚部 3c (図 3 (c) )→脚部 3a (図 3 (d) )→脚部 3b (図 3 (e) )の順で遊脚 とし、その際他の 3つの脚部は接地脚として胴体部 2を支持する。遊脚とした脚部 3a , 3b, 3cを前進方向へ旋回させ、順次前進方向へ送り出して接地させることにより、 4 足歩行ロボット 1は前進方向へクロール歩行を行う。
なお、図 3においては、 4足歩行ロボット 1の前進方向への歩行について説明してい るが、脚部 3, 3a, 3b, 3cの水平旋回方向や遊脚とする順序を適宜制御することによ り、後退や転回、足踏み等を行うこともできる。
[0027] 次に、クロール歩行時の ZMP制御について図 4を用いて説明する。 図 4 (a)及び図 4 (b)は本実施の形態 1における 4足歩行ロボットのクロール歩行時 の ZMP制御を説明する模式図である。
図 4において、 18aは地面上の接地部 17a, 17b, 17cを頂点とする三角形である 支持多角形、 18bは地面上の接地部 17, 17a, 17bを頂点とする三角形である支持 多角形、 19a, 19bは 4足歩行ロボット 1の各部の重力と慣性力によるモーメントの総 和が 0となる地面上の点である ZMP (ゼロモーメントポイント)、 20a, 20bは支持多角 形 18a, 18bの内部に位置するように予め設定された設定 ZMPである。設定 ZMP2 Oa, 20bは、支持多角形 18a, 18bの内部に設定されると共に、滑らかな歩行を行え るような位置、例えばクロール歩行時に重心が大きく振れないような位置に設定され る。
図 4 (a)に示すように、脚部 3は遊脚であり、脚部 3a, 3b, 3cは接地脚である。接地 部 17a, 17b, 17cは接地し胴体部 2を 3点で支持している。この 3点支持の状態にお ける ZMP19aは、予め設定された設定 ZMP20aと一致しているため、 4足歩行ロボッ ト 1は倒れることはない。
図 4 (b)に示すように、遊脚としていた脚部 3を接地させ、続いて脚部 3cを遊脚とす る際には、制御装置(図示せず)は、まず、脚部 3, 3a, 3bの接地部 17, 17a, 17bで 3点支持した場合の ZMP19bを算出する。ここで、 ZMP19aは胴体部 2の位置や姿 勢力 ZMP方程式により算出される。
次に、制御装置は、算出された ZMP19bが予め設定された設定 ZMP20bと一致 するように、接地脚である各脚部 3, 3a, 3bの水平旋回駆動部 5及び上脚回動駆動 部 10を駆動して胴体部 2の位置と姿勢を制御する。すなわち、各脚部 3, 3a, 3bの 水平旋回駆動部 5を駆動し、各脚部 3, 3a, 3bを後方へ向力つて旋回させる。このと き、各脚部 3, 3a, 3bの接地部 17, 17a, 17bは地面に接地しているので、各脚部 3 , 3a, 3bの後方への旋回により胴体部 2は前進方向に向力つて略前方の胴体部 ^ の位置に移動し、脚部 3, 3a, 3bは脚部 , 3a' , 3b' の位置に移動する。また、 脚部 3, 3a, 3bの上脚回動駆動部 10を駆動することにより、胴体部 2の姿勢を左右 に傾けることちでさる。
以上のようにして、制御装置は、 4足歩行ロボット 1の ZMP19bが支持多角形 18b の内部に設定された設定 ZMP20bと一致するように胴体部 2の姿勢を制御しながら 、クロール歩行を行って前進する。
[0028] なお、図 4 (b)に示すように、脚部 3, 3a, 3bの接地部 17, 17a, 17bが接地した状 態で胴体部 2が略前方に移動する場合、各脚部 3, 3a, 3bに設けられた弾性伸縮部 12により胴体部 2を円滑に移動させている。以下、弾性伸縮部の動作について説明 する。
図 5 (a)及び図 5 (b)は本実施の形態 1における 4足歩行ロボットの弾性伸縮部の動 作を説明する模式図である。なお、 A, Bは各々平面図及び側面図を示す。
図 5において、 L1は胴体部 2の側部と接地部 17の間の距離、 L2は脚部 3の水平方 向の旋回半径である。
図 5 (a)に示すように、脚部 3の接地部 17は胴体部 2の左斜め前方に接地している 。この状態で、図 4 (b)において説明したように胴体部 2が前進方向へ移動すると、図 5 (b)に示すように、脚部 3' が胴体部 2' の側部に対して平面略直角になる。胴体 部 ^ の側部と接地部 17の間の距離 L1は、図 5 (a)に示す前進前の状態と略同一 であるので、距離 L1は脚部 3の旋回半径 L2より小さい。このため、下側上脚部 11に 設けられた弾性伸縮部 12が縮んで下脚部 13の接地部 17側が胴体部 2' の側部に 向かって傾いた状態となる。
ここで、本実施の形態 1における 4足歩行ロボット 1は、 1脚の脚部 3に対して 2の駆 動部 5, 10を有する 2駆動系であり 2自由度があるので、接地状態にある脚部 3の姿 勢を任意姿勢にすることはできないが、上述したように弾性伸縮部 12が伸縮すること で脚部 の下脚部 13の姿勢を胴体部 ^ の移動に対応させて可変させることがで きるので、接地部 17が地面上を滑ることなく安定した歩行を行うことができる。
[0029] なお、クロール歩行動作とは異なり、脚部 3, 3a, 3b, 3cの内、対角上の一対の脚 部、例えば脚部 3, 3cを一組として、その一組の脚部を遊脚とし、他の組の脚部 3a, 3bを接地脚として、遊脚と接地脚の組を交互に切り替えることによりトロット歩行動作 を行うこともできる。トロット歩行を行う場合の ZMP制御は、接地した対角上び一組の 脚部、例えば脚部 3, 3cの接地部 17を結ぶ直線帯状の領域を支持多角形として、該 支持多角形の内部に設定 ZMPを設定し、その設定 ZMPに ZMPを一致させるように 胴体部 2の位置及び姿勢を制御する点以外はクロール歩行と同様である。
なお、トロット歩行動作を行う場合は、安定した歩行動作を行うために、ロック機構部 により弾性伸縮部 12が伸縮して下脚部 13の接地部 17側が胴体部 2' の側部に向 力つて傾ないように、弾性伸縮部 12の伸縮を固定することもできる。以下、ロック機構 部につ 、て図 6を用いて説明する。
図 6はロック機構部の一部断面要部側面図である。
図 6において、 11は下側上脚部、 12は弾性伸縮部、 12aは管状部、 12bは摺動部 、 12cはパネ部材、 21はロック機構部、 22は管状部 12aの外壁に配設されたケーシ ング部、 23はケーシング部 22の内部に配設されたソレノイド部、 24はソレノイド部 23 の可動部に固定された挿入ピン、 25は管状部 12aに穿設されたロック孔、 26は摺動 部 12bの所定の伸縮長さでロック孔 25に連通する位置に設けられたロック溝である。 図 6に示すように、ロック機構部 21にお 、てソレノイド部 23は通電により挿入ピン 24 をロック孔 25及びロック溝 26に挿入し、或いは挿入した挿入ピン 24を抜くことができ る。挿入ピン 24がロック孔 25及びロック溝 26に連挿されることにより、摺動部 12bを 管状部 12aに対して固定し弾性伸縮部 12を伸縮しな ヽよう〖こ固定することができる。 これにより、下側上脚部 11に設けられた弾性伸縮部 12が伸縮しないので、胴体部 2 の移動等により下脚部 13が胴体部 2に向力つて傾くことはない。トロット歩行動作の Z MP制御においては、対角上の脚部による 2点支持の状態で胴体部 2の位置及び姿 勢を制御するため、 1脚の脚部に 2自由度があれば足り、クロール歩行で生じていた 接地部 17が滑る等の不具合が生じず、したがって弾性伸縮部 12を伸縮しないように 固定することにより、下脚部 13は傾くことなく略垂直の姿勢を保持できるので、胴体 部 2がふらついたりせず、安定したトロット歩行を行うことができる。また、挿入ピン 24 をロック孔 25及びロック溝 26から抜くことにより、弾性伸縮部 12をパネ部材 12cにより 弾性的に伸縮させることができるので、制御装置(図示せず)はロック機構部 21のソ レノイド部 23に流れる電流を制御することにより、弾性伸縮部 12が伸縮しな 、ように 固定解除することができ、上述したように安定したクロール歩行を行わせることができ る。このように、クロール歩行を行うかトロット歩行を行うかを選択する際に、その歩行 動作に応じて弾性伸縮部 12を伸縮させるか伸縮させないかを選択できる。 [0031] 次に、ロック機構部の他の例について図 7を用いて説明する。
図 7はロック機構部の他の例を示す一部断面要部側面図である。
図 7において、 21' はロック機構部、 27は管状部 12aの管壁に穿設されたロック孔 、 28はロック孔 27に挿入される挿入ピンである。
図 7に示すように、挿入ピン 28をロック孔 27に挿し込む、或いは抜き出すことにより 、手動で弾性伸縮部 12を伸縮しないように固定、固定解除することができるので、ク ロール歩行を行う場合は挿入ピン 28をロック孔 27から抜き出し、トロット歩行を行う場 合は挿入ピン 28をロック孔 27に挿し込むことで、 4足歩行ロボット 1に!、ずれの歩行 動作の場合であっても安定した歩行を行わせることができる。
[0032] 以上のように本実施の形態 1における 4足歩行ロボット 1は構成されているので、以 下のような作用を有する。
(1)脚部 3の上脚回動駆動部 10を駆動して上脚駆動側ギア 10bを回転させ、上脚駆 動側ギア 10bに歯合した上脚従動側ギア 9bを回転させ上側上脚部 9を上方向又は 下方向に回動させることで、下脚部 13を上方向へ移動させ遊脚としたり下方向へ移 動させ接地させたりすることができる。また、脚部 3が遊脚のときに、水平旋回駆動部 5を駆動して水平駆動側ギア 6を回転させ、水平駆動側ギア 6に歯合した水平従動側 ギア 7を回転させ水平旋回部 4を右回り又は左回りへ回動させることで、脚部 3を前進 方向や後退方向へ旋回させることができる。
(2)脚部 3の下脚部 13を上方へ移動させ遊脚とし、脚部 3を前進方向へ旋回させ、 接地させる動作を、脚部 3, 3a, 3b, 3cについて順に行うクロール歩行動作を行うこ とができ、 4足歩行ロボット 1を前進、後退、転回させることができる。その際に、遊脚と した脚部の他の 3つの脚部で胴体部 2を支持しながら、制御装置により 4足歩行ロボ ット 1の重心が接地脚の接地部を頂点とする三角形の内部に位置するように胴体部 2 の姿勢を制御することにより、安定した歩行動作を行うことができる。
(3)弾性伸縮部 12は管状部 12aに挿入された摺動部 12bが管状部 12aの内壁に沿 つて摺動すると共に、管状部 12aに装入されたパネ部材 12cにより付勢されることで 弾性的に伸縮する。クロール歩行を行う場合、弾性伸縮部 12が伸縮することで、下 脚部 13の傾きを上側上脚部 9に対して可変させることができ、脚部 3の姿勢を胴体部 2の姿勢に対応させて可変させることができるので、接地部 17が地面上を滑ることな く安定した歩行を行うことができる。
(4)ロック機構部 21は、ソレノイド部 23の通電により挿入ピン 24がロック孔 25及び口 ック溝 26に連挿され、摺動部 12bを管状部 12aに対して固定し弾性伸縮部 12を伸 縮しないように固定することができ、胴体部 2の移動等により下脚部 13が胴体部 2に 向かって傾くことがな 、ので、 2点支持の状態でもふらつ 、たりせず安定したトロット 歩行を行うことができる。また、制御装置はソレノイド部 23に流れる電流を制御するこ とにより、弾性伸縮部 12を伸縮しないように固定及び固定解除することができ、トロッ ト歩行を行う場合は固定し、クローク歩行を行う場合は固定解除し、歩行動作に応じ て切り替えることができる。
産業上の利用可能性
以上説明したように、本発明は、 4つの脚部を有し、各々の脚部を動かして自力で 移動する 4足歩行ロボットに関し、特に本発明によれば、駆動部の数を少なくして製 造コストの低下及び重量の軽減ィヒを実現しつつ、脚部の自由度を減少させても安定 した歩行動作を行うことができる 4足歩行ロボットを提供することができる。

Claims

請求の範囲
[1] 胴体部の側部に 4脚部を有する 4足歩行ロボットであって、
各々の前記脚部が、
前記胴体部に水平方向に旋回自在に配設された水平旋回部と、
前記胴体部に配設され前記水平旋回部を水平方向に回動駆動する水平旋回駆動 部と、
前記水平旋回部に上下方向に回動自在に軸着された上側上脚部と、 前記上側上脚部の下部に略平行に配設され前記水平旋回部に上下方向に回動 自在に軸着された下側上脚部と、
前記水平旋回部に配設され前記上側上脚部を上下方向に回動駆動する上脚回動 駆動部と、
前記上側上脚部の先端部と前記下部側上脚部の先端部とが上端部に上下に軸支 された下脚部と、
前記下脚部の下端部に配設された接地部と、
を備え、
前記下側上脚部が、その中間部に配設され長手方向に弾性的に伸縮する弾性伸 縮部を備えて 、ることを特徴とする 4足歩行ロボット。
[2] 前記弾性伸縮部が、前記下側上脚部の長手方向に沿って配設された管状部と、前 記管状部に摺動自在に挿入された摺動部と、前記管状部の内部に装入され前記摺 動部を伸縮方向に付勢するパネ部材と、を備えて 、ることを特徴とする請求項 1に記 載の 4足歩行ロボット。
[3] 各々の前記脚部の前記弾性伸縮部に配設され前記弾性伸縮部を固定及び固定 解除するロック機構部を備えていることを特徴とする請求項 1又は 2に記載の 4足歩 行ロボット。
[4] 前記ロック機構部が、前記管状部に穿設されたロック孔と、前記ロック孔に挿入され る挿入ピンとを備えていることを特徴とする請求項 3に記載の 4足歩行ロボット。
PCT/JP2005/006147 2005-03-30 2005-03-30 4足歩行ロボット WO2006103775A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/579,448 US7598695B2 (en) 2005-03-30 2005-03-30 Quadruped walking robot
CNA2005800161680A CN1956822A (zh) 2005-03-30 2005-03-30 四足步行机器人
PCT/JP2005/006147 WO2006103775A1 (ja) 2005-03-30 2005-03-30 4足歩行ロボット
EP05727962A EP1864763A4 (en) 2005-03-30 2005-03-30 FOUR PAWN DRYERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/006147 WO2006103775A1 (ja) 2005-03-30 2005-03-30 4足歩行ロボット

Publications (1)

Publication Number Publication Date
WO2006103775A1 true WO2006103775A1 (ja) 2006-10-05

Family

ID=37053049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006147 WO2006103775A1 (ja) 2005-03-30 2005-03-30 4足歩行ロボット

Country Status (4)

Country Link
US (1) US7598695B2 (ja)
EP (1) EP1864763A4 (ja)
CN (1) CN1956822A (ja)
WO (1) WO2006103775A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084480A2 (en) * 2007-01-12 2008-07-17 Ben-Gurion University Of The Negev Research And Development Authority A quadruped legged robot driven by linear actuators
CN105292296A (zh) * 2015-10-21 2016-02-03 山东大学 仿生奔跑四足机器人
CN106005090A (zh) * 2016-07-08 2016-10-12 燕山大学 一种双摆杆柔性四腿行走机器人
CN108945146A (zh) * 2018-07-30 2018-12-07 中国矿业大学 一种游戏用蜘蛛机器人腿部机构及工作方法
CN110682976A (zh) * 2019-11-25 2020-01-14 西北工业大学 一种轮腿复合式移动机器人的多自由度机械轮腿结构
CN111232084A (zh) * 2020-03-02 2020-06-05 广东博智林机器人有限公司 多足行走机器人
CN112389563A (zh) * 2020-11-06 2021-02-23 华南理工大学广州学院 一种避震效果好的机械腿

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132330A1 (ja) * 2005-06-08 2006-12-14 Nagoya Institute Of Technology 脚式移動体の平衡点安定化装置
DE102009006934B4 (de) * 2009-01-30 2011-03-03 Medizinische Universität zu Lübeck Abwurfmechanismus für ein an einem Roboter befestigtes Bein
US8457830B2 (en) 2010-03-22 2013-06-04 John R. Goulding In-line legged robot vehicle and method for operating
CN102381380B (zh) * 2011-10-17 2013-05-22 上海交通大学 新型并联腿结构四足步行器
CN102390459B (zh) * 2011-10-17 2013-05-22 上海交通大学 一种有膝关节并联腿结构四足仿生机器人
CN102530122A (zh) * 2012-03-06 2012-07-04 北京理工大学 一种足式机动平台腿部驱动传动装置
CN102717847A (zh) * 2012-06-28 2012-10-10 中国科学院自动化研究所 四足机器人低转动惯量配置的腿足机构
CN102795275B (zh) * 2012-08-22 2015-02-25 中科宇博(北京)文化有限公司 仿生机械恐龙
CN103465991B (zh) * 2013-09-23 2015-09-16 南京理工大学 一种简易型四足机器人
US9222493B2 (en) * 2013-10-14 2015-12-29 Brian Riskas Statically stable walking machine and power system therefor
CN103661667B (zh) * 2013-12-11 2015-11-18 北京航空航天大学 一种具有柔性腰部的灵巧型四足机器人
RU2567944C2 (ru) * 2013-12-23 2015-11-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Ползающий мобильный робот
CN104398262B (zh) * 2014-08-08 2016-08-10 北京交通大学 一种剖分式下肢穿戴测量装置及跟随控制方法
US9387588B1 (en) * 2014-08-25 2016-07-12 Google Inc. Handling gait disturbances with asynchronous timing
CA2919403A1 (en) 2015-02-01 2016-08-01 Genesis Advanced Technology Inc. Mobile platform
CN104875812B (zh) * 2015-03-27 2017-04-12 北京交通大学 一种用于四足机器人的四叶草形状的刚度可调柔顺脊柱
CN106184456A (zh) * 2016-07-08 2016-12-07 上海大学 一种主体结构可多级伸缩的轮腿式机器人
CN107065867B (zh) * 2017-03-28 2019-05-31 浙江大学 一种面向未知崎岖地形的四足机器人运动规划方法
CN107336762A (zh) * 2017-06-30 2017-11-10 天津大学 一种减少驱动关节的四足仿生机器人
US10421510B2 (en) * 2017-07-25 2019-09-24 Sphero, Inc. Three-legged robotic apparatus
CN109696909B (zh) * 2017-10-23 2022-04-15 深圳市优必选科技有限公司 足式机器人路径规划方法及装置
CN108163080B (zh) * 2017-12-04 2024-01-23 香港中文大学(深圳) 能适应复杂崎岖地形的高负载能力的电驱动四足机器人
CN108216421A (zh) * 2018-03-06 2018-06-29 河南科技大学 一种混联机械腿及其控制方法
CN108442507A (zh) * 2018-05-31 2018-08-24 辽宁工业大学 一种下水道排水口清理机器人
GB2574398A (en) * 2018-06-04 2019-12-11 Alexandre Guerreiro Varela Daniel High efficiency biomimetic locomotion device
CN110015353B (zh) * 2019-04-29 2024-02-13 佛山科学技术学院 一种四足柔性的仿壁虎爬行机器人结构
CN110126937B (zh) * 2019-05-21 2023-12-12 南华大学 仿生四足机器人及步态控制方法
CN110065552A (zh) * 2019-05-22 2019-07-30 贵州大学 一种语音控制四足机器人
CN110329384B (zh) * 2019-07-30 2024-04-30 佛山科学技术学院 一种可避障的爬网机器人
CN110842933A (zh) * 2019-10-23 2020-02-28 常州固高智能装备技术研究院有限公司 一种便于自动调节角度的运货机器人
CN112849296B (zh) * 2021-03-11 2023-12-22 湖南仕博测试技术有限公司 智能驾驶专用测试目标及其控制方法
CN113618777A (zh) * 2021-08-27 2021-11-09 深圳市优必选科技股份有限公司 关节双向储能装置、机器人关节结构以及机器人
CN114906248B (zh) * 2021-09-30 2023-10-17 山东聚一天工工业自动化有限公司 移动装置及其控制方法
CN113998027B (zh) * 2021-11-26 2022-11-01 长沙理工大学 一种机器人的救援方法
CN114348299B (zh) * 2022-01-24 2023-08-22 西北工业大学 一种串联式轮腿行星探测器
CN114474104B (zh) * 2022-03-28 2024-04-26 许卫芳 一种隧道开发地质勘探用蜘蛛式机器人及其工作方法
CN114802520B (zh) * 2022-04-19 2023-09-08 湖北工程学院 一种步足机构及多足机器人
CN114715305A (zh) * 2022-05-07 2022-07-08 广东电网有限责任公司 一种用于带电设备清洗的仿生四足机器人
CN114952884A (zh) * 2022-05-22 2022-08-30 北京工业大学 轮足一体化机器人
CN115071855B (zh) * 2022-07-07 2023-08-04 中国恩菲工程技术有限公司 四足机械狗用大角度楼梯上下楼装置及其使用方法
CN116215692A (zh) * 2023-03-28 2023-06-06 上海智元新创技术有限公司 轮足机器人的腿部结构及轮足机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171278A (ja) * 1982-04-01 1983-10-07 松本 尚雄 多足形ロボツト用無変位脚
JPS60245869A (ja) * 1984-05-17 1985-12-05 Shigeo Hirose リンク機構
JPH0311582U (ja) * 1989-06-16 1991-02-05
JP2003080477A (ja) * 2001-07-24 2003-03-18 Sony Corp ロボット装置及びロボット装置の跳躍制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614504A (en) * 1985-07-15 1986-09-30 Mattel, Inc. Walking toy vehicle with ramp
JPH10217158A (ja) * 1997-01-30 1998-08-18 Sony Corp ロボツト装置
CN1146492C (zh) * 1998-06-09 2004-04-21 索尼公司 机器人装置及其姿态控制方法
KR100639900B1 (ko) * 1999-01-28 2006-10-31 소니 가부시끼 가이샤 로봇장치용 관절장치 및 레그식 보행 로봇장치
EP1118436B1 (en) * 1999-04-05 2012-08-15 Sony Corporation Robot, servo circuit, actuator, robot control method, and actuator control method
US6422329B1 (en) * 1999-11-12 2002-07-23 Homayoon Kazerooni Human assisted walking robot
JP2001198864A (ja) * 2000-01-07 2001-07-24 Sony Corp 脚式ロボット及び脚式ロボットの動作制御方法
JP2001246584A (ja) * 2000-02-29 2001-09-11 Sony Corp 脚式移動ロボット
JP2002011679A (ja) 2000-06-26 2002-01-15 Sony Corp 多足歩行ロボット
US7734375B2 (en) * 2004-06-09 2010-06-08 Boston Dynamics Robot and robot leg mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171278A (ja) * 1982-04-01 1983-10-07 松本 尚雄 多足形ロボツト用無変位脚
JPS60245869A (ja) * 1984-05-17 1985-12-05 Shigeo Hirose リンク機構
JPH0311582U (ja) * 1989-06-16 1991-02-05
JP2003080477A (ja) * 2001-07-24 2003-03-18 Sony Corp ロボット装置及びロボット装置の跳躍制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1864763A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084480A2 (en) * 2007-01-12 2008-07-17 Ben-Gurion University Of The Negev Research And Development Authority A quadruped legged robot driven by linear actuators
WO2008084480A3 (en) * 2007-01-12 2009-06-04 Univ Ben Gurion A quadruped legged robot driven by linear actuators
CN105292296A (zh) * 2015-10-21 2016-02-03 山东大学 仿生奔跑四足机器人
CN106005090A (zh) * 2016-07-08 2016-10-12 燕山大学 一种双摆杆柔性四腿行走机器人
CN108945146A (zh) * 2018-07-30 2018-12-07 中国矿业大学 一种游戏用蜘蛛机器人腿部机构及工作方法
CN110682976A (zh) * 2019-11-25 2020-01-14 西北工业大学 一种轮腿复合式移动机器人的多自由度机械轮腿结构
CN111232084A (zh) * 2020-03-02 2020-06-05 广东博智林机器人有限公司 多足行走机器人
CN112389563A (zh) * 2020-11-06 2021-02-23 华南理工大学广州学院 一种避震效果好的机械腿
CN112389563B (zh) * 2020-11-06 2023-10-31 华南理工大学广州学院 一种具有避震效果的机械腿

Also Published As

Publication number Publication date
US7598695B2 (en) 2009-10-06
US20080252247A1 (en) 2008-10-16
EP1864763A4 (en) 2008-04-30
CN1956822A (zh) 2007-05-02
EP1864763A1 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
WO2006103775A1 (ja) 4足歩行ロボット
JP3277076B2 (ja) 歩行ロボットの歩行制御装置および歩行制御方法
JP3555107B2 (ja) 脚式移動ロボット及び脚式移動ロボットの動作制御方法
EP2082159B1 (en) Serpentine robotic crawler
JP2007007798A (ja) 跳躍ロボット
KR101164197B1 (ko) 게 형태의 로봇
WO2021047680A1 (zh) 一种具有双足/四轮/四足运动模式的可重构足式机器人
JP2017024149A (ja) 4足歩行作業ロボット
CN110588832A (zh) 多足式全地形机器人
JP2011125966A (ja) ロボット
JP3893126B2 (ja) 4足歩行ロボット
JP2009101469A (ja) 脚式移動作業装置
JP3956414B2 (ja) ロボット装置及びロボット装置の制御方法
JP2002307339A (ja) 脚式移動ロボット及びその制御方法、並びに脚式移動ロボットのための足首構造
JP4274372B2 (ja) 歩行運動装置および方法
KR100572684B1 (ko) 주행 모드로 천이되는 이족 보행 로봇 구동방법 및 그장치
JP3673869B2 (ja) 二脚歩行式人型ロボット及びその手先収納機構
KR102445308B1 (ko) 다족 로봇용 다리유닛
Yoneda et al. Non-bio-mimetic walkers
Yoneda et al. Construction of a quadruped with reduced degrees of freedom
CN108516028B (zh) 一种复式四足机器人的行走控制方法
JPH0335074B2 (ja)
JP6114595B2 (ja) 多体節型ロボット及びその体節
WO2022138230A1 (ja) 移動体
JP2002178277A (ja) 歩行ロボットの脚構造及び下半身構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11579448

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580016168.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005727962

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005727962

Country of ref document: EP