WO2021047680A1 - 一种具有双足/四轮/四足运动模式的可重构足式机器人 - Google Patents

一种具有双足/四轮/四足运动模式的可重构足式机器人 Download PDF

Info

Publication number
WO2021047680A1
WO2021047680A1 PCT/CN2020/115417 CN2020115417W WO2021047680A1 WO 2021047680 A1 WO2021047680 A1 WO 2021047680A1 CN 2020115417 W CN2020115417 W CN 2020115417W WO 2021047680 A1 WO2021047680 A1 WO 2021047680A1
Authority
WO
WIPO (PCT)
Prior art keywords
hip
sole
component
wheel
leg
Prior art date
Application number
PCT/CN2020/115417
Other languages
English (en)
French (fr)
Inventor
孔令雨
黄冠宇
姜红建
蔡建东
谢安桓
张丹
Original Assignee
之江实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 之江实验室 filed Critical 之江实验室
Priority to JP2021546447A priority Critical patent/JP7072308B2/ja
Publication of WO2021047680A1 publication Critical patent/WO2021047680A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs

Definitions

  • Biped, quadruped and wheeled robots each have distinct advantages and disadvantages.
  • biped robots have significant advantages in terrain adaptability, capable of walking on complex ground and avoiding obstacles, but are disadvantaged in terms of speed of movement and energy efficiency.
  • Quadruped robots have higher motion stability than biped robots, but they are also at a disadvantage in terms of motion capabilities.
  • Wheeled robots have the highest movement speed, but they cannot adapt to complex terrain environments.
  • the present invention combines the advantages of existing foot-type and wheeled robots to propose a reconfigurable foot-type robot with biped/quadruped/four-wheeled motion mode, which can switch dynamically Biped, four-wheeled and four-legged modes, with strong adaptability.
  • the foot robot has a left-right symmetrical structure and includes a torso part, a left hip, a right hip, a left leg, and a right leg ,
  • the torso component is rotatably connected to the left hip and the right hip that are symmetrically arranged on both sides of the torso component, and the left leg and the right leg are rotatably connected to the left hip and the right hip, respectively;
  • the left hip includes a rigidly connected hip rotating part and a hip-leg connecting part, and the hip rotating part is used to drive the left leg to spatially rotate relative to the trunk part;
  • the left leg includes a thigh part, a lower leg part, a driving wheel connecting part, a moving and rotating part, a driving wheel, a sole part and a driven wheel;
  • the two ends of the hip leg connecting part are respectively connected to one end of the thigh part and one end of the driving wheel connecting part through a revolving joint, the other end of the thigh part is connected to one end of the lower leg part through a revolving joint, and the driving wheel connecting part passes through
  • the moving and rotating part is connected to the lower leg part, and the driving wheel is installed at the other end of the driving wheel connector through a revolving joint; the other end of the lower leg part is connected to the middle of the sole part through a revolving joint, and the driven wheel is connected to one end of the sole part through a revolving joint;
  • the hip and leg connecting parts, the thigh parts, the lower leg parts, the driving wheel connecting parts, and the moving and rotating parts form a planar five-bar mechanism;
  • the left hip and the right hip have the same structure, and the left leg and the right leg have the same structure;
  • Adjust the said sole component and the planar five-bar mechanism When only the sole component touches the ground, it is a bipedal movement mode; when the driving wheel and passive wheel touch the ground at the same time, it is a four-wheel movement mode; when the driving wheel and the sole component When contacting the ground at the same time, and the driving wheel is in the locked state, it is a quadruped movement mode.
  • the hip rotation component includes a hip deflection direction component and a hip roll direction component, and the trunk component is connected to the hip deflection direction component through a rotation joint; the hip deflection direction component is connected to the hip through a rotation joint
  • the hip roll direction components are connected; the hip roll direction components are rigidly connected with the hip leg connecting components.
  • the foot-type robot further includes a sole adjustment link 1 and a sole adjustment link 2.
  • One end of the sole adjustment link 1 is connected to the other end of the sole component through a revolving joint, and the other end of the sole adjustment link 1 is connected to One end of the second sole adjustment link is connected by a revolute joint, and the other end of the second sole adjustment link is connected to the lower leg part by a revolute joint.
  • the lower leg part, sole adjustment link two, sole adjustment link 1 and sole part form a flat four-bar mechanism.
  • the moving and rotating component includes a moving joint and a rotating joint that are connected to each other, and the driving wheel connector realizes movement and rotation relative to the lower leg component through the moving joint and the rotating joint.
  • the reconfigurable foot robot of the present invention can dynamically switch between biped, four-wheel and quadruped modes, and select the optimal mode to complete the specified tasks.
  • the robot switches to a bipedal motion mode.
  • the sole adjustment components By adjusting the position of the sole adjustment components, only the sole components touch the ground; through the actuators installed on the thigh and calf components, the biped walking mode is realized.
  • the robot switches to the quadruped mode; the driving wheel and the sole of the foot alternately contact the ground, and the driving motor on the driving wheel is in a locked state, forming an arc-shaped foot mode.
  • the robot switches to the four-wheel mode, the active wheel and the passive wheel touch the ground at the same time, and the active wheel is driven by the driving motor.
  • the reconfigurable foot robot of the invention has strong environmental adaptability and high work efficiency.
  • FIG. 2 is a schematic diagram of the four-wheel motion mode of the reconfigurable foot robot of the present invention
  • Fig. 3 is a schematic diagram of the quadruped movement mode of the reconfigurable foot robot of the present invention.
  • Driving wheel 10 sole component 11, sole adjustment component two 12, sole adjustment component one 13, and driven wheel component 14.
  • the reconfigurable foot robot with biped/four-wheel/quadruped motion mode of the present invention has a left-right symmetrical structure, which includes a torso part 1, a hip part and a leg part. Same, the two legs have the same structure, so they have the same form of movement. Take some of them as an example to describe its structure.
  • the left hip includes a hip deflection direction component 2, a hip roll direction component 3, and a hip leg connecting component 4.
  • the trunk component 1 is connected to the hip deflection direction component 2 through a rotation pair; the hip deflection direction component 2 is rotated
  • the accessory is connected with the hip roll direction component 3; the hip roll direction component 3 is rigidly connected with the hip leg connecting component 4. Therefore, relative to the trunk member 1, the hip leg connecting member 4 has two degrees of freedom in the direction of deflection and rolling.
  • the hip deflection direction component 2 and the hip roll direction component 3 are used to realize the spatial rotation of the hip leg connecting component 4 relative to the trunk component 1.
  • the design method and connection sequence are not limited to this embodiment, and a spherical shape can be used. Joints, universal joints and other ways to achieve its ability to rotate.
  • the left leg includes a thigh part 5, a calf part 6, a driving wheel connector 7, a moving joint 8, a revolving joint 9, a driving wheel 10, a sole part 11, a sole adjustment part 12, a sole adjustment part 13 and a driven wheel 14, hip
  • the two ends of the leg connecting member 4 are respectively connected to one end of the thigh member 5 and one end of the driving wheel connecting member 7 through a revolving joint, and the other end of the thigh member 5 is connected to one end of the lower leg member 6 through a revolving joint.
  • the driving wheel connecting member 7 is connected to the lower leg part 6 through a moving joint 8 and a revolving joint 9.
  • the driving wheel 10 is mounted on the other end of the driving wheel connecting piece 7 through a revolving joint; the other end of the lower leg part 6 is connected to the middle of the foot part 11 through a revolving joint, from One end of the moving wheel 14 and the sole adjustment link 13 are respectively connected to both ends of the sole component 11 through a revolving joint.
  • the other end of the sole adjustment link 13 and one end of the sole adjustment link 12 are connected through a revolving joint, and the sole adjustment link
  • the other end of the rod two 12 is connected with the calf part 6 through a rotating joint.
  • the calf part 6, the sole adjustment link 12, the sole adjustment link 13 and the sole part 11 form a plane four-bar mechanism to realize the alignment of the sole part 11 and the driven wheel. Adjustment of the position of 14.
  • the hip leg connecting part 4, the thigh part 5, the lower leg part 6, the driving wheel connecting part 7, the moving joint 8, and the rotating joint 9 form a planar five-bar mechanism.
  • the distance between the moving joint 8 and the revolving joint 9 is zero, and the length of the link between the two can be regarded as zero, so it can be regarded as a special planar five-bar mechanism.
  • the moving joint 8 and the revolving joint 9 can also be connected by a rod of a certain length to form a conventional five-bar mechanism.
  • the five-bar mechanism has two degrees of freedom of movement in the plane, and the two degrees of freedom of the plane can be realized by driving any two of the five joints.
  • the five-bar mechanism in this embodiment can also be replaced by other connection forms, as long as two degrees of freedom of the plane of the calf member 6 relative to the hip leg connecting member 4 can be realized.
  • each leg has at least five degrees of freedom in space, and movement in three-dimensional space can be realized through alternate movement.
  • the flat five-bar mechanism retracts the driving wheel 10 to a position away from the ground, and locks the driving wheel 10 by a motor connected to it; by driving the flat four-bar mechanism, the sole component 11 is adjusted to The position is close to the ground, and it is ensured that the driven wheel 14 cannot touch the ground during walking.
  • each leg is controlled to move back and forth alternately in the plane where it is located, so as to realize the biped walking function of this embodiment.
  • the driving wheel 10 is extended to a position where it touches the ground; by driving the flat four-bar mechanism, the driven wheel 14 is adjusted to a position where it touches the ground and the sole 11 cannot touch the ground Status; on this basis, lock all the drive motors installed on each leg, drive the driving wheel motor to achieve the planar motion of the four-wheel motion mode of the present invention; through the differential motion of the two driving wheels 10, complete the planar motion Steering operation.
  • the driving wheel 10 is extended to a position where it touches the ground, and the driving wheel 10 is locked by the motor connected to it to form an arc-shaped foot; by driving the flat four-bar
  • the mechanism adjusts the sole component 11 to a position close to the ground, and ensures that the driven wheel 14 cannot touch the ground during walking; drives a motor other than the driving wheel to form a gait in which the double driving wheel 10 and the two soles 11 alternately walk. Realize the four-legged motion mode of the robot in three-dimensional space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种具有双足/四轮/四足运动模式的可重构足式机器人,包括躯干部分(1)、髋部偏转方向部件(2)、髋部横滚方向部件(3)、髋部腿部连接部件(4)、大腿部件(5)、小腿部件(6)、主动轮连接件(7)、移动转动部件(8、9)主动轮(10)、脚掌部件(11)、脚掌调整部件(12、13)以及从动轮(14),通过改变驱动关节的关节运动量以及驱动方式,实现足式机器人在双足、四轮、四足三种运动模式之间的切换,有助于机器人在不同环境下的高效工作,充分发挥足式机器人可重构特性的优势,提高机器人的环境适应能力,丰富机器人的运动特性,扩展机器人的应用场景。

Description

一种具有双足/四轮/四足运动模式的可重构足式机器人 技术领域
本发明涉及足式机器人领域,尤其涉及一种具有双足/四轮/四足运动模式的可重构足式机器人。
背景技术
双足、四足及轮式机器人各自具有鲜明的优缺点。例如,双足机器人在地形适应能力方面具有显著优势,具备复杂地面行走、躲避障碍等能力,但在运动速度、能效方面处于劣势。四足机器人具备比双足机器人更高的运动稳定性,但同样在运动能力方面处于劣势。轮式机器人具备最高的运动速度,但无法适应复杂的地形环境。
发明内容
针对现有技术的不足,本发明结合现有足式、轮式机器人的优点,提出一种具有双足/四足/四轮运动模式的可重构足式机器人,该足式机器人能够动态切换双足、四轮及四足模式,适应能力强。
本发明的目的通过如下的技术方案来实现:
一种具有双足/四轮/四足运动模式的可重构足式机器人,所述的足式机器人为左右对称结构,其包括躯干部件、左髋部、右髋部、左腿和右腿,所述的躯干部件与对称布置在躯干部件的两侧的左髋部、右髋部可转动连接,所述的左腿、右腿分别与左髋部、右髋部可转动连接;
所述的左髋部包括刚性连接的髋部转动部件和髋部腿部连接部件,所述的髋部转动部件用于带动所述的左腿相对于躯干部件空间转动;
所述的左腿包括大腿部件、小腿部件、主动轮连接件、移动转动部件、主动轮、脚掌部件以及从动轮;
所述的髋部腿部连接部件的两端分别通过转动关节与大腿部件的一端、主动轮连接件的一端相连,大腿部件的另一端通过转动关节与小腿部件的一端相连,主动轮连接件通过移动转动部件与小腿部件相连,主动轮通过转动关节安装于主动轮连接件的另一端;小腿部件的另一端通过转动关节与脚掌部件的中部相连,从动轮通过转动关节连接在脚掌部件的一端;髋部腿部连接部件、大腿部件、小腿部件、主动轮连接件、移动转动部件组成平面五杆机构;
所述的左髋部和右髋部结构相同,左腿和右腿结构相同;
调整所述的脚掌部件和平面五杆机构,当仅有脚掌部件接触地面时,为双足运动模式; 当主动轮与被动轮同时接触地面时,为四轮运动模式;当主动轮与脚掌部件同时接触地面,且主动轮处于锁止状态时,为四足运动模式。
进一步地,所述的髋部转动部件包括髋部偏转方向部件和髋部横滚方向部件,所述的躯干部件通过转动副与髋部偏转方向部件相连;髋部偏转方向部件通过转动副与髋部横滚方向部件相连;髋部横滚方向部件与髋部腿部连接部件刚性连接。
进一步地,所述的足式机器人还包括脚掌调整连杆一、脚掌调整连杆二,脚掌调整连杆一的一端通过转动关节连接在脚掌部件的另一端,脚掌调整连杆一的另一端与脚掌调整连杆二的一端通过转动关节相连,脚掌调整连杆二的另一端与小腿部件通过转动关节相连,小腿部件、脚掌调整连杆二、脚掌调整连杆一以及脚掌部件组成平面四杆机构,实现对脚掌部件和从动轮的位置的调节。
进一步地,所述的移动转动部件包括相互连接的移动关节和转动关节,所述的主动轮连接件通过所述的移动关节和转动关节实现相对于所述的小腿部件移动和转动。
本发明的有益效果如下:
根据不同的任务需求及应用环境,本发明的可重构足式机器人可在双足、四轮及四足模式进行动态切换,选择最优模式完成规定任务。在复杂崎岖道路上,机器人切换为双足运动模式,通过调整脚掌调整部件的位置,使得仅有脚掌部件接触地面;通过安装于大腿及小腿部件上的驱动器,实现双足行走模式。在地面环境较为崎岖,且需要机器人具备一定的负载能力时,机器人切换到四足模式;主动轮与脚掌交替接触地面,且主动轮上的驱动电机处于锁止状态,形成弧形足模式。当地面环境较为理想,机器人切换到四轮模式,主动轮与被动轮同时接触地面,主动轮通过驱动电机进行驱动。本发明的可重构足式机器人环境适应能力强,工作效率高。
附图说明
图1是本发明可重构足式机器人双足运动模式示意图;
图2是本发明可重构足式机器人四轮运动模式示意图;
图3是本发明可重构足式机器人四足运动模式示意图。
图中,躯干部件1、髋部偏转方向部件2、髋部横滚方向部件3、髋部腿部连接部件4、大腿部件5、小腿部件6、主动轮连接件7、移动关节8、转动关节9、主动轮10、脚掌部件11、脚掌调整部件二12、脚掌调整部件一13、从动轮部件14。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例 仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的具有双足/四轮/四足运动模式的可重构足式机器人为左右对称结构,其包括躯干部件1、髋部和腿部三部分,左右两部分结构相同,两腿具有相同的结构形式,因此具有相同的运动形式。下面以其中一部分为例对其结构进行描述。
左髋部包括髋部偏转方向部件2、髋部横滚方向部件3、髋部腿部连接部件4,躯干部件1通过转动副与髋部偏转方向部件2相连;髋部偏转方向部件2通过转动副与髋部横滚方向部件3相连;髋部横滚方向部件3与髋部腿部连接部件4刚性连接。因此相对于躯干部件1,髋部腿部连接部件4具有偏转及横滚方向的两个自由度。其中,髋部偏转方向部件2、髋部横滚方向部件3用以实现髋部腿部连接部件4相对于躯干部件1的空间转动,其设计方式及连接顺序不限于本实施例,可采用球形关节、万向关节等方式实现其转动能力。
左腿包括大腿部件5、小腿部件6、主动轮连接件7、移动关节8、转动关节9、主动轮10、脚掌部件11、脚掌调整部件二12、脚掌调整部件一13和从动轮14,髋部腿部连接部件4的两端分别通过转动关节与大腿部件5的一端、主动轮连接件7的一端相连,大腿部件5的另一端通过转动关节与小腿部件6的一端相连,主动轮连接件7通过移动关节8、转动关节9与小腿部件6相连,主动轮10通过转动关节安装于主动轮连接件7的另一端;小腿部件6的另一端通过转动关节与脚掌部件11的中部相连,从动轮14、脚掌调整连杆一13的一端分别通过转动关节连接在脚掌部件11的两端,脚掌调整连杆一13的另一端与脚掌调整连杆二12的一端通过转动关节相连,脚掌调整连杆二12的另一端与小腿部件6通过转动关节相连,小腿部件6、脚掌调整连杆二12、脚掌调整连杆一13以及脚掌部件11组成平面四杆机构,实现对脚掌部件11和从动轮14的位置的调节。髋部腿部连接部件4、大腿部件5、小腿部件6、主动轮连接件7、移动关节8、转动关节9组成平面五杆机构。
特别地,本实施例中移动关节8与转动关节9之间距离为零,二者之间的连杆长度可以看作零,因此可以看作特殊的平面五杆机构。不限于本实施例,移动关节8与转动关节9之间也可通过一定长度的杆件相连,形成常规五杆机构的形式。该五杆机构在平面内具有两个运动自由度,通过驱动五个关节中的任意两个即可实现其平面两自由度运动。本实施例中的五杆机构,也可通过其他连接形式代替,只要能够实现小腿部件6相对于髋部腿部连接部件4的平面两自由度即可。本实施例中的平行四边形机构使得脚掌具有该平面内的一个自由度,因此通过驱动脚掌调整连杆二12、脚掌调整连杆一13中的任意一个即可实现脚掌部件11的运动。其中,脚掌调整部件12、13用以实现脚掌部件11以及从动轮部件14相对于地面的位置关系,其设计方式亦不限于本实施例a,具体设计方式只要能够满足调整脚掌部件11及被动轮部件14相对于地面的位置关系即可。
本实施例中每条腿至少具备空间五自由度,通过交替运动可实现三维空间内移动。
下面介绍本发明的双足机器人的运动模式。
如图1所示,平面五杆机构,将主动轮10收缩至远离地面的位置,并通过连接其上的电机将主动轮10进行锁止;通过驱动平面四杆机构,将脚掌部件11调整至接近地面的位置,并保证从动轮14在行走过程中无法接触地面。通过驱动安装于五杆机构上的两个电机以及脚掌部分的驱动电机,控制每条腿在其所在平面内前后交替运动,实现本实施例的双足行走功能。
如图2所示,通过驱动平面五杆机构,将主动轮10伸长至接触地面的位置;通过驱动平面四杆机构,将从动轮14调整到接触地面的位置而脚掌部件11无法接触地面的状态;在此基础上,锁定安装于每条腿上的所有驱动电机,通过驱动主动轮电机,实现本发明四轮运动模式的平面运动;通过两个主动轮10的差速运动,完成平面上的转向操作。
如图3所示,通过驱动平面五杆机构,将主动轮10伸长至接触地面的位置,并通过连接其上的电机将主动轮10进行锁止,形成弧形足;通过驱动平面四杆机构,将脚掌部件11调整至接近地面的位置,并保证从动轮14在行走过程中无法接触地面;驱动除主动轮之外的电机,形成双主动轮10及双脚掌11交替行走的步态,实现机器人在三维空间中的四足运动模式。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (4)

  1. 一种具有双足/四轮/四足运动模式的可重构足式机器人,其特征在于,所述的足式机器人为左右对称结构,其包括躯干部件(1)、左髋部、右髋部、左腿和右腿,所述的躯干部件(1)与对称布置在躯干部件的两侧的左髋部、右髋部可转动连接,所述的左腿、右腿分别与左髋部、右髋部可转动连接;
    所述的左髋部包括刚性连接的髋部转动部件和髋部腿部连接部件(4),所述的髋部转动部件用于带动所述的左腿相对于躯干部件(1)空间转动;
    所述的左腿包括大腿部件(5)、小腿部件(6)、主动轮连接件(7)、移动转动部件(8、9)、主动轮(10)、脚掌部件(11)以及从动轮(14);
    所述的髋部腿部连接部件(4)的两端分别通过转动关节与大腿部件(5)的一端、主动轮连接件(7)的一端相连,大腿部件(5)的另一端通过转动关节与小腿部件(6)的一端相连,主动轮连接件(7)通过移动转动部件(8、9)与小腿部件(6)相连,主动轮(10)通过转动关节安装于主动轮连接件(7)的另一端;小腿部件(6)的另一端通过转动关节与脚掌部件(11)的中部相连,从动轮(14)通过转动关节连接在脚掌部件(11)的一端;髋部腿部连接部件(4)、大腿部件(5)、小腿部件(6)、主动轮连接件(7)、移动转动部件(8、9)组成平面五杆机构;
    所述的左髋部和右髋部结构相同,左腿和右腿结构相同。
    调整所述的脚掌部件(11)和平面五杆机构,当仅有脚掌部件(11)接触地面时,为双足运动模式;当主动轮(10)与被动轮(14)同时接触地面时,为四轮运动模式;当主动轮(10)与脚掌部件(11)同时接触地面,且主动轮(10)处于锁止状态时,为四足运动模式。
  2. 根据权利要求1所述的具有双足/四轮/四足运动模式的可重构足式机器人,其特征在于,所述的髋部转动部件包括髋部偏转方向部件(2)和髋部横滚方向部件(3),所述的躯干部件(1)通过转动副与髋部偏转方向部件(2)相连;髋部偏转方向部件(2)通过转动副与髋部横滚方向部件(3)相连;髋部横滚方向部件(3)与髋部腿部连接部件(4)刚性连接。
  3. 根据权利要求1所述的具有双足/四轮/四足运动模式的可重构足式机器人,其特征在于,所述的足式机器人还包括脚掌调整连杆一(13)、脚掌调整连杆二(12),脚掌调整连杆一(13)的一端通过转动关节连接在脚掌部件(11)的另一端,脚掌调整连杆一(13)的另一端与脚掌调整连杆二(12)的一端通过转动关节相连,脚掌调整连杆二(12)的另一端与小腿部件(6)通过转动关节相连,小腿部件(6)、脚掌调整连杆二(12)、脚掌调整连杆一(13)以及脚掌部件(11)组成平面四杆机构,实现对脚掌部件(11)和从动轮(14)的位 置的调节。
  4. 根据权利要求1所述的具有双足/四轮/四足运动模式的可重构足式机器人,其特征在于,所述的移动转动部件(8、9)包括相互连接的移动关节(8)和转动关节(9),所述的主动轮连接件(7)通过所述的移动关节(8)和转动关节(9)实现相对于所述的小腿部件(6)移动和转动。
PCT/CN2020/115417 2020-03-27 2020-09-15 一种具有双足/四轮/四足运动模式的可重构足式机器人 WO2021047680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021546447A JP7072308B2 (ja) 2020-03-27 2020-09-15 2足/4輪/4足運動モードを有する再構成可能な足型ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010226879.7 2020-03-27
CN202010226879.7A CN111301548A (zh) 2020-03-27 2020-03-27 一种具有双足/四轮/四足运动模式的可重构足式机器人

Publications (1)

Publication Number Publication Date
WO2021047680A1 true WO2021047680A1 (zh) 2021-03-18

Family

ID=71151575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115417 WO2021047680A1 (zh) 2020-03-27 2020-09-15 一种具有双足/四轮/四足运动模式的可重构足式机器人

Country Status (4)

Country Link
JP (1) JP7072308B2 (zh)
CN (1) CN111301548A (zh)
LU (1) LU500111B1 (zh)
WO (1) WO2021047680A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022891A (zh) * 2021-04-06 2021-06-25 哈尔滨工业大学 一种火星车
CN113467467A (zh) * 2021-07-22 2021-10-01 中北大学 一种重心可调并联仿生移动机器人的控制方法
CN114044066A (zh) * 2021-11-22 2022-02-15 长春工业大学 基于八面体桅杆型张拉整体结构的仿人足式机构及装置
CN114714378A (zh) * 2022-05-16 2022-07-08 上海工程技术大学 一种并联式可重构山林移动机器人
CN114987644A (zh) * 2022-04-27 2022-09-02 南京理工大学 一种步态可转变的仿生机器人
CN115027591A (zh) * 2022-07-12 2022-09-09 北京理工大学 一种基于独立驱动多级缸与轮毂电机的轮足机器人
CN117565996A (zh) * 2024-01-16 2024-02-20 哈尔滨工业大学 一种轮腿复合结构及轮腿机器人

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301548A (zh) * 2020-03-27 2020-06-19 之江实验室 一种具有双足/四轮/四足运动模式的可重构足式机器人
CN112278105B (zh) * 2020-11-02 2022-04-08 之江实验室 一种用于足式机器人的六杆机构
CN113911230B (zh) * 2021-11-26 2022-12-02 合肥工业大学 一种用于无人变胞车足部机构的折叠轮机构以及足部机构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455497A (en) * 1992-04-20 1995-10-03 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot and a system for controlling the same
CN1943531A (zh) * 2006-10-19 2007-04-11 上海大学 基于仿生学的多功能电动助步轮椅
CN104029745A (zh) * 2014-05-21 2014-09-10 浙江大学 一种腿轮混合式液压机械腿
CN105109572A (zh) * 2015-08-26 2015-12-02 北京航空航天大学 一种用于腿臂融合操作的轮腿式机器人的单腿结构
CN106828651A (zh) * 2017-01-20 2017-06-13 哈尔滨工业大学深圳研究生院 一种可变形的轮足运动机器人
CN109512644A (zh) * 2018-11-12 2019-03-26 哈尔滨工业大学 可变形为轮椅的多功能外骨骼机器人
CN210101819U (zh) * 2019-05-21 2020-02-21 南华大学 基于五连杆机构的四足机器人
CN111301548A (zh) * 2020-03-27 2020-06-19 之江实验室 一种具有双足/四轮/四足运动模式的可重构足式机器人

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05285864A (ja) * 1992-04-08 1993-11-02 Toshiba Corp 二足移動歩行装置
JP3277076B2 (ja) * 1994-09-09 2002-04-22 株式会社小松製作所 歩行ロボットの歩行制御装置および歩行制御方法
US6999849B2 (en) * 2002-01-24 2006-02-14 John Clinton Bridges Folding robotic system
JP2004066381A (ja) * 2002-08-05 2004-03-04 Sony Corp ロボット装置
JP4279151B2 (ja) * 2004-01-06 2009-06-17 三菱電機株式会社 歩行ロボット
JP4258456B2 (ja) * 2004-09-14 2009-04-30 トヨタ自動車株式会社 ロボット
JP4797775B2 (ja) * 2006-04-24 2011-10-19 株式会社日立製作所 2足型移動機構
CN101602382B (zh) * 2009-05-13 2010-12-29 上海工程技术大学 一种单驱动四足步行机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455497A (en) * 1992-04-20 1995-10-03 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot and a system for controlling the same
CN1943531A (zh) * 2006-10-19 2007-04-11 上海大学 基于仿生学的多功能电动助步轮椅
CN104029745A (zh) * 2014-05-21 2014-09-10 浙江大学 一种腿轮混合式液压机械腿
CN105109572A (zh) * 2015-08-26 2015-12-02 北京航空航天大学 一种用于腿臂融合操作的轮腿式机器人的单腿结构
CN106828651A (zh) * 2017-01-20 2017-06-13 哈尔滨工业大学深圳研究生院 一种可变形的轮足运动机器人
CN109512644A (zh) * 2018-11-12 2019-03-26 哈尔滨工业大学 可变形为轮椅的多功能外骨骼机器人
CN210101819U (zh) * 2019-05-21 2020-02-21 南华大学 基于五连杆机构的四足机器人
CN111301548A (zh) * 2020-03-27 2020-06-19 之江实验室 一种具有双足/四轮/四足运动模式的可重构足式机器人

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022891A (zh) * 2021-04-06 2021-06-25 哈尔滨工业大学 一种火星车
CN113467467A (zh) * 2021-07-22 2021-10-01 中北大学 一种重心可调并联仿生移动机器人的控制方法
CN113467467B (zh) * 2021-07-22 2023-11-14 中北大学 一种重心可调并联仿生移动机器人的控制方法
CN114044066B (zh) * 2021-11-22 2023-09-01 长春工业大学 基于八面体桅杆型张拉整体结构的仿人足式机构及装置
CN114044066A (zh) * 2021-11-22 2022-02-15 长春工业大学 基于八面体桅杆型张拉整体结构的仿人足式机构及装置
CN114987644B (zh) * 2022-04-27 2024-03-22 南京理工大学 一种步态可转变的仿生机器人
CN114987644A (zh) * 2022-04-27 2022-09-02 南京理工大学 一种步态可转变的仿生机器人
CN114714378B (zh) * 2022-05-16 2023-05-26 上海工程技术大学 一种并联式可重构山林移动机器人
CN114714378A (zh) * 2022-05-16 2022-07-08 上海工程技术大学 一种并联式可重构山林移动机器人
CN115027591A (zh) * 2022-07-12 2022-09-09 北京理工大学 一种基于独立驱动多级缸与轮毂电机的轮足机器人
CN115027591B (zh) * 2022-07-12 2023-11-21 北京理工大学 一种基于独立驱动多级缸与轮毂电机的轮足机器人
CN117565996A (zh) * 2024-01-16 2024-02-20 哈尔滨工业大学 一种轮腿复合结构及轮腿机器人
CN117565996B (zh) * 2024-01-16 2024-03-26 哈尔滨工业大学 一种轮腿复合结构及轮腿机器人

Also Published As

Publication number Publication date
CN111301548A (zh) 2020-06-19
LU500111B1 (fr) 2021-11-04
JP7072308B2 (ja) 2022-05-20
JP2021534013A (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2021047680A1 (zh) 一种具有双足/四轮/四足运动模式的可重构足式机器人
CN108725612B (zh) 一种多自由度多功能机器人
Mori et al. Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3
CN111516773A (zh) 一种具有多种运动模式的可重构双足机器人
CN208165135U (zh) 一种轮腿式并联移动机器人
JP2011251396A (ja) 脚式移動ロボット
CN110077486B (zh) 一种仿生八足特种机器人
CN111469946B (zh) 一种具备爬行及滚动功能的仿生移动机器人
Hodoshima et al. Development of track-changeable quadruped walking robot TITAN X-design of leg driving mechanism and basic experiment
CN110682976A (zh) 一种轮腿复合式移动机器人的多自由度机械轮腿结构
CN116714696A (zh) 一种多模态双机械臂轮足机器人及其控制方法
Shieh et al. Design and optimization of a one‐degree‐of‐freedom six‐bar leg mechanism for a walking machine
Ota et al. Research on a six-legged walking robot with parallel mechanism
CN210083393U (zh) 一种结构紧凑的桌面型四足机器人系统
KR102124128B1 (ko) 모바일 로봇
CN212313718U (zh) 一种具有双足/四轮/四足运动模式的可重构足式机器人
JP2006055972A (ja) 足部走行機構及びそれを備えた2足歩行ロボット
Hodoshima et al. Development of ASURA I: harvestman-like hexapod walking robot—approach for Long-legged robot and leg mechanism design
Nakajima Development of four-wheel-type mobile robot for rough terrain and verification of its fundamental capability of moving on rough terrain
CN112849293B (zh) 一种可变胞轮足式四足机器人
Yoneda et al. Non-bio-mimetic walkers
CN108516028B (zh) 一种复式四足机器人的行走控制方法
JP2001310278A (ja) 4足歩行ロボット
CN212313720U (zh) 一种具有多种运动模式的可重构双足机器人
KR102482096B1 (ko) 레그-휠 모드로 전환가능한 하이브리드 로봇

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021546447

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863278

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20863278

Country of ref document: EP

Kind code of ref document: A1