WO2006103309A2 - Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación - Google Patents
Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación Download PDFInfo
- Publication number
- WO2006103309A2 WO2006103309A2 PCT/ES2006/000152 ES2006000152W WO2006103309A2 WO 2006103309 A2 WO2006103309 A2 WO 2006103309A2 ES 2006000152 W ES2006000152 W ES 2006000152W WO 2006103309 A2 WO2006103309 A2 WO 2006103309A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- composite material
- adhesive
- panels
- laminate
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 21
- 239000002184 metal Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000002648 laminated material Substances 0.000 title claims abstract description 9
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 56
- 239000010959 steel Substances 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 39
- 239000002131 composite material Substances 0.000 claims abstract description 33
- 239000000853 adhesive Substances 0.000 claims abstract description 32
- 230000001070 adhesive effect Effects 0.000 claims abstract description 32
- 239000011159 matrix material Substances 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 19
- 230000002787 reinforcement Effects 0.000 claims description 13
- 239000000565 sealant Substances 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 7
- 239000011152 fibreglass Substances 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 7
- 239000012790 adhesive layer Substances 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 5
- 229920002635 polyurethane Polymers 0.000 claims description 5
- 238000011282 treatment Methods 0.000 claims description 5
- 229920001567 vinyl ester resin Polymers 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 4
- 238000003475 lamination Methods 0.000 claims description 3
- 239000002952 polymeric resin Substances 0.000 claims description 3
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 238000004026 adhesive bonding Methods 0.000 claims description 2
- 238000005304 joining Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims 1
- 229920003023 plastic Polymers 0.000 claims 1
- 229920001225 polyester resin Polymers 0.000 claims 1
- 239000004645 polyester resin Substances 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 abstract 1
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- 239000011151 fibre-reinforced plastic Substances 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000003466 welding Methods 0.000 description 7
- 239000007769 metal material Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011160 polymer matrix composite Substances 0.000 description 2
- 229920013657 polymer matrix composite Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910001095 light aluminium alloy Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/304—In-plane lamination by juxtaposing or interleaving of plies, e.g. scarf joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/88—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
- B29C70/882—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
- B29C70/885—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/18—Layered products comprising a layer of metal comprising iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B5/00—Hulls characterised by their construction of non-metallic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2705/00—Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
- B29K2705/08—Transition metals
- B29K2705/12—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/08—Reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/12—Ships
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B5/00—Hulls characterised by their construction of non-metallic material
- B63B5/24—Hulls characterised by their construction of non-metallic material made predominantly of plastics
- B63B2005/242—Hulls characterised by their construction of non-metallic material made predominantly of plastics made of a composite of plastics and other structural materials, e.g. wood or metal
- B63B2005/245—Hulls characterised by their construction of non-metallic material made predominantly of plastics made of a composite of plastics and other structural materials, e.g. wood or metal made of a composite of plastics and metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B5/00—Hulls characterised by their construction of non-metallic material
- B63B5/24—Hulls characterised by their construction of non-metallic material made predominantly of plastics
Definitions
- the technology sector in which the present invention is framed is that of Naval Construction and Oceanic Engineering, and in particular in the construction techniques of ship structures and marine artifacts.
- steels with a high elastic limit make it possible to lighten the structures, having a higher specific resistance than that of the steel itself, but always at the cost of neglecting some other important performance for a material that has to be used in naval applications.
- Steels with a high elastic limit are, in general, more difficult to weld and, fundamentally, more prone to fracture.
- Aluminum alloys provide the advantage of their lower density compared to steel, but they are also less rigid and, consequently, weight savings are not as important as one would expect; they are also more difficult to weld than steel and also present corrosion-fatigue problems.
- the composite materials used in shipbuilding are light and resistant, but the manufacturing processes are more laborious and expensive; In addition, they are very sensitive to impact damage and may present problems of deterioration of their mechanical properties by water absorption (osmosis).
- Hybrid fiber-metal materials aim to combine the advantages of both types of materials, avoiding, as far as possible, their disadvantages. Thus, it is intended to combine the high impact resistance and durability, together with ease of mechanization and manufacturing typical of metallic materials, with a high specific strength and stiffness in the direction of the fiber, as well as good fatigue resistance, characteristics of composite materials.
- the use of hybrid fiber-metal materials in different structural applications has been previously proposed.
- the first patents are from the sixties (US3091262, US3189054) and seventy (US4029838).
- the applications have focused especially on the aeronautical field and therefore the materials used are light aluminum alloys (while steel is used in the present invention) and epoxy polymer matrix composite material (vinyl ester is used in the present invention) with various reinforcements, such as carbon, aramid or glass fibers (the use of glass fiber is proposed exclusively in the present invention).
- the first commercially available fiber-metal laminates were made of aramid and aluminum (ARALL ®, laminates manufactured by ALCOA). These laminates were designed to improve the resistance to the propagation of fatigue cracks.
- the hybrid fiber-metal laminate for shipbuilding is made of steel sheets and composite sheets made of a polymer matrix reinforced with fiberglass.
- the quantity, thickness and orientation of each of these sheets and sheets are calculated to obtain adequate stiffness and strength in each area of the vessel.
- the composition of the laminate can vary to adapt the design of the material to the structural needs of each area of the vessel or marine artifact. However, it is necessary to adhere to the design of the material to a series of premises.
- the outermost layers will always be steel. In this way its impact resistance is used, protecting the composite material that is located inside the sandwich from possible delamination and micro-cracking. It also takes advantage of its ability to withstand higher temperatures than the polymer matrix of the compound, with less loss of mechanical properties and no smoke emission during a possible fire. Inside, other steel sheets can also be placed to increase the rigidity of the hybrid material.
- the composite sheets are always placed inside the sandwich formed by the external steel sheets.
- Preferred materials are those that have demonstrated their good performance in marine environments: polyester or vinyl ester matrix and continuous fiberglass reinforcement E.
- the fiber can be used in the form of a fabric or in the form of unidirectional reinforcement, depending on the directions preference that want to be reinforced based on the main directions of the tensions in service.
- the composite sheets will be grouped in packages with a certain number of layers, always between two steel sheets.
- the bond between sheet and sheet of composite material, within each package of the hybrid material, is carried out by means of the adhesion capacity of the polymer resin itself that constitutes the matrix.
- the connection between the composite package and the sheet metal material is made using a structural adhesive.
- This adhesive will be placed, at least, between the outermost sheets of steel and the first package of composite material, where interlaminar stresses can reach higher values.
- the adhesive has to be elastic, have a certain reversible deformation capacity, to absorb the difference in mechanical properties of the metal and the compound during flexural stresses of the panel of hybrid fiber-metal material without breaking.
- a two component polyurethane type adhesive is suitable for this purpose.
- the thickness of the adhesive layer must be controlled (according to the recommendations of each manufacturer for the type of adhesive selected) to accommodate deformation differences without reaching overweight that would cause premature failure of the adhesive bond.
- the panels of the hybrid fiber-metal laminate material can be flat or curved, to be used in different areas of naval structures and marine artifacts. In any case, it is necessary to assemble the individual panels to make the desired structure. For this purpose, the panels are constructed leaving the stair-shaped edges on all four edges, so that the steps of a panel fit with those of the neighboring panel. An elastic adhesive is applied to glue the panels together.
- the gluing surface that is, the surface of the assembly steps, must be sufficient to guarantee a perfect transmission by cutting the loads from one panel to another. The exact dimensions of these steps, between 2 and 20 centimeters, are calculated based on the dimensions of the panels and the expected loads in service.
- the assembly adhesive must also have a certain capacity to fill gaps and thus be able to absorb manufacturing tolerances.
- Sealing can be done in two ways: either by welding adjacent steel sheets or by using a polymeric sealant.
- welding it must be taken into account that metal must be provided to fill the gap between the two plates, trying to penetrate as little as possible so as not to damage the polymeric material below.
- polymeric sealant one with the capacity to fill the gaps and withstand the relative displacements between the two will be chosen plates without failures. The sealant must prevent the entry of water into the material during the service life of the structure.
- the panels can be painted, following the usual procedures in shipbuilding and ocean engineering, to protect the structure from corrosion phenomena.
- Figure 1 shows the lamination sequence, where each layer of the hybrid material is exposed to be able to appreciate the different materials used, their orientation, and the use of adhesive to bond some layers with others.
- Figure 2 A section of Figure 1 is shown in Figure 2, where the stacking sequence of the layers can be seen.
- Figure 2 is a laminate consisting of three steel sheets and two packages of composite material, each consisting of three individual sheets with different configurations and orientations.
- Figure 3 shows the assembly of four panels. One of them has been represented transparent to be able to appreciate the horizontal displacement of some layers with respect to others, in each panel, forming a staircase with three steps. The steps of a panel fit with those of the neighbor so that two unions never coincide one below the other.
- FIG 4 A section of figure 3 is shown in figure 4, where the assembly of the steps and their union can be observed using a structural adhesive.
- Figure 5 illustrates the sealing process of the external joints, on both sides of the laminate, either by welding or by using a polymeric sealant.
- a longitudinal joint is shown in this figure, but it is analogous to the joint in the transverse direction of the panel.
- the fiber-metal hybrid laminate for shipbuilding in question consists of two external steel sheets (la and Ic), with the possibility of including one or more intermediate steel sheets (Ib).
- the steel sheets can be flat or have the precise curvature for each specific application. It is possible to make panels without curvature, with curvature in a single direction or with double curvature; There is, therefore, no restriction regarding the panel geometry.
- the procedure for shaping steel sheets is not the subject of this report, there are numerous methods available (presses, folding machines, heat lines, etc.) depending on the thickness of the sheet.
- the steel sheets must then be subjected to a surface preparation treatment.
- a surface preparation treatment There are various treatments that prepare the surface of the steel to improve the effectiveness of adhesive joints. It is not the object of this report to detail said treatments.
- a suitable procedure is the performance of a cleaning with organic solvent in the vapor phase, followed by a hot bath treatment of phosphoric acid and ending with a cleaning in deionized water.
- a primer is applied to enhance the adhesion between the metal and the adhesive layer which will be applied next.
- the nature of the first depends on the type of adhesive to be used and, in each case, the adhesive manufacturer recommends which one is the most suitable first.
- the first one is applied to the internal surfaces (towards the inside of the laminate) of the two steel skins (la and Ic), on which it is to be laminated;
- the intermediate sheet or steel sheets (Ib) it is not necessary to apply the first one, although, eventually, it can also be applied to improve the adhesion between the metal and the polymeric resin that constitutes the matrix of the composite sheets.
- the external surfaces of the steel skins (la and Ic) be applied first, since on them it is possible that a different surface preparation is needed for subsequent painting.
- a paste adhesive layer (2a) is deposited on the first sheet of steel (the), spreading it evenly over the entire steel surface with the first one already applied.
- the most suitable adhesive is an elastic type adhesive, which is capable of accommodating the different mechanical properties of steel and the composite material that will be laminated on it.
- the adhesive itself must have sufficient strength to withstand the deformations to which it will be subjected without fail.
- a two-component polyurethane adhesive is a suitable choice, provided that the minimum and maximum thicknesses recommended by the manufacturer are respected, depending on the rheology of the product.
- Adhesive layers play an essential role in the overall behavior of the final hybrid material: If these layers of adhesive are not introduced, of an elastic nature and with the thickness recommended by the manufacturer to absorb the difference in deformations between layers. produce the failure of the union between the two materials.
- the adhesive acts as a transition element and when deformed it accommodates the deformations of the sheets of metal and composite material (la and 3a), softening the interlaminar tensions that occur at the junction of both materials when they are subjected to requests in flexo service - compression, avoiding or postponing the local buckling failures that would occur in such case.
- the composite material begins to be laminated on the steel sheet with the first and the adhesive.
- the steel sheet (la) itself, either flat or with the curvature that has been given, serves as a mold for the placement of successive layers of composite material, which does not require additional tools to manufacture the laminate, such as It is common in the realization of conventional composite materials. It simply requires some auxiliary elements for the precise placement of the sheets and keep them in position - acting as bumpers - during curing and consolidation of the polymer matrix, but not of a mold itself.
- the matrix and the reinforcement of the composite material will be ideal for the specific application that will be given to the panel within the structure. Specifically, for applications in shipbuilding and ocean engineering, materials that have already demonstrated their adaptation to the marine environment are preferred. In this sense, a vinyl ester resin matrix and a glass fiber reinforcement E have been chosen. The reinforcement is used dry, placed on the steel sheet that acts as a mold and impregnated in the resin in situ. The fiberglass reinforcement E is used as a fabric or as a unidirectional reinforcement. In the latter case, a reference system on the panel itself (6) will allow the fibers to be oriented in an appropriate manner depending on the main tensions to be supported during the service.
- the first sheet that is placed (3 a) is a unidirectional reinforcement at -45 °, followed by another (4a) at + 45 °.
- the purpose of these two layers is to introduce a preferred reinforcement in the direction where the maximum shear stresses will act during the service life of the structure, due to the torsional stresses on the panel.
- the concrete lamination sequence must be studied for each application, depending on the expected stress distribution in each area of the structure.
- each individually constructed panel is laminate having a series of steps at the edges.
- Figures 3 and 4 show how each new sheet of steel moves in a horizontal and vertical direction, in the plane of the laminate, a certain distance. On this new position of the sheet steel continues rolling. The end result is a staircase with three steps, on the four edges of the panel, and each step will have a height equal to each package of composite material plus the thickness of the steel sheet.
- Each panel can be assembled with four other panels fitting the stairs of their respective edges. To the outside two unions will appear: a longitudinal joint (7) that is not continuous, since each adjacent panel is moved in that direction so that the joint line does not coincide; a transverse joint (8) that is continuous.
- This way of assembling the panels makes it possible to ensure that the joints between panels in each layer (in the thickness direction) do not coincide and, therefore, reducing the risk of a joint failure being through the entire thickness of the hybrid laminated panel. .
- the panels assembled in the manner explained are glued by means of an adhesive (9) that does not have to coincide with that used in the manufacture of each panel.
- An adhesive that admits greater thicknesses is preferable, so that it is capable of filling the gaps between the two panels, thereby adsorbing manufacturing tolerances.
- a monocomponent polyurethane based adhesive is a suitable candidate.
- the length of the overlap zone between 2 and 20 centimeters depending on the dimensions of the panel and the maximum expected stresses, makes it possible for the transmission of loads between consecutive panels to be effective and to allow its flow through the entire structure without joint failures.
- the last stage consists in the sealing of the external joining lines, both longitudinal and transverse, to prevent the entry of water into the hybrid laminate.
- the sealing will be done on the two surfaces of the panel (10 and 11), either flat or curved. It is not a question of structural unions, since its mission is not the transmission of load between parts (work carried out by the adhesive joints of the internal overlaps), but simply the sealing of the joint line. This operation can be performed in two ways: by applying a polymeric sealant or by means of a welding bead.
- the desired characteristics are its resistance to water ingress at the junction and chemical compatibility with other polymers. employees in the hybrid material. It is also possible to use the adhesive itself used in the assembly of the panels.
- the present invention can be applied in shipbuilding and ocean engineering, in particular in the construction techniques of ship structures and marine artifacts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008503538A JP4843667B2 (ja) | 2005-04-01 | 2006-03-29 | 造船及び船舶に適用のメタルファイバーハイブリッド積層材とその製造プロセス。 |
EP06755312A EP1880841B1 (en) | 2005-04-01 | 2006-03-29 | Fibre-metal hybrid laminate material for shipbuilding and production method thereof |
ES06755312T ES2403639T3 (es) | 2005-04-01 | 2006-03-29 | Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200500746A ES2261070B2 (es) | 2005-04-01 | 2005-04-01 | Material laminado hibrido fibra-metal para construccion naval y su procedimiento de fabricacion. |
ESP200500746 | 2005-04-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006103309A2 true WO2006103309A2 (es) | 2006-10-05 |
WO2006103309A3 WO2006103309A3 (es) | 2006-11-30 |
Family
ID=37053743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2006/000152 WO2006103309A2 (es) | 2005-04-01 | 2006-03-29 | Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1880841B1 (es) |
JP (1) | JP4843667B2 (es) |
ES (2) | ES2261070B2 (es) |
WO (1) | WO2006103309A2 (es) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014011767A1 (en) * | 2012-07-10 | 2014-01-16 | Wayne State University | Method of making composite materials |
KR101866679B1 (ko) * | 2017-01-12 | 2018-06-11 | 한국해양대학교 산학협력단 | 카약의 갑판 및 헐 결합 구조 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN2012DN02733A (es) * | 2009-10-16 | 2015-09-11 | Aisin Seiki | |
CN102700168A (zh) * | 2011-03-28 | 2012-10-03 | 苏州工业园区兰多包装工程有限公司 | 一种包装纸箱及包装纸箱的生产方法 |
ITNA20120021A1 (it) * | 2012-05-02 | 2013-11-03 | Giovanni Chiesa | Dispositivo per trasportare in nave liquido pericoloso o inquinante |
NL1040411C2 (nl) * | 2013-09-26 | 2015-03-30 | Pul Isoleermaterialenind Bv | Werkwijze voor het vervaardigen van een laminaire constructieplaat. |
WO2015054824A1 (zh) * | 2013-10-15 | 2015-04-23 | 吴伟峰 | 一种涂料、制备方法及其应用 |
BR112016017258B1 (pt) * | 2014-05-05 | 2021-12-21 | Grupo General Cable Sistemas, S.L.U. | Estrutura de reforço para conexões de cabos submarinos |
KR101924479B1 (ko) * | 2018-03-09 | 2018-12-04 | 송완수 | 경량 패널 및 그 제조방법 |
AU2020425314B2 (en) * | 2020-01-21 | 2023-01-19 | Joseph Eric BLEAKLEY | Boat and structural reinforcement therefor |
DE102020133070A1 (de) | 2020-12-11 | 2022-06-15 | Audi Aktiengesellschaft | Baugruppe für ein Fahrzeug |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2341536A2 (fr) * | 1976-02-20 | 1977-09-16 | Technigaz | Materiau de construction notamment pour enceinte cryogenique et enceinte pourvue d'un tel materiau |
GB2061834A (en) * | 1979-11-08 | 1981-05-20 | Williams A L | Improvements relating to methods of boat construction |
JPS571751A (en) * | 1980-06-06 | 1982-01-06 | Toyota Motor Co Ltd | Composite material |
JPH0221021A (ja) * | 1988-07-07 | 1990-01-24 | Sekisui Chem Co Ltd | リンク部材 |
US5143790A (en) * | 1989-08-09 | 1992-09-01 | Westinghouse Electric Corp. | Integrally-damped steel composite laminated structure and method of attaching same |
US5160771A (en) * | 1990-09-27 | 1992-11-03 | Structural Laminates Company | Joining metal-polymer-metal laminate sections |
JPH06198808A (ja) * | 1992-12-29 | 1994-07-19 | Tonen Corp | Frp製パイプ |
US5547735A (en) * | 1994-10-26 | 1996-08-20 | Structural Laminates Company | Impact resistant laminate |
JPH08309926A (ja) * | 1995-05-17 | 1996-11-26 | Nitto Boseki Co Ltd | 積層板材及びそれから作製した織機の綜絖枠 |
US6050208A (en) * | 1996-11-13 | 2000-04-18 | Fern Investments Limited | Composite structural laminate |
US6171705B1 (en) * | 1997-02-10 | 2001-01-09 | Dofasco, Inc. | Structural panel and method of manufacture |
DE19835727A1 (de) * | 1998-08-07 | 2000-02-10 | Basf Ag | Verbundelemente |
US20010053451A1 (en) * | 2000-03-30 | 2001-12-20 | Yoshiaki Togawa | Laminated product and process for producing the same |
GB2399544B (en) * | 2003-03-18 | 2006-05-17 | Intelligent Engineering | Profiled hatch covers |
JP4274091B2 (ja) * | 2004-09-17 | 2009-06-03 | ユニチカ株式会社 | 極超低温容器用気密補強材 |
-
2005
- 2005-04-01 ES ES200500746A patent/ES2261070B2/es active Active
-
2006
- 2006-03-29 ES ES06755312T patent/ES2403639T3/es active Active
- 2006-03-29 EP EP06755312A patent/EP1880841B1/en not_active Not-in-force
- 2006-03-29 JP JP2008503538A patent/JP4843667B2/ja not_active Expired - Fee Related
- 2006-03-29 WO PCT/ES2006/000152 patent/WO2006103309A2/es not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of EP1880841A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014011767A1 (en) * | 2012-07-10 | 2014-01-16 | Wayne State University | Method of making composite materials |
KR101866679B1 (ko) * | 2017-01-12 | 2018-06-11 | 한국해양대학교 산학협력단 | 카약의 갑판 및 헐 결합 구조 |
Also Published As
Publication number | Publication date |
---|---|
JP2008534367A (ja) | 2008-08-28 |
ES2261070A1 (es) | 2006-11-01 |
JP4843667B2 (ja) | 2011-12-21 |
WO2006103309A3 (es) | 2006-11-30 |
ES2261070B2 (es) | 2007-06-16 |
EP1880841A4 (en) | 2011-11-30 |
ES2403639T3 (es) | 2013-05-20 |
EP1880841B1 (en) | 2013-01-23 |
EP1880841A2 (en) | 2008-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2403639T3 (es) | Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación | |
JP2008534367A5 (es) | ||
ES2744478T3 (es) | Estructura de aeronave para un retorno de gran capacidad | |
ES2386176B1 (es) | Material compuesto multifuncional con intercapa visco-elástica. | |
JP4854893B2 (ja) | 車両用強化積層窓ガラス | |
JPS6338099A (ja) | 回転翼航空機用ブレ−ド及びその製造方法 | |
CN101289017B (zh) | 高速列车用复合材料结构及其制造方法 | |
US20090263676A1 (en) | Method for Connection At Least Two Pieces of Sheet Material, Particularly At Least Two Metal Sheets for a Lightweight Structure As Well a Joining and Lightweight Structure | |
US20140130438A1 (en) | Transportable modular system for covered isolation of assets | |
CN113661298B (zh) | 层压木塔和用于组装层压木塔的方法 | |
NO328210B1 (no) | Baerende laminatelement, skips- eller bygningskonstruksjon omfattende laminatelementet og fremgangsmate for fremstilling av laminatelementet. | |
ES2739032T3 (es) | Perfil de soporte y unión con relleno de refuerzo así como procedimiento para la fabricación de un perfil metálico reforzado con fibras | |
WO2008053041A1 (en) | Stiffened casing for an aircraft or spacecraft with a laminate stringer of high rigidity and corresponding laminate stringer | |
ES2394426T3 (es) | Miembros de placas estructurales interlaminares mejorados | |
ES2369442A1 (es) | Inserto de pala y método de colocación de insertos en el laminado de una pala. | |
US7100871B2 (en) | Lightweight structural component made of metallic ply materials | |
JP2010538238A (ja) | 高性能防弾グレージング | |
EP1678403B1 (en) | Load bearing laminates | |
CA2811684C (en) | Method of producing an enforced delimited element and such an element | |
ES1184935U (es) | Material laminado híbrido compuesto por fibra y/o aleaciones metálicas en forma de malla tridimensional para la construcción naval, aeronáutica y construcción en general. | |
ES2255966T3 (es) | Elemento compuesto de construccion de capas multiples, asi como procedimiento para su produccion. | |
ES1184458U (es) | Material híbrido compuesto por fibra-metálico en forma de panel, capa con malla tridimensional para la construcción naval, aeronáutica, ingeniería mecanizada, construcción | |
WO2019170929A1 (es) | Material híbrido compuesto por fibra-metálico en forma de panel, capa con malla tridimensional para la construcción naval, aeronáutica, ingeniería mecanizada, construcción. | |
ES1265090Y1 (es) | Un panel para la construcción | |
ES2532528T3 (es) | Capota de vehículo, material compuesto y procedimiento para la fabricación de una capota de automóvil o de un material compuesto |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2008503538 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006755312 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06755312 Country of ref document: EP Kind code of ref document: A2 |
|
WWP | Wipo information: published in national office |
Ref document number: 2006755312 Country of ref document: EP |