WO2006103309A2 - Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación - Google Patents

Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación Download PDF

Info

Publication number
WO2006103309A2
WO2006103309A2 PCT/ES2006/000152 ES2006000152W WO2006103309A2 WO 2006103309 A2 WO2006103309 A2 WO 2006103309A2 ES 2006000152 W ES2006000152 W ES 2006000152W WO 2006103309 A2 WO2006103309 A2 WO 2006103309A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel
composite material
adhesive
panels
laminate
Prior art date
Application number
PCT/ES2006/000152
Other languages
English (en)
French (fr)
Other versions
WO2006103309A3 (es
Inventor
Juan Carlos Suárez Bermejo
Santiago Miguel Alonso
Ignacio Diez De Ulzurrum Romeo
Francisco López Martín
Paz Pinilla Cea
Miguel Ángel Herreros Sierra
José Illescas Molina
Ana SORIA BARTOLOMÉ
Ana García Núñez
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Priority to EP06755312A priority Critical patent/EP1880841B1/en
Priority to JP2008503538A priority patent/JP4843667B2/ja
Priority to ES06755312T priority patent/ES2403639T3/es
Publication of WO2006103309A2 publication Critical patent/WO2006103309A2/es
Publication of WO2006103309A3 publication Critical patent/WO2006103309A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/304In-plane lamination by juxtaposing or interleaving of plies, e.g. scarf joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • B29C70/885Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/12Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/24Hulls characterised by their construction of non-metallic material made predominantly of plastics
    • B63B2005/242Hulls characterised by their construction of non-metallic material made predominantly of plastics made of a composite of plastics and other structural materials, e.g. wood or metal
    • B63B2005/245Hulls characterised by their construction of non-metallic material made predominantly of plastics made of a composite of plastics and other structural materials, e.g. wood or metal made of a composite of plastics and metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/24Hulls characterised by their construction of non-metallic material made predominantly of plastics

Definitions

  • the technology sector in which the present invention is framed is that of Naval Construction and Oceanic Engineering, and in particular in the construction techniques of ship structures and marine artifacts.
  • steels with a high elastic limit make it possible to lighten the structures, having a higher specific resistance than that of the steel itself, but always at the cost of neglecting some other important performance for a material that has to be used in naval applications.
  • Steels with a high elastic limit are, in general, more difficult to weld and, fundamentally, more prone to fracture.
  • Aluminum alloys provide the advantage of their lower density compared to steel, but they are also less rigid and, consequently, weight savings are not as important as one would expect; they are also more difficult to weld than steel and also present corrosion-fatigue problems.
  • the composite materials used in shipbuilding are light and resistant, but the manufacturing processes are more laborious and expensive; In addition, they are very sensitive to impact damage and may present problems of deterioration of their mechanical properties by water absorption (osmosis).
  • Hybrid fiber-metal materials aim to combine the advantages of both types of materials, avoiding, as far as possible, their disadvantages. Thus, it is intended to combine the high impact resistance and durability, together with ease of mechanization and manufacturing typical of metallic materials, with a high specific strength and stiffness in the direction of the fiber, as well as good fatigue resistance, characteristics of composite materials.
  • the use of hybrid fiber-metal materials in different structural applications has been previously proposed.
  • the first patents are from the sixties (US3091262, US3189054) and seventy (US4029838).
  • the applications have focused especially on the aeronautical field and therefore the materials used are light aluminum alloys (while steel is used in the present invention) and epoxy polymer matrix composite material (vinyl ester is used in the present invention) with various reinforcements, such as carbon, aramid or glass fibers (the use of glass fiber is proposed exclusively in the present invention).
  • the first commercially available fiber-metal laminates were made of aramid and aluminum (ARALL ®, laminates manufactured by ALCOA). These laminates were designed to improve the resistance to the propagation of fatigue cracks.
  • the hybrid fiber-metal laminate for shipbuilding is made of steel sheets and composite sheets made of a polymer matrix reinforced with fiberglass.
  • the quantity, thickness and orientation of each of these sheets and sheets are calculated to obtain adequate stiffness and strength in each area of the vessel.
  • the composition of the laminate can vary to adapt the design of the material to the structural needs of each area of the vessel or marine artifact. However, it is necessary to adhere to the design of the material to a series of premises.
  • the outermost layers will always be steel. In this way its impact resistance is used, protecting the composite material that is located inside the sandwich from possible delamination and micro-cracking. It also takes advantage of its ability to withstand higher temperatures than the polymer matrix of the compound, with less loss of mechanical properties and no smoke emission during a possible fire. Inside, other steel sheets can also be placed to increase the rigidity of the hybrid material.
  • the composite sheets are always placed inside the sandwich formed by the external steel sheets.
  • Preferred materials are those that have demonstrated their good performance in marine environments: polyester or vinyl ester matrix and continuous fiberglass reinforcement E.
  • the fiber can be used in the form of a fabric or in the form of unidirectional reinforcement, depending on the directions preference that want to be reinforced based on the main directions of the tensions in service.
  • the composite sheets will be grouped in packages with a certain number of layers, always between two steel sheets.
  • the bond between sheet and sheet of composite material, within each package of the hybrid material, is carried out by means of the adhesion capacity of the polymer resin itself that constitutes the matrix.
  • the connection between the composite package and the sheet metal material is made using a structural adhesive.
  • This adhesive will be placed, at least, between the outermost sheets of steel and the first package of composite material, where interlaminar stresses can reach higher values.
  • the adhesive has to be elastic, have a certain reversible deformation capacity, to absorb the difference in mechanical properties of the metal and the compound during flexural stresses of the panel of hybrid fiber-metal material without breaking.
  • a two component polyurethane type adhesive is suitable for this purpose.
  • the thickness of the adhesive layer must be controlled (according to the recommendations of each manufacturer for the type of adhesive selected) to accommodate deformation differences without reaching overweight that would cause premature failure of the adhesive bond.
  • the panels of the hybrid fiber-metal laminate material can be flat or curved, to be used in different areas of naval structures and marine artifacts. In any case, it is necessary to assemble the individual panels to make the desired structure. For this purpose, the panels are constructed leaving the stair-shaped edges on all four edges, so that the steps of a panel fit with those of the neighboring panel. An elastic adhesive is applied to glue the panels together.
  • the gluing surface that is, the surface of the assembly steps, must be sufficient to guarantee a perfect transmission by cutting the loads from one panel to another. The exact dimensions of these steps, between 2 and 20 centimeters, are calculated based on the dimensions of the panels and the expected loads in service.
  • the assembly adhesive must also have a certain capacity to fill gaps and thus be able to absorb manufacturing tolerances.
  • Sealing can be done in two ways: either by welding adjacent steel sheets or by using a polymeric sealant.
  • welding it must be taken into account that metal must be provided to fill the gap between the two plates, trying to penetrate as little as possible so as not to damage the polymeric material below.
  • polymeric sealant one with the capacity to fill the gaps and withstand the relative displacements between the two will be chosen plates without failures. The sealant must prevent the entry of water into the material during the service life of the structure.
  • the panels can be painted, following the usual procedures in shipbuilding and ocean engineering, to protect the structure from corrosion phenomena.
  • Figure 1 shows the lamination sequence, where each layer of the hybrid material is exposed to be able to appreciate the different materials used, their orientation, and the use of adhesive to bond some layers with others.
  • Figure 2 A section of Figure 1 is shown in Figure 2, where the stacking sequence of the layers can be seen.
  • Figure 2 is a laminate consisting of three steel sheets and two packages of composite material, each consisting of three individual sheets with different configurations and orientations.
  • Figure 3 shows the assembly of four panels. One of them has been represented transparent to be able to appreciate the horizontal displacement of some layers with respect to others, in each panel, forming a staircase with three steps. The steps of a panel fit with those of the neighbor so that two unions never coincide one below the other.
  • FIG 4 A section of figure 3 is shown in figure 4, where the assembly of the steps and their union can be observed using a structural adhesive.
  • Figure 5 illustrates the sealing process of the external joints, on both sides of the laminate, either by welding or by using a polymeric sealant.
  • a longitudinal joint is shown in this figure, but it is analogous to the joint in the transverse direction of the panel.
  • the fiber-metal hybrid laminate for shipbuilding in question consists of two external steel sheets (la and Ic), with the possibility of including one or more intermediate steel sheets (Ib).
  • the steel sheets can be flat or have the precise curvature for each specific application. It is possible to make panels without curvature, with curvature in a single direction or with double curvature; There is, therefore, no restriction regarding the panel geometry.
  • the procedure for shaping steel sheets is not the subject of this report, there are numerous methods available (presses, folding machines, heat lines, etc.) depending on the thickness of the sheet.
  • the steel sheets must then be subjected to a surface preparation treatment.
  • a surface preparation treatment There are various treatments that prepare the surface of the steel to improve the effectiveness of adhesive joints. It is not the object of this report to detail said treatments.
  • a suitable procedure is the performance of a cleaning with organic solvent in the vapor phase, followed by a hot bath treatment of phosphoric acid and ending with a cleaning in deionized water.
  • a primer is applied to enhance the adhesion between the metal and the adhesive layer which will be applied next.
  • the nature of the first depends on the type of adhesive to be used and, in each case, the adhesive manufacturer recommends which one is the most suitable first.
  • the first one is applied to the internal surfaces (towards the inside of the laminate) of the two steel skins (la and Ic), on which it is to be laminated;
  • the intermediate sheet or steel sheets (Ib) it is not necessary to apply the first one, although, eventually, it can also be applied to improve the adhesion between the metal and the polymeric resin that constitutes the matrix of the composite sheets.
  • the external surfaces of the steel skins (la and Ic) be applied first, since on them it is possible that a different surface preparation is needed for subsequent painting.
  • a paste adhesive layer (2a) is deposited on the first sheet of steel (the), spreading it evenly over the entire steel surface with the first one already applied.
  • the most suitable adhesive is an elastic type adhesive, which is capable of accommodating the different mechanical properties of steel and the composite material that will be laminated on it.
  • the adhesive itself must have sufficient strength to withstand the deformations to which it will be subjected without fail.
  • a two-component polyurethane adhesive is a suitable choice, provided that the minimum and maximum thicknesses recommended by the manufacturer are respected, depending on the rheology of the product.
  • Adhesive layers play an essential role in the overall behavior of the final hybrid material: If these layers of adhesive are not introduced, of an elastic nature and with the thickness recommended by the manufacturer to absorb the difference in deformations between layers. produce the failure of the union between the two materials.
  • the adhesive acts as a transition element and when deformed it accommodates the deformations of the sheets of metal and composite material (la and 3a), softening the interlaminar tensions that occur at the junction of both materials when they are subjected to requests in flexo service - compression, avoiding or postponing the local buckling failures that would occur in such case.
  • the composite material begins to be laminated on the steel sheet with the first and the adhesive.
  • the steel sheet (la) itself, either flat or with the curvature that has been given, serves as a mold for the placement of successive layers of composite material, which does not require additional tools to manufacture the laminate, such as It is common in the realization of conventional composite materials. It simply requires some auxiliary elements for the precise placement of the sheets and keep them in position - acting as bumpers - during curing and consolidation of the polymer matrix, but not of a mold itself.
  • the matrix and the reinforcement of the composite material will be ideal for the specific application that will be given to the panel within the structure. Specifically, for applications in shipbuilding and ocean engineering, materials that have already demonstrated their adaptation to the marine environment are preferred. In this sense, a vinyl ester resin matrix and a glass fiber reinforcement E have been chosen. The reinforcement is used dry, placed on the steel sheet that acts as a mold and impregnated in the resin in situ. The fiberglass reinforcement E is used as a fabric or as a unidirectional reinforcement. In the latter case, a reference system on the panel itself (6) will allow the fibers to be oriented in an appropriate manner depending on the main tensions to be supported during the service.
  • the first sheet that is placed (3 a) is a unidirectional reinforcement at -45 °, followed by another (4a) at + 45 °.
  • the purpose of these two layers is to introduce a preferred reinforcement in the direction where the maximum shear stresses will act during the service life of the structure, due to the torsional stresses on the panel.
  • the concrete lamination sequence must be studied for each application, depending on the expected stress distribution in each area of the structure.
  • each individually constructed panel is laminate having a series of steps at the edges.
  • Figures 3 and 4 show how each new sheet of steel moves in a horizontal and vertical direction, in the plane of the laminate, a certain distance. On this new position of the sheet steel continues rolling. The end result is a staircase with three steps, on the four edges of the panel, and each step will have a height equal to each package of composite material plus the thickness of the steel sheet.
  • Each panel can be assembled with four other panels fitting the stairs of their respective edges. To the outside two unions will appear: a longitudinal joint (7) that is not continuous, since each adjacent panel is moved in that direction so that the joint line does not coincide; a transverse joint (8) that is continuous.
  • This way of assembling the panels makes it possible to ensure that the joints between panels in each layer (in the thickness direction) do not coincide and, therefore, reducing the risk of a joint failure being through the entire thickness of the hybrid laminated panel. .
  • the panels assembled in the manner explained are glued by means of an adhesive (9) that does not have to coincide with that used in the manufacture of each panel.
  • An adhesive that admits greater thicknesses is preferable, so that it is capable of filling the gaps between the two panels, thereby adsorbing manufacturing tolerances.
  • a monocomponent polyurethane based adhesive is a suitable candidate.
  • the length of the overlap zone between 2 and 20 centimeters depending on the dimensions of the panel and the maximum expected stresses, makes it possible for the transmission of loads between consecutive panels to be effective and to allow its flow through the entire structure without joint failures.
  • the last stage consists in the sealing of the external joining lines, both longitudinal and transverse, to prevent the entry of water into the hybrid laminate.
  • the sealing will be done on the two surfaces of the panel (10 and 11), either flat or curved. It is not a question of structural unions, since its mission is not the transmission of load between parts (work carried out by the adhesive joints of the internal overlaps), but simply the sealing of the joint line. This operation can be performed in two ways: by applying a polymeric sealant or by means of a welding bead.
  • the desired characteristics are its resistance to water ingress at the junction and chemical compatibility with other polymers. employees in the hybrid material. It is also possible to use the adhesive itself used in the assembly of the panels.
  • the present invention can be applied in shipbuilding and ocean engineering, in particular in the construction techniques of ship structures and marine artifacts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

La presente invención se refiere a un material laminado híbrido fibra-metal para construcción naval, formado por láminas alternativas de acero y material compuesto de matriz polimérica reforzada con fibra de vidrio. Mediante la combinación de estos materiales, el posicionamiento y la orientación precisas de cada capa, la unión de las distintas capas entre sí usando adhesivos estructurales elásticos y el ensamblaje de los paneles se logra un producto final con prestaciones superiores. El resultado es un material más ligero, resistente, tenaz y seguro, que puede ser diseñado a medida para atender los requerimientos específicos de cada zona de la estructura. El procedimiento de fabricación modular es capaz de adaptarse a geometrías tanto planas como curvas.

Description

TÍTULO
Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación
SECTOR TÉCNICO
El sector de la tecnología en que se encuadra la presente invención es el de la Construcción Naval e Ingeniería Oceánica, y en particular en las técnicas de construcción de las estructuras de buques y artefactos marinos.
ANTECEDENTES DE LAINVENCIÓN
Existe una necesidad de disponer de nuevos materiales para construcción naval e ingeniería oceánica capaces de satisfacer los requerimientos relativos al diseño y fabricación de estructuras más ligeras a la vez que resistentes, que permitan más elevadas velocidades de desplazamiento y un menor consumo energético. Algunos ejemplos actuales son los ferries rápidos, portacontenedores de alta velocidad, petroleros de doble casco, etc. El acero, material tradicionalmente empleado en la fabricación de embarcaciones y otras estructuras marinas, tiene una serie de limitaciones que impide seguir mejorando en la línea de construir estructuras ligeras, resistentes y seguras. Entre las ventajas se puede citar que es barato, fácilmente conformable y mecanizable, soldable, tiene un comportamiento y propiedades muy estudiadas y bien conocidas, es muy tenaz y resistente al impacto. Por otra parte, las desventajas más acusadas son su elevada densidad y los problemas de corrosión que presenta.
Se han propuesto y usado otros materiales alternativos en este sector industrial: aceros de alto límite elástico, aleaciones de aluminio y materiales compuestos de matriz polimérica. Todos ellos hacen posible aligerar las estructuras, al tener una resistencia específica más elevada que la del propio acero, pero siempre a costa de desatender alguna otra prestación importante para un material que ha de ser usado en aplicaciones navales. Los aceros de alto límite elástico son, en general, más difíciles de soldar y, fundamentalmente, más proclives a la fractura. Las aleaciones de aluminio aportan la ventaja de su menor densidad respecto al acero, pero también son menos rígidas y, en consecuencia, los ahorros de peso no son tan importantes como cabría esperar; también son más difíciles de soldar que el acero y presentan, además, problemas de corrosión- fatiga. Los materiales compuestos utilizados en construcción naval (matriz de poliéster o viniléster, reforzada con fibra de vidrio) son ligeros y resistentes, pero los procesos de fabricación son más laboriosos y costosos; además, son muy sensibles al dañado por impacto y pueden presentar problemas de deterioro de sus propiedades mecánicas por absorción de agua (osmosis).
Los materiales híbridos fibra-metal pretenden aunar las ventajas de ambos tipos de materiales evitando, en lo posible, sus inconvenientes. Así, se pretende combinar la elevada resistencia al impacto y durabilidad, junto con facilidad de mecanización y fabricación típicas de los materiales metálicos, con una elevada resistencia y rigidez específicas en la dirección de la fibra, así como una buena resistencia a la fatiga, características de los materiales compuestos.
Se ha propuesto con anterioridad el empleo de los materiales híbridos fibra- metal en distintas aplicaciones estructurales. Las primeras patentes son de los años sesenta (US3091262, US3189054) y setenta (US4029838). Las aplicaciones se han centrado especialmente en el campo aeronáutico y por ello los materiales empleados son aleaciones ligeras de aluminio (mientras que en la presente invención se utiliza el acero) y material compuesto de matriz polimérica epoxi (en la presente invención se utiliza viniléster) con refuerzos diversos, como fibras de carbono, aramida o vidrio (se propone en la presente invención exclusivamente el empleo de fibra de vidrio). Los primeros laminados fibra-metal disponibles comercialmente estaban hechos de aramida y aluminio (ARALL ®, laminados fabricados por ALCOA). Estos laminados estaban diseñados para mejorar la resistencia a la propagación de grietas por fatiga. Sucesivas aportaciones (US 5227216) han permitido mejorar algunos modos de fallo indeseables en aplicaciones aeronáuticas, donde las cargas en servicio son distintas de las que tiene que soportar un buque y, por tanto, también es distinta la configuración del material que se describe en la presente invención. En otras ocasiones, se ha buscado con el material híbrido, además de un papel estructural para soportar las cargas en servicio, la interposición de capas que actuarán como escudo térmico en componentes para misiles (US 5979826, US5824404); estos requerimientos no son necesarios en construcción naval y, en consecuencia, el material compuesto de matriz pre-cerámica no es incluido en el material objeto de patente. Algunas aplicaciones dentro del sector del automóvil pueden ser encontradas (IT1279568, US2002178672), aunque en estos casos las capas externas del laminado son de resina transparente y resistente a la degradación medioambiental, con algún pigmento o relleno que les dé una apariencia estéticamente agradable; en este caso, las capas externas son de acero para aprovechar su capacidad de resistir impactos y el acabado superficial se proporciona mediante un sistema de pintura de los habitualmente empleados en la construcción naval. También se pueden encontrar documentos de patente más recientes donde se recoge el empleo de este tipo de materiales en aplicaciones menos sofisticadas, como puede ser el diseño y fabricación de monopatines (US 2004/0188967 Al), aunque debido a que son estructuras pequeñas se introducen materiales como la madera y el titanio que no son viables en la construcción de grandes estructuras navales y oceánicas.
En cuanto a las técnicas de fabricación, dejando a un lado la composición de los propios materiales híbridos, existen diversas patentes que recogen aspectos diversos, como puede ser el ensamblaje de paneles, aunque en estos casos se sigue un esquema en el que la terminación de una capa metálica se continúa con una de material compuesto (US 5160771), o bien se dispone una lámina de material compuesto que es continua por encima de la unión de dos láminas metálicas (US5951800); en la presente invención, se propone la fabricación de paneles, planos o curvos, con perímetro en escalera que van encajando unos con otros, de manera que se pueda ir construyendo por partes estructuras de gran tamaño, como buques y artefactos marinos. Por último, existe información disponible sobre la utilización de moldes cerámicos (US5149251, US5252160) y matrices para conferir la curvatura necesaria a los laminados (US3711934). La solución que se propone es conformar independientemente las chapas de acero y utilizar esos elementos como moldes para laminar sobre ellos al material compuesto, evitando así la construcción de moldes específicos. DESCRIPCIÓN DE LA INVENCIÓN
El material laminado híbrido fibra-metal para construcción naval está constituido por chapas de acero y láminas de material compuesto constituidas por una matriz polimérica reforzada con fibra de vidrio. La cantidad, espesor y orientación de cada una de estas chapas y láminas son calculadas para obtener la rigidez y resistencia adecuadas en cada zona del buque. La composición del laminado puede ir variando para adaptar el diseño del material a las necesidades estructurales de cada zona del buque o artefacto marino. No obstante, es necesario atenerse en el diseño del material a una serie de premisas.
Las capas más externas serán siempre de acero. De esta manera se aprovecha su resistencia al impacto, protegiendo al material compuesto que se sitúa en el interior del sandwich de posibles delaminaciones y microagrietamientos. También se saca partido de su capacidad de soportar temperaturas más elevadas que la matriz polimérica del compuesto, con una menor pérdida de propiedades mecánicas y sin emisión de humos durante un posible incendio. Interiormente se pueden colocar, asimismo, otras chapas de acero para aumentar la rigidez del material híbrido.
Las láminas de material compuesto se sitúan siempre en el interior del sandwich formado por las chapas externas de acero. Los materiales preferidos son aquellos que han venido demostrado su buen comportamiento en ambiente marino: matriz de poliéster o viniléster y refuerzo de fibra continua de vidrio E. La fibra puede ser utilizada en forma de tejido o en forma de refuerzo unidireccional, dependiendo de las direcciones preferentes que quieran ser reforzadas en función de las direcciones principales de las tensiones en servicio. Las láminas de material compuesto se agruparán en paquetes con un número determinado de capas, comprendidas siempre entre dos chapas de acero.
La unión entre lámina y lámina de material compuesto, dentro de cada paquete del material híbrido, se realiza mediante la capacidad de adhesión de la propia resina polimérica que constituye la matriz. La unión entre el paquete de material compuesto y la chapa de material metálico se realiza utilizando un adhesivo estructural. Este adhesivo se colocará, al menos, entre las chapas más externas de acero y el primer paquete de material compuesto, donde las tensiones interlaminares pueden alcanzar valores más elevados. El adhesivo tiene que ser elástico, tener una cierta capacidad de deformación reversible, para absorber la diferencia de propiedades mecánicas del metal y del compuesto durante las solicitaciones a flexión del panel de material híbrido fibra- metal sin llegar a rotura. Un adhesivo de tipo poliuretano bicomponente es adecuado para este propósito. Se ha de controlar, no obstante, el espesor de la capa de adhesivo (según las recomendaciones de cada fabricante para el tipo de adhesivo seleccionado) para acomodar las diferencias de deformación sin llegar a sobrespesores que provocarían un fallo prematuro de la unión adhesiva.
Los paneles del material laminado híbrido fibra-metal pueden ser planos o curvos, para poder ser empleados en distintas zonas de las estructuras navales y artefactos marinos. En todo caso, es preciso realizar el ensamblaje de los paneles individuales para ir confeccionando la estructura deseada. A tal efecto, los paneles se construyen dejando los bordes en forma de escalera en los cuatro bordes, de manera que los escalones de un panel encajen con los del panel vecino. Se aplica un adhesivo elástico para pegar los paneles entre sí. La superficie de pegado, es decir, la superficie de los escalones de ensamblaje, tiene que ser suficiente para garantizar una perfecta transmisión por cortadura de las cargas de un panel a otro. Las dimensiones exactas de estos escalones, de entre 2 y 20 centímetros, se calculan en base a las dimensiones de los paneles y a las cargas esperadas en servicio. El adhesivo de ensamblaje debe tener, asimismo, una cierta capacidad para rellenar huecos y poder absorber de esta manera las tolerancias de fabricación.
Una vez realizado el ensamblaje de los paneles, es necesario sellar las uniones que quedan al exterior, en ambas superficies del laminado híbrido, y en direcciones longitudinales y transversales. Estas uniones contribuyen a la transmisión de cargas entre paneles pero, sobre todo, sirven para impedir la entrada de agua al interior del laminado. El sellado se puede realizar de dos maneras: bien soldando las chapas de acero contiguas o bien utilizando un sellante polimérico. En el caso de soldar, hay que tener en cuenta que se debe aportar metal para rellenar la holgura entre las dos chapas, intentando penetrar lo menos posible para no dañar el material polimérico que se encuentra más abajo. En el caso de utilizar un sellante polimérico se elegirá alguno con capacidad para rellenar los huecos y soportar los desplazamientos relativos entre las dos chapas sin que se produzcan fallos. El sellante debe impedir la entrada de agua en el interior del material durante el tiempo de vida en servicio de la estructura.
Una vez ensamblados los paneles se puede proceder al pintado de los mismos, siguiendo los procedimientos habituales en construcción naval e ingeniería oceánica, para proteger a la estructura de los fenómenos de corrosión.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Para la mejor descripción de cuanto queda descrito en la presente memoria, se acompañan unos dibujos en los que, tan sólo a título de ejemplo, se representa un caso práctico de un procedimiento de fabricación y ensamblaje de un material laminado híbrido fibra-metal para construcción naval.
En la figura 1 se muestra la secuencia de laminación, donde se dejan al descubierto cada una de las capas del material híbrido para poder apreciar los distintos materiales empleados, su orientación, y el empleo de adhesivo para unir unas capas con otras.
Un corte de la figura 1 se muestra en la figura 2, donde se aprecia la secuencia de apilamiento de las capas. En este caso particular se trata de un laminado constituido por tres chapas de acero y dos paquetes de material compuesto, formado cada uno de ellos por tres láminas individuales con distintas configuraciones y orientaciones.
La figura 3 muestra el ensamblaje de cuatro paneles. Uno de ellos se ha representado transparente para poder apreciar el desplazamiento horizontal de unas capas con respecto a otras, en cada panel, formando una escalera con tres peldaños. Los escalones de un panel encajan con los del vecino de manera que nunca coinciden dos uniones una debajo de la otra.
Una sección de la figura 3 se muestra en la figura 4, donde se puede observar el ensamblaje de los escalones y su unión utilizando un adhesivo estructural.
La figura 5 ilustra el proceso de sellado de las juntas externas, en ambas caras del laminado, bien mediante una soldadura o bien mediante el empleo de un sellante polimérico. Se muestra en esta figura una unión longitudinal, pero es en todo análoga a la unión en la dirección transversal del panel. DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA
El material laminado híbrido fibra-metal para construcción naval en cuestión está constituido por dos chapas externas de acero (la y Ic), con la posibilidad de incluir una o más chapas de acero intermedias (Ib). Las chapas de acero pueden ser planas o tener la curvatura precisa para cada aplicación concreta. Es posible realizar paneles sin curvatura, con curvatura en una única dirección o con doble curvatura; no hay, pues, ninguna restricción en lo referente a la geometría del panel. El procedimiento para dar forma a las chapas de acero no es objeto de esta memoria, existiendo numerosos métodos disponibles (prensas, plegadoras, líneas de calor, etc) en función del espesor de la chapa.
Las chapas de acero han de ser sometidas a continuación a un tratamiento de preparación superficial. Existen diversos tratamientos que preparan la superficie del acero para mejorar la efectividad de las uniones adhesivas. No es objeto de esta memoria el pormenorizar dichos tratamientos. No obstante, un procedimiento adecuado, a título de ejemplo, es la realización de una limpieza con disolvente orgánico en fase vapor, seguida de un tratamiento en baño caliente de ácido fosfórico y finalizando con una limpieza en agua desionizada. Sobre las superficies de las chapas de acero (la y Ic) se aplica un primer para potenciar la adhesión entre el metal y la capa de adhesivo que se aplicará a continuación. La naturaleza del primer depende del tipo de adhesivo que se vaya a utilizar y, en cada caso, el fabricante del adhesivo recomienda cuál es el primer más adecuado. Sólo se aplica el primer a las superficies internas (hacia el interior del laminado) de la dos pieles de acero (la y Ic), sobre las cuales se va a laminar; en la chapa o chapas de acero intermedias (Ib) no es necesario aplicar el primer aunque, eventualmente, puede aplicarse también para mejorar la adherencia entre el metal y la resina polimérica que constituye la matriz de las láminas de material compuesto. En ningún caso se aplicará primer a las superficies externas de las pieles de acero (la y Ic), ya que sobre ellas es posible que se necesite una preparación superficial diferente para su pintado posterior. Sobre la primera chapa de acero (la) se deposita una capa de adhesivo en pasta (2a), repartiéndolo homogéneamente sobre toda la superficie de acero con el primer ya aplicado. El adhesivo más adecuado es un adhesivo de tipo elástico, que sea capaz de acomodar las propiedades mecánicas diferentes del acero y del material compuesto que se laminará sobre él. El propio adhesivo ha de tener una resistencia suficiente para soportar las deformaciones a que se verá sometido sin fallar. Un adhesivo de poliuretano bicomponente es una elección adecuada, siempre que se respeten los espesores mínimos y máximos recomendados por el fabricante, en función de la reología del producto. Las capas de adhesivo juegan un papel esencial en el comportamiento global del material híbrido final: Si no se introducen estas capas de adhesivo, de naturaleza elástica y con el espesor recomendado por el fabricante para absorber la diferencia de deformaciones entre capa y capa, se puede producir el fallo de la unión entre los dos materiales. El adhesivo actúa como elemento de transición y al deformarse acomoda las deformaciones de las láminas de metal y de material compuesto (la y 3a), suavizando las tensiones interlaminares que se producen en la unión de ambos materiales cuando son sometidos a solicitaciones en servicio de flexo- compresión, evitando o posponiendo los fallos por pandeo local que se producirían en tal caso.
Sobre la chapa de acero con el primer y el adhesivo se comienza a laminar el material compuesto. La propia lámina de acero (la), bien plana o con la curvatura que se le haya dado, sirve de molde para la colocación de las capas sucesivas de material compuesto, con lo cual no se precisa de utillaje adicional para fabricar el laminado, como es habitual en la realización de materiales compuestos convencionales. Simplemente se precisa de algunos elementos auxiliares para la colocación precisa de las láminas y mantenerlas en posición -actuando como topes - durante el curado y consolidación de la matriz polimérica, pero no de un molde propiamente dicho.
La matriz y el refuerzo del material compuesto serán los idóneos para la aplicación concreta que se le vaya a dar al panel dentro de la estructura. Concretamente, para aplicaciones en construcción naval e ingeniería oceánica se prefieren materiales que hayan demostrado ya su adecuación al medio marino. En este sentido, se han elegido una matriz de resina viniléster y un refuerzo de fibra de vidrio E. El refuerzo se utiliza en seco, se coloca sobre la chapa de acero que actúa como molde y se impregna en la resina in situ. El refuerzo de fibras de vidrio E se utiliza en forma de tejido o como retuerzo unidireccional. En este último caso, un sistema de referencia sobre el propio panel (6) permitirá orientar las fibras de manera adecuada en función de las tensiones principales que haya de soportar durante el servicio. La primera lámina que se coloca (3 a) es un refuerzo unidireccional a -45°, seguido de otra (4a) a +45°. El objeto de estas dos capas es introducir un refuerzo preferente en la dirección donde actuarán las máximas tensiones de cortadura durante la vida en servicio de la estructura, debido a la solicitaciones torsionales sobre el panel. No obstante, la secuencia de laminación concreta ha de ser estudiada para cada aplicación, en función de la distribución de tensiones esperada en cada zona de la estructura.
Se continúa con una o más láminas de tejido equilibrado (5a) -igual número de mechas en la dirección de la trama que de la urdimbre - para ir dotando al panel del espesor deseado en función de la rigidez que se desea alcanzar. El procedimiento para incorporar cada nueva lámina es siempre el mismo: se coloca el refuerzo en seco, convenientemente orientado, y se impregna en resina de manera uniforme y completa. En la mitad del laminado híbrido se ha introducido una lámina de acero (Ib). Llegados a este punto, es conveniente colocar un peso sobre la chapa de acero, uniformemente repartido, o aplicar una presión sobre la misma mediante algún otro procedimiento (bolsa de vacío, autoclave), para compactar el paquete de material compuesto que se acaba de laminar y eliminar el exceso de resina que se haya podido introducir - sangrándola por los bordes del panel.
Desde la capa central (Ib), después de realizar la compactación, se continúa laminando de forma simétrica hasta llegar a la piel superior de acero (5b, 4b, 3b, 2b y Ic). Se tiene de esta manera un laminado híbrido equilibrado y simétrico, compuesto de tres chapas de acero y dos paquetes de material compuesto intercalados entre las chapas. Esta configuración ha de entenderse como un caso particular que muestra, eso sí, todas las peculiaridades del material híbrido propuesto pero no agota todas las posibles configuraciones y secuencias de laminación ya que la ventaja de este material radica, precisamente, en la posibilidad de adecuar su diseño a los requerimientos precisos de cada aplicación estructural.
Para poder realizar el ensamblaje de los paneles y construir con ellos la estructura final, cada panel construido individualmente, bien sea plano o curvo, se lamina disponiendo de una serie de escalones en los bordes. Las figuras 3 y 4 muestran como cada nueva lámina de acero se desplaza en dirección horizontal y vertical, en el plano del laminado, una cierta distancia. Sobre esta nueva posición de la chapa de acero se continúa laminando. El resultado final es una escalera con tres peldaños, en los cuatro bordes del panel, y cada escalón tendrá una altura igual a cada paquete de material compuesto más el espesor de la chapa de acero. Cada panel puede ser ensamblado con otros cuatro paneles encajando las escaleras de sus respectivos bordes. Al exterior aparecerán dos uniones: una unión longitudinal (7) que no es continua, pues cada panel contiguo es desplazado en esa dirección para que no coincida la línea de unión; una unión transversal (8) que sí es continua. Esta forma de ensamblar los paneles permite asegurar que las uniones entre paneles en cada capa (en la dirección del espesor) no coinciden y, por tanto, reduciendo el riesgo de que un fallo en la unión sea pasante en todo el espesor del panel laminado híbrido.
Los paneles ensamblados de la manera explicada son pegados mediante un adhesivo (9) que no tiene porqué coincidir con el utilizado en la fabricación de cada panel. Es preferible un adhesivo que admita mayores espesores, de manera que sea capaz de rellenar los huecos entre los dos paneles, adsorbiendo de esta forma las tolerancias de fabricación. Un adhesivo de base poliuretano, monocomponente, es un candidato adecuado. La longitud de la zona de solape, de entre 2 y 20 centímetros en función de las dimensiones del panel y las tensiones máximas esperadas, hace posible que la transmisión de cargas entre paneles consecutivos sea efectiva y que se permita su flujo por toda la estructura sin fallos en las uniones.
La última etapa consiste en el sellado de las líneas de unión externas, tanto longitudinales como transversales, para impedir el ingreso de agua al interior del laminado híbrido. El sellado se realizará en las dos superficies del panel (10 y 11), bien sea éste plano o curvo. No se trata de uniones estructurales, pues su misión no es la transmisión de carga entre partes (labor que realizan las uniones adhesivas de los solapes internos), sino simplemente el sellado de la línea de unión. Se puede realizar esta operación de dos maneras: aplicando un sellante polimérico o mediante un cordón de soldadura.
Si se aplica un sellante polimérico, las características deseadas son su resistencia al ingreso de agua en la unión y la compatibilidad química con el resto de polímeros empleados en el material híbrido. Es posible usar, asimismo, el propio adhesivo utilizado en el ensamblaje de los paneles.
En el caso de emplear un cordón de soldadura como procedimiento para sellar la unión externa, se debe elegir un procedimiento de soldeo con poco aporte calorífico pues se podría dañar la matriz del compuesto y el adhesivo de ensamblaje. Estos materiales poliméricos resisten temperaturas muy por debajo de las necesarias para fundir el acero. Es necesaria, pues, una muy escasa penetración del cordón y un aporte calorífico mínimo para intentar que las temperaturas alcanzadas por el polímero sean las más bajas posibles. Es inevitable, no obstante, una degradación térmica de cierto margen de la zona de solape pegada, de manera que será preciso sobredimensionar este solape en el caso de que posteriormente fueran a soldarse los paneles. La única ventaja que presenta el sellado con soldadura frente al empleo de un sellante polimérico es que el cordón tiene una mayor estabilidad y resistencia a la entrada de agua, siendo acero la totalidad del material visible desde el exterior.
APLICACIÓN INDUSTRIAL
La presente invención se puede aplicar en la construcción naval e ingeniería oceánica, en particular en las técnicas de construcción de las estructuras de buques y artefactos marinos.

Claims

REIVINDICACIONES
1. Material laminado híbrido fibra-metal para su empleo en construcción naval y artefactos marinos, que comprende láminas alternativas de acero y material compuesto con matriz de resina viniléster o poliéster y refuerzo de fibra de vidrio, situándose la chapa de acero en las capas más externas del laminado y el material compuesto en el interior, e introduciéndose una capa de adhesivo de tipo elástico entre las capas exteriores de acero y las primeras de material compuesto laminadas sobre el acero.
2. Un material laminado híbrido fibra-metal, según la reivindicación 1, caracterizado porque se pueden añadir capas intermedias de acero entre el material compuesto.
3. Un material laminado híbrido fibra-metal, según reivindicaciones 1 y 2, caracterizado porque el retuerzo de fibra de vidrio empleado en el material compuesto puede utilizarse en forma de tejido, en forma unidireccional o combinando ambos.
4. Un material laminado híbrido fibra-metal, según las reivindicaciones 1 a 3, caracterizado porque el adhesivo empleado, en una realización preferida, es de poliuretano bicomponente.
5. Un procedimiento de fabricación del material de las reivindicaciones anteriores que comprende las siguientes etapas: a. se prepara superficialmente el acero mediante tratamientos químicos comerciales, para la aplicación de adhesivos, aplicando una capa de primer sobre la superficie interna de la primera chapa de acero, b. se aplica una capa de adhesivo de tipo elástico sobre la parte interior de la primera chapa de acero y a continuación se lamina el material compuesto de resina polimérica y refuerzo de fibra de vidrio, desplazando cada capa para ir formando un perfil en escalera, pudiéndose introducir láminas de acero intermedias entre el material compuesto, c. se coloca la última chapa de acero, con primer y adhesivo en la superficie interna, aplicando presión para compactar las capas y se deja curar el laminado, d. se aplica adhesivo elástico en el perímetro escalonado y se ensambla un panel con el contiguo encajando los escalones de uno y otro, e. se sellan las uniones externas de las chapas de acero, superior e inferior.
6. El procedimiento de la reivindicación 5 caracterizado porque se cortan las chapas de acero y se conforman por deformación plástica para darles la curvatura que se precisa para cada panel., planos o con curvatura, para ser utilizadas como moldes sobre los que se realiza la laminación del material compuesto.
7. El procedimiento de las reivindicaciones 5 y 6 caracterizado porque cada chapa de acero está desplazada horizontal y verticalmente respecto al material compuesto que tiene debajo para formar un perfil en escalera en cada uno de los cuatro bordes del panel de material híbrido fibra-metal, que posteriormente se ensamblarán con otros paneles mediante el solapamiento y pegado de dichos bordes en escalera, siendo las dimensiones de los escalones de entre 2 y 20 centímetros.
8. El procedimiento de las reivindicaciones 5 a 7 caracterizado porque, en una realización preferida, se emplea un adhesivo poliuretano monocomponente para el ensamblaje de los paneles.
9. El procedimiento de las reivindicaciones 5 a 8 caracterizado porque para el sellado de las líneas de unión externas longitudinales y transversales de los paneles de material híbrido fibra-metal se aplican o bien cordones de sellante polimérico, o bien cordones de soldadura con o sin aporte de material.
10. Uso del material laminado y del procedimiento descrito en las reivindicaciones anteriores para su utilización en las técnicas de construcción de las estructuras de buques y artefactos marinos.
PCT/ES2006/000152 2005-04-01 2006-03-29 Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación WO2006103309A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06755312A EP1880841B1 (en) 2005-04-01 2006-03-29 Fibre-metal hybrid laminate material for shipbuilding and production method thereof
JP2008503538A JP4843667B2 (ja) 2005-04-01 2006-03-29 造船及び船舶に適用のメタルファイバーハイブリッド積層材とその製造プロセス。
ES06755312T ES2403639T3 (es) 2005-04-01 2006-03-29 Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200500746A ES2261070B2 (es) 2005-04-01 2005-04-01 Material laminado hibrido fibra-metal para construccion naval y su procedimiento de fabricacion.
ESP200500746 2005-04-01

Publications (2)

Publication Number Publication Date
WO2006103309A2 true WO2006103309A2 (es) 2006-10-05
WO2006103309A3 WO2006103309A3 (es) 2006-11-30

Family

ID=37053743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000152 WO2006103309A2 (es) 2005-04-01 2006-03-29 Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación

Country Status (4)

Country Link
EP (1) EP1880841B1 (es)
JP (1) JP4843667B2 (es)
ES (2) ES2261070B2 (es)
WO (1) WO2006103309A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011767A1 (en) * 2012-07-10 2014-01-16 Wayne State University Method of making composite materials
KR101866679B1 (ko) * 2017-01-12 2018-06-11 한국해양대학교 산학협력단 카약의 갑판 및 헐 결합 구조

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2012DN02733A (es) * 2009-10-16 2015-09-11 Aisin Seiki
CN102700168A (zh) * 2011-03-28 2012-10-03 苏州工业园区兰多包装工程有限公司 一种包装纸箱及包装纸箱的生产方法
ITNA20120021A1 (it) * 2012-05-02 2013-11-03 Giovanni Chiesa Dispositivo per trasportare in nave liquido pericoloso o inquinante
NL1040411C2 (nl) * 2013-09-26 2015-03-30 Pul Isoleermaterialenind Bv Werkwijze voor het vervaardigen van een laminaire constructieplaat.
WO2015054824A1 (zh) * 2013-10-15 2015-04-23 吴伟峰 一种涂料、制备方法及其应用
ES2715415T3 (es) * 2014-05-05 2019-06-04 Grupo General Cable Sist S L U Disposición de refuerzo para uniones de cables submarinos
KR101924479B1 (ko) * 2018-03-09 2018-12-04 송완수 경량 패널 및 그 제조방법
WO2021146765A1 (en) * 2020-01-21 2021-07-29 Bleakley Joseph Eric Boat and structural reinforcement therefor
DE102020133070A1 (de) 2020-12-11 2022-06-15 Audi Aktiengesellschaft Baugruppe für ein Fahrzeug

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2341536A2 (fr) * 1976-02-20 1977-09-16 Technigaz Materiau de construction notamment pour enceinte cryogenique et enceinte pourvue d'un tel materiau
GB2061834A (en) * 1979-11-08 1981-05-20 Williams A L Improvements relating to methods of boat construction
JPS571751A (en) * 1980-06-06 1982-01-06 Toyota Motor Co Ltd Composite material
JPH0221021A (ja) * 1988-07-07 1990-01-24 Sekisui Chem Co Ltd リンク部材
US5143790A (en) * 1989-08-09 1992-09-01 Westinghouse Electric Corp. Integrally-damped steel composite laminated structure and method of attaching same
US5160771A (en) * 1990-09-27 1992-11-03 Structural Laminates Company Joining metal-polymer-metal laminate sections
JPH06198808A (ja) * 1992-12-29 1994-07-19 Tonen Corp Frp製パイプ
US5547735A (en) * 1994-10-26 1996-08-20 Structural Laminates Company Impact resistant laminate
JPH08309926A (ja) * 1995-05-17 1996-11-26 Nitto Boseki Co Ltd 積層板材及びそれから作製した織機の綜絖枠
US6050208A (en) * 1996-11-13 2000-04-18 Fern Investments Limited Composite structural laminate
US6171705B1 (en) * 1997-02-10 2001-01-09 Dofasco, Inc. Structural panel and method of manufacture
DE19835727A1 (de) * 1998-08-07 2000-02-10 Basf Ag Verbundelemente
US20010053451A1 (en) * 2000-03-30 2001-12-20 Yoshiaki Togawa Laminated product and process for producing the same
GB2399544B (en) * 2003-03-18 2006-05-17 Intelligent Engineering Profiled hatch covers
JP4274091B2 (ja) * 2004-09-17 2009-06-03 ユニチカ株式会社 極超低温容器用気密補強材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1880841A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011767A1 (en) * 2012-07-10 2014-01-16 Wayne State University Method of making composite materials
KR101866679B1 (ko) * 2017-01-12 2018-06-11 한국해양대학교 산학협력단 카약의 갑판 및 헐 결합 구조

Also Published As

Publication number Publication date
EP1880841B1 (en) 2013-01-23
EP1880841A2 (en) 2008-01-23
JP4843667B2 (ja) 2011-12-21
ES2403639T3 (es) 2013-05-20
EP1880841A4 (en) 2011-11-30
ES2261070B2 (es) 2007-06-16
WO2006103309A3 (es) 2006-11-30
ES2261070A1 (es) 2006-11-01
JP2008534367A (ja) 2008-08-28

Similar Documents

Publication Publication Date Title
ES2403639T3 (es) Material laminado híbrido fibra-metal para construcción naval y su procedimiento de fabricación
JP2008534367A5 (es)
ES2744478T3 (es) Estructura de aeronave para un retorno de gran capacidad
ES2386176B1 (es) Material compuesto multifuncional con intercapa visco-elástica.
JP4854893B2 (ja) 車両用強化積層窓ガラス
JPS6338099A (ja) 回転翼航空機用ブレ−ド及びその製造方法
CN101289017B (zh) 高速列车用复合材料结构及其制造方法
US20090263676A1 (en) Method for Connection At Least Two Pieces of Sheet Material, Particularly At Least Two Metal Sheets for a Lightweight Structure As Well a Joining and Lightweight Structure
US20140130438A1 (en) Transportable modular system for covered isolation of assets
NO328210B1 (no) Baerende laminatelement, skips- eller bygningskonstruksjon omfattende laminatelementet og fremgangsmate for fremstilling av laminatelementet.
EP2077942A1 (en) Stiffened casing for an aircraft or spacecraft with a laminate stringer of high rigidity and corresponding laminate stringer
ES2394426T3 (es) Miembros de placas estructurales interlaminares mejorados
ES2739032T3 (es) Perfil de soporte y unión con relleno de refuerzo así como procedimiento para la fabricación de un perfil metálico reforzado con fibras
CN113661298A (zh) 层压木塔和用于组装层压木塔的方法
ES2369442A1 (es) Inserto de pala y método de colocación de insertos en el laminado de una pala.
US7100871B2 (en) Lightweight structural component made of metallic ply materials
JP2010538238A (ja) 高性能防弾グレージング
EP1678403B1 (en) Load bearing laminates
ES1184935U (es) Material laminado híbrido compuesto por fibra y/o aleaciones metálicas en forma de malla tridimensional para la construcción naval, aeronáutica y construcción en general.
ES1184458U (es) Material híbrido compuesto por fibra-metálico en forma de panel, capa con malla tridimensional para la construcción naval, aeronáutica, ingeniería mecanizada, construcción
KR101423598B1 (ko) 점착식 부틸고무시트와 3중 알루미늄층을 이용한 복합 방수ㆍ방근구조 및 이를 이용한 시공방법
RU98024U1 (ru) Облицовочная панель
WO2019170929A1 (es) Material híbrido compuesto por fibra-metálico en forma de panel, capa con malla tridimensional para la construcción naval, aeronáutica, ingeniería mecanizada, construcción.
KR102381521B1 (ko) 핀을 이용한 내화성 경량 복합패널 및 그의 제조방법
ES1265090Y1 (es) Un panel para la construcción

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008503538

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006755312

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06755312

Country of ref document: EP

Kind code of ref document: A2

WWP Wipo information: published in national office

Ref document number: 2006755312

Country of ref document: EP