WO2006102682A2 - Non-linear signal distortion detection using multiple signal to noise ratio measurement sources - Google Patents
Non-linear signal distortion detection using multiple signal to noise ratio measurement sources Download PDFInfo
- Publication number
- WO2006102682A2 WO2006102682A2 PCT/US2006/011254 US2006011254W WO2006102682A2 WO 2006102682 A2 WO2006102682 A2 WO 2006102682A2 US 2006011254 W US2006011254 W US 2006011254W WO 2006102682 A2 WO2006102682 A2 WO 2006102682A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- response
- linear distortion
- time
- period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/44—Receiver circuitry for the reception of television signals according to analogue transmission standards
- H04N5/50—Tuning indicators; Automatic tuning control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/44—Receiver circuitry for the reception of television signals according to analogue transmission standards
- H04N5/52—Automatic gain control
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3052—Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
- H03G3/3068—Circuits generating control signals for both R.F. and I.F. stages
Definitions
- Such circuitry In a processing device of television signals it is necessary to process the radio frequency (RF) received signal before the signal is converted to a digital representation by the analog to digital converter (ADC).
- ADC analog to digital converter
- Such circuitry generally includes one or more amplifiers and one or more filters.
- a first RF gain amplifier is followed by a first out of band rejection filter, followed by a mixer for converting the signal to an intermediate frequency (IF), followed by a fixed frequency filter, such as a surface acoustic wave filter (SAW), followed by an IF gain amplifier.
- SAW surface acoustic wave filter
- Those skilled in the art will recognize the need to amplify the signal prior to the SAW filter, as the latter will normally have a significant insertion loss, or attenuation, as a result. It is common to control the gain of RF or IF gain amplifiers independently using feed back gain control loops.
- an analog closed-loop AGC is associated with the RF gain stage alone using an analog power detector.
- the detector will operate based on the total signal power. If there is a strong undesired signal present, the total power seen by the analog detector will also be higher and the detector output will drive the RF gain down, resulting in a lower desired channel power downstream. This will be sensed by an AGC generator, which will, in turn, request higher gain from the RF section. If an IF gain amplifier stage is used, the IF gain amplifier operates on a signal previously filtered by the SAW filter.
- an apparatus for tuning an RF signal is disclosed.
- the apparatus is presented for utilizing information generated during digital signal processing operations to optimize the tuning and RF and IF signal conditioning operations. More specifically, said apparatus comprises a first processor for generating a first automatic gain control signal in response to a non-linear distortion figure of said RF signal.
- a method of tuning an RF signal is disclosed. According to an exemplary embodiment, the method utilizes information generated during digital signal processing operations to optimize the tuning and RF and IF signal conditioning operation.
- the method comprises the steps of receiving an RF signal, amplifying said RF signal responsive to a first automatic gain control signal, demodulating said RF signal, estimating a non-linear distortion figure of said RF signal, and adjusting said first automatic control signal in response to said non-linear distortion figure.
- FIG. 1 is a block diagram of an exemplary embodiment of a television signal tuning apparatus for implementing the present invention.
- FIG. 2 is a block diagram of an exemplary embodiment of a digital demodulating apparatus for implementing the present invention.
- FIG. 3 is a block diagram of an exemplary embodiment of a preliminary signal processing circuit for implementing the present invention.
- FIG. 4 is a diagram showing a signal constellation with Additive Gaussian White Noise present according to an exemplary embodiment of the present invention.
- FIG. 5 is a diagram showing a signal constellation with Additive Gaussian White Noise and non-linear distortion present according to an exemplary embodiment of the present invention.
- FIG. 6 is a flow chart illustrating an exemplary embodiment of a method of tuning and demodulating a signal according to an embodiment of the present invention.
- transmission concepts such as eight-level vestigial sideband (8-VSB), Quadrature Amplitude Modulation (QAM), and receiver components such as a radio-frequency (RF) front-end, or receiver section, such as a low noise block, tuners, demodulators, correlators, leak integrators and squarers is assumed.
- RF radio-frequency
- formatting and encoding methods such as Moving Picture Expert Group (MPEG)-2 Systems Standard (ISO/IEC 13818-1)
- MPEG Moving Picture Expert Group
- ISO/IEC 13818-1 ISO/IEC 13818-1
- AWGN Additional White Gaussian noise
- the apparatus comprises an input 110, an input filter 120 and automatic gain control (AGC) radio frequency (RF) amplifier 140, an tunable filter 160, a mixer 180, a local oscillator 130, a fixed frequency filter 125 an AGC intermediate frequency (IF) amplifier 150, an analog to digital converter 155, a demodulator 165 and a AGC generator 105.
- the AGC generator 105 processes an output from the IF AGC amplifier 155 and a control signal from the demodulator 165 to generate an RF AGC control signal 170 and an IF AGC control signal 190.
- Fig. 1 shows an RF, IF and AGC circuit arrangement wherein a signal source is coupled to input 110 and filtered by input filter 120.
- the signal from input filter 120 is coupled to amplifier 140, the gain of which is AGC controllable.
- the amplified signal from amplifier 140 is coupled to an tunable filter 160 where adjacent channel signals and noise is reduced.
- the signal is then coupled to a mixer 180 where it is mixed with a reference frequency signal generated by local oscillator 130 for producing the IF signal at the desired IF frequency.
- the exact IF frequency is dependant on the channel bandwidth as related to geographical location. For example, NTSC signals in the United States and Japan have a 6 MHz channel with an IF around 44 MHz.
- a PAL/SECAM signal has an 8 MHz channel with an IF around 36 MHz.
- the IF signal is processed by a fixed frequency filter 125 and amplified by IF AGC amplifier 150.
- the IF amplifier output is then coupled to AGC generator 105 to provide a responsive AGC control signal.
- the video output signal from the IF amplifier output is also digitized by an analog to digital (A/D) converter 155 and fed to the digital demodulator 165.
- the A/D converter may be integrated into some digital demodulator integrated circuits (IC).
- an IF AGC control signal is coupled to the AGC IF Amplifier 150 at lead 190 to adjust the gain of the IF section to keep the signal at lead 115 at a reasonably constant level for variations of source signal level at RF input terminal 110.
- the RF AGC control signal is coupled via lead 170 to RF AGC gain controllable amplifier 140.
- This AGC control signal is derived according to the present invention in response to the signal parameters, such as magnitude or signal to noise ratio at lead 1 15 and the non-linear distortion estimate from the demodulator 165.
- the gain control signals are configured in such a manner as to keep the signal level at the input of the A/D converter 155 at a relatively constant level and within the operating input range of the A/D converter 155 while improving signal quality.
- the exemplary digital demodulator comprises a baseband synthesizer 220, a timing recovery circuit 240, and equalizer 260, a forward error correction (FEC) circuit 280, and a distortion estimator circuit 290.
- FEC forward error correction
- the digital demodulator of this exemplary embodiment refers generally to the operation of a demodulator decoding a QAM signal, although the present invention could equally apply to any digital demodulation scheme.
- the demodulator receives a digitized IF signal from the A/D converter (155 of Fig. 1).
- the baseband synthesizer 220 converts the IF signal to a near baseband signal have signal components I (inphase) and Q (quadrature).
- the near baseband signal is supplied to the timing recover circuit 240 which is used to synchronize the timing of the demodulator circuit to the symbols of the incoming signals.
- the timing circuitry may use a continuously variable interpolation filter for sampling the input signal to generate a baseband signal.
- the baseband signal is then supplied to a equalizer 260.
- the equalizer 260 generates a soft number signal by compensating for different impairments encountered on the network, such as undesired amplitude-frequency or phase-frequency response.
- the soft number signal is supplied to the FEC circuit 280 which generates the desired data and a bit error rate signal.
- the equalizer 260 also generates the data used by the distortion estimator 290 in generating the control signal sent to the AGC generator (105 of Fig. 1) according to the present invention.
- FIG. 3 is a block diagram of an exemplary embodiment of a preliminary signal processing circuit for implementing the present invention.
- Environment 300 of Fig. 3 comprises an RF input 305 with a first exemplary representation 375 of an RF signal present at the RF input 305, an input filter 310, an exemplary embodiment of a attenuation profile 360 of the input filter and a second exemplary representation 380 of an RF signal present after the input filter 310, an automatic gain controlled RF amplifier 320 with a third exemplary representation 385 of an RF signal after the RF amplifier, an tunable filter 330 with an exemplary embodiment of the tunable filter attenuation profile 370 and a fourth exemplary representation 390 of an RF signal after the tunable filter, a mixer 340, a fixed frequency filter, 345, such as a SAW filter, with an exemplary embodiment of the fixed frequency filter attenuation profile 365 a fifth exemplary representation 392 of an RF signal after the fixed frequency filter 345 and a and an automatic gain
- the RF input 305 is operative to supply an RF signal comprising one of more television channels each comprising one or more television programs. Some of these programs may be analog television signals in the NTSC standard format, while some programs may be digital television signals in the ATSC standard format employing a digital modulation scheme such as, but not limited to, either 8VSB, 16VSB or 256QAM modulation schemes.
- a representation of the RF signal spectrum of an exemplary RF signal is shown 375 depicting a plurality of television signals, each using a unique RF carrier frequency and having differing amplitudes at the RF input. These differing amplitudes may be a result of signal loss from propagation distance or differing antenna gains at the respective RF carrier frequencies.
- the RF signal is conducted from the RF input 305 to the input filter 310 which makes a first effort to reduced the undesired adjacent channel signals.
- the input filter 310 typically uses tunable architecture to center the filter response on the desired RF frequency to minimize the attenuation of the desired channel and maximize the attenuation of adjacent channels.
- An exemplary embodiment of a attenuation profile 360 depicts the attenuation applied across the filter bandwidth, with the desired frequency being represented as d.
- the input filter 310 has a minimum attenuation at d and ideally increasing attenuation symmetrical around the desired frequency.
- An exemplary representation 380 of the RF signal present after the input filter 310 depicts minimal attenuation to the desired frequency d and increasing attenuation to the adjacent channels corresponding to the frequency response of the input filter 310.
- the RF signal is then conducted from the output of the input filter 310 to the input of the RF amplifier 320.
- the gain of the RF amplifier 320 is in response to a control signal from the AGC generator 105 of Fig. 1.
- the RF amplifier 320 is not generally tuned in response to the desired frequency, so it amplifies all signals within its operating bandwidth, including the desired frequency, the adjacent channels as well as channels further from the desired frequency.
- the amplified channels maintain the same desired to undesired power ratio (D/U) to each other.
- the strong adjacent channel is amplified along with the desired channel.
- the gain of the RF amplifier 320 can be adjusted in response to the signal quality through a control signal generated by the AGC generator (105 of Fig. 1 )
- the RF signal is then conducted from the output of the RF amplifier 320 to the input of the tunable filter 330.
- the tunable filter 330 may be bandwidth controllable, have an center frequency that may be offset, or have an adjustable attenuation profile in response to the AGC generator (105 of Fig. 1 ) thereby adding an additional means in which to improve the signal quality by adjusting the response of the tunable filter 330 in response to the signal quality.
- An exemplary embodiment of a attenuation profile 370 of the tunable filter 330 depicts the attenuation applied across the filter bandwidth, with the desired frequency being represented as d.
- the tunable filter 330 has a minimum attenuation at d and ideally increasing attenuation symmetrical around the desired frequency.
- An exemplary representation 390 of the RF signal present after the tunable filter 330 depicts minimal attenuation to the desired frequency d and increasing attenuation to the adjacent channels corresponding to the frequency response of the tunable filter 330.
- the RF signal is then conducted from the output of the tunable filter 330 to the input of the RF mixer 340.
- the RF signal is mixed with the local oscillator signal to generate an RF signal whose carrier frequency is the desired IF frequency.
- the RF signal is then conducted from the output of the mixer 340 to the input of the fixed frequency filter 345 such as a SAW filter.
- the fixed frequency filter 345 generally has a strong out of band rejection characteristics.
- the output of the fixed frequency filter 345 is conducted to the AGC IF amplifier 350 after.
- a television tuner generally has a 44 MHz center frequency downstream IF.
- the gain of the IF amplifier 350 is controlled in response to a control signal from the AGC generator 105 of Fig. 1.
- the IF amplifier 350 like the RF amplifier 320 amplifies all signals within its operating bandwidth, including the desired frequency, the adjacent channels as well as channels further from the desired frequency.
- exemplary representation 395 of the RF signal present after being processed by the IF amplifier 350 is shown.
- the gain of the IF amplifier 350 can be adjusted in response to the signal quality through a control signal generated by the AGC generator (105 of Fig. 1 ).
- the RF signal is then conducted from the output of the IF amplifier 350 to the input of the A/D converter (155 of Fig. 1 ) and one of the inputs of the AGC generator (105 of
- FIG. 4 a diagram 400 showing a signal constellation with Additive Gaussian White Noise present according to an exemplary embodiment of the present invention is shown.
- the signal constellation represents a two dimensional representation of the soft number I and Q values output by the equalizer 260 of Fig. 1.
- each of the constellation point clusters have a Gaussian distribution and all clusters have approximately the same distribution.
- FIG. 5 a diagram showing an exemplary signal constellation with Additive Gaussian White Noise and non-linear present according to an exemplary embodiment of the present invention is shown.
- the signal constellation represents a two dimensional representation of the soft number I and Q values output by the equalizer 260 of Fig. 1.
- the constellation point clusters In a signal constellation with Additive Gaussian White Noise present and a non linear distortion component, the constellation point clusters have a distinctly non- Gaussian distribution and each of the distributions are different.
- the distortion estimator 290 of Fig. 2 which may be an integral part of the equalizer 260 of Fig. 2, can use this non-Gaussian distribution of the signal constellation point clusters to detect the presence of non-linear distortion according to an exemplary embodiment of the present invention.
- SNR signal to noise ratio
- One method of estimating the SNR is to use direct noise power estimation based on averaging error signal power used by the digital equalizer. The average signal power at the equalizer output is assumed a known entity and does not need to be estimated.
- Another method assumes the distribution of each constellation point cluster to be Gaussian and is based on finding, over a period of time, the number of constellation points that fall within a certain radius of the center of the constellation cluster or outside of a predetermined I value and Q value. The number of constellation points that fall within the limits as a percentage of the total number of constellation points received over the same time period can be used to estimate the average error power using a Gaussian Error Function.
- the Gaussian noise distribution is a good approximation and both noise power, and therefore the SNR, estimation methods will, on average, yield comparable results.
- the assumption of Gaussian distribution is false and the second power estimation method will give a different value than the direct noise power estimation based on averaging error signal power.
- the degree of discrepancy will depend on the severity of the distortion.
- the inverse Gaussian Error Function used in the second method of power estimation can be tabulated over the expected operating range of SNRs and efficiently implemented in hardware as a lookup table.
- both methods of estimation utilize circuitry which is commonly available within a traditional digital channel equalizer implementation.
- the distortion estimator (290 of Fig. 2) can transmit a control signal to the AGC generator (105 of Fig. 1 ) which may alter the RF signal processing operation performed by the tuner, such as repartitioning the amplifier gains between the RF and IF sections or adjusting the filter response of the tunable filter (160 of Fig. 1).
- This altered operation may advantageously reduce the severity of the non-linear distortion.
- This reduction of non-linear distortion may outweigh the potential degradation due to the deviation from the gain partition based on signal characteristics of the analog signal.
- the A/D input voltage range could be limited to reduce the overall analog gain, thereby reducing or eliminating the requirement to change the gain partitioning or the filter responses.
- FIG. 6 is a flow chart 600 illustrating an exemplary embodiment of a method of tuning and demodulating a signal according to an embodiment of the present invention.
- the first step of estimating the nonlinear distortion present in the RF signal is to receive the digital signal from the A/D converter 610.
- the digital signal is then demodulated 620 and a soft number estimation of the I and Q values are generated by the equalizer (260 of Fig. 2).
- the soft number value means that the exact value of I and Q is determined as it is received before error correction is performed on the signal, wherein said I and Q values generally comprise the transmitted values combined with a noise factor.
- These soft number values are first used to determine the SNR 630 by direct noise power estimation based on averaging error signal power used by the digital equalizer.
- the soft number values of I and Q are then used to estimate the SNR by the second method 640.
- the second method determines, over a period of time, the number of constellation points that fall within a certain radius of the center of the constellation cluster or outside of a predetermined I value range and Q value range, such as plus or minus 10% for each value, for example.
- the ratio of the number of constellation points that fall within the limits as a percentage of the total number of constellation points received over the same time period is used to estimate the average error power, and thus, the SNR.
- the two independent noise power SNR estimation methods are compared 650 and a control signal responsive to the to the difference between the two SNR estimations is generated. If the value is below an acceptable threshold, the system sends no control signal to the AGC generator (105 of Fig. 1) and continues the process by receiving the signal from the A/D 601. However, if the value exceeds a permissible threshold, the control signal is transmitted to the AGC generator (105 of Fig. 1 ) where the RF signal processing operation may be altered in a manner to reduce the discrepancy between the two method of estimating the SNR. The operation is then continued by receiving the signal from the A/D 601.
- control signal responsive to the to the difference between the two SNR values can continuously be transmitted to the AGC generator (105 of Fig. 1 ) irrespective of the magnitude of the difference, and the AGC generator can use this information to optimize the processing of the RF signal.
- the above exemplary embodiment of a method of tuning and demodulating a signal teaches the first and second methods of estimating the SNR can be performed sequentially, these operations can be performed sequentially or simultaneously.
- the present invention provides an architecture and protocol for non-linear signal distortion detection using multiple signal to noise ratio measurement sources. While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Circuits Of Receivers In General (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Picture Signal Circuits (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MX2007011602A MX2007011602A (es) | 2005-03-24 | 2006-03-24 | Deteccion de distorsion de senal no lineal con el uso de multiples fuentes de medicion de la tasa senal a ruido. |
| CN2006800095965A CN101147393B (zh) | 2005-03-24 | 2006-03-24 | 调谐射频信号的装置和方法 |
| US11/886,192 US8331891B2 (en) | 2005-03-24 | 2006-03-24 | Non-linear signal distortion detection using multiple signal to noise ratio measurement sources |
| EP06739817A EP1862000A2 (en) | 2005-03-24 | 2006-03-24 | Non-linear signal distortion detection using multiple signal to noise ratio measurement sources |
| JP2008503292A JP4947603B2 (ja) | 2005-03-24 | 2006-03-24 | 複数の信号対雑音比測定源を使用した非線形信号歪み検出 |
| KR1020077021866A KR101314358B1 (ko) | 2005-03-24 | 2006-03-24 | 다중 신호 대 잡음비 측정 소스를 이용한 비선형 신호 왜곡검출 |
| BRPI0608861-9A BRPI0608861A2 (pt) | 2005-03-24 | 2006-03-24 | detecção da distorção não-linear de sinal usano fontes múltiplas de medição da relação sinal/ruìdo |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US66491705P | 2005-03-24 | 2005-03-24 | |
| US60/664,917 | 2005-03-24 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006102682A2 true WO2006102682A2 (en) | 2006-09-28 |
| WO2006102682A3 WO2006102682A3 (en) | 2006-12-07 |
Family
ID=36758419
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/011254 Ceased WO2006102682A2 (en) | 2005-03-24 | 2006-03-24 | Non-linear signal distortion detection using multiple signal to noise ratio measurement sources |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US8331891B2 (enExample) |
| EP (1) | EP1862000A2 (enExample) |
| JP (1) | JP4947603B2 (enExample) |
| KR (1) | KR101314358B1 (enExample) |
| CN (1) | CN101147393B (enExample) |
| BR (1) | BRPI0608861A2 (enExample) |
| MX (1) | MX2007011602A (enExample) |
| WO (1) | WO2006102682A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009088807A (ja) * | 2007-09-28 | 2009-04-23 | Sharp Corp | デジタル復調装置、その制御方法、プログラム、そのプログラムを記録した記録媒体、及び、デジタル受信装置 |
| EP2141917A3 (en) * | 2008-06-30 | 2013-02-06 | Sony Corporation | Receiving apparatus and receiving method |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8045660B1 (en) | 2007-05-23 | 2011-10-25 | Hypres, Inc. | Wideband digital spectrometer |
| US7945004B2 (en) * | 2007-12-14 | 2011-05-17 | Motorola Mobility, Inc. | Method and apparatus for detecting a frequency band and mode of operation |
| GB2458542A (en) * | 2008-03-28 | 2009-09-30 | Nokia Corp | Automatic gain control system |
| TWI415459B (zh) * | 2011-02-17 | 2013-11-11 | Mstar Semiconductor Inc | 類比電視信號接收電路及方法與相關之等化電路係數設定裝置及方法 |
| US8737458B2 (en) | 2012-06-20 | 2014-05-27 | MagnaCom Ltd. | Highly-spectrally-efficient reception using orthogonal frequency division multiplexing |
| US8873612B1 (en) | 2012-06-20 | 2014-10-28 | MagnaCom Ltd. | Decision feedback equalizer with multiple cores for highly-spectrally-efficient communications |
| US9129610B2 (en) * | 2012-08-21 | 2015-09-08 | Bose Corporation | Filtering for detection of limited-duration distortion |
| CN102821453B (zh) * | 2012-08-28 | 2018-11-20 | 中兴通讯股份有限公司 | 消除msr接收机gsm与lte干扰的自动增益调控方法及装置 |
| US9118519B2 (en) | 2013-11-01 | 2015-08-25 | MagnaCom Ltd. | Reception of inter-symbol-correlated signals using symbol-by-symbol soft-output demodulator |
| US9130637B2 (en) | 2014-01-21 | 2015-09-08 | MagnaCom Ltd. | Communication methods and systems for nonlinear multi-user environments |
| US9496900B2 (en) | 2014-05-06 | 2016-11-15 | MagnaCom Ltd. | Signal acquisition in a multimode environment |
| US8891701B1 (en) | 2014-06-06 | 2014-11-18 | MagnaCom Ltd. | Nonlinearity compensation for reception of OFDM signals |
| US9246523B1 (en) | 2014-08-27 | 2016-01-26 | MagnaCom Ltd. | Transmitter signal shaping |
| US9191247B1 (en) | 2014-12-09 | 2015-11-17 | MagnaCom Ltd. | High-performance sequence estimation system and method of operation |
| US11626907B2 (en) | 2019-06-19 | 2023-04-11 | Analogic Corporation | Radio frequency generators, and related systems, methods, and devices |
| US11587767B2 (en) | 2019-06-19 | 2023-02-21 | Analogic Corporation | Radio frequency generators, and related systems, methods, and devices |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62264778A (ja) | 1986-05-12 | 1987-11-17 | Toshiba Corp | Agc回路 |
| JPH0671279B2 (ja) | 1988-04-25 | 1994-09-07 | 日本電気株式会社 | 復調装置 |
| JP2794964B2 (ja) | 1991-02-27 | 1998-09-10 | 日本電気株式会社 | 制御信号発生回路 |
| JP3311773B2 (ja) | 1992-04-15 | 2002-08-05 | 富士通株式会社 | 4相psk復調器 |
| US5268761A (en) * | 1992-08-19 | 1993-12-07 | Rca Thomson Licensing Corporation | Automatic gain control system for a high definition television signal receiver including an adaptive equalizer |
| JP2911773B2 (ja) | 1994-03-18 | 1999-06-23 | 富士通株式会社 | ディジタル多重無線受信装置 |
| US5610554A (en) | 1994-07-28 | 1997-03-11 | Aval Communications Inc. | Cancellation loop, for a feed-forward amplifier, employing an adaptive controller |
| JPH08317012A (ja) | 1995-05-23 | 1996-11-29 | Toshiba Corp | ディジタル復調器 |
| JP3087627B2 (ja) | 1995-09-30 | 2000-09-11 | 日本電気株式会社 | 復調装置 |
| US6154503A (en) | 1996-06-07 | 2000-11-28 | Sharp Kk Corporation | Automatic gain control system that responds to baseband signal distortion |
| US5907798A (en) | 1996-06-21 | 1999-05-25 | Lucent Technologies Inc. | Wireless telephone intermodulation performance enhancement techniques |
| JP3319422B2 (ja) | 1998-05-08 | 2002-09-03 | 日本電気株式会社 | マルチキャリア伝送システム、マルチキャリア伝送方法 |
| US6603825B1 (en) * | 1999-01-12 | 2003-08-05 | Motorola Inc. | Automatic gain control for a receiver and method therefor |
| JP2000286916A (ja) | 1999-04-01 | 2000-10-13 | Nec Corp | 復調装置 |
| US6545532B1 (en) | 1999-09-08 | 2003-04-08 | Atmel Corporation | Timing recovery circuit in a QAM demodulator |
| JP3710658B2 (ja) * | 1999-09-29 | 2005-10-26 | 株式会社東芝 | 自動利得制御回路および受信機 |
| JP2001244765A (ja) * | 2000-02-28 | 2001-09-07 | Mitsubishi Electric Corp | 自動利得制御方法および自動利得制御用プロセッサならびに復調装置 |
| KR100480646B1 (ko) | 2003-04-17 | 2005-03-31 | 삼성전자주식회사 | 잡음이 많은 다중 경로 채널에 적응하여 신호를안정적으로 포착 추적하는 자동 이득 제어기, 이를 구비한디지털 텔레비전 수신 장치 및 그 방법 |
| US7483525B2 (en) | 2003-05-23 | 2009-01-27 | Navin Chaddha | Method and system for selecting a communication channel with a recipient device over a communication network |
| EP1634443A2 (en) * | 2003-06-16 | 2006-03-15 | Matsushita Electric Industrial Co., Ltd. | Digital broadcast receiver |
| KR20040108215A (ko) * | 2003-06-17 | 2004-12-23 | 삼성전자주식회사 | 수신기의 저잡음 증폭기 제어 장치 및 방법 |
| JP4271551B2 (ja) | 2003-10-29 | 2009-06-03 | 山陽特殊製鋼株式会社 | タンディッシュによる高清浄度鋼の連続鋳造装置 |
| JP2005210171A (ja) | 2004-01-20 | 2005-08-04 | Matsushita Electric Ind Co Ltd | 受信装置及び受信方法 |
-
2006
- 2006-03-24 US US11/886,192 patent/US8331891B2/en not_active Expired - Fee Related
- 2006-03-24 KR KR1020077021866A patent/KR101314358B1/ko not_active Expired - Fee Related
- 2006-03-24 EP EP06739817A patent/EP1862000A2/en not_active Withdrawn
- 2006-03-24 BR BRPI0608861-9A patent/BRPI0608861A2/pt not_active Application Discontinuation
- 2006-03-24 MX MX2007011602A patent/MX2007011602A/es active IP Right Grant
- 2006-03-24 JP JP2008503292A patent/JP4947603B2/ja not_active Expired - Fee Related
- 2006-03-24 CN CN2006800095965A patent/CN101147393B/zh not_active Expired - Fee Related
- 2006-03-24 WO PCT/US2006/011254 patent/WO2006102682A2/en not_active Ceased
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009088807A (ja) * | 2007-09-28 | 2009-04-23 | Sharp Corp | デジタル復調装置、その制御方法、プログラム、そのプログラムを記録した記録媒体、及び、デジタル受信装置 |
| US8194805B2 (en) | 2007-09-28 | 2012-06-05 | Sharp Kabushiki Kaisha | Digital demodulating apparatus, digital receiver, controlling method of the apparatus, computer program product, and recording medium recording thereon the product |
| EP2141917A3 (en) * | 2008-06-30 | 2013-02-06 | Sony Corporation | Receiving apparatus and receiving method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2008535329A (ja) | 2008-08-28 |
| EP1862000A2 (en) | 2007-12-05 |
| US8331891B2 (en) | 2012-12-11 |
| KR20070114193A (ko) | 2007-11-29 |
| CN101147393A (zh) | 2008-03-19 |
| US20090137212A1 (en) | 2009-05-28 |
| KR101314358B1 (ko) | 2013-10-04 |
| JP4947603B2 (ja) | 2012-06-06 |
| CN101147393B (zh) | 2011-08-17 |
| MX2007011602A (es) | 2007-11-22 |
| BRPI0608861A2 (pt) | 2010-02-02 |
| WO2006102682A3 (en) | 2006-12-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8331891B2 (en) | Non-linear signal distortion detection using multiple signal to noise ratio measurement sources | |
| US6124898A (en) | Digital television receiver with equalization performed on digital intermediate-frequency signals | |
| US6049361A (en) | Automatic gain control circuit and method therefor | |
| JP2003531523A (ja) | Qam搬送波再生回路における位相雑音および相加性雑音の推定 | |
| MXPA01000725A (es) | Ecualizador de canales adaptable. | |
| KR100719116B1 (ko) | 노이즈신호를 여파 처리하는 방송수신장치 및 그 방법 | |
| KR100480646B1 (ko) | 잡음이 많은 다중 경로 채널에 적응하여 신호를안정적으로 포착 추적하는 자동 이득 제어기, 이를 구비한디지털 텔레비전 수신 장치 및 그 방법 | |
| US6445425B1 (en) | Automatic fine tuning of receiver for digital television signals | |
| KR0163729B1 (ko) | 디지탈 잔류 측파대 변조 통신 시스템의 위상 검출 방법 및 위상 트랙킹 루프 회로 | |
| US6046781A (en) | Automatic fine tuning of TV receiver for receiving both digital and analog TV signals | |
| US8199864B1 (en) | Quadrature phase shift keying demodulator of digital broadcast reception system and demodulation method thereof | |
| US6985192B1 (en) | Selective gain adjustment to aid carrier acquisition in a high definition television receiver | |
| EP1197077B8 (en) | Selective gain adjustement to aid carrier acquisition in a high definition television receiver | |
| KR100379490B1 (ko) | 디지털 티브이 수신기의 자동 이득 제어 장치 | |
| KR100425104B1 (ko) | 반송파 복구 장치 | |
| US7324610B2 (en) | VSB reception system | |
| KR100652566B1 (ko) | 자동 이득 제어 장치 | |
| JP4893635B2 (ja) | デジタル放送受信装置 | |
| JP2003008542A (ja) | 直交周波数分割信号復調装置 | |
| KR20010036927A (ko) | 고화질 텔레비전의 디지털 직류전압 제거장치 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200680009596.5 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 6699/DELNP/2007 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 11886192 Country of ref document: US |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006739817 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2008503292 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/011602 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020077021866 Country of ref document: KR |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |
|
| ENP | Entry into the national phase |
Ref document number: PI0608861 Country of ref document: BR Kind code of ref document: A2 |