WO2006101266A1 - 光学活性なヒドロキシメチル置換フェニルアラニンの製造方法 - Google Patents

光学活性なヒドロキシメチル置換フェニルアラニンの製造方法 Download PDF

Info

Publication number
WO2006101266A1
WO2006101266A1 PCT/JP2006/306600 JP2006306600W WO2006101266A1 WO 2006101266 A1 WO2006101266 A1 WO 2006101266A1 JP 2006306600 W JP2006306600 W JP 2006306600W WO 2006101266 A1 WO2006101266 A1 WO 2006101266A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
hydroxymethyl
production method
represented
following formula
Prior art date
Application number
PCT/JP2006/306600
Other languages
English (en)
French (fr)
Inventor
Masakazu Nakazawa
Atsuko Hashimoto
Hiroyuki Nozaki
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to JP2007509381A priority Critical patent/JPWO2006101266A1/ja
Priority to EP06730548A priority patent/EP1867730A1/en
Publication of WO2006101266A1 publication Critical patent/WO2006101266A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/72Two oxygen atoms, e.g. hydantoin
    • C07D233/76Two oxygen atoms, e.g. hydantoin with substituted hydrocarbon radicals attached to the third ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/72Two oxygen atoms, e.g. hydantoin
    • C07D233/76Two oxygen atoms, e.g. hydantoin with substituted hydrocarbon radicals attached to the third ring carbon atom
    • C07D233/78Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions

Definitions

  • the present invention relates to a method for producing optically active hydroxymethyl-substituted phenylalanine.
  • An optically active hydroxymethyl-substituted phenylalanine derivative is a useful compound as a medicine or a raw material thereof.
  • L-form of 4-hydroxymethylphenylalanine is used as an antihypertensive drug (International Publication No. 9 2 1 4 706 Pan Fret), and its D-form is a bradykinin B 1 receptor antagonist, etc. It is used as an intermediate (Japanese Patent Laid-Open No. 2004-525936).
  • the ratio of L-form to D-form (LZD) is 4/1.
  • the stereoselectivity is poor and further purification is required (Int. J. Peptide Protein Res., (1 99 4), 44, 457-465).
  • the 4-position of the optically active 4-phenylalanine derived from optically active phenylalanine or the optically active tyrosine trifluorate derivative derived from optically active tyrosine is converted to aldehyde, and then reduced.
  • the production method for obtaining optically active 4-hydroxymethylphenylalanine is not suitable for mass synthesis because it uses expensive trioctylsilane, 1,3-bis (diphenylphosphino) propane.
  • Synthetic Comnications, (1 998), 28 (2), 4279— 4285 Thus, expensive reagents are indispensable in the conventional method for producing an optically active hydroxymethyl-substituted phenylalanine.
  • the resulting intermediate is unstable, the yield is poor, the purity is low, and purification is necessary. Not suitable for the production of a scale is the actual situation. Therefore, creation of a production method capable of easily obtaining optically active hydroxymethyl-substituted phenylalanine on an industrial scale is desired.
  • the present invention has been made in view of such circumstances, and the problem to be solved is that an optically active hydroxymethyl-substituted phenylalanine is produced on an industrial scale. It is another object of the present invention to provide a production method that can be easily obtained by the method, a compound useful for the production method, and a production method thereof.
  • the present inventors have determined that optical activity is obtained by treating a hydroxymethyl-substituted benzylhydantoin obtained by reduction and hydroxylation with an enzyme using a cyano-substituted benzylidenehydantoin as a starting material.
  • the present inventors have found that a novel hydroxymethyl-substituted phenylalanine can be easily obtained with good yield, and have completed the present invention.
  • the present invention has the following features.
  • a process for producing an optically active hydroxymethyl-substituted phenylalanine characterized in that L-hydroxymethyl-substituted phenylalanine or a salt thereof represented by the formula:
  • [6] The production method according to any one of [1] to [5], wherein the enzyme is at least one selected from the group consisting of hydantoin racemase, hydantoinase, and power ruba moylase.
  • Hydantoin racemase derived from Microbacteria liquiffaciens AJ 3 9 1 2 and Flavobatarum sp. AJ 1 1 1 99 Hydantoinase and Flavobatarum sp. AJ 1 1 1 99 The production method according to any one of [1] to [5], wherein the production method is at least one selected from the group consisting of strain-derived force ruba moylases.
  • a process for producing an optically active hydroxymethyl-substituted phenylalanine characterized in that L-hydroxymethyl-substituted phenylalanine or a salt thereof represented by the formula:
  • the production method of the present invention is represented by the following reaction scheme.
  • step 1 is a reduction of the cyano-substituted benzylidene hydantoin represented by the above formula (1) (hereinafter referred to as “benzylidene hydantoin (1)”), and the aminomethyl represented by the above formula (2).
  • This is a step of obtaining a substituted benzylhydantoin or a salt thereof (hereinafter referred to as “benzylhydantoin (2)”).
  • the reduction reaction includes adding a reduction catalyst and an acid to benzylidenehydantoin (1), and It is preferable to react with hydrogen gas.
  • Examples of the salt of benzylhydantoin (2) include acid addition salts such as hydrochloride, sulfate, and trifluoroacetate. Further, the position of substitution of the cyano group of benzylidenehydantoin (1) may be any of the 2-position, the 3-position and the 4-position, but the 4-position is preferred.
  • the reduction catalyst is not particularly limited as long as it can be used for hydrogenation, but a transition metal catalyst is preferably used.
  • transition metal catalysts include palladium catalysts such as palladium, palladium carbon, palladium black, palladium chloride, and others, as well as platinum oxide, platinum black, Raney nickel, and Raney cobalt. Among them, palladium, palladium carbon, palladium black, and chloride.
  • a palladium catalyst such as palladium is particularly preferred.
  • the amount of the transition metal catalyst used is usually 0.1 to 5mo 1%, preferably 0.5 to 2mo 1% with respect to benzylidenehydantoin (1).
  • As the acid inorganic acids such as hydrochloric acid and sulfuric acid are preferably used.
  • the amount of acid used is usually 1.0 to 1.5 equivalents, preferably 1.0 to 1.2 equivalents, relative to benzylidenehydantoin (1).
  • the solvent water or a mixed solvent of water and a water-soluble solvent such as methanol or ethanol can be used.
  • the reaction time is usually 1 to 12 hours, preferably 2 to 9 hours. After completion of the reaction, the transition metal catalyst can be removed by filtration, and the reaction solvent can be concentrated to dryness to obtain benzylhydantoin (2).
  • benzylhydantoin The obtained benzylhydantoin (2) can be isolated and purified by conventional methods such as chromatography, but without isolation and purification, the hydroxymethyl-substituted benzyl represented by the above formula (3) Hydantoin (hereinafter “benzylhydantoin”)
  • Step 2 is a step of obtaining benzylhydantoin (3) by converting the amino group of benzylhydantoin (2) into a hydroxyl group.
  • the substitution position of the aminomethyl group of benzylhydantoin (2) may be any of 2-position, 3-position or 4-position, but 4-position is preferred.
  • the conversion is not particularly limited as long as it is a method capable of converting an amino group into a hydroxyl group, but is preferably performed by a reaction with nitrite.
  • nitrite alkali metal nitrites such as sodium nitrite and potassium nitrite are used, and sodium nitrite is preferable.
  • the amount of nitrite used is usually 1.0 to 1.5 equivalents, preferably 1.2 to 1.3 equivalents, relative to benzylhydantoin (2).
  • the reaction temperature is usually from 95 to 100, preferably from 98 to 100 ° C.
  • the reaction time is usually 15 to 24 hours, preferably 18 to 22 hours.
  • the above reaction may be carried out in a solvent, and examples of the solvent include water, ethanol dimethylformamide, and water dimethylformamide, with water being preferred. After completion of the reaction, the reaction solution can be concentrated to dryness to obtain benzylhydantoin (3).
  • the step 3 is a process of obtaining an optically active hydroxymethyl-substituted phenylalanin or a salt thereof (hereinafter referred to as “phenylalanine (4)”) by treating benzylhydantoin (3) with an enzyme.
  • phenylalanine (4) an optically active hydroxymethyl-substituted phenylalanin or a salt thereof
  • D-phenylalanine D-hydroxymethyl-substituted phenylalanin represented by the following formula (4a) or a salt thereof (hereinafter referred to as “D-phenylalanine”) can be easily and optically selected from benzylhydantoin (3).
  • L_hydride and loxymethyl-substituted phenylalanine or a salt thereof represented by the following formula (4b).
  • the salts of phenylalanine (4), D-phenylalanine (4a) and L-phenylalanine (4b) include hydrochloride, hydrobromide, sulfate or phosphate. Examples include acid addition salts, alkali metal salts such as sodium salts and strong rhodium salts, alkaline earth metal salts such as calcium salts, and ammonium salts, and particularly include hydrochlorides and sodium salts.
  • the enzyme is not particularly limited as long as it is an enzyme that can optically hydrolyze benzylhydantoin (3) to produce optically active phenylalanin (4).
  • Bacteria, actinomycetes, fungi Conventionally known enzymes derived from microorganisms such as these and animals and plants can be used.
  • Such enzymes include, for example, hydantoin racema ' Examples include ase, hydantoinase, and ruber moylase, which can be used alone or in combination of two or more.
  • Preferred combinations of enzymes when used in combination of two or more are as follows.
  • an optically active amino acid can be obtained by using a power ruba moylase having optical selectivity.
  • hydantoinase catalyzes not only hydrolysis reaction but also dehydration condensation reaction, it is possible to obtain an amino acid having a desired configuration by using hydantoin racemase and a powerful ruber moylase having optical selectivity. Monkey.
  • the microbacterium When producing D-phenylalanine, the microbacterium, liquefifaciens (Microbacteri um 1 iquefaciens AJ 391 2 hydantoin racemase, F lavobacteri um sp) AJ 1 1 1 99 It is desirable to use at least one member selected from the group consisting of D-power ruber moylase derived from D-hydantoinase and F lavobacteri um sp AJ 1 1 199 strains.
  • Microbacteria lieufaciens (Microbacterium 1 iquefaciens) AJ 3 9 1 2 strain was originally Flavoacterium sp. AJ 3 9 1 2 (FE RM-P 3 1 3 3) As a stock, it was deposited at the Biotechnology Institute of Industrial Technology, Ministry of International Trade and Industry on June 27, 1957, but as a result of re-identification, it was found that Auerobacteria liquefaciens (Au reobacteri um 1 iquefaciens). Furthermore, due to the change of the species name, Au reobacteri um 1 iquefaciens has been classified as Microbacteri um 1 iquefaciens.
  • Flavobacteri um s p. AJ 1 1 1 9 9 was originally designated as Al ligaligenesaqua ma rinus. It is a microorganism deposited at the Institute of Biotechnology, Institute of Technology, but as a result of re-identification, it was found that it was classified as Flavobacteri um s p. At present, it is deposited in the patent biological deposit center of the National Institute of Advanced Industrial Science and Technology as Flavobacterium sp. AJ 1 1 1 99 (FE RM-P 4 2 29) stock.
  • the reaction solvent an aqueous medium such as water (for example, ion exchange water) or a buffer solution can be used.
  • an organic solvent such as alcohol may be included as long as the enzyme reaction is not inhibited.
  • the reaction temperature is usually 20-50 ° C, preferably 30-40 ° C.
  • the reaction pH depends on the optimum pH of the enzyme used, but neutral conditions are desirable, preferably pH 5.0 to 9.0, more preferably 6.0 to 8.0.
  • the reaction time is usually 15 to 48 hours, preferably 20 to 30 hours.
  • the amount of the enzyme used is not particularly limited, and those skilled in the art can easily set the amount appropriately by conducting preliminary experiments under each reaction condition.
  • the enzyme can be removed by adjusting the reaction solution to acidity (for example, pH 2) to deactivate the enzyme, treating with activated carbon or the like, and filtering.
  • acidity for example, pH 2
  • the enzyme described above may be obtained from a culture of bacterial cells transformed with recombinant DNA into which an enzyme gene such as hydantoinase has been incorporated (hereinafter referred to as “transformant”). Good.
  • Recombinant DNA can be obtained, for example, by ligating a DNA fragment linked in the order of a promoter, a DNA encoding an enzyme such as hydantoinase, and the terminator, and a vector DNA.
  • the promoter is not particularly limited as long as it is a promoter that can promote transcription of the target enzyme gene, and a promoter that is usually used for heterologous protein production in E. coli can be used. , Trp promoter, lac promoter, tac promoter, PL promoter motor and the like.
  • Examples of the DNA encoding the enzyme include those isolated from the chromosomal DNA of Flavobacterium sp. AJ 1 1 1 99 strain, or the DNA from the chromosome DN A of Microbacterial liqueficiens AJ 39 1 2 strain. Separated ones can be used. Isolation of DNA from bacterial cells includes, for example, ultrasonication, ethanol precipitation, It can be performed by a conventional method such as column chromatography. As such DNA, two or more types of DNA may be used. For example, a recombinant DNA having three genes, hydantoinase, strong ruba moylase and hydantoin racemase is used. As a result, phenylalanin (4) can be produced by simultaneously expressing three enzymes using one transformant, which is more efficient than handling multiple transformants individually.
  • a terminator which is a transcription termination sequence, downstream of the enzyme gene.
  • terminators include rnB terminator, T7 terminator, fd terminator, T4 terminator, tetracycline resistance gene terminator, E. coli trpA gene terminator, and the like.
  • r r n B terminator and the like are preferable from the viewpoint of improving the stability of the plasmid.
  • the so-called multi-copy type DNA is preferred as the vector DNA linked to the DNA fragment linked to the DNA encoding an enzyme such as hydantoinase for preparing recombinant DNA for introduction into a host cell.
  • a derivative refers to a derivative modified by a base substitution, deletion, insertion, addition or inversion.
  • the modification includes a mutation treatment by a mutagen or UV irradiation, or a modification by natural treatment.
  • the vector preferably has a marker such as an ampicillin resistance gene or a kanamycin resistance gene.
  • Genes can be linked, for example, by cleaving the target gene amplified with PCR and the multicloning site of vector DNA with the same restriction enzyme, and then using these genes with, for example, a ligation kit. Subsequently, the obtained recombinant DNA is introduced into a host cell to obtain a transformant.
  • Bacterial cells, radiobacterial cells, yeast cells, mold cells, plant cells, animal cells, etc. can be used as host cells, but there are many knowledges regarding mass production of proteins. Therefore, Escherichia coli (Enterobacteria) is preferable, and more preferably, Escherichia coli
  • Escherichia coli JM109 strain (more preferably DE 3) is suitable.
  • the obtained transformant is cultured in a medium.
  • the medium include media usually used for culturing Escherichia coli, such as M9-casamino acid medium and LB medium.
  • the culture conditions and production induction conditions can be appropriately selected according to the type of the marker used for the vector used, the host fungus, and the like.
  • After collecting the cells by centrifugation the cells are crushed or lysed, and the produced enzyme is collected.
  • the recovered enzyme can be used as a crude enzyme solution.
  • the crushing method for example, ultrasonic crushing, French press crushing, glass bead crushing, or the like can be used.
  • lysis method for example, egg white lysozyme, peptidase treatment, or a combination thereof can be used.
  • these enzymes can be purified and used by methods such as ordinary precipitation, filtration, and column chromatography as necessary. In this case, purification methods using antibodies of these enzymes can also be used.
  • hydantoin racemase is introduced into a host cell into which DNA that codes D-hydantoinase and DNA that codes D-streptylase is introduced. It is possible to use an enzyme obtained by preparing a transformant by introducing a DNA that encodes and culturing the transformant.
  • L-phenylalanine (4b) is produced, it is introduced into a host cell introduced with DN A that codes for L-hydantoinase and DN A that codes for L-strength rubamoylase.
  • benzylhydantoin (3) by treating benzylhydantoin (3) with the enzyme obtained from the culture, optically active phenylalanin (4) can be produced.
  • the enzyme treatment benzylhydantoin (3) may be directly added to a medium containing the above-described transformant to produce optically active phenylalanin (4). It may be added directly to the reaction solution containing hydantoin (3).
  • the composition of the reaction solution is not particularly limited as long as the enzymatic reaction of benzylhydantoin (3) proceeds.
  • the transformant can be prepared, for example, by a method similar to the method described in Example 8 of WO 03Z08 5 108 pamphlet. In this case, it may be allowed to stand for 8 hours to 6 days at the aforementioned temperature and pH.
  • the optically active vinylanine (4) accumulated in the culture solution or reaction solution can be collected from the culture solution or reaction solution by a conventional method. For example, operations such as filtration, centrifugation, vacuum concentration, ion exchange or adsorption chromatography, and crystallization can be used in combination as appropriate.
  • the optically active phenylalanin (4) in the culture solution or reaction solution can be quantified quickly using a known method.
  • thin layer chromatography or high performance liquid chromatography (HP LC) using an optical resolution column can be used.
  • the benzylidene hydantoin (1) can be produced, for example, by a method similar to the method described in US Patent (US 28 6 1 0 79). Specifically, as shown in the following reaction scheme, cyano-substituted benzaldehyde and hydantoin Add ethanolamine in water and heat. Next, benzylidenehydantoin (1) can be obtained by separating the precipitated crystals.
  • optically active hydroxymethyl-substituted phenylalanine obtained by the above-described production method can be isolated and purified by a conventional method such as chromatography, but it can be used in the next reaction without isolation and purification. It can also be used.
  • an optically active Nt-butoxycarbonyl-4-hydroxymethylphenylalanine methyl ester which is the protector, can be produced.
  • the optically active N_t-butoxycarbonyl mono-4-hydroxymethylphenylalanine methyl ester is obtained by the method described in the literature (Bioorganic & Meditional Chemistry (2000), 8 (7), 1677-1696). Can be obtained.
  • the optically active Nt-butoxycarbonyl-4-hydroxymethylphenylalanine methyl ester obtained by the above production method is based on the method described in JP-A-2004-525936, dichloromethane, In a solvent such as tetrahydrofuran in the presence of a base such as triethylamine, the hydroxyl group is After reacting with hydrulic acid, it can be reacted with ammine compounds (eg, 2,6-dimethylbiperidine) to obtain an important intermediate as bradykinin B 1 receptor antagonist.
  • ammine compounds eg, 2,6-dimethylbiperidine
  • Hydantoin 2 3.7 g (0.23 m o 1) and 2-aminoethanol 5.4 ml (0.09 mo 1) were added to water 25 Om 1, and the mixture was heated and stirred at 50 ° C. When the solution became transparent, 2-5.1 g (0.18 mo 1) of 4-Cianobenzaldehyde 7 was added and heated to reflux with stirring. The reaction solution is allowed to cool to room temperature, then ice-cooled, adjusted to pH 7 with hydrochloric acid, and stirred for 1 hour.
  • the slurry solution was filtered, the mother liquor was concentrated under reduced pressure, and 2-propanol 15 ml 1 was added to the residue to wash the slurry.
  • the slurry solution was filtered and dried under reduced pressure to obtain 1.6 g of 5- (4-hydroxymethylbenzyl) hydantoin. Yield 68.5%.
  • reaction solution was adjusted to pH 2, 10 ml of a 10% sanizole aqueous solution was added, and the mixture was stirred at 55 ° C for 30 minutes.
  • Activated charcoal (Shirakaba Charcoal AW50: manufactured by Takeda Pharmaceutical Co., Ltd.) 18 g was burned and further stirred for 1 hour.
  • the mixture was filtered with Celery and the mother liquor was adjusted to pH 7 and concentrated under reduced pressure. In order to remove the remaining water, 300 ml of 2-propanol was added and the solution was concentrated again under reduced pressure twice.
  • Microbacteri um liquefaciens AJ 3 9 1 2 genome DN A is in a saddle shape with primers HD—up (SEQ ID NO: 1) and HD—d own (SEQ ID NO: 2),
  • the hydantoinase gene was amplified and ligated to pTrp4 that had been treated with NdeI / BamHI after pretreatment with NdeI / amHI.
  • E. coli JMl 09 was transformed with this ligation solution, a strain having the target plasmid was selected from ampicillin resistant strains, and the plasmid was named pTrp3 9 1 2H4.
  • the hydantoinase gene containing the SD sequence was amplified with primers S Dm 2 (SEQ ID NO: 3) and H D_d own (SEQ ID NO: 2), and p GEM—T easy (Promega) Ligated to.
  • E. coli JMl 09 was transformed with this ligation solution, a strain having the target plasmid was selected from ampicillin resistant strains, and the plasmid was named pSD-H.
  • the hydantoinase gene region (gene fragment H) containing the SD sequence of 1.5 kb in length obtained by treating p SD—H with Eco RI / BamHI and the microbacterial liquéfaciens (M icrobacteri um liquefaciens) AJ 3 9 1 2 Genomic DNA of the strain is made into a saddle shape, and the L-power Luba molyase gene is amplified by primers CH—up (SEQ ID NO: 4) and CH—d own (SEQ ID NO: 5). 1. O kb long inherited by de I ZE co RI treatment A child fragment (gene fragment C) was prepared.
  • a strain having the desired plasmid is selected from chloramphenicol resistant strains. And the plasmid was named pT rp 8 C—SD—H.
  • LB agar medium (10 g / L peptone, 5 gZL yeast extract, 10 g / L sodium chloride, 20 g / L agar) containing L 6 strain 50 mg of sodium L ampicillin sodium, S SmgZL chloramf ⁇ nicol And incubated at 30 ° C for 20 hours.
  • Activated charcoal (Shirakaba Charcoal AW50: Takeda Pharmaceutical Co., Ltd.) 40 mg was added, and the mixture was further stirred for 1 hour. After filtration through celite, the mother liquor was adjusted to pH 7 and concentrated under reduced pressure. In order to remove the remaining water, 2-propanol (0.5 ml) was added, and the solution was again concentrated under reduced pressure twice. 2-Propano to the residue After adding 0.6 ml of water, the mixture was filtered and dried under reduced pressure to obtain 7 mg of L- (4-hydroxymethylolene) phenylalanine (including sodium chloride). (Yield 69.2%)
  • the mother liquor was separated, and the ethyl acetate layer was washed with 100 ml each of 0.5 N hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution, water and saturated brine. Concentrate the ethyl acetate solution under reduced pressure, add heptane 5 Oml, and concentrate again under reduced pressure. It was. Heptane 10 Om 1 was added to the residue and stirred overnight. The slurry solution was filtered and dried under reduced pressure to obtain D— (N—t-butoxycarbonyl)-(4-hydroxymethyl) phenylalanine methyl ester. 0.2 g was obtained. Yield 79.5%.
  • an optically active hydroxymethyl-substituted phenylalanine can be easily and optically obtained with high yield.
  • the production method of the present invention it is possible to industrially produce a photoactive hydroxymethyl-substituted phenylalanine.
  • a compound useful for such a production method and a production method thereof are provided. While some of the specific embodiments of the present invention have been described in detail, those skilled in the art will recognize that the specific embodiments shown vary within the scope of the teachings and advantages of the present invention. Modifications and changes can be made. Accordingly, all such modifications and changes are intended to be included within the spirit and scope of the present invention as claimed in the following claims. ,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、シアノ置換ベンジリデンヒダントイン(1)を還元して、アミノメチル置換ベンジルヒダントイン(2)又はその塩を得、次いで該アミノメチル置換ベンジルヒダントイン(2)又はその塩のアミノ基を水酸基に変換して、ヒドロキシメチル置換ベンジルヒダントイン(3)を得、そして該ヒドロキシメチル置換ベンジルヒダントイン(3)を酵素で処理して、D−ヒドロキシメチル置換フェニルアラニン(4a)又はその塩、或いはL−ヒドロキシメチル置換フェニルアラニン(4b)又はその塩を得る、光学活性なヒドロキシメチル置換フェニルアラニンの製造方法である。本発明によれば、光学活性なヒドロキシメチル置換フェニルアラニンを工業的規模で簡便に得ることができる製造方法を提供することができる。

Description

明細書
光学活性なヒ ドロキシメチル置換フヱニルァラ二ンの製造方法 技術分野
本発明は、 光学活性なヒ ドロキシメチル置換フヱニルァラニンの製造方法に関 する。
背景技術
光学活性なヒ ドロキシメチル置換フエ二ルァラニン誘導体は、 医薬又はその原 料として有用な化合物である。 例えば、 4—ヒ ドロキシメチルフエ二ルァラニン の L体は抗高血圧薬として用いられており (国際公開第 9 2 1 4 706号パン フレッ ト) 、 またその D体はブラジキニン B 1 レセプターアンタゴニスト等の中 間体として用いられている (特開 2004— 5 25 9 36号公報) 。
従来の 4ーヒ ドロキシメチルフエ二ルァラニンの製造方法としては、 例えば、 4—ブロモメチル安息香酸ェチルを出発原料として、 下記反応スキームに示すよ うに還元、 ァセチル化、 ァセトアミ ドマロン酸ジェチルとの縮合、 並びに加水分 解及び脱炭酸を行うことにより、 N—ァセチルー 4ーヒ ドロキシメチルフエニル ァラニンを得、 そして N—ァセチル一 4ーヒ ドロキシメチルフエ二ルァラニンを アシラーゼで加水分解することにより L— (4ーヒ ドロキシメ,チル) フエニルァ ラニンを得る方法が知られている (B i o c h i m i c a e t B i o p h y s i c a A c t a, (1 9 6 7) , 1 48 (2) , 4 1 4— 4 2 2) 。 しかし 出発原料が高価で大量に入手し難く、 また中間体の 4ーヒ ドロキシメチルベンジ ルプロマイ ドが不安定であるため、 大量生産が困難である。 また、 アシラーゼで 加水分解すると不要なァセチル体 (D体) が副生するため、 収率は最大 50%に 過ぎない。
Figure imgf000004_0001
また、 光学活性な相間移動触媒を用いたジフヱニルメチレングリシンエステル のアルキル化により 4—ヒ ドロキシメチルフエ二ルァラニンを得る製造方法では L体と D体との比率 (LZD) が 4/1と立体選択性が悪く、 更なる精製が必要 となる (I n t. J. P e p t i d e P r o t e i n Re s. , (1 99 4) , 44, 457-465) 。 さらに、 光学活性なフエ二ルァラニンから誘導 した光学活性な 4一ョードフエ二ルァラニンや、 光学活性なチロシンから誘導し た光学活性なチロシントリフルォレート誘導体の 4位をアルデヒ ドに変換し、 次 いで還元して光学活性な 4—ヒ ドロキシメチルフエ二ルァラニンを得る製造方法 では、 高価なトリオクチルシラン、 1, 3—ビス (ジフエニルホスフイノ) プロ パンを使用することから大量合成には不向きである (S y n t h e t i c C o mmu n i c a t i o n s, (1 998) , 28 (2) , 4279— 4285) , このように従来の光学活性なヒ ドロキシメチル置換フヱニルァラニンの製造方 法においては、 高価な試薬が不可欠であること、 得られる中間体が不安定である こと、 収率が悪いこと、 純度が低く精製が必要になること等の問題点があること から、 工業的規模での生産に適さないのが実情である。 したがって、 光学活性な ヒ ドロキシメチル置換フエ二ルァラニンを工業的規模で簡便に得ることができる 製造方法の創製が望まれている。
そこで、 本発明はこのような実情に鑑みてなされたものであり、 その解決しよ うとする課題は光学活性なヒ ドロキシメチル置換フエ二ルァラニンを工業的規模 で簡便に得ることができる製造方法、 並びに当該製造方法に有用な化合物及びそ の製造方法を提供することにある。
発明の開示
本発明者らは上記課題を解決するため鋭意研究を重ねた結果、 シァノ置換ベン ジリデンヒダントインを出発物質とし、 還元、 水酸基化で得たヒ ドロキシメチル 置換ベンジルヒダントインを酵素で処理することにより光学活性なヒ ドロキシメ チル置換フエ二ルァラニンが収率よく簡便に得られることを見出し、 本発明を完 成するに至った。
すなわち、 本発明は以下の特徴を有する。
[ 1 ] 下記式 (1 )
Figure imgf000005_0001
で表されるシァノ置換べンジリデンヒダントインを還元して、 下記式 (2 )
Figure imgf000005_0002
で表されるアミノメチル置換ベンジルヒダントイン又はその塩を得、 次いで該ァ ミノメチル置換ベンジルヒダントイン又はその塩のアミノ基を水酸基に変換して、 下記式 (3 )
Figure imgf000005_0003
で表されるヒ ドロキシメチル置換ベンジルヒダントインを得、 そして該ヒ ドロキ シメチル置換ベンジルヒダントインを酵素で処理して、 下記式 (4 a ) -CH2OH
(4a)
H2N' て OOH
で表される D—ヒ ドロキシメチル置換フエ二ルァラニン又はその塩、 或いは下記 式 (4 b)
Figure imgf000006_0001
で表される L—ヒ ドロキシメチル置換フエ二ルァラニン又はその塩を得ることを 特徴とする、 光学活性なヒ ドロキシメチル置換フエ二ルァラニンの製造方法。
[2] 還元が還元触媒下における水素添加により行われる、 [1] 記載の製造方 法。
[3] 還元触媒が遷移金属触媒である、 [2] 記載の製造方法。
[4] 還元触媒がパラジウム触媒である、 [2] 記載の製造方法。
[5] ァミノ基の水酸基への変換が亜硝酸塩との反応により行われる、 [1] 〜 [4] のいずれか一に記載の製造方法。
[6] 酵素がヒダントインラセマーゼ、 ヒダントイナーゼ及び力ルバモイラーゼ からなる群より選ばれる少なくとも 1種である、 [1] 〜 [5] のいずれか一に 記載の製造方法。
[7] 酵素がマイクロバクテリゥム リクエファシエンス A J 3 9 1 2株由来の ヒダントインラセマーゼ、 フラボバタテリゥム エスピー A J 1 1 1 99株由来 のヒダントイナ一ゼ及びフラボバタテリゥム エスピー A J 1 1 1 99株由来の 力ルバモイラーゼからなる群より選ばれる少なくとも 1種である、 [1] 〜 [5] のいずれか一に記載の製造方法。
[8] 酵素が組換え DN Aによって形質転換された菌体の培養物から得たもので ある、 [ 1] 〜 [5] のいずれか一に記載の製造方法。
[9] 下記式 (1)
Figure imgf000007_0001
で表されるシァノ置換べンジリデンヒダントインを還元することを特徴とする、 下記式 (2)
Figure imgf000007_0002
で表されるアミノメチル置換ベンジルヒダントイン又はその塩の製造方法。
[10] 還元が還元触媒下における水素添加により行われる、 [9] 記載の製造 方法。
[1 1] 還元触媒が遷移金属触媒である、 [10] 記載の製造方法。
[12] 還元触媒がパラジウム触媒である、 [10] 記載の製造方法。
[1 3] 下記式 (2)
Figure imgf000007_0003
で表されるアミノメチル置換ベンジルヒダントイン又はその塩のアミノ基を水酸 基に変換することを特徴とする、 下記式 (3)
Figure imgf000007_0004
で表されるヒ ドロキシメチル置換ベンジルヒダントインの製造方法。
[14] ァミノ基の水酸基への変換が亜硝酸塩との反応により行われる、
3] 記載の製造方法。
[1 5] 下記式 (3)
Figure imgf000008_0001
で表されるヒ ドロキシメチル置換ベンジルヒダントインを酵素で処理して、 下記 式 (4 a)
Figure imgf000008_0002
で表される D—ヒ ドロキシメチル置換フエ二ルァラニン又はその塩、 或いは下記 式 (4 b)
Figure imgf000008_0003
で表される L—ヒ ドロキシメチル置換フエ二ルァラニン又はその塩を得ることを 特徴とする、 光学活性なヒ ドロキシメチル置換フエ二ルァラニンの製造方法。
[1 6] 酵素がヒダントインラセマーゼ、 ヒダントイナーゼ及び力ルバモイラ一 ゼからなる群より選ばれる少なくとも 1種である、 [1 5] 記載の製造方法。
[1 7] 酵素がマイクロバクテリゥム リクエファシエンス AJ 391 2株由来 のヒダントインラセマーゼ、 フラボバタテリゥム エスピー A J 1 1 1 99株由 来のヒダントイナーゼ及びフラボバタテリゥム エスピー A J 1 1 199株由来 の力ルバモイラーゼからなる群より選ばれる少なくとも 1種である、 [1 5] 記 載の製造方法。
[18] 酵素が組換え DN Aによって形質転換された菌体の培養物から得たもの である、 [1 5] 記載の製造方法。
[1 9] 下記式 ( 2 )
Figure imgf000009_0001
で表されるアミノメチル置換ベンジルヒダントイン又はその塩。
[20] 下記式 (3)
Figure imgf000009_0002
で表されるヒ ドロキシメチル置換ベンジルヒダントイン。
発明を実施するための最良の形態
以下、 本発明をその好適な実施形態に即して詳細に説明する。
本発明の製造方法は、 下記反応スキームに表される。
Figure imgf000009_0003
( s t e p 1 )
s t e p 1は、 上記式 (1) で表されるシァノ置換べンジリデンヒダントイ ン (以下、 「ベンジリデンヒダントイン (1) 」 という。 ) を還元して、 上記式 (2) で表されるアミノメチル置換ベンジルヒダントイン又はその塩 (以下、 「ベンジルヒダントイン (2) 」 という。 ) を得る工程である。 ここで還元反応 としては、 ベンジリデンヒダントイン (1) に還元触媒及び酸を加え、 溶媒中で 水素ガスと反応させることが好ましい。 なお、 ベンジルヒダントイン (2) の塩 としては、 例えば、 塩酸塩、 硫酸塩、 トリフルォロ酢酸塩等の酸付加塩が挙げら れる。 また、 ベンジリデンヒダントイン (1) のシァノ基の置換位置は 2位、 3 位又は 4位のいずれであってもよいが、 4位が好ましい。
還元触媒としては水素添加に使用できるものであれば特に限定されないが、 遷 移金属触媒が好ましく用いられる。 遷移金属触媒としては、 パラジウム、 パラジ ゥム炭素、 パラジウム黒、 塩化パラジウム等のパラジウム触媒や、 その他、 酸化 白金、 白金黒、 ラネーニッケル、 ラネーコバルトが例示され、 中でもパラジウム、 パラジウム炭素、 パラジウム黒、 塩化パラジウム等のパラジウム触媒が特に好ま しい。 遷移金属触媒の使用量は、 ベンジリデンヒダントイン (1) に対して通常 0. 1〜5mo 1 %、 好ましくは 0. 5〜2mo 1 %である。 また、 酸としては、 塩酸や硫酸等の無機酸が好適に使用される。 酸の使用量は、 ベンジリデンヒダン トイン (1) に対して通常 1. 0〜1. 5当量、 好ましくは 1. 0〜1. 2当量 である。 さらに、 溶媒としては、 水、 又はメタノールやエタノール等の水溶性溶 媒と水との混合溶媒を使用することができる。 反応時間は、 通常 1〜1 2時間、 好ましくは 2〜9時間である。 反応終了後、 遷移金属触媒をろ過により除去し、 反応溶媒を濃縮乾固してベンジルヒダントイン (2) を得るこ,とができる。 得ら れたベンジルヒダントイン (2) はクロマトグラフィー等の常法により単離 '精 製することもできるが、 単離 ·精製することなく、 上記式 (3) で表されるヒ ド ロキシメチル置換ベンジルヒダントイン (以下、 「ベンジルヒダントイン
(3) 」 という。 ) の製造に用いることができる。
( s t e p 2 )
s t e p 2は、 ベンジルヒダントイン (2) のアミノ基を水酸基に変換する ことにより、 ベンジルヒダントイン (3) を得る工程である。 ベンジルヒダント イン (2) のァミノメチル基の置換位置は 2位、 3位又は 4位のいずれであって もよいが、 4位が好ましい。 上記変換としては、 アミノ基を水酸基に変換できる方法であれば特に限定され ないが、 亜硝酸塩との反応により行うことが好ましい。 亜硝酸塩としては、 亜硝 酸ナトリウム、 亜硝酸カリウム等の亜硝酸アルカリ金属塩が用いられるが、 好ま しくは亜硝酸ナトリウムである。 亜硝酸塩の使用量は、 ベンジルヒダントイン (2) に対して通常 1. 0〜1. 5当量、 好ましくは 1. 2〜1. 3当量である。 反応温度は、 通常 9 5〜 1 00で、 好ましくは 98〜 1 00°Cである。 反応時間 は、 通常 1 5〜24時間、 好ましくは 1 8〜2 2時間である。 上記反応は、 溶媒 中で行ってもよく、 溶媒としては、 水、 エタノール ジメチルホルムアミ ド、 水 ジメチルホルムアミ ドが挙げられるが、 水が好ましい。 反応終了後、 反応液を 濃縮乾固してベンジルヒダントイン (3) を得ることができる。
( s t e p 3 )
s t e p 3は、 ベンジルヒダントイン (3) を酵素で処理して、 光学活性な ヒ ドロキシメチル置換フエ二ルァラニン又はその塩 (以下、 「フエ二ルァラニン (4) 」 という。 ) を得る工程である。 これにより、 ベンジルヒダントイン (3) から光学選択的に収率よく簡便に、 下記式 (4 a) で表される D—ヒ ドロ キシメチル置換フエ二ルァラニン又はその塩 (以下、 「D—フエ二ルァラニン
(4 a) 」 という。 ) 又は下記式 (4 b) で表される L_ヒ ド,ロキシメチル置換 フエ二ルァラニン又はその塩 (以下、 「L—フエ二ルァラニン (4 b) 」 とい う。 ) を得ることができる。 なお、 フエ二ルァラニン (4) 、 D—フエ二ルァラ ニン (4 a) および L一フエ二ルァラニン (4 b) の塩としては、 塩酸塩、 臭化 水素酸塩、 硫酸塩または燐酸塩などの酸付加塩、 あるいはナトリウム塩、 力リウ ム塩等のアルカリ金属塩、 カルシウム塩等のアルカリ土類金属塩、 アンモニゥム 塩などが例示され、 特に塩酸塩、 ナトリウム塩が挙げられる。
酵素としては、 ベンジルヒダントイン (3) を光学選択的に加水分解して光学 活性なフエ二ルァラニン (4) を生成し得る酵素であれば特に限定されることな く、 細菌類、 放線菌類、 菌類等の微生物又は動植物に由来する従来公知の酵素を 使用することができる。 このような酵素としては、 例えば、 ヒダントインラセマ' ーゼ、 ヒダントイナーゼ、 力ルバモイラーゼが挙げられ、 これらは単独で又は 2 種以上組み合わせて使用することができる。 2種以上組み合わせて使用する場合 の好適な酵素の組み合わせは、 以下のとおりである。
( i ) ヒダントイナーゼ及ぴカルバモイラーゼ
( i i ) ヒダントイナーゼ、 力ルバモイラーゼ及ぴヒダントインラセマーゼ 酵素を 2種以上組み合わせて使用する場合には、 例えば、 ベンジルヒダントイ ン (3) に、 光学選択性を有するヒダントイナーゼを作用させて L_ (N—カル バモイル) アミノ酸又は D— (N—力ルバモイル) アミノ酸のいずれかを生成さ せ、 更に力ルバモイルァミノ酸に力ルバモイラーゼを作用させることにより光学 活性なフエ二ルァラニンを得ることができる。
また、 用いるヒダントイナーゼが光学選択性を有しない場合でも、 光学選択性 を有する力ルバモイラーゼを用いることにより、 光学活性なアミノ酸を得ること ができる。 すなわち、 ヒダントイナーゼは加水分解反応のみならず、 脱水縮合反 応も触媒するため、 ヒダントインラセマーゼ及ぴ光学選択性を有する力ルバモイ ラーゼを併用することにより、 所望の立体配置を有するアミノ酸を得ることがで さる。
D—フエ二ルァラニンを製造する場合には、 マイクロバクテ,リウム リクエフ ァシエンス (M i c r o b a c t e r i um 1 i q u e f a c i e n s A J 391 2株由来のヒダントインラセマーゼ、 フラボバタテリゥム エスピー (F l a v o b a c t e r i um s p) AJ 1 1 1 99株由来の D—ヒダントイナ ーゼ及ぴフラボバタテリゥム エスピー (F l a v o b a c t e r i um s p) A J 1 1 199株由来の D—力ルバモイラーゼからなる群より選ばれる少な くとも 1種を使用することが望ましい。
他方、 L—フエ二ルァラニンを製造する場合には、 マイクロバタテリゥム リ クエファシェンス (M i c r o b a c t e r i um 1 i q u e f a c i e n s ) A J 39 1 2株由来のヒダントインラセマーゼ、 フラボパクテリゥム エス ピー (F l a v o b a c t e r i um s p) A J 1 1 1 99株由来の L—ヒダ ントイナーゼ及びフラボバタテリゥム エスピー (F l a v o b a c t e r i u m s p) A J 1 1 1 9 9株由来の L一力ルバモイラーゼからなる群より選ばれ る少なくとも 1種を使用することが望ましい。
なお、 マイクロバクテリゥム リクエファシエンス (M i c r o b a c t e r i um 1 i q u e f a c i e n s ) A J 3 9 1 2株は、 当初フラボバクテリウ ム エスピー. (F l a v o b a c t e r i um s p . ) A J 3 9 1 2 (F E RM-P 3 1 3 3) 株として 1 9 7 5年 6月 2 7日に通商産業省工業技術院生命 工学工業技術研究所に寄託されたが、 再同定の結果、 オーレォバクテリゥム リ クエファシエンス (Au r e o b a c t e r i um 1 i q u e f a c i e n s) に分類されることが判明した。 さらに現在では、 種名変更により、 オーレォ ノ クテリゥム リクエファシエンス (Au r e o b a c t e r i um 1 i q u e f a c i e n s ) はマイクロバクテリゥム リクエファシエンス (M i c r o b a c t e r i um 1 i q u e f a c i e n s) に分類』され、 マイクロノくクテ リウム リクエファシェンス (M i c r o b a c t e r i um l i q u e f a c i e n s) A J 3 9 1 2 (国内寄託番号 F E RM_ P 3 1 3 3、 国際寄託番号 FERM-B P 7643) として独立行政法人産業技術総合研究所特許生物寄託 センターに寄託されている。 ,
また、 フラボバタテリゥム エスピー (F l a v o b a c t e r i um s p. ) A J 1 1 1 9 9 (F ERM-P 42 2 9) 株は、 当初アル力リゲネス ア クァマリヌス (A l c a l i g e n e s a q u a ma r i n u s) として通商 産業省工業技術院生命工学工業技術研究所に寄託された微生物であるが、 再同定 の結果、 フラボバタテリゥム エスピー (F l a v o b a c t e r i um s p. ) に分類されることが判明した。 現在では、 フラボパクテリゥム エスピー (F l a v o b a c t e r i um s p . ) A J 1 1 1 99 (F E RM- P 4 2 29) 株として独立行政法人産業技術総合研究所特許生物寄託センターに寄託さ れている。 酵素反応は、 基質となるベンジルヒダントイン (3) のェナンチォマー混合物 (例えば、 ラセミ体) を、 酵素の活性を考慮して以下の条件で処理することが望 ましい。 反応溶媒としては、 通常水 (例えば、 イオン交換水) 、 緩衝液等の水性 媒体を使用できるが、 酵素反応を阻害しない限りアルコール等の有機溶媒を含ん でいてもよい。 反応温度は、 通常 20〜50°C、 好ましくは 30〜40°Cである。 反応 pHは使用する酵素の至適 pHに依存するが、 中性条件が望ましく、 好まし くは pH5. 0〜9. 0、 より好ましくは 6. 0〜8. 0である。 反応時間は、 通常 1 5〜48時間、 好ましくは 20〜 30時間である。 また、 酵素の使用量は 特に限定されるものではなく、 当業者であれば、 各反応条件において予備的な実 験を行うことで、 適宜容易に設定することができる。 酵素反応後、 反応液を酸性 (例えば、 pH2) に調整して酵素を失活させ、 活性炭等で処理してろ過するこ とにより酵素を除去することができる。
また、 前述した酵素は、 ヒダントイナーゼ等の酵素遺伝子が組み込まれた組換 え DN Aによって形質転換された菌体 (以下、 「形質変換体」 という。 ) の培養 物から得たものを用いてもよい。
組換え DNAは、 例えば、 プロモーター、 ヒダントイナーゼ等の酵素をコード する DNA、 ターミネータ一の順に連結した DNA断片と、 ベクター DNAとを 連結することで得ることができる。
プロモーターとしては、 目的の酵素遺伝子の転写を促すことができるプロモー ターである限りにおいて特に制限はなく、 通常大腸菌における異種タンパク質生 産に用いられるプロモーターを使用することができるが、 例えば、 T 7プロモー ター、 t r pプロモーター、 l a cプロモーター、 t a cプロモーター、 P Lプ 口モータ一等が挙げられる。
酵素をコードする DNAとしては、 例えば、 フラボバタテリゥム エスピー A J 1 1 1 99株の染色体 DNAから単離されたものや、 マイクロバクテリゥム リクエファシエンス A J 39 1 2株の染色体 DN Aから単離されたものを用いる ことができる。 DN Aの菌体からの単離は、 例えば超音波破砕、 エタノール沈殿、 カラムクロマトグラフィーなどの常法により行うことができる。 かかる DNAと しては、 2種以上の DNAを用いてもよい。 例えば、 ヒダントイナーゼ、 力ルバ モイラーゼ及びヒダントインラセマ一ゼの 3つの遺伝子を有する組換え DN Aを 用いる。 これにより 1つの形質転換体を用いて 3つの酵素を同時に発現させるこ とでフエ二ルァラニン (4) を製造できるため、 複数の形質転換体を個々に扱う 場合に比べて効率的である。
また、 生産量を増大させるために、 酵素遺伝子の下流に転写終結配列であるタ ーミネーターを連結することが好ましい。 かかるターミネータ一としては、 r r nBターミネータ一、 T 7ターミネータ一、 f dターミネータ一、 T4ターミネ 一ター、 テトラサイクリン耐性遺伝子のターミネータ一、 大腸菌 t r pA遺伝子 のターミネータ一等が挙げられる。 中でも、 r r n Bターミネータ一等が、 プラ スミ ドの安定性をよくする点で好ましい。
宿主細胞に導入するための組換え DNAを調製するための、 これらのヒダント イナーゼ等の酵素をコードする DNAが連結した DNA断片と連結するベクター DNAとしては、 いわゆるマルチコピー型のものが好ましく、 C o 1 E 1由来 の複製開始点を有するプラスミ ド、 例えば pUC系のプラスミ ドゃ p BR322 系のプラスミ ド、 あるいはその誘導体が挙げられる。 ここで、,誘導体とは、 塩基 の置換、 欠失、 揷入、 付加又は逆位等によってプラスミ ドに改変したものをいう。 なお、 改変には、 前記した塩基の置換等の他に、 変異剤や UV照射等による変異 処理又は自然処理等による改変が含まれる。 なお、 形質転換体を選別するために、 該ベクターはアンピシリン耐性遺伝子、 カナマイシン耐性遺伝子等のマーカーを 有することが好ましい。 遺伝子の連結は、 例えば PC Rなどで増幅した目的遺伝 子とベクター DNAのマルチクローニングサイ トを同じ制限酵素で切断した後、 それらの遺伝子を例えばライゲーションキットなどを用いて行うことができる。 次いで、 得られた組換え DN Aを宿主細胞に導入して形質転換体を得る。 宿主 細胞としては、 細菌細胞、 放射菌細胞、 酵母細胞、 カビ細胞、 植物細胞、 動物細 胞等を用いることができるが、 タンパク質の大量生産に関する知見が数多くある ことから、 大腸菌 (腸内細菌) が好ましく、 より好ましくはェシャリ ヒア ' コリ
(E s h e r i c h i a c o l i) である。 特に、 ェシャリ ヒア ' コリ JM1 09株 (より好ましくは、 DE 3) が好適である。
次いで、 得られた形質転換体を培地中で培養する。 宿主細胞を大腸菌とする場 合、 培地としては、 M9—カザミノ酸培地、 LB培地等の、 大腸菌を培養するた めに通常用いられる培地が挙げられる。 なお、 培養条件及び生産誘導条件は、 用 いるベクターのマーカー、 宿主菌等の種類に応じて適宜選択することができる。 遠心分離して菌体を回収した後、 該菌体を破砕又は溶菌させ、 生成した酵素を 回収する。 回収された酵素は、 粗酵素液として使用することができる。 破砕方法 としては、 例えば超音波破砕、 フレンチプレス破砕、 ガラスビーズ破砕等を利用 することができる。 溶菌方法としては、 例えば卵白リゾチーム、 ぺプチターゼ処 理又はこれらを組み合わせた方法を用いることができる。 さらに、 必要に応じて、 通常の沈殿、 濾過、 カラムクロマトグラフィー等の手法により、 これらの酵素を 精製して用いることができる。 この場合、 これらの酵素の抗体を利用した精製法 も利用できる。
なお、 プラスミ ド、 DNA断片、 種々の酵素、 形質転換体の作製、 形質転換体 の選択等を扱う諸操作については、 MOLECULAR CLON I NG, 2 n d E d i t i o n, J . S amb r o o k e t a 1 , 1 989, COLD S PR I NG HARB OR LABORATORY PRES S等に記載 されている方法を適用することができる。
従って、 例えば D—フエ二ルァラニン (4 a) を製造する場合、 D—ヒダント イナ一ゼをコ一ドする DNA及び D—力ルバモイラーゼをコ一ドする DNAが導 入された宿主細胞にヒダントインラセマーゼをコ一ドする DNAを導入させるこ とで形質転換体を作製し、 これを培養することで得られた酵素を用いることがで きる。 他方、 L—フエ二ルァラニン (4 b) を製造する場合には、 Lーヒダント イナ一ゼをコ一ドする DN A及び L—力ルバモイラーゼをコ一ドする DN Aが導 入された宿主細胞にヒダントインラセマーゼをコ一ドする DNAを導入させるこ' とで形質転換体を作製し、 これを培養することで得られた酵素を用いることがで きる。 また、 J . B i o t e c h n o l . 8 6, 1 9— 30, 200 1に記載さ れるようなアースロバクタ一 ·ァウレセンスの酵素遺伝子を用いることができる。 さらに、 N a t u r e B i o t e c h n o l . 1 8, 3 1 7— 3 20, 200 0に記載されるようなアースロバクタ一 · スピーシーズの変異型ヒダントイナー ゼを組み合わせてもよい。
そして、 ベンジルヒダントイン (3) を培養物から得られた酵素で処理するこ とにより、 光学活性なフエ二ルァラニン (4) を製造することができる。 酵素処 理としては、 前述した形質変換体を含む培地にベンジルヒダントイン (3) を直 接添加して光学活性なフエ二ルァラニン (4) を製造してもよいし、 上記形質変 換体を、 ベンジルヒダントイン (3) を含む反応液に直接添加してもよい。 反応 液の組成などは、 ベンジルヒダントイン (3) の酵素反応が進行する限り特に限 定されない。
形質変換体は、 例えば、 国際公開 03Z08 5 1 08号パンフレツ トの実施例 8に記載の方法と同様の方法により調製することができる。 この場合、 前述の温 度及び pHで、 8時間〜 6日静置すればよい。 培養液又は反応液中に蓄積された 光学活性なフユ二ルァラニン (4) は、 定法により培養液又は反応液中より採取 することができる。 例えば、 濾過、 遠心分離、 真空濃縮、 イオン交換又は吸着ク 口マトグラフィー、 結晶化等の操作を必要に応じて適宜組み合わせて用いること ができる。
また、 培養液又は反応液中の光学活性なフエ二ルァラニン (4) の定量は周知 の方法を用いて速やかに測定することができる。 例えば、 薄層クロマトグラフィ 一や、 光学分割カラムを利用した高速液体クロマトグラフィー (HP LC) を用 いることができる。
なお、 ベンジリデンヒダントイン (1) は、 例えば、 米国特許 (US 28 6 1 0 79) に記載の方法と同様の方法により製造することができる。 具体的には、 下記反応スキームに示すように、 シァノ置換べンズアルデヒ ド及びヒダントイン に、 水中でエタノールアミンを加えて加熱する。 次いで、 析出した結晶を分離す ることによりベンジリデンヒダントイン (1) を得ることができる。
Figure imgf000018_0001
また、 前述した製造方法により得られた、 光学活性なヒ ドロキシメチル置換フ ェニルァラニンは、 クロマトグラフィー等の常法により単離 '精製することがで きるが、 単離 ·精製することなく次の反応に用いることもできる。 例えばその保 護体である、 光学活性な N— t—ブトキシカルボニル一4—ヒ ドロキシメチルフ ェニルァラニンメチルエステルを製造することができる。 光学活性な N_ t—ブ トキシカルボニル一 4—ヒ ドロキシメチルフエ二ルァラニンメチルエステルは、 文献 (B i o o r g a n i c & Me d i c i n a l Ch em i s t r y (2000) , 8 (7) , 1677- 1696) 記載の方法により得ることがで きる。 具体的には、 下記反応スキームに示すように、 メタノールと塩化チォニル とを混合し、 該混合物に光学活性な 4—ヒ ドロキシメチルフヱ二ルァラニンを加 えてエステル化した後、 炭酸水素ナトリゥム及びジ一 t e r t,一プチルジカーボ ネートと反応させて、 光学活性な N— t—ブトキシカルボニル一 4ーヒ ドロキシ メチルフエ二ルァラニンメチルエステルを得ることができる。 なお、 式中、 記号
*は不斉炭素を意味する。
Figure imgf000018_0002
さらに、 上記製造方法により得られた光学活性な N— t—ブトキシカルボニル —4ーヒ ドロキシメチルフエ二ルァラニンメチルエステルは、 前記特開 2004 — 525936号公報記載の方法に基づいて、 ジクロロメタン、 テトラヒ ドロフ ラン等の溶媒中、 トリェチルァミン等の塩基存在下に、 その水酸基をメタンスル ホユルク口ライ ドと反応させた後、 ァミン化合物 (例えば、 2, 6—ジメチルビ ペリジン) と反応させることにより、 ブラジキニン B 1 レセプタ一アンタゴニス トとして重要な中間体を得ることができる。
Figure imgf000019_0001
実施例
以下、 本発明の実施例についてさらに詳細な説明するが、 本発明はこれらの実 施例に限定されるものではない。
(参考例 1 )
5— (4—シァノベンジリデン) ヒダントインの合成
水 2 5 Om 1 にヒダントイン 2 3. 7 g (0. 2 3 m o 1 ) 、 2—アミノエタ ノール 5. 4m l (0. 09mo 1 ) を加え、 50 °Cに加熱攪拌した。 溶液が透 明になったら、 4—シァノベンズアルデ七 ド 2 5. 1 g (0. 1 8mo 1 ) を加 えて攪拌しながらー晚加熱還流した。 反応液を放冷して室温に戻した後氷冷し、 塩酸で p H 7に調整して 1時間攪拌し ,
た。 スラリー溶液をろ過、 減圧乾燥して、 5— (4 _シァノベンジリデン) ヒダ ントイン 3 7. 3 gを得た。 収率 9 7. 2 %。
XH-NMR (DMSO— d 6) : δ 6. 4 5 ( s , 1 H) , 7. 7 9 (d,
2H) , 7. 8 5 (d, 2 H)
MS (E S I ) : 2 1 2. 1 [M-H] 一
(実施例 1 )
5 - (4ーァミノメチルベンジル) ヒダントイン塩酸塩の合成
アルゴン雰囲気下、 水 384m lに 5— ( 4—シァノベンジリデン) ヒダント イン 1 9. 2 g (0. 0 9mo 1 ) 、 塩酸 7. 8 m 1 (0. 09mo 1 ) を加え て攪拌した。 スラリー溶液に 5%パラジウム炭素 (AD, 水分 5 3. 1 %) 1 6. 4 gを加え、 反応容器内を水素置換して、 室温で 9時間激しく攪拌した。 ろ過に よりパラジウム炭素を除去し、 母液を結晶が析出するまで減圧濃縮した。 残存す る水分を除くため、 2—ブタノール 5 Om 1を加えての減圧濃縮を 2回行った。 残渣に 2—ブタノール 1 0 Om 1を加え、 2時間攪拌した。 スラリー溶液をろ過、 減圧乾燥して、 白色結晶の 5— (4—ァミノメチルベンジル) ヒダントイン塩酸 塩 1 6. 1 gを得た。 収率 6 9. 8 %。
'H-NMR (DMS O- d 6) : δ 2. 9 5 ( 2 H) , 3 9 7 ( s , 2H) , 4. 36 ( t , 1 H) , 7. 2 (d, 2H) , 7. 40 (d, 2H)
13C-NMR (DMSO) : 3 9. 25, 3 9. 46, 3 9. 6 7
3 9. 8 8, 40. 09, 40. 30, 40. 5 1, 58. 5 8, 28. 96, 1 30. 3 5 1 75. 43
MS (E S I ) : 2 20. [M + H] +, 2 1 8. 3 [M-H]
(実施例 2)
5 - (4—ヒ ドロキシメチルベンジル) ヒダントインの合成
水 3 Om lに 5 _ (4—アミノメチルベンジル) ヒダントイン塩酸塩 2. 7 g (1 0. 6mm o 1 ) 、 亜硝酸ナトリウム 0. 9 g (1 2. 7 mm o 1 ) を加え、 攪拌しながら一晩加熱還流した。 反応液を放冷して室温に戻した後、 塩酸で pH 2に調整して 1時間攪拌した。 25 %水酸化ナトリウム水溶液で p H 5に調整し た後、 減圧濃縮した。 残存する水分を除くため、 エタノール 30m 1を加えての 減圧濃縮を行った。 残渣にエタノール 1 5 Om 1を加えて攪拌した。 スラリー溶 液をろ過、 母液を減圧濃縮し、 残渣に 2—プロパノール 1 5m 1を加えてスラリ 一洗浄した。 スラリー溶液をろ過、 減圧乾燥して、 5— (4—ヒ ドロキシメチル ベンジル) ヒダントイン 1. 6 gを得た。 収率 6 8. 5 %。
'H-NMR (DMSO— d 6) : δ 2. 9 1 ( d , 2 H) , 4. 3 1 (m, 1 H) , 4. 4 5 (d, 2H) , 5. 1 3 ( t , 1 H) , 7. 1 2 (d, 2H) , 7. 2 1 (d, 2 H) , 7. 9 1 (s , 1 H) 0. 3 9 ( s , 1 H)
13C-NMR (DMS O) : 3399.. 22 55,, 3 9. 46, 39. 6 7 3 9. 8 8, 40. 09, 4400.. 3300,, 40. 5 1 , 58. 7 7, 6 3. 02, 1 26. 54 1 29. 8 1
MS (E S I ) : 2 1 9 0 [M-H] 一
(実施例 3)
D— (4—ヒ ドロキシメチル) フエ二ルァラニンの合成
水 1 7 70m lに 5— ( 4—ヒ ドロキシメチルベンジル) ヒダントイン 6 5. 3 g (0. 30mo l ) 、 硫酸マンガン 5水和物 0. 4 gを加え、 3 7°Cに加熱 した。 この水溶液に、 国際公開 03ノ08 5 1 08号パンフレッ トの実施例 8に 記載の方法で得た E. c o 1 i D 9株の菌体溶液を 4 g乾燥菌体 ZLとなるよ うに加え、 反応液を水酸化ナトリウム水溶液と酢酸を用いて pH 7. 2〜7. 5 の間になるように調整した後、 24時間攪拌した。 反応液を pH2に調整し、 1 0%サニゾール水溶液 9 m 1を加えて 5 5°Cで 30分攪拌した。 活性炭 (白鷺炭 AW50 :武田薬品工業株式会社製) 1 8 gをカロえ、 更に 1時間攪拌した。 セラ ィ 卜ろ過し、 母液を pH 7に調整して減圧濃縮した。 残存する水分を除くため、 2—プロパノール 3 00m lを加えて再度減圧濃縮を 2回行った。 残渣に 2—プ ロパノール 40 Om 1を加えて攪拌後、 ろ過、 減圧乾燥して、 D— (4—ヒ ドロ キシメチル) フエ二ルァラニン (塩化ナトリウムを含む。 ) 1 06. 9 gを得た なお、 HP LCで分析することにより、 D— (4—ヒ ドロキシメチル) フエニル ァラニンの含有量は 4 7. Ow t %であることを確認した (収率 7 3. 2%、 光学純度 9 9. 0%e e以上) 。 なお、 光学純度は以下の条件で H P L C測定し たものである。
光学純度の H P L C測定条件:
カラム : SUM I CH I RAL OA— 5000 (1 5 OmmX 4. 6m m) 溶離液 : 2mM C u SO4 / I P A= 9 5 / 5, UV : 2 54
Figure imgf000022_0001
温度 : 室温
XH-NMR (D20) : 5 3. 2 1 (m, 2 H) , 3. 99 (m, 1 H) , 4. 64 ( s , 2H) , 7. 3 3 (d, 2H) , 7. 40 (d, 2 H) MS (E S I ) : 1 94. 3 [M— H] ―
(実施例 4)
(1) ヒダントイナーゼ、 L—力ルバモイラーゼ発現プラスミ ドの構築
マイクロノくクテリウム リクエファシエンス (M i c r o b a c t e r i um l i q u e f a c i e n s ) A J 3 9 1 2株のゲノム DN Aを铸型にして、 プライマー HD— u p (配列番号 1) 、 HD— d own (配列番号 2 ) によって、 ヒダントイナーゼ遺伝子を增幅し、 N d e I / a mH I処理後、 予め N d e I /B a mH I処理した p T r p 4にライゲートした。 このライゲーション溶液で E. c o l i JMl 09を形質転換し、 アンピシリン耐性株の中から目的のプ ラスミ ドを有する株を選択し、 プラスミ ドを p T r p 3 9 1 2H4と命名した。 pT r p 3 9 1 2H4を铸型として、 プライマー S Dm 2 (配列番号 3 ) 、 H D_d own (配列番号 2) によって、 SD配列を含むヒダントイナーゼ遺伝子 を増幅し、 p GEM—T e a s y (プロメガ製) にライゲートした。 このライ ゲーション溶液で E. c o l i JMl 0 9を形質転換し、 アンピシリン耐性株 の中から目的のプラスミ ドを有する株を選択し、 プラスミ ドを p SD— Hと命名 した。
p SD— Hを E c o R I /B a mH I処理して得られる 1. 5 k b長の SD 列を含むヒダントイナーゼ遺伝子領域 (遺伝子断片 H) と、 マイクロバクテリウ ム リクエファシェンス (M i c r o b a c t e r i um l i q u e f a c i e n s) A J 3 9 1 2株のゲノム D N Aを铸型にして、 プライマー CH— u p (配列番号 4) 、 CH— d own (配列番号 5) によって、 L—力ルバモイラ一 ゼ遺伝子を増幅し、 N d e I ZE c o R I処理して得られる 1. O k b長の遺伝 子断片 (遺伝子断片 C) を調製した。 Nd e IZB amH I処理した p T r p 8 に遺伝子断片 C、 及び遺伝子断片 Aをライゲートし、 E. c o l i JM1 09 を形質転換後、 クロラムフエ二コール耐性株の中から目的のプラスミ ドを有する 株を選択し、 プラスミ ドを p T r p 8 C— SD— Hと命名した。
pT r p 8 C— SD— Hを有する E. c ο 1 i J M 1 0 9にヒダントインラ セマーゼ遺伝子発現プラスミ ド p T r p 4 Rを導入することにより、 ヒダントイ ンラセマーゼ、 ヒダントイナーゼ、 L一力ルバモイラーゼの酵素遺伝子を発現す る E. c o 1 i L 6株を作製した。
(2) 酵素菌体の調製
L 6株を 50mgノ L アンピシリンナトリウム、 S SmgZL クロラムフ ヱ二コールを含む LB寒天培地 ( 1 0 g/L ペプトン、 5 gZL 酵母エキス、 1 0 g/L 塩化ナトリウム、 20 g/L a g a r) を用いて、 30°Cで 20 時間培養した。 S OmgZL アンピシリンナトリウム、 25mgZL クロラ ムフヱ二コール、 20mg L 硫酸コバルト 5水和物を含む LB液体培地 (1 0 g/L ペプトン、 5 gZL 酵母エキス、 l O gZL 塩化ナトリウム) に 接種し、 34°C、 1 6時間、 振とう培養を行った。 培養終了後、 遠心分離 (8, 000 g、 1 0分、 4°C) によって菌体を沈殿として回収した。
(3) L— (4—ヒ ドロキシメチル) フエ二ルァラニンの合成
0. 1 M 燐酸二水素力リゥムー燐酸一水素二力リゥム緩衝水溶液 ( p H 7. 2) 3m lに 5— ( 4—ヒ ドロキシメチルベンジル) ヒダントイン 0. l g (0. 48mmo 1 ) 、 塩化コノくノレト 1. 3mgを加え、 3 7 °Cに加熱した。 この水溶 液に、 前述の工程で得た E. c o l i L 6株菌体溶液を 4 g乾燥菌体/ Lとな るように加え、 6日間攪袢した。 反応液を pH2に調整し、 1 0%サニゾール水 溶液 0. 02m 1を加えて 5 5 °Cで 30分攪拌した。 活性炭 (白鷺炭 AW50 : 武田薬品工業株式会社製) 40mgを加え、 更に 1時間攪拌した。 セライ トろ過 し、 母液を pH 7に調整して減圧濃縮した。 残存する水分を除くため、 2—プロ パノール 0. 5m 1を加えて再度減圧濃縮を 2回行った。 残渣に 2—プロパノー ル 0. 6m lを加えて攪拌後、 ろ過、 減圧乾燥して、 L— (4ーヒ ドロキシメチ ノレ) フヱニルァラニン (塩化ナトリウムを含む。 ) 7 7m gを得た。 (収率 6 9. 2%)
(実施例 5 )
D— (4—ヒ ドロキシメチル) フ n二ルァラニンメチルエステル塩酸塩の合成 メタノール 43m lに D— (4—ヒ ドロキシメチル) フエ二ルァラニン 4. 3 g (2 1. 9mmo 1 ) を加え、 5°Cに冷却、 攪拌した。 塩化チォニル 2. 7 m 1 (3 5. Ommo 1 ) をゆっく り滴下した後、 室温で一晚攪拌した。 反応液を 減圧濃縮後、 メタノール 1 5m lを加え再度減圧濃縮した。 残渣に酢酸ェチル 2 Om 1を加えてスラリー洗浄した。 溶液をろ過、 減圧乾燥して、 D— (4—ヒ ド 口キシメチル) フエ二ルァラニンメチルエステル塩酸塩 4. 3 gを得た。 収率 7 9. 5%。
— NMR (DMSO— d 6) : 6 3. 1 2 (m, 2 H) , 3. 6 8 ( s , 3H) , 4. 2 5 ( t , 1 H) , 4. 49 ( s , 2 H) , 7. 1 9 (d, 2H) , 7. 28 (d, 2 H)
MS (E S I ) : 2 1 0. 3 [M + H] +
(実施例 6) ,
D- (N_ t—ブトキシカルボニル) 一 (4—ヒ ドロキシメチル) フエ二ルァラ ニンメチノレエステノレ
メタノール 6 Om l , 水 3 Om 1 に D— (4—ヒ ドロキシメチル) フエニルァ ラニンメチルエステル塩酸塩 1 0. 2 g (4 1. 1 mmo 1 ) を加えて攪拌し、 25%水酸化ナトリゥム水溶液で p H 8に調整した。 ジ一 t—ブチルジカーボネ ート 1 3. 6 gをメタノール 1 Om 1に溶解させて加えた。 pH 8以上に保ち、 室温で一晩攪拌した。 反応溶液を減圧濃縮し、 残渣に水 5 0mし 酢酸ェチル 1 00m lを加えて攪拌、 不溶物をろ過した。 母液を分層し、 酢酸ェチル層を 0. 5 N塩酸、 飽和炭酸水素ナトリゥム水溶液、 水、 飽和食塩水各 1 00m lで洗浄 した。 酢酸ェチル溶液を減圧濃縮し、 ヘプタン 5 Om lを加えて再度減圧濃縮し た。 残渣にヘプタン 1 0 Om 1を加えて一晩攪拌し、 スラリー溶液をろ過、 減圧 乾燥して、 D— (N— t—ブトキシカルボニル) 一 (4—ヒ ドロキシメチル) フ ェニルァラニンメチルエステルを 1 0. 2 g得た。 収率 7 9. 5%。
^-NMR (CDC 1 3) δ 1. 4 2 ( s , 9 H) , 3. 08 (m, 2Η) , 3. 7 1 ( s , 3Η) , 4. 6 6 ( s , 2 Η) , 4. 98 (m, 1 Η) , 7. 1 1 ( d, 2 Η) , 7. 30 (m, 2 Η)
MS (Ε S I ) : 30 9. 9 [Μ + Η] +
産業上の利用可能性
本発明によれば、 光学活性なヒ ドロキシメチル置換フエ.二ルァラニンを光学選 択的に収率よく簡便に得ることができる。 また、 本発明の製造方法によれば、 光 学活性なヒ ドロキシメチル置換フヱニルァラニンを工業的に生産することが可能 になる。 さらに、 かかる製造方法に有用な化合物及びその製造方法が提供される。 以上、 本発明の具体的な態様のいくつかを詳細に説明したが、 当業者であれば 示された特定の態様には、 本発明の教示と利点から実質的に逸脱しない範囲で様 々な修正と変更をなすことは可能である。 従って、 そのような修正及び変更も、 すべて後記の請求の範囲で請求される本発明の精神と範囲内に含まれるものであ る。 ,
本出願は、 日本で出願された特願 200 5 -0848 50 (出願日 : 2 00 5 年 3月 23日) を基礎としており、 その内容は本明細書に全て包含されるもので ある。

Claims

請求の範囲
下記式 (1 )
Figure imgf000026_0001
で表されるシァノ置換べンジリデンヒダントインを還元して、 下記式 (2 )
Figure imgf000026_0002
で表されるアミノメチル置換ベンジルヒダントイン又はその塩を得、 次いで該ァ ミノメチル置換ベンジルヒダントイン又はその塩のアミノ基を水酸基に変換して, 下記式 (3 )
Figure imgf000026_0003
で表されるヒ ドロキシメチル置換ベンジルヒダントインを得、 そして該ヒ ドロキ シメチル置換ベンジルヒダントインを酵素で処理して、 下記式 (4 a )
Figure imgf000026_0004
で表される D—ヒ ドロキシメチル置換フエ二ルァラニン又はその塩、 或いは下記 式 (4 b )
Figure imgf000026_0005
で表される L—ヒ ドロキシメチル置換フエ二ルァラニン又はその塩を得ることを 特徴とする、 光学活性なヒ ドロキシメチル置換フユ二ルァラニンの製造方法。
2. 還元が還元触媒下における水素添加により行われる、 請求項 1記載の製造 方法。
3. 還元触媒が遷移金属触媒である、 請求項 2記載の製造方法。
4. 還元触媒がパラジウム触媒である、 請求項 2記載の製造方法。
5. ァミノ基の水酸基への変換が亜硝酸塩との反応により行われる、 請求項 1 〜 4のいずれか一項に記載の製造方法。
6. 酵素がヒダントインラセマ一ゼ、 ヒダントイナーゼ及び力ルバモイラーゼ からなる群より選ばれる少なくとも 1種である、 請求項 1〜 5のいずれか一項に 記載の製造方法。
7. 酵素がマイクロバタテリゥム リクエファシエンス A J 3 9 1 2株由来の ヒダントインラセマーゼ、 フラボバタテリゥム エスピー A J 1 1 1 9 9株由来 のヒダントイナーゼ及びフラボパクテリゥム エスピー A J 1 1 1 9 9株由来の 力ルバモイラーゼからなる群より選ばれる少なくとも 1種である、 請求項 1〜5 のいずれか一項に記載の製造方法。
8. 酵素が組換え DN Aによって形質転換された菌体の培養物から得たもので ある、 請求項 1〜5のいずれか一項に記載の製造方法。
9. 下記式 (1) ,
Figure imgf000027_0001
で表されるシァノ置換べンジリデンヒダントインを還元することを特徴とする、 下記式 (2)
Figure imgf000027_0002
で表されるアミノメチル置換ベンジルヒダントイン又はその塩の製造方法。
1 0. 還元が還元触媒下における水素添加により行われる、 請求項 9記載の製 造方法。
1 1. 還元触媒が遷移金属触媒である、 請求項 1 0記載の製造方法。
1 2. 還元触媒がパラジウム触媒である、 請求項 1 0記載の製造方法。
1 3. 下記式 ( 2 )
Figure imgf000028_0001
で表されるアミノメチル置換ベンジルヒダントイン又はその塩のァミノ基を水酸 基に変換することを特徴とする、 下記式 (3)
Figure imgf000028_0002
で表されるヒ ドロキシメチル置換ベンジルヒダントインの製造方法。
1 4. ァミノ基の水酸基への変換が亜硝酸塩との反応により行われる、 請求項 1 3記載の製造方法。 ,
1 5. 下記式 ( 3 )
Figure imgf000028_0003
で表されるヒ ドロキシメチル置換ベンジルヒダントインを酵素で処理して、 下記 式 (4 a)
Figure imgf000028_0004
で表される D—ヒ ドロキシメチル置換フエ二ルァラニン又はその塩、 或いは下記 式 (4 b)
Figure imgf000029_0001
で表される L—ヒ ドロキシメチル置換フエ二ルァラニン又はその塩を得ることを 特徴とする、 光学活性なヒ ドロキシメチル置換フエ二ルァラニンの製造方法。
16. 酵素がヒダントインラセマーゼ、 ヒダントイナーゼ及ぴカルバモイラ一 ゼからなる群より選ばれる少なくとも 1種である、 請求項 15記載の製造方法。
1 7. 酵素がマイクロバタテリゥム リクエファシエンス A J 391 2株由来 のヒダントインラセマーゼ、 フラボバタテリゥム エスピー A J 1 1 1 99株由 来のヒダントイナーゼ及びフラボバタテリゥム エスピー A J 1 1 199株由来 の力ルバモイラーゼからなる群より選ばれる少なくとも 1種である、 請求項 1 5 の製造方法。
18. 酵素が組換え DNAによって形質転換された菌体の培養物から得たもの である、 請求項 1 5記載の製造方法。
19. 下記式 (2) ,
Figure imgf000029_0002
で表されるアミノメチル置換ベンジルヒダントイン又はその塩。
下記式 (3)
Figure imgf000029_0003
で表されるヒ ドロキシメチル置換ベンジルヒダントイン。
PCT/JP2006/306600 2005-03-23 2006-03-23 光学活性なヒドロキシメチル置換フェニルアラニンの製造方法 WO2006101266A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007509381A JPWO2006101266A1 (ja) 2005-03-23 2006-03-23 光学活性なヒドロキシメチル置換フェニルアラニンの製造方法
EP06730548A EP1867730A1 (en) 2005-03-23 2006-03-23 Process for production of optically active hydroxymethyl -substituted phenylalanine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005084850 2005-03-23
JP2005-084850 2005-03-23

Publications (1)

Publication Number Publication Date
WO2006101266A1 true WO2006101266A1 (ja) 2006-09-28

Family

ID=37023904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306600 WO2006101266A1 (ja) 2005-03-23 2006-03-23 光学活性なヒドロキシメチル置換フェニルアラニンの製造方法

Country Status (3)

Country Link
EP (1) EP1867730A1 (ja)
JP (1) JPWO2006101266A1 (ja)
WO (1) WO2006101266A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040272A1 (ja) * 2005-10-06 2007-04-12 Kaneka Corporation D-(4-アミノメチル)フェニルアラニン誘導体の製造法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104890A (en) * 1979-02-06 1980-08-11 Kanegafuchi Chem Ind Co Ltd Production of d-alpha-aminoacids
JP2003024074A (ja) * 2001-07-10 2003-01-28 Ajinomoto Co Inc D−ヒダントインハイドロラーゼをコードするdna、n−カルバミル−d−アミノ酸ハイドロラーゼをコードするdna、該遺伝子を含む組み換えdna、該組み換えdnaにより形質転換された細胞、該形質転換細胞を用いるタンパク質の製造方法、および、d−アミノ酸の製造方法
WO2003085108A1 (fr) * 2002-04-10 2003-10-16 Ajinomoto Co., Inc. Adn recombinant presentant un gene d'hydantoinase et un gene de carbamylase et procede de production d'acide amine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104890A (en) * 1979-02-06 1980-08-11 Kanegafuchi Chem Ind Co Ltd Production of d-alpha-aminoacids
JP2003024074A (ja) * 2001-07-10 2003-01-28 Ajinomoto Co Inc D−ヒダントインハイドロラーゼをコードするdna、n−カルバミル−d−アミノ酸ハイドロラーゼをコードするdna、該遺伝子を含む組み換えdna、該組み換えdnaにより形質転換された細胞、該形質転換細胞を用いるタンパク質の製造方法、および、d−アミノ酸の製造方法
WO2003085108A1 (fr) * 2002-04-10 2003-10-16 Ajinomoto Co., Inc. Adn recombinant presentant un gene d'hydantoinase et un gene de carbamylase et procede de production d'acide amine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040272A1 (ja) * 2005-10-06 2007-04-12 Kaneka Corporation D-(4-アミノメチル)フェニルアラニン誘導体の製造法

Also Published As

Publication number Publication date
JPWO2006101266A1 (ja) 2008-09-04
EP1867730A1 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP4561010B2 (ja) D−ヒダントインハイドロラーゼをコードするdna、n−カルバミル−d−アミノ酸ハイドロラーゼをコードするdna、該遺伝子を含む組み換えdna、該組み換えdnaにより形質転換された細胞、該形質転換細胞を用いるタンパク質の製造方法、および、d−アミノ酸の製造方法
JP2010284170A (ja) 新規アルドラーゼおよび置換α−ケト酸の製造方法
CN106868030B (zh) 重组载体、含有其的工程菌及在产α-酮戊二酸的应用
KR100980541B1 (ko) 신규한 d-세린 합성 활성을 갖는 효소를 코드하는 dna,상기 효소의 제조방법, 및 이것을 이용한 d-세린의 제조방법
CN110004162B (zh) 一种羰基还原酶、基因及其在盐酸甲氧那明关键中间体上的应用
JP2012196231A (ja) N−アセチル−(R,S)−β−アミノ酸アシラーゼ遺伝子
JP4561009B2 (ja) D−ヒダントインハイドロラーゼをコードするdna、n−カルバミル−d−アミノ酸ハイドロラーゼをコードするdna、該遺伝子を含む組み換えdna、該組み換えdnaにより形質転換された細胞、該形質転換細胞を用いるタンパク質の製造方法、および、d−アミノ酸の製造方法
EP1751297A2 (en) Biosynthetic production of 4-amino-4-deoxychorismate (adc) and [3,4r]-4-amino-3-hydroxycyclohexa-1,5-diene-1-carboxylic acid (3,4-cha)
WO2002072841A1 (fr) Adn codant pour une hydantoinase, adn codant pour une hydrolase d'acide amine l carbamyle, adn recombinant, cellules transformees, procede de production de proteine et procede de production d'acide amine optiquement actif
WO2006101266A1 (ja) 光学活性なヒドロキシメチル置換フェニルアラニンの製造方法
CN112899314B (zh) 一种促进重组解脂亚罗酵母菌合成根皮素的方法
CN112143725B (zh) 一种重组酯酶、编码基因、工程菌及在拆分甲霜灵中的应用
CN105593368B (zh) 2,3-丁二醇的生成能力得到增加的重组微生物及利用其的2,3-丁二醇的生产方法
EP3591044A1 (en) A long-chain dibasic acid with low content of monobasic acid impurity and the production method thereof
EP3591043A1 (en) A long-chain dibasic acid with low content of fatty acid impurity and a method of producing the same
WO2006109632A1 (ja) 新規α-ケト酸還元酵素、その遺伝子、およびその利用法
CN103205470B (zh) 一种短链脱氢酶TsrU的功能及其应用
CN117363667B (zh) 亚胺还原酶在制备达泊西汀中间体和/或达泊西汀中的用途
WO2000023598A1 (en) Aminoacylase and its use in the production of d-aminoacids
JP5307721B2 (ja) (S)−β−フェニルアラニンの製造方法
US20080241896A1 (en) Process for production of optically active hydroxymethyl-substituted phenylalanine
CN117431226A (zh) 解木糖赖氨酸芽孢杆菌内消旋-二氨基庚二酸脱氢酶突变体及其应用
JP4269333B2 (ja) ハロゲノフェニルピルビン酸および光学活性ハロゲノフェニルアラニンの製法
JP2008048731A (ja) N−アセチル−(R,S)−β−アミノ酸アシラーゼ遺伝子
RU2603004C1 (ru) Штамм бактерий escherichia coli - продуцент янтарной кислоты (варианты) и способ получения янтарной кислоты с использованием этого штамма

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509381

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006730548

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730548

Country of ref document: EP