WO2006100986A1 - 被覆金属微粒子及びその製造方法 - Google Patents

被覆金属微粒子及びその製造方法 Download PDF

Info

Publication number
WO2006100986A1
WO2006100986A1 PCT/JP2006/305163 JP2006305163W WO2006100986A1 WO 2006100986 A1 WO2006100986 A1 WO 2006100986A1 JP 2006305163 W JP2006305163 W JP 2006305163W WO 2006100986 A1 WO2006100986 A1 WO 2006100986A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
coated metal
metal fine
oxide
coated
Prior art date
Application number
PCT/JP2006/305163
Other languages
English (en)
French (fr)
Inventor
Hisato Tokoro
Shigeo Fujii
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to JP2007509221A priority Critical patent/JP4766276B2/ja
Priority to EP06729184.9A priority patent/EP1867414B1/en
Priority to US11/909,237 priority patent/US7858184B2/en
Publication of WO2006100986A1 publication Critical patent/WO2006100986A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • Magnetic recording media such as magnetic tapes and magnetic recording disks, electronic devices such as radio wave absorbers, inductors, and printed boards (soft magnetic materials such as yokes), photocatalysts, magnetic beads for nucleic acid extraction, and medical micros
  • the present invention relates to coated magnetic metal particles used for spheres and the like, and a method for producing the same.
  • Nanomagnetic particles are mainly produced by a liquid phase synthesis method such as a coprecipitation method or a hydrothermal synthesis method.
  • Nanomagnetic particles obtained by the liquid phase method are oxide particles such as ferrite and magnetite. Recently, a method using thermal decomposition of an organometallic compound has also been adopted. For example, Fe (CO 2) force Fe nanoparticles have been produced.
  • metal magnetic particles have a larger magnetic field than oxide magnetic particles, there are high expectations for industrial use.
  • the saturation magnetization of metallic Fe is 218 A'm 2 / kg, which is much larger than that of iron and iron. Therefore, it has the advantages of excellent magnetic field response and high signal intensity.
  • metal particles such as metal Fe easily oxidize, and for example, if they are fine particles of 100 m or less, especially 1 ⁇ m or less, they burn intensely in the atmosphere due to an increase in specific surface area, so it is difficult to handle in a dry state. . Therefore, oxide particles such as ferrite and magnetite have been widely used.
  • Japanese Patent Application Laid-Open No. 9-143502 discloses a mixture of carbonaceous material particles such as carbon black and natural graphite and metal compound particles such as a simple metal, a metal oxide, a metal carbide, and a metal salt.
  • metal compound particles such as a simple metal, a metal oxide, a metal carbide, and a metal salt.
  • metal-containing material particles are heat-treated at an extremely high temperature of 1600-2800 ° C, so there is a concern about sintering of metal particles.
  • the method of coating graphite on metal particles has the problem of low production efficiency.
  • BN boron nitride
  • the method for applying a BN film to metal particles includes (1) a method in which a mixture of metal particles and B particles is heated by arc discharge in a nitrogen atmosphere, and (2) a mixture of metal particles and B particles in hydrogen and ammonia.
  • Examples include a method of heating in a mixed atmosphere, or (3) a method of heat-treating a mixture of metal nitrate, urea and boric acid in a hydrogen atmosphere.
  • the methods (2) and (3) are heated to a low temperature of 1000 ° C, it is expected that the sintering of metal particles can be suppressed.
  • BN coated metal particles are very expensive.
  • the graphite has a structure in which the graph sheets are laminated, lattice defects are always introduced when the spherical metal particles are coated. Since boron nitride also has a laminated structure, a completely crystalline coating layer cannot be obtained. Coatings with these defects are unsatisfactory for applications that require high corrosion resistance, such as magnetic beads. Therefore, a highly corrosion-resistant metal fine particle and a method with excellent industrial productivity capable of producing it at low cost are desired.
  • an object of the present invention is to provide coated metal fine particles having excellent corrosion resistance and a method for producing such coated metal fine particles at low cost.
  • the method for producing coated metal fine particles of the present invention includes a powder containing Ti (excluding a Ti oxide powder) and a metal M satisfying a relationship of AG> ⁇ G for the standard free energy of formation of the oxide.
  • the resulting mixed powder is heat-treated at 650 to 900 ° C. in a non-oxidizing atmosphere, whereby the metal M oxide is reduced with Ti and the obtained metal is obtained.
  • the surface of M fine particles is covered with Ti oxide mainly composed of TiO.
  • coated metal fine particles of the present invention have a standard free energy of formation of oxide of A G> ⁇ G
  • a metal M fine particle satisfying the -OT relationship is coated with a Ti oxide mainly composed of TiO.
  • the full width at half maximum of the maximum peak of TiO is 0.3.
  • the intensity ratio of the maximum peak of TiO to the maximum peak of metal M is 0.03
  • the maximum peak intensity ratio is preferably 0.05 or more.
  • the standard free energy of formation of acid oxide A G is the standard production of TiO.
  • the TiO2 coating layer mainly composed of TiO is highly crystalline, and the metal
  • the particles can be sufficiently protected.
  • Mainnly 2 means that all Ti oxides including Ti oxides other than TiO (eg, Ti 0 with non-stoichiometric composition) detected by X-ray diffraction measurement are included.
  • the method of the present invention performs the formation of metal particles and the formation of a coating film at the same temperature at a low temperature, it can not only prevent the oxidization of the coated metal fine particles but also is extremely simple and highly productive. .
  • the metal M is preferably Fe. Since Ti has a lower standard energy of oxide formation than Fe, it can efficiently and reliably reduce Fe oxides. Therefore, magnetic metal fine particles having high saturation magnetization and excellent corrosion resistance can be obtained.
  • the oxide of metal M is preferably Fe 0.
  • the powder containing Ti is preferably TiC.
  • the ratio of the powder containing Ti to the total of the metal M oxide powder and the powder containing Ti is 30 to 50% by mass. It is preferable.
  • the coated metal fine particles are further immersed in an alkaline aqueous solution and then dried. This alkali treatment improves the corrosion resistance of the coated metal fine particles.
  • the metal M In order to obtain magnetic metal fine particles having excellent corrosion resistance, the metal M needs to be a magnetic metal, and Fe having a high saturation magnetic field is particularly preferable.
  • a magnetic metal As a nucleus, it can be easily used in the magnetic separation process, and the coated metal fine particles themselves can be purified and used for magnetic beads.
  • the coated metal fine particles have a saturation magnetic field of 50 to 180 A'mVkg.
  • coated magnetic metal particles having excellent corrosion resistance and magnetic properties in which the amounts of the coating layer and the magnetic layer are balanced can be obtained.
  • the saturation magnetic field of the coated metal fine particles is more preferably 95 to 180 A′m 2 / kg.
  • the range of 95 to 180 A'm 2 / kg is a range that cannot be obtained with an oxide magnetic material such as magnetite, and exhibits excellent magnetic separation performance.
  • the coated metal fine particles preferably have a coercive force of 8 kA / m or less. This makes it possible to obtain coated magnetic metal particles with extremely low remanence and excellent dispersibility with very little magnetic aggregation. A more preferable coercive force is 4 kA / m or less.
  • the coated metal fine particles include a plurality of Fe fine particles having an average particle size of 1 ⁇ m or less mainly composed of TiO.
  • the average particle size force is as small as 1 m or less, a plurality of Fe fine particles are sufficiently covered with TiO. This configuration maintains high corrosion resistance.
  • the particle size of the coated particles can be increased while holding.
  • the Fe ion elution amount is preferably 0.1 ppm or less.
  • Magnetic metal particles with excellent corrosion resistance do not deteriorate during use, and are particularly suitable for biochemistry and medical applications such as magnetic beads for nucleic acid extraction.
  • the immersion temperature is 25 ° C.
  • Buffer Saline, PBS containing human prostate cancer cells (PC-3 cells) 0.2 x 10 5 cells, 5% CO
  • the number of cells after culturing in air containing 2 at 37 ° C for 72 hours is preferably 50% or more of the number of cells cultured without adding coated metal fine particles.
  • Coated metal fine particles with excellent magnetic separation performance are obtained by coating chemically active metal with Ti oxide. Since the influence on the water is suppressed, it can be used for biochemistry and medical applications.
  • the average particle diameter d50 of the coated metal fine particles is preferably 0.1 to 10 / ⁇ ⁇ .
  • the average particle diameter d50 is 10 / z m or less, high dispersibility in a liquid can be obtained.
  • the average particle size d50 force S is less than 0.1 ⁇ m, the coating layer itself becomes too thin, and the corrosion resistance of the coated metal fine particles becomes too low.
  • the average particle diameter d50 is more preferably 0.1 to 6 / ⁇ ⁇ .
  • the average particle size d50 is measured with a wet particle size analyzer using laser diffraction.
  • the ratio D / d50 of the average particle diameter D of the metal fine particles to the average particle diameter d50 of the coated metal fine particles is preferably 0.5 or less. As a result, the thickness of the Ti oxide coating layer can be secured and the corrosion resistance is improved.
  • the coated metal fine particles preferably have a Ti oxide wire on the surface.
  • the specific surface area of the coated metal fine particles can be increased, thereby increasing the adsorption capacity.
  • the dissolution amount of Fe ions after immersion of 25 mg of the coated metal fine particles in 1 ml of 6 M guanidine hydrochloride aqueous solution at 25 ° C for 24 hours is 100 mg / L or less is preferable.
  • the coated metal fine particles exhibiting high corrosion resistance even at high chaotropic salt concentrations are suitable for applications such as DNA extraction.
  • coated metal fine particles having excellent corrosion resistance can be obtained inexpensively and easily.
  • the coated metal fine particles of the present invention function as magnetic particles when the metal M is a magnetic metal such as Fe or Co.
  • magnetic metal is coated on a highly corrosion-resistant Ti oxide layer, it is suitable for magnetic beads that require high corrosion resistance for use in corrosive solutions.
  • FIG. 1 is a graph showing an X-ray diffraction pattern of a sample powder of Example 1.
  • FIG. 2 is an SEM photograph (reflection electron image) showing the sample powder of Example 1.
  • FIG. 3 is a graph showing an X-ray diffraction pattern of a sample powder of Comparative Example 1.
  • FIG. 4 is an SEM photograph (reflection electron image) showing the sample powder of Comparative Example 1.
  • FIG. 5 is a graph showing an X-ray diffraction pattern of a sample powder of Comparative Example 4.
  • FIG. 6 is an optical micrograph showing the dispersion state of the sample powder of Example 4 in water.
  • FIG. 7 is an optical micrograph showing the dispersion state of the sample powder of Example 5 in water.
  • FIG. 8 is an optical micrograph showing the dispersion state of the sample powder of Example 6 in water.
  • FIG. 9 is an optical micrograph showing the dispersion state of the sample powder of Example 7 in water.
  • FIG. 10 is an SEM photograph showing the sample powder of Example 28.
  • the oxide of metal M is reduced with Ti by mixing fluoride powder and powder containing Ti (excluding Ti oxide powder) and heat-treating the resulting mixed powder in a non-oxidizing atmosphere. At the same time, the surface of the obtained metal M fine particles is coated with a Ti oxide mainly composed of TiO.
  • the particle size of the metal M oxide powder is preferably in the range of 0.001 to 5 ⁇ m, which can be selected according to the target particle size of the coated metal fine particles.
  • the particle size is less than 0.001 ⁇ m, not only the “bulk” of the metal oxide powder is increased, but also secondary agglomeration is intense, so that handling in the following production process is difficult. If it exceeds 5 m, the specific surface area of the metal oxide powder is too small and the reduction reaction does not proceed easily.
  • the practical particle size of metal oxide powder is 0.005 to 1 ⁇ m.
  • the metal M is selected from transition metals, noble metals and rare earth metals, but for magnetic materials, Fe, Co, Ni or alloys thereof are preferred as Fe 0, Fe 0, CoO, C
  • Fe is a preferred oxide because of its high saturation magnetism.
  • e 0 is preferable in that it is inexpensive.
  • Ti has a lower standard energy of oxide formation than Fe
  • the Fe oxide can be reduced efficiently and reliably.
  • a G is metal M
  • T iO coated fine metal particles are suitable for dispersion in water, for example, for magnetic beads
  • the powder containing Ti is not only Ti powder but also ⁇ ⁇ ⁇ - ⁇ (where X is an element in which the standard oxide free energy A G is larger than the standard free energy A G of TiO).
  • X is Ag, Au, B, Bi, C, Cu, Cs, Cd, Ge, Ga, Hg, K, N, Na, Pd, Pt, Rb, Rh, S, Sn, Tl,
  • a group force such as Te and Zn forces is also at least one selected.
  • Ti oxide does not function as a reducing agent and is therefore excluded from powders containing Ti.
  • element X is a reducing agent.
  • Ti oxides are not generated.
  • the content of X is not particularly limited as long as Ti is sufficient to reduce the M oxide.
  • Ti-X other than TiO after the reaction
  • TiC is preferred because it is difficult to form two phases.
  • the particle size of the non-oxide powder containing Ti is preferably 0.01 ⁇ m to 20 ⁇ m.
  • the particle size is less than 0.01 ⁇ m, non-acid powder containing Ti easily oxidizes in the atmosphere, making handling difficult. If it exceeds 20 m, the specific surface area is small and the reduction reaction does not proceed easily.
  • the particle size is 0.1 ⁇ m to 5 ⁇ m, the reduction reaction can proceed sufficiently while suppressing acidification in the atmosphere.
  • the ratio of the Ti-containing powder to the M oxide powder is preferably at least the stoichiometric ratio of the reduction reaction. If Ti is insufficient, the M oxide powder will sinter and batter during the heat treatment. For example, in the case of a combination of Fe 0 and TiC, TiC is 25 quality compared to Fe 0 + TiC.
  • the ratio of TiC to Fe 0 + TiC is more preferably 30-50% by mass
  • a stirrer such as a mortar, stirrer, V-shaped mixer, ball mill, or vibration mill.
  • the heat treatment atmosphere is preferably non-oxidizing.
  • non-oxidizing atmospheres include inert gases such as Ar and He, N,
  • Heat treatment temperature is preferably 650-900 ° C
  • Ti 0 having a non-stoichiometric composition may be mainly produced.
  • Ti 0 is generated when the metal M takes in oxygen from TiO n 2n-l n 2n-1 2 at over 900 ° C, or TiO releases oxygen in a non-oxidizing atmosphere
  • the metal M is not sufficiently reduced, and the coating layer is incomplete.
  • the heat treatment temperature is 650-900 ° C, a highly uniform film with almost uniform TiO force with few defects is formed.
  • the coating composed of 2 is suitable for producing coated metal fine particles for a photocatalyst.
  • the coated metal fine particles In order to remove metals such as Fe from the surface and improve the corrosion resistance, it is preferable to subject the coated metal fine particles to an alkali treatment.
  • an alkali treatment For example, in the case of Fe, the amount of Fe ion elution after immersing 25 mg of coated metal fine particles in 1 ml of 6 M guanidine hydrochloride aqueous solution at 25 ° C for 24 hours by alkali treatment is 100 mg / L or less. Can be reduced.
  • the alkali source used for the alkali treatment is not particularly limited as long as it is a compound that exhibits alkalinity when made into an aqueous solution, and examples thereof include NaOH, KOH, and alkaline surfactants.
  • the alkali treatment can be performed by, for example, immersing the coated metal fine particles in an alkali source-containing aqueous solution using a ball mill or the like and stirring them.
  • a Ti oxide wire is formed on the surface of the coated metal fine particles. Specific surface area is increased by Ti oxide wire.
  • the diameter of the Ti oxide wire is preferably 0.05 to 0.1 ⁇ m and the length is 0.5 to 3 m. If it is larger than this, the saturation magnetization of the coated fine metal particles will decrease and the Ti oxide wire will be easily released.
  • the resulting metal magnetic particles contain an excessive amount of non-magnetic components (Ti oxide mainly composed of TiO). Therefore, it is preferable to carry out the magnetic separation operation a plurality of times using a permanent magnet as needed to recover only the magnetic particles.
  • the average particle size of the coated metal fine particles obtained by the above method depends on the particle size of the M oxide powder.
  • the average particle diameter d50 of the coated metal fine particles is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.1 to 6 ⁇ m.
  • the average particle size is less than 0.1 ⁇ m, the coated metal fine particles cannot secure a sufficiently thick film and have low corrosion resistance. If the average particle size exceeds 10 m, the dispersibility of the coated metal fine particles in the liquid will be reduced.
  • the average particle size d50 was measured with a wet particle size measuring device by laser diffraction.
  • the metal M fine particles are sufficiently small relative to the Ti oxide film.
  • the ratio D / d50 of the average particle diameter D of the metal fine particles to the average particle diameter d50 of the coated metal fine particles is preferably 0.5 or less.
  • the thickness of the Ti oxide film mainly composed of TiO is preferably 1 to 10,000 nm. Thickness less than 1 nm
  • the coated metal fine particles do not have sufficient corrosion resistance. If the thickness exceeds 10,000 nm, the coated metal fine particles are too large, and in the case of magnetic metal fine particles that only have low dispersibility in the liquid, the saturation magnetic field is low.
  • a more preferable thickness of the Ti oxide film is 5 to 5000 nm. The thickness of the coating is obtained from a transmission electron microscope (TEM) photograph of the coated metal fine particles. If the thickness of the Ti oxide film is not uniform, the average of the maximum and minimum thickness is taken as the thickness of the Ti oxide film.
  • the fine metal particles must be completely covered with Ti oxide mainly composed of TiO.
  • the metal particles may be partially exposed on the surface, but it is preferable that the metal particles are completely covered.
  • the average particle diameter D of M metal particles coated with Ti oxide mainly composed of TiO is preferably 1 ⁇ m or less.
  • the average particle diameter D of the metal fine particles is determined by measuring the maximum and minimum diameters of each metal fine particle in the SEM photograph (reflected electron image). Obtain the particle size Dn of each metal fine particle according to 2, and divide the total particle size ⁇ Dn of all the metal fine particles in the field of view of the SEM photograph (except the metal fine particles that cannot be distinguished) by the number n of all metal fine particles It is defined as the average value obtained by this.
  • the average particle diameter D of the M metal particles is relatively small, and 50% or more is preferably in the range of 0.1 to 1 ⁇ m, particularly 0.1 to 0.8 ⁇ m.
  • the average particle diameter D of the M metal particles is larger than 1 ⁇ m, the Ti oxide cannot sufficiently coat the M metal particles, and the corrosion resistance of the coated metal fine particles is low.
  • metal M is magnetic metal Fe
  • the average particle size D of Fe fine particles is 0.01 to 1 ⁇ m in order to prevent oxidation by sufficient coating.
  • the magnetization decreases due to the superparamagnetism that increases the coercivity of the coated metal fine particles.
  • the M metal particles and the Ti oxide coating layer do not need to have a one-to-one core-shell structure. Two or more M metal particles are dispersed in the Ti oxide layer mainly composed of TiO. And the structure
  • two or more M metal particles are contained in the Ti oxide because the metal M has a high content and is reliably coated.
  • two or more Fe fine particles having an average particle diameter D of 1 m or less are embedded in the Ti oxide layer.
  • the ratio D / d 50 of each fine particle is preferably 0.5 or less.
  • the covering structure ensures the thickness of the coating and improves the corrosion resistance.
  • the formation of M metal fine particles by the reduction of M oxide and the formation of the Ti oxide film are performed simultaneously, so that the M metal acid is between the M metal fine particles and the Ti oxide film. ⁇ ⁇ ⁇ is not observed.
  • the crystallinity of the Ti oxide film obtained by heat treatment at 650 ° C or higher is high, and it exhibits higher corrosion resistance than the amorphous or low crystalline Ti oxide film obtained by the sol-gel method.
  • the coated metal fine particles of the present invention having a coating mainly composed of TiO
  • the half-width of the maximum peak of TiO in the X-ray diffraction pattern of the coated metal particles is 0.3 °
  • the intensity ratio of the maximum peak of TiO to the maximum peak of metal M is 0.03 or more
  • the maximum peak intensity ratio is small and the half width is wide.
  • the maximum peak intensity ratio is more preferably 0.05 or more. As the maximum peak intensity ratio increases, the film ratio increases and the saturation magnetization decreases. Therefore, the maximum peak intensity ratio is preferably 3 or less.
  • the coated metal fine particles obtained by the above production method have a saturation magnetic field in the range of 50 to 180 A′m 2 / kg and function as magnetic particles. This is because when the coated metal fine particles are made of magnetic metals Fe and TiO, the ratio of Ti to Fe + Ti is 11 ⁇
  • the ratio of Ti is based on the measured saturation magnetization of the coated metal fine particle.
  • the mass ratio of Ti to e + Ti is less than 11%.
  • the saturation magnetic field of the coated metal fine particles is 180 A′m 2 / kg or less.
  • the saturation magnetic field of the coated metal fine particles is 95 to 180 A′m 2 / kg. Saturation magnetization in this range cannot be obtained with magnetite (Fe 0) having only saturation magnetization of about 92 A'm 2 / kg.
  • the coercive force of the coated metal fine particles is preferably 15 kA / m or less, and 8 kA / m.
  • the coated metal fine particles of the present invention have high corrosion resistance.
  • 1 part by weight of coated metal fine particles is kept in 100 parts by weight of pure water (25 ° C) for 1 hour, the elution amount of Fe in pure water is less than 0.01 ppm (less than the ICP analysis limit). Is preferred ⁇ . Pure water was ion-exchanged and distilled, and the elution amount of Fe was measured by ICP analysis.
  • the elution amount of Fe is less than 0.1 ppm when 2.5 parts by mass of coated metal fine particles are kept for 72 hours in 100 parts by mass of physiological saline at 25 ° C. preferable. 0.1 ppm or less
  • the coated metal fine particles of the present invention can be suitably used for magnetic beads and the like that require high corrosion resistance for use in solution.
  • Fe ion elution amount is less than 100 mg / L when 25 mg of coated metal fine particles with metal M is Fe are immersed in 1 ml of aqueous solution of guanidine hydrochloride with a molar concentration of 6 M at 25 ° C. I prefer to be there. Since the coated metal fine particles exhibit high corrosion resistance even at high chaotropic salt concentrations, they are suitable for uses such as DNA extraction that require treatment in an aqueous chaotropic salt solution. Corrosion resistance level with Fe ion elution amount of 100 mg / L or less is a force that may be developed even if alkali treatment is not performed. To ensure the above corrosion resistance level, it is preferable to perform alkali treatment! /.
  • coated metal of the present invention in which the fine particles of metal M are coated with Ti oxide mainly composed of soot
  • Coated metal fine particles that have little effect on cells are suitable as biochemical and medical beads.
  • a further corrosion-resistant layer is formed on the Ti oxide mainly composed of TiO.
  • Example 1 7 3 mass ratio of ⁇ -Fe powder with an average particle size of 0.03 ⁇ m and TiC powder with an average particle size of 1 ⁇ m
  • FIG. 1 shows the X-ray diffraction pattern of the obtained sample powder.
  • the horizontal axis of Fig. 1 shows 2 ⁇ (°) of diffraction, and the vertical axis shows diffraction intensity (relative value).
  • the analysis software “Jade, Ver. 5” manufactured by MDI the diffraction peaks were identified as -Fe and TiO (rutile structure).
  • the value range is 0.14, and the maximum diffraction peak intensity of a-Fe with the maximum diffraction peak intensity of TiO [(110)
  • the ratio to strength was 0.18. From this, TiO has high crystallinity
  • the average particle diameter d50 of this sample powder measured with a laser diffraction particle size distribution analyzer was 3.1 ⁇ m.
  • coated metal fine particles having a particle diameter of 1 ⁇ m to several ⁇ m were observed. Most coated metal particles include TiO
  • Fe particles 2 white fine particles covered with two layers 1 were observed.
  • the particle size of was about 0.5 ⁇ m.
  • the coverage with TiO is extremely high.
  • the obtained Ti oxide is TiO and stoichiometry.
  • a sample powder was prepared in the same manner as in Example 1 except that the heat treatment temperature was 800 ° C.
  • a diffraction pattern similar to that of Example 1 was obtained by X-ray diffraction measurement.
  • the average crystallite size determined from the (200) peak of a-Fe was 84 nm.
  • the maximum number of ⁇ at 2 ⁇ 27.5 °
  • the half-width of the double-fold peak was 0.15, and the ratio between the maximum peak intensity and the maximum diffraction peak [(110) peak] intensity of ⁇ -Fe was 0.12.
  • the average particle diameter d50 of the sample powder was 3.0 m.
  • the saturation magnetization Ms was 115 A ′ m 2 / kg, and the coercive force iHc was 3.9 kA / m.
  • the Fe elution amount in pure water at 25 ° C was less than 0.01 ppm, and the Fe elution amount in 25 ° C physiological saline was 0.02 ppm.
  • the maximum diffraction peak of TiO has a half width of 0.26, and the maximum diffraction peak of TiO
  • the ratio between the intensity and the maximum diffraction peak [(110) peak] intensity of ⁇ -Fe was 0.03.
  • the average particle size d50 of the sample powder was 2.3 ⁇ m.
  • the saturation magnetization Ms was 131 A-m 2 / kg, and the coercive force iHc was 2.6 kA / m.
  • corrosion resistance the amount of Fe eluted in pure water at 25 ° C is less than 0.01 ppm, and the amount of Fe eluted in 25 ° C physiological saline is 0.03 ppm.
  • a sample powder was prepared in the same manner as in Example 1 except that the heat treatment temperature was 1000 ° C.
  • Figure 3 shows the X-ray diffraction pattern of the sample powder. Corresponds to Ti 0 with non-stoichiometric composition in addition to a-Fe
  • the intensity ratio between the maximum diffraction peak of and the maximum diffraction peak of (a) -Fe [(110) peak] is 0.
  • the saturation magnetization Ms was 121 A'm 2 / kg, and the coercive force iHc was 2.0 kA / m.
  • the white fine particles observed in Fig. 2 were not observed, and the recessed portions 4 were scattered in some places on the particle surface.
  • the recessed portion 4 was made of oxalic acid and the smooth portion 3 was Fe phase. This is probably because the heat treatment temperature was as high as 1000 ° C, and the Fe particles grew and became flat.
  • the amount of Fe elution in physiological saline at 25 ° C was 0.22 ppm.
  • the mixture powder was mixed for 10 hours by a rumill, and the obtained mixed powder was heat-treated at 700 ° C. for 2 hours in nitrogen gas in an alumina boat, and cooled to room temperature.
  • a sample powder was prepared in the same manner as in Example 1 except that the heat treatment temperature was 600 ° C.
  • Figure 5 shows the X-ray diffraction pattern of this sample powder. Maximum diffraction peak is in phase with magnetite (Fe 0)
  • Table 1 shows the measurement results of Examples 1 to 3 and Comparative Example 1.
  • the heat treatment temperature was 700 to 900 ° C
  • a TiO film was formed, and the half-value width of the maximum diffraction peak of the soot was 0.14 to 0
  • the intensity ratio with respect to the diffraction peak was 0.03 to 0.18, all in the range of 0.03 or more. It can be seen that the Fe elution amount in physiological saline in Examples 1 to 3 is 0.03 ppm or less, which is excellent in corrosion resistance. In particular, in Examples 1 and 2 in which the peak intensity ratio is in the range of 0.12 to 0.18 and 0.05 or more, it can be seen that the amount of Fe elution is 0.02 ppm or less and the corrosion resistance is remarkably excellent.
  • Example 1 5 g of the sample powder obtained in Example 1 and 50 ml of isopropyl alcohol (IPA) were put into a 100 ml bee force and irradiated with ultrasonic waves for 10 minutes.
  • IPA isopropyl alcohol
  • the permanent magnet was brought into indirect contact with the outer surface of the beaker for 1 minute, and only the magnetic particles were adsorbed on the inner wall of the beaker, and the blackish gray supernatant was removed.
  • This magnetic separation operation was repeated 50 times, and the resulting purified magnetic particles were dried at room temperature.
  • the magnetic properties of the magnetic particles were measured by VSM as in Example 1.
  • the proportion of Ti in the magnetic particles confirmed that the X-ray diffraction pattern force and the coated metal fine particles had both Fe and TiO forces.
  • a powder was prepared.
  • the composition and magnetic properties of the magnetic particles obtained by purifying the sample powder in the same manner as in Example 4 were measured in the same manner as in Example 4. The results are shown in Table 2. Further, as in Example 4, the dispersion state of the magnetic particles in pure water was observed. The results are shown in FIG.
  • Sample powder was prepared in the same manner as in Example 1 except that the mass ratio of a-Fe 0 powder and TiC powder was set to 6: 4. Produced.
  • the composition and magnetic properties of the magnetic particles obtained by purifying the sample powder in the same manner as in Example 4 were measured in the same manner as in Example 4. The results are shown in Table 2. Further, as in Example 4, the dispersion state of the magnetic particles in pure water was observed. The results are shown in FIG.
  • Sample powder was prepared in the same manner as in Example 1 except that the mass ratio of a-Fe 0 powder and TiC powder was 5: 5.
  • Example 2 The sample powder was purified in the same manner as in Example 4 except that the separation time with a permanent magnet was 5 minutes or longer, and the composition and magnetic properties of the obtained magnetic particles were measured in the same manner as in Example 4. The results are shown in Table 2.
  • This magnetic particle has a high corrosion resistance, saturation magnetization Ms is 4 8A'm 2 / kg and 50A'm 2 / low immediately coercive force iHc than kg was 18 kA / m and 15 kA / m greater.
  • Example 1 Same as Example 1 except that a-Fe 2 O of the same particle size as Example 1 and TiC powder of various particle sizes were used.
  • sample powders of Examples 9 to 13 were produced.
  • a sample powder of Example 14 was prepared in the same manner as in Example 1 except that a bead mill was used instead of the ball mill and the heat treatment temperature was 800 ° C.
  • Table 3 shows the average particle size D50 measured by the laser diffraction method for the mixed powder before heat treatment and the sample powder after heat treatment. Further, the average particle diameter D of the Fe fine particles in the coated particles of Examples 10 to 12 and 14 was measured, and D / d50 was determined. The results are shown in Table 4. The d50 changed from 0.8 ⁇ m to 5.0 ⁇ m due to fluctuations in the particle size of the raw material powder. In addition, as the average particle size d50 force S decreases, D / d50 changes from 0.19 to 0.45, all of which are 0.5 or less, indicating that a thick coating of Ti 0 covers the metal particles.
  • Example 10 0.7 0.19
  • Example 11 0.6 0.21
  • Example 12 0.7 0.35
  • Example 14 0.36 0.45
  • PC-3 cells human prostate cancer cells
  • 0.05 ml 0.2 ⁇ 10 5 cell Zwell
  • PBS phosphate buffered saline
  • Cell counting Kit part number 349-06461, manufactured by Dojindo Laboratories, Inc. add a predetermined amount of color reagent to each well and cause a color reaction for 4 hours. Were magnetically separated, and the absorbance of the cell solution was measured with a microplate reader. The relationship between the absorbance and the number of cells was also determined as the number of cells. The ratio of the number of cells when the coated metal fine particles were added to the number of cells when the coated metal fine particles were not applied was 64%.
  • Graphite-coated Fe particles prepared by mixing at a mass ratio of 5:25 and heat-treating in nitrogen at 1400 ° C. for 2 hours were the same as above except that the coated metal fine particles of Example 12 were used. Evaluation was performed. As a result, the ratio of the number of cells when graphite-coated Fe particles were added to the number of cells when the coated metal fine particles were not added was as low as 29%.
  • Heat treatment temperature of the mixed powder is 800 ° C (Reference Example 1, Examples 15 to 20) or 900 ° C (Reference Example 2, Coated metal fine particles were produced in the same manner as in Example 13 except that the examples were changed to Examples 21 to 24).
  • Each obtained coated metal fine particle was put into a ball mill containing an alkaline aqueous solution shown in Table 5, and crushed for 24 hours for alkali treatment.
  • the alkali source in the alkaline aqueous solution was NaO H, KOH, or an alkaline surfactant (Demol EP, manufactured by Kao Corporation). After crushing, it was magnetically separated in IPA and dried to obtain a sample powder.
  • Example 15 NaOH 0.01 M 9.4
  • Example 16 NaOH 0.1 M 11.4
  • Example 17 NaOH 1.0 M 10.3
  • Example 18 KOH 0.01 M 10.1
  • Example 19 KOH 0.1 M 4.8
  • Example 20 KOH 1.0 M 3.2 Reference Example 2 ⁇ 0 wt.% 217.0
  • Example 21 Surfactant 0.01 wt.% 35.8
  • Example 22 Surfactant 0.1 wt.% 23.6
  • Example 23 Surfactant 1 wt.% 18.0
  • Surfactant 10 wt.% 93.8 Notes: (1) Elution amount of Fe ions in 6 M guanidine hydrochloride aqueous solution.
  • the sample powder treated with the alkaline aqueous solution had improved corrosion resistance with a smaller amount of Fe ion elution than the sample powder treated with pure water.
  • even coated metal fine particles with Fe ion elution exceeding 100 mg / L were improved to corrosion resistance S100 mg / L or less by alkali treatment.
  • the sample powder of Example 13 was immersed in an aqueous NaOH solution having the concentration shown in Table 6, and heated to 60 ° C. and subjected to alkali treatment for 24 hours. After the alkali treatment, the aqueous NaOH solution was magnetically separated, washed 3 times with IPA, and dried. 25 mg of the obtained sample powder is 6 M guanidine salt The sample was immersed in 1 ml of an acid salt solution at 25 ° C for 24 hours, and the elution amount of Fe ions was examined by ICP analysis. The same measurement was performed on the sample powder not subjected to the alkali treatment (Reference Example 3). These results are shown in Table 6.
  • the alkali treatment is effective in improving the corrosion resistance of the sample powder subjected to the alkali treatment, in which the elution amount of Feion is smaller than the sample powder not subjected to the alkali treatment. It can also be seen that even with coated fine metal particles with an Fe ion elution amount exceeding 100 mg / L, the corrosion resistance is improved to a level of 100 mg / L or less by alkali treatment.
  • the sample powders of Reference Example 3, Example 28, and Example 30 were subjected to surface composition analysis by X-ray photoelectron spectroscopy. Ti, 0, C and Fe were detected in each sample powder. In the sample powder of Example 30, Na was also detected. The detected values of Fe in Reference Example 3, Example 28, and Example 30 were 0.15%, 0.06%, and 0.07% in atomic ratio, respectively.
  • X-ray photoelectron spectroscopy The low amount of metal M detected by means that the amount of metal M present on the surface of the particle is small! / ⁇ . Even if the alkali treatment is not performed, the detected amount of the metal component on the particle surface is 0.2% or less, which indicates that the metal M is well coated with the Ti oxide. In addition, the amount of Fe detected decreased to 0.1% or less due to alkali treatment. The fact that Fe is small on the surface of the coated fine metal particles is advantageous in terms of corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Record Carriers (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 Tiを含む粉末(ただしTi酸化物粉末を除く)と、酸化物の標準生成自由エネルギーがΔGM-O>ΔGTiO2の関係を満たす金属Mの酸化物粉末とを混合し、得られた混合粉末を非酸化性雰囲気中で650~900°Cで熱処理することにより、前記金属Mの酸化物をTiにより還元するとともに、得られた金属Mの微粒子の表面をTiO2を主体とするTi酸化物で被覆することを特徴とする被覆金属微粒子の製造方法。

Description

明 細 書
被覆金属微粒子及びその製造方法
技術分野
[0001] 磁気テープ、磁気記録ディスク等の磁気記録媒体や、電波吸収体、インダクタ、プ リント基板等の電子デバイス (ヨーク等の軟磁性体)、光触媒、更に核酸抽出用磁気 ビーズや医療用マイクロスフィァ等に用いる被覆磁性金属粒子、及びその製造方法 に関する。
背景技術
[0002] 電子機器の高性能化及び小型軽量化に伴!、、電子デバイスの高性能化及び小型 軽量化とともに、電子デバイスを構成する材料の高性能化及びナノサイズ化も要求さ れている。例えば磁気テープに塗布する磁性粒子は、磁気記録密度の向上を目的と して、ナノサイズィ匕と磁ィ匕の向上が同時に要求されている。
[0003] ナノ磁性粒子は主に共沈法や水熱合成法等の液相合成法により製造されて!、る。
液相法で得られるナノ磁性粒子はフェライトやマグネタイト等の酸ィ匕物粒子である。 最近では有機金属化合物の熱分解を利用した方法も採用されており、例えば Fe(CO )力 Feのナノ粒子が製造されている。
5
[0004] 金属の磁性粒子は酸ィ匕物磁性粒子に比べて磁ィ匕が大きいため、工業的利用への 期待が大きい。例えば、金属 Feの飽和磁化は 218 A'm2/kgと酸ィ匕鉄に比べて非常に 大きいので、磁場応答性に優れ、信号強度が大きくとれるという利点がある。しかし金 属 Fe等の金属粒子は容易に酸ィ匕し、例えば 100 m以下、特に 1 μ m以下の微粒子 状すると、比表面積の増大により大気中で激しく燃えるので、乾燥状態で取り扱うの が難しい。そのため、フェライトやマグネタイト等の酸ィ匕物粒子が広く利用されてきた。
[0005] 乾燥金属粒子を取り扱う場合、金属粒子を直接大気 (酸素)に触れさせな 、ように 粒子表面に被膜を付与することが不可欠である。しかし、金属酸化物で表面を被覆 する方法は、少なからず金属を酸化劣化させる(特開 2000-30920号)。
[0006] 特開平 9-143502号は、カーボンブラック、天然黒鉛等の炭素質物質粒子と、金属 単体、金属酸化物、金属炭化物、金属塩等の金属化合物粒子とを混合して、不活性 ガス雰囲気中で 1600〜2800°Cに加熱し、 45°CZ分以下の冷却速度で冷却すること により、グラフアイト被覆金属粒子を製造する方法を提案している。しかしこの方法で は、 1600〜2800°Cと極めて高い温度で金属含有物質粒子を熱処理するので、金属 粒子の焼結が懸念される。その上、金属粒子にグラフアイトを被覆する方法は生産効 率が低いという問題もある。
[0007] この問題を打開する被覆方法として、窒化ほう素(BN)による金属粒子の被覆が挙 げられる [例えば、 International Journal of Inorganic Materials 3, p. 597 (2001)]。 BN はるつぼ等に用いられる材料であり、融点が 3000°Cと高ぐ熱的安定性に優れている とともに、金属との反応性が低ぐまた絶縁性を有する。金属粒子に BN被膜を付与す る方法としては、 (1)金属粒子と B粒子の混合物を窒素雰囲気中でアーク放電により 加熱する方法、 (2)金属粒子と B粒子の混合物を水素とアンモニアの混合雰囲気中 で加熱する方法、又は (3)硝酸金属塩、尿素及びホウ酸の混合物を水素雰囲気中で 熱処理する方法が挙げられる。特に (2)及び (3)の方法は 1000°Cと低い温度に熱す るため、金属粒子の焼結を抑制できると期待される。し力しながら、 BN被覆金属粒子 には非常に高価であるという問題がある。
[0008] その上、グラフアイトはグラフエンシートが積層した構造を有するため、球状の金属 粒子を被覆した場合、必ず格子欠陥が導入される。窒化ホウ素も同様に積層構造で あるため、完全結晶の被覆層を得ることはできない。これらの欠陥が存在する被覆で は、磁気ビーズ等、高耐食性が要求される用途では不満足である。そのため、高耐 食性の金属微粒子、及びそれを安価に製造し得る工業生産性に優れた方法が望ま れている。
発明の開示
発明が解決しょうとする課題
[0009] 従って、本発明の目的は、耐食性に優れた被覆金属微粒子、及びかかる被覆金属 微粒子を安価に製造する方法を提供することである。
課題を解決するための手段
[0010] 本発明の被覆金属微粒子の製造方法は、 Tiを含む粉末 (ただし Ti酸化物粉末を除 く)と、酸化物の標準生成自由エネルギーが A G > Δ G の関係を満たす金属 M の酸化物粉末とを混合し、得られた混合粉末を非酸化性雰囲気中で 650〜900°Cで 熱処理することにより、前記金属 Mの酸化物を Tiにより還元するとともに、得られた金 属 Mの微粒子の表面を TiOを主体とする Ti酸化物で被覆することを特徴とする。
2
[0011] 本発明の被覆金属微粒子は、酸化物の標準生成自由エネルギーが A G > Δ G
-O T の関係を満たす金属 Mの微粒子を TiOを主体とする Ti酸化物で被覆したもので、
Ϊ02 2
前記被覆金属微粒子の X線回折パターンにお 、て TiOの最大ピークの半値幅が 0.3
2
。 以下であり、かつ金属 Mの最大ピークに対する TiOの最大ピークの強度比が 0.03
2
以上であることを特徴とする。最大ピーク強度比は好ましくは 0.05以上である。
[0012] 前記熱処理において、酸ィ匕物の標準生成自由エネルギー A G が TiOの標準生
M-O 2 成自由エネルギー A G より大きい金属 Mの酸ィ匕物粉末を用いることにより、金属 M
ΤΪ02
の酸ィ匕物粉末が Tiにより還元されると同時に、 TiOを主体とする Ti酸化物の被覆が
2
形成される。 TiOを主体とする Ti酸ィ匕物被覆層は高結晶性であり、コアとなる金属微
2
粒子を十分に保護することができる。ここで「TiO
2を主体とする」とは、 X線回折測定で 検出される TiO以外の Ti酸化物(例えば不定比組成の Ti 0 )も含む全 Ti酸化物に
2 n 2n-l 相当する回折ピークの中で、 TiO
2に相当するピークの強度が最大であることを意味 する。均一性の観点から、実質的に TiO力もなるのが好ましい。ここで「実質的に ΉΟ
2
力もなる」とは、 X線回折パターンで TiO以外の Ti酸ィ匕物のピークが明確に確認でき
2 2
ない程度に TiOの割合が多いことを言う。従って、 X線回折パターンでノイズ程度に T
2
10以外の Ti酸ィ匕物のピークがあっても、「実質的に ΉΟ力もなる」の条件は満たす。
2 2
[0013] 本発明の方法は、金属粒子の生成と被膜の形成を同一工程で低温で行なうため、 被覆金属微粒子の酸ィヒを防止することができるだけでなく、極めて簡単かつ高生産 性である。
[0014] 金属 Mは Feであるのが好ましい。 Tiは Feより酸化物の標準生成エネルギーが小さい ため、 Feの酸ィ匕物を効率良く確実に還元することができる。従って、飽和磁化が高く 耐食性に優れた磁性金属微粒子が得られる。
[0015] 金属 Mの酸化物は Fe 0であるのが好ましぐ Tiを含む粉末は TiCであるのが好まし
2 3
い。保磁力が低下し、分散性が向上した被覆金属微粒子を得るために、金属 Mの酸 化物粉末と Tiを含む粉末の合計に対する Tiを含む粉末の割合は 30〜50質量%とす るのが好ましい。
[0016] 前記被覆金属微粒子をさらにアルカリ水溶液に浸漬し、次いで乾燥するのが好まし い。このアルカリ処理により、被覆金属微粒子の耐食性が向上する。
[0017] 耐食性に優れた磁性金属微粒子を得るために、金属 Mは磁性金属である必要があ り、特に高飽和磁ィ匕の Feが好ましい。磁性金属を核とすることにより、磁気分離工程 に用いるのが容易となり、被覆金属微粒子自体の精製、及び磁気ビーズ用途への使 用が可能となる。
[0018] 前記被覆金属微粒子は 50〜180 A 'mVkgの飽和磁ィ匕を有するのが好ましい。これ により、被覆層と磁性層の量のバランスがとれた耐食性、磁気特性ともに優れた被覆 磁性金属粒子とすることができる。前記被覆金属微粒子の飽和磁ィ匕はより好ましくは 95〜180 A'm2/kgである。 95〜180A'm2/kgの範囲は、マグネタイト等の酸化物磁性 体では得ることのできない範囲であり、優れた磁気分離性能を発揮する。
[0019] 前記被覆金属微粒子は 8 kA/m以下の保磁力を有するのが好ましい。これにより、 残留磁ィ匕が極めて小さくなり、磁気凝集が極めて少ない分散性に優れた被覆磁性金 属粒子とすることができる。より好ましい保磁力は 4 kA/m以下である。
[0020] 前記被覆金属微粒子は、平均粒径が 1 μ m以下の複数の Fe微粒子が TiOを主体と
2 する Ti酸ィ匕物層に埋包されているのが好ましい。平均粒径力 1 m以下と小さいため 、複数個の Fe微粒子は TiOにより十分に被覆される。この構成により、高耐食性を維
2
持しつつ、被覆粒子の粒径を大きくすることができる。
[0021] 生理食塩水 100質量部に前記被覆金属微粒子 2.5質量部を 72時間浸漬させた後の
Feイオン溶出量は 0.1 ppm以下であるのが好ましい。耐食性に優れた磁性金属微粒 子は使用中に劣化せず、特に核酸抽出用磁気ビーズ等の生化学、医療用途に好適 である。なお浸漬温度は 25°Cとする。
[0022] 2 mg/mlの被覆金属微粒子を添カ卩した 0.05 mlのリン酸緩衝生理食塩水(Phosphate
Buffer Saline, PBS)にヒト前立腺癌細胞(PC-3細胞)を 0.2 X 105セルカ卩え、 5%の CO
2 を含有する空気中で 37°Cで 72時間培養した後の細胞数は、被覆金属微粒子を添加 せずに培養した場合の細胞数の 50%以上であるのが好ま 、。磁気分離性能に優 れた被覆金属微粒子は、化学的に活性な金属を Ti酸ィ匕物で被覆することにより細胞 への影響を抑制したので、生化学、医療用途に使用することができる。
[0023] 前記被覆金属微粒子の平均粒径 d50は 0.1〜10 /ζ πιであるのが好ましい。平均粒径 d50が 10 /z m以下であると、液体中での高い分散性が得られる。一方、平均粒径 d50 力 S0.1 μ m未満と小さくなると、被覆層自体が薄くなりすぎ、被覆金属微粒子の耐食性 が低くなりすぎる。平均粒径 d50はより好ましくは 0.1〜6 /ζ πιである。平均粒径 d50はレ 一ザ一回折による湿式粒径測定器で測定する。
[0024] 前記被覆金属微粒子の平均粒径 d50に対する前記金属微粒子の平均粒径 Dの比 D/d50は 0.5以下であるのが好ましい。これにより、 Ti酸ィ匕物被覆層の厚さを確保でき 、耐食性が向上する。
[0025] 前記被覆金属微粒子は表面に Ti酸ィ匕物ワイヤを有するのが好ましい。これにより、 被覆金属微粒子の比表面積を増カロさせることができ、もって吸着能を高めることがで きる。
[0026] 金属 Mが Feの場合、濃度 6 Mのグァ-ジン塩酸塩水溶液 1 ml中に前記被覆金属微 粒子 25 mgを 25°Cで 24時間浸漬した後の Feイオン溶出量が 100 mg/L以下であるの が好ましい。高カオトロピック塩濃度でも高い耐食性を示す被覆金属微粒子は、 DNA 抽出等の用途に好適である。
発明の効果
[0027] 本発明により、耐食性に優れた被覆金属微粒子が安価かつ簡易に得られる。本発 明の被覆金属微粒子は、金属 Mが Fe、 Co等の磁性金属の場合、磁性粒子として機 能する。また磁性金属は高耐食性の Ti酸ィ匕物層に被覆されているので、腐食性の溶 液中で使用するために高 、耐食性が要求される磁気ビーズ等に好適である。
図面の簡単な説明
[0028] [図 1]実施例 1の試料粉末の X線回折パターンを示すグラフである。
[図 2]実施例 1の試料粉末を示す SEM写真 (反射電子像)である。
[図 3]比較例 1の試料粉末の X線回折パターンを示すグラフである。
[図 4]比較例 1の試料粉末を示す SEM写真 (反射電子像)である。
[図 5]比較例 4の試料粉末の X線回折パターンを示すグラフである。
[図 6]実施例 4の試料粉末の水中分散状態を示す光学顕微鏡写真である。 [図 7]実施例 5の試料粉末の水中分散状態を示す光学顕微鏡写真である。
[図 8]実施例 6の試料粉末の水中分散状態を示す光学顕微鏡写真である。
[図 9]実施例 7の試料粉末の水中分散状態を示す光学顕微鏡写真である。
[図 10]実施例 28の試料粉末を示す SEM写真である。
発明を実施するための最良の形態
[0029] [1]被覆金属微粒子の製造方法
酸化物の標準生成自由エネルギーが A G > Δ G の関係を満たす金属 Mの酸
-O ΤΪ02
化物粉末と、 Tiを含む粉末 (ただし Ti酸化物粉末を除く)とを混合し、得られた混合粉 末を非酸化性雰囲気中で熱処理することにより、金属 Mの酸化物を Tiにより還元する とともに、得られた金属 Mの微粒子の表面を TiOを主体とする Ti酸化物で被覆する。
2
[0030] (1)原料粉末
(a)金属 Mの酸化物粉末
金属 Mの酸化物粉末の粒径は、被覆金属微粒子の目標粒径に合わせて選択し得 る力 0.001〜5 μ mの範囲内であるのが好ましい。粒径が 0.001 μ m未満では、金属 酸化物粉末の「かさ」が大きくなるだけでなく二次凝集が激 、ため、以下の製造ェ 程での取り扱いが困難である。また 5 m超だと、金属酸ィ匕物粉末の比表面積が小さ すぎ、還元反応が進行しにくい。金属酸ィ匕物粉末の実用的な粒径は 0.005〜1 μ mで ある。金属 Mは遷移金属、貴金属及び希土類金属から選ばれるが、磁性材用であれ ば Fe、 Co、 Ni又はこれら合金が好ましぐその酸化物としては Fe 0、 Fe 0、 CoO、 C
2 3 3 4 o O、 NiO等が挙げられる。特に Feは飽和磁ィ匕が高いため好ましぐ酸化物としては F
3 4
e 0が安価である点で好ましい。 Tiは Feより酸ィ匕物の標準生成エネルギーが小さい
2 3
ため、 Fe酸ィ匕物を効率良くかつ確実に還元することができる。
[0031] 酸ィ匕物の標準生成自由エネルギーが A G > A G の関係を満す金属 Mの酸化
M-O ΤΪ02
物であれば、 Tiを含む非酸ィ匕物粉末により還元することができる。 A G は金属 Mの
M-O
酸化物の標準生成エネルギーであり、 A G (一 889 kj/mol)は Tiの酸ィ匕物の標準
ΤΪ02
生成エネルギーである。例えば Fe 0 ( A G = -740 kj/mol)は A G 〉 A G
2 3 Fe203 Fe203 Ti02 を満たすので、 Tiを含む非酸化物粉末により還元される。また TiOの被膜により被覆
2
金属微粒子の比重が低下し、分散性が向上する。さらに TiOは親水性であるので、 T iO被覆金属微粒子は、例えば磁気ビーズ用のように水中に分散させる場合に好適
2
である。
[0032] (b) Tiを含む粉末
Tiを含む粉末は、 Ti単体粉末の他、 Ή-Χ (ただし Xは、標準酸ィ匕物生成自由エネル ギー A G が TiOの生成標準自由エネルギー A G より大きい元素である。 )により
X-O 2 ΤΪ02
表される Tiィ匕合物又はそれらの混合物の粉末である。具体的には、 Xは Ag、 Au、 B、 B i、 C、 Cu、 Cs、 Cd、 Ge、 Ga、 Hg、 K、 N、 Na、 Pd、 Pt、 Rb、 Rh、 S、 Sn、 Tl、 Te及び Zn力ら なる群力も選ばれた少なくとも一種である。 Ti酸ィ匕物は還元剤として機能しな 、ので 、Tiを含む粉末から除く。 A G < A G を満たす元素 Xの場合、元素 Xが還元剤と
X-O ΤΪ02
して作用するので、 Ti酸ィ匕物が生成しなくなる。 M酸ィ匕物を還元するに足る Tiが含ま れていれば、 Xの含有量は特に限定されない。 Ti-Xとしては、反応後に TiO以外の
2 相が形成されにくいので、 TiCが好ましい。
[0033] 還元反応を効率的に行なうためには、 Tiを含む非酸化物粉末の粒径は 0.01 μ m〜 20 μ mであるのが好ましい。 0.01 μ m未満の粒径であると、大気中で Tiを含む非酸ィ匕 物粉末が酸ィ匕し易いので、ハンドリングが難しい。また 20 m超であると比表面積が 小さく、還元反応が進行しにくい。特に 0.1 μ m〜5 μ mの粒径であれば、大気中での 酸ィ匕を抑制しつつ、還元反応の十分な進行を図ることができる。
[0034] (2)還元反応
M酸化物の粉末に対する Ti含有粉末の割合は、少なくとも還元反応の化学量論比 であることが好ましい。 Tiが不足すると、熱処理中に M酸化物粉末が焼結し、バルタ 化してしまう。例えば Fe 0と TiCとの組合せの場合、 Fe 0 + TiCに対して TiCは 25質
2 3 2 3
0 /0以上であるが好ましい。 TiCが 25質量%未満であると、 TiCによる Fe 0の還元が
2 3 不十分である。一方、 TiCの比率が高くなりすぎると、 Feの比率が低下し、得られる Ti 0被覆 Fe微粒子の飽和磁化が低下し、保磁力が増大する。従って、 TiCの上限は 50
2
質量%が好ましい。 Fe 0 + TiCに対する TiCの割合はより好ましくは 30〜50質量%で
2 3
あり、最も好ましくは 30〜40質量%であり、特に好ましくは 30〜35質量%である。保磁 力は、 TiCが 35質量%になると 6 kA/mに達し、 40質量%になると 10 kA/mに達し、 50 質量%になると 15 kA/mに達する。 M酸化物粉末と Ti含有非酸化物粉末との混合に は、乳鉢、スターラ、 V字型ミキサ、ボールミル、振動ミル等の攪拌機を用いる。
[0035] M酸化物粉末と Ti含有粉末 (Ti酸化物粉末を除く)の混合粉末を非酸化性雰囲気 中で熱処理すると、 M酸化物粉末と Ti含有粉末との還元反応が起こり、 TiOを主体と
2 する Ti酸化物で被覆された金属 Mの粒子が生成する。熱処理雰囲気は非酸化性で あるのが好ましい。非酸化性雰囲気としては、例えば Ar, He等の不活性ガスや、 N、
2
CO、 NH等が挙げられる力 これらに限定されない。熱処理温度は 650〜900°Cが好
2 3
ましい。 650°C未満であると還元反応が十分に進行せず、また 900°C超であると不定 比組成の Ti 0 が主として生成することがある。 Ti 0 は、 900°C超で金属 Mが TiO n 2n-l n 2n- 1 2 から酸素を取り込むか、 TiOが非酸化性雰囲気中に酸素を放出することにより生成
2
する。その結果、金属 Mの還元が不十分である力、被覆層が不完全となる。熱処理温 度が 650〜900°Cの場合に、欠陥が少なぐ均一性の高いほぼ TiO力もなる被膜が形
2
成される。 TiO
2からなる被膜は、光触媒用の被覆金属微粒子を作製するのに好適で ある。
[0036] (3)アルカリ処理
表面から Fe等の金属を除去し、耐食性を向上させるために、被覆金属微粒子をァ ルカリ処理するのが好ましい。例えば Feの場合、アルカリ処理により、濃度 6 Mのグァ 二ジン塩酸塩水溶液 1 ml中に被覆金属微粒子 25 mgを 25°Cで 24時間浸漬した後の F eイオン溶出量を 100 mg/L以下に低減することができる。
[0037] アルカリ処理に用いるアルカリ源は、水溶液としたときアルカリ性を呈する化合物で あれば良ぐ例えば NaOH、 KOHの他、アルカリ性界面活性剤等が挙げられる。アル カリ処理は、例えばボールミル等を用いて、アルカリ源含有水溶液に被覆金属微粒 子を浸漬し、攪拌することにより行うことができる。また被覆金属微粒子を加温したァ ルカリ水溶液中に保持すると、被覆金属微粒子の表面に Ti酸ィ匕物ワイヤが形成され る。 Ti酸ィ匕物ワイヤにより比表面積が大きくなる。 Ti酸ィ匕物ワイヤの直径は 0.05〜0.1 μ m、長さは 0.5〜3 mであるのが好ましい。これより大きいと、被覆金属微粒子の飽 和磁化の低下や、 Ti酸化物ワイヤの遊離が起きやすくなる。
[0038] (4)磁気分離
得られる金属磁性粒子は非磁性成分 (TiOを主体とする Ti酸化物)を過剰に含ん でいる場合があるため、必要に応じて永久磁石を用いて磁気分離操作を複数回行 い、磁性粒子だけを回収するのが好ましい。
[0039] [2]被覆金属微粒子の構造及び特性
(1)被覆金属微粒子の平均粒径
上記方法により得られる被覆金属微粒子の平均粒径は、 M酸化物粉末の粒径に依 存する。高い耐食性及び分散性を得るためには、被覆金属微粒子の平均粒径 d50は 0.1 μ m〜10 μ mが好ましぐ 0.1〜6 μ mがより好ましい。平均粒径が 0.1 μ m未満であ ると、被覆金属微粒子は十分な厚さの被膜を確保できず、耐食性が低い。また平均 粒径が 10 mを超えると、液体中での被覆金属微粒子の分散性が低下する。平均粒 径 d50はレーザー回折による湿式粒径測定器で測定した。
[0040] (2)被覆率
金属 Mの微粒子の被覆率を高めるために、 Ti酸ィ匕物被膜に対して金属 Mの微粒子 が十分小さいのが望ましい。具体的には、被覆金属微粒子の平均粒径 d50に対する 金属微粒子の平均粒径 Dの比 D/d50は 0.5以下であるのが好ましい。
[0041] (3)被膜の厚さ
TiOを主体とする Ti酸化物被膜の厚さは 1〜 10000 nmが好ましい。厚さが 1 nm未満
2
であると、被覆金属微粒子は十分な耐食性を有さない。また厚さが 10000 nm超であ ると、被覆金属微粒子が大きくすぎ、液中での分散性が低いだけでなぐ磁性金属微 粒子の場合は飽和磁ィ匕が低い。より好ましい Ti酸ィ匕物被膜の厚さは 5〜5000 nmであ る。被膜の厚さは被覆金属微粒子の透過電子顕微鏡 (TEM)写真により求める。 Ti酸 化物被膜の厚さが不均一な場合、最大厚さと最小厚さの平均を Ti酸化物被膜の厚さ とする。なお、金属微粒子は、 TiOを主体とする Ti酸化物で完全に被覆されている必
2
要はなぐ部分的に金属粒子が表面に露出しても構わないが、完全に被覆されてい るのが好ましい。
[0042] (4)金属粒子の平均粒径
TiOを主体とする Ti酸ィ匕物に被覆された M金属粒子の平均粒径 Dは 1 μ m以下が好
2
ましぐ 0.01〜1 μ mがより好ましい。金属微粒子の平均粒径 Dは、 SEM写真 (反射電 子像)において各金属微粒子の最大径及び最小径を測定し、(最大径 +最小径) Z 2により各金属微粒子の粒径 Dnを求め、 SEM写真の視野における全ての金属微粒子 (ただし判別不能なほど小さな金属微粒子は除く)の粒径の合計∑ Dnを全金属微粒 子の数 nで割ることにより求めた平均値と定義する。 M金属粒子の平均粒径 Dはばら つきが比較的小さぐ 50%以上が 0.1〜1 μ m、特に 0.1〜0.8 μ mの範囲に入るのが好 ましい。 M金属粒子の平均粒径 Dが 1 μ mより大きいと、 Ti酸化物は M金属粒子を十分 被覆できず、被覆金属微粒子の耐食性が低い。特に金属 Mが磁性金属 Feである場 合、 Feは非常に酸ィ匕活性であるため、十分な被覆により酸ィ匕を防止するため Fe微粒 子の平均粒径 Dは 0.01〜1 μ mであるのが好ましい。 Fe微粒子の平均粒径 Dが 0.01 μ m未満であると、被覆金属微粒子の保磁力が大きぐ超常磁性発現により磁化が低 下する。
[0043] (5)被覆構造
M金属粒子と Ti酸ィ匕物被覆層とは 1対 1のコア シェル構造になっている必要はなく 、 TiOを主体とする Ti酸ィ匕物層中に 2個以上の M金属粒子が分散した構造であって
2
も良い。 Ti酸ィ匕物の中に 2個以上の M金属粒子が含まれていると、金属 Mは高含有率 で、かつ確実に被覆されるので好ましい。例えば平均粒径 Dが 1 m以下の 2個以上 の Fe微粒子が Ti酸化物層に埋包されているのが好ましい。 TiOを主体とする Ti酸ィ匕
2
物粒子の中に 2個以上の金属 Mの微粒子が包含されて 、る場合、各微粒子の比 D/d 50は 0.5以下であるのが好ましい。カゝかる構成により、被膜の厚さが確保され、耐食性 が向上する。
[0044] 本発明では、 M酸化物の還元による M金属微粒子の形成と、 Ti酸化物被膜の形成 とが同時に行われるので、 M金属微粒子と Ti酸ィ匕物被膜との間に M金属酸ィ匕物層が 観察されな 、。また 650°C以上の熱処理により得られる Ti酸ィ匕物被膜の結晶性は高く 、ゾルーゲル法等により得られる非晶質又は低結晶性の Ti酸ィ匕物被膜より高 、耐食 性を示す。また TiOを主体とした被膜を有する本発明の被覆金属微粒子は、被膜に
2
欠陥が少な 、ので、不定比組成の Ti 0 の被膜を有するものより高 、耐食性を示す
n 2n-l
[0045] (6) Ti酸ィ匕物の結晶性
被覆金属微粒子の X線回折パターンにおける TiOの最大ピークの半値幅が 0.3° 以下で、金属 Mの最大ピークに対する TiOの最大ピークの強度比が 0.03以上である
2
場合に、 Ti酸ィ匕物の結晶性が良い (従って、被覆金属微粒子の耐食性も良い)と判 断した。非晶質又は低結晶性の場合、ピークは観察されないかブロードであるため、 最大ピーク強度比は小さぐ半値幅は広い。最大ピーク強度比はより好ましくは 0.05 以上である。最大ピーク強度比が高くなると被膜の割合が多くなり、飽和磁化が低下 する。そのため、最大ピーク強度比は 3以下が好ましい。
[0046] (7)磁性粒子としての機能
金属 Mが磁性金属 Feの場合、前記製法により得られた被覆金属微粒子は 50〜180 A'm2/kgの範囲の飽和磁ィ匕を有し、磁性粒子として機能する。これは、被覆金属微 粒子が磁性金属 Feと TiOから形成されている場合、 Fe + Tiに対する Tiの割合が 11〜
2
67質量%であることに相当する。 Tiの割合は、 X線回折パターン力も被覆金属微粒子 力 SFeと ΉΟカゝらなることを確認した後で、被覆金属微粒子の飽和磁化の測定値から
2
算出できる。磁性粒子の飽和磁化が 50 A'm2/kg未満と小さいと、磁界に対する応答 が鈍い。また 180 A'm2/kg超であると TiOを主体とする Ti酸化物の含有率が小さく(F
2
e + Tiに対する Tiの質量比率が 11%未満)、金属 Fe粒子を十分に Ti酸化物で被覆で きないために耐食性が低ぐ磁気特性が劣化しやすい。従って、高い飽和磁化及び 十分な耐食性を同時に得るために、被覆金属微粒子の飽和磁ィ匕は 180 A'm2/kg以 下とするのが好ましい。磁気ビーズ等に用いる場合の回収効率や磁気分離性能に優 れるためには、被覆金属微粒子の飽和磁ィ匕は 95〜180 A'm2/kgであるのがより好ま しい。この範囲の飽和磁化は、 92 A'm2/kg程度の飽和磁化しか有さないマグネタイト (Fe 0 )では得られない。
3 4
[0047] 分散性の観点から、被覆金属微粒子の保磁力は 15 kA/m以下が好ましく、 8 kA/m
(100 Oe)以下がより好ましぐ 4 kA/m以下が最も好ましい。保磁力が大きい場合でも TiO被膜を厚くすれば高分散性が得られるが、そうすると被覆金属微粒子の飽和磁
2
化が低下してしまう。保磁力が 8 kA/mを超えると、磁性粒子は無磁場でも磁気的に 凝集するので、液中での分散性が低下する。
[0048] (8)耐食性
金属 M力もなるコアが ΉΟを主体とする Ti酸ィ匕物でほぼ完全に被覆されて 、るので 、本発明の被覆金属微粒子は高い耐食性を有する。 100質量部の純水(25°C)内に 1 質量部の被覆金属微粒子を 1時間保持した場合、純水中への Feの溶出量は 0.01 pp m未満 (ICP分析限界未満)であるのが好まし ヽ。なお純水はイオン交換及び蒸留を したもので、 Feの溶出量は ICP分析により測定した。溶媒として腐食性の高い生理食 塩水を用いた場合、 25°Cの生理食塩水 100質量部に被覆金属微粒子 2.5質量部を 72 時間保持した場合の Feの溶出量は 0.1 ppm以下であるのが好ましい。 0.1 ppm以下の
Feの溶出量とすることにより、溶液中で使用するために高い耐食性が要求される磁 気ビーズ等に本発明の被覆金属微粒子を好適に用いることができる。
[0049] さらに過酷な条件下で高い耐食性を有することも被覆金属微粒子の重要な性能で ある。モル濃度が 6 Mのグァ-ジン塩酸塩水溶液 1 ml中に、金属 Mが Feである被覆 金属微粒子 25 mgを 25°Cで 24時間浸漬したときの Feイオン溶出量は 100 mg/L以下 であるのが好ま 、。この被覆金属微粒子は高カオトロピック塩濃度にぉ 、ても高 ヽ 耐食性を示すため、カオトロピック塩水溶液中での処理を必要とする DNA抽出等の 用途に好適である。 Feイオン溶出量が 100 mg/L以下の耐食性レベルは、アルカリ処 理を施さな 、場合でも発現することがある力 確実に上記耐食性レベルを得るために はアルカリ処理を行うのが好まし!/、。
[0050] 金属 Mの微粒子が ΉΟを主体とする Ti酸ィ匕物で被覆されている本発明の被覆金属
2
微粒子は、被覆状態が良好であるため耐食性が高ぐ金属 Mの溶出も抑えられてい る。従って、細胞への影響も小さい。例えば、被覆金属微粒子を 2 mg/mlの濃度で添 カロした PBS 0.05 mlに、 PC- 3細胞を 0.2 X 105セルカ卩えて、 COインキュベータにより 5
2
%の COを含有する空気中で 37°Cで 72時間培養した後の細胞数は、被覆金属微粒
2
子を添加せずに培養した場合の細胞数の 50%以上とすることができる。細胞への影 響が少ない被覆金属微粒子は、生化学及び医学用のビーズとして好適である。さら に耐食性を向上させるために、 TiOを主体とする Ti酸化物の上にさらに耐食層を設
2
けてもよい。
[0051] 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定さ れるものではない。
[0052] 実施例 1 平均粒径 0.03 μ mの α - Fe Ο粉末と、平均粒径 1 μ mの TiC粉末とを、 7 : 3の質量比
2 3
(TiC: 30質量%)でボールミルにより 10時間混合し、得られた混合粉末をアルミナボ ート内で、窒素ガス中で 700°Cで 2時間熱処理し、室温まで冷却した。得られた試料 粉末の X線回折パターンを図 1に示す。図 1の横軸は回折の 2 Θ (° )を示し、縦軸は 回折強度 (相対値)を示す。 MDI社製解析ソフト「Jade, Ver. 5」による解析の結果、回 折ピークは -Fe及び TiO (ルチル構造)と同定された。
2
[0053] α -Feの(200)ピークの半値幅からシエラーの式を用いて算出された Feの平均結晶 子サイズは 90 nmであった。 2 Θ = 27.5。 のとき得られた Ti〇の最大回折ピークの半
2
値幅は 0.14であり、 TiOの最大回折ピーク強度の a -Feの最大回折ピーク [ (110)ピ
2
ーク]強度に対する比は 0.18であった。これから、 TiOが高い結晶性を有することが
2
分かる。レーザー回折粒度分布測定機 (HORIBA製 LA-920)で測定したこの試料粉 末の平均粒径 d50は 3.1 μ mであった。
[0054] 試料粉末の SEM写真(図 2)では、 1 μ m〜数 μ mの粒径を有する被覆金属微粒子 が観察された。ほとんどの被覆金属微粒子には、 TiO
2層 1に被覆された複数の Fe粒 子 2 (白色微粒子)が認められた。例えば、矢印で示す TiO層に包含された Fe粒子 2
2
の粒径は約 0.5 μ mであった。
[0055] 酸化物の標準生成エネルギーは、 A G =—740 kJ/molに対して、 A G =—8
Fe203 Ti02
89 kj/molであるため、 Ti〇の標準生成エネルギーの方が小さい。従って、 a - Fe〇
2 2 3 が Tiにより還元され、 TiOが生成したと言える。
2
[0056] この試料粉末の磁気特性を、最大印加磁界を 1.6 MA/mとして VSM (振動型磁力計 )により測定した結果、飽和磁ィ匕 Msは 113 A' m2/kgであり、保磁力 iHcは 2.6 kA/mで あった。この飽和磁化 Msの値はバルタ Feの飽和磁化( = 218 A' m2/kg)の 52%に相 当するため、この試料粉末中の Fe含有率は 52質量%、 TiO含有率は 48質量%であ
2
る。 TiOの含有率が高いので、 Feはほぼ完全に Ti〇で被覆されていると推定される。
2 2
[0057] 耐食性を評価するため、イオン交換及び蒸留した 25°Cの純水 20 gに上記試料粉末 0.2 gを投入して 1時間経過後、上澄み液だけを取り、水中の Feイオン濃度を ICP分析 により測定した。その結果、 Feの溶出量は 0.01 ppm未満と少なカゝつた。また上記試料 粉末 25 mgを 25°Cの生理食塩水 1 g中に投入して 72時間経過後、上澄み液だけを取 り、生理食塩水中の Feイオン濃度を同様に ICP分析により測定した。その結果、 Fe溶 出量は 0.01 ppmと少なかった。
[0058] 以上の通り、 Fe溶出量が少なぐかつ ΉΟ含有率が 50%に近いため、 Fe微粒子の
2
TiOによる被覆率は極めて高いことが分かる。また得られた Ti酸ィ匕物は TiOと化学量
2 2 論組成を有するため、結晶性が高ぐ優れた光触媒機能を有すると期待される。
[0059] 実施例 2
熱処理温度を 800°Cとした以外実施例 1と同様にして試料粉末を作製した。 X線回 折測定により、実施例 1と同様の回折パターンが得られた。 a - Feの(200)ピークから 求めた平均結晶子サイズは 84 nmであった。また 2 Θ = 27.5° における ΉΟの最大回
2 折ピークの半値幅は 0.15であり、この最大ピーク強度と α -Feの最大回折ピーク [ ( 11 0)ピーク]強度との比は 0.12であった。また試料粉末の平均粒径 d50は 3.0 mであつ た。磁気特性については、飽和磁化 Msが 115 A ' m2/kgであり、保磁力 iHcが 3.9 kA/ mであった。耐食性については、 25°Cの純水中での Fe溶出量は 0.01 ppm未満であり 、 25°Cの生理食塩水中での Fe溶出量は 0.02 ppmであった。
[0060] 実施例 3
熱処理温度を 900°Cとした以外実施例 1と同様にして試料粉末を作製した。 X線回 折測定の結果、 a - Fe及び ΉΟに相当する回折ピークのみ出現していた。 2 Θ = 36
2
。 における TiOの最大回折ピークは 0.26の半値幅を有し、 TiOの最大回折ピーク強
2 2
度と α -Feの最大回折ピーク [ ( 110)ピーク]強度との比は 0.03であった。また試料粉 末の平均粒径 d50は 2.3 μ mであった。磁気特性については、飽和磁化 Msが 131 A - m 2/kgであり、保磁力 iHcが 2.6 kA/mであった。耐食性については、 25°Cの純水中での Fe溶出量は 0.01 ppm未満であり、 25°Cの生理食塩水中での Fe溶出量は 0.03 ppmで めつに。
[0061] 比較例 1
熱処理温度を 1000°Cとした以外実施例 1と同様にして試料粉末を作製した。図 3は 試料粉末の X線回折パターンを示す。 a - Feの他に、不定比組成の Ti 0に相当する
4 7 回折ピークが得られた。 Ti 0の最大回折ピークは 2 Θ = 26.5° に出現しており、その
4 7
半値幅は 0.18であった。また 0の最大回折ピークとひ- Feの最大回折ピーク [ ( 110 )ピーク]との強度比は 0.04と小さかった。 TiOのピークは観察されなかったので、 ΉΟ
2
の最大回折ピークと a -Feの最大回折ピーク [ (110)ピーク]との強度比は 0である。
2
磁気特性については、飽和磁化 Msは 121 A'm2/kgであり、保磁力 iHcは 2.0 kA/mで あった。試料粉末の SEM写真(図 4)には、図 2で観察されたような白色微粒子は見ら れず、粒子表面には所々に窪んだ箇所 4が散見された。 EDX分析の結果、窪んだ箇 所 4は Ή酸ィ匕物からなり、滑らかな部分 3は Fe相であった。これは、熱処理温度が 100 0°Cと高力 たため、 Fe粒子が成長して平坦な状態となったためであると考えられる。 耐食性については、 25°Cの生理食塩水中での Fe溶出量は 0.22 ppmであった。
[0062] 比較例 2
平均粒径 4 /z mの Nb 0粉末と、平均粒径 1 μ mの TiC粉末とを、 7 : 3の質量比でボー
2 5
ルミルにより 10時間混合し、得られた混合粉末をアルミナボート内で窒素ガス中で 70 0°C X 2時間の熱処理を行な 、、室温まで冷却した。
[0063] X線回折測定の結果、 Nb 0と TiCに対応する回折ピークが得られ、 Nb 0が還元さ
2 5 2 5 れなかったことが分かる。酸化物の標準生成エネルギーは、 A G = - 1766 kj/m
Nb205
olに対して、 A G = -889 kj/molであり、 Nb Oの標準生成エネルギーが小さいた
Ti02 2 5
め、還元反応が進行しなかったと推定される。
[0064] 比較例 3
平均粒径 1.1 μ mのカルボニル鉄粒子に対して、実施例 1と同じ純水に対する耐食 性試験を行ったところ、 Fe溶出量は 0.05 ppmであった。カルボ-ル鉄粒子は被覆層 がないため、 Feの溶出が著し力つた。
[0065] 比較例 4
熱処理温度を 600°Cとした以外実施例 1と同様にして試料粉末を作製した。図 5はこ の試料粉末の X線回折パターンを示す。最大回折ピークはマグネタイト(Fe 0 )に相
3 4 当し、 α -Feの回折ピーク強度は小さかった。これから、原料のへマタイト(Fe 0 )の
2 3 還元が不十分であることが分かる。また TiCの回折ピークも比較的大き力つた。これか ら、 600°Cの熱処理では Fe 0と TiCの反応が不十分であると確認された。 Ti酸化物の
2 3
ピークは出現しておらず、 Fe Ti Oや FeTiOのような Fe-Ή-Ο系三元化合物が生
2.25 0.75 4 4
成していた。これから、 600°Cの熱処理では ΉΟで被覆した Fe粒子は得られないこと が分った。
[0066] 実施例 1〜3及び比較例 1の測定結果を表 1に示す。熱処理温度を 700〜900°Cとし た実施例 1〜3では TiO被膜が形成され、 ΉΟの最大回折ピークの半値幅は 0.14〜0
2 2
.26といずれも 0.3以下の範囲内であった。また Ti〇の最大回折ピークとひ- Feの最大
2
回折ピークとの強度比は 0.03〜0.18といずれも 0.03以上の範囲内であった。実施例 1 〜3における生理食塩水中の Fe溶出量は 0.03 ppm以下と少なぐ耐食性に優れてい ることが分かる。特にピーク強度比が 0.12〜0.18と 0.05以上の範囲内である実施例 1 及び 2では、 Feの溶出量は 0.02 ppm以下と少なぐ著しく耐食性に優れていることが 分かる。
[0067] [表 1]
Figure imgf000018_0001
注:(1) TiOの最大回折ピークの半値幅 (相対値)。
2
(2) TiOの最大回折ピーク強度 (I )と a -Feの最大回折ピーク強度 (I )との比。
2 Ti02 Fe
[0068] 表 1 (続き)
Figure imgf000019_0001
注: (3)測定せず。
[0069] 実施例 4
実施例 1で得た試料粉末 5 gとイソプロピルアルコール(IPA) 50 mlとを 100 mlのビー 力に投入し、 10分間超音波を照射した。次いで永久磁石をビーカの外面に 1分間接 触させ、磁性粒子だけをビーカ内壁に吸着させ、黒灰色の上澄み液を除去した。こ の磁気分離操作を 50回繰り返し、得られた精製磁性粒子を室温で乾燥させた。磁性 粒子の磁気特性を実施例 1と同様に VSMにより測定した。また、磁性粒子における Ti の割合は、 X線回折パターン力も被覆金属微粒子が Feと TiO力もなることを確認した
2
後で、被覆金属微粒子の飽和磁ィ匕の測定値カゝら算出した。また結果を表 2に示す。 この磁性粒子 5 mgを純水 1 g中に分散させ、ボルテックスミキサで 10分間攪拌した後 、分散液をスライドガラス上に滴下し、磁性粒子の分散状態を光学顕微鏡により観察 した。結果を図 6に示す。
[0070] 実施例 5
a -Fe 0粉末と TiC粉末の質量比を 6.5 : 3.5とした以外実施例 1と同様にして試料
2 3
粉末を作製した。この試料粉末を実施例 4と同様に精製することにより得た磁性粒子 の組成及び磁気特性を実施例 4と同様に測定した。結果を表 2に示す。また実施例 4 と同様に磁性粒子の純水中での分散状態を観察した。結果を図 7に示す。
[0071] 実施例 6
a -Fe 0粉末と TiC粉末の質量比を 6 :4とした以外実施例 1と同様にして試料粉末を 作製した。この試料粉末を実施例 4と同様に精製することにより得た磁性粒子の組成 及び磁気特性を実施例 4と同様に測定した。結果を表 2に示す。また実施例 4と同様 に磁性粒子の純水中での分散状態を観察した。結果を図 8に示す。
[0072] 実施例 7
a -Fe 0粉末と TiC粉末の質量比を 5 : 5とした以外実施例 1と同様にして試料粉末を
2 3
作製した。この試料粉末を実施例 4と同様に精製することにより得た磁性粒子の組成 及び磁気特性を実施例 4と同様に測定した。結果を表 2に示す。また実施例 4と同様 に磁性粒子の純水中での分散状態を観察した。結果を図 9に示す。
[0073] 実施例 8
a -Fe 0粉末と TiC粉末の質量比を 4: 6とした以外実施例 1と同様にして試料粉末
2 3
を作製した。永久磁石による分離時間を 5分以上とした以外実施例 4と同様にしてこ の試料粉末を精製し、得られた磁性粒子の組成及び磁気特性を実施例 4と同様に測 定した。結果を表 2に示す。この磁性粒子は高い耐食性を有するが、飽和磁化 Msは 4 8A'm2/kgと 50A'm2/kgより低ぐ保磁力 iHcは 18 kA/mと 15 kA/m超であった。
[表 2]
Figure imgf000020_0001
注:(1)原料中の Fe Oと TiCとの質量比。
2 3
(2)精製した磁性粒子中の Fe: Tiの質量比。
[0074] 表 2から明らかなように、磁気特性は原料配合比に依存し、 TiCの割合が低下する につれて保磁力 iHcは低下した。図 6〜9中の黒色部分 5は TiO被覆 Fe粒子である。 図 6〜9から、磁性粒子の保磁力が大きい程、水中での磁性粒子の凝集が顕著にな ることが分った。
[0075] 実施例 9〜14
実施例 1と同じ粒径の a - Fe Oと種々の粒径の TiC粉末を用いた以外実施例 1と同
2 3
様にして実施例 9〜13の試料粉末を作製した。またボールミルの代りにビーズミルを 用い、かつ熱処理温度を 800°Cとした以外実施例 1と同様にして実施例 14の試料粉 末を作製した。熱処理前の混合粉末及び熱処理後の試料粉末に対してレーザー回 折法により測定した平均粒径 D50を表 3に示す。また実施例 10〜12及び 14の被覆粒 子中の Fe微粒子の平均粒径 Dを測定し、 D/d50を求めた。結果を表 4に示す。原料 粉末の粒径の変動により、 d50は 0.8 μ mから 5.0 μ mまで変化した。また平均粒径 d50 力 S小さくなるに従い、 D/d50は 0.19〜0.45まで変化した力 いずれも 0.5以下であり、 Ti 0の厚い被膜が金属粒子を覆っていることが分る。
2
[0076] [表 3]
Figure imgf000021_0001
[0077] [表 4] Fe微粒子の平均
例 No. 腿 50
粒径 D m)
実施例 10 0.7 0.19 実施例 11 0.6 0.21 実施例 12 0.7 0.35 実施例 14 0.36 0.45
[0078] 被覆金属微粒子の細胞増殖への影響を WST-1法により調べた。まずヒト前立腺癌 細胞 (PC-3細胞)を細胞増殖用培地中に 4 X 105セル Zmlに調整し、 96ゥエル培養プ レートに 0.05 ml (0.2 X 105セル Zゥエル)ずつ注入した。前記培養プレートに、 2 mg/ mlの実施例 12の被覆金属微粒子を添加したリン酸緩衝生理食塩水(PBS)を 0.05 ml 注入した。また別の培養プレートに、被覆金属微粒子を添カ卩しない 0.05 mlの PBSを 注入した。
[0079] これらの培養プレートを 5%の COを含有する 37°Cの大気中に置き、 72時間培養し
2
た。細胞数計測キット(Cell Counting Kit品番 349-06461、株式会社同仁化学研究所 製)を使用し、所定量の呈色試薬を各ゥエルに添加して 4時間呈色反応させた後、磁 性粒子を磁気分離し、細胞溶液の吸光度をマイクロプレートリーダーにより測定した。 吸光度と細胞数の関係力も細胞数を求めた。被覆金属微粒子を添加しな力つた場 合の細胞数に対する、被覆金属微粒子を添加した場合の細胞数の比は 64%であつ た。
[0080] 比較のために、平均粒径 0.03 mの α - Fe O粉末と平均粒径 0.02 μ mの C粉末を 7
2 3
5 : 25の質量比で混合し、窒素中において 1400°Cで 2時間熱処理することにより作製 したグラフアイト被覆 Fe粒子を実施例 12の被覆金属微粒子の代りに用いた以外、上 記と同様の評価を行った。その結果、被覆金属微粒子を添加しなカゝつた場合の細胞 数に対する、グラフアイト被覆 Fe粒子を添加した場合の細胞数の割合は 29%と低か つた o
[0081] 実施例 15〜24
混合粉末の熱処理温度を 800°C (参考例 1、実施例 15〜20)又は 900°C (参考例 2、 実施例 21〜24)に変えた以外実施例 13と同様にして、被覆金属微粒子を作製した。 得られた各被覆金属微粒子を表 5に示すアルカリ水溶液を含有するボールミルに投 入し、 24時間解砕してアルカリ処理を行った。アルカリ水溶液中のアルカリ源は、 NaO H、 KOH、又はアルカリ性界面活性剤(デモール EP、花王株式会社製)であった。解 砕後 IPA中で磁気分離し、乾燥して試料粉末を得た。
[0082] 得られた試料粉末の d50、飽和磁化及び保磁力を実施例 1と同様に評価した。結果 を表 5に示す。また各試料粉末 25 mgを濃度 6 Mのグァ-ジン塩酸塩水溶液 1 ml中に 25°Cで 24時間浸漬した後の Feイオン溶出量を ICP分析により測定した。またアルカリ 源を添加しな 、純水で処理した以外同様にして得られた試料粉末に対して、 Feィォ ン溶出量を測定した (参考例 1及び 2)。結果を表 5に示す。
[0083] [表 5]
アル力リ源 Feイオン溶出量
No.
(mg/l)")
黼 度 参考例 1 ― 0 M 26.0 実施例 15 NaOH 0.01 M 9.4 実施例 16 NaOH 0.1 M 11.4 実施例 17 NaOH 1.0 M 10.3 実施例 18 KOH 0.01 M 10.1 実施例 19 KOH 0.1 M 4.8 実施例 20 KOH 1.0 M 3.2 参考例 2 ― 0 wt. % 217.0 実施例 21 界面活性剤 0.01 wt. % 35.8 実施例 22 界面活性剤 0.1 wt. % 23.6 実施例 23 界面活性剤 1 wt. % 18.0 実施例 24 界面活性剤 10 wt. % 93.8 注:(1)濃度 6 Mのグァ-ジン塩酸塩水溶液への Feイオンの溶出量。
[0084] 表 5から明らかなように、アルカリ水溶液で処理した試料粉末は、純水で処理した試 料粉末に比べて、 Feイオン溶出量が少なぐ耐食性が向上していた。また Feイオン溶 出量が 100 mg/Lを超える被覆金属微粒子でも、アルカリ処理をすることにより耐食性 力 S100 mg/L以下に改善された。
[0085] 実施例 25〜30
実施例 13の試料粉末を表 6に示す濃度の NaOH水溶液中に浸漬し、 60°Cに加温し て 24時間保持するアルカリ処理を施した。アルカリ処理後、 NaOH水溶液を磁気分離 し、 IPAで 3回洗浄し、乾燥した。得られた試料粉末 25 mgを濃度 6 Mのグァ-ジン塩 酸塩水溶液 1 ml中に 25°Cで 24時間浸漬し、 Feイオン溶出量を ICP分析により調べた 。また前記アルカリ処理をしてない試料粉末 (参考例 3)に対しても同じ測定を行った 。これらの結果を表 6に示す。
[0086] [表 6]
Figure imgf000025_0001
注:(1)濃度 6 Mのグァ-ジン塩酸塩水溶液への Feイオンの溶出量。
[0087] 表 6から、アルカリ処理した試料粉末はアルカリ処理しない試料粉末に比べて Feィ オンの溶出量が少なぐアルカリ処理が耐食性向上に効果的であることが分る。また Feイオン溶出量が 100 mg/Lを超える被覆金属微粒子でも、アルカリ処理により耐食 性が 100 mg/L以下の水準まで改善されることが分かる。
[0088] アルカリ処理後の実施例 28の試料の SEM写真(図 10)から、被覆金属微粒子の表 面に直径 0.05〜0.1 μ m、長さ 0.3〜1 μ mのワイヤが形成されていることが分る。 EDX による組成分析の結果、前記ワイヤは Ti酸ィ匕物であることが分力つた。ワイヤにより被 覆金属微粒子の比表面積は増加した。
[0089] 参考例 3、実施例 28及び実施例 30の試料粉末に対して、 X線光電子分光法により 表面の組成分析を行った。各試料粉末とも Ti、 0、 C及び Feが検出された。実施例 30 の試料粉末では、 Naも検出された。参考例 3、実施例 28及び実施例 30における Feの 検出値はそれぞれ原子比で 0.15%、 0.06%、及び 0.07%であった。 X線光電子分光 により金属 Mの検出量が低!、ことは、粒子の表面における金属 Mが存在量が少な!/ヽ ことを意味する。アルカリ処理を施さなくても粒子表面の金属成分の検出量が 0.2% 以下であることは、金属 Mが Ti酸ィ匕物で良好に被覆されていることを示す。またアル カリ処理により Feの検出量が 0.1%以下の水準まで減少した。 Feが被覆金属微粒子 の表面に少な 、ことは、耐食性の点で有利である。

Claims

請求の範囲
[1] 被覆金属微粒子の製造方法であって、 Tiを含む粉末 (ただし Ti酸化物粉末を除く) と、酸化物の標準生成自由エネルギーが A G > Δ G の関係を満たす金属 Mの
-O ΤΪ02
酸化物粉末とを混合し、得られた混合粉末を非酸化性雰囲気中で 650〜900°Cの温 度で熱処理することにより、前記金属 Mの酸ィ匕物を Tiにより還元するとともに、得られ た金属 Mの微粒子の表面を TiOを主体とする Ti酸化物で被覆することを特徴とする
2
方法。
[2] 請求項 1に記載の被覆金属微粒子の製造方法にぉ 、て、前記金属 Mが Feであるこ とを特徴とする方法。
[3] 請求項 1に記載の被覆金属微粒子の製造方法にお!、て、前記金属 Mの酸化物が F e 0であり、前記 Tiを含む粉末力TiCであり、 Fe 0と TiCの合計に対する TiCの割合
2 3 2 3
が 30〜50質量%であることを特徴とする方法。
[4] 請求項 1〜3の ヽずれかに記載の被覆金属微粒子の製造方法にお!ヽて、前記被覆 金属微粒子をさらにアルカリ源含有水溶液に浸漬した後乾燥することを特徴とする方 法。
[5] TiOを主体とする Ti酸ィ匕物で被覆された金属微粒子であって、前記金属は、その
2
酸化物の標準生成自由エネルギーが A G > Δ G の関係を満たす金属 Mであり
M-O ΤΪ02
、前記被覆金属微粒子の X線回折パターンにおいて TiOの最大ピークの半値幅が 0.
2
3° 以下であり、かつ金属 Mの最大ピークに対する TiOの最大ピークの強度比が 0.03
2
以上であることを特徴とする被覆金属微粒子。
[6] 請求項 5に記載の被覆金属微粒子において、前記金属 Mが磁性金属であることを 特徴とする被覆金属微粒子。
[7] 請求項 6に記載の被覆金属微粒子において、前記磁性金属が Feであることを特徴 とする被覆金属微粒子。
[8] 請求項 7に記載の被覆金属微粒子において、 50〜180 A'm2/kgの飽和磁ィ匕を有す ることを特徴とする被覆金属微粒子。
[9] 請求項 7又は 8に記載の被覆金属微粒子にぉ 、て、 8 kA/m以下の保磁力を有する ことを特徴とする被覆金属微粒子。
[10] 請求項?〜 9のいずれかに記載の被覆金属微粒子において、平均粒径が 1 μ m以 下の 2個以上の Fe微粒子が TiOを主体とする Ti酸化物に包含されていることを特徴と
2
する被覆金属微粒子。
[11] 請求項 7〜10のいずれかに記載の被覆金属微粒子において、生理食塩水 100質量 部に対して 2.5質量部の前記被覆金属微粒子を 72時間浸漬させた後で、前記生理 食塩水中の Feイオン濃度が 0.1 ppm以下であることを特徴とする被覆金属微粒子。
[12] 請求項 7に記載の被覆金属微粒子にお ヽて、前記被覆金属微粒子を 2 mg/mlの濃 度で添カ卩した PBS 0.05 mlに、 PC-3細胞を 0.2 X 105セルカ卩えて 37°Cで 72時間培養し た後で、前記 PC-3細胞の量が、前記被覆金属微粒子を添加せずに培養した場合の 50%以上であることを特徴とする被覆金属微粒子。
[13] 請求項 5に記載の被覆金属微粒子において、前記被覆金属微粒子の平均粒径 d5 0が 0.1〜10 μ mであることを特徴とする被覆金属微粒子。
[14] 請求項 5に記載の被覆金属粒子において、前記被覆金属微粒子の平均粒径 d50に 対する前記金属微粒子の平均粒径 Dの比 D/d50が 0.5以下であることを特徴とする被 覆金属微粒子。
[15] 請求項 5に記載の被覆金属微粒子において、その表面に Ti酸ィ匕物ワイヤを有する ことを特徴とする被覆金属微粒子。
[16] 請求項 5に記載の被覆金属微粒子にお 、て、前記金属 Mは Feであり、濃度 6 Mのグ ァ-ジン塩酸塩水溶液 1 ml中に前記被覆金属微粒子 25 mgを 24時間浸漬した後で、 Feイオン溶出量が 100 mg/L以下であることを特徴とする被覆金属微粒子。
PCT/JP2006/305163 2005-03-22 2006-03-15 被覆金属微粒子及びその製造方法 WO2006100986A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007509221A JP4766276B2 (ja) 2005-03-22 2006-03-15 被覆金属微粒子及びその製造方法
EP06729184.9A EP1867414B1 (en) 2005-03-22 2006-03-15 Coated metal fine particle and method for producing same
US11/909,237 US7858184B2 (en) 2005-03-22 2006-03-15 Fine, TiO2-based titanium oxide-coated metal particles and their production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-082341 2005-03-22
JP2005082341 2005-03-22
JP2005-228027 2005-08-05
JP2005228027 2005-08-05

Publications (1)

Publication Number Publication Date
WO2006100986A1 true WO2006100986A1 (ja) 2006-09-28

Family

ID=37023650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305163 WO2006100986A1 (ja) 2005-03-22 2006-03-15 被覆金属微粒子及びその製造方法

Country Status (4)

Country Link
US (1) US7858184B2 (ja)
EP (1) EP1867414B1 (ja)
JP (1) JP4766276B2 (ja)
WO (1) WO2006100986A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517287A (ja) * 2007-01-24 2010-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 作用領域の磁性粒子に影響を与え及び/又はそれらを検出する方法、磁性粒子及び磁性粒子の使用
JP2020053542A (ja) * 2018-09-27 2020-04-02 太陽誘電株式会社 軟磁性金属粒子を含む磁性基体及び当該磁性基体を含む電子部品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178510A1 (en) * 2006-06-20 2010-07-15 Hitachi Metals, Ltd. Fine metal particles and biomaterial-extracting magnetic beads, and their production methods
US8247074B2 (en) * 2006-09-20 2012-08-21 Hitachi Metals, Ltd. Coated, fine metal particles comprising specific content of carbon and nitrogen, and their production method
US8342386B2 (en) * 2006-12-15 2013-01-01 General Electric Company Braze materials and processes therefor
JPWO2009119757A1 (ja) * 2008-03-27 2011-07-28 日立金属株式会社 被覆金属微粒子及びその製造方法
KR101503104B1 (ko) * 2011-08-01 2015-03-16 삼성전기주식회사 금속 자성 분말, 상기 금속 자성 분말을 포함하는 자성층 재료, 및 자성층 재료를 이용한 자성층을 포함하는 적층형 칩 부품
US10850496B2 (en) * 2016-02-09 2020-12-01 Global Graphene Group, Inc. Chemical-free production of graphene-reinforced inorganic matrix composites
CN113423255B (zh) * 2021-06-09 2022-09-27 西北工业大学 核壳结构Ti4O7/磁性金属复合吸收剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124248A (ja) * 2002-05-24 2004-04-22 Hitachi Metals Ltd 金属超微粒子とその製造方法、微小体の製造方法、および微小体
JP2005120470A (ja) * 2003-09-25 2005-05-12 Hitachi Metals Ltd 金属微粒子の製造方法および金属微粒子
JP2005273011A (ja) * 2004-02-27 2005-10-06 Hitachi Metals Ltd 鉄系ナノサイズ粒子およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1183382B (it) * 1985-02-20 1987-10-22 Montedison Spa Partecelle sferiche a distribuzione granulometrica ristretta di biossi do di titanio ricoperto da uno strato uniforme di ossidi di ferro e processo per la loro preparazione
GB2242443B (en) * 1990-03-28 1994-04-06 Nisshin Flour Milling Co Coated particles of inorganic or metallic materials and processes of producing the same
CA2114913C (en) 1993-02-05 2003-12-09 Takafumi Atarashi Powder having at least one layer and process for preparing the same
CN1102084C (zh) * 1995-03-14 2003-02-26 日铁矿业株式会社 表面有多层膜的粉末及其制备方法
JP3482420B2 (ja) 1995-11-27 2003-12-22 独立行政法人産業技術総合研究所 グラファイト被覆金属粒子及びその製造方法
JPH10153116A (ja) 1996-11-22 1998-06-09 Toyota Motor Corp 排気管の仕切構造
JP4004675B2 (ja) * 1999-01-29 2007-11-07 株式会社日清製粉グループ本社 酸化物被覆金属微粒子の製造方法
JP2000030920A (ja) 1999-07-12 2000-01-28 Hitachi Maxell Ltd 磁性粉末およびその製造方法ならびに磁気記録媒体
US8247074B2 (en) * 2006-09-20 2012-08-21 Hitachi Metals, Ltd. Coated, fine metal particles comprising specific content of carbon and nitrogen, and their production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124248A (ja) * 2002-05-24 2004-04-22 Hitachi Metals Ltd 金属超微粒子とその製造方法、微小体の製造方法、および微小体
JP2005120470A (ja) * 2003-09-25 2005-05-12 Hitachi Metals Ltd 金属微粒子の製造方法および金属微粒子
JP2005273011A (ja) * 2004-02-27 2005-10-06 Hitachi Metals Ltd 鉄系ナノサイズ粒子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1867414A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517287A (ja) * 2007-01-24 2010-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 作用領域の磁性粒子に影響を与え及び/又はそれらを検出する方法、磁性粒子及び磁性粒子の使用
JP2020053542A (ja) * 2018-09-27 2020-04-02 太陽誘電株式会社 軟磁性金属粒子を含む磁性基体及び当該磁性基体を含む電子部品

Also Published As

Publication number Publication date
US20090057605A1 (en) 2009-03-05
EP1867414A1 (en) 2007-12-19
JP4766276B2 (ja) 2011-09-07
JPWO2006100986A1 (ja) 2008-09-04
EP1867414A4 (en) 2011-12-28
EP1867414B1 (en) 2014-04-30
US7858184B2 (en) 2010-12-28

Similar Documents

Publication Publication Date Title
JP4766276B2 (ja) 被覆金属微粒子及びその製造方法
EP1568427B1 (en) Production method of fine composite metal particles
JP4560784B2 (ja) 金属微粒子およびその製造方法ならびに磁気ビーズ
JP4895151B2 (ja) 鉄系ナノサイズ粒子およびその製造方法
JP4853769B2 (ja) 磁性シリカ粒子およびその製造方法
JP5359905B2 (ja) 金属微粒子およびその製造方法ならびに磁気ビーズ
WO2008035681A1 (en) Coated metal fine particles and process for production thereof
JP4288674B2 (ja) 磁性金属微粒子の製造方法および磁性金属微粒子
JP4811658B2 (ja) 被覆金属微粒子およびその製造方法、
JP2007194402A (ja) 磁性多層ナノ粒子及びその製造方法並びにそれを用いた磁性材料
JP2008069431A (ja) 磁性粒子の製造方法および磁性粒子
JP4775713B2 (ja) 被覆金属微粒子の粉末および磁気ビーズ
JP5731483B2 (ja) 金属磁性粉末およびその製造方法、磁性塗料、並びに磁気記録媒体
JP2012156438A (ja) 磁性粒子およびその製造方法、磁気記録用磁性粉、ならびに磁気記録媒体
JP4320729B2 (ja) 磁性金属粒子の製造方法
JP5189017B2 (ja) 金属磁性粉末およびその製造方法
JP2012156437A (ja) 磁性粒子およびその製造方法、磁気記録用磁性粉、ならびに磁気記録媒体
JP5024683B2 (ja) 磁気ビーズ
JPS6350842B2 (ja)
Pozas et al. Improving Co distribution in acicular Fe–Co nanoparticles and its effect on their magnetic properties
JP2011014188A (ja) 磁気記録媒体の非磁性下地層用非磁性粒子粉末、並びに磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509221

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11909237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006729184

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729184

Country of ref document: EP