WO2006095423A1 - 通信システム、送信方法 - Google Patents

通信システム、送信方法 Download PDF

Info

Publication number
WO2006095423A1
WO2006095423A1 PCT/JP2005/004133 JP2005004133W WO2006095423A1 WO 2006095423 A1 WO2006095423 A1 WO 2006095423A1 JP 2005004133 W JP2005004133 W JP 2005004133W WO 2006095423 A1 WO2006095423 A1 WO 2006095423A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission
communication system
transmitted
wireless device
Prior art date
Application number
PCT/JP2005/004133
Other languages
English (en)
French (fr)
Inventor
Atsushi Shinozaki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP12180369.6A priority Critical patent/EP2528261B1/en
Priority to EP05720404.2A priority patent/EP1860894B1/en
Priority to PCT/JP2005/004133 priority patent/WO2006095423A1/ja
Priority to JP2007506955A priority patent/JP4733689B2/ja
Priority to CN2005800490014A priority patent/CN101138262B/zh
Publication of WO2006095423A1 publication Critical patent/WO2006095423A1/ja
Priority to US11/896,991 priority patent/US7881719B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • H04W36/185Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection using make before break

Definitions

  • the present invention relates to a communication system and a transmission method, and is particularly suitable for use in a mobile communication system according to the CDMA system.
  • DHO Diversity HandOver
  • UE mobile terminal
  • RNC base station controller
  • FIG. 1 is an image diagram of a DHO between base stations.
  • the mobile terminal UE communicates with a plurality of base stations Node B via a plurality of radio lines Uu, and these base stations Node B communicate with the base station controller RNC via a communication line Iub. .
  • the same data is sent from each base station controller RNC to each base station Node B, and the same data is sent from each base station Node B to one mobile terminal UE.
  • the mobile terminal UE demodulates and combines the same data sent from each base station Node B to obtain demodulated data, and further performs error correction decoding processing to reproduce the transmission data .
  • Figure 2 is a diagram showing the data flow during DHO in 3GPP when there are two wireless transmission paths.
  • Information Data which was the first one, is copied and distributed to two wireless transmission paths. It is done. CRC bits are added to the information data, turbo encoded, and terminal bits that are redundant bits are added. Then, the first interleaving process is performed, and the interleaved data is divided into, for example, two data. It is rate-matched and subjected to the second interleaving process, then divided into slots, placed on a radio frame, and transmitted.
  • each wireless transmission line is separated by a different spreading code
  • another wireless transmission line becomes noise when performing despreading with respect to a certain wireless transmission line. An increase in power will occur to ensure
  • FIG. 3 is a diagram for explaining the deterioration of SIR.
  • data is transmitted using a single carrier.
  • the spread state data of different wireless transmission paths are transmitted so as to be stacked in the same frequency band.
  • the signal of one wireless transmission path is obtained by despreading, but the other
  • Patent Document 1 discloses a handoff means that has a cell diversity effect in which there is no instantaneous interruption of communication and in which the downlink radio resource usage of the radio base station does not change between non-handoff and handoff. .
  • Patent Document 1 JP 2000-217139 A
  • An object of the present invention is to provide a communication system that employs a soft handover method that can save radio resources and can maintain good transmission quality when a mobile terminal receives data. It is.
  • the communication system of the present invention includes an error correction code for performing error correction coding on data to be transmitted.
  • FIG. 4 is a diagram for explaining the advantage of OFDM.
  • FIG. 6 is provided at the base station or wireless network side according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a state of data reception processing when the OFCDM method is used according to the embodiment of the present invention.
  • FIG. 8 is a diagram (part 1) for explaining an example of a method for joining segmented data.
  • FIG. 9 is a diagram (part 2) for explaining an example of a method for joining segmented data.
  • Figure 3 illustrates an example of how segmented data is combined (part 3).
  • FIG. 11] is a diagram for explaining another example of a method for combining segmented data.
  • FIG. 12 is a diagram showing a data flow of retransmission processing.
  • FIG. 13 is a diagram showing an example when the embodiment of the present invention is applied to 3GPP.
  • FIG. 18 is a diagram for explaining a further embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an example of a data distribution rate determination method.
  • FIG. 20 is a diagram for explaining another example of a data distribution rate determination method.
  • FIG. 21 is a diagram showing the concept of mode switching.
  • FIG. 22 is an operation image diagram showing changes in the distribution ratio.
  • FIG. 23 is a diagram showing how distribution values are assigned to a transmission line to be deleted.
  • FIG. 24 is a diagram illustrating a data division rate determination method.
  • FIG. 25 is a flowchart (part 1) of a processing example of distribution rate calculation.
  • FIG. 26 is a flowchart (part 2) of a processing example of distribution rate calculation.
  • FIG. 27 is a diagram showing a determination example when the number of data receptions given as a measurement cycle is 10.
  • FIG. 28 is a processing flow (part 1) according to another example of the distribution rate calculation method.
  • FIG. 29 is a processing flow (part 2) according to another example of the distribution rate calculation method.
  • Embodiments of the present invention can reduce the influence of frequency selective fading by using subcarriers in the OFDM scheme as a preferred best mode.
  • OFCOM Orthogonal Frequency and Code Division Multiplexing
  • OFDM Orthogonal Frequency Division
  • user division at the same frequency is achieved by further performing code division multiplexing using spreading codes.
  • OFDM itself has the following advantages.
  • FIG. 4 is a diagram for explaining the advantages of OFDM.
  • OFDM uses multiple subcarriers for transmission, even if frequency selective fading occurs, only certain subcarriers need be affected.
  • frequency selective fading is applied to the flat subcarriers in the affected subcarriers. Since the desired SIR of only the subcarriers affected by frequency selective fading is low, this frequency selection can be performed by performing power control for each subcarrier. Sex fading problems can be avoided.
  • radio transmission in units of subcarriers can be guaranteed more easily than radio transmission using a single carrier.
  • the OFCDM method is adopted.
  • CDMA and OFDM systems can be used as the 1S radio system.
  • N If there are SN power, it is divided into N), and the divided data is transmitted using each wireless transmission path. By dividing the data and transmitting it using each wireless transmission path, the amount of data transmitted on one transmission path is reduced, so the degree to which other transmission paths become noise relative to a specific transmission path. It can be made smaller.
  • each wireless transmission path is transmitted from a different wireless base station.
  • the transmission target data is interleaved before being divided into a plurality of wireless transmission paths. As a result, quality deviations between the transmission paths are eliminated and averaged.
  • FIG. 5 is a block diagram showing a conceptual configuration of the DHO execution unit according to the embodiment of the present invention.
  • the data encoded by the Coding / Decoding unit 11 is interleaved by the Interleave / De-interleave unit 12, divided by the segmentation / reassemble unit 13 for each wireless transmission path, and transmitted to each wireless transmission path. .
  • the divided data received from each wireless transmission path is merged in the segmentation / reassembler 13, merged with the interleave / De_interleave
  • the DHO execution unit 10 is provided in the mobile terminal or the base station controller, it controls each DHO.
  • FIG. 6 is a diagram showing a conceptual configuration of a DHO processing unit provided on the base station or wireless network side according to the embodiment of the present invention.
  • the DHO processing unit 15 performs the following processing.
  • the DHO processing unit 15 may exist in a location other than the RNC in the 3GPP system (for example, a higher-level device of the RNC, a base station, etc.).
  • Rate matching processing such as puncture (optional)
  • the base station transmits the data received from the DHO processing unit 15 to the radio section.
  • one base station uses the first spreading code that has already been used before the handover as it is, and the other base station is designated at the start of the handover. Transmit using 2 spreading code.
  • one base station and the other base station uses the first spreading code that has already been used before the handover as it is, and the other base station is designated at the start of the handover.
  • the frequencies used are preferably the same.
  • the power described for the second rate matching and the interleaving process, or the error correction coding process may be performed before the second rate matching.
  • the DHO processing unit 15 restores the data by performing the reverse procedure of the data transmission process.
  • each radio base station uses the same error correction coding procedure (same turbo coding process) for the same data received by the higher-level equipment (RNC) etc. Then, the encoded data is obtained and interleave processing is performed with the same interleave pattern. Then, the first radio base station for the interleaved data, the first part, the second radio
  • the base station extracts the second part, performs rate matching, and performs the second interleaving process for transmission.
  • the first part and the second part are data that becomes data after interleaving when both overlap each other.
  • an overlapping part is provided in the first part and the second part (for example, the systematic bit part is overlapped when performing systematic coding like turbo coding). Diversity effect can be obtained.
  • FIG. 7 is a diagram showing how data is received when the OFCDM method is used according to the embodiment of the present invention.
  • each base station receives data for each subchannel in OFCDM. At this time, it is assumed that an error has occurred in the 7th subchannel.
  • a second dingering process is performed on the data received on each of the two wireless transmission paths to spread errors in the divided data.
  • data is sent from each base station to the base station controller, and the data are combined. Then, in the base station control device, the first dingering process is performed, and data errors are spread throughout the data. Then, error correction decoding processing is performed on the entire data, and the error is corrected.
  • a segment is transferred from the DHO implementation unit (Tx: not only a base station control unit or a mobile terminal, but also a circuit that realizes the DHO method (transmission side)) to the radio transmission unit.
  • Tx not only a base station control unit or a mobile terminal, but also a circuit that realizes the DHO method (transmission side)
  • a division number For example, a number is stored as division information in the header of the transfer format.
  • the header information is also multiplexed. Add information (Ex: TB (Transport Block) multiplexing method on Iub (TS25.427) in 3GPP system).
  • the wireless transmission unit uses a channel other than the channel for transmitting the segment (control information) when transferring the segment as wireless data to the DHO implementation unit (Rx (reception side)).
  • the DHO implementation unit Rx (reception side)
  • there is also a method of notifying the division number to the DH0 implementation part (Rx (reception side)) (Ex: DPDCH (segment transmission) and DPCCH (control information transmission) in 3GPP system)).
  • DPDCH segment transmission
  • DPCCH control information transmission
  • the DHO execution unit When combining the segments received from one or more wireless transmission paths, the DHO execution unit (Rx) combines the segments according to the division number received at the same time.
  • each segment is not necessarily required to be error-free even if error correction processing is separately performed to guarantee data transfer in each wireless transmission path. It is.
  • control information such as pilots can be received even if a radio error occurs. Since this division number (and multiplexed information) also requires high quality, it is managed separately for quality control when it is transmitted on a channel other than the channel that transmits the segment or on the same channel. Need to be stored in place
  • FIG. 8 to FIG. 10 are diagrams for explaining an example of a method of combining segmented data.
  • the segment HO C is sent from the DHO implementation unit (Tx) to the radio transmission unit.
  • the DHO execution unit (Rx) receives the segment AC from the radio transmission unit, and combines them with the division information below.
  • FIG. 9 shows a concept when the division information is transmitted on a channel different from that of the segment data. ing. Segment data is transmitted to the data channel, and a pilot signal, a division number, and the like are transmitted as control information to the control channel synchronized with this.
  • control information transmits the same data from the first base station and the second base station to obtain a diversity effect.
  • division information such as the division number (information necessary for the divided data) is important information for data reproduction. Therefore, each base station transmits information on the order of combination of data transmitted from the first base station and data transmitted from the second base station.
  • the first base station transmits the data combination order information (2) transmitted by the first base station, and the second base station transmits data transmitted by the second base station.
  • this combination order information (1) it is also possible to notify that data should be received in the order of data received from the second base station and data received from the first base station.
  • FIG. 10 shows a case where the division information is accommodated in a header and transmitted as one radio frame. A data frame consisting of a control area and a data area is transmitted to the transfer channel. Segment data is stored in the data area. In the control area, pilot signals, division numbers, and the like are stored as control information.
  • the combining method (2) is a method for determining in advance in which order the segments should be combined with the transmission path possessed for handover in the DHO executing unit on both the transmitting side and the receiving side. It is. For example, when implementing DHO with three transmission lines, an identifier is provided for the transmission line, and the coupling order is associated with the identification number.
  • FIG. 11 is a diagram for explaining another example of a method for combining segmented data.
  • the DHO implementation unit (Rx) on the receiving side sends a request for allocation order assignment to the DHO implementation unit (Tx) on the transmission side. Then, the DHO execution unit (Tx) on the transmission side assigns a combination order to each wireless transmission path, and transmits this combination order to the DHO execution unit (Rx) on the reception side as a connection order assignment response.
  • an ARQ function data retransmission function
  • CRC data retransmission function
  • NG the divided data identifier (combined number / sequence number, etc.) is returned to the transmitting side.
  • the DHO Implementation Department retransmits the target divided data. Try to retransmit using the transmission path.
  • FIG. 12 is a diagram showing a data flow of retransmission processing.
  • segment # 0 is transmitted using transmission line # 0 and segment # 1 is transmitted using transmission line # 1 from the DHO implementation unit (Tx) on the transmission side.
  • the DHO implementation unit (Rx) on the receiving side checks the CRC attached to the segment data.
  • segment # 0 has a CRC of ⁇ K and segment # 1 has a CRC of NG. Therefore, the receiving-side DH0 implementation unit (Rx) requests retransmission of segment # 1 to the transmitting-side DH0 implementation unit (Tx).
  • the DHO implementation unit (Tx) on the transmission side detects that the transmission quality of transmission line # 0 is better, and sends segment # 1 to the DH0 implementation unit (Rx) on the reception side using transmission line # 0. To do.
  • FIG. 13 is a diagram showing an example when the embodiment of the present invention is applied to 3GPP.
  • each segment is set as TB (Transport Block) and transmitted to the base station in the form of Iub-FP format processing.
  • FIG. 13 shows a state in which TB # 0 and TB # 1 are transmitted to the base station # 0 and TB # 2 is transmitted to the base station # 1 among the divided data.
  • the embodiment of the present invention can be applied even on a 3GPP system. Note that the same method as described above can be used for the spreading code at the time of transmission.
  • FIG. 14 and FIG. 17 are flowcharts of the DHO unit according to the embodiment of the present invention.
  • the basic flow is a method of negotiating in advance.
  • the assembly order is determined according to the DHO status and the number of the data, and this information is notified to the other party together with the data transmission.
  • negotiated in advance it is realized by defining an assembly order for each transmission line.
  • each transmission path force is also assembled in order on the receiving side using the identifier (assembly number, etc.) acquired when data was received.
  • the assembly number used at the time of assembly is a value that varies depending on the DHO state.
  • the number of branches may vary depending on the radio wave conditions when maintaining a soft handover (the frequency is the same before and after node handover). Therefore, the following shall be implemented.
  • the assembly order on the transmitting side and the receiving side (assembling the assembly order to each transmission line) is determined (negotiation is performed: switching timing is specified).
  • the sender is uniquely determined. In order to be able to detect the loss of the segment, the final segment can be identified.
  • FIG. 14 is a flowchart on the transmission side when the assembly order of the segment data is negotiated with the reception side in advance.
  • step S10 it is determined whether the DHO state has changed. If the judgment in step S10 is No, the process proceeds to step S12. If the determination in step S10 is yes, negotiate with the receiving side in step S11 and proceed to step S12. In step S12, the transmission data is received, and in step S13, the CRC is added to the received transmission data. In step S14, an encoding process is performed. In step S15, an interleaving process is performed. In step S16, it is determined whether or not a DHO is being performed. If the determination in step S16 is No, the process proceeds to step S18. If the determination in step S16 is Yes, the division process is performed in step S17, and the process proceeds to step S18. In step S18, data is transmitted, and the process returns to step S10.
  • FIG. 15 is a flowchart on the transmission side when the assembly order of segment data is given to transmission data.
  • step S20 the transmission data is received.
  • step S21 CRC is added to the received transmission data.
  • step S22 encoding processing is performed and
  • step S23 interleaving is performed.
  • step S24 it is determined whether or not the DHO is being performed. If the determination in step S24 is No, the process proceeds to step S27. If the determination in step S24 is Yes, it is determined in step S25 whether or not the first transmission data after DHO is transmitted. If the determination in step S25 is No, the process proceeds to step S27. If the determination in step S25 is yes, an assembly number is set in step S26, and division processing is performed in step S27.
  • step S28 it is determined whether or not there is a change in the number of branches (the number of wireless transmission paths). If the determination in step S28 is No, the process proceeds to step S30. If the determination in step S28 is no, the process proceeds to step S30. If the determination in step S28 is yes, the assembly number is changed in step S29, the assembly number is assigned to the divided transmission data in step S30, the transmission data is transmitted in step S31, Return to S2 0.
  • FIG. 16 is a flowchart on the reception side when the assembly order of the segment data is negotiated with the reception side in advance.
  • step S35 it is determined whether the assembly cycle has expired (whether the force has received all the data to be assembled). If the determination in step S35 is No, repeat step S35. If the determination in step S35 is Yes, In step S36, data is assembled in accordance with a predetermined assembly order, and in step S37, the data is transferred to the next processing unit, and the process returns to step S35.
  • FIG. 17 is a flowchart on the reception side when the assembly order of segment data is added to transmission data.
  • step S40 it is determined whether or not the force at which the assembly cycle has expired (the force that received all assembly data). If the determination in step S40 is no, repeat step S40. If the determination in step S40 is yes, in step S41, data is assembled according to the assembly order acquired at the time of data reception. In step S42, the data is transferred to the next processing unit, and the process returns to step S40.
  • the segment loss can be detected by the assembly order.
  • the occurrence of a segment loss is notified to subsequent processing, and in some cases, segment retransmission is prompted.
  • segment retransmission is prompted.
  • As a resending method / procedure it is possible to use the technology published in HSDPA.
  • the transmission side DHO Retransmission control may be implemented by a functional unit that controls wireless transmission of segments transmitted from the unit.
  • the radio transmission / reception unit (base station) passes (downlink) radio channel quality information to the DHO processing unit (RNC: base station controller).
  • the mobile terminal (radio transmission / reception unit) passes the radio channel quality information (in the uplink direction) to the mobile terminal (DHO processing unit).
  • the DHO processing unit determines the amount of data (ratio of dividing data) to be transmitted to each wireless transmission path based on this wireless transmission path quality information, and transmits the divided data.
  • the data was equally divided, but by changing the ratio of dividing the data, more data is sent to one transmission line and less data is sent to the other transmission line. become.
  • FIG. 18 is a diagram for explaining a further embodiment of the present invention.
  • the wireless transmission / reception units # 0 and # 1 receive the wireless transmission path quality information # 0 and # 1, they are input to the data division ratio determination unit 20.
  • the data division rate determination unit 20 calculates the division rate and inputs it to the data division / transmission unit 21.
  • Data division that received the transmission data from the data reception unit 22 The Z transmission unit 21 divides the data based on the obtained division ratio and sends the divided data # 0 and # 1 to the wireless transmission and reception units # 0 and # 1, respectively. And send it.
  • the radio transceiver units # 0 and # 1 are provided in the base station BTS, and the data division ratio determining unit 20, the data division Z transmitting unit 21, and the data receiving unit 22 are provided in the base station controller RNC. It is provided.
  • the data distribution ratio to be transmitted is determined from the TPC acquired from each transmission path.
  • the mobile device instructs the base station to increase / decrease transmission power by Inner loop power control.
  • the transmission power increase / decrease instruction indicates the wireless status itself at that time. Therefore, the data distribution rate judgment unit in RNC acquires TPC information from BTS for all transmission lines.
  • the data distribution ratio determining unit 20 Upon receiving the TPC information of each transmission path from each base station (BTS), the data distribution ratio determining unit 20 measures this for a predetermined time, and from the result, each transmission path (ie, each base station BTS ) To calculate the data distribution ratio to be transmitted to the data division / transmission unit 21.
  • the data distribution rate notified from the data distribution rate determination unit 20 To transmit data to each base station.
  • the data distribution rate determination unit 20 determines the data distribution rate from the TPC information in the measurement interval.
  • the TPC used here is assumed to be the difference between the transmission power UP instruction or the Down instruction currently used in the 3GPP system.
  • the number of items indicating a power reduction instruction is integrated.
  • the ratio of the integrated values at each BTS is taken as the distribution rate.
  • FIG. 19 is a diagram for explaining an example of a data distribution rate determination method.
  • Another method for judging the data distribution ratio is to calculate the integrated value calculated at the end of the measurement period.
  • a method can be considered in which a value obtained by multiplying the current data distribution rate is used as the distribution rate.
  • FIG. 20 is a diagram for explaining another example of the data distribution rate determination method.
  • the circle is the power increase instruction and the bag is the decrease instruction
  • the BTS # 0 integrated value is 4, the data distribution rate power
  • the BTS # 1 integrated value is 8, the data distribution rate power.
  • the share rate is
  • the data distribution rate determination unit 20 needs to know the current distribution rate.
  • the data distribution rate judgment unit 20 may store the previous value, or the data division / transmission unit 21 may pass through the data.
  • allocation is assigned to the transmission path to be deleted when data is allocated after the transmission path is deleted, it is preferentially assigned to the best transmission path.
  • (1) for example, a transmission path with a large amount of transmission data is likely to have good radio quality, so the transmission path that seems to be good is given more weight.
  • the specific gravity can be multiplied by a certain amount of coefficient or by adding a certain amount.
  • a transmission path with a small amount of transmission data is immediately after a transmission path is added by handover, or the distribution rate is lowered due to a temporary change in radio conditions. It may be just. In addition, it is conceivable to suppress (slow) the data distribution rate from tilting to transmission lines with a large amount of data.
  • Fig. 21 is a diagram showing the concept of mode switching.
  • the distribution ratio differs between the threshold for switching from mode (1) to mode (2) and the threshold for switching mode (2) force to mode (1). It is conceivable to configure the circuit so as to have hysteresis.
  • the data division / transmission unit 21 is notified of the ratio divided and used.
  • a restriction is placed on the data distribution rate. For example, when there is a transmission line strength and the minimum value of the division pattern is 1/10, even if the quality of a transmission line is very poor, 1/10 is allocated. is there. This is because “the decision not to transmit any data to a certain transmission line depends on the deletion of the transmission line by determining that the transmission line cannot obtain the DHO effect”. .
  • the data distribution ratio determination unit 20 determines that the transmission path can obtain the DH0 effect as long as the transmission path exists, and transmits the divided data of the smallest unit regardless of the degradation state of the transmission path quality. . However, this This largely depends on the minimum unit of data division. For example, in a state where the minimum unit force S1 / 2 of data is used, it may be possible to provide a transmission path that does not apply this and does not transmit any data.
  • FIG. 22 is an operation image diagram of the change of the distribution ratio.
  • the transmission path state is acquired and the distribution ratio to the base station BTS that transmits data to each transmission path is calculated for each measurement cycle.
  • Figure 22 shows how the ratio of BTS # 0, BTS # 1, and BTS # 2 changes with each measurement period.
  • FIG. 23 is a diagram showing a state of allocation of distribution values for the transmission path to be deleted.
  • BTS # 0 # 2 is transmitting data.
  • BTS # 2 transmission quality deteriorates, and BTS # 0 transmission line is the best transmission line.
  • BTS # 2 is deleted, and that portion is allocated to BTS # 0.
  • the frequencies used for uplink and downlink are the same, and it is considered that accurate measurement can be performed even if the uplink data quality is used for the measurement of transmission quality.
  • BER Bit Error Rate
  • BLER Block Error Rate
  • error correction decoding for user data is performed.
  • the result of conversion does not necessarily have to be good. That is, in each wireless transmission line, data from all wireless transmission lines was collected even if the data was not successfully corrected.
  • Means for notifying the quality of the radio control data to the BTS RNC also exists in 3GPP.
  • 3GPP there is an area (QE) for storing quality information in the data transmission frame format between BTS and RNC.
  • This QE stores the quality (Transport Channel BER) obtained as a result of error correction of user data when transmitting user data, and stores the quality of control data (Physical Channel BER) when there is no user data. Which of these can be selected can be selected using the QE Selector. Therefore, when the present invention is applied to 3GPP, the QE Selector is set to “non_Selected” (Physical Channel BER is selected).
  • the TTI period of TrCH is the measurement interval. TrCH reported
  • the BER measurement value is the average value of BER in the measurement interval, and the measurement target is DPDCH.
  • the physical channel BER is the TrCH TTI period as the measurement interval, and this is when the Phy BER is enabled via the C-Plane IE “QE-Selector” shown in TS25.433.
  • Each reported Phy BER measurement is the average value of the BER in the measurement interval, and the measurement target is DPCCH.
  • the data division rate determination method is the same as that using TPC.
  • TPC when using the physical channel BER that calculates the ratio of TPC down information in each transmission channel, the inverse of the data error rate is taken.
  • FIG. 24 is a diagram illustrating the data division rate determination method.
  • the bit error rate BER is obtained for the base stations BTS # 0 and # 1 of each transmission path, and the reciprocal thereof.
  • the distribution rate is proportional to Fig. 24 (b) shows the result of multiplying the current distribution rate by the reciprocal of the bit error rate BER, I will show you how to make a new ratio.
  • 25 and 26 are flowcharts of a processing example for calculating the distribution ratio.
  • FIG. 25 is a processing flow when using TPC.
  • step S45 a measurement cycle is set, and in step S46, downlink radio quality information is acquired for each transmission path.
  • step S47 it is determined whether or not TPC is a decrease instruction. If the determination in step S47 is No, the process proceeds to step S49. If the determination in step S47 is yes, in step S48, 1 is added to the previous count value for each transmission path, and the process proceeds to step S49.
  • step S49 it is determined whether or not the measurement cycle has ended. If the determination in step S49 is no, the process proceeds to step S46. If the determination in step S49 is Yes, the distribution rate is calculated in step S50.
  • FIG. 26 is a processing flow when BER is used.
  • step S55 the measurement cycle is set.
  • step S56 downlink radio quality information is acquired for each transmission path.
  • step S57 the current BER value is reflected in the previous BER value for each transmission path. To determine whether the measurement cycle has expired. If the determination in step S58 is No, the process proceeds to step S56. In the case of the judgment power SYes in step S58, the distribution rate is calculated in step S59.
  • the measurement period is provided, and the quality determination is performed each time for the data received within the period.
  • a method of weighting this determination is also considered. It is done.
  • Figure 27 shows a judgment example when the number of data receptions given as a measurement cycle is 10.
  • the weight given here is set so that the weight increases by 0.1 as the number of times increases in the example of FIG. 27 (the weight to be set may be arbitrary. For example, the weight increases exponentially. Like It is possible to set to a different value or set the weight increase range at TPC UP (it can be set to Tl and 1 or more at TPC Down).
  • FIG. 29 is a processing flow according to another example of the distribution rate calculation method.
  • FIG. 28 is a flowchart showing a process when TPC is used for calculating a distribution ratio.
  • step S65 the measurement cycle / initial weight value is set.
  • step S66 downlink radio quality information is acquired for each transmission path.
  • step S67 it is determined whether or not a TPC force S reduction instruction is issued. If the determination in step S67 is No, the process proceeds to step S70. If the determination in step S67 is yes, in step S68, the value “1”, which is the added value for each transmission path, is multiplied by the weighting value.
  • step S69 the weighted value of the previous addition value is added for each transmission line, and in step S70, the next weighting value is calculated.
  • step S71 it is determined whether or not the measurement cycle has expired. If the determination in step S71 is no, the process proceeds to step S66. In the case of the judgment power SYes in step S71, the distribution rate is calculated in step S72.
  • FIG. 29 is a flowchart showing processing when BER is used for distribution ratio calculation.
  • step S75 the measurement period / initial weight value is set.
  • step S76 downlink radio quality information is acquired for each transmission path.
  • step S77 the current BER is weighted for each transmission line.
  • step S78 the current BER after weighting the previous BER value is reflected for each transmission line.
  • step S79 it is determined whether the measurement cycle has expired. If the determination in step S79 is No, the process returns to step S76. If the determination in step S79 is Yes, the distribution rate is calculated in step S80.
  • transmission data is distributed and transmitted in accordance with the quality of the wireless transmission path, so that a large amount of data flows through the transmission path with good quality. Efficient data communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 DHO時において、DHO実施部は、送信すべきデータを符号化し、インタリーブした後、セグメントデータに分割して、それぞれの伝送路に送出させる。データを受信する場合には、セグメントデータをそれぞれの伝送路から受け取り、結合して、デインタリーブし、復号してデータを受け取る。また、セグメントデータに分割する場合、伝送路品質に応じて、伝送品質の良い伝送路には、よりデータ量の多いセグメントデータを割り振り、伝送路品質の低い伝送路には、よりデータ量の低いセグメントデータを割り振る。

Description

明 細 書
通信システム、送信方法
技術分野
[0001] 本発明は、通信システム及び送信方法に関し、特に、 CDMA方式に従った移動通 信システムに用いて好適である。
背景技術
[0002] 3GPPシステムにおける基地局(BTS)間 DHO (Diversity HandOver)は、移動端末( UE) /基地局制御装置 (RNC)における選択合成/複製分配によって実現してレ、る。 すなわち、 2つ以上の無線伝送路において、同一データを送受信し、伝送路品質が 良好であったもの (誤り無しでデータが到来したもの)を選択している。
[0003] 図 1は、基地局間 DHOのイメージ図である。
移動端末 UEは、複数の基地局 Node Bと複数の無線回線 Uuを介して通信して おり、これらの基地局 Node Bは、通信回線 Iubを介して、基地局制御装置 RNCと 通信している。 DHOをする場合、基地局制御装置 RNCからは、同一のデータがそれ ぞれの基地局 Node Bに送られ、それぞれの基地局 Node Bから 1つの移動端末 UEに同一のデータが送られる。移動端末 UEは、それぞれの基地局 Node Bから 送られてきた同一のデータをそれぞれ逆拡散処理してから合成して、復調データを 得て、更に誤り訂正復号処理を施して送信データを再生する。移動端末 UEがある 基地局 Node Bの配下から他の基地局 Node Bの配下に移動する場合、伝送品質 の良い回線からのデータを選択受信することで、離れていく基地局 Node Bからの データは自然と使用されなくなり、近づいてくる基地局 Node Bからのデータが選択 されるので、瞬断のなレ、ハンドオーバが実現できる。
[0004] しかし、 3GPP方式における DHO時には、複数の伝送路に対して同一データを送信 するために、伝送路の増加に伴レ、無線容量の低下が発生する。
図 2は、無線伝送路が 2本である場合の 3GPPにおける DHO時のデータの流れを示 す図である。
[0005] 最初に 1つであった Information Dataは、コピーされ、 2つの無線伝送路に振り分け られる。 Information Dataに CRCビットが付加され、ターボ符号化されて、冗長化ビッ トである Terminalビットが付加される。そして、 1回目のインタリーブ処理がなされ、イン タリーブされたデータが例えば、 2つのデータに分割される。そして、レートマチングさ れ、 2回目のインタリーブ処理がなされた後、スロットに分割されて、無線フレームに 載せられて送出される。
[0006] このように、 Information Dataがコピーされて、基地局制御装置から基地局に送信さ れるので、基地局と基地局制御装置間の回線を余計に使用してしまうと共に、基地 局から移動端末への無線回線も余計に使用してしまう。
[0007] 更には、各無線伝送路間は異なる拡散符号で分離されているが、ある無線伝送路 に対して別の無線伝送路は逆拡散を行う上ではノイズになるために、所望の SIRを確 保するための電力増加が発生する。
[0008] 図 3は、 SIRの劣化を説明する図である。
CDMA通信システムにおいては、単一のキャリアを使ってデータが送信されるので
、異なる無線伝送路の拡散状態のデータは同じ周波数帯域に積み重なるようにして 送信される。移動端末においては、逆拡散することにより、 1つの無線伝送路の信号 を得るが、他
の無線伝送路のデータは拡散されたままの状態で受信されるので、逆拡散された無 線伝送路のデータに対してノイズとなる。したがって、使用する無線伝送路が多けれ ば多いほど、このノイズが多くなることになる。
[0009] 特許文献 1には、通信の瞬断が無ぐセルダイバーシチ効果を持ち、かつ無線基地 局の下り無線資源使用量が非ハンドオフ時とハンドオフ時で変化しないハンドオフ手 段が開示されている。
特許文献 1 :特開 2000 - 217139号公報
発明の開示
[0010] 本発明の課題は、無線資源を節約することが出来、かつ、移動端末がデータを受 信する際の伝送品質を良く保つことが出来るソフトハンドオーバ方式を採用した通信 システムを提供することである。
[0011] 本発明の通信システムは、送信すべきデータを誤り訂正符号化する誤り訂正符号 化手段と、該誤り訂正符号化されたデータにインタリーブを行うインタリーブ手段と、 該インタリーブされたデータを分割する分割手段と、該分割されたデータをそれぞれ 異なる無線装置から送信する送信手段とを備えることを特徴とする。
図面の簡単な説明
[図 1]基地局間 DHOのイメージ図である。
園 2]無線伝送路が 2本である場合の 3GPPにおける DHO時のデータの流れを示す 図である。
園 3] SIRの劣化を説明する図である。
[図 4]OFDMの利点を説明する図である。
園 5]本発明の実施形態の DHO実施部の概念構成を示すブロック図である。
[図 6]本発明の実施形態に従った、基地局あるいは無線ネットワーク側に設けられる
DHO処理部の概念構成を示す図である。
[図 7]本発明の実施形態に従った、 OFCDM方式を使用した場合のデータの受信処 理の様子を示す図である。
[図 8]セグメント化されたデータの結合方法の一例を説明する図(その 1)である。
[図 9]セグメント化されたデータの結合方法の一例を説明する図(その 2)である。 園 10]セグメント化されたデータの結合方法の一例を説明する図(その 3)である。 園 11]セグメント化されたデータの結合方法の別の例を説明する図である。
[図 12]再送処理のデータの流れを示す図である。
園 13]本発明の実施形態を 3GPPに適用した場合の例を示す図である。
園 14]本発明の実施形態に従った DHO部のフローチャート(その 1)である。
園 15]本発明の実施形態に従った DHO部のフローチャート(その 2)である。
園 16]本発明の実施形態に従った DHO部のフローチャート(その 3)である。
園 17]本発明の実施形態に従った DHO部のフローチャート(その 4)である。
[図 18]本発明の更なる実施形態を説明する図である。
園 19]データの分配率判定方法の例を説明する図である。
[図 20]データの分配率判定方法の別の例を説明する図である。
園 21]モード切り替えの概念を示す図である。 [図 22]分配率の変化の動作イメージ図である。
[図 23]削除対象伝送路の分配値の割り当ての様子を示した図である。
[図 24]データ分割率判定方法について例示する図である。
[図 25]分配率算出の処理例のフローチャート(その 1)である。
[図 26]分配率算出の処理例のフローチャート(その 2)である。
[図 27]測定周期として与えられるデータ受信回数が 10回である場合の判定例を示す 図である。
[図 28]分配率算出方法の別の例に従った処理フロー(その 1)である。
[図 29]分配率算出方法の別の例に従った処理フロー(その 2)である。
発明を実施するための最良の形態
[0013] 本発明の実施形態は、好ましい最良の形態として OFDM方式におけるサブキャリア を利用することによって、周波数選択性フェージングの影響を低減可する。
最近では、次の通信システムとして、 OFCDM方式が注目されている。
OFCOM(Orthogonal Frequency and Code Division Multiplexing)方式とは、ネ复数のサ ブキャリアを用いてデータを並列に伝送する OFDM(Orthogonal Frequency Division
Multiplexing)方式において、更に拡散符号による符号分割多重をすることで、同一 周波数におけるユーザー多重を図るものである。
[0014] OFDM自体には以下の利点がある。
•狭帯域干渉に強い
'周波数選択性フェージングに強い
•高い周波数利用効率 (サブキャリア間の周波数共有が可能なため)
•周波数ドメイン処理が可能
図 4は、 OFDMの利点を説明する図である。
[0015] 図 4に示されるように、通常の CDMAでは、単一のキャリアを用いてデータを送信し ており、 OFDMでは、直交した複数のサブキャリアを用いてデータを送信している。
OFDMでは複数のサブキャリアを使用して送信するために、周波数選択性フェージ ングが発生した場合においても、あるサブキャリアのみが影響を受けるだけで済む。 更には、影響を受けたサブキャリアでは、周波数選択性フェージングをフラットフエ一 ジング (単純な減衰)とみなすことが可能であり、周波数選択性フェージングに影響を 受けたサブキャリアのみの所望 SIRが低いことになるため、サブキャリア毎の電力制御 を行うことで、この周波数選択性フェージング問題を回避することが可能となる。
[0016] これに対し、単一キャリアの場合には、周波数選択性フェージングが発生した場合 、送信キャリア全体に影響が及ぼされるため、送信データ全体に影響が発生してしま う。更にこれを電力制御によって改善しょうとしても、周波数選択性フェージングの影 響を受けている周波数帯においては、改善されにくいため、ビット誤り率の向上につ ながりにくいこととなる。
[0017] OFDMのようなサブキャリアを使用した無線伝送を行うシステムでは、単一のキヤリ ァを使用した無線伝送に比べて、サブキャリア単位での無線伝送が保証されやすレ、 ことになる。
[0018] 現状のシステムでは、単一キャリアのシステムであるので、 DH〇時にデータが破壊 されやすい問題から、 DHO時に全ての伝送路に同一データを送信し、移動局は、こ れらを合成することでダイバーシチ効果を狙っている。
[0019] 従って、下記実施例においては、好ましくは、 OFCDM方式を採用することとする
1S 無線方式として CDMA方式、 OFDM方式を採用することもできる。
本発明の実施形態においては、 DHO時において、無線伝送路が追加された場合 には、同一データを送信せず、無線伝送路の本数に応じた数でデータを分割し (例 えば無線伝送路
力 SN本あれば N分割し)、分割したデータをそれぞれの無線伝送路を使って送信する 。データを分割してそれぞれの無線伝送路を使って送信することで、 1つの伝送路で 送信されるデータ量が減るので、特定の伝送路に対し、他の伝送路がノイズとなる度 合いを小さくすることが出来る。
[0020] 好ましくは、各無線伝送路は、異なる無線基地局から送信される。
ここで、送信対象データは、複数の無線伝送路に分割される前に、インタリーブ処 理を行いう。これにより、伝送路間の品質の偏りを排除し、平均化する。
[0021] 図 5は、本発明の実施形態の DHO実施部の概念構成を示すブロック図である。
DHO実施き!^ 10に、 Interieave/De— interleave処理を行つ interleave/De-interleave咅 |5 12、 Segmentation/Reassemble処理を行う Segmentation/Reassemble部 13を設ける。
Coding/Decoding部 11で符号化されたデータは、 Interleave/De-interleave部 12でィ ンタリーブされ、 Segmentation/Reassemble部 13において、各無線伝送路用に分割さ れ、各無線伝送路に送信される。各無線伝送路から受信した、分割されたデータは、 Segmentation/Reassembleき 13におレヽて、併合され、 Interleave/De_interleave咅 | 12 でディンタリーブされ、 Coding/Decoding部 11において復号され、受信される。
[0022] DHO実施部 10は、移動端末にも設けられれば、基地局制御装置にも設けられ、そ れぞれの DHOを制御する。
図 6は、本発明の実施形態に従った、基地局あるいは無線ネットワーク側に設けら れる DHO処理部の概念構成を示す図である。
[0023] DHO処理部 15においては、以下の処理を実施する。 DHO処理部 15は 3GPPシス テムにおける RNC以外の場所に存在しても構わなレ、 (例えば、 RNCの上位装置、基 地局など)。
(1)送信対象データに対して、 CRCを付与した後に、誤り訂正符号化処理
(2) (1)の処理を実施後、インタリーブ処理
(3) (2)の処理をしたデータを一つ以上のセグメントに分割し、基地局へ送信
(4)パンクチヤなどのレートマッチング処理 (オプション)
基地局では DHO処理部 15より受信したデータを無線区間へ送信する。
[0024] ここで、好ましくは、一方の基地局は、ハンドオーバ前に既に利用していた第 1の拡 散コードをそのまま利用し、他方の基地局は、ハンドオーバの開始の際に指定された 第 2の拡散コードを利用して送信を行う。もちろん、一方の基地局と他方の基地局で
、使用する周波数は同じであることが望ましい。
[0025] 従って、ハンドオーバに際して、ハンドオーバ前の基地局が更に拡散コードを追加 する送信する必要もなぐハンドオーバ時に 1つの移動局で占有される拡散コード数 の増加を抑えることができる。
[0026] 図 6では、第二レートマッチング、インタリーブ処理について記載している力 更に は、第二レートマッチングの前に誤り訂正符号化処理を実施してもよい。
基地局における無線区間のデータ受信処理を実施し、 DHO処理部 15に送信した データに対して、 DHO処理部 15では、データ送信処理とは逆の手順を実施すること で、データを復元する。
[0027] 尚、 DHO処理部を基地局に設ける場合は、各無線基地局は、上位装置 (RNC)等 力 受信した同じデータについてそれぞれ同じ誤り訂正符号化手順(同じターボ符 号化処理)により、符号化データを得て、同じインタリーブパターンでインタリーブ処 理を施す。そして、インタリーブ後のデータについて第 1の無線基地局は、第 1の部 分、第 2の無線
基地局は、第 2の部分を抽出してそれぞれレートマッチング、 2回目のインタリーブ処 理を施して送信する。
[0028] ここで、好ましくは、第 1の部分と、第 2の部分は重複がなぐ双方あわせるとインタリ ーブ後のデータとなるデータである。尚、第 1の部分と、第 2の部分に重複部分を設 け (例えば、ターボ符号化のように組織符号化を行う場合の組織ビット部分を重複さ せ)て重要なビット部分については、ダイバシチ効果を得ることができる。 図 7は、本 発明の実施形態に従った、 OFCDM方式を使用した場合のデータの受信処理の様 子を示す図である。
[0029] まず、図 7の一番下に示されるように、各基地局で OFCDMにおけるサブチャネルご とのデータの受信が行われる。このとき、 7番のサブチャネルに誤りが生じていたとす る。 2つの無線伝送路のそれぞれで受信されたデータに対し第二のディンタリーブ処 理が行われ、分割されたデータ内で誤りを拡散する。次に、各基地局から基地局制 御装置へデータを送られ、データの結合が行われる。そして、基地局制御装置にお いて、第一のディンタリーブ処理が行われ、データの誤りがデータ全体に拡散する。 そして、データ全体について誤り訂正復号ィ匕処理が行われ、誤りが訂正される。
[0030] ここで、受信側における分割(セグメント)されたデータの結合のために、以下の方 法が考えられる。
(1)送信するセグメントデータに、結合順番を付与しておく
(2)送受信側で予め送信する伝送路に結合順番を決定しておく
結合方法(1)の場合、 DHO実施部 (Tx :基地局制御部、移動端末のいずれに限ら ず、 DHO方式を実現する回路 (送信側) )から無線送信部へセグメントを転送する際 に、分割番号を付与する。例えば、転送フォーマットにおけるヘッダに、分割情報とし て番号を格納する。ここで、一つの伝送路に 2つ以上のセグメントを送信する際には、 そのときのデータ転送方法にもよる力 例えば、セグメントを多重して送信する場合に は、そのヘッダ情報においても、多重情報を付与する (Ex : 3GPPシステムにおける、 Iub上における TB (Transport Block)多重方法 (TS25.427))。
[0031] あるいは、無線送信部では、 DHO実施部 (Rx (受信側) )へセグメントを無線データと して転送する際に、セグメントを送信するチャネルとは別のチャネルを使用して (制御 情報として)、分割番号を DH〇実施部 (Rx (受信側) )へ通知する方法もある (Ex: 3GPP システムにおける、 DPDCH (セグメント送信)と DPCCH (制御情報送信))。このとき、複 数のセグメントが多重されて送信される場合には、多重情報も付与する。
[0032] DHO実施部 (Rx)では一つ以上の無線伝送路から受信した、各セグメントを結合す る際に、同時に受信した分割番号に従って、セグメントを結合する。
無線送信時に、分割番号を別のチャネルを利用する理由は、本発明の実施形態で は、各セグメントの最終的な伝送品質は、セグメントが結合された後の誤り訂正した結 果として得られる伝送品質に依存するためである。例えば、本発明の実施形態とは 別に、各無線伝送路でのデータ転送保証のために、別途誤り訂正処理を実施してい たとしても、必ずしも各セグメントはエラーフリーであることが求められないからである。 し力 無線送信するに当たって、パイロットなどの制御情報は無線エラーが発生して も受信可能なことが望ましい。本分割番号 (更には多重情報)もそれと同様高い品質 を要求するため、セグメントを送信するチャネルとは別のチャネル、或いは同一チヤネ ルで送信される場合には、品質管理上別で管理される場所に格納される必要がある
[0033] 図 8—図 10は、セグメントィ匕されたデータの結合方法の一例を説明する図である。
図 8に示されるように、 DHO実施部(Tx)からは、セグメント Α Cが無線送信部に送 られる。このとき、セグメント Aの分割情報は、 SN=Aであり、セグメント Bの分割情報 は、 SN = Bであり、セグメント Cの分割情報は、 SN = Cである。 DHO実施部(Rx)は、 無線送信部からセグメント A Cを受信し、分割情報を下に、これらを結合する。
[0034] 図 9は、分割情報をセグメントデータと別のチャネルで送信する場合の概念を示し ている。データチャネルには、セグメントデータが送信され、これと同期した制御チヤ ネルには、制御情報としてパイロット信号や分割番号等が送信される。
[0035] 例えば、この制御情報は、第 1の基地局、第 2の基地局から同一データを送信し、 ダイバーシチ効果を得ることが望ましい。分割番号等の分割情報 (分割データに必 要な情報)はデータの再生において重要な情報だからである。従って、各基地局は、 第 1の基地局から送信したデータと第 2の基地局から送信したデータの結合順情報 を送信するのである。
[0036] もちろん、第 1の基地局からは、第 1の基地局が送信するデータの結合順情報(2) を送信し、第 2の基地局からは、第 2の基地局が送信するデータの結合順情報(1)を 送信することで、第 2の基地局から受信したデータ、第 1の基地局から受信したデー タの順で受信すべきことを通知することもできる。 図 10は、分割情報をヘッダなどに 収容して 1無線フレームとして送信する場合を示している。転送チャネルには、制御 領域とデータ領域からなるデータフレームが送信される。データ領域にはセグメント データが格納される。制御領域には、制御情報として、パイロット信号や分割番号等 が格納される。
[0037] 結合方法(2)は、送信側と受信側の双方の DHO実施部において、ハンドオーバの ために持つ伝送路に対して、どの順番でセグメントを結合すべきかを、予め決定して おく方法である。例えば、 3本の伝送路による DHOを実施する場合、その伝送路に対 して識別子を設け、その識別番号に対して結合順番を対応付ける。
[0038] 図 11は、セグメントィヒされたデータの結合方法の別の例を説明する図である。
送信側の DHO実施部(Tx)に対し、受信側の DHO実施部(Rx)が結合順番割り当 て要求を送信する。すると、送信側の DHO実施部 (Tx)は、各無線伝送路に結合順 番を付与し、結合順番割り当て応答として、この結合順番を受信側の DHO実施部( Rx)に送信する。
[0039] 更に、 DHO実施部に ARQ機能(データ再送機能)を実装する。例えば、分割したデ ータに CRCを付与し、受信側でこれをチヱックし、 NGの場合には、分割データの識別 子 (結合番号/シーケンス番号など)を送信側に返す。 NGを示された分割データに対 して、 DHO実施部では対象となる分割データを再送するが、ここで、最も品質のよい 伝送路を使用して再送を試みる。
[0040] 例えば、 2本の伝送路で DHOを実施しているときに、伝送路 #1で送信した分割デー タに対して、受信側での受信不可通知を送信側で受領した場合、もう一方の伝送路 #0で対象となる分割データを再送する。
[0041] 図 12は、再送処理のデータの流れを示す図である。
図 12では、送信側の DHO実施部(Tx)から、伝送路 # 0を使ってセグメント # 0が、 伝送路 # 1を使ってセグメント # 1が送信される。受信側の DHO実施部(Rx)では、セ グメントデータに付与された CRCをチェックする。ここでは、セグメント # 0の CRCは〇 Kで、セグメント # 1の CRCが NGとなっている。そこで、受信側の DH〇実施部 (Rx)は 、送信側の DH〇実施部(Tx)にセグメント # 1の再送を要求する。送信側の DHO実施 部(Tx)は、伝送路 # 0の伝送品質のほうが良いことを検知し、セグメント # 1を伝送路 # 0を使って、受信側の DH〇実施部(Rx)に送信する。
[0042] 図 13は、本発明の実施形態を 3GPPに適用した場合の例を示す図である。
3GPPシステムでは、基地局にて実施される処理のうち、図中の Segment処理までを DHO処理部で実施する。その後、各 Segmentを TB (Transport Block)とし、 Iub-FPフ ォーマット処理を実施した形で基地局へ送信する。
[0043] 図 13は、分割されたデータのうち、 TB#0と TB#1は基地局 #0へ、 TB#2は基地局 #1 へ送信される状態を示してレ、る。
以上のように適用することで、 3GPPシステム上でも本発明の実施形態を適用するこ とが可能となる。尚、送信する際の拡散コード等については先に説明した手法と同様 の手法を採用するこができる。
[0044] 受信側で分割データの組立を実施する必要性から、組み立てるために必要な情報 を受信側に通知する必要があります。本文で提案したように、予めネゴシエーション するか、送信データに付与するかがある。
[0045] 図 14一図 17は、本発明の実施形態に従った DHO部のフローチャートである。
基本フローは予めネゴシエーションする方法になる。これに対し、送信データに付 与する方法では、 DHO状態やその本数などにより、組立順番を決定し、この情報を データ送信とともに相手へ通知する。 [0046] 予めネゴシエーションされる場合には、各伝送路に組立順番を定義することで実現 する。インバンド通知の場合には、各伝送路力もデータを受信したときに獲得した識 別子 (組立番号など)により、受信側で順番に従って組み立てる。
[0047] 組立時に使用される組立番号は、 DHO状態により可変する値である。すなわち、ソ フトハンドオーバー(ノ、ンドオーバ前後で周波数が同じ)状態を維持するような場合に おいて、そのブランチ数 (伝送路本数)は電波状況により変わることがある。このため、 以下を実施する。
•予めネゴシエーションすることで決める方法:
DHO状態が変化する度に、送信側と受信側における組立順番 (各伝送路への組立 順番括り付け)を決定する (ネゴシエーション実施:切替タイミング指定有り)。
•インバンド通知する方法:
DHO状態に関わらず、送信側が一意に決定。セグメントのロスを検出可能とするた めに、最終セグメントを識別可能とする。
[0048] 図 14は、セグメントデータの組み立て順番を受信側と予めネゴシエーションしてい る場合の送信側のフローチャートである。
ステップ S10において、 DHO状態が変化したか否かを判断する。ステップ S10の判 断が Noの場合には、ステップ S12に進む。ステップ S10の判断が Yesの場合には、 ステップ S11において、受信側とネゴシエーションを行レ、、ステップ S12に進む。ステ ップ S 12では、送信データを受領し、ステップ S 13において、 CRCを受領した送信デ ータに付与する。そして、ステップ S14において、符号化処理を行い、ステップ S15 において、インタリーブ処理を行レ、、ステップ S 16において、 DHOをしている状態で あるか否かを判断する。ステップ S16の判断が Noの場合には、ステップ S18に進む 。ステップ S16の判断が Yesの場合には、ステップ S17において、分割処理を行い、 ステップ S 18に進む。ステップ S 18において、データを送信し、ステップ S 10に戻る。
[0049] 図 15は、セグメントデータの組み立て順番を送信データに付与する場合の送信側 のフローチャートである。
ステップ S20において、送信データを受領する。ステップ S21において、受領した 送信データに CRCを付与する。ステップ S22において、符号化処理を行い、ステツ プ S23において、インタリーブ処理を行う。ステップ S24において、 DHOを行っている 状態にあるか否かを判断する。ステップ S24の判断が Noの場合には、ステップ S27 に進む。ステップ S24の判断が Yesの場合には、ステップ S25において、 DHO後の 最初の送信データの送信か否かを判断する。ステップ S25の判断が Noの場合には 、ステップ S27に進む。ステップ S25の判断が Yesの場合には、ステップ S26におい て、組み立て番号を設定し、ステップ S27において、分割処理を行う。ステップ S28 において、ブランチ数 (無線伝送路数)に変更があるか否力、を判断する。ステップ S2 8における判断が Noの場合には、ステップ S30に進む。ステップ S28の判断が Noの 場合には、ステップ S30に進む。ステップ S28の判断が Yesの場合には、ステップ S2 9において、組み立て番号を変更し、ステップ S30において、組み立て番号を分割さ れた送信データに付与し、ステップ S31において、送信データを送信し、ステップ S2 0に戻る。
[0050] 図 16は、セグメントデータの組み立て順番を受信側と予めネゴシエーションしてい る場合の受信側のフローチャートである。
ステップ S35において、組み立て周期が満了したか(組み立てるべきデータを全て 受信した力 否かを判断する。ステップ S35の判断が Noの場合には、ステップ S35を 繰り返す。ステップ S35の判断が Yesの場合には、ステップ S36において、予め決め られた組み立て順番に従いデータを組み立てる。ステップ S37において、次の処理 部へデータを転送し、ステップ S35に戻る。
[0051] 図 17は、セグメントデータの組み立て順番を送信データに付与する場合の受信側 のフローチャートである。
ステップ S40において、組み立て周期が満了した力 ^全ての組み立てデータを受信 した力、)否かを判断する。ステップ S40における判断が Noの場合には、ステップ S40 を繰り返す。ステップ S40における判断が Yesの場合には、ステップ S41において、 データ受信時に獲得した組み立て順番に従いデータを組み立てる。ステップ S42に おいて、次の処理部へデータを転送し、ステップ S40に戻る。
[0052] 組立順番により、セグメントのロスを検出することが可能である。セグメント欠損の発 生は後段処理に通知され、場合によってはセグメント再送が促される。ここで、例えば 再送方法/手順として、 HSDPAにて公開されている技術を使用することが考えられる
[0053] よって、セグメントの再送要求を送信側 DHO部へ通知し、最良無線伝送路と判断さ れた伝送路を使用して再送させることも考えられるし、 HSDPA技術のように、送信側 DHO部から送信されたセグメントの無線送信をつかさどる機能部で再送制御を実現 してもよい。
[0054] 更には、送信側 DH〇部にて再送要求を受領した場合、再送信する場合には、その セグメントのみを送信対象とし、これを単一伝送路ではなぐ複数伝送路に更にセグ メント化して分割送信することも考えられる。
[0055] 上記実施形態によれば、以下のような効果が期待できる。
(1) DHOによる総データ送信量を抑制することが出来る。
(2) DHOによる、電力増加を抑制することが出来る。これは無線伝送路追加に伴レ、、 各無線伝送路にける送信データ量が減少するため (高い拡散率でのデータ送信が可 能、など)。
(3) (2)による電力抑制により、無線容量の増大が期待できる。
[0056] 上記実施形態では、複数無線伝送路を持つ状態 (DHO状態)になった場合には、 同一データを送信せず、各無線伝送路にデータを分割して送信することを提案した 。これは無線方式に OFCDMを適用した場合を想定しており、 OFDM方式の特徴であ る、周波数選択性フェージングの影響を回避可能であることに着目したものである。 すなわち、同じデータを異なる無線伝送路を使って送信して、ダイバーシチ効果を期 待しなくて良いということに基づいている。
[0057] 以下では、本発明の更なる実施形態として、各無線伝送路における伝送路品質を 考慮してデータ分割を実施すること提案する。
具体的には、無線送受信部 (基地局)より DHO処理部 (RNC:基地局制御装置)に対 して、(下り方向の)無線伝送路品質情報を渡す。又は、移動端末 (無線送受信部)より 移動端末 (DHO処理部)に対して、(上り方向の)無線伝送路品質情報を渡す。
[0058] DHO処理部では、この無線伝送路品質情報を元に各々の無線伝送路に送信する データ量 (データを分割する割合)を決定し、分割したデータを送信する。前述の実施 形態では、データを等分割していたが、データを分割する割合を変化させることで、 一方の伝送路にはより多くのデータが送られ、他方の伝送路にはより少ないデータが 送られることになる。なお、前述の実施形態でも同様であるが、以下でも伝送路の数 は 2の場合を例にとって説明するが、伝送路の数力 Sいくつでもかまわない。
[0059] 図 18は、本発明の更なる実施形態を説明する図である。
無線送受信部 # 0、 # 1が無線伝送路品質情報 # 0、 # 1それぞれを受信すると、 これらをデータ分割率判定部 20に入力する。データ分割率判定部 20では、分割率 を計算し、データ分割/送信部 21に入力する。データ受信部 22から送信データを 受信したデータ分割 Z送信部 21は、データを取得した分割率に基づいて分割し、分 割データ # 0、 # 1を無線送受信部 # 0、 # 1にそれぞれ送って、送信させる。ここの 例では、無線送受信部 # 0、 # 1は、基地局 BTSに設けられ、データ分割率判定部 2 0、データ分割 Z送信部 21、及びデータ受信部 22は、基地局制御装置 RNCに設け られている。
[0060] なお、前述の実施形態の DHO処理は、データ分割/送信部 21で行われているも のとする。
無線伝送路品質情報の取得方法については、国際出願番号 PCT/JP03/11270号 や、特願 2004-571830号でも使用されているように、基地局と移動機間で行われる Inner loop電力制御で使用される、制御情報である TPC(Transmission Power
Control)を使用することが考えられる。本実施形態では、各伝送路から取得した TPC から送信すべきデータ分配率を決定する。
[0061] 移動機は、 Inner loop電力制御によって基地局に対して送信電力の増減指示を行 う。送信電力の増減指示は、その時点での無線状況そのものを示す。よって RNCに おけるデータ分配率判定部では、全ての伝送路に対して、 BTSより TPC情報を取得 する。
[0062] 各基地局 (BTS)から各伝送路の TPC情報を受領したデータ分配率判定部 20では、 これを予め定められた時間測定し、その結果から各伝送路 (すなわち、各基地局 BTS) へ送信すべきデータ分配率を算出し、これをデータ分割/送信部 21へ通知する。
[0063] データ分割/送信部 21では、データ分配率判定部 20より通知されたデータ分配率 に従って、各基地局へデータを送信する。
データ分配率判定部 20では、測定周期区間における、 TPC情報からデータ分配 率を判定する。ここで使用される TPCは現状 3GPPシステムで使用されている、送信電 力 UP指示、もしくは Down指示のレ、ずれかであるものとする。
[0064] 具体的には、一定時間収集した TPC情報のうち、電力減少指示を示すものの数を 積算する。測定期間満了時に、各 BTSでの積算値の比率を分配率とする。
図 19は、データの分配率判定方法の例を説明する図である。
[0065] 図 19の例では、丸を電力増加指示、バッを減少指示として、 BTS#0では 4、 BTS#1 では 8であるため、分配率は、 BTS#0 : BTS#1 = 1:2となる。
別のデータ分配率判定方法として、測定期間満了時に算出された積算値に対して
、現時点でのデータ分配率を乗算した値を分配率とするような方法が考えられる。
[0066] 図 20は、データの分配率判定方法の別の例を説明する図である。
図 20の例では、丸を電力増加指示、バッを減少指示として、 BTS#0の積算値が 4、 データ分配率力 で、 BTS#1の積算値が 8、データ分配率力 であるため、分配率は、
BTS#0 : BTS#1 = 1:1となる。
[0067] 以上のように、データ分配率判定部 20では、現時点での分配率を知る必要がある
。データ分配率判定部 20で前回の値を記憶してもよいし、データ分割/送信部 21か ら通失口してもらってもよレ、。
[0068] 前述のデータ分配率判定部 20にて算出された分配率は、場合によっては補正さ れることが考えられる。補正方法には以下が考えられる。
(1)現在分配率の大きい伝送路に一定量を増加させる
(2)現在分配率の小さい伝送路に一定量を増加させる
(3)データ分割/送信部 21における分割方法の制限に従った補正を実施する
(4)ハンドオーバ直後で現在の分配率を持たない伝送路には初期値を与える (図 20 の方法の場合のみ)
(5)データ分配率に制限を持たせる
(6)伝送路削除後のデータ配分時に、削除対象伝送路に配分が割り当てられていた 場合には、最良伝送路に優先的に割り当てる 先ず(1)は、例えば現在送信データ量の多い伝送路とは、無線品質が良好である 可能性が高いため、良好と思われる伝送路の方に比重を掛ける。比重の掛け方は、 一定量の係数を乗算しても構わなレ、し、一定量を加算することで実現しても構わなレヽ
[0069] 次に(2)は、現在送信データ量の小さい伝送路は、ハンドオーバにより伝送路が追 加された直後であったり、又は一時的な無線状況の変化で分配率が下げられてレ、た だけである可能性がある。更に、データ量の多い伝送路へデータ分配率が傾くのを 抑制する (緩慢にする)ことも考えられる。
[0070] ここで(1)と(2)の併用も考えられる。すなわち、最終的に算出された分配率がある 値になった場合、(1)力 (2)のモードとするように切り替えるようにする。図 21は、モー ド切り替えの概念を示す図である力 このように、モード(1)からモード(2)へ切り替え る閾値とモード(2)力もモード(1)へ切り替える閾値とを違う分配率とし、ヒステリシスを なすように構成することが考えられる。
[0071] (3)については、データ分割/送信部 21での分割方法に制限があることが考えられ るので必要と考えられる。例えば、あるデータの分割方法として、 1/2、 1/4、 1/8 · ' 'と レ、う分割方法をとる場合には、この分割方法で生成されうる分割率を算出する必要が ある。よって、算出された値の丸め込みや四捨五入などの処理を施す。
[0072] (4)については、ハンドオーバ直後では、追加された伝送路では前回の値が無い ため
初期値を持たない。このため、データ分割/送信部 21にて分割していた比率を通知 してもらレ、、これを使用する。
[0073] (5)については、データ分配率に制限を設ける。例えば伝送路力 ¾本ある状態で、 分割パタンの最小値が 1/10である場合に、このうち、ある伝送路の品質が非常に悪く なった場合でも、 1/10の割り当てを行うものである。これは、「ある伝送路にデータを 全く送信しないとする判断は、 DHO効果を得られない伝送路であると判断することに よる伝送路削除に依存するものである」、とするためである。データ分配率判定部 20 では、伝送路が存在するうちは、 DH〇効果を得られる伝送路であると判断し、伝送路 品質が如何なる劣化状態にあろうとも、最小単位の分割データは送信する。但し、こ れはデータ分割の最小単位に依存するところが大きい。例えば、データの分割最小 単位力 S1/2の場合などの状態では、これを適用せず、全くデータを送信しない伝送路 を設けても構わない場合も考えられる。
[0074] 図 22は、分配率の変化の動作イメージ図であるが、測定周期毎に、伝送路状態を 獲得し、各伝送路にデータを送信する基地局 BTSへの分配比率を計算する。図 22 では、 BTS # 0、 BTS # 1、及び BTS # 2の比率が測定周期毎に変化している様子 を示している。
[0075] (6)では、 DHO効果を得られないと判断され、伝送路が削除される時に、削除対象 伝送路にデータ送信配分が割り当てられていた場合には、伝送路削除時に最も品 質の良好な伝送路へこの配分値を加える。
[0076] 図 23は、削除対象伝送路の分配値の割り当ての様子を示した図である。周期 1で は、 BTS # 0 # 2がそれぞれデータを送信している力 周期 2で BTS # 2の伝送品 質が劣化し、 BTS # 0の伝送路が最良の伝送路となっているので、周期 3では、 BTS # 2を削除し、その分を BTS # 0に割り当ててレ、る。
[0077] 伝送品質を測定する方法として、上りデータのデータ品質を利用することも考えら れる。ただし、 FDD方式では、上りと下りで使用する無線周波数が異なるために、上り の無線品質情報を下りの無線品質と同等と読み取ることが出来ないため、伝送品質 の測定に誤差が生じるが、この方法の使用は可能である。 OFDM方式の場合には、 周波数選択性フェージングの影響を抑えることが可能な技術であるため、 FDD方式 を使用しても、余り上りと下りの品質に差分が生じにくいと思われるため、伝送品質の 測定に上りのデータ品質を使っても問題はないと考えられる。
[0078] TDD方式の場合には、上りと下りで使用する周波数は同一となるため、伝送品質の 測定に上りのデータ品質を使っても精度の良い測定が出来ると考えられる。
上りのデータは、無線区間においてユーザーデータ送受信のための誤り訂正符号 /復号を実施する場合には、 BER(Bit Error Rate), BLER(Block Error Rate)を使用す ること力 S可能である。更には、無線制御データにおける BERを使用することも選択肢と しては存在する。
[0079] 但し、本発明の実施形態の DHO方式では、ユーザーデータに対する誤り訂正復号 化の結果は、必ずしも良好である必要はない。すなわち、各無線伝送路において、 誤り訂正に成功しないデータであっても、全ての無線伝送路からのデータを収集した
、最終的な誤り訂正結果が OKであれば問題ないとしてレ、るためである。
[0080] しかし、無線制御データに関しては、必ず各無線伝送路で正常に制御データを受 信可能である必要があるので、この制御データに対する品質情報を利用する方法に ついて説明す
る。
[0081] BTS力 RNCに対して、無線制御データの品質を通知する手段は 3GPPでも存在す る。 3GPPでは BTSと RNC間のデータ送信フレームフォーマット上、品質情報を格納す るエリア (QE)が存在する。この QEは、ユーザーデータ送信時にはユーザーデータの 誤り訂正の結果得られた品質 (Transport Channel BER)を格納し、ユーザーデータが 無い場合には、制御データの品質 (Physical Channel BER)を格納する。これらのどち らを選択するかは、 QE Selectorで選択することが可能である。従って本発明を 3GPP に適用する場合には、 QE Selectorを" non_Selected"(Physical Channel BERを選択) とする。
[0082] ここで、 Transport channel BERは、 TrCHの TTI周期が測定区間である。報告される TrCH
BER測定値は、測定区間における BERの平均値であり、測定対象は DPDCHである。 また、 Physical channel BERは、 TrCHの TTI周期が測定区間となり、これは Phy BER は TS25.433に示される、 C-Planeの IE "QE-Selector"を通じて有効となったときもので ある。それぞれ報告される Phy BERの測定は、測定区間における BERの平均値で、 測定対象は DPCCH。
[0083] データ分割率判定方法については、 TPCを利用した場合と同様とする。 TPCの場 合には、各伝送路における TPCの Down情報の比率を算出した力 Physical Channel BERを使用する場合には、データ誤り率の逆数をとる。図 24は、データ分割率判定 方法について例示する図であるが、図 24 (a)の場合には、各伝送路の基地局 BTS # 0、 # 1について、ビット誤り率 BERを得、その逆数に比例した分配率としている。 図 24の(b)は、ビット誤り率 BERの逆数を現在の分配率に乗算し、それらの比率を 新しレ、比率とする方法を示してレ、る。
[0084] BERを使用した場合の分配率の補正処理は、 TPCを使用した場合と同様となるの で、説明を省略する。
図 25及び図 26は、分配率算出の処理例のフローチャートである。
[0085] 図 25は、 TPCを使用した場合の処理フローである。
ステップ S45において、測定周期を設定し、ステップ S46において、下り無線品質 情報を伝送路毎に取得する。ステップ S47において、 TPCが減少指示であるか否か を判断する。ステップ S47の判断が Noの場合には、ステップ S49に進む。ステップ S 47の判断が Yesの場合には、ステップ S48において、前回の伝送路毎の計数値に 1 をカ卩算して、ステップ S49に進む。ステップ S49においては、測定周期が終了したか 否かを判断する。ステップ S49の判断が Noの場合には、ステップ S46に進む。ステツ プ S49の判断が Yesの場合には、ステップ S50において、分配率を算出する。
[0086] 図 26は、 BERを利用する場合の処理フローである。
ステップ S55において、測定周期を設定し、ステップ S56において、下り無線品質 情報を伝送路毎に取得し、ステップ S57において、前回の BER値に今回の BER値を 伝送路毎に反映して、ステップ S58において、測定周期が満了したか否力を判断す る。ステップ S58の判断が Noの場合には、ステップ S56に進む。ステップ S58の判断 力 SYesの場合には、ステップ S59において、分配率を算出する。
[0087] 上記実施形態の分配率判定方法では、測定周期を有し、その期間内で受信した データに対してその都度品質判定を実施しているが、この判定に重み付けを行う方 法も考えられる。
[0088] 例えば、測定周期として、データ受信回数が定義されている場合、測定開始時に 対して
、測定終了間際の品質状況を重要視するものである。
測定周期として与えられるデータ受信回数が 10回である場合の判定例を図 27に示 す。
[0089] ここで与える重みは、図 27の例では回数増加に伴レ、 0.1ずつ重みが増していくよう に設定されている (設定する重みは任意で良い。例えば重みが指数的に増加するよう な値に設定したり、重み増加範囲を、 TPC UP時は (Tlとし、 TPC Down時は 1以上と することも可能である)。
[0090] 更に、品質状況が OKの場合 (TPCが下がる場合)には、 1、品質状況が NGの場合 (TPCが上がる場合)には 0としている(品質情報として、 TPCではなく BER等を使用し ても良い)。この値に対し、与えられた重みを掛けた値を測定周期分積算していく。図 27の例では結果として、 BTSW3と BTS#1との分配率が 1:4になる。
[0091] 更に、取得する品質情報は、各伝送路から一気に測定周期分に相当する情報を取 得する場合も考えられるので、その場合にはその情報を基に分配率算出を実施する 図 28及び図 29は、分配率算出方法の別の例に従った処理フローである。
[0092] 図 28は、 TPCを分配率算出に使用する場合の処理を示すフローチャートである。
ステップ S65において、測定周期/初期重み付け値の設定を行う。ステップ S66に おいて、下り無線品質情報を伝送路毎に取得する。ステップ S67において、 TPC力 S 減少指示であるか否かを判断する。ステップ S67の判断が Noの場合には、ステップ S70に進む。ステップ S67の判断が Yesの場合には、ステップ S68において、伝送路 毎に加算値である「1」の値に重み付け値を乗算する。ステップ S69において、前回 の加算値に重み付けした値を伝送路毎に加算し、ステップ S70において、次回の重 み付け値を算出する。ステップ S71において、測定周期が満了したか否力を判断す る。ステップ S71の判断が Noの場合には、ステップ S66に進む。ステップ S71の判断 力 SYesの場合には、ステップ S72において、分配率を算出する。
[0093] 図 29は、 BERを分配率算出に使用する場合の処理を示すフローチャートである。
ステップ S75において、測定周期/初期重み付け値を設定する。ステップ S76に おいて、下り無線品質情報を伝送路毎に取得する。ステップ S77において、今回の BERへの重み付けを伝送路毎に行う。ステップ S78において、前回の BER値に重み 付け後の今回の BERを伝送路毎に反映する。ステップ S79において、測定周期が満 了したか否かを判断する。ステップ S79の判断が Noの場合には、ステップ S76に戻 る。ステップ S79の判断が Yesの場合には、ステップ S80において、分配率を算出す る。 [0094] 本発明の上記実施形態によれば、無線伝送路品質に従った送信データ分配送信 をするため、品質の良好である伝送路に多くデータが流れることになるため、伝送路 状況に応じた効率のよいデータ通信が可能となる。
[0095] さらに、品質が悪い伝送路は無線リソースを多くとっている状況が考えられるため、 現在の 3GPPシステムに適用されている、 DH〇方法として同一データを送信する方法 と比較して、他のユーザーへの悪影響を及ぼすことがない。

Claims

請求の範囲
[1] 送信すべきデータを誤り訂正符号化する誤り訂正符号化手段と、
該誤り訂正符号化されたデータにインタリーブを行うインタリーブ手段と、 該インタリーブされたデータを分割する分割手段と、
該分割されたデータをそれぞれ異なる無線装置力 送信する送信手段と、 を備えることを特徴とする通信システム。
[2] データを分割する際に、分割されたデータの順番を示す分割番号を生成し、受信 側で分割されたデータを結合する際に、該分割番号を参照して結合することを特徴 とする請求項 1に記載の通信システム。
[3] 前記分割番号は、分割されたデータのヘッダに設定されることを特徴とする請求項
2に記載の通信システム。
[4] 前記分割番号は、分割されたデータと共に別チャネルで送信される制御情報に設 定されることを特徴とする請求項 2に記載の通信システム。
[5] 分割されたデータを送信する際に、データが送信される無線装置にデータの結合 順序が対応付けられ、該分割されたデータが結合される順番が正しくなるように、該 無線装置に該分割されたデータを送信することを特徴とする請求項 1に記載の通信 システム。
[6] 受信側からの要求に従い、送信に失敗した分割されたデータを送信に成功した無 線装置を使って再送する再送手段を更に備えることを特徴とした請求項 1に記載の 通信システム。
[7] 再送される分割データの送信に使用される無線装置は、最も伝送品質の良い無線 装置であることを特徴とする請求項 6に記載の通信システム。
[8] 各無線装置に対応して分割されるデータの分割比率を、該無線装置の伝送品質 に基づいて可変する可変分割手段を更に備えることを特徴とする請求項 1に記載の 通信システム。
[9] 前記伝送品質は、分割データを送信する方向に対し順方向の無線装置の伝送品 質であることを特徴とする請求項 8に記載の通信システム。
[10] 前記伝送品質は、受信側からの TPC情報に基づいて取得されることを特徴とする 請求項 9に記載の通信システム。
[11] 前記分割比率の算出は、 TPCに含まれる電力低下指示情報を収集することによつ て行うことを特徴とする請求項 10に記載の通信システム。
[12] 前記伝送品質は、分割データを送信する方向に対し逆方向の無線装置の伝送品 質であることを特徴とする請求項 8に記載の通信システム。
[13] 前記伝送品質は、送信側が受信側から受信する信号の BERに基づいて得られるこ とを特徴とする請求項 12に記載の通信システム。
[14] 前記分割比率の算出は、 BERの逆数を収集することによって行うことを特徴とする 請求項 13に記載の通信システム。
[15] 無線装置が削除された場合には、削除対象の無線装置に割り当てられていた分割 比率を最も伝送品質の良い無線装置に割り当てることを特徴とする請求項 8に記載 の通信システム。
[16] 送信すべきデータを誤り訂正符号化し、
該誤り訂正符号化されたデータにインタリーブを行い、
該インタリーブされたデータを分割し、
該分割されたデータをそれぞれ異なる無線装置力 送信する、
ことを特徴とする送信方法。
[17] 更に、各無線装置に対応して分割されるデータの分割比率を、該無線装置の伝送 品質に基づいて可変することを特徴とする請求項 16に記載の送信方法。
[18] 送信すべきデータを誤り訂正符号化する誤り訂正符号化手段と、
該誤り訂正符号化されたデータにインタリーブを行うインタリーブ手段と、 該インタリーブされたデータを重複部分がないように分割又は重複部分を有するよ うに分割する分割手段と、
該分割されたデータをソフトハンドオーバに利用される第 1の無線伝送路、第 2の無 線伝送路のそれぞれから送信する送信手段と、
を備えることを特徴とする通信システム。
PCT/JP2005/004133 2005-03-09 2005-03-09 通信システム、送信方法 WO2006095423A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12180369.6A EP2528261B1 (en) 2005-03-09 2005-03-09 COMMUNICATION SYSTEM, AND TRANSMISSION METHOD based on data divided into data pieces according to the quality of the transmitting apparatuses
EP05720404.2A EP1860894B1 (en) 2005-03-09 2005-03-09 Communication system, and transmission method
PCT/JP2005/004133 WO2006095423A1 (ja) 2005-03-09 2005-03-09 通信システム、送信方法
JP2007506955A JP4733689B2 (ja) 2005-03-09 2005-03-09 通信システム、送信方法
CN2005800490014A CN101138262B (zh) 2005-03-09 2005-03-09 通信系统、发送方法
US11/896,991 US7881719B2 (en) 2005-03-09 2007-09-07 Telecommunication system and transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/004133 WO2006095423A1 (ja) 2005-03-09 2005-03-09 通信システム、送信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/896,991 Continuation US7881719B2 (en) 2005-03-09 2007-09-07 Telecommunication system and transmission method

Publications (1)

Publication Number Publication Date
WO2006095423A1 true WO2006095423A1 (ja) 2006-09-14

Family

ID=36953034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004133 WO2006095423A1 (ja) 2005-03-09 2005-03-09 通信システム、送信方法

Country Status (5)

Country Link
US (1) US7881719B2 (ja)
EP (2) EP2528261B1 (ja)
JP (1) JP4733689B2 (ja)
CN (1) CN101138262B (ja)
WO (1) WO2006095423A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023555A1 (ja) 2005-08-25 2007-03-01 Fujitsu Limited 移動端末及び基地局装置
WO2007034546A1 (ja) 2005-09-21 2007-03-29 Fujitsu Limited 送信電力制御目標値算出装置
JP2014515222A (ja) * 2011-04-07 2014-06-26 インターデイジタル パテント ホールディングス インコーポレイテッド ローカルデータキャッシングのための方法および装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140975B2 (ja) 2006-09-14 2013-02-13 富士通株式会社 移動通信システム及びその通信方法
EP2228918A1 (en) * 2007-12-27 2010-09-15 Fujitsu Limited Transmission power control method and transmission power controller
WO2017070855A1 (zh) * 2015-10-27 2017-05-04 深圳还是威健康科技有限公司 一种基于蓝牙的数据传输方法以及装置
CN105450390B (zh) * 2015-11-12 2018-09-28 苏州大学张家港工业技术研究院 一种数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286490A1 (fr) 1987-03-20 1988-10-12 Institut National De La Sante Et De La Recherche Medicale (Inserm) Dispositif d'observation de l'oeil utilisant la réflexion d'un rayonnement infrarouge par le globe oculaire
JP2000217139A (ja) 1999-01-27 2000-08-04 Hitachi Ltd 無線通信システム及びそのハンドオフ方法
JP2003060562A (ja) * 2001-08-21 2003-02-28 Ntt Docomo Inc 無線通信システム、通信端末装置、及びバースト信号送信方法
JP2003111134A (ja) 2001-09-27 2003-04-11 Ntt Docomo Inc 移動通信システム、移動通信方法、基地局制御局、基地局及び移動局

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572040A1 (en) 1986-06-05 1993-12-01 LIZELL, Magnus B. Method and apparatus for absorbing mechanical shock
JPH0535634A (ja) 1991-07-30 1993-02-12 Nec Corp 入力編集処理方式
KR0133508B1 (ko) 1991-12-26 1998-04-22 구자홍 디지탈 데이타 입출력시 인터리브(Inter leave) 및 채널분할회로
SE516723C2 (sv) * 1994-12-08 2002-02-19 Ericsson Telefon Ab L M Förfarande och anordning för makrodiversitet på upplänken i ett digitalt mobilradiokommunikationssystem
JP2991185B2 (ja) 1997-06-09 1999-12-20 日本電気株式会社 セルラ通信システム、及びそれに用いられる移動機と基地局
US6141555A (en) 1997-06-09 2000-10-31 Nec Corporation Cellular communication system, and mobile and base stations used in the same
FI105993B (fi) * 1997-08-20 2000-10-31 Nokia Mobile Phones Ltd Menetelmä ja järjestelmä radiotiedonsiirtoverkon hallitsemiseksi ja radioverkko-ohjain
US6134237A (en) 1997-09-30 2000-10-17 Motorola, Inc. Method and apparatus for tracking data packets in a packet data communication system
JPH11355854A (ja) * 1998-06-10 1999-12-24 Matsushita Electric Ind Co Ltd デジタルデータ送受信方法、デジタルデータの送受信に用いられる基地局装置、およびデジタルデータの送受信に用いられる移動体端末装置
US5978365A (en) 1998-07-07 1999-11-02 Orbital Sciences Corporation Communications system handoff operation combining turbo coding and soft handoff techniques
JP2000349654A (ja) * 1999-03-31 2000-12-15 Matsushita Electric Ind Co Ltd 送信装置、受信装置及び送受信方法
JP4231593B2 (ja) * 1999-07-21 2009-03-04 株式会社日立コミュニケーションテクノロジー 通信システム及びその通信方法
DE10036930B4 (de) * 2000-07-28 2005-07-21 Siemens Ag Verfahren zur Sendeleistungseinstellung in einem Funksystem
US7327798B2 (en) * 2001-10-19 2008-02-05 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals in multiple-input multiple-output communication system provided with plurality of antenna elements
EP1461924A4 (en) * 2001-11-29 2010-07-07 Qualcomm Inc METHOD AND APPARATUS FOR DETERMINING THE REAL-REASON LOGARITHM USING PRECODING
JP3594086B2 (ja) * 2002-02-08 2004-11-24 ソニー株式会社 移動体通信における情報多重方法、伝送フォーマット組合せ識別子のデコード方法および装置、移動局装置、基地局装置および移動体通信システム
JP4041719B2 (ja) 2002-10-09 2008-01-30 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信方法、これらに用いて好適な送信装置及び受信装置
KR20040038327A (ko) 2002-10-31 2004-05-08 엘지전자 주식회사 무선 통신 시스템의 전송 안테나 할당 방법
KR101000388B1 (ko) * 2003-05-15 2010-12-13 엘지전자 주식회사 이동 통신 시스템 및 이 이동 통신 시스템에서 신호를처리하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0286490A1 (fr) 1987-03-20 1988-10-12 Institut National De La Sante Et De La Recherche Medicale (Inserm) Dispositif d'observation de l'oeil utilisant la réflexion d'un rayonnement infrarouge par le globe oculaire
JP2000217139A (ja) 1999-01-27 2000-08-04 Hitachi Ltd 無線通信システム及びそのハンドオフ方法
JP2003060562A (ja) * 2001-08-21 2003-02-28 Ntt Docomo Inc 無線通信システム、通信端末装置、及びバースト信号送信方法
JP2003111134A (ja) 2001-09-27 2003-04-11 Ntt Docomo Inc 移動通信システム、移動通信方法、基地局制御局、基地局及び移動局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1860894A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023555A1 (ja) 2005-08-25 2007-03-01 Fujitsu Limited 移動端末及び基地局装置
WO2007034546A1 (ja) 2005-09-21 2007-03-29 Fujitsu Limited 送信電力制御目標値算出装置
JP2014515222A (ja) * 2011-04-07 2014-06-26 インターデイジタル パテント ホールディングス インコーポレイテッド ローカルデータキャッシングのための方法および装置

Also Published As

Publication number Publication date
JPWO2006095423A1 (ja) 2008-08-14
US20080051123A1 (en) 2008-02-28
CN101138262B (zh) 2012-11-14
EP2528261A1 (en) 2012-11-28
JP4733689B2 (ja) 2011-07-27
EP1860894A1 (en) 2007-11-28
US7881719B2 (en) 2011-02-01
EP1860894A4 (en) 2012-01-11
CN101138262A (zh) 2008-03-05
EP2528261B1 (en) 2015-02-25
EP1860894B1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5265502B2 (ja) 通信システムにおけるデータ伝送のための方法およびシステム
JP3616788B2 (ja) スロット割り当てアルゴリズム
US8320382B2 (en) Mobile communication system, a mobile station, a base station and communication control method
JP4607896B2 (ja) ハイブリッドtdm/ofdm/cdm上りリンク伝送
US8514832B2 (en) Methods and apparatus enabling increased throughput on the reverse link
US20050053035A1 (en) Method and apparatus for providing uplink packet data service on uplink dedicated channels in an asynchronous wideband code division multiple access communication system
JP2006520138A (ja) チャネル適応の方法およびシステム
JP2004507927A (ja) 情報通信方法及び情報通信装置
JP4170341B2 (ja) 通信システム及びハンドオーバ通信方法
WO2006110874A2 (en) Multiplexing on the reverse link feedbacks for multiple forward link frequencies
AU2004221069B2 (en) Method and system for a data transmission in a communication system
JP4733689B2 (ja) 通信システム、送信方法
JP2009534926A (ja) オーバ・ジ・エア・フィードバック制御を使用して無線セルラ・システム内のセル外干渉の影響を制御する方法
KR100993712B1 (ko) 통신 시스템, 송신 방법
KR100828801B1 (ko) 하이브리드 tdm/ofdm/cdm 역방향 링크 전송
EP2262302A1 (en) Telecommunication method, system and apparatus
MXPA06005177A (en) Hybrid tdm/ofdm/cdm reverse link transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007506955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005720404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11896991

Country of ref document: US

Ref document number: 200580049001.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077022102

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2005720404

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11896991

Country of ref document: US