WO2007034546A1 - 送信電力制御目標値算出装置 - Google Patents

送信電力制御目標値算出装置 Download PDF

Info

Publication number
WO2007034546A1
WO2007034546A1 PCT/JP2005/017414 JP2005017414W WO2007034546A1 WO 2007034546 A1 WO2007034546 A1 WO 2007034546A1 JP 2005017414 W JP2005017414 W JP 2005017414W WO 2007034546 A1 WO2007034546 A1 WO 2007034546A1
Authority
WO
WIPO (PCT)
Prior art keywords
target value
transmission power
power control
quality
control target
Prior art date
Application number
PCT/JP2005/017414
Other languages
English (en)
French (fr)
Inventor
Atsushi Shinozaki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2007536367A priority Critical patent/JP4727671B2/ja
Priority to PCT/JP2005/017414 priority patent/WO2007034546A1/ja
Priority to EP05785924A priority patent/EP1940048A4/en
Publication of WO2007034546A1 publication Critical patent/WO2007034546A1/ja
Priority to US12/076,714 priority patent/US8135428B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information

Definitions

  • the present invention relates to an Outer Loop transmission power control method in a mobile communication system, and relates to calculation of a transmission power control target value.
  • the base station measures the SIR (Signal to Inference Ratio) for the uplink radio wave received by the mobile terminal, and this measured value and the preset SIR target value. Compare with (Target SIR).
  • the base station determines the increase / decrease in the transmission power of the radio wave transmitted by the mobile terminal according to the comparison result, and transmits power control information (called TPC (Transmission Power Control) command) indicating the increase / decrease in the transmission power to the mobile station.
  • TPC Transmission Power Control
  • outer loop transmission power control controls the SIR target value used in the inner loop transmission power control described above.
  • a base station controller (BSC (Base Station Controller) or RNC (Radio Ne twork Controller)
  • BSC Base Station Controller
  • RNC Radio Ne twork Controller
  • a base station controller that accommodates a base station that performs inner-loop transmission power control can obtain information on the radio wave power received by the base station ( Data) from the base station and determine the quality of this data. At this time, for example, if the quality does not reach the target quality, the base station controller determines an SIR target value that improves the quality. And notify the base station.
  • the feedback loop formed between the base station and the base station control device is called an outer loop.
  • the SIR target value which is one of the parameters for uplink data from a mobile terminal.
  • the SIR target value indicates the target reception quality for the data received by the base station from the mobile terminal.
  • the quality information in the radio section is attached to this data.
  • the base station controller measures the data quality for a certain period of time based on this quality information.
  • the base station controller calculates the uplink SIR target value used in the inner loop based on the measurement result. If the SIR target value calculated at this time is set at the base station and is different from the previous SIR target value, the base station controller notifies the base station of the current SIR target value.
  • the base station updates the SIR target value.
  • Diversity handover (DHO) between base stations in the current 3GPP system is performed by using a plurality of radio transmission paths, and by selecting and combining a plurality of radio transmission paths in a mobile terminal Z base station controller. Realized by distribution.
  • FIG. 1 For example, as shown in FIG. 1, it is assumed that DHO is performed between three mobile stations (Node B) between a mobile terminal (UE) and a base station controller (RNC). To do. At this time, when data is transmitted and received in the downlink direction (RNC ⁇ UE), the RNC transmits the same data to each base station through the interface Iub. Each base station modulates data with a different spreading code between base stations and transmits it to the UE through a different radio section interface Uu (radio transmission path). The UE selects and receives data with good radio channel quality (data arrived without error) from the data received by each base station.
  • Node B a mobile terminal
  • RNC base station controller
  • the UE when data is transmitted / received in the uplink direction (UE ⁇ RNC), the UE transmits the same data to each base station.
  • Each base station transmits data received from the UE to the RNC.
  • the RNC selects the data received from each base station that has good radio transmission path quality, or collects and combines the parts with good quality from the data from each base station.
  • the diversity reception method in the RNC as described above needs to receive error-free data from at least one of a plurality of radio transmission paths in order to selectively combine data from a plurality of base stations. there were. For this reason, each base station has a minimum SIR target value for achieving a diversity effect!
  • the DHO between base stations in the conventional 3GPP system has a problem that the radio capacity (radio resource) and transmission power cannot be used efficiently.
  • Patent Document 1 discloses a radio that provides a handoff means in which the downlink radio resource usage of a radio base station does not change between a non-handoff and a handoff.
  • a communication system and a handoff method thereof are disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-217139
  • An object of the present invention is to transmit to each wireless transmission path for efficient transmission power control when data transmission / reception is performed using a plurality of wireless transmission paths in a mobile communication system. It is to provide a technique for calculating a power control target value.
  • the present invention employs the following configuration in order to solve the above-described problems.
  • the present invention is an apparatus for calculating a target value for transmission power control of a radio wave transmitted to a radio transmission path
  • the first is based on the quality of the synthesized data that is obtained by combining the data obtained from multiple wireless transmission paths.
  • a first target value calculation unit for calculating a transmission power control target value of 1 Second target value calculation for determining a second transmission power control target value to be applied to at least one wireless transmission path based on the first transmission power control target value and quality information regarding each wireless transmission path Department and
  • the second target value calculation unit in the present invention has target quality, and when the value indicating the first transmission power control target value is notified from the first target value calculation unit, When the quality information of the wireless transmission path is compared with the target quality, and the value indicating the first transmission power control target value indicates an increase in transmission power, the quality information does not exceed the target quality. It is preferable to configure the line transmission path so as to exclude the calculation target power of the second transmission power control target value.
  • the second target value calculation unit in the present invention has target quality, and when the value indicating the first transmission power control target value is notified from the first target value calculation unit, When the quality information of a plurality of radio transmission paths is compared with the target quality, and the value indicating the first transmission power control target value indicates a decrease in transmission power, the quality information is less than the target quality. It is preferable that the path is configured to exclude the calculation target power of the second transmission power control target value.
  • the second target value calculation unit has the target quality and the quality upper limit value, and receives the value indicating the first transmission power control target value.
  • the quality information is It is preferable that the wireless transmission path exceeding the target quality and the quality upper limit value is excluded from the calculation target power of the second transmission power control target value.
  • the second target value calculation unit has a target quality and a lower quality limit value, and receives the value indicating the first transmission power control target value.
  • the quality information is It is preferable that the wireless transmission path that is lower than the target quality and the quality lower limit value is excluded from the calculation target of the second target value.
  • the second target value calculation unit in the present invention receives a notification from the first target value calculation unit, the second target value calculation unit compares the quality of the combined data with the quality information of each wireless transmission path.
  • the wireless transmission path in which both have the same value is excluded from the calculation target of the second target value, and at least one of the wireless transmission paths in which both do not show the same value is used for current transmission power control.
  • the second transmission power control target value that has been increased or decreased by a certain amount is calculated to calculate a new second transmission power control target value.
  • the second target value calculation unit in the present invention when a value indicating the first transmission power control target value is notified from the first target value calculation unit, the second transmission power control It is preferable that a distribution amount of a value indicating the first transmission power control target value for each target wireless transmission path is determined based on quality information of each wireless transmission path as a target value calculation target. .
  • the second target value calculation unit in the present invention calculates a weight R (0 ⁇ R ⁇ 1) for each target radio transmission path based on the quality information of each target radio transmission path, and The value indicating the first transmission power control target value is multiplied by each weight R to determine the distribution amount of the value indicating the first transmission power control target value for each target wireless transmission path. Is preferred ⁇ .
  • the value indicating the first transmission power control target value is the first transmission power control target value
  • the second target value calculation unit calculates a distribution amount of the first transmission power control target value for each target wireless transmission path as a second transmission power control target value to be applied to each target wireless transmission path. It is preferable to configure so as to.
  • the first target value calculation unit in the present invention calculates the first transmission power control target value for each predetermined measurement period
  • the value indicating the first transmission power control target value is a value between the first transmission power control target value calculated in the previous measurement cycle and the first transmission power control target value calculated in the current measurement cycle. Difference value,
  • the second target value calculation unit calculates the distribution amount of the difference value for each target wireless transmission path as an update amount for the second transmission power control target value currently used for each target wireless transmission path. It is preferable to configure as described above. [0025] Further, according to the present invention, there is provided an information processing apparatus that calculates a target value for transmission power control of a radio wave transmitted to a radio transmission path.
  • the first is based on the quality of the synthesized data that is obtained by combining the data obtained from multiple wireless transmission paths.
  • Transmission power including determining a second transmission power control target value to be applied to at least one radio transmission path based on the first transmission power control target value and quality information regarding each radio transmission path This is a control target value calculation method.
  • the present invention can be specified as a program for causing an information processing device to function as the above-described transmission power control target value calculation device, or as a recording medium on which such a program is recorded.
  • each radio transmission path capable of performing efficient transmission power control is provided.
  • a transmission power target value can be calculated.
  • FIG. 1 is an explanatory diagram of DHO between base stations.
  • FIG. 2 is an explanatory diagram of SIR degradation.
  • FIG. 3 is a conceptual diagram showing a basic configuration example of an embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of an error removal function on the receiving side shown in FIG.
  • DHO transaction DHO execution unit
  • FIG. 6 is a diagram showing a configuration example for determining a data transmission ratio (data distribution ratio).
  • FIG. 7 is an explanatory diagram of a data distribution rate determination method.
  • FIG. 8 is a conceptual configuration diagram showing an implementation example of an outer loop implementation unit.
  • FIG. 9 is a diagram showing an example of a mobile communication system when a DHO execution unit including an outer loop execution unit is mounted on a base station controller (RNC).
  • RNC base station controller
  • FIG. 10 is a diagram showing a configuration example of a DHO execution unit and an outer loop execution unit.
  • FIG. 11 is an explanatory diagram of processing by the quality measurement unit shown in FIG. 12] This is a diagram showing an example of transmission path quality related information collected by the quality measurement unit.
  • FIG. 13 is a diagram illustrating an example of processing by the virtual SIR target value calculation unit illustrated in FIG.
  • FIG. 14 is a diagram showing a processing outline of the SIR target value calculation section shown in FIG.
  • V15 This figure shows an example of error rates that can be compared in the method (method B) for determining the control target transmission path based on the comparison result between the final target quality and the quality of the radio transmission path.
  • FIG. 16 is an explanatory diagram of a method (method 2) for determining whether or not the control target power is available by preparing the upper and lower limits of the quality of the wireless transmission path and the target quality as determination parameters.
  • Figure 17 shows the relationship between target quality, quality upper and lower limits, and the wireless transmission path shown in Fig. 16.
  • FIG. 19 is a diagram illustrating an example of calculating an SIR target value for each wireless transmission path from a virtual SIR target value.
  • FIG. 20 This is a diagram showing an example (operation mode 1) of calculating the SIR target value for each wireless transmission line from the difference value of the virtual SIR target value.
  • ⁇ 21A] is a diagram showing an example algorithm for calculating the SIR target value by the SIR target value calculation unit when the virtual SIR target value is input (operation mode 2).
  • ⁇ 21B] is a diagram showing an example algorithm for calculating the SIR target value by the SIR target value calculation unit when the virtual SIR target value is input (operation mode 2).
  • FIG. 22 is a diagram showing an example algorithm for calculating the SIR target value by the SIR target value calculation unit when the difference between the virtual SIR target values is input (operation mode 1).
  • FIG. 23 is a diagram showing a processing sequence when a data ratio is changed.
  • FIG. 24 is a diagram illustrating an application example of the embodiment.
  • FIG. 25 is a diagram showing an example of fading occurrence status for a plurality of subcarriers used in each radio transmission path and allocation status of reception effective subcarriers for each radio transmission path.
  • FIG. 26 is an explanatory diagram of uplink transmission in the application example shown in FIG. 24.
  • FIG. 3 is a conceptual diagram showing a basic configuration example of the embodiment of the present invention.
  • FIG. 3 shows processing on the transmission side and the reception side of the data constituting the mobile communication system.
  • the transmitting side and the receiving side are separated by a radio section.
  • the wireless section a plurality of wireless transmission paths (branches) are prepared.
  • CRC Cyclic Redundancy Check
  • error correction coding processing for example, Viterbi coding
  • ST2 data block to which CRC data is assigned
  • ST3 first interleaving process for the data block
  • the data block is divided into segments (divided data blocks) according to the number of multiple wireless transmission paths (branches) prepared in the wireless section between the transmitting side and the receiving side (ST4 )
  • CRC data is assigned to each segment.
  • each segment is converted to a radio signal and transmitted to the receiving side through each wireless transmission path (ST7).
  • ST7 On the receiving side, a radio signal received from each radio transmission path is demodulated to obtain a plurality of segments. Dinthaling processing is executed for each segment (ST8). Subsequently, error correction decoding process (turbo decoding) is executed (ST9).
  • CRC data attached to each of the segments subjected to error correction decoding is removed, and a reassembly process (Reassemble) is performed (ST10). That is, a composite data block is obtained by combining a plurality of segments of wireless transmission path strength.
  • CRC check (CRC operation) for each segment is performed using the CRC data.
  • Data indicating the CRC check result (CRCI: OK or NG) is collected as quality information of each wireless transmission path (ST11).
  • CRC check CRC operation
  • the CRC check result (OK or NG) is acquired as block error information (BLER) indicating the quality of the entire wireless transmission path (ST15).
  • BLER block error information
  • the transmission target data is subjected to error correction code key processing (ST2) and interleaving processing (ST3), and then divided into segments of the number of wireless transmission paths. Sent to the transmission line (ST7). This reduces the amount of data transmitted over multiple wireless transmission paths compared to the case where the same data is transmitted over multiple wireless transmission paths (conventional DHO). Therefore, it is possible to effectively use radio resources.
  • FIG. 4 is a diagram illustrating an example of the above-described operation (error removal operation) on the reception side.
  • FIG. 4 shows an example in which a data block is segmented at 1: 6 for two wireless transmission lines # 0 and # 1.
  • the transmission ratio (data division ratio) of the data block to each wireless transmission path is determined according to the quality status of each wireless transmission path. That is, the data transmission rate for each wireless transmission path is determined so as to obtain a data transmission ratio corresponding to the wireless quality status.
  • FIG. 3 shows a configuration (ST16) in which the SIR target value is calculated based on the quality information for each wireless transmission path obtained in steps ST11 and ST15, and the data quality information. .
  • Such processing power is a part relating to the features of the present invention.
  • the DHO method of dividing the transmission target data and transmitting it to each wireless transmission path In this method, the wireless transmission path quality state in each wireless transmission path is compared from the wireless quality information of the data received during DHO, and the outer loop transmission power control of each wireless transmission path is performed according to the comparison result and The configuration will be described.
  • the transmission side in FIG. 3 includes, for example, a base station control device and a base station when data is transmitted in the downlink direction (base station ⁇ mobile terminal).
  • the receiving side is configured by a mobile terminal.
  • the processing of ST1 to ST4 shown in FIG. 3 is executed by the base station controller, and the processing of ST5 to ST7 is executed by each base station corresponding to the radio transmission path.
  • CRC data can be assigned to each segment by either! / Or between the base station control device and the base station.
  • the mobile terminal when data is transmitted in the uplink direction (mobile terminal ⁇ base station), the mobile terminal is the transmission side, and the reception side is the base station and the base station control device, for example.
  • the processes of ST8 and ST9 are executed in each base station, and the processes of ST10 to ST16 are executed in the base station control apparatus.
  • FIG. 5 is a diagram showing a conceptual configuration of a DHO implementation unit (DHO transact! On) that can be implemented on the transmission side and the reception side shown in FIG. 3, and FIG. 6 shows a data transmission ratio (data distribution rate).
  • FIG. 7 is an explanatory diagram of a data distribution rate determination method.
  • the DHO execution unit 1 includes a code Z decoding unit (Coding / Decoding) 2 as an error correction code keying unit and an interleaving Z dingering unit (Interleave / Decoding unit) as an interleaving unit.
  • CRC data is added to the transmission target data (data block) by the DHO execution unit 1.
  • the code Z decoding unit 2 executes error correction coding processing (ST2).
  • Interleaving Z dingtering unit 3 executes the first interleaving process (ST3).
  • the division Z reassembly unit 4 executes the segment block (ST 4) of the data block and outputs a plurality of segments. In the example of FIG. 4, the data block is divided into two segments # 0 and # 1 according to the number of radio transmission paths.
  • each segment is converted into a radio signal and received via each radio transmission path. Sent to the receiver (ST7).
  • each segment is converted into a radio signal by a multicarrier communication system having a plurality of orthogonal carriers such as OFC DM and OFDM and transmitted to the receiving side.
  • the radio signal can be a single carrier! ,.
  • the DHO execution unit 1 functions as a receiving side
  • a plurality of segments demodulated from the radio signal are input to the DHO execution unit 1.
  • the division / reassembly unit 4 performs an assembly process (Reassemble) of a plurality of segments (ST10).
  • the deinterleaving process is executed for the data block (composite data block) in which the interleave Z dingerive unit 3 is assembled (ST12).
  • the encoding Z decoding unit 2 executes error correction decoding processing for the combined data block (ST13).
  • Such a DHO execution unit 1 can be provided, for example, in any of a base station control device, a higher-level device of the base station control device, a base station, and a mobile terminal.
  • FIG. 6 shows, for example, that when the data transmission side is composed of a base station (BTS) and a base station controller (RNC), the RNC power is transmitted from the BTS through two radio transmission lines # 0 and # 1.
  • BTS base station
  • RNC base station controller
  • the RNC receives the data to be transmitted from the host device to the mobile terminal 6 and determines the division ratio of the transmission target data based on the wireless transmission path quality information!
  • the apparatus includes a data division rate determination unit 7 to be determined, and a data division Z transmission unit 8 that divides transmission target data according to the division rate and transmits the data to the radio transmission / reception units # 0 and # 1.
  • DHO execution unit 1 is included in data division / transmission unit 53.
  • Each radio transceiver # 0 and # 1 of the BTS transmits radio channel quality information # 0 and # 1 related to the radio channel (branch) corresponding to itself to the RNC.
  • the wireless transmission path quality information # 0 and # 1 are given to the data division ratio determination unit 7.
  • the data division ratio determination unit 7 calculates the data block division ratio (data transmission ratio) based on the wireless transmission path quality information # 0 and # 1, and inputs the data block division ratio (data transmission ratio) to the data division Z transmission unit 8.
  • the data division Z transmission unit 8 receives the data block to be transmitted when the data reception unit also receives the data block to be transmitted.
  • the data block is divided according to the division ratio, and the divided data (segment) is sent to the wireless transmission / reception units # 0 and # 1.
  • Each wireless transmitter / receiver # 0 and # 1 transmits a wireless signal of divided data to the wireless transmission path.
  • a plurality of BTSs corresponding to radio transmission paths # 0 and # 1 may be prepared. That is, the ratio between the wireless transmission path and the base station may be 1: 1, or N (natural number): 1.
  • TPC information as control information used in inner loop transmission power control performed between the base station and the mobile terminal can be used as the above-described wireless transmission path quality information.
  • the data division rate determination unit 7 determines the data division rate based on the TPC information of each wireless transmission path.
  • the mobile terminal gives an instruction to increase or decrease the transmission power to the base station by inner loop transmission power control.
  • the transmission power increase / decrease instruction indicates the wireless status itself at that time.
  • the data division ratio determination unit 7 acquires TPC information for all wireless transmission paths from the BTS.
  • the data division ratio determining unit 7 accumulates TPC information of each wireless transmission path in a predetermined measurement period, and determines the data distribution ratio from the result. TPC information increases transmission power (
  • the data division ratio determining unit 7 accumulates the number of instructions for decreasing each wireless transmission path in the measurement cycle.
  • the present invention can be applied to a 3GPP system that implements a conventional DHO as shown in FIG.
  • outer loop transmission power control method suitable for application to the mobile communication system as described above will be described in detail below.
  • the outer loop transmission power control method according to this embodiment is characterized by the following.
  • the SIR target value (Target SIR—virtual) calculated based on the quality of the received data in the DHO executing unit and the radio quality information or the radio quality given to the received data of each radio channel strength Based on the situation information, calculate the SIR target value to be set for each wireless transmission path.
  • a function related to the above feature (referred to as an outer loop transmission power control unit (outer loop implementation unit)) is implemented in, for example, a DHO implementation unit. For this reason, the outer loop implementation unit is also installed in the device where the DHO implementation unit is installed. In the 3GPP system, RNC has a DHO implementation department. For this reason, the outer loop execution unit is mounted on the RNC. However, when the DHO execution unit is installed in a base station, a higher-level device of the base station control device, or a mobile terminal, the outer loop execution unit can also be installed in any way.
  • FIG. 8 is a conceptual configuration diagram showing an example of mounting the outer loop execution unit.
  • the outer loop enforcement section can be located within the DHO implementation section.
  • the DHO execution unit is connected to a data transmission / reception unit corresponding to a plurality of wireless transmission paths.
  • the Outer Loop Implementation Department can be configured to be independent from the DHO Implementation Department and to cooperate with the DHO Implementation Department.
  • FIG. 9 shows an example of a mobile communication system when a DHO execution unit including an outer loop execution unit is implemented in a base station controller (RNC).
  • RNC is connected to multiple base stations (Node B) via interface Iub.
  • Node B base stations
  • Each base station is mobile It has a wireless transmission / reception unit for performing wireless communication with a terminal (UE).
  • UE terminal
  • two radio transmission paths (branches) # 0 and # 1 are formed in the uplink and downlink directions.
  • FIG. 10 is a diagram illustrating a configuration example of the DHO execution unit and the outer loop execution unit.
  • FIG. 10 shows a transmission / reception processing unit 10, a DHO execution unit 20, and an outer loop transmission power control unit (an outer loop execution unit: equivalent to a transmission power control target value calculation device) 30.
  • the reception processing unit 11 of the transmission / reception unit 10 inputs segments received from a plurality of radio transmission paths to the DHO execution unit 20.
  • the DHO implementation unit 20 has the configuration shown in FIG. 4, and performs assembly, dingtery, and error correction decoding for a plurality of segments.
  • the DHO execution unit 20 performs quality information detection processing for each wireless transmission path and combined data. In other words, the DHO execution unit 20 outputs quality information (composite data quality) after performing diversity combining of received data. In addition, the DHO executing unit 20 includes the data size (data amount) of the segment, the radio transmission path quality information (quality information of each radio transmission path), and the information related to the data (segment) before the synthesis is performed. Is output.
  • error check results data amount, data such as CRC check results (CRC calculation results) for each segment combined data. Error data (error rate)) can be applied.
  • power control information (for example, a TPC command) used for inner loop transmission power control in a radio section can be applied as the radio transmission path quality information.
  • TPC commands at a predetermined measurement time are collected, and a value indicating the quality of each wireless transmission path is calculated from the number of power increase instructions and the number of power decrease instructions in the collected TPC commands. be able to.
  • each radio transmission path when a multi-carrier radio system such as OFDM or OFCDM is used as a radio system in a radio section, subcarriers (reception effective sub-carriers) used for data transmission / reception in each radio transmission path are used.
  • Carrier) information (or fading occurrence rate in a plurality of subcarriers) can also be applied as radio channel quality information.
  • each The usage rate of subcarriers for the radio transmission path ratio of reception effective subcarriers to all subcarriers
  • BER Bit Error Rate
  • control data control data attached to data
  • wireless transmission path quality information BER: Bit Error Rate
  • the quality information Physical Channel BER (Physical Channel BER) measurement
  • TrCH BER Transport Channel BER
  • TrCH BER measurement value is an average value of BER in the measurement section (TrCH TTI period).
  • the measurement target of TrCH BER is DPDCH.
  • the PhyCH BER measurement value is the average value of BER in the measurement period (TrCH TTI period: when enabled through C-Plane IE “QE-Selector” shown in TS25.433).
  • the measurement target of PhyCH BER is DPCCH.
  • the DHO execution unit 20 is configured to acquire the above-described quality information and wireless transmission path quality information.
  • the wireless channel quality information is composed of one or any combination of the above CRC calculation results, power control information, valid subcarrier information, and control data quality information.
  • the outer loop execution unit 30 includes a quality measurement unit 31, a virtual SIR target value calculation unit (Target SIR—virtual calculation unit) 32 as a first target value calculation unit, and a second target value calculation unit.
  • An SIR target value calculation unit (Target SIR calculation unit) 33, an Outer Loop PC frame generation unit (frame generation unit) 34, and a control unit 35 are included.
  • the quality measurement unit 31 receives the data size for each wireless transmission path and the wireless transmission path quality information output from the DHO execution unit 20.
  • the quality measurement unit 31 accumulates the data size and the wireless transmission path quality information at a predetermined measurement time specified by the control unit 35, and stores the stored data size and wireless transmission path quality information card for each wireless transmission path. Given The meter (data ratio, error rate) is output as transmission path quality related information.
  • the virtual SIR target value calculation unit 32 calculates a virtual SIR target value (Target SIR—virtual: first transmission power control target value) based on the quality information for the composite data output from the DHO execution unit 20. .
  • the SIR target value calculated here means the SIR target value for the result of combining data from multiple wireless transmission paths that are not applied to the actual wireless transmission path. "
  • the virtual SIR target value is the power control target value for the radio section.
  • the virtual SIR target value calculation unit 32 executes the calculation of the virtual SIR target value and the output of the value indicating the virtual SIR target value according to the operation mode and the target quality specified by the control unit 35.
  • the virtual SIR target value calculation unit 32 inputs a value indicating the calculated virtual SIR target value to the SIR target value calculation unit 33.
  • the SIR target value calculation unit 33 is based on the value indicating the virtual SIR target value from the virtual SIR target value calculation unit 32 and the transmission path quality related information for each wireless transmission path from the quality measurement unit 31.
  • the SIR target value (second transmission power control target value) to be applied is calculated for each wireless transmission path.
  • the SIR target value calculation unit 33 calculates the SIR target value according to the target quality notified from the control unit 35.
  • the SIR target value calculation unit 33 inputs the SIR target value calculated for each wireless transmission path to the frame generation unit 34.
  • the frame generation unit 34 includes an SIR target value corresponding to each wireless transmission path.
  • Loop P.C. frame (frame corresponding to each wireless transmission path) is generated and given to the transmission processing unit 12 of the transmission / reception unit 10.
  • the frame generation unit 34 operates according to the operation mode specified by the control unit 35.
  • the transmission processing unit 12 transmits each frame including the SIR target value to an execution unit (for example, a base station or a mobile terminal) that executes inner loop transmission control based on the SIR target value.
  • an execution unit for example, a base station or a mobile terminal
  • the control unit 35 mainly performs the following operation in order to control the operation of the outer loop transmission power control unit 30. That is, the control unit 35 gives timing information related to a predetermined measurement cycle to the quality measurement unit 31 and the virtual SIR target value calculation unit 32. As a result, the quality measurement unit 31 and the virtual SIR target value calculation unit 32 perform measurement processing for each measurement period in synchronization. In addition, the control unit 35 gives the same target quality (quality target value) to the virtual SIR target value calculation unit 32 and the SIR target value 33. Accordingly, the virtual SIR target value 32 and the SIR target value calculation unit 33 calculate the virtual SIR target value and the SIR target value of each wireless transmission path according to the same target quality (for example, error rate).
  • the same target quality for example, error rate
  • the control unit 35 notifies the virtual SIR target value calculation unit 32 and the frame generation unit 34 of designation of the same operation mode.
  • the operation mode consists of a mode in which the virtual SIR target value calculation unit 32 outputs the difference value between the previous virtual SIR target value and the current virtual SIR target value (operation mode 1) and the virtual SIR target value itself. This mode consists of the output mode (operation mode 2).
  • the outer loop transmission power control unit 30 described above includes, for example, a processor (for example, a CPU), a storage device (memory) that stores programs and data, and an information processing device configured such as an input / output interface. This is realized by the processor executing the program stored in the storage device.
  • a processor for example, a CPU
  • a storage device memory
  • an information processing device configured such as an input / output interface.
  • the quality measuring unit 31 collects the data size and wireless transmission path quality information of each wireless transmission path within a certain measurement time for each predetermined measurement period.
  • FIG. 11 is an explanatory diagram of processing by the quality measuring unit 31.
  • the quality measurement unit 31 starts the processing shown in FIG. 11 at the data collection start timing generated every measurement cycle.
  • the quality measurement unit 31 determines whether or not the measurement time has expired (Sl).
  • the quality measurement unit 31 determines (1) data size information and (2) for each wireless transmission path until the measurement time expires. Radio transmission path quality information is stored (S2).
  • the quality measurement unit 31 uses the ⁇ 1> data ratio (the distribution ratio of data distributed to each wireless transmission path) and ⁇ 2> The data error rate is calculated, and the calculation result is notified to the wireless transmission path SIR target value calculation unit 33 (S3).
  • the data ratio is calculated as follows, for example.
  • the quality measurement unit 31 makes each wireless transmission line obtained during the measurement time.
  • the total value of the data sizes is calculated.
  • the quality measuring unit 31 can obtain the data ratio (data distribution ratio) for each wireless transmission path by obtaining the ratio of the total values between the wireless transmission paths.
  • the error rate is obtained as follows. For example, when the CRC calculation result of each segment is applied as wireless channel quality information, the received data (segment) amount (Bit) obtained by the CRC calculation for the segment and the error amount in the received data (bit) during the measurement time ( Bit) is accumulated for each wireless transmission path. When the measurement time expires, the error rate of each wireless transmission line is calculated from the total amount (cumulative value) of the received data amount and error amount of each wireless transmission line.
  • FIG. 12 is a diagram showing an example of the collected transmission path quality related information.
  • the data ratio of each wireless transmission line # 0 and # 1 is 1Z2 (0.5), and the error rate of wireless transmission line # 0 Is 0.1, and the error rate of the wireless transmission path # 1 is 0.05.
  • the virtual SIR target value calculation unit (Target SIR—virtual calculation unit) 32 calculates the desired quality based on the received data from the quality information (error rate) calculated based on the data decoding result (composite data) after DHO processing. Is obtained, and a virtual SIR target value (Target SIR—virtual) is calculated based on the result.
  • the virtual SIR target value calculation unit 32 receives the CRC calculation results (reception data amount (Bit) and error amount (Bit)) for a plurality of composite data from the DHO execution unit 20 within a predetermined measurement time. Receive as quality information. When the measurement time expires, the virtual SIR target value calculation unit 32 obtains an actual error rate measurement value for the combined data from the cumulative value of the RC calculation result (the total value of the received data amount and the error amount).
  • the virtual SIR target value calculation unit 32 receives the target value of the error rate as the target quality from the control unit 35.
  • the virtual SIR target value calculation unit 32 compares the measured error rate with the target value, and calculates the SIR target value based on the result.
  • FIG. 13 is a diagram illustrating an example of processing by the virtual SIR target value calculation unit 32.
  • three patterns related to processing by the virtual SIR target value calculation unit 32 are shown in a table format.
  • the target value of error rate (example: 0 01)
  • first pattern When a higher error rate is obtained (first pattern), when the same error rate as the target value (second pattern) is obtained, and when an error rate lower than the target value is obtained (third Pattern).
  • the virtual SIR target value calculation unit 32 calculates a virtual SIR target value such that the actually measured error rate becomes the target value. At this time, if the measured error rate is higher than the target value, the virtual SIR target value calculation unit 32 calculates the virtual SIR target value for reducing the error rate (increasing the SIR target value (transmission power)). Calculate (increase processing). When the error rate is the same as the target value, the virtual SIR target value calculation unit 32 does not increase or decrease the SIR target value! / ⁇ . When the error rate is lower than the target value !, the virtual SIR target value calculation unit 32 calculates a virtual SIR target value for decreasing the SIR target value (transmission power) (decrease process).
  • the virtual SIR target value calculation unit 32 is configured to output a virtual SIR target value (notify the SIR target value calculation unit 33) only when, for example, a difference value ⁇ of the virtual SIR target value occurs. can do.
  • the virtual SIR target value calculation unit 32 changes the value to be notified according to the operation mode specified by the control unit 35. That is, the virtual SIR target value calculation unit 32 calculates and outputs the difference value ⁇ in the operation mode 1, and outputs the virtual SIR target value itself in the operation mode 2.
  • the virtual SIR target value calculation unit 32 may not have the previous virtual SIR target value. In this case, effective use of the storage area and simplification of processing are achieved.
  • the difference value ⁇ takes a negative value during the increase process (previous and present) and takes a positive value during the decrease process (previous> current).
  • the difference value ⁇ It is possible to know whether the SIR target value increases or decreases.
  • the operation mode 2 for example, information indicating whether the SIR target value is increased or decreased is notified together with the virtual SIR target value.
  • the SIR target value calculation unit 33 has the previous virtual SIR target value, and obtains the difference between them to determine whether the current SIR target value shows a difference between the increase or decrease in the SIR target value. You may make it judge. In this case, notification of information indicating increase or decrease is unnecessary.
  • the SIR target value calculation unit 33 relates to a value indicating the virtual SIR target value (virtual SIR target value or difference value ⁇ ) notified from the virtual SIR target value calculation unit 32 and the transmission path quality related from the quality measurement unit 31. Collect information (data ratio and error rate of each wireless transmission line).
  • the SIR target value calculator 33 uses the collected virtual SIR target value and transmission path quality related information to calculate the SIR target value that should actually be requested for each wireless transmission path.
  • the SIR target value calculation unit 33 executes the processing in response to the notification of the virtual SIR target value or the difference value ⁇ from the virtual SIR target value calculation unit 33.
  • FIG. 14 is a diagram showing an outline of processing of the SIR target value calculation unit.
  • the SIR target value calculation unit 33 selects a control target transmission path from a plurality of wireless transmission paths (S02), and the SIR target value for each selected control target transmission path. Is calculated (S03).
  • triggers update triggers
  • S01 SIR target value detected
  • Virtual SIR target value calculator 32 Receives a value indicating the virtual SIR target value from 32
  • the SIR target value calculation unit 33 can detect that the data ratio for each wireless transmission path has been changed based on the data ratio notified from the quality measurement unit 31. The calculation of SIR target values according to changes in the data ratio will be described later.
  • Method A Select all wireless transmission paths as control target transmission paths.
  • Method B The control target transmission path is determined based on the comparison result between the final target quality and the quality of the radio transmission path.
  • the SIR target value calculation unit 33 calculates the error rate of the received data (segment) in each wireless transmission path, the target quality (error rate) for the combined data after diversity combining, and And determine whether or not to control each wireless transmission path based on the comparison result.
  • FIG. 15 shows an example of error rates to be compared in method B.
  • the target value of the error rate is notified from the control unit 35 to the SIR target value calculation unit 33 (FIG. 10).
  • the SIR target value calculator 33 compares the error rate of each wireless transmission path with the target value. At this time, if there is a wireless transmission path with an error rate equal to the target value, the wireless transmission path is excluded from the control target. On the other hand, if the error rate is different, the wireless transmission path becomes a candidate for control. In the example shown in FIG. 15, each wireless transmission path # 0 and # 1 is a candidate for control.
  • the SIR target value calculation unit 33 determines whether the error rate of each wireless transmission path of the control target candidate is above or below the target value (target quality). Further, the SIR target value calculation unit 33 determines whether the value indicating the virtual SIR target value notified from the virtual SIR target value calculation unit 32 is an increase or decrease in the SIR target value for each radio transmission path of the control target candidate. Consider whether to show a discrepancy.
  • the radio transmission path in which the increase in the SIR target value is indicated and the error rate exceeds the target quality is excluded from the control target. As a result, an unnecessary increase in power for the wireless transmission path is avoided, and waste of power can be suppressed.
  • Method 1 the upper and lower limits of the quality of the wireless transmission path are It is also possible to prepare it as a judgment parameter different from the target quality, and to make a judgment so that the power to be controlled is judged (Method 2).
  • FIG. 16 is a diagram for explaining a control target transmission line determination method according to method 2.
  • Figure 16 shows an example of control target determination for radio transmission paths A to D based on target quality, quality upper and lower limit values, and values indicating virtual SIR target values (increase or decrease in SIR target values).
  • FIG. 17 is a diagram showing the relationship between the target quality, the upper and lower quality limits, and the wireless transmission paths A to D shown in FIG.
  • FIG. 16 shows the state of the error rate of the wireless transmission path relative to the target quality, the increase or decrease of the SIR target value indicated by the value indicating the virtual SIR target value, and the control pair for the wireless transmission paths A to D.
  • the determination result of whether or not to be an elephant is shown in a table format.
  • the quality based on the error rate of each of the wireless transmission paths A to D is shown in a bar graph format.
  • the bar graph shows the small error rate of each wireless transmission line, and the smaller the error rate, the higher.
  • a value indicating the high quality based on the error rate shown in the bar graph is referred to as a “quality value”.
  • the quality value of the wireless transmission path A is less than the target quality value.
  • the wireless transmission path A is determined as a control target (indicated by a circle in FIG. 16).
  • the SIR target value decreases, wireless transmission path A is excluded from the control target. This is to suppress quality degradation due to further power reduction.
  • the quality value of the wireless transmission path B is equal to or higher than the lower limit quality value, but lower than the target quality value.
  • the wireless transmission path B is determined as the control target in both the increase and decrease of the SIR target value.
  • the quality value of the wireless transmission path C is equal to or higher than the target quality value, but is lower than the upper limit quality value.
  • the wireless transmission path C is determined as the control target in both the increase and decrease of the SIR target value.
  • the error rate of the wireless transmission path D is equal to or higher than the quality upper limit value.
  • the SIR target value is When the increase is indicated, the wireless transmission line D is excluded from the control target. This is to avoid unnecessary power consumption by suppressing unnecessary power increase. On the other hand, when the SIR target value shows a decrease, the wireless transmission path D is determined as the control target.
  • control target transmission path is determined from a plurality of wireless transmission paths.
  • Method 2 The amount of SIR to be changed is determined by the error rate ratio of each wireless transmission path.
  • the SIR target value calculation unit 33 determines the error rate (error rate in Fig. 12) of the received data (segment) in each controlled radio transmission path and the target error rate. Compare the values (error rate (target) in Figure 13).
  • the SIR target value calculation unit 33 does not change the SIR target value (SIR target value calculation).
  • the SIR target value calculation unit 33 follows the SIR increase or decrease instruction indicated by the value indicating the virtual SIR target value. Increase or decrease the current SIR target by a percentage. The value obtained as a result is the SIR target value for the change.
  • the SIR target value calculation unit 33 determines the allocation value for determining the SIR target value from the transmission path quality related information (data ratio and error rate) for the controlled transmission path. (Weight) R is calculated. This weight R determines how the virtual SIR target value (Target SIR—virtual) is distributed to each wireless transmission path, and is determined based on the ratio of the error amount between each wireless transmission path. . Thus, the weight R indicates the weight of error occurrence by each wireless transmission path.
  • the weight (error specific gravity) R can be defined by the following equation 1.
  • A is the data ratio of wireless transmission line # 0 and a is the error rate of wireless transmission line # 1.
  • the B is the data ratio of wireless channel # 1, and ⁇ is the error rate of wireless channel # 1.
  • Equation 1 The value calculated by Equation 1 above is multiplied by the virtual SIR target value (in operation mode 2) as the SIR target value to be specified for each wireless transmission path. Furthermore, a certain amount of positive margin ( ⁇ ) can be provided for the calculated value (SIR update amount). However, providing a margin is an option.
  • A is the data ratio of each wireless transmission path
  • a is the error rate of each wireless transmission path
  • FIG. 18 is an explanatory diagram of SIR target value calculation processing (in the case of operation mode 2) by the SIR target value calculation unit 33.
  • the virtual SIR target value (Target SIR—virtual) from the virtual SIR target value calculation unit 32 is input to the SIR target value calculation unit (Target SIR calculation unit) 33.
  • the SIR target value calculation unit 33 receives transmission line quality related information of each wireless transmission line.
  • the transmission path quality related information of the wireless transmission paths # 0 and # 1 as the transmission path quality related information of the wireless transmission paths # 0 and # 1, the error rate oc and the data ratio A of the wireless transmission path # 0 and the error rate ⁇ and the data ratio of the wireless transmission path # 1 ⁇ and are entered.
  • the SIR target value calculation unit 33 calculates the weight R (R-0, R-1) for each of the wireless transmission paths # 0 and # 1 using Formula 1, using A, j8, and B . Subsequently, the SIR target value calculation unit 33 obtains the SIR target values (Target SIR—0, Target SIR—1) for the wireless transmission lines # 0 and # 1 by the following formulas 2 and 3.
  • a value indicating the virtual SIR target value in the processing by the SIR target value calculation unit 33 shown in FIG. When indicates a virtual SIR target value (operation mode 2), the distribution amount of the virtual SIR target value for each wireless transmission path is determined by the above formulas 2 and 3.
  • FIG. 19 is a diagram showing an example of calculating the SIR target value for each wireless transmission path from the virtual SIR target value.
  • FIG. 20 is a diagram showing an example (operation mode 1) of calculating the SIR target value for each wireless transmission path from the difference value ⁇ of the virtual SIR target value.
  • FIG. 20 shows a case where the SIR target value is increased.
  • the calculated weight of each wireless transmission path is subtracted from the current SIR target value.
  • FIG. 21A and FIG. 21B show an algorithm example of the SIR target value calculation by the SIR target value calculation unit 33 when the virtual SIR target value is input (operation mode 2).
  • FIGS. 21A and 21B show examples of calculating SIR target values for three wireless transmission lines # 0, # 1 and # 2.
  • FIG. 21A shows a configuration in which margins are not calculated
  • FIG. 21B shows a configuration in which margins are added.
  • the virtual SIR target value and each wireless transmission path # 0, # 1 and # 2 The weights R (R-0, R-1 and R-2) for are given. Then, the virtual SIR target value and each weight R are multiplied by a multiplier prepared for each wireless transmission path. As a result, SIR target values (Target SIR—0, Target SIR—l, and Target SIR—2) for the wireless transmission lines # 0, # 1, and # 2 are output.
  • FIG. 21B an adder corresponding to each wireless transmission path # 0, # 1, and # 2 is provided after each multiplier shown in FIG. 21A, and a margin ⁇ is input to each adder. . Therefore, a value obtained by adding the margin ⁇ to the multiplication result of the virtual SIR target value and each weight is calculated as the SIR target value corresponding to each wireless transmission path.
  • FIG. 22 shows an example of an algorithm for calculating the SIR target value by the SIR target value calculating unit 33 when the difference between the virtual SIR target values is input (operation mode 1).
  • FIG. 22 shows an example of calculating SIR target values for three wireless transmission lines # 0, # 1 and # 2.
  • FIG. 22 shows a configuration in which the margin ⁇ is added.
  • a multiplier prepared for each wireless transmission path is used to calculate the difference between the virtual SIR target values (Target SIR—virtual ( ⁇ ;)) and the weight R corresponding to each wireless transmission path. (R—0, R—1, R—2) is multiplied.
  • the adder corresponding to each wireless transmission path uses the current SIR target value (Target SIR— 0 (NOW), Target SIR— 1 (NOW), Target SIR— 2 (NOW )) Is added.
  • a margin ⁇ is added to each addition result by an adder.
  • new SIR target values (Target SIR— 0 (NEW), Target SIR— 1 (NEW), Target SIR— 2 (NEW)) for each wireless transmission path # 0, # 1 and # 2 are Is output.
  • the SIR target value calculation unit 33 performs SIR for each wireless transmission path to be controlled.
  • Outerloop PC frame generation unit (frame generation unit) 34 includes an SIR target value (or update amount) notified by SIR target value calculation unit 33. Generate a PC frame.
  • the frame generation unit 34 performs processing according to the operation mode instructed from the control unit 35.
  • the previously controlled value (previous SIR target value) is notified.
  • a value obtained by adding the difference value is calculated, and a frame including the difference is generated.
  • the frame generation unit 34 stores the previously controlled value.
  • the frame generation unit 34 generates a frame including the notified SIR target value. To do.
  • initial values at the time of initial setting of a wireless transmission path and when a wireless transmission path is added are separately notified.
  • the notification of the initial value can be configured so that, for example, the control unit 35 force is also notified (see FIG. 10).
  • the generated frame is transmitted to the transmission destination of the frame by transmission processing unit 12 (Fig. 10).
  • the SIR target value or difference value is extracted from the frame, and the current SIR target value used for inner loop transmission power control is updated according to the extracted value.
  • the SIR target value can be updated when the SIR target value calculation unit 33 receives a value indicating the virtual SIR target value from the virtual SIR target value calculation unit 32.
  • the SIR target value can be configured to be updated even when the SIR target value calculating unit 33 receives a data ratio change notification from the quality measuring unit 31.
  • FIG. 23 is a diagram showing a processing sequence when changing the data ratio. As described with reference to FIGS. 6 and 7, in this embodiment, according to the quality status of each wireless transmission path, The division ratio of data distributed to the wireless transmission path (data ratio for each wireless transmission path) is determined.
  • the data ratio of each wireless transmission path is measured by the quality measuring unit 31 described above.
  • the quality measurement unit 31 stores at least the data ratio calculated during the previous measurement time. If the quality measurement unit 31 determines that the current data ratio is different from the previous data ratio (exceeds the allowable range), the quality measurement unit 31 gives a data ratio change notification to the SIR target value calculation unit 33 (S001).
  • the SIR target value calculation unit 33 When the SIR target value calculation unit 33 receives the data ratio change notification, the SIR target value calculation unit 33 makes an inquiry about the update condition to the virtual SIR target value calculation unit 32 (S002). At this time, the virtual SIR target value calculation unit 32 determines that the data ratio (data distribution ratio) related to the change is a predetermined SIR target value update condition (previously held in the virtual SIR target value calculation unit 32). Judge whether to meet or not.
  • the virtual SIR target value calculation unit 33 does not respond to the SIR target value calculation unit 33 (continues the processing). On the other hand, when the update condition is satisfied, the virtual SIR target value calculation unit 33 determines that the measurement process for calculating the virtual SIR target value should be reset, and uses the current measurement result to determine the virtual process. A value indicating the SIR target value is calculated and returned to the SIR target value calculation unit 33 as a response to the inquiry (S003).
  • the SIR target value calculation unit 33 uses the value indicating the received virtual SIR target value because the reception of the value indicating the virtual SIR target value is the trigger (update condition) for calculating the SIR target value. Calculate the SIR target value of the transmission line to be controlled (S004).
  • the virtual SIR target value calculation unit 32 clears (resets) the measurement cycle for calculating the virtual SIR target value, and performs a new measurement cycle. Resume measurement.
  • the SIR target value calculation unit 33 calculates the SIR target value of the controlled transmission line (virtual SIR) in consideration of the data ratio (data amount) related to the change. It is also possible to determine the target value or the distribution amount of the difference value ⁇ . In other words, the SIR target value calculation unit 33 may calculate the SIR target value using the data ratio before change or the SIR target value calculation using the data ratio before change in the process of step S004. good.
  • the quality measurement unit 31 when the quality measurement unit 31 detects a change in the data ratio, the quality The measurement process by the measurement unit 31 and the virtual SIR target value calculation unit 32 may be reset (cleared), and the measurement process at a new measurement cycle (measurement start timing) may be resumed.
  • the following configuration may be applied instead of the above configuration. That is, when the SIR target value calculation unit 33 receives the data ratio change notification, the SIR target value calculation unit 33 inquires of the virtual SIR target value calculation unit 32 (corresponding to S002). At this time, the virtual SIR target value calculation unit 32 performs, for example, the following operation.
  • the data ratio (data distribution ratio) related to the change is notified to the control unit 35.
  • the control unit 35 recalculates the target quality (for example, error rate) according to the data ratio.
  • the virtual SIR target value calculation unit 32 In response to the inquiry from the SIR target value calculation unit 33, the virtual SIR target value calculation unit 32 notifies the control unit 35 of a target quality transmission instruction.
  • the control unit 35 notifies the virtual SIR target value calculation unit 32 and the SIR target value calculation unit 33 of the target quality related to the change of the data ratio. At this time, if the value of the target quality is changed, the control unit 35 sets the new measurement start timing (measurement cycle) at which the measurement related to each wireless transmission path should be reset to the quality measurement unit 31 and the virtual SIR target value. This is given to the calculation unit 32. If the target quality value is not changed, the control unit 35 does not respond to the transmission instruction.
  • the virtual SIR target value calculation unit 32 When a new target quality and measurement cycle are received from the control unit 35 in response to a target quality transmission instruction, the virtual SIR target value calculation unit 32 generates a value indicating the virtual SIR target value in accordance with these.
  • the value (virtual SIR target value or difference value ⁇ ) indicating the virtual SIR target value corresponding to the operation mode is recalculated and given to the SIR target value calculation unit 33 (corresponding to S003).
  • the virtual SIR target value calculation unit 32 performs the same processing as before when the target quality has not changed and there is no response from the control unit 35), and displays the virtual SIR target value. The value is given to the SIR target value calculation unit 33.
  • the SIR target value calculation unit 33 receives a value indicating the virtual SIR target value related to the change of the target quality, the SIR target value calculation unit 33 receives the transmission path quality related information corresponding to the value from the quality measurement unit 31, The SIR target value calculation process for the controlled wireless transmission path is executed (S004).
  • the virtual SIR target value corresponding to the target quality related to the change and the SIR of each control target transmission line are changed.
  • a process for calculating the target value is executed.
  • the following operation may be performed. That is, when the control unit 35 detects a change in the data ratio (for example, receives the data distribution rate related to the change from the data division rate determination unit 7 (FIG. 6)), the transmission from the virtual SIR target value calculation unit 32 Without receiving the instruction, the control unit 35 notifies each unit of the target quality and the measurement cycle related to the data ratio change.
  • the quality measurement unit 31 and the virtual SIR target value calculation unit 32 reset the measurement according to the notification of the measurement cycle, and perform remeasurement for each wireless transmission path whose data ratio has been changed according to the new measurement cycle.
  • the virtual SIR target value calculation unit 32 notifies the SIR target value calculation unit 32 of a value indicating the virtual SIR target value according to the remeasurement result.
  • the SIR target value calculation unit 32 calculates the SIR target value of the control target transmission path from the transmission path quality information related to the remeasurement from the quality measurement unit 31 and the value indicating the virtual SIR target value.
  • FIG. 24 is a diagram illustrating an application example of this embodiment.
  • FIG. 24 shows a mobile communication system including a mobile terminal 40, a plurality of base stations 50A and 50B, and a base station control device 60.
  • the mobile terminal 40 includes a data transmission control unit 41, a wireless transmission unit 42, and a wireless reception unit 43.
  • the data transmission control unit 41 has a DHO execution unit.
  • Each base station 50A and 50B includes a radio reception unit 51 and a radio transmission unit 52.
  • the base station control device 60 includes transmission / reception units 61A and 61B and a data reception control unit 62.
  • the data reception control unit 62 includes a DHO execution unit 20 and an outer loop transmission power control unit 30 as shown in FIG.
  • a plurality of radio transmission paths are formed in a radio section between the mobile terminal 40 and each of the base stations 50A and 50B.
  • a wireless transmission path (branch) # 0 is formed between the mobile terminal 40 and the base station 50A.
  • a wireless transmission path (branch) # 1 is formed between the mobile terminal 40 and the base station 50B.
  • Mobile terminal 40 Transmits radio signals including data to be transmitted to the base station controller 60 to the radio transmission paths # 0 and # 1.
  • the radio receiving unit 51 of the base station 50A measures the SIR of the radio signal and compares it with the SIR target value stored in advance.
  • the TPC command is given to the wireless transmission unit 52.
  • the wireless transmission unit 52 transmits a wireless signal including a TPC command using a wireless transmission path in the downlink direction (base station ⁇ mobile terminal) provided between the wireless transmission unit 40 and the mobile terminal 40.
  • the radio reception unit 43 of the mobile terminal 40 extracts the TPC command from the radio signal cover and gives it to the radio transmission unit 42.
  • the radio transmission unit 42 analyzes the TPC command. If the TPC command is an instruction to increase the transmission power, the radio transmission unit 42 increases the transmission power of the radio signal. If the instruction is a decrease instruction, the radio transmission unit 42 decreases the transmission power. In this way, the transmission power of the radio signal of the mobile terminal 40 is controlled so as to approach the SIR target value.
  • the mobile communication system shown in FIG. 24 different data is received by each of the base stations 50A and 50B during transmission (uplink transmission) using the uplink radio transmission path (uplink) from the mobile terminal 40. Can be done. For this reason, the mobile communication system has the following configuration.
  • a multi-carrier radio system using multiple subcarriers for example, OFDM or OFCDM
  • OFDM is applied.
  • OFCDM is applied.
  • the above inner loop transmission power control can be executed for each subcarrier.
  • reception level difference average reception level
  • each base station 50A and 50B reads fading determination data (eg, reference value of reception level) stored in advance in the storage device and compares it with the difference. At this time, if the difference is larger than the reference value (reception level difference> reference value), the receiving side determines that fading has occurred. On the other hand, if the difference is less than or equal to the reference value (reception level difference ⁇ reference value), it is determined that fading has occurred.
  • fading determination data eg, reference value of reception level
  • Each base station 50A and 50B determines whether or not the above-described fading has occurred for all subcarriers, and feeds back the determination result to the mobile terminal 40 using the downlink radio transmission path (downlink).
  • the data transmission control unit 41 of the mobile terminal 40 receives the determination result (first determination result) of each subcarrier by each base station 50A and 50B via the radio reception unit 43.
  • the data transmission control unit 41 accumulates the TPC commands for each subcarrier received from the base stations 50A and 50B by the radio reception unit 43 a predetermined number of times. The data transmission control unit 41 determines that frequency selective fading has occurred in the subcarrier when the number of TPC commands of the increase instruction included in the predetermined number exceeds the predetermined number. The data transmission control unit 41 executes such a determination process for all subcarriers, and obtains a determination result (second determination result) for each subcarrier.
  • Data transmission control section 41 finally determines whether or not frequency selective fading has occurred in each subcarrier based on the first and second determination results. For example, data transmission system The control unit 41 calculates the logical product of the first and second determination results for each subcarrier (eg, “0”, “1”). It is determined that fading has occurred in the carrier.
  • the data transmission control unit 41 determines the subcarrier to be used for each of the radio transmission paths # 0 and # 1 based on the fading occurrence status of each subcarrier obtained by the final determination. .
  • Fig. 25 shows the fading occurrence status for a plurality of subcarriers in radio transmission paths (branches) # 0 and # 1 (16 lines from # 0 to # 15 in Fig. 25), and each branch # 0 and # #. 1 is a diagram illustrating an example of determination of subcarriers to be used and allocation status.
  • FIG. 25 shows the occurrence of fading for subcarriers # 0 to # 15 based on the above-described determination result of fading.
  • branch # 0 fading occurs in subcarriers # 11 and # 13, and in branch # 1, fading occurs in subcarriers # 2 and # 5.
  • the data transmission control unit 41 causes, for example, fading to occur in each branch according to the occurrence status! /,
  • the subcarrier used in each branch is determined as follows.
  • subcarrier numbers # 0 to # 7 are determined for branch # 0
  • these subcarriers are assigned to branch # 0.
  • subcarrier numbers # 8 to 15 is determined for branch # 1, and these subcarriers are assigned to branch # 1.
  • Such a subcarrier allocation result (reception effective subcarrier) is notified from the mobile terminal 40 to each of the base stations 50A and 50B.
  • each base station 50A and 50B can recognize the reception effective subcarrier to be used for uplink reception by the own device.
  • the use rate of subcarriers in each wireless transmission path is determined by the above-described determination and allocation of effective reception subcarriers.
  • the usage rates of the wireless transmission channels # 0 and # 1 are 0.5.
  • the data transmission control unit 41 uses the frequency-selective fading occurrence status as the quality information of each wireless transmission line, and the subcarrier usage rate of each wireless transmission line. Can be determined.
  • FIG. 26 is an explanatory diagram of uplink transmission.
  • the data transmission control unit 41 of the terminal apparatus gives the transmission target data to the base station control apparatus 60 to the radio transmission unit 42.
  • the wireless transmission unit 42 transmits data to be transmitted.
  • radio receiving section 51 receives an OFCDM signal from radio transmission path # 0 and performs a decoding process on this signal.
  • base station 50A is notified in advance that subcarrier numbers # 0 to # 7 are effective reception subcarriers. For this reason, the radio reception unit 51 performs the decoding process on the data received from these subcarriers # 0 to # 7 with the subcarrier numbers # 0 to # 7 in the OFCDM signal as the reception target, and restores the data. The As a result, a part (segment) of data transmitted from the mobile terminal 40 is generated.
  • radio reception unit 51 receives an OFCDM signal from radio transmission path # 1, and performs a decoding process on this signal.
  • base station 50B is notified in advance that subcarrier numbers # 8 to # 15 are effective reception subcarriers. For this reason, the radio reception unit 51 receives the subcarrier numbers # 8 to # 15 in the OFCDM signal and performs decoding processing on the data received from these subcarriers # 8 to # 15 to obtain data. To restore. Thereby, a part (segment) of the data transmitted from the mobile terminal 40 is generated.
  • Each base station 50A and 50B sends the restored segment to the base station controller 60.
  • the mobile terminal 40 when the base stations 50A and 50B execute the reception process according to the reception effective subcarrier, the mobile terminal 40 substantially transmits the transmission target to each of the wireless transmission paths # 0 and # 1. The data is divided and transmitted.
  • each base station 50A and 50B segment is a transmitting / receiving unit 61.
  • the signals are received by A and 61B, respectively, and given to the data reception control unit 62.
  • the data reception control unit 62 includes the DHO execution unit 20 and the outer loop transmission power control unit 30 as described above.
  • the quality information (data amount and error rate) of the transmission target data obtained by segment synthesis (Reass emble), and the transmission path quality related information relating to each of the wireless transmission paths # 0 and # 1 ( Based on the data ratio and error rate), the value indicating the virtual SIR target value described above, and the SIR target value calculation process for each wireless transmission path # 0 and # 1 (if applicable to the controlled transmission path) are executed. And a frame containing the SIR target value is output.
  • each wireless transmission path # 0 and # 1 is determined as a control target transmission path
  • a frame including an SIR target value corresponding to each wireless transmission path is transmitted via the transmission / reception units 61A and 61B. This is notified to the radio receivers 51 of the base stations 50A and 50B.
  • Each wireless reception unit 51 updates the current SIR target value using the SIR target value in the frame. As a result, it is possible to reduce the error rate on the wireless transmission lines # 0 and # 1 and to suppress the transmission power of the mobile terminal 40 from being wasted.
  • the mobile terminal 40 before transmitting the transmission target data, divides the transmission target data according to the usage rate of the effective reception subcarrier, and each divided data (segment) CRC data for is attached.
  • the CRC data for each segment is transmitted to the corresponding base station using the received valid subcarrier.
  • the data reception control unit 62 of the base station controller 60 can perform CRC calculation for each segment, and the radio transmission path quality information (transmission path quality related information) for each of the radio transmission paths # 0 and # 1. ), That is, the error rate of the segment can be obtained.
  • the mobile terminal 40 transmits the same data (OFCDM signal) to each of the radio transmission paths # 0 and # 1. Instead of this configuration, the mobile terminal 40 receives Subcarriers that are not used as effective subcarriers may transmit two OFCD M signals that do not contain data.
  • the base station controller 60 divides the transmission target data into two segments corresponding to the radio transmission paths # 0 and # 1, When transmitting to the mobile terminal 40 through the base stations 50A and 50B, the inner loop transmission power control for the downlink (each radio transmission path in the downlink direction) is also executed for the base stations 50A and 50B. Therefore, it can be assumed that the mobile terminal 40 has an SIR target value for controlling each wireless transmission path.
  • the mobile terminal 40 has the same configuration as that of the data receiving unit 62 of the base station control device 60 shown in Fig. 25, and the segment received from each downlink radio transmission path and this are combined. It is also possible to calculate the virtual SIR target value and the SIR target value of each wireless transmission path using the transmission target data obtained by the above process and update the current SIR target value.

Abstract

 無線伝送路へ送出される無線電波の送信電力制御の目標値を算出する装置であって、複数の無線伝送路から得られたデータが合成された合成データの品質に基づく第1の送信電力制御目標値を算出する第1目標値算出部と、前記第1の送信電力制御目標値と、各無線伝送路に係る品質情報とに基づいて、少なくとも1つの無線伝送路に適用すべき第2の送信電力制御目標値を決定する第2目標値算出部とを含む。

Description

明 細 書
送信電力制御目標値算出装置
技術分野
[0001] 本発明は、移動通信システムにおける Outer Loop送信電力制御方式に関し、送信 電力制御目標値の算出に関する。
背景技術
[0002] 従来、 3GPPのような移動通信システムでは、移動端末 (MS(Mobile Station)又は U E(User Equipment))から基地局 (BTS(Base Transceiver Station)又は Node B)へ向力 う方向 (上り方向)における無線電波の送信電力制御として、 Inner Loop (インナールー プ)送信電力制御と、 Outer Loop (アウターループ)送信電力制御とが実行されている
[0003] インナーループ送信電力制御では、大略して次のような動作が実行される。例えば 、基地局は、移動端末力 受信する上り方向の無線電波に対する SIR(Signal to Inte rference Ratio :目的受信波対干渉波比)を測定し、この測定値と、予め設定されてい る SIR目標値 (Target SIR)とを比較する。基地局は、比較結果に応じて、移動端末が 送信する無線電波の送信電力の増減を決定し、送信電力の増減を示す電力制御情 報 (TPC(Transmission Power Control)コマンドと呼ばれる)を移動局に送信する。例え ば、 SIR測定値が SIR目標値よりも悪い場合には、送信電力増加を示す TPCコマン ドが送信される。移動局は、 TPCコマンドに基づいて制御した送信電力で基地局へ 無線電波を送信する。このような基地局と移動局との間で形成されるフィードバックル ープが、インナーループと呼ばれる。
[0004] 一方、アウターループ送信電力制御は、上記したインナーループ送信電力制御で 使用される SIR目標値を制御する。例えば、インナーループ送信電力制御を行う基 地局を収容した基地局制御装置 (BSC(Base Station Controller)又は RNC(Radio Ne twork Controller))は、基地局で受信された無線電波力も得られる情報 (データ)を基 地局から取得し、このデータの品質を判定する。このとき、例えば、品質が目的の品 質に達していなければ、基地局制御装置は、品質が向上するような SIR目標値を決 定し、基地局に通知する。上記において、基地局と基地局制御装置との間に形成さ れるフィードバックループがアウターループと呼ばれる。
[0005] このように、アウターループ送信電力制御では、移動端末からの上りデータに対す るパラメータの一つである SIR目標値が制御される。 SIR目標値は、基地局が移動端 末から受信するデータに対する目標受信品質を示す。移動端末から送信されたデー タが基地局を介して基地局制御装置で受信されるとき、このデータには、無線区間に おける品質情報が添付されている。基地局制御装置は、この品質情報を元に、デー タの品質を一定時間測定する。一定時間が満了したとき、基地局制御装置は、測定 結果に基づいてインナーループで使用される上り方向の SIR目標値を算出する。こ のとき算出された SIR目標値が基地局で設定されて!、る前回の SIR目標値と異なる 場合には、基地局制御装置は、今回の SIR目標値を基地局に通知する。基地局は、 SIR目標値を更新する。
[0006] 現在の 3GPPシステム (第 3世代移動通信システム)における基地局間のダイバーシ ティハンドオーバ (DHO)は、複数の無線伝送路の使用、並びに、移動端末 Z基地局 制御装置における選択合成及び複数分配によって実現されている。
[0007] 例えば、図 1に示すように、移動端末 (UE)と基地局制御装置 (RNC)との間で、 3つ の基地局 (Node B)を介した DHOが実行される場合を想定する。このとき、下り方向( RNC→UE)でデータが送受信される場合には、 RNCは、インタフェース Iubを通じて 、同一データを各基地局に送信する。各基地局は、データを基地局間で異なる拡散 符号で変調し、異なる無線区間インタフェース Uu (無線伝送路)を通じて UEに送信 する。 UEは、各基地局力 受信したデータのうち、無線伝送路品質の良いもの (誤り なしでデータが到来したもの)を選択して受信する。一方、上り方向 (UE→RNC)でデ ータが送受信される場合には、 UEは、同一データを各基地局へ向けて送信する。 各基地局は UEから受信されたデータを RNCへ送信する。 RNCは、各基地局から 受信されたデータに関し、無線伝送路品質が良いものを選択したり、各基地局からの データから品質が良い部分を集めて合成したりする。以上のような方法によって、 UE 及び RNCでダイバーシティ効果が得られるようにして ヽる。
[0008] 上記した方式では、複数の無線伝送路に対して同一データが送信される。このた め、無線伝送路の増加に伴って無線容量の低下が発生する。
[0009] また、各基地局から移動端末へ各無線伝送路を介して伝送されるデータ (信号)は、 異なる拡散符号で変調されている。このため、移動端末が或る無線伝送路からの信 号を逆拡散により復調する場合に、他の無線伝送路力もの信号はノイズとなる (図 2参 照)。従って、各基地局は、所望の SIRを確保するために、送信電力を増加する必要 かあつた。
[0010] さらに、上述したような、 RNCにおけるダイバーシティ受信方式は、複数の基地局 からのデータを選択合成するために、複数の無線伝送路の少なくとも 1つから誤りの ないデータを受信する必要があった。このため、各基地局には、ダイバーシティ効果 を得るための最低限の SIR目標値が設定されて!、た。
[0011] 以上のように、従来の 3GPPシステムにおける基地局間 DHOでは、無線容量 (無線 リソース)や送信電力を効率的に使用できな 、と 、う問題があった。
[0012] 無線リソースの利用の係る問題を回避する技術として、例えば、特許文献 1には、 無線基地局の下り無線資源使用量が非ハンドオフ時とハンドオフ時とで変化しない ハンドオフ手段を提供する無線通信システム及びそのハンドオフ方法が開示されて いる。
特許文献 1 :特開 2000— 217139号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明の目的は、移動通信システムにおいて、複数の無線伝送路を用いたデータ の送受信が実行される場合に、効率的な送信電力制御が実行されるための各無線 伝送路に対する送信電力制御目標値を算出する技術を提供することである。
課題を解決するための手段
[0014] 本発明は、上記課題を解決するために以下の構成を採用する。
[0015] 即ち、本発明は、無線伝送路へ送出される無線電波の送信電力制御の目標値を 算出する装置であって、
複数の無線伝送路から得られたデータが合成された合成データの品質に基づく第
1の送信電力制御目標値を算出する第 1目標値算出部と、 前記第 1の送信電力制御目標値と、各無線伝送路に係る品質情報とに基づいて、 少なくとも 1つの無線伝送路に適用すべき第 2の送信電力制御目標値を決定する第 2目標値算出部と
を含む送信電力制御目標値算出装置である。
[0016] 本発明における第 2目標値算出部は、目標品質を有し、前記第 1目標値算出部か ら前記第 1の送信電力制御目標値を示す値が通知されたときに、前記複数の無線伝 送路の品質情報と前記目標品質とを比較し、前記第 1の送信電力制御目標値を示 す値が送信電力の増加を示す場合に、前記品質情報が前記目標品質を上回る無 線伝送路を前記第 2の送信電力制御目標値の算出対象力 除外するように構成す るのが好ましい。
[0017] また、本発明における第 2目標値算出部は、目標品質を有し、前記第 1目標値算出 部から前記第 1の送信電力制御目標値を示す値が通知されたときに、前記複数の無 線伝送路の品質情報と前記目標品質とを比較し、前記第 1の送信電力制御目標値 を示す値が送信電力の減少を示す場合に、品質情報が前記目標品質を下回る無線 伝送路を前記第 2の送信電力制御目標値の算出対象力 除外するように構成する のが好ましい。
[0018] また、本発明における第 2目標値算出部は、目標品質及び品質上限値を有し、前 記第 1目標値算出部力 第 1の送信電力制御目標値を示す値を受け取った場合に、 前記複数の無線伝送路の品質情報と前記目標品質及び品質上限値とを比較し、前 記第 1の送信電力制御目標値を示す値が送信電力の増加を示す場合に、品質情報 が前記目標品質及び品質上限値を上回る無線伝送路を前記第 2の送信電力制御 目標値の算出対象力 除外するように構成するのが好ましい。
[0019] また、本発明における第 2目標値算出部は、目標品質及び品質下限値を有し、前 記第 1目標値算出部力 第 1の送信電力制御目標値を示す値を受け取った場合に、 前記複数の無線伝送路の品質情報と前記目標品質及び品質下限値とを比較し、前 記第 1の送信電力制御目標値を示す値が送信電力の減少を示す場合に、品質情報 が前記目標品質及び品質下限値を下回る無線伝送路を前記第 2の目標値の算出 対象から除外するように構成するのが好ま 、。 [0020] また、本発明における第 2目標値算出部は、前記第 1目標値算出部からの通知を 受け取った場合に、前記合成データの品質と、前記各無線伝送路の品質情報とを対 比し、両者が同一の値を示す無線伝送路を前記第 2の目標値の算出対象から除外 し、両者が同一の値を示さない無線伝送路の少なくとも 1つについて、現在送信電力 制御に使用されている第 2の送信電力制御目標値が一定量だけ増加又は減少した 新たな第 2の送信電力制御目標値を算出するように構成するのが好ま 、。
[0021] また、本発明における第 2目標値算出部は、前記第 1目標値算出部から前記第 1の 送信電力制御目標値を示す値が通知されたときに、前記第 2の送信電力制御目標 値算出の対象としての各無線伝送路の品質情報に基づいて、各対象無線伝送路に 対する前記第 1の送信電力制御目標値を示す値の配分量を決定するように構成する のが好ましい。
[0022] また、本発明における第 2目標値算出部は、前記各対象無線伝送路の品質情報に 基づいて、対象無線伝送路毎の重み R(0≤R≤1)を算出し、前記第 1の送信電力制 御目標値を示す値と各重み Rとを乗算して、各対象無線伝送路に対する前記第 1の 送信電力制御目標値を示す値の配分量を決定するように構成するのが好ま ヽ。
[0023] また、本発明において、前記第 1の送信電力制御目標値を示す値は、前記第 1の 送信電力制御目標値であり、
前記第 2目標値算出部は、前記第 1の送信電力制御目標値の各対象無線伝送路 に対する配分量を、前記各対象無線伝送路について適用すべき第 2の送信電力制 御目標値として算出するように構成するのが好ましい。
[0024] また、本発明における第 1目標値算出部は、所定の測定周期毎に前記第 1の送信 電力制御目標値を算出し、
前記第 1の送信電力制御目標値を示す値は、前回の測定周期で算出された第 1の 送信電力制御目標値と、今回の測定周期で算出された第 1の送信電力制御目標値 との差分値であり、
前記第 2目標値算出部は、前記差分値の各対象無線伝送路に対する配分量を、 前記各対象無線伝送路について現在使用されている第 2の送信電力制御目標値に 対する更新量として算出するように構成するのが好ましい。 [0025] また、本発明は、無線伝送路へ送出される無線電波の送信電力制御の目標値を 算出する情報処理装置が、
複数の無線伝送路から得られたデータが合成された合成データの品質に基づく第
1の送信電力制御目標値を算出し、
前記第 1の送信電力制御目標値と、各無線伝送路に係る品質情報とに基づいて、 少なくとも 1つの無線伝送路に適用すべき第 2の送信電力制御目標値を決定する ことを含む送信電力制御目標値算出方法である。
[0026] また、本発明は、情報処理装置を上記した送信電力制御目標値算出装置として機 能させるためのプログラム、或いは、このようなプログラムを記録した記録媒体として 特定することができる。
発明の効果
[0027] 本発明によれば、移動通信システムにお 、て、複数の無線伝送路を用いたデータ の送受信が実行される場合に、効率的な送信電力制御を実行可能な各無線伝送路 に対する送信電力目標値を算出することができる。
図面の簡単な説明
[0028] [図 1]基地局間 DHOの説明図である。
[図 2]SIRの劣化の説明図である。
[図 3]本発明の実施形態の基本構成例を示す概念図である。
[図 4]図 3に示した受信側における誤り除去作用の説明図である。
[図 5]図 3に示した送信側及び受信側に実装可能な DHO実施部 (DHO transaction) の概念構成を示す図である。
[図 6]データ送信比率 (データ分配率)を決定するための構成例を示す図である。
[図 7]データ分配率判定方法の説明図である。
[図 8]アウターループ実施部の実装例を示す概念構成図である。
[図 9]アウターループ実施部を含む DHO実施部が基地局制御装置 (RNC)に実装さ れた場合における移動通信システムの例を示す図である。
[図 10]DHO実施部及びアウターループ実施部の構成例を示す図である。
[図 11]図 10に示した品質測定部による処理の説明図である。 圆 12]品質測定部で収集された伝送路品質関連情報の例を示す図である。
圆 13]図 10に示した仮想 SIR目標値算出部による処理の例を示す図である。
圆 14]図 10に示した SIR目標値算出部の処理概要を示す図である。
圆 15]最終的な目標品質と無線伝送路の品質との比較結果に基づき制御対象伝送 路を決定する方式 (方式 B)で比較対象となり得る誤り率の例を示す図である。
圆 16]無線伝送路の品質の上限及び下限値と、目標品質とを判定用パラメータとし て用意し、制御対象力否かを判定する方法 (方法 2)の説明図である。
圆 17]目標品質,品質上限及び下限値,及び図 16に示された無線伝送路との関係 を示す図である。
圆 18]SIR目標値算出部による SIR目標値の算出処理 (動作モード 2の場合)の説明 図である。
[図 19]仮想 SIR目標値から各無線伝送路に対する SIR目標値を算出する例を示す 図である。
圆 20]仮想 SIR目標値の差分値から各無線伝送路に対する SIR目標値を算出する 例 (動作モード 1)を示す図である。
圆 21A]仮想 SIR目標値を入力とする場合 (動作モード 2)における SIR目標値算出部 による SIR目標値算出のアルゴリズム例を示す図である。
圆 21B]仮想 SIR目標値を入力とする場合 (動作モード 2)における SIR目標値算出部 による SIR目標値算出のアルゴリズム例を示す図である。
圆 22]仮想 SIR目標値の差分を入力とする場合 (動作モード 1)における SIR目標値 算出部による SIR目標値算出のアルゴリズム例を示す図である。
[図 23]データ比率変更時における処理シーケンスを示す図である。
圆 24]実施形態の適用例を示す図である。
[図 25]各無線伝送路で使用される複数のサブキャリアに対するフェージング発生状 況、及び各無線伝送路に対する受信有効サブキャリアの割当状況の例を示す図で ある。
[図 26]図 24に示した適用例におけるアップリンク送信の説明図である。
符号の説明 [0029] 10 · · ·送受信部
20— DHO実施部
30 · · 'アウターループ送信電力制御部 (アウターループ実施部)
31 · · ·品質測定部
32 · · ·仮想 SIR目標値 (Target SIR— virtual)算出部
33 · · · SIR目標値 (Target SIR)算出部
34 · · ' Outer Loop P.C.フレーム生成部
35 · · ·制御部
発明を実施するための最良の形態
[0030] 以下、図面を参照して本発明の実施形態を説明する。実施形態の構成は例示であ り、本発明は、実施形態の構成に限定されない。
[0031] 〈本実施形態の概要〉
最初に、本発明の適用が好適な移動通信システムについて説明する。図 3は、本 発明の実施形態の基本構成例を示す概念図である。図 3には、移動通信システムを 構成するデータの送信側及び受信側における処理が示されて ヽる。送信側と受信側 とは、無線区間で隔てられている。無線区間には、複数の無線伝送路 (ブランチ)が用 意される。
[0032] 図 3にお 、て、送信側では、送信対象のデータ (データブロック)に対し、データ正常 性検査用の CRC(Cyclic Redundancy Check)データが付与される (ST1)。
[0033] 次に、 CRCデータが付与されたデータブロックに対する誤り訂正符号化処理 (例え ばビタビ符号化)が実行される (ST2)。次に、データブロックに対する第 1インタリーブ 処理が実行される (ST3)。
[0034] 次に、データブロックが送信側と受信側との間の無線区間に用意された複数の無 線伝送路 (ブランチ)の数に応じたセグメント (分割データブロック)に分割される (ST4)
。このとき、各セグメントに対して、 CRCデータが付与される。
[0035] 次に、各セグメントに対する誤り訂正符号ィ匕処理 (例えば、ターボ符号化)が行われ (
ST5)、さらに、第 2インタリーブ処理が実行される (ST6)。その後、各セグメントは、無 線信号に変換され、各無線伝送路を通じて受信側へ送信される(ST7)。 [0036] 受信側では、各無線伝送路から受信される無線信号の復調処理を行!、、複数のセ グメントを得る。各セグメントに対して、ディンタリーブ処理が実行される (ST8)。続い て、誤り訂正復号ィ匕処理 (ターボ復号化)が実行される (ST9)。
[0037] 次に、受信側では、誤り訂正復号ィ匕されたセグメントのそれぞれに付与された CRC データが除去され、再組み立て処理 (Reassemble)が実行される (ST10)。即ち、複数 の無線伝送路力ゝらのセグメントが合成された合成データブロックが得られる。
[0038] データの再組み立ての際には、各セグメントについての CRCチェック (CRC演算)が CRCデータを用いて実行される。 CRCチェック結果を示すデータ (CRCI: OK又は N G)は、各無線伝送路の品質情報として収集される (ST11)。
[0039] また、合成データブロックに対するディンタリーブ処理が行われる (ST12)。続いて、 誤り訂正復号化処理 (ビタビ復号化)が実行される (ST13)。これによつて、送信対象 のデータブロック及び CRCデータが再生される。
[0040] このとき、再生されたデータブロックに対する CRCチェック (CRC演算)が行われる (S T14)。 CRCチェック結果 (OK又は NG)は、無線伝送路全体の品質を示すブロックェ ラー情報 (BLER)として取得される (ST15)。そして、各セグメントに係る CRCI及び合 成データの BLERに基づいて、 SIR目標値が計算される (ST16)。
[0041] 上述した処理では、送信対象のデータが、誤り訂正符号ィ匕処理 (ST2)及びインタリ ーブ処理 (ST3)が実行された後、無線伝送路の数のセグメントに分割され、各無線 伝送路に送信される (ST7)。これによつて、同一データが複数の無線伝送路上に送 信される場合 (従来の DHO)に比べて、複数の無線伝送路上を送信されるデータ量 が減る。従って、無線リソースを有効利用することが可能となる。
[0042] また、各無線伝送路に異なるデータが送信されることで、或る無線伝送路のデータ ( 無線信号)が他の無線伝送路のデータ (無線信号)に対するノイズとなるのを抑えるこ とができる。これによつて、無線信号の送信電力を抑えることができる。
[0043] さらに、上記した構成によれば、各無線伝送路力ものデータ (セグメント)に関し、無 線区間で生じたエラーを誤り訂正復号ィ匕処理 (ST9)で完全に除去できなくても、ダイ バーシティ合成 (ST10)を通じた最終的な誤り訂正復号ィ匕処理 (ST13)で誤り除去で きれば良いことになる。 [0044] ここで、送信対象のデータブロックは、インタリーブ処理 (ST3)でインタリーブされた 後、セグメントに分割される。このため、或る無線伝送路上での誤りが生じても、受信 側におけるディンタリーブ処理 (ST12)で、誤りを含む部分が分散される。従って、こ の誤りは、ディンタリーブ処理 (ST12)に続く誤り訂正復号ィ匕処理 (ST13)で、適正に 除去することができる。
[0045] 図 4は、受信側における上述した作用 (誤り除去作用)の例を示す図である。図 4で は、データブロックが、二つの無線伝送路 # 0及び # 1に対して 1: 6でセグメント化 (Se gmentation)された例が示されて 、る。
[0046] ここで、無線伝送路 # 0の状態が悪ぐ無線伝送路 # 0側のセグメントに誤りが生じ た状態となった場合を仮定する。この場合、受信側の再組み立て (Reassemble : ST1 0)によって、二つのセグメントが結合される。その後、ディンタリーブ処理 (ST12)によ つて、無線伝送路 # 0を通過した部分が合成データブロック内で分散される。これに よって、誤り部分が小さくなるので、誤り訂正復号化処理 (ST13)で、その誤りが除去 される。
[0047] 各無線伝送路に対するデータブロックの送信比率 (データ分割率)は、各無線伝送 路の品質状況に応じて決定される。即ち、無線品質状況に応じたデータ送信比率と なるように、各無線伝送路に対するデータ送信レートが決定される。
[0048] このため、例えば、或る無線伝送路の誤り率が高くても、その無線伝送路に低いデ ータ送信レートが決定されることによって、データブロック全体に対する誤り量を抑え ることができる。このとき、或る無線伝送路と異なる無線伝送路の品質が良ぐこの無 線伝送路に対して高 ヽデータ送信レートが決定されれば、ダイバーシティ合成を通じ た誤り訂正復号ィ匕処理 (ST13)で、或る無線伝送路で生じた誤りを訂正することがで きる。従って、各無線伝送路について要求される SIRは、誤り訂正復号化処理 (ST1 3)で誤りを除去可能な値に設定すれば良いことになる。
[0049] 図 3に示す例では、ステップ ST11及び ST15で得られる無線伝送路毎の品質情報 ,及びデータの品質情報に基づいて、 SIR目標値が算出される構成 (ST16)が示さ れている。このような処理力 本発明の特徴に係る部分である。
[0050] 本実施形態では、送信対象データを分割して各無線伝送路に送信する DHO方法 において、 DHO時に受信されたデータの無線品質情報から、各無線伝送路におけ る無線伝送路品質状態を比較し、この比較結果に従って各無線伝送路のアウタール ープ送信電力制御を実施する方法及びその構成について説明する。
[0051] 図 3における送信側は、移動通信システムにおいて、データが下り方向 (基地局→ 移動端末)に送信される場合には、例えば基地局制御装置及び基地局で構成される 。この場合、受信側は移動端末で構成される。そして、図 3に示した ST1〜ST4の処 理は、基地局制御装置で実行され、 ST5〜ST7の処理は、無線伝送路に応じた各 基地局で実行される。このとき、各セグメントに対する CRCデータ付与は、基地局制 御装置と基地局との!/、ずれか一方で実行可能である。
[0052] 一方、移動通信システムにおいて、データが上り方向 (移動端末→基地局)に送信 される場合には、移動端末が送信側となり、受信側が例えば基地局及び基地局制御 装置となる。この場合、例えば、 ST8及び ST9の処理が各基地局で実行され、 ST10 〜ST16の処理が基地局制御装置で実行される。
[0053] 図 5は、図 3に示した送信側及び受信側に実装可能な DHO実施部 (DHO transact! on)の概念構成を示す図であり、図 6は、データ送信比率 (データ分配率)を決定する ための構成例を示す図であり、図 7は、データ分配率判定方法の説明図である。
[0054] 図 5において、 DHO実施部 1は、誤り訂正符号ィ匕手段としての符号ィ匕 Z復号ィ匕部 ( Coding/Decoding)2と、インタリーブ手段としてのインタリーブ Zディンタリーブ部 (Inte rleave/De- interleavedと、分割手段としてのセグメント化 (分割) Z再組み立て部 (Seg mentation/Reassemble)4とを して 、る。
[0055] DHO実施部 1が送信側として機能する場合、送信対象のデータ (データブロック)は 、 DHO実施部 1にて、 CRCデータが付与される。符号ィ匕 Z復号ィ匕部 2は、誤り訂正 符号化処理 (ST2)を実行する。インタリーブ Zディンタリーブ部 3は、第 1インタリーブ 処理 (ST3)を実行する。分割 Z再組み立て部 4は、データブロックのセグメントィヒ (ST 4)を実行し、複数のセグメントを出力する。図 4の例では、データブロックが、無線伝 送路数に応じて二つのセグメント # 0, # 1に分割される。
[0056] その後、各セグメントに対する CRCデータ付与 (ST5)及び第 2インタリーブ (ST6)が 実行される。そして、各セグメントは、無線信号に変換され、各無線伝送路を介して受 信側へ送信される (ST7)。このとき、各セグメントは、例えば、図 3に示すように、 OFC DMや OFDMのような、直交した複数のキャリアを有するマルチキャリア通信方式に よる無線信号に変換され、受信側へ送信されるように構成することができる。無線信 号はシングルキャリアでも良!、。
[0057] 一方、 DHO実施部 1が受信側として機能する場合、無線信号から復調された複数 のセグメントが DHO実施部 1に入力される。すると、分割/再組み立て部 4は、複数 のセグメントの組み立て処理 (Reassemble)を行う (ST10)。次に、インタリーブ Zディン タリーブ部 3が組み立てられたデータブロック (合成データブロック)に対するディンタリ ーブ処理を実行する (ST12)。そして、符号化 Z復号化部 2が、合成データブロックに 対する誤り訂正復号化処理を実行する (ST13)。
[0058] このような DHO実施部 1は、例えば、基地局制御装置,基地局制御装置の上位装 置,基地局,移動端末のいずれかに設けることができる。
[0059] 図 6は、例えば、データの送信側が基地局 (BTS)及び基地局制御装置 (RNC)で構 成されている場合に、 BTSから二つの無線伝送路 # 0及び # 1を通じて RNC力もの データが送信される場合におけるデータ分割率を決定するための構成例が示されて いる。また、図 6は、図 5に示したような DHO実施部 1が RNCに実装されている場合 を想定している。
[0060] 図 6において、 RNCは、上位装置から移動端末への送信対象のデータを受信する データ受信部 6と、無線伝送路品質情報に基づ!/ヽて送信対象データの分割率を判 定するデータ分割率判定部 7と、分割率に従って送信対象データを分割し、各無線 送受信部 # 0及び # 1へ送信するデータ分割 Z送信部 8とを含む装置として構成さ れる。このとき、 DHO実施部 1は、データ分割/送信部 53に含まれる。
[0061] BTSの各無線送受信部 # 0及び # 1は、自身に対応する無線伝送路 (ブランチ)に 係る無線伝送路品質情報 # 0及び # 1を RNCへ送信する。無線伝送路品質情報 # 0及び # 1は、データ分割率判定部 7に与えられる。
[0062] データ分割率判定部 7は、無線伝送路品質情報 # 0及び # 1に基づ 、てデータブ ロックの分割率 (データ送信比率)を計算し、データ分割 Z送信部 8に入力する。デー タ分割 Z送信部 8は、データ受信部力も送信対象のデータブロックを受け取ると、こ のデータブロックを分割率に従って分割し、分割データ (セグメント)を各無線送受信 部 # 0及び # 1に送る。各無線送受信部 # 0及び # 1は、分割データの無線信号を 無線伝送路へ送信する。
[0063] なお、図 6に示した構成に代えて、無線伝送路 # 0及び # 1に応じた複数の BTSが 用意されていても良い。即ち、無線伝送路と基地局との比は、 1 : 1であっても良ぐ N( 自然数): 1であっても良い。
[0064] 上述した無線伝送路品質情報は、例えば、基地局と移動端末間で行われるインナ 一ループ送信電力制御で使用される制御情報としての TPC情報を使用することがで きる。データ分割率決定部 7は、各無線伝送路力もの TPC情報に基づいてデータ分 割率を決定する。
[0065] 移動端末は、インナーループ送信電力制御によって、基地局に対して送信電力の 増減指示を行う。送信電力の増減指示は、その時点での無線状況そのものを示す。 データ分割率判定部 7は、全ての無線伝送路に対する TPC情報を BTSから取得す る。
[0066] データ分割率判定部 7は、所定の測定周期区間における各無線伝送路の TPC情 報を蓄積し、この結果からデータ分配率を決定する。 TPC情報は、送信電力の増加 (
UP)又は減少 (DOWN)指示を示す。
[0067] 具体的には、図 7の例に示すように、所定の測定周期における各無線伝送路に対 する TPC情報で示された指示が蓄積される。この例では、 1つの測定周期において
、 10回の指示が蓄積される。データ分割率判定部 7は、測定周期における各無線伝 送路の減少指示の数を積算する。
[0068] 図 7では、丸印は増加指示を示し、バッ印は減少指示を示す。従って、無線伝送路
# 0の減少指示数は 4であり、無線伝送路 # 1の減少指示数は 8である。従って、無 線伝送路間の減少指示の比は 4 : 8 = 1 : 2となる。この比を各無線伝送路 # 0及び #
1に対するデータ分配率として決定する。
[0069] これによつて、図 7に示す例では、データ受信部 6からのデータブロック力 データ 分割 Z送信部 8において、無線伝送路 # 0及び # 1に対して 1 : 2で分割され、送信さ れる。 [0070] なお、図 3に示した ST1〜ST10, ST12〜ST14の処理,図 4〜図 7に示した処理 及び構成例は、本願の発明者が既に出願した「通信システム、送信方法」 (国際出願 番号 PCT/JP2005/04133,国際出願日 2005年 3月 9日:未公開)にて開示されている。
[0071] また、本発明は、図 1に示したような、従来における DHOを実施する 3GPPシステ ムへの適用が可能である。
[0072] 〈アウターループ送信電力制御〉
上述したような移動通信システムへの適用が好適なアウターループ送信電力制御 方法について、以下に詳細に説明する。本実施形態に係るアウターループ送信電 力制御方法は、以下を特徴とする。
[0073] 即ち、 DHO実施部における受信データの品質に基づいて算出される SIR目標値( Target SIR— virtual)と、各無線伝送路力 の受信データに付与される、無線品質情 報又は無線品質状況に関する情報とに基づき、各無線伝送路に対して設定すべき S IR目標値を算出する。
[0074] 《システム構成例》
上記特徴に係る機能 (アウターループ送信電力制御部 (アウターループ実施部)と称 する)は、例えば、 DHO実施部に実装される。このため、 DHO実施部が実装される 装置に、アウターループ実施部も実装される。 3GPPシステムでは、 RNCが DHO実 施部を有している。このため、アウターループ実施部は、 RNCに実装される。但し、 D HO実施部が基地局,基地局制御装置の上位装置,或いは移動端末に実装される 場合には、アウターループ実施部もこれらの 、ずれかに実装することができる。
[0075] 図 8は、アウターループ実施部の実装例を示す概念構成図である。図 8に示すよう に、アウターループ実施部は、 DHO実施部内に設けることができる。 DHO実施部は 、複数の無線伝送路に応じたデータの送受信部と接続される。なお、アウターループ 実施部は、 DHO実施部から独立し、 DHO実施部と連携するように構成することもで きる。
[0076] 図 9は、アウターループ実施部を含む DHO実施部が基地局制御装置 (RNC)に実 装された場合における移動通信システムの例を示す。図 9に示す例では、 RNCは、 複数の基地局 (Node B)と、インタフェース Iubを介して接続される。各基地局は、移動 端末 (UE)と無線通信を実行するための無線送受信部を有する。各基地局と移動端 末との間には、 DHOを実施するための複数の無線伝送路が設けられる。図 9に示す 例では、上り及び下り方向について、二つの無線伝送路 (ブランチ) # 0及び # 1が形 成されている。
[0077] 《アウターループ実施部の構成》
図 10は、 DHO実施部及びアウターループ実施部の構成例を示す図である。図 10 には、送受信処理部 10と、 DHO実施部 20と、アウターループ送信電力制御部 (ァゥ ターループ実施部:送信電力制御目標値算出装置に相当) 30とが示されて 、る。
[0078] 送受信部 10の受信処理部 11は、複数の無線伝送路から受信されたセグメントを D HO実施部 20に入力する。 DHO実施部 20は、図 4に示した構成を有し、複数のセ グメントに対する組み立て,ディンタリーブ,誤り訂正復号化を行う。
[0079] DHO実施部 20は、各無線伝送路及び合成データに対する品質情報検出処理を 行う。即ち、 DHO実施部 20は、受信データのダイバーシティ合成を実施した後の品 質情報 (合成データの品質)を出力する。また、 DHO実施部 20は、合成が実行される 前のデータ (セグメント)に係る情報として、セグメントのデータサイズ (データ量)と、無 線伝送路品質情報 (各無線伝送路の品質情報)とを出力する。
[0080] 品質情報及び無線伝送路品質情報として、例えば、図 3に示したような、各セグメン トゃ合成データに対する CRCチェック結果 (CRC演算結果)のような、誤りチェック結 果 (データ量,誤りデータ量 (誤り率))を適用することができる。
[0081] また、無線伝送路品質情報として、無線区間でのインナーループ送信電力制御に 使用される電力制御情報 (例えば、 TPCコマンド)を適用することもできる。例えば、各 無線伝送路について、所定の測定時間における TPCコマンドを収集し、収集された TPCコマンド中の電力増加指示回数や電力減少指示回数から、各無線伝送路の品 質を示す値を算出することができる。
[0082] さらに、無線区間での無線方式として OFDMや OFCDMのようなマルチキャリア無 線方式が使用されている場合には、各無線伝送路においてデータの送受信に使用 されるサブキャリア (受信有効サブキャリア)の情報 (或いは、複数のサブキャリア中のフ エージング発生率)を、無線伝送路品質情報として適用することもできる。例えば、各 無線伝送路に対するサブキャリアの使用率 (全サブキャリアに対する受信有効サブキ ャリアの比率)を、各無線伝送路の品質を示す値として利用することができる。
[0083] 或いは、無線区間における、処理対象データに対する制御データ (データに付与さ れた制御データ)の品質情報 (BER: Bit Error Rate)を無線伝送路品質情報として適 用することも考えられる。図 3に示したような基本構成では、或る無線伝送路での誤り 訂正が NGである場合でも、全ての無線伝送路からのデータを合成した合成データ に対する誤り訂正復号ィ匕で誤りが除去されれば良い。このため、無線伝送路品質情 報として、対象データの品質情報 (TrCH BER(Transport Channel BER)測定値)では なぐ対象データを送受信するための制御データの品質情報 (PhyCH BER(Physical Channel BER)測定値)を利用するのが好ましい。例えば、制御データの誤り率を、無 線伝送路品質情報として使用することができる。
[0084] なお、 TrCH BER測定値は、測定区間 (TrCHの TTI周期)における BERの平均値で ある。 TrCH BERの測定対象は DPDCHである。また、 PhyCH BER測定値は、測定区 間 (TrCHの TTI周期: TS25.433に示される、 C- Planeの IE "QE-Selector"を通じて有 効となったとき)における BERの平均値である。 PhyCH BERの測定対象は DPCCHで ある。
[0085] DHO実施部 20は、上述した品質情報及び無線伝送路品質情報を取得するように 構成される。無線伝送路品質情報は、上記した CRC演算結果,電力制御情報,有 効サブキャリア情報,制御データ品質情報のいずれか 1つ、又は任意の組み合わせ で構成される。
[0086] アウターループ実施部 30は、品質測定部 31と、第 1目標値算出部としての仮想 SI R目標値算出部 (Target SIR— virtual算出部) 32と、第 2目標値算出部としての SIR目 標値算出部 (Target SIR算出部) 33と、 Outer Loop P.C.フレーム生成部 (フレーム生 成部) 34と、制御部 35とを含んでいる。
[0087] 品質測定部 31は、 DHO実施部 20から出力される無線伝送路毎のデータサイズ及 び無線伝送路品質情報を受け取る。品質測定部 31は、制御部 35から指示される所 定の測定時間におけるデータサイズ及び無線伝送路品質情報の蓄積を行い、蓄積 された無線伝送路毎のデータサイズ及び無線伝送路品質情報カゝら得られる所定の ノ メータ (データ比率,誤り率)を伝送路品質関連情報として出力する。
[0088] 仮想 SIR目標値算出部 32は、 DHO実施部 20から出力される合成データに対する 品質情報に基づき、仮想 SIR目標値 (Target SIR— virtual:第 1の送信電力制御目標 値)を算出する。ここで算出される SIR目標値は、実際の無線伝送路に対して適用さ れるものではなぐ複数の無線伝送路からのデータを合成した結果に対する SIR目 標値という意味で、「仮想 SIR目標値」と呼ぶ。仮想 SIR目標値は、無線区間の電力 制御目標値である。
[0089] 仮想 SIR目標値算出部 32は、仮想 SIR目標値の算出及び仮想 SIR目標値を示す 値の出力を、制御部 35から指定される動作モード,及び目標品質に従って実行する 。仮想 SIR目標値算出部 32は、算出した仮想 SIR目標値を示す値を SIR目標値算 出部 33に入力する。
[0090] SIR目標値算出部 33は、仮想 SIR目標値算出部 32からの仮想 SIR目標値を示す 値と、品質測定部 31からの無線伝送路毎の伝送路品質関連情報とに基づいて、各 無線伝送路にっ 、て適用すべき SIR目標値 (第 2の送信電力制御目標値)を算出す る。 SIR目標値算出部 33は、制御部 35から通知される目標品質に従って、 SIR目標 値の算出を行う。 SIR目標値算出部 33は、無線伝送路毎に算出された SIR目標値を フレーム生成部 34に入力する。
[0091] フレーム生成部 34は、各無線伝送路に対応する SIR目標値をそれぞれ含む Outer
Loop P.C.フレーム (各無線伝送路に対応するフレーム)を生成し、送受信部 10の送 信処理部 12に与える。フレーム生成部 34は、制御部 35から指定される動作モード に従って動作を行う。
[0092] 送信処理部 12は、 SIR目標値を含む各フレームを、その SIR目標値に基づくイン ナーループ送信制御を実行する実行部 (例えば、基地局や移動端末)に送る。
[0093] 制御部 35は、アウターループ送信電力制御部 30の動作を制御するために、主とし て、以下の動作を行う。即ち、制御部 35は、品質測定部 31及び仮想 SIR目標値算 出部 32に対し、所定の測定周期に係るタイミング情報を与える。これによつて、品質 測定部 31及び仮想 SIR目標値算出部 32は、同期をとつて測定周期毎の測定処理 を行う。 [0094] また、制御部 35は、仮想 SIR目標値算出部 32及び SIR目標値 33に対し、同一の 目標品質 (品質目標値)を与える。これによつて、仮想 SIR目標値 32及び SIR目標値 算出部 33は、同一の目標品質 (例えば誤り率)に従って、仮想 SIR目標値や各無線 伝送路の SIR目標値を算出する。
[0095] さらに、制御部 35は、仮想 SIR目標値算出部 32及びフレーム生成部 34に対して、 同一の動作モードの指定を通知する。動作モードは、仮想 SIR目標値算出部 32に て、前回の仮想 SIR目標値と今回の仮想 SIR目標値の差分値を出力するモード (動 作モード 1とする)と、仮想 SIR目標値そのものを出力するモード (動作モード 2とする) とからなる。
[0096] 上記したアウターループ送信電力制御部 30は、例えば、プロセッサ (例えば CPU) ,プログラムやデータを記憶した記憶装置 (メモリ),入出力インタフェース等力 構成 される情報処理装置にぉ 、て、プロセッサが記憶装置に格納されたプログラムを実 行すること〖こよって実現される。以下、アウターループ送信電力制御部 30の構成要 素を個別に詳細に説明する。
[0097] [品質測定部]
品質測定部 31は、所定の測定周期毎に、一定の測定時間内における各無線伝送 路のデータサイズ及び無線伝送路品質情報を収集する。図 11は、品質測定部 31に よる処理の説明図である。
[0098] 品質測定部 31は、測定周期毎に発生するデータ収集開始タイミングで図 11に示 す処理を開始する。品質測定部 31は、測定時間が満了したか否かを判定する (Sl)。
[0099] 測定時間が満了していなければ (SI; NO),品質測定部 31は、測定時間が満了す るまでの間、無線伝送路毎に、(1)データサイズ情報と、(2)無線伝送路品質情報とを 蓄積する (S2)。
[0100] 測定時間が満了すると (SI ;YES)、品質測定部 31は、蓄積されたデータに基づい て、〈1〉データ比率 (各無線伝送路へ分配されたデータの分配率)と、〈2〉データの誤 り率とを算出し、算出結果を無線伝送路 SIR目標値算出部 33に通知する (S3)。
[0101] 上記処理において、データ比率は、例えば、以下のようにして算出される。即ち、測 定時間が満了したとき、品質測定部 31では、測定時間中に得られた各無線伝送路 のデータサイズの合計値が算出される。品質測定部 31は、無線伝送路間における 合計値の比を求めることで、各無線伝送路に対するデータ比率 (データ分配率)を得 ることがでさる。
[0102] また、誤り率は、次のようにして求められる。例えば、各セグメントの CRC演算結果 が無線伝送路品質情報として適用される場合、測定時間中に、セグメントに対する C RC演算によって得られる受信データ (セグメント)量 (Bit)及び受信データ中の誤り量( Bit)が、無線伝送路毎に累積される。測定時間が満了すると、各無線伝送路の受信 データ量及び誤り量の合計値 (累計値)から、各無線伝送路の誤り率が算出される。
[0103] 図 12は、収集された伝送路品質関連情報の例を示す図である。図 12では、無線 伝送路 # 0及び # 1から得られたデータに関して、各無線伝送路 # 0及び # 1のデー タ比率が 1Z2(0. 5)であり、無線伝送路 # 0の誤り率が 0. 1であり、無線伝送路 # 1 の誤り率が 0. 05であった場合が示されている。
[0104] [仮想 SIR目標値算出部]
仮想 SIR目標値算出部 (Target SIR— virtual算出部) 32は、 DHO処理後のデータ 復号結果 (合成データ)に基づいて算出される品質情報 (誤り率)から、受信データに っ 、て所望品質が得られて 、るかどうかを判定し、この結果に基づき仮想 SIR目標 値 (Target SIR— virtual)を算出する。
[0105] 例えば、仮想 SIR目標値算出部 32は、所定の測定時間内に、 DHO実施部 20から 、複数の合成データに対する CRC演算結果 (受信データ量 (Bit)及び誤り量 (Bit))を、 品質情報として受け取る。測定時間が満了すると、仮想 SIR目標値算出部 32は、 C RC演算結果の累計値 (受信データ量及び誤り量の各合計値)から、合成データに対 する誤り率の実測値を求める。
[0106] 一方、仮想 SIR目標値算出部 32は、制御部 35から、目標品質としての誤り率の目 標値を受け取る。仮想 SIR目標値算出部 32は、誤り率の実測値と目標値とを対比し 、その結果に基づく SIR目標値を算出する。
[0107] 図 13は、仮想 SIR目標値算出部 32による処理の例を示す図である。図 13には、 仮想 SIR目標値算出部 32による処理に係る 3つのパターンが表形式で示されている 。 3つのパターンとして、受信データ量及び誤り量に基づいて、誤り率の目標値 (例: 0 . 01)より高い誤り率が得られた場合 (第 1パターン), 目標値と同じ誤り率が得られた 場合 (第 2パターン),及び目標値より低い誤り率が得られた場合 (第 3パターン)が示さ れている。
[0108] 仮想 SIR目標値算出部 32は、誤り率の実測値が目標値になるような仮想 SIR目標 値を算出する。このとき、誤り率の実測値が目標値より高い場合、仮想 SIR目標値算 出部 32は、誤り率を低減する (SIR目標値 (送信電力)を増加する)ための仮想 SIR目 標値を算出する (増加処理)。誤り率が目標値と同じ場合、仮想 SIR目標値算出部 32 は、 SIR目標値の増減を行わな!/ヽ。誤り率が目標値より低!、場合、仮想 SIR目標値 算出部 32は、 SIR目標値 (送信電力)を減少させるための仮想 SIR目標値を算出する (減少処理)。
[0109] 仮想 SIR目標値算出部 32は、例えば、仮想 SIR目標値の差分値 δが生じた場合 にのみ、仮想 SIR目標値を出力する (SIR目標値算出部 33に通知する)ように構成す ることができる。この場合、仮想 SIR目標値算出部 32は、前回算出した仮想 SIR目標 値を記憶し、仮想 SIR目標値を新たに算出した場合に、前回の仮想 SIR目標値と今 回の仮想 SIR目標値との差分値 δを算出する( δ = Target SIR— virtual (前回)— Targ et SIR— virtuaK今回))。このとき、差分が生じない場合( δ =0)には、仮想 SIR目標値 の通知は行われない。これに対し、差分が生じた場合( δ≠0)には、仮想 SIR目標値 が通知される。
[0110] 通知すべき値 (仮想 SIR目標値を示す値)として、仮想 SIR目標値そのものと、差分 値(δ )とのいずれか一方を選択することができる。仮想 SIR目標値算出部 32は、制 御部 35から指定される動作モードに応じて、通知すべき値を変更する。即ち、仮想 S IR目標値算出部 32は、動作モード 1において差分値 δを算出及び出力し、動作モ ード 2において仮想 SIR目標値そのものを出力する。
[0111] 差分値 δを算出しない動作モード (動作モード 2)では、仮想 SIR目標値算出部 32 は、前回の仮想 SIR目標値を有しなくて良い。この場合、記憶領域の有効利用及び 処理の簡略ィ匕が図られる。
[0112] なお、この例では、差分値 δは、増加処理 (前回く今回)のときに負の値をとり、減少 処理 (前回〉今回)のときに正の値をとる。これにより、動作モード 1では、差分値 δか ら SIR目標値の増カロか減少かを知ることができる。これに対し、動作モード 2では、例 えば、仮想 SIR目標値とともに、 SIR目標値の増加か減少かを示す情報が通知され る。もっとも、 SIR目標値算出部 33が、前回の仮想 SIR目標値を有し、その差分を求 めて、今回の仮想 SIR目標値が SIR目標値の増カロと減少との 、ずれを示すかを判定 するようにしても良い。この場合、増加又は減少を示す情報の通知は不要である。
[0113] [SIR目標値算出部]
SIR目標値算出部 33は、仮想 SIR目標値算出部 32から通知される仮想 SIR目標 値を示す値 (仮想 SIR目標値又は差分値 δ )と、品質測定部 31から通知される伝送 路品質関連情報 (各無線伝送路のデータ比率及び誤り率)を収集する。 SIR目標値 算出部 33は、収集された仮想 SIR目標値及び伝送路品質関連情報を用いて、実際 に各無線伝送路に対して要求すべき SIR目標値を算出する。
[0114] SIR目標値算出部 33は、例えば、仮想 SIR目標値算出部 33から仮想 SIR目標値 又は差分値 δが通知されたことを契機として、処理を実行する。
[0115] 図 14は、 SIR目標値算出部の処理概要を示す図である。 SIR目標値算出部 33は 、 SIR目標値の算出契機が訪れると (S01)、複数の無線伝送路から制御対象伝送路 を選択し (S02)、選択された各制御対象伝送路に対する SIR目標値を算出する (S03 )。
[0116] [[SIR目標値の算出契機]]
SIR目標値算出部 33によって検知 (S01)される SIR目標値の算出契機 (更新契機) として、以下の二つの契機を挙げることができる。
(1)仮想 SIR目標値算出部 32からの仮想 SIR目標値を示す値の受領
(2)各無線伝送路に対するデータ比率の変更
SIR目標値算出部 33は、品質測定部 31から通知されるデータ比率に基づいて、 各無線伝送路に対するデータ比率が変更されたことを検知することができる。データ 比率の変更に応じた SIR目標値算出につ!、ては後述する。
[0117] [[制御対象伝送路の選択]]
SIR目標値算出部 33が制御対象伝送路の選択処理 (S02)を実行する場合に適用 可能な方式として、以下の二つの方式を挙げることができる。 (方式 A)全ての無線伝送路を制御対象伝送路として選択する。
(方式 B)最終的な目標品質と無線伝送路の品質との比較結果に基づき制御対象伝 送路を決定する。
[0118] 方式 Bが採用される場合、 SIR目標値算出部 33は、各無線伝送路における受信デ ータ (セグメント)の誤り率と、ダイバーシティ合成後の合成データに対する目標品質( 誤り率)とを比較し、比較結果に基づ!ヽて各無線伝送路を制御対象とするか否かを決 定する。
[0119] 図 15は、方式 Bで比較対象となる誤り率の例を示す。図 15では、無線伝送路 # 0 及び # 1に対する誤り率の実測値 (0. 1, 0. 05)と、 DHO (ダイバーシティ合成)後の 受信データ (合成データ)の誤り率の実測値 (0. 02)と、誤り率の目標値 (0. 01)とが示 されている。誤り率の目標値は、制御部 35から SIR目標値算出部 33に通知される( 図 10)。
[0120] SIR目標値算出部 33は、各無線伝送路の誤り率と、目標値とをそれぞれ比較する 。このとき、誤り率が目標値と等しい無線伝送路があれば、その無線伝送路は制御対 象から除外される。これに対し、誤り率が異なる場合には、その無線伝送路は制御対 象候補になる。図 15に示す例では、各無線伝送路 # 0及び # 1は、制御対象候補に なる。
[0121] 次に、 SIR目標値算出部 33は、制御対象候補の各無線伝送路の誤り率が目標値 ( 目標品質)を上回るか下回るかを判定する。さらに、 SIR目標値算出部 33は、制御対 象候補の各無線伝送路に関し、仮想 SIR目標値算出部 32から通知された仮想 SIR 目標値を示す値が SIR目標値の増カロと減少との ヽずれを示すかを考慮する。
[0122] ここで、 SIR目標値の増加が示され、且つ誤り率が目標品質を上回る無線伝送路 は、制御対象から除外される。これによつて、当該無線伝送路に対する不要な電力 増加が回避され、電力浪費を抑えることができる。
[0123] また、 SIR目標値の減少が示され、且つ誤り率が目標品質を下回る無線伝送路は 制御対象から除外される。これによつて、当該無線伝送路の電力低下による更なる 品質の悪ィ匕が回避される。
[0124] 上述した方法 (「方法 1」とする)に代えて、無線伝送路の品質の上限及び下限値を、 目標品質と異なる判定用パラメータとして用意し、制御対象力否力が判定されるよう に構成することもできる (方法 2)。
[0125] 図 16は、方法 2に係る制御対象伝送路判定方法を説明するための図である。図 16 には、目標品質,品質上限及び下限値,及び仮想 SIR目標値を示す値 (SIR目標値 の増加又は減少)に基づぐ無線伝送路 A〜Dに対する制御対象判定の例が示され ている。図 17は、目標品質,品質上限及び下限値,及び図 16に示された無線伝送 路 A〜Dとの関係を示す図である。
[0126] 図 16には、無線伝送路 A〜Dに関して、目標品質に対する無線伝送路の誤り率の 状態と、仮想 SIR目標値を示す値で示される SIR目標値の増加又は減少と、制御対 象とされるか否かの判定結果とが表形式で示されている。
[0127] 図 16において、 SIR目標値の増加はプラス記号で示され、減少はマイナス記号で 示されている。また、無線伝送路が制御対象として決定される場合が丸印で示され、 制御対象から除外される場合がバッ印で示されている。
[0128] また、図 17には、各無線伝送路 A〜Dの誤り率に基づく品質が棒グラフ形式で示さ れている。棒グラフは各無線伝送路の誤り率の小ささを示し、誤り率が小さい程高い 。この棒グラフで示される、誤り率に基づく品質の高さを示す値を「品質値」と呼ぶ。
[0129] 図 16及び図 17に示すように、無線伝送路 Aの品質値は、目標品質値未満である。
この場合、 SIR目標値の増加が示されていれば、無線伝送路 Aは制御対象として決 定される (図 16において丸印で示す)。これに対し、 SIR目標値の減少が示される場 合には、無線伝送路 Aは制御対象から除外される。更なる電力低下による品質低下 を抑えるためである。
[0130] また、無線伝送路 Bの品質値は、品質下限値以上であるが、目標品質値未満であ る。この場合、 SIR目標値の増加及び減少の双方において、無線伝送路 Bは、制御 対象として決定される。
[0131] また、無線伝送路 Cの品質値は、目標品質値以上であるが、品質上限値未満であ る。この場合、 SIR目標値の増加及び減少の双方において、無線伝送路 Cは、制御 対象として決定される。
[0132] また、無線伝送路 Dの誤り率は、品質上限値以上である。この場合、 SIR目標値が 増加を示す場合には、無線伝送路 Dは、制御対象から除外される。不要な電力増加 を抑えて電力浪費を回避するためである。これに対し、 SIR目標値が減少を示す場 合には、無線伝送路 Dは制御対象として決定される。
[0133] 以上のようにして、制御対象伝送路が複数の無線伝送路の中から決定される。
[0134] [[各無線伝送路用 SIR目標値の算出]]
SIR目標値算出部 33による制御対象伝送路に対する SIR目標値の算出処理 (S03
)において適用可能な SIRの変更方法として、以下の二つの方式を挙げることができ る。
(方式 1) 一定値だけ SIRを変更する。
(方式 2) 各無線伝送路の誤り率の比率で、変更する SIRの量を決定する。
[0135] 方式 1が適用される場合には、 SIR目標値算出部 33は、制御対象の各無線伝送路 における受信データ (セグメント)の誤り率 (図 12における誤り率)と、誤り率の目標値( 図 13における誤り率 (目標))とを比較する。
[0136] このとき、誤り率が目標値と等しい場合には、 SIR目標値算出部 33は、 SIR目標値 の変更 (SIR目標値算出)を実行しない。これに対し、誤り率が目標値と異なる場合に は、仮想 SIR目標値を示す値で示される SIRの増加又は減少指示に従って、 SIR目 標値算出部 33は、予め定められた一定量又は一定割合だけ現在の SIR目標値を増 加又は減少する。これによつて得られた値が変更に係る SIR目標値となる。
[0137] 方式 2が適用される場合、 SIR目標値算出部 33は、制御対象伝送路についての伝 送路品質関連情報 (データ比率及び誤り率)から、 SIR目標値を決定するための配分 値 (重み) Rを算出する。この重み Rは、仮想 SIR目標値 (Target SIR— virtual)をどのよ うに各無線伝送路に分配するかを決定するものであり、各無線伝送路間の誤り量の 比率に基づいて決定される。よって、重み Rは、各無線伝送路による誤り発生の重み を示す。
[0138] 例えば、二つの無線伝送路 # 0及び # 1がある場合に、重み (誤り比重) Rは、次の 式 1で規定することができる。
[0139] (式 1) · · · R=A a (or(B j8》ZA a +B j8 (0≤R≤1)
但し、 Aは無線伝送路 # 0のデータ比率であり、 aは無線伝送路 # 1の誤り率であ る。また、 Bは無線伝送路 # 1のデータ比率であり、 βは無線伝送路 # 1の誤り率で ある。
[0140] 上記式 1によって算出された値に、仮想 SIR目標値 (動作モード 2の場合)を掛けた 値を各無線伝送路に指定すべき SIR目標値とする。さらに、算出された値 (SIR更新 量)に一定量の正のマージン ( Δ )を設けることができる。但し、マージンを設けることは 、オプションである。
[0141] 上記した式 1の一般式は、次のようになる。
[0142] [数 1]
Figure imgf000027_0001
上記一般式において、 Aは各無線伝送路のデータ比率, aは各無線伝送路の誤り 率を示し、 Xは全ての制御対象伝送路の数を示し (x= 1 ,2, · · · η— l ,n : nは自然数)、 cは任意の制御対象伝送路を示す (c = 1 ,2, · · · ,c— l ,c : cは自然数)。
[0143] 図 18は、 SIR目標値算出部 33による SIR目標値の算出処理 (動作モード 2の場合) の説明図である。図 18に示すように、 SIR目標値算出部 (Target SIR算出部) 33には 、仮想 SIR目標値算出部 32からの仮想 SIR目標値 (Target SIR— virtual)が入力され る。また、 SIR目標値算出部 33には、各無線伝送路の伝送路品質関連情報が入力 される。図 18に示す例では、無線伝送路 # 0及び # 1の伝送路品質関連情報として 、無線伝送路 # 0の誤り率 oc及びデータ比率 Aと、無線伝送路 # 1の誤り率 β及び データ比率 Βとが入力されて 、る。
[0144] SIR目標値算出部 33は、ひ, A, j8及び Bを用いて、式 1により、各無線伝送路 # 0 及び # 1に対する重み R(R— 0, R— 1)を算出する。続いて、 SIR目標値算出部 33は 、各無線伝送路 # 0及び # 1に対する SIR目標値 (Target SIR— 0, Target SIR— 1)を 次の式 2及び式 3によって求める。
(式 2) · · - Target SIR— 0 = R— 0 * Target SIR— virtual (+ Δ )
(式 3) · · - Target SIR— 1 = R_l * Target SIR— virtual (+ Δ )
図 18による SIR目標値算出部 33による処理にお 、て、仮想 SIR目標値を示す値 が仮想 SIR目標値を示す場合 (動作モード 2)には、上記式 2や式 3によって、仮想 SI R目標値の各無線伝送路に対する配分量が決定される。
[0145] 図 19は、仮想 SIR目標値から各無線伝送路に対する SIR目標値を算出する例を 示す図である。図 19では、仮想 SIR目標値を示す値として、仮想 SIR目標値 (Target SIR— virtual = 10(dB》が与えられている。そして、式 1に従って、各無線伝送路 # 0及 び # 1に対する R(R— 0, R— 1)として、それぞれ R— 0=3, R— 1=2が算出されている。 従って、無線伝送路 # 0及び # 1に対する SIR目標値 (Target SIR)として、それぞれ 6 (dB), 4(dB)が算出される。但し、図 19では、マージンは考慮されていない。
[0146] 或いは、図 18を用いて説明した SIR目標値算出部 33による処理において、仮想 SI R目標値を示す値が仮想 SIR目標値の差分値 δを示す場合 (動作モード 1)には、こ の差分値 δの各無線伝送路に対する配分量が、式 2や式 3によって決定される。
[0147] 図 20は、仮想 SIR目標値の差分値 δから各無線伝送路に対する SIR目標値を算 出する例 (動作モード 1)を示す図である。図 20では、仮想 SIR目標値を示す値として 、仮想 SIR目標値の差分値 δ (Target SIR— virtual ( δ ) = 5(dB》が与えられている。 現在の各無線伝送路 # 0及び # 1に対する SIR目標値は、それぞれ、 8(dB), 6(dB) である。さら〖こ、式 1に従って、各無線伝送路 # 0及び # 1に対する R(R— 0, R— 1)と して、それぞれ、 R— 0=3, R— 1=2が算出されている。従って、無線伝送路 # 0及び # 1に対する SIR目標値 (Target SIR)として、それぞれ l l(dB), 8(dB)が算出されている 。但し、図 20では、マージンは考慮されていない。
[0148] なお、図 20に示した例は、 SIR目標値を増加する場合を示す。 SIR目標値を減少 する場合には、算出された各無線伝送路の重みが、現在の SIR目標値から減算され る。
[0149] 図 21A及び図 21Bは、仮想 SIR目標値を入力とする場合 (動作モード 2)における S IR目標値算出部 33による SIR目標値算出のアルゴリズム例を示す。図 21A及び 21 Bでは、 3つの無線伝送路 # 0, # 1及び # 2に対する SIR目標値を算出する例が示さ れている。図 21Aは、マージンをカ卩算しない構成を示し、図 21Bは、マージンを加算 する構成を示す。
[0150] 図 21Aにおいて、入力として、仮想 SIR目標値と、各無線伝送路 # 0, # 1及び # 2 に対する重み R(R— 0,R— 1及び R— 2)が与えられる。すると、無線伝送路毎に用意さ れた乗算器によって、仮想 SIR目標値と各重み Rとがそれぞれ乗算される。これによ つて、各無線伝送路 # 0, # 1及び # 2に対する SIR目標値 (Target SIR— 0, Target SI R—l及び Target SIR— 2)が出力される。
[0151] 図 21Bでは、図 21Aに示した各乗算器の後段に、各無線伝送路 # 0, # 1及び # 2 に対応する加算器が設けられ、各加算器にマージン Δが入力される。従って、仮想 S IR目標値と各重みとの乗算結果にマージン Δが加算された値が、各無線伝送路に 対応する SIR目標値として算出される。
[0152] 図 22は、仮想 SIR目標値の差分を入力とする場合 (動作モード 1)における SIR目標 値算出部 33による SIR目標値算出のアルゴリズム例を示す。図 22では、 3つの無線 伝送路 # 0, # 1及び # 2に対する SIR目標値を算出する例が示されて!/ヽる。図 22は 、マージン Δを加算する構成を示す。
[0153] 図 22において、最初に、無線伝送路毎に用意された乗算器によって、仮想 SIR目 標値の差分 (Target SIR— virtual ( δ;))と、各無線伝送路に対応する重み R(R— 0,R— 1,R— 2)とが乗算される。次に、各無線伝送路に対応する加算器によって、乗算結果 に各無線伝送路の現在の SIR目標値 (Target SIR— 0 (NOW), Target SIR— 1 (NOW) , Target SIR— 2 (NOW))が加算される。次に、各加算結果にマージン Δが加算器に よって加算される。これによつて、各無線伝送路 # 0, # 1及び # 2に対する新たな SI R目標値 (Target SIR— 0 (NEW), Target SIR— 1 (NEW), Target SIR— 2 (NEW))が出 力される。
[0154] なお、図 22の構成では、 SIR目標値が増加される場合には、正の値を持つ差分値
δ (更新量)が入力される。これに対し、 SIR目標値が減少される場合には、負の値を 持つ差分値 δが入力される。また、マージンの付与が考慮されない場合、図 22の構 成から、最終段に設けられた各無線伝送路に対する加算器が省略される。また、図 2 1及び図 22に示した乗算器及び加算器による系列は、使用が予定される無線伝送 路の数に応じて用意され、制御対象伝送路に応じた数の系列のみが使用される。
[0155] このようにして、 SIR目標値算出部 33は、制御対象の各無線伝送路に対する SIR
目標値を算出する。 [0156] [フレーム生成部]
Outerloop P.C.フレーム生成部 (フレーム生成部) 34では、 SIR目標値算出部 33よ り各無線伝送路の SIR目標値 (又は更新量)が通知されたことを契機に、各 SIR目標 値を含む Outerloop P.C.フレームを生成する。
[0157] フレーム生成部 34は、制御部 35から指示される動作モードに従って処理を行う。
即ち、 SIR目標値算出部 33から通知される値が、前回制御した値に対する差分値( 更新量)として通知される動作モード 1では、前回制御した値 (前回の SIR目標値)に 通知された差分値を加えた値を算出し、これを含むフレームを生成する。この場合、 フレーム生成部 34は、前回制御した値を記憶しておく。
[0158] これに対し、 SIR目標値算出部 33から今回の (新たな) SIR目標値が通知される動 作モード 2では、フレーム生成部 34は、通知された SIR目標値を含むフレームを生成 する。
[0159] なお、上述した動作モード 1では、無線伝送路の初期設定時、及び無線伝送路の 追加時における初期値が、別途、通知される。初期値の通知は、例えば、制御部 35 力も通知されるように構成することができる (図 10参照)。
[0160] 生成されたフレームは、送信処理部 12(図 10)により、フレームの送信先に送信され る。送信先では、フレームから SIR目標値又は差分値を取り出し、取り出した値に従 つて、インナーループ送信電力制御に使用して 、る現在の SIR目標値を更新する。
[0161] これによつて、 SIR目標値が増加する場合には、送信電力増加によって、制御対象 伝送路の品質改善が図られる。一方、 SIR目標値が減少する場合には、送信電力減 少によって、制御対象伝送路に対応する電力浪費が抑えられる。
[0162] 〈データ比率変更時における SIR目標値更新〉
上述したように、 SIR目標値は、 SIR目標値算出部 33が仮想 SIR目標値算出部 32 から仮想 SIR目標値を示す値を受け取った場合に更新することができる。
[0163] さらに、 SIR目標値は、 SIR目標値算出部 33が、品質測定部 31からデータ比率の 変更発生通知を受領した場合にも更新されるように、構成することができる。
[0164] 図 23は、データ比率変更時における処理シーケンスを示す図である。図 6及び図 7 を用いて説明したように、本実施形態では、各無線伝送路の品質状況に従って、各 無線伝送路に分配されるデータの分割率 (各無線伝送路に対するデータ比率)が決 定される。
[0165] 各無線伝送路のデータ比率は、上述した品質測定部 31によって測定される。品質 測定部 31は、少なくとも前回の測定時間中に算出したデータ比率を記憶する。品質 測定部 31は、今回のデータ比率が前回のデータ比率と異なる (許容範囲を超える)と 判断する場合には、データ比率変更通知を SIR目標値算出部 33に与える (S001)。
[0166] SIR目標値算出部 33は、データ比率変更通知を受け取った場合には、更新条件 の問い合わせを仮想 SIR目標値算出部 32に対して行う (S002)。このとき、仮想 SIR 目標値算出部 32は、変更に係るデータ比率 (データ分配率)が、所定の SIR目標値 の更新条件 (予め仮想 SIR目標値算出部 32にて保持されて ヽる)を満たすか否かを 判定する。
[0167] 更新条件が満たされない場合には、仮想 SIR目標値算出部 33は、 SIR目標値算 出部 33に対する応答を行わない (処理を継続する)。これに対し、更新条件が満たさ れる場合には、仮想 SIR目標値算出部 33は、仮想 SIR目標値算出のための測定処 理をリセットすべきと判定し、現時点での測定結果を用いて仮想 SIR目標値を示す値 を算出し、問い合わせに対する応答として SIR目標値算出部 33に返送する (S003)。
[0168] すると、 SIR目標値算出部 33は、仮想 SIR目標値を示す値の受領を SIR目標値算 出の契機 (更新条件)とするので、受領した仮想 SIR目標値を示す値を用いて制御対 象伝送路の SIR目標値を算出する (S004)。
[0169] なお、仮想 SIR目標値算出部 32は、更新条件問い合わせに対する応答を行った 場合には、仮想 SIR目標値算出のための測定周期をクリア (リセット)し、新たな測定周 期での測定を再開する。
[0170] また、 SIR目標値算出部 33は、データ比率が変更された場合に、この変更に係る データ比率 (データ量)を考慮して、制御対象伝送路の SIR目標値の算出 (仮想 SIR 目標値又は差分値 δの配分量)を決定することもできる。即ち、 SIR目標値算出部 33 は、ステップ S004の処理において、変更前のデータ比率を用いて SIR目標値算出 を行っても良ぐ変更後のデータ比率を用いて SIR目標値算出を行っても良い。
[0171] また、上記構成に代えて、品質測定部 31がデータ比率の変更を検知すると、品質 測定部 31及び仮想 SIR目標値算出部 32による測定処理がリセット (クリア)され、新た な測定周期 (測定開始タイミング)での測定処理が再開されるようにしても良い。
[0172] 或いは、上記構成に代えて、次のような構成を適用することもできる。即ち、 SIR目 標値算出部 33は、データ比率変更通知を受け取った場合、更新条件の問い合わせ を仮想 SIR目標値算出部 32に対して行う (S002に相当)。このとき、仮想 SIR目標値 算出部 32は、例えば、以下の動作を行う。
[0173] データ比率が変更された場合、その変更に係るデータ比率 (データ分配率)は、制 御部 35に通知される。制御部 35は、データ比率に応じた目標品質 (例えば誤り率)を 再計算する。仮想 SIR目標値算出部 32は、 SIR目標値算出部 33からの問い合わせ に応じて、目標品質の送信指示を制御部 35に通知する。
[0174] 制御部 35は、データ比率の変更に係る目標品質を仮想 SIR目標値算出部 32及び SIR目標値算出部 33に通知する。このとき、制御部 35は、目標品質の値が変更され た場合には、各無線伝送路に係る測定をリセットすべぐ新たな測定開始タイミング( 測定周期)を品質測定部 31及び仮想 SIR目標値算出部 32に与える。 目標品質の値 が変更されな 、場合、制御部 35から送信指示に対する応答は行われな ヽ。
[0175] 仮想 SIR目標値算出部 32は、目標品質の送信指示に応じて、制御部 35から新た な目標品質と測定周期とを受け取った場合には、これらに従って仮想 SIR目標値を 示す値を再計算し、動作モードに応じた仮想 SIR目標値を示す値 (仮想 SIR目標値 又は差分値 δ )を SIR目標値算出部 33に与える (S003に相当)。これに対し、仮想 SI R目標値算出部 32は、目標品質に変更がない場合淛御部 35からの応答がない場 合)には、従前と同様の処理を行い、仮想 SIR目標値を示す値を SIR目標値算出部 3 3に与える。
[0176] SIR目標値算出部 33は、目標品質の変更に係る仮想 SIR目標値を示す値を受け 取った場合には、これに対応する伝送路品質関連情報を品質測定部 31から受け取 り、制御対象の無線伝送路に対する SIR目標値の算出処理を実行する (S004)。
[0177] このようにして、データ比率が変更された場合に、例えば目標品質が変更される場 合には、その変更に係る目標品質に応じた仮想 SIR目標値及び各制御対象伝送路 の SIR目標値を算出するための処理が実行される。 [0178] なお、上述したような、品質測定部 31がデータ比率変更を検知する構成に代えて、 次のような動作が実行されるように構成することができる。即ち、制御部 35がデータ 比率の変更を検知する (例えば、データ分割率判定部 7(図 6)からの変更に係るデー タ分配率を受け取る)と、仮想 SIR目標値算出部 32からの送信指示を受けることなぐ 制御部 35は、データ比率変更に係る目標品質及び測定周期を各部に通知する。品 質測定部 31及び仮想 SIR目標値算出部 32は、測定周期の通知に従って測定をリセ ットし、新たな測定周期に従ってデータ比率が変更された各無線伝送路について再 測定を行う。仮想 SIR目標値算出部 32は、再測定結果に応じた仮想 SIR目標値を 示す値を SIR目標値算出部 32に通知する。 SIR目標値算出部 32は、品質測定部 3 1からの再測定に係る伝送路品質情報と仮想 SIR目標値を示す値とから制御対象伝 送路の SIR目標値を算出する。
[0179] 〈適用例〉
次に、上述した DHO実施部 20及びアウターループ送信電力制御部 30の適用例 について説明する。図 24は、本実施形態の適用例を示す図である。
[0180] 図 24には、移動端末 40と、複数の基地局 50A及び 50Bと、基地局制御装置 60と を備える移動通信システムが示されている。移動端末 40は、データ送信制御部 41と 、無線送信部 42と、無線受信部 43とを備えている。データ送信制御部 41は、 DHO 実施部を有している。
[0181] 各基地局 50A及び 50Bは、無線受信部 51と、無線送信部 52とを備えている。基地 局制御装置 60は、送受信部 61A及び 61Bと、データ受信制御部 62とを備えている 。データ受信制御部 62は、図 10に示したような DHO実施部 20及びアウターループ 送信電力制御部 30を含んで ヽる。
[0182] 《インナーループ送信電力制御》
図 24に示すシステムにおいて、移動端末 40と、各基地局 50A及び 50Bとの間の 無線区間には、複数の無線伝送路 (ブランチ)が形成される。例えば、上り方向 (移動 端末→基地局)のデータ送信において、 DHOが実施される場合には、例えば、移動 端末 40と基地局 50Aとの間で無線伝送路 (ブランチ) # 0が形成されるとともに、移動 端末 40と基地局 50Bとの間で無線伝送路 (ブランチ) # 1が形成される。移動端末 40 は、各無線伝送路 # 0及び # 1に対し、基地局制御装置 60への送信対象データを 含む無線信号を送出する。
[0183] 図 24に示す移動通信システムでは、このような上り方向の無線信号 (無線電波)に 対するインナーループ送信電力制御が、次のようにして実行される。
[0184] 基地局 50Aの無線受信部 51は、移動端末 40からの無線信号を受信すると、その 無線信号の SIRを測定し、予め記憶されて 、る SIR目標値と比較する。
[0185] このとき、 SIRが SIR目標値よりも低ければ、送信電力の増加を指示する TPCコマ ンドが、 SIRが SIR目標値よりも高ければ送信電力の減少を指示する TPCコマンドが 生成される。
[0186] TPCコマンドは、無線送信部 52に与えられる。無線送信部 52は、移動端末 40との 間に設けられた下り方向 (基地局→移動端末)の無線伝送路を用いて、 TPCコマンド を含む無線信号を送信する。
[0187] 以上のような基地局 50Aでの処理は、移動端末 40からの無線信号を受信した基地 局 50Bでも実行され、 TPCコマンドを含む無線信号が基地局 50Bカゝら移動端末 40 へ送信される 0
[0188] 移動端末 40の無線受信部 43は、無線信号カゝら TPCコマンドを抽出し、無線送信 部 42に与える。無線送信部 42は、 TPCコマンドを解析し、 TPCコマンドが送信電力 の増加指示であれば、無線信号の送信電力を増加し、減少指示であれば、送信電 力を減少する。このようにして、移動端末 40の無線信号の送信電力が、 SIR目標値 に近づくように制御される。
[0189] 《各サブキャリアの周波数選択性フェージングの発生判定》
図 24に示す移動通信システムでは、移動端末 40からの上り方向の無線伝送路 (ァ ップリンク)を用いた送信 (アップリンク送信)にお ヽて、各基地局 50A及び 50Bで異な るデータが受信されるようにすることができる。このため、移動通信システムは、以下 のような構成を持つ。
[0190] 移動端末 40と各基地局 50A及び 50Bとの間のアップリンク送受信に適用される無 線方式として、複数のサブキャリアを使用するマルチキャリア無線方式 (例えば、 OFD Mや OFCDM)が適用されている。ここでは、 OFCDMが適用されている。 [0191] OFCDMのようなマルチキャリア無線方式が適用される場合、上述したインナール ープ送信電力制御は、サブキャリア毎に実行することができる。
[0192] 各基地局 50A及び 50Bは、アップリンク送信に使用される各サブキャリアについて 、周波数選択性フェージングが発生しているか否かを判定する。例えば、各基地局 5 OA及び 50Bは、各無線伝送路 # 0及び # 1から受信される無線信号 (OFCDM信号 )で使用される各サブキャリアの受信レベルを測定する。各基地局 50A及び 50Bは、 所定の測定期間における複数のサブキャリアの平均受信レベルを算出する。次に、 各基地局 50A及び 50Bは、測定対象のサブキャリアの受信レベル (例えば平均値)を 抽出し、この受信レベルと平均受信レベルとの差分を算出する (受信レベル差分 =平 均受信レベル 判定対象受信レベル)。
[0193] 次に、各基地局 50A及び 50Bは、記憶装置に予め格納されているフェージング有 無の判定用データ (例:受信レベルの基準値)を読み出し、差分と比較する。このとき、 受信側は、差分が基準値より大きい場合 (受信レベル差分〉基準値)には、フェージ ングが発生していると判定する。これに対し、差分が基準値以下の場合 (受信レベル 差分≤基準値)には、フェージングが発生して 、な 、と判定する。
[0194] 各基地局 50A及び 50Bは、上記したフェージングの発生有無を全てのサブキヤリ ァについて判定し、判定結果を、下り方向の無線伝送路 (ダウンリンク)を用いて移動 端末 40にフィードバックする。
[0195] 移動端末 40のデータ送信制御部 41は、無線受信部 43を介して各基地局 50A及 び 50Bによる各サブキャリアの判定結果 (第 1の判定結果)を受け取る。
[0196] また、データ送信制御部 41は、無線受信部 43で各基地局 50A及び 50Bから受信 する各サブキャリアに対する TPCコマンドを所定回数蓄積する。データ送信制御部 4 1は、この所定回数に含まれる増加指示の TPCコマンド数が所定数を超えると、その サブキャリアに周波数選択性フェージングが発生して 、ると判定する。データ送信制 御部 41は、このような判定処理を全てのサブキャリアについて実行し、各サブキヤリ 、ての判定結果 (第 2の判定結果)を得る。
[0197] データ送信制御部 41は、第 1及び第 2の判定結果に基づいて、各サブキャリアの 周波数選択性フェージングの発生有無を最終的に判定する。例えば、データ送信制 御部 41は、各サブキャリアに対する第 1及び第 2の判定結果 (例:無じ' 0",有り" 1") の論理積を算出し、算出結果力 1"になるときに、そのサブキャリアにフェージングが 発生していると判定する。
[0198] 《受信有効サブキャリアの決定及び割当》
次に、データ送信制御部 41は、最終的な判定によって得られた各サブキャリアのフ エージング発生状況に基づき、各無線伝送路 # 0及び # 1につ 、て使用すべきサブ キャリアを決定する。
[0199] 図 25は、無線伝送路 (ブランチ) # 0及び # 1における複数のサブキャリア (図 25で は、 # 0〜# 15の 16本)に対するフェージング発生状況と、各ブランチ # 0及び # 1 が使用すべきサブキャリアの決定及び割当状況の例を示す図である。
[0200] 図 25は、上述したフェージング発生の判定結果に基づぐサブキャリア # 0〜# 15 に対するフェージングの発生状況が示されている。ブランチ # 0では、サブキャリア # 11及び # 13にフ ージングが発生し、ブランチ # 1では、サブキャリア # 2及び # 5 にフェージングが発生して 、る。
[0201] データ送信制御部 41は、発生状況に従って、例えば、各ブランチにフェージング が発生して!/、るサブキャリアが割り当てられな!/、ように、各ブランチで使用されるサブ キャリア (受信有効サブキャリア)を決定する。
[0202] 図 25に示す例では、ブランチ # 0に対し、サブキャリア番号 # 0〜# 7の使用が決 定され、これらのサブキャリアがブランチ # 0に割り当てられている。一方、ブランチ # 1に対し、サブキャリア番号 # 8〜 15の使用が決定され、これらのサブキャリアがブラ ンチ # 1に割り当てられている。このようなサブキャリアの割当結果 (受信有効サブキヤ リア)は、移動端末 40から各基地局 50A及び 50Bに通知される。これによつて、各基 地局 50A及び 50Bは、自装置がアップリンク受信で使用すべき受信有効サブキヤリ ァを認識することができる。
[0203] 上記した受信有効サブキャリアの決定及び割当によって、各無線伝送路のサブキ ャリアの使用率が決まる。図 25に示す例では、各無線伝送路 # 0及び # 1の使用率 は、それぞれ 0. 5である。データ送信制御部 41は、周波数選択性フェージングの発 生状況を、各無線伝送路の品質情報として、各無線伝送路のサブキャリアの使用率 を決定することができる。
[0204] 《アップリンク送信》
移動端末 40は、 DHOの実施時に、基地局制御装置 60に対して、基地局 50A及 び 50Bを介して (複数の無線伝送路 # 0及び # 1を用いた)送信対象データのアツプリ ンク送信を行う。図 26は、アップリンク送信の説明図である。
[0205] 図 24において、端末装置 (UE)のデータ送信制御部 41は、基地局制御装置 60へ の送信対象データを無線送信部 42に与える。無線送信部 42は、送信対象データを
OFCDM方式に従った OFCDM信号に変換し、各無線伝送路 # 0及び # 1へ送信 する。
[0206] 基地局 50Aでは、無線受信部 51が無線伝送路 # 0から OFCDM信号を受信し、こ の信号に対する復号処理を行う。ここで、基地局 50Aは、サブキャリア番号 # 0〜# 7 が有効受信サブキャリアであることを予め通知されている。このため、無線受信部 51 は、 OFCDM信号中のサブキャリア番号 # 0〜# 7を受信対象として、これらのサブ キャリア # 0〜 # 7から受信されたデータに対する復号処理を行 ヽ、データを復元す る。これによつて、移動端末 40から送信されたデータの一部 (セグメント)が生成される
[0207] 同様に、基地局 50Bでは、無線受信部 51が無線伝送路 # 1から OFCDM信号を 受信し、この信号に対する復号処理を行う。ここで、基地局 50Bは、サブキャリア番号 # 8〜# 15が有効受信サブキャリアであることを予め通知されている。このため、無 線受信部 51は、 OFCDM信号中のサブキャリア番号 # 8〜# 15を受信対象として、 これらのサブキャリア # 8〜 # 15から受信されたデータに対する復号処理を行い、デ ータを復元する。これによつて、移動端末 40から送信されたデータの一部 (セグメント) が生成される。各基地局 50A及び 50Bは、復元されたセグメントを基地局制御装置 6 0に送る。
[0208] 以上のようにして、各基地局 50A及び 50Bが受信有効サブキャリアに従った受信 処理を実行することによって、移動端末 40が実質的に各無線伝送路 # 0及び # 1に 送信対象データを分割して送信した状態となる。
[0209] 基地局制御装置 60では、各基地局 50A及び 50B力 のセグメントが送受信部 61 A及び 61Bでそれぞれ受信され、データ受信制御部 62に与えられる。
[0210] 《アウターループ送信電力制御》
データ受信制御部 62は、上述したように、 DHO実施部 20及びアウターループ送 信電力制御部 30を含んでいる。データ受信制御部 62では、セグメントの合成 (Reass emble)によって得られた送信対象データの品質情報 (データ量及び誤り率),及び各 無線伝送路 # 0及び # 1に係る伝送路品質関連情報 (データ比率及び誤り率)に基 づき、上述した仮想 SIR目標値を示す値,及び各無線伝送路 # 0及び # 1(制御対 象伝送路に該当する場合)に対する SIR目標値の算出処理が実行され、 SIR目標値 を含むフレームが出力される。
[0211] 例えば、各無線伝送路 # 0及び # 1が制御対象伝送路として決定された場合、各 無線伝送路に対応する SIR目標値を含むフレームが、送受信部 61 A及び 61Bを介 して各基地局 50A及び 50Bの無線受信部 51に通知される。各無線受信部 51は、フ レーム中の SIR目標値を用いて、現在の SIR目標値を更新する。これによつて、各無 線伝送路 # 0及び # 1上での誤り率の低減や、移動端末 40の送信電力の浪費を抑 えることができる。
[0212] 上記した処理において、例えば、移動端末 40は、送信対象データの送信前に、有 効受信サブキャリアの使用率に応じて送信対象データを分割し、分割された各デー タ (セグメント)に対する CRCデータを付与する。各セグメントに対する CRCデータは、 受信有効サブキャリアを用いて、対応する基地局へ送信される。これによつて、基地 局制御装置 60のデータ受信制御部 62は、各セグメントに対する CRC演算を行うこと ができ、各無線伝送路 # 0及び # 1に対する無線伝送路品質情報 (伝送路品質関連 情報)、即ちセグメントの誤り率を得ることができる。
[0213] もっとも、セグメントの誤り率に代えて、受信有効サブキャリアの割当結果 (サブキヤリ ァの使用率:フェージング発生状況)や、制御データの品質情報を、無線伝送路品質 情報として適用することで、上述したようなセグメントの CRCデータ付与を省略するこ とが可能である。
[0214] また、上述した処理において、移動端末 40は、同一のデータ (OFCDM信号)を各 無線伝送路 # 0及び # 1に送信している。この構成に代えて、移動端末 40が、受信 有効サブキャリアとして使用されないサブキャリアがデータを含まない二つの OFCD M信号を送信するようにしても良 、。
[0215] なお、上述した各サブキャリアに対する周波数選択性フェージングの発生判定,受 信有効サブキャリアの決定及び割当、並びにアップリンク送信は、本願の発明者が既 に出願した「移動端末及び基地局装置」(出願番号: PCT/JP2005/015478,出願日: 2005年 8月 25日,未公開)にて開示されている。
[0216] また、図 25に示した移動通信システムにおいて、基地局制御装置 60が、 DHO実 施時に、送信対象データを無線伝送路 # 0及び # 1に応じた二つのセグメントに分 割し、各基地局 50A及び 50Bを通じて移動端末 40に送信する場合において、各基 地局 50A及び 50B力も移動端末 40へのダウンリンク (下り方向の各無線伝送路)に対 するインナーループ送信電力制御が実行され、移動端末 40が各無線伝送路制御用 の SIR目標値を有して 、る場合を想定可能である。
[0217] この場合、移動端末 40が、図 25に示した基地局制御装置 60のデータ受信部 62と 同様の構成を有し、下り方向の各無線伝送路から受信されるセグメント及びこれを合 成して得られる送信対象データを用いて、仮想 SIR目標値及び各無線伝送路の SIR 目標値を算出し、現在の SIR目標値を更新するように構成することもできる。
[0218] 〈実施形態の効果〉
上述した実施形態によれば、 DHO貢献度の低 、無線伝送路に対して不必要な電 力増加指示を行うことを抑えることができる。一方で、 DHO貢献度が高い無線伝送 路を積極的に利用し、無線リソースの有効活用を行うことができる。

Claims

請求の範囲
[1] 無線伝送路へ送出される無線電波の送信電力制御の目標値を算出する装置であ つて、
複数の無線伝送路から得られたデータが合成された合成データの品質に基づく第
1の送信電力制御目標値を算出する第 1目標値算出部と、
前記第 1の送信電力制御目標値と、各無線伝送路に係る品質情報とに基づいて、 少なくとも 1つの無線伝送路に適用すべき第 2の送信電力制御目標値を決定する第 2目標値算出部と
を含む送信電力制御目標値算出装置。
[2] 前記第 1目標値算出部は、合成データの品質の目標値を有し、前記合成データの 品質と、前記合成データの品質の目標値とを対比し、前者が後者よりも大きい場合に 、送信電力を増加するための前記第 1の送信電力制御目標値を算出し、前者が後者 よりも小さい場合に、送信電力を減少するための前記第 1の送信電力目標値を算出 する
請求項 1記載の送信電力制御目標値算出装置。
[3] 前記第 2目標値算出部は、前記第 1目標値算出部からの通知をうけたときに前記第 2の送信電力制御目標値を算出し、
前記第 1目標値算出部は、最後に算出した前回の第 1の送信電力制御目標値を記 憶し、新たに第 1の送信電力制御目標値を算出した場合に、前回の第 1の送信電力 制御目標値と新たな第 1の送信電力制御目標値との差分を求め、差分が得られた場 合に、前記通知を行う
請求項 1又は 2記載の送信電力制御目標値算出装置。
[4] 前記第 2目標値算出部は、目標品質を有し、前記第 1目標値算出部から前記第 1 の送信電力制御目標値を示す値が通知されたときに、前記複数の無線伝送路の品 質情報と前記目標品質とを比較し、前記第 1の送信電力制御目標値を示す値が送 信電力の増加を示す場合に、前記品質情報が前記目標品質を上回る無線伝送路を 前記第 2の送信電力制御目標値の算出対象から除外する
請求項 1〜3のいずれかに記載の送信電力制御目標値算出装置。
[5] 前記第 2目標値算出部は、目標品質を有し、前記第 1目標値算出部から前記第 1 の送信電力制御目標値を示す値が通知されたときに、前記複数の無線伝送路の品 質情報と前記目標品質とを比較し、前記第 1の送信電力制御目標値を示す値が送 信電力の減少を示す場合に、品質情報が前記目標品質を下回る無線伝送路を前記 第 2の送信電力制御目標値の算出対象から除外する
請求項 1〜3のいずれかに記載の送信電力制御目標値算出装置。
[6] 前記第 2目標値算出部は、目標品質及び品質上限値を有し、前記第 1目標値算出 部から第 1の送信電力制御目標値を示す値を受け取った場合に、前記複数の無線 伝送路の品質情報と前記目標品質及び品質上限値とを比較し、前記第 1の送信電 力制御目標値を示す値が送信電力の増加を示す場合に、品質情報が前記目標品 質及び品質上限値を上回る無線伝送路を前記第 2の送信電力制御目標値の算出 対象から除外する
請求項 1〜3のいずれかに記載の送信電力制御目標値算出装置。
[7] 前記第 2目標値算出部は、目標品質及び品質下限値を有し、前記第 1目標値算出 部から第 1の送信電力制御目標値を示す値を受け取った場合に、前記複数の無線 伝送路の品質情報と前記目標品質及び品質下限値とを比較し、前記第 1の送信電 力制御目標値を示す値が送信電力の減少を示す場合に、品質情報が前記目標品 質及び品質下限値を下回る無線伝送路を前記第 2の目標値の算出対象から除外す る
請求項 1〜3のいずれかに記載の送信電力制御目標値算出装置。
[8] 前記第 2目標値算出部は、前記第 1目標値算出部からの通知を受け取った場合に 、前記合成データの品質と、前記各無線伝送路の品質情報とを対比し、両者が同一 の値を示す無線伝送路を前記第 2の目標値の算出対象から除外し、両者が同一の 値を示さな ヽ無線伝送路の少なくとも 1つにつ ヽて、現在送信電力制御に使用され て 、る第 2の送信電力制御目標値が一定量だけ増加又は減少した新たな第 2の送 信電力制御目標値を算出する
請求項 1〜7のいずれかに記載の送信電力制御目標値算出装置。
[9] 前記第 2目標値算出部は、前記第 1目標値算出部から前記第 1の送信電力制御目 標値を示す値が通知されたときに、前記第 2の送信電力制御目標値算出の対象とし ての各無線伝送路の品質情報に基づいて、各対象無線伝送路に対する前記第 1の 送信電力制御目標値を示す値の配分量を決定する
請求項 1〜8のいずれかに記載の送信電力制御目標値算出装置。
[10] 前記第 2目標値算出部は、前記各対象無線伝送路の品質情報に基づいて、対象 無線伝送路毎の重み R(0≤R≤1)を算出し、前記第 1の送信電力制御目標値を示 す値と各重み Rとを乗算して、各対象無線伝送路に対する前記第 1の送信電力制御 目標値を示す値の配分量を決定する
請求項 9記載の送信電力制御目標値算出装置。
[11] 前記第 2目標値算出部は、決定した配分量に一定値を加算する
請求項 9又は 10記載の送信電力制御目標値算出装置。
[12] 前記第 1の送信電力制御目標値を示す値は、前記第 1の送信電力制御目標値で あり、
前記第 2目標値算出部は、前記第 1の送信電力制御目標値の各対象無線伝送路 に対する配分量を、前記各対象無線伝送路について適用すべき第 2の送信電力制 御目標値として算出する
請求項 9又は 10記載の送信電力制御目標値算出装置。
[13] 前記第 1目標値算出部は、所定の測定周期毎に前記第 1の送信電力制御目標値 を算出し、
前記第 1の送信電力制御目標値を示す値は、前回の測定周期で算出された第 1の 送信電力制御目標値と、今回の測定周期で算出された第 1の送信電力制御目標値 との差分値であり、
前記第 2目標値算出部は、前記差分値の各対象無線伝送路に対する配分量を、 前記各対象無線伝送路について現在使用されている第 2の送信電力制御目標値に 対する更新量として算出する
請求項 9又は 10記載の送信電力制御目標値算出装置。
[14] 前記合成データの品質は、前記合成データの誤り率を含み、
前記各無線伝送路の品質情報は、前記各無線伝送路から得られるデータの誤り率 を含む
請求項 1〜11のいずれかに記載の送信電力制御目標値算出装置。
[15] 前記第 2目標値算出部は、前記各無線伝送路から得られるデータの比率が変更さ れた場合に、前記第 2の送信電力制御目標値の算出処理を実行する
請求項 1〜11のいずれかに記載の送信電力制御目標値算出装置。
[16] 無線伝送路へ送出される無線電波の送信電力制御の目標値を算出する情報処理 装置が、
複数の無線伝送路から得られたデータが合成された合成データの品質に基づく第 1の送信電力制御目標値を算出し、
前記第 1の送信電力制御目標値と、各無線伝送路に係る品質情報とに基づいて、 少なくとも 1つの無線伝送路に適用すべき第 2の送信電力制御目標値を決定する ことを含む送信電力制御目標値算出方法。
PCT/JP2005/017414 2005-09-21 2005-09-21 送信電力制御目標値算出装置 WO2007034546A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007536367A JP4727671B2 (ja) 2005-09-21 2005-09-21 送信電力制御目標値算出装置
PCT/JP2005/017414 WO2007034546A1 (ja) 2005-09-21 2005-09-21 送信電力制御目標値算出装置
EP05785924A EP1940048A4 (en) 2005-09-21 2005-09-21 TARGET POWER CONTROL TARGET VALUE CALCULATION DEVICE
US12/076,714 US8135428B2 (en) 2005-09-21 2008-03-21 Transmission power control target calculating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017414 WO2007034546A1 (ja) 2005-09-21 2005-09-21 送信電力制御目標値算出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/076,714 Continuation US8135428B2 (en) 2005-09-21 2008-03-21 Transmission power control target calculating apparatus

Publications (1)

Publication Number Publication Date
WO2007034546A1 true WO2007034546A1 (ja) 2007-03-29

Family

ID=37888607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017414 WO2007034546A1 (ja) 2005-09-21 2005-09-21 送信電力制御目標値算出装置

Country Status (4)

Country Link
US (1) US8135428B2 (ja)
EP (1) EP1940048A4 (ja)
JP (1) JP4727671B2 (ja)
WO (1) WO2007034546A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219684A (ja) * 2009-03-13 2010-09-30 Nec Commun Syst Ltd 基地局制御装置、移動通信システム、基地局制御方法、移動通信システムの電力制御方法及びプログラム
JP2012521152A (ja) * 2009-03-17 2012-09-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) デュアルキャリアhsupaにおけるアウタループ電力制御に関する無線基地局、ネットワーク制御ノード、及び、その方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195076A (ja) * 2006-01-20 2007-08-02 Nec Corp 無線通信システムとその送信電力制御方法および装置
CN101394209B (zh) * 2007-09-21 2013-02-27 华为技术有限公司 宏分集合并实现方法、系统和设备
US9420548B2 (en) * 2008-07-31 2016-08-16 Qualcomm Incorporated Dynamic IoT setpoints and interference control
US8787177B2 (en) * 2008-11-03 2014-07-22 Apple Inc. Techniques for radio link problem and recovery detection in a wireless communication system
KR20120006259A (ko) * 2010-07-12 2012-01-18 삼성전자주식회사 이동 통신 시스템에서 업링크 송신 전력 상태 보고 장치 및 방법
US9769041B2 (en) * 2010-12-15 2017-09-19 Hirschmann Automation And Control Gmbh Method for identifying connection errors of a multiconductor data line
GB2491887B (en) * 2011-06-16 2014-04-16 Broadcom Corp Multicarrier communication support
EP3041297B1 (en) * 2013-09-27 2017-08-23 Huawei Technologies Co., Ltd. Method and device for adjusting sending power
CN108235417B (zh) * 2016-12-22 2021-03-30 华为技术有限公司 下行传输方法、基站和终端设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307511A (ja) * 1999-04-16 2000-11-02 Nec Corp 符号分割多元接続方式移動通信システム
JP2002016545A (ja) * 2000-06-29 2002-01-18 Ntt Docomo Inc 送信電力制御方法および移動通信システム
JP2002171557A (ja) * 2000-11-29 2002-06-14 Matsushita Electric Ind Co Ltd 無線インフラ装置
JP2003111134A (ja) * 2001-09-27 2003-04-11 Ntt Docomo Inc 移動通信システム、移動通信方法、基地局制御局、基地局及び移動局
JP2003318819A (ja) * 2002-04-24 2003-11-07 Nec Corp Cdma移動通信方式における送信電力制御方法および無線基地局とcdma通信システム
WO2006095423A1 (ja) 2005-03-09 2006-09-14 Fujitsu Limited 通信システム、送信方法
WO2007023555A1 (ja) 2005-08-25 2007-03-01 Fujitsu Limited 移動端末及び基地局装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199869B2 (ja) * 1999-01-27 2008-12-24 株式会社日立コミュニケーションテクノロジー 無線通信システム及びそのハンドオフ方法
JP3795743B2 (ja) * 2000-11-17 2006-07-12 株式会社エヌ・ティ・ティ・ドコモ データ伝送方法、データ伝送システム、送信装置および受信装置
JP3544368B2 (ja) * 2001-11-16 2004-07-21 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける待ち受け制御方法および移動機
US7133689B2 (en) * 2002-09-12 2006-11-07 Interdigital Technology Corporation Method and system for adjusting downlink outer loop power to control target SIR
EP1548960B1 (en) * 2002-09-30 2015-07-29 Fujitsu Limited Transmission power control method and transmission power controller
TW201328227A (zh) * 2003-11-17 2013-07-01 Interdigital Tech Corp 無縣通信系統中控制上鏈/下鏈通信傳輸功率位準之方法、存取點及wtru
US20060084459A1 (en) * 2004-10-13 2006-04-20 Vinh Phan Outer loop power control of user equipment in wireless communication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307511A (ja) * 1999-04-16 2000-11-02 Nec Corp 符号分割多元接続方式移動通信システム
JP2002016545A (ja) * 2000-06-29 2002-01-18 Ntt Docomo Inc 送信電力制御方法および移動通信システム
JP2002171557A (ja) * 2000-11-29 2002-06-14 Matsushita Electric Ind Co Ltd 無線インフラ装置
JP2003111134A (ja) * 2001-09-27 2003-04-11 Ntt Docomo Inc 移動通信システム、移動通信方法、基地局制御局、基地局及び移動局
JP2003318819A (ja) * 2002-04-24 2003-11-07 Nec Corp Cdma移動通信方式における送信電力制御方法および無線基地局とcdma通信システム
WO2006095423A1 (ja) 2005-03-09 2006-09-14 Fujitsu Limited 通信システム、送信方法
WO2007023555A1 (ja) 2005-08-25 2007-03-01 Fujitsu Limited 移動端末及び基地局装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219684A (ja) * 2009-03-13 2010-09-30 Nec Commun Syst Ltd 基地局制御装置、移動通信システム、基地局制御方法、移動通信システムの電力制御方法及びプログラム
JP2012521152A (ja) * 2009-03-17 2012-09-10 テレフオンアクチーボラゲット エル エム エリクソン(パブル) デュアルキャリアhsupaにおけるアウタループ電力制御に関する無線基地局、ネットワーク制御ノード、及び、その方法

Also Published As

Publication number Publication date
EP1940048A4 (en) 2012-04-25
US8135428B2 (en) 2012-03-13
JPWO2007034546A1 (ja) 2009-03-19
US20080214230A1 (en) 2008-09-04
EP1940048A1 (en) 2008-07-02
JP4727671B2 (ja) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2007034546A1 (ja) 送信電力制御目標値算出装置
JP4723088B2 (ja) ソフトハンドオフにある間送信パワーを制御するための方法及び装置
US7072321B2 (en) Forward-link scheduling in a wireless communication system
US6760587B2 (en) Forward-link scheduling in a wireless communication system during soft and softer handoff
US8068453B2 (en) Method and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
CA2463731C (en) System and method for fast dynamic link adaptation
EP1264422B1 (en) Forward-link scheduling in a wireless communication system
EP2512185B1 (en) Communication system
EP2232720B1 (en) Uplink transmit power control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007536367

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005785924

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005785924

Country of ref document: EP