WO2006093209A1 - ヘテロダインレーザドップラープローブ及びそれを用いた測定システム - Google Patents

ヘテロダインレーザドップラープローブ及びそれを用いた測定システム Download PDF

Info

Publication number
WO2006093209A1
WO2006093209A1 PCT/JP2006/303934 JP2006303934W WO2006093209A1 WO 2006093209 A1 WO2006093209 A1 WO 2006093209A1 JP 2006303934 W JP2006303934 W JP 2006303934W WO 2006093209 A1 WO2006093209 A1 WO 2006093209A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
laser doppler
light
heterodyne laser
optical path
Prior art date
Application number
PCT/JP2006/303934
Other languages
English (en)
French (fr)
Inventor
Hideki Kawakatsu
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP06715044.1A priority Critical patent/EP1879015B1/en
Priority to JP2007505994A priority patent/JP4485571B2/ja
Priority to US11/817,357 priority patent/US7719663B2/en
Publication of WO2006093209A1 publication Critical patent/WO2006093209A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/366Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light by using diffraction of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • the present invention relates to a high-efficiency photoexcited laser Doppler probe, and more particularly to a heterodyne laser Doppler probe and a measurement system using the same.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-114182
  • the excitation can be increased and the measurement sensitivity can be increased. Realized with Doppler probes.
  • an object of the present invention is to provide a heterodyne laser Doppler probe capable of realizing both optical excitation efficiency and speed measurement efficiency and a measurement system using the same.
  • the present invention provides:
  • the heterodyne laser Doppler probe includes a first optical path for guiding excitation light and a second optical path for guiding measurement light, and the excitation light is emitted from the first optical path to generate a focal point in the optical probe. It is guided to the lens and focused on the measurement object, and the measurement light is guided to the focus lens via the 1Z4 wavelength plate in the optical probe, and is measured on the measurement object. The measurement light that is focused and reflected from the measurement object returns to the second optical path through the focus lens and the 1Z4 wavelength plate.
  • a reflection mirror that receives excitation light guided by the first optical path force and a beam splitter are arranged and received by the 1Z4 wavelength plate
  • the measurement light is received by the beam splitter, the light emitted from the beam splitter is guided to a focus lens, and the measurement light returned to the focus lens returns to the second optical path through the beam splitter and the 1Z4 wavelength plate. It is characterized by that.
  • the first optical path is a first optical fiber
  • the second optical path is a second optical fiber.
  • the excitation light from the first optical fiber 1 is emitted from the first optical fiber 1 and then guided to the focus lens through the first collimating lens, and the measurement light of the second optical fiber is used. Is emitted from the second optical fiber and then guided through the second collimating lens to the focusing lens.
  • the measurement object is a cantilever, and the speed of the cantilever is measured. To do.
  • the heterodyne laser Doppler probe according to any one of [1] to [4] above, further comprising an adjustment mechanism capable of displacing the reflection mirror, wherein the excitation light is measured on the object to be measured.
  • the focal position at is adjusted with respect to the focal position of the measurement light on the measurement object.
  • the excitation light and the measurement light may be included in the optical path adjustment mirror disposed in the first and second optical paths. Is superimposed and guided to the optical probe.
  • a glass partition is disposed in the first and second optical paths, and the optical probe is used. It can be placed in vacuum, gas, or liquid, and the light source and optical path adjustment mechanism can be placed in the atmosphere.
  • FIG. 1 is a schematic diagram of a heterodyne laser Doppler probe (basic form) showing an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a heterodyne laser Doppler probe (first variation) showing an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a heterodyne laser Doppler probe (second variation) showing an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a heterodyne laser Doppler probe showing a second embodiment of the present invention.
  • FIG. 5 is a diagram showing an adjustment state of the beam splitter of the heterodyne laser Doppler probe shown in FIG. 4.
  • FIG. 6 is a schematic diagram of a heterodyne laser Doppler probe showing a second embodiment of the present invention.
  • FIG. 7 is a diagram showing an adjustment state of the beam splitter of the heterodyne laser Doppler probe shown in FIG. 6.
  • FIG. 8 is a schematic diagram of a measurement system using the heterodyne laser Doppler probe shown in FIG. 2 of the present invention.
  • FIG. 9 is a schematic diagram of a measurement system using a heterodyne laser Doppler probe showing a second embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a measurement system using a heterodyne laser Doppler probe showing a third embodiment of the present invention.
  • the heterodyne laser Doppler probe of the present invention guides excitation light for optical excitation from the first optical path and measurement light for second optical path force heterodyne laser Doppler measurement to the optical probe.
  • the excitation light exits the first optical path, passes through a reflection mirror and a beam splitter, is guided to a focus lens, and is guided to a measurement object (excitation object).
  • the measurement light for heterodyne laser Doppler measurement exits the second optical path, passes through the 1Z4 wavelength plate, and the linearly polarized light is converted to circularly polarized light, and then the measurement object passes through the beam splitter and focus lens. Guided to (excitation object).
  • the metering light (signal light) reflected by the measurement object (excitation object) reaches the 1Z4 wavelength plate through the same path, and is converted from circularly polarized light to linearly polarized light in the 1Z4 wavelength plate.
  • the measurement light was returned to the heterodyne laser Doppler measurement device via the second optical path.
  • FIG. 1 is a schematic diagram of a heterodyne laser Doppler probe (basic form) showing an embodiment of the present invention.
  • 1 is an optical probe (heterodyne laser Doppler probe main body)
  • 2 is a first optical path for optical excitation introduced into the optical probe 1
  • 3 is derived from the first optical path 2.
  • 4 is the second optical path for heterodyne laser Doppler measurement (velocity measurement) introduced into the optical probe 1
  • 5 is the second optical path.
  • 1Z4 wavelength plate 6 is a beam splitter, 7 is a focusing lens, 8 is an object to be measured (here, cantilever), and the measurement light introduced from the second optical path 4 is received by the 1Z4 wavelength plate 5,
  • the beam splitter 6 reflects the excitation light from the reflection mirror 3 and transmits the measurement light from the quarter-wave plate 5 and is reflected by the measurement object 8 and passes through the focus lens 7 (signal light). Is transmitted to the 1Z4 wave plate 5. In this way, excitation light for optical excitation is guided from the first optical path 2 and measurement light for heterodyne laser Doppler measurement is guided from the second optical path 4 to the optical probe 1, respectively.
  • the measurement light for heterodyne laser Doppler measurement exits the second optical path 4 passes through the 1Z4 wave plate 5, and the linearly polarized light is converted into circularly polarized light, and then passes through the beam splitter 6 and the focus lens 7.
  • the measurement object (excitation object) is led to 8.
  • the measurement light reflected by the measurement object (excitation object) 8 reaches the 1Z4 wavelength plate 5 through the same path, and is converted into circularly polarized light linearly polarized light by the 1Z4 wavelength plate 5, and then the linearly polarized light.
  • FIG. 2 is a schematic diagram of a heterodyne laser Doppler probe (first variation), showing an embodiment of the present invention.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals and their description is omitted.
  • the first optical fiber 11 and the second optical fiber 13 suitable for each wavelength are provided. I try to use it.
  • a first collimating lens 12 that receives excitation light introduced from the first optical fiber 11 is disposed and introduced from the second optical fiber 13.
  • the second collimating lens 14 that receives the measurement light and reflects the measurement light (signal light) reflected by the measurement object 8 is arranged.
  • the excitation light introduced from the first optical fiber 11 is guided to the reflection mirror 3 via the first collimating lens 12.
  • the measurement light introduced from the second optical fiber 13 passes through the second collimating lens 14 and passes through the 1Z4 wavelength plate 5, and the linearly polarized light is converted into circularly polarized light. After that, it is led to the measuring object (cantilever) 8.
  • FIG. 3 is a schematic diagram of a heterodyne laser Doppler probe (second variation) showing an embodiment of the present invention.
  • 20 is an optical probe (heterodyne laser Doppler probe body), 2
  • 1 is a first optical path for guiding excitation light
  • 22 is a second optical path for guiding measurement light
  • 23 is a 1Z4 wavelength plate
  • 24 is a focusing lens
  • 25 is a measurement object (cantilever).
  • the first optical path 21 and the second optical path 22 are guided to the 1Z4 wavelength plate 23 from substantially the same location and direction, and the optical probe 20 can be disposed in a vacuum or in a liquid. It is what was made.
  • FIG. 4 is a schematic diagram (part 1) of a heterodyne laser Doppler probe showing a second embodiment of the present invention
  • FIG. 5 is a diagram showing an adjustment mode of the beam splitter.
  • an adjustment mechanism 31 for displacing the beam splitter 6 shown in the above embodiment (FIG. 2) is provided.
  • the irradiation position 8A of the measurement light emitted to the cantilever 8 does not change, but the excitation light reflected by the reflection mirror 3 and further reflected by the beam splitter 6 is directed to the cantilever 8 by the displacement (position) of the beam splitter 6.
  • the irradiation position shifts from 8A to 8C.
  • the irradiation position of only the excitation light can be adjusted.
  • the warp (shake) of the cantilever 8 can be increased.
  • more accurate measurement can be performed by irradiating the cantilever 8 with the measurement light.
  • FIG. 6 is a schematic diagram (part 2) of the heterodyne laser Doppler probe according to the second embodiment of the present invention
  • FIG. 7 is a diagram showing an adjustment mode of the reflection mirror.
  • an adjusting mechanism 41 for displacing the reflecting mirror 3 shown in the above embodiment is provided.
  • the irradiation position 8 ⁇ of the measurement light emitted to the cantilever 8 does not change, but the excitation light reflected by the reflection mirror 3 and further reflected by the beam splitter 6 is changed by the displacement (position) of the beam splitter 6.
  • the irradiation position of the light shifts from 8mm to 8mm.
  • the irradiation position of the excitation light on the sample can be adjusted relative to the measurement light.
  • FIG. 8 is a schematic diagram of a measurement system using the heterodyne laser Doppler probe shown in FIG. 2 of the present invention.
  • the heterodyne laser Doppler probe shown in FIG. 2 is used.
  • 50 is an excitation laser light source (LD)
  • 51 is a measurement device
  • 52 is a light source of measurement light
  • 53 is a beam splitter
  • 54 is a measurement unit (laser Doppler interferometer).
  • measurement light (signal light) output from the heterodyne laser Doppler probe 10 is taken into the measurement device 51. Then, the measurement light is reflected by the beam splitter 53, and the measurement unit (laser Doppler interferometer) 54 can measure the velocity of the measurement object (excitation object) 8, for example.
  • the adjustment mechanism described above can also be added to a measurement system using this heterodyne laser Doppler probe.
  • FIG. 9 is a schematic diagram of a measurement system using a heterodyne laser Doppler probe showing a second embodiment of the present invention.
  • the measurement object is measured from the light source 71 of the measurement light, the beam splitter 72, the measurement device 70 having the measurement unit (laser Doppler meter) 73, and the light source 61 for light excitation.
  • Object Excitation object
  • the method of optical path adjustment up to 8 is shown. As a result, it is possible to position the excitation light and the measurement light at intended locations with respect to the displacement of the measurement object (excitation object) 8 and the optical probe 1 in the X, y, and z directions.
  • the second optical path 4 of the measuring device 70 is emitted from the measurement light source 71, and then translated and displaced using the rotation of the second optical path adjusting glass plate 74 (inclination of 2 degrees of freedom).
  • the optical path is adjusted, and then in the fourth optical path adjusting mirror 76, the optical path is adjusted by the third optical path adjusting glass plate 65 to adjust the parallel displacement of the optical path. It is adjusted and guided to the optical probe 1 through the glass partition 66 (when the optical probe is in an environment such as a vacuum) 66.
  • the first optical path adjustment glass plate 62 After the light source 61 for light excitation is emitted, the first optical path adjustment glass plate 62, the first optical path adjustment mirror 63, the third optical path adjustment mirror 64, After passing through the third optical path adjusting glass plate 65, when the optical probe 1 is in an environment such as a vacuum, it is guided to the optical probe 1 through the glass partition 66.
  • Each light adjustment mirror has translational X, y, z and two tilting degrees of freedom, and it is possible to adjust the translational displacement of the path and two degrees of freedom of the tilting.
  • the first optical path 2 and the second optical path 4 can be focused at different positions on the measurement object (excitation object) 8 by slightly deviating the parallel force immediately before entering the optical probe 1. is there.
  • FIG. 10 is a schematic diagram of a measurement system using a heterodyne laser Doppler probe according to a third embodiment of the present invention.
  • 81 is a light source for optical excitation
  • 82 is a first optical path adjusting glass plate
  • 83 is a first optical path.
  • Adjustment mirror is the third optical path adjustment mirror (dichroic mirror)
  • 85 is the third optical path adjustment glass plate
  • 86 is the glass partition
  • 90 is the measuring device
  • 91 is the measurement light source
  • 92 is the beacon 93 is a measuring unit (laser Doppler meter)
  • 94 is a second optical path adjusting glass plate
  • 95 is a second optical path adjusting mirror
  • 96 is a fourth optical path adjusting mirror.
  • the third optical path adjusting mirror 84 reflects the first optical path 21 and transmits the light in the second optical path 22, such as a dichroic mirror such as a dichroic mirror.
  • the incident positions of the first optical path 21 and the second optical path 22 of the optical probe 20 are configured to be substantially the same.
  • the optical probes 1, 20 are arranged in vacuum, gas, or liquid. And light sources and light path adjustment mechanisms can be placed in the atmosphere.
  • the present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention. According to the present invention, by providing the first optical path or optical fiber for optical excitation and the second optical path or optical fiber for measurement, respectively, efficient optical excitation and speed measurement of the measurement object can be performed. .
  • the heterodyne laser Doppler probe of the present invention can be used in the fields of general measurement, velocity measurement, microscope, substance identification, and nanobiomechanics.

Abstract

光励振効率と、速度計測効率の両立を実現することができるヘテロダインレーザドップラープローブ及びそれを用いた測定システムを提供する。  ヘテロダインレーザドップラープローブであって、第1の光路2から光励振のための励振光を、第2の光路4からヘテロダインレーザドップラー計測のための計測光をそれぞれ光プローブ1に導く。励振光は第1の光路2を出射後、反射ミラー3、ビームスプリッタ6を経て、焦点レンズ7に導かれ、測定対象物(励振対象物)8へと導かれる。一方、ヘテロダインレーザドップラー計測のための計測光は第2の光路4を出射後、1/4波長板5を通過し、直線偏光は円偏光に変換された後、ビームスプリッタ5、焦点レンズ7を経て測定対象物(励振対象物)8へと導かれる。測定対象物(励振対象物)8で反射した計測光(信号光)は、同一の経路を経て、1/4波長板5に到達し、1/4波長板5において円偏光から直線偏光に変換された後、その直線偏光の計測光は第2の光路4を経てヘテロダインレーザドップラー計測装置へと戻す。

Description

明 細 書
ヘテロダインレーザドップラープローブ及びそれを用いた測定システム 技術分野
[0001] 本発明は、高効率光励振レーザドップラープローブに係り、特に、ヘテロダインレー ザドップラープローブ及びそれを用 、た測定システムに関するものである。
背景技術
[0002] 従来の光励振機能を有する光プローブで、プローブまで光ファイバ一を用いて光を 導!、て 、るものは、励振光と計測光を一本の光ファイバ一で伝送して 、た (特許文献 1参照)。
特許文献 1:特開 2003— 114182号公報
発明の開示
[0003] しかしながら、励振光と計測光の波長が大きく異なる場合、特定の波長に特ィ匕して 設計された光ファイバ一では、一方の光の伝送効率が悪くなる。また、同一のレンズ を用いて光ファイバ一への光入射、並びに測定対象物への光照射を行っている場合 、色収差にそって一方の光は十分に絞れず、結果として測定信号強度の低下、もし くは光励振効率の低下を招!ヽて ヽた。
[0004] また、計測用の光ビームの照射位置と励振用の光ビームの照射位置とをずらすこと ができれば、励振を大きくするとともに、計測の感度を上げることができるが、従来の 光励振レーザドップラープローブでは実現されて ヽな ヽ。
[0005] 本発明は、上記状況に鑑みて、光励振効率と、速度計測効率の両立を実現するこ とができるヘテロダインレーザドップラープローブ及びそれを用いた測定システムを 提供することを目的とする。
[0006] 本発明は、上記目的を達成するために、
〔1〕ヘテロダインレーザドップラープローブにおいて、励振光を導く第 1の光路と、 計測光を導く第 2の光路とを備え、前記励振光は前記第 1の光路から出射されて、光 プローブ内の焦点レンズに導かれ、測定対象物上で焦点を結び、前記計測光は前 記光プローブ内の 1Z4波長板を介して前記焦点レンズに導かれ、測定対象物上で 焦点を結び、前記測定対象物から反射した計測光は、前記焦点レンズと前記 1Z4 波長板を介して第 2の光路に戻るようにしたことを特徴とする。
[0007] 〔2〕上記〔1〕記載のへテロダインレーザドップラープローブにおいて、前記第 1の光 路力 導かれる励振光を受ける反射ミラーとビームスプリッタとを配置し、前記 1Z4波 長板で受けた計測光を前記ビームスプリッタで受け、該ビームスプリッタからの出射 光を焦点レンズに導き、この焦点レンズに戻ってきた計測光は前記ビームスプリッタと 前記 1Z4波長板を介して第 2の光路に戻るようにしたことを特徴とする。
[0008] 〔3〕上記〔1〕記載のへテロダインレーザドップラープローブにおいて、前記第 1の光 路は第 1の光ファイバ一であり、前記第 2の光路は第 2の光ファイバ一であり、前記第 1の光ファイバ一からの励振光は前記第 1の光ファイバ一から出射後、第 1のコリメ一 トレンズを経て、前記焦点レンズに導かれ、前記第 2の光ファイバ一力 の計測光は 前記第 2の光ファイバ一から出射後、第 2のコリメートレンズを経て、前記焦点レンズ に導かれるようにしたことを特徴とする。
[0009] 〔4〕上記〔1〕、〔2〕または〔3〕記載のへテロダインレーザドップラープローブにお ヽ て、前記測定対象物がカンチレバーであり、このカンチレバーの速度を計測すること を特徴とする。
[0010] [5]上記〔1〕から〔4〕の何れか一項記載のへテロダインレーザドップラープローブに おいて、前記ビームスプリッタを変位可能な調整機構を備え、前記励振光の測定対 象物上での焦点位置を前記計測光の測定対象物上での焦点位置に対して調整す るようにしたことを特徴とする。
[0011] 〔6〕上記〔1〕から〔4〕の何れか一項記載のへテロダインレーザドップラープローブに おいて、前記反射ミラーを変位可能な調整機構を備え、前記励振光の測定対象物 上での焦点位置を前記計測光の測定対象物上での焦点位置に対して調整するよう にしたことを特徴とする。
[0012] 〔7〕上記〔1〕から〔4〕の何れか一項記載のへテロダインレーザドップラープローブに おいて、前記ビームスプリッタ及び反射ミラーを変位可能な調整機構を備え、前記励 振光の測定対象物上での焦点位置を前記計測光の測定対象物上での焦点位置に 対して調整するようにしたことを特徴とする。 [0013] 〔8〕ヘテロダインレーザドップラープローブを用いた測定システムであって、上記〔1 〕から〔7〕の何れか一項記載のへテロダインレーザドップラープローブを用いて、前記 第 2の光路から出射する前記測定対象物から反射した前記計測光をビームスプリッタ で反射させて計測部に導くことを特徴とする。
[0014] 〔9〕上記〔8〕記載のへテロダインレーザドップラープローブを用いた測定システムに おいて、前記第 1および第 2光路に配置される光路調整用ミラーにおいて、前記励振 光と前記計測光を重畳して前記光プローブに導くことを特徴とする。
[0015] 〔10〕上記〔8〕又は〔9〕記載のへテロダインレーザドップラープローブを用いた測定 システムにおいて、前記第 1および第 2光路中に、ガラス隔壁を配置し、前記光プロ ーブを真空、ガス、液中に配置可能にし、光源や光路調整機構を大気中に配置可 能にすることを特徴とする。
図面の簡単な説明
[0016] [図 1]本発明の実施例を示す、ヘテロダインレーザドップラープローブ (基本形)の模 式図である。
[図 2]本発明の実施例を示す、ヘテロダインレーザドップラープローブ (第 1の変形形 )の模式図である。
[図 3]本発明の実施例を示す、ヘテロダインレーザドップラープローブ (第 2の変形形 )の模式図である。
[図 4]本発明の第 2実施例を示すヘテロダインレーザドップラープローブの模式 (その
1)図である。
[図 5]図 4に示すヘテロダインレーザドップラープローブのビームスプリッタの調整態 様を示す図である。
[図 6]本発明の第 2実施例を示すヘテロダインレーザドップラープローブの模式 (その
2)図である。
[図 7]図 6に示すヘテロダインレーザドップラープローブのビームスプリッタの調整態 様を示す図である。
[図 8]本発明の図 2に示すヘテロダインレーザドップラープローブを用いた測定システ ムの模式図である。 [図 9]本発明の第 2実施例を示すヘテロダインレーザドップラープローブを用いた測 定システムの模式図である。
[図 10]本発明の第 3実施例を示すヘテロダインレーザドップラープローブを用いた測 定システムの模式図である。
発明を実施するための最良の形態
[0017] 本発明のへテロダインレーザドップラープローブは、第 1の光路から光励振のため の励振光を、第 2の光路力 ヘテロダインレーザドップラー計測のための計測光をそ れぞれ光プローブに導く。励振光は第 1の光路を出射後、反射ミラー、ビームスプリツ タを経て、焦点レンズに導かれ、測定対象物 (励振対象物)へと導かれる。一方、へ テロダインレーザドップラー計測のための計測光は第 2の光路を出射後、 1Z4波長 板を通過し、直線偏光は円偏光に変換された後、ビームスプリッタ、焦点レンズを経 て測定対象物 (励振対象物)へと導かれる。測定対象物 (励振対象物)で反射した計 測光 (信号光)は、同一の経路を経て、 1Z4波長板に到達し、 1Z4波長板において 円偏光から直線偏光に変換された後、その直線偏光の計測光は第 2の光路を経て ヘテロダインレーザドップラー計測装置へと戻るようにした。 実施例
[0018] 以下、本発明の実施の形態について詳細に説明する。
[0019] 図 1は本発明の実施例を示す、ヘテロダインレーザドップラープローブ(基本形)の 模式図である。
[0020] この図に示すように、 1は光プローブ(ヘテロダインレーザドップラープローブ本体) 、 2は光プローブ 1に導入される光励振のための第 1の光路、 3は第 1の光路 2から導 入される光励振のための光 (励振光)を受ける反射ミラー、 4は光プローブ 1に導入さ れるヘテロダインレーザドップラー計測(速度計測)のための第 2の光路、 5は第 2の 光路に配置される 1Z4波長板、 6はビームスプリッタ、 7は焦点レンズ、 8は測定対象 物 (ここでは、カンチレバー)であり、第 2の光路 4から導入される計測光を 1Z4波長 板 5で受け、ビームスプリッタ 6は反射ミラー 3からの励振光を反射するとともに、 1/4 波長板 5からの計測光を透過するとともに、測定対象物 8で反射され、焦点レンズ 7を 経た計測光 (信号光)を透過して、 1Z4波長板 5へ導く。 [0021] このように、第 1の光路 2から光励振のための励振光を、第 2の光路 4からへテロダイ ンレーザドップラー計測のための計測光をそれぞれ光プローブ 1に導く。励振光は第 1の光路 2を出射後、反射ミラー 3、ビームスプリッタ 6を経て、焦点レンズ 7に導かれ、 測定対象物 (励振対象物) 8へと導かれる。一方、ヘテロダインレーザドップラー計測 のための計測光は第 2の光路 4を出射後、 1Z4波長板 5を通過し、直線偏光は円偏 光に変換された後、ビームスプリッタ 6、焦点レンズ 7を経て測定対象物 (励振対象物 ) 8へと導かれる。測定対象物 (励振対象物) 8で反射した計測光は、同一の経路を経 て、 1Z4波長板 5に到達し、 1Z4波長板 5において円偏光力 直線偏光に変換され た後、その直線偏光の計測光は第 2の光路 4を経てへテロダインレーザドップラー計 測装置 (図示なし)へと戻る。
[0022] 図 2は本発明の実施例を示す、ヘテロダインレーザドップラープローブ (第 1の変形 形)の模式図である。図 1と同じ部分については、同じ符号を付してそれらの説明は 省略する。
[0023] この実施例では、図 1における第 1の光路 2、第 2の光路 4による伝搬に代えて、個 々の波長に適する第 1の光ファイバ一 11と第 2の光ファイバ一 13を用るようにしてい る。また、光プローブ(ヘテロダインレーザドップラープローブ本体) 10内では、第 1の 光ファイバ一 11から導入される励振光を受ける第 1のコリメートレンズ 12を配置し、第 2の光ファイバ一 13から導入される計測光を受け、かつ、測定対象物 8で反射した計 測光 (信号光)を導出する第 2のコリメートレンズ 14を配置するようにして 、る。
[0024] このように、第 1の光ファイバ一 11から導入される励振光は第 1のコリメートレンズ 12 を経て反射ミラー 3に導かれる。一方、第 2の光ファイバ一 13から導入される計測光 は第 2のコリメートレンズ 14を経て 1Z4波長板 5を通過し、直線偏光は円偏光に変換 された後、ビームスプリッタ 6—焦点レンズ 7を経て測定対象物(カンチレバー) 8へと 導かれる。測定対象物 (カンチレバー) 8で反射した計測光 (信号光)は、同一の経路 を経て 1Z4波長板 5に到達し、 1Z4波長板 5において円偏光から直線偏光に変換 された後、第 2のコリメートレンズ 14を経て第 2の光ファイバ一 13に入射し、第 2の光 ファイバー 13を経由してヘテロダインレーザドップラー計測装置(図示なし)へと戻る [0025] 図 3は本発明の実施例を示す、ヘテロダインレーザドップラープローブ (第 2の変形 形)の模式図である。
[0026] この図において、 20は光プローブ(ヘテロダインレーザドップラープローブ本体)、 2
1は励振光を導く第 1の光路、 22は計測光を導く第 2の光路、 23は 1Z4波長板、 24 は焦点レンズ、 25は測定対象物 (カンチレバー)である。
[0027] この実施例では、第 1の光路 21と第 2の光路 22をほぼ同一の箇所と方向から 1Z4 波長板 23に導き、かつ、この光プローブ 20を真空中や、液中に配置可能にしたもの である。
[0028] 図 4は本発明の第 2実施例を示すヘテロダインレーザドップラープローブの模式 (そ の 1)図、図 5はそのビームスプリッタの調整態様を示す図である。
[0029] この実施例にぉ 、ては、上記実施例(図 2)に示したビームスプリッタ 6を変位させる 調整機構 31を設けるようにしている。
[0030] 図 5 (a)に示すように、調整機構 31によって、ビームスプリッタ 6の角度を Θだけ移 動させた場合、 1Z4波長板 5からビームスプリッタ 6を通過する計測光は影響されな いためカンチレバー 8に照射される計測光の照射位置 8Aは変わらないが、反射ミラ 一 3で反射され、さらにビームスプリッタ 6で反射される励振光は、ビームスプリッタ 6の 変位 (角度)によってカンチレバー 8への照射位置が 8Aから 8Bへと移行する。
[0031] また、図 5 (b)に示すように、調整機構 31によって、ビームスプリッタ 6の位置をスラ イドさせた場合も、 1Z4波長板 5からビームスプリッタ 6を通過する計測光は影響され ないためカンチレバー 8に照射される計測光の照射位置 8Aは変わらないが、反射ミ ラー 3で反射され、さらにビームスプリッタ 6で反射される励振光は、ビームスプリッタ 6 の変位 (位置)によってカンチレバー 8への照射位置が 8Aから 8Cへと移行する。
[0032] このように、励振光のみの照射位置を調整することができる。特に、励振光はその 照射位置がカンチレバー 8の根元に近くなるにしたがって、カンチレバー 8の反り(振 れ)を大きくすることができる。それに対して、計測光はよりカンチレバー 8の先端側に 照射した方が精密な計測を行うことができる。
[0033] このように、計測光とは相対的に励振光の試料に対する照射位置をそれぞれ調整 することができる。 [0034] 図 6は本発明の第 2実施例を示すヘテロダインレーザドップラープローブの模式 (そ の 2)図、図 7はその反射ミラーの調整態様を示す図である。
[0035] この実施例においては、上記実施例に示した反射ミラー 3を変位させる調整機構 4 1を設けるようにしている。
[0036] 図 7 (a)に示すように、調整機構 41によって、反射ミラー 3の角度を αだけ移動させ た場合、 1Z4波長板 5からビームスプリッタ 6を通過する計測光は影響されな 、ため カンチレバー 8に照射される計測光の照射位置 8Αは変わらないが、励振光はその 反射ミラー 3の変位 (角度)によってカンチレバー 8への照射位置が 8Αから 8Dへと移 行する。
[0037] また、図 7 (b)に示すように、調整機構 41によって、反射ミラー 3の位置をスライドさ せた場合も、 1Z4波長板 5からビームスプリッタ 6を通過する計測光は影響されな ヽ ためカンチレバー 8に照射される計測光の照射位置 8Αは変わらないが、反射ミラー 3で反射され、さらにビームスプリッタ 6で反射される励振光は、ビームスプリッタ 6の変 位 (位置)によってカンチレバー 8への照射位置が 8Αから 8Εへと移行する。
[0038] このように、計測光とは相対的に励振光の試料に対する照射位置をそれぞれ調整 することができる。
[0039] なお、図 5のようなビームスプリッタ 6の変位による調整と、図 7に示すような反射ミラ 一 3の変位による調整との両方を組み合わせて、計測光とは相対的に励振光の試料 に対する照射位置を精密に調整するようにしてもょ ヽ。
[0040] 図 8は本発明の図 2に示したヘテロダインレーザドップラープローブを用いた測定シ ステムの模式図である。
[0041] ここで、ヘテロダインレーザドップラープローブは、上記した図 2に示したものを用い る。この図において、 50は励起レーザ光源 (LD)、 51は計測装置、 52は計測光の光 源、 53はビームスプリッタ、 54は計測部(レーザドップラー干渉計)である。
[0042] そこで、ヘテロダインレーザドップラープローブ 10から出力される計測光 (信号光) は計測装置 51に取り込まれる。そして、その計測光は、ビームスプリッタ 53で反射さ れて、計測部 (レーザドップラー干渉計) 54で、例えば、測定対象物 (励振対象物) 8 の速度の計測を行うことができる。 [0043] なお、このへテロダインレーザドップラープローブを用いた測定システムにも上記し た調整機構を付加することができる。
[0044] 図 9は本発明の第 2実施例を示すヘテロダインレーザドップラープローブを用いた 測定システムの模式図である。
[0045] この図において、光プローブは上記した実施例(図 1)と同じものを用いるようにして いる。
[0046] そこで、この実施例では、計測光の光源 71と、ビームスプリッタ 72と、計測部(レー ザドップラー計) 73を有する計測装置 70、光励振用光源 61のそれぞれの光源から、 測定対象物 (励振対象物) 8までの光路調整の方法を示している。これにより、測定 対象物 (励振対象物) 8と光プローブ 1の X, y, z方向への変位に対して励振光と計測 光を意図した場所に位置決めすることが可能となる。
[0047] 計測装置 70の第 2の光路 4は、計測光の光源 71を出射した後、第 2の光路調整用 ガラス板 74の回転 (傾き 2自由度)を用いて並進変位し、あおり 2角を調整可能な第 2 の光路調整用ミラー 75において、光路を調整され、次に第 4の光路調整用ミラー 76 において光路調整上、第 3の光路調整用ガラス板 65によって光路の平行変位を調 整され、ガラス隔壁 (光プローブが真空等の環境にある場合) 66を経て光プローブ 1 へ導かれる。光励振用の第 1の光路 2においては、光励振用光源 61を出射した後、 第 1の光路調整用ガラス板 62、第 1の光路調整用ミラー 63、第 3の光路調整用ミラー 64、第 3の光路調整用ガラス板 65を経た後、光プローブ 1が真空等の環境にある場 合にはガラス隔壁 66を経て光プローブ 1へ導かれる。なお、各光調整ミラーは、並進 X, y, z、あおり 2角の調整自由度があり、行路の並進変位と、あおり 2自由度の調整 が可能である。第 1の光路 2と第 2の光路 4は、光プローブ 1への入射直前において 若干平行力もずれることにより、測定対象物 (励振対象物) 8の異なる位置にその焦 点を結ぶことが可能である。
[0048] 図 10は本発明の第 3実施例を示すヘテロダインレーザドップラープローブを用いた 測定システムの模式図である。
[0049] この図において、光プローブは上記した実施例(図 3)と同じものを用いるようにして いる。また、 81は光励振用光源、 82は第 1の光路調整用ガラス板、 83は第 1の光路 調整用ミラー、 84は第 3の光路調整用ミラー (ダイクロイツクミラー)、 85は第 3の光路 調整用ガラス板、 86はガラス隔壁、 90は計測装置、 91は計測光の光源、 92はビー ムスプリッタ、 93は計測部(レーザドップラー計)、 94は第 2の光路調整用ガラス板、 9 5は第 2の光路調整用ミラー、 96は第 4の光路調整用ミラーである。
[0050] この実施例では、第 3の光路調整用ミラー 84が、第 1の光路 21を反射し、第 2の光 路 22の光を透過する、ダイクロイツクミラーなどの波長選択性のあるミラーであり、光 プローブ 20の第 1の光路 21、第 2の光路 22の入射位置は、ほぼ同一の箇所となるよ うに構成されている。
[0051] また、上記したように、第 1および第 2の光路 21, 22中に、ガラス隔壁 66, 86を配置 するようにしたので、光プローブ 1, 20を真空、ガス、液中に配置可能にし、光源や光 路調整機構は大気中に配置することができる。
[0052] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種 々の変形が可能であり、これらを本発明の範囲から排除するものではない。本発明に よれば、光励振用第 1の光路又は光ファイバ一、計測用第 2の光路又は光ファイバ一 をそれぞれ設けることにより、測定対象物の効率の良い光励振と速度計測が可能と なる。
産業上の利用可能性
[0053] 本発明のへテロダインレーザドップラープローブは、計測一般、速度計測、顕微鏡 、物質同定、ナノバイオメカ二タスの分野に利用可能である。

Claims

請求の範囲
[1] (a)励振光を導く第 1の光路と、
(b)計測光を導く第 2の光路とを備え、
(c)前記励振光は前記第 1の光路から出射されて、光プローブ内の焦点レンズに導 かれ、測定対象物上で焦点を結び、前記計測光は前記光プローブ内の 1Z4波長板 を介して前記焦点レンズに導かれ、測定対象物上で焦点を結び、前記測定対象物 から反射した計測光は、前記焦点レンズと前記 1Z4波長板を介して第 2の光路に戻 るようにしたことを特徴とするヘテロダインレーザドップラープローブ。
[2] 請求項 1記載のへテロダインレーザドップラープローブにおいて、前記第 1の光路 力 導かれる励振光を受ける反射ミラーとビームスプリッタとを配置し、前記 1Z4波長 板で受けた計測光を前記ビームスプリッタで受け、該ビームスプリッタからの出射光を 焦点レンズに導き、該焦点レンズに戻ってきた計測光は前記ビームスプリッタと前記 1 Z4波長板を介して第 2の光路に戻るようにしたことを特徴とするヘテロダインレーザ ドップラープローブ。
[3] 請求項 1記載のへテロダインレーザドップラープローブにおいて、前記第 1の光路 は第 1の光ファイバ一であり、第 2の光路は第 2の光ファイバ一であり、前記第 1の光 ファイバ一力 の励振光は前記第 1の光ファイバ一力 出射後、第 1のコリメートレン ズを経て、前記焦点レンズに導かれ、前記第 2の光ファイバ一からの計測光は前記 第 2の光ファイバ一から出射後、第 2のコリメートレンズを経て、前記焦点レンズに導 かれるようにしたことを特徴とするヘテロダインレーザドップラープローブ。
[4] 請求項 1、 2または 3に記載のへテロダインレーザドップラープローブにおいて、前 記測定対象物がカンチレバーであり、該カンチレバーの速度を計測することを特徴と するヘテロダインレーザドップラープローブ。
[5] 請求項 1から 4の何れか一項記載のへテロダインレーザドップラープローブにお!/ヽ て、前記ビームスプリッタを変位可能な調整機構を備え、前記励振光の測定対象物 上での焦点位置を前記計測光の測定対象物上での焦点位置に対して調整するよう にしたことを特徴とするヘテロダインレーザドップラープローブ。
[6] 請求項 1から 4の何れか一項記載のへテロダインレーザドップラープローブにお!/ヽ て、前記反射ミラーを変位可能な調整機構を備え、前記励振光の測定対象物上での 焦点位置を前記計測光の測定対象物上での焦点位置に対して調整するようにしたこ とを特徴とするヘテロダインレーザドップラープローブ。
[7] 請求項 1から 4の何れか一項記載のへテロダインレーザドップラープローブにお!/ヽ て、前記ビームスプリッタ及び反射ミラーを変位可能な調整機構を備え、前記励振光 の測定対象物上での焦点位置を前記計測光の測定対象物上での焦点位置に対し て調整するようにしたことを特徴とするヘテロダインレーザドップラープローブ。
[8] 請求項 1から 7の何れか一項記載のへテロダインレーザドップラープローブを用い て、前記第 2の光路からの出射する前記測定対象物から反射した前記計測光をビー ムスプリッタで反射させて計測部に導くことを特徴とするヘテロダインレーザドップラー プローブを用いた測定システム。
[9] 請求項 8記載のへテロダインレーザドップラープローブを用いた測定システムにお いて、前記第 1および第 2光路に配置される光路調整用ミラーにおいて、前記励振光 と前記計測光を重畳して前記光プローブに導くことを特徴とするヘテロダインレーザ ドップラープローブを用いた測定システム。
[10] 請求項 8又は 9記載のへテロダインレーザドップラープローブを用いた測定システム において、前記第 1および第 2光路中に、ガラス隔壁を配置し、前記光プローブを真 空、ガス、液中に配置可能にし、光源や光路調整機構を大気中に配置可能にするこ とを特徴とするヘテロダインレーザドップラープローブを用いた測定システム。
PCT/JP2006/303934 2005-03-02 2006-03-02 ヘテロダインレーザドップラープローブ及びそれを用いた測定システム WO2006093209A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06715044.1A EP1879015B1 (en) 2005-03-02 2006-03-02 Heterodyne laser doppler probe and measurement system using the same
JP2007505994A JP4485571B2 (ja) 2005-03-02 2006-03-02 ヘテロダインレーザドップラープローブ及びそれを用いた測定システム
US11/817,357 US7719663B2 (en) 2005-03-02 2006-03-02 Heterodyne laser doppler probe and measurement system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005056754 2005-03-02
JP2005-056754 2005-03-02

Publications (1)

Publication Number Publication Date
WO2006093209A1 true WO2006093209A1 (ja) 2006-09-08

Family

ID=36941238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303934 WO2006093209A1 (ja) 2005-03-02 2006-03-02 ヘテロダインレーザドップラープローブ及びそれを用いた測定システム

Country Status (4)

Country Link
US (1) US7719663B2 (ja)
EP (1) EP1879015B1 (ja)
JP (1) JP4485571B2 (ja)
WO (1) WO2006093209A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894044B1 (en) * 2008-03-11 2011-02-22 Oceanit Laboratories, Inc. Laser for coherent LIDAR
US10156473B2 (en) 2015-09-02 2018-12-18 The Boeing Company Remote target identification using laser Doppler vibrometry

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102008A (ja) * 1990-08-21 1992-04-03 Brother Ind Ltd 原子間力顕微鏡
JPH04136743A (ja) * 1990-09-28 1992-05-11 Hitachi Ltd 光音響信号検出方法及び装置
JPH06185977A (ja) * 1992-12-22 1994-07-08 Topcon Corp 干渉測長装置
JPH0712545A (ja) * 1993-06-28 1995-01-17 Noboru Nakatani 光ファイバ・アレイを用いた差動型へテロダイン干渉計による原子間力顕微鏡検出装置
JPH07225975A (ja) * 1994-02-14 1995-08-22 Hitachi Ltd 情報記録再生装置、プローブ走査型顕微鏡、微細加工装置
JPH10142241A (ja) * 1996-11-11 1998-05-29 Olympus Optical Co Ltd カンチレバーの評価装置
JP2003114182A (ja) * 2001-06-19 2003-04-18 Japan Science & Technology Corp カンチレバーアレイ、その製造方法及びそれを用いた走査型プローブ顕微鏡、案内・回転機構の摺動装置、センサ、ホモダインレーザ干渉計、試料の光励振機能を有するレーザドップラー干渉計ならびにカンチレバーの励振方法
JP2004125540A (ja) * 2002-10-01 2004-04-22 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料観察方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459392B1 (en) * 1990-05-30 1999-08-18 Hitachi, Ltd. Method and apparatus for processing a minute portion of a specimen
US5608166A (en) * 1995-10-12 1997-03-04 National Research Council Of Canada Generation and detection of ultrasound with long pulse lasers
JP4136743B2 (ja) 2003-03-20 2008-08-20 洋一 島田 レベル取付台
KR100793122B1 (ko) * 2003-08-11 2008-01-10 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 투명 기판을 이용한 프로브 현미경용의 프로브, 그 제조방법 및 프로브 현미경 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102008A (ja) * 1990-08-21 1992-04-03 Brother Ind Ltd 原子間力顕微鏡
JPH04136743A (ja) * 1990-09-28 1992-05-11 Hitachi Ltd 光音響信号検出方法及び装置
JPH06185977A (ja) * 1992-12-22 1994-07-08 Topcon Corp 干渉測長装置
JPH0712545A (ja) * 1993-06-28 1995-01-17 Noboru Nakatani 光ファイバ・アレイを用いた差動型へテロダイン干渉計による原子間力顕微鏡検出装置
JPH07225975A (ja) * 1994-02-14 1995-08-22 Hitachi Ltd 情報記録再生装置、プローブ走査型顕微鏡、微細加工装置
JPH10142241A (ja) * 1996-11-11 1998-05-29 Olympus Optical Co Ltd カンチレバーの評価装置
JP2003114182A (ja) * 2001-06-19 2003-04-18 Japan Science & Technology Corp カンチレバーアレイ、その製造方法及びそれを用いた走査型プローブ顕微鏡、案内・回転機構の摺動装置、センサ、ホモダインレーザ干渉計、試料の光励振機能を有するレーザドップラー干渉計ならびにカンチレバーの励振方法
JP2004125540A (ja) * 2002-10-01 2004-04-22 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料観察方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OSHIO T. ET AL.: "Atomic Force Microscope Using an Optical Fiber Heterodyne Interferometer Free from External Disturbances", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 32, no. 6B. PART 1, 30 June 1993 (1993-06-30), pages 2994 - 2998, XP000487438 *

Also Published As

Publication number Publication date
EP1879015A4 (en) 2011-12-14
EP1879015B1 (en) 2018-08-01
US20090219506A1 (en) 2009-09-03
EP1879015A1 (en) 2008-01-16
US7719663B2 (en) 2010-05-18
JPWO2006093209A1 (ja) 2008-08-07
JP4485571B2 (ja) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4151159B2 (ja) 媒質の測定装置
TWI499754B (zh) 位移偵測裝置
US7466427B2 (en) Vibration-resistant interferometer apparatus
WO2006093210A1 (ja) ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム
JPH08101020A (ja) 厚さ測定装置
JP4434882B2 (ja) レーザ走査型蛍光観察装置
WO2020196783A1 (ja) 共焦点顕微鏡ユニット及び共焦点顕微鏡
JP2010237183A (ja) 低コヒーレンス干渉計及び光学顕微鏡
WO2012170275A1 (en) Coupled multi-wavelength confocal systems for distance measurements
JP4208069B2 (ja) 屈折率及び厚さの測定装置ならびに測定方法
WO2006093209A1 (ja) ヘテロダインレーザドップラープローブ及びそれを用いた測定システム
JPS6356923B2 (ja)
JP2007003333A (ja) 距離測定装置
WO2007074752A1 (ja) チルトセンサ及びエンコーダ
JP2005077391A (ja) 位置姿勢計測装置および位置と姿勢の計測方法
US6816263B2 (en) Interferometric measurement apparatus for wavelength calibration
JP2000147122A (ja) 光波測距装置
JP2005106706A (ja) 屈折率及び厚さの測定装置ならびに測定方法
CN220063856U (zh) 光学设备
JP3638261B2 (ja) 煙濃度測定装置
JP6410100B2 (ja) 干渉計
RU2281476C1 (ru) Рефлектометр на основе многоходовой оптической схемы
JP2014025765A (ja) 変位検出装置
JP2000147383A (ja) 顕微鏡装置
JP2002213928A (ja) 面形状測定装置、面形状測定方法及びこれらを用いて面形状が測定された光学素子を組み込んでなる投影レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007505994

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006715044

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11817357

Country of ref document: US