WO2006093210A1 - ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム - Google Patents

ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム Download PDF

Info

Publication number
WO2006093210A1
WO2006093210A1 PCT/JP2006/303935 JP2006303935W WO2006093210A1 WO 2006093210 A1 WO2006093210 A1 WO 2006093210A1 JP 2006303935 W JP2006303935 W JP 2006303935W WO 2006093210 A1 WO2006093210 A1 WO 2006093210A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
laser interferometer
focus lens
homodyne laser
Prior art date
Application number
PCT/JP2006/303935
Other languages
English (en)
French (fr)
Inventor
Hideki Kawakatsu
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP06715045.8A priority Critical patent/EP1860396B1/en
Priority to US11/817,438 priority patent/US7847953B2/en
Priority to JP2007505995A priority patent/JP4489804B2/ja
Publication of WO2006093210A1 publication Critical patent/WO2006093210A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • G01B9/0205Interferometers characterised by particular mechanical design details of probe head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/15Cat eye, i.e. reflection always parallel to incoming beam

Definitions

  • the present invention relates to a homodyne laser interferometer probe and a displacement measurement system using the same.
  • Patent Document 1 JP 2003-114182 A
  • Patent Document 2 WO 2004/017329
  • Non-Patent Document 1 J. Yang et al., 'Ultra ⁇ small single crystal silicon cantil evers for a new generation of SFM "
  • Non-Patent Document 2 Hans J. Hug et al., "Scanning Force Microscopy with Ultrasmall Cantilevers
  • the optical lever system requires complicated adjustment of the optical axis, and is particularly difficult to use in liquid, vacuum, or low temperature.
  • the homodyne interferometer method using one end face of the optical fiber is widely used, but the signal intensity is small because the reflected light equivalent to 4% of the incident light generated at the end face of the optical fiber is used as the reference light. Moreover, if the fiber is cut as it is, its end face diameter is several hundred meters, making it suitable for measuring minute cantilevers! /. (3) The Fabry-Perot homodyne laser interferometer method cannot achieve performance without compensating the coaxiality of the force-concave lens and optical fiber with sub- ⁇ m order, which can provide high sensitivity!
  • the heterodyne laser Doppler meter method is suitable for higher frequencies, but is extremely expensive.
  • the homodyne interferometer method has problems such as difficulty in adjusting the optical axis and performance.
  • the present invention provides a homodyne laser interferometer probe that has a simple structure, is inexpensive, and that can easily obtain a predetermined performance by simple adjustment, and a displacement measurement system using the same. For the purpose.
  • the present invention provides
  • an optical fiber that guides light
  • a collimating lens that receives light from the optical fiber, and light from the collimating lens, and converts the light from linearly polarized light to circularly polarized light.
  • a quarter-wave plate to be converted a beam splitter that divides the light from the quarter-wave plate into reference light and measurement light, a first focus lens that receives the reference light from the beam splitter, and A reflection mirror that reflects the reference light from the first focus lens, and a second focus lens that receives the measurement light from the beam splitter, and the reference light of the reflection mirror force is measured along the same path
  • the measurement light from the second focus lens is irradiated onto the measurement object, and the measured light of the measurement object force is returned to the measurement means along the same path.
  • a homodyne laser interferometer probe! / An optical fiber that guides light, a collimating lens that receives light from the optical fiber, and light from the collimating lens, A beam splitter that divides light into measurement light, a first focus lens that receives reference light from the beam splitter, a reflection mirror that reflects reference light from the first focus lens, and a beam splitter from the beam splitter.
  • the second focus lens that receives the measurement light, and the measurement light from the second focus lens irradiates the measurement object, returns the measurement light reflected by the measurement object force to the beam splitter, and the beam splitter Measure the measuring light through the third focus lens and measure the reference light of the reflecting mirror force along the same path.
  • a photodetector An optical fiber that guides light, a collimating lens that receives light from the optical fiber, and light from the collimating lens, A beam splitter that divides light into measurement light, a first focus lens that receives reference light from the beam splitter, a reflection mirror that reflects reference light
  • the photodiode is a photodiode via an optical fiber connected to a focal point of the third focal lens. It is characterized by being.
  • the first focus lens receiving the reference light from the beam splitter in the homodyne laser interferometer probe according to [1] or [2] above, and the first focus lens
  • An adjusting mechanism is provided for adjusting the distance between the first focus lens and the beam splitter while maintaining a constant distance from the reflection mirror that receives and reflects the reference light of the force.
  • the homodyne laser interferometer probe according to [5] is characterized in that the adjustment mechanism is a piezo element.
  • a displacement measurement system using a homodyne laser interferometer probe wherein the reference light and measurement light returned to the optical fiber are measured using the homodyne laser interferometer probe described in [1] above. It is characterized in that it is guided to an element that detects the intensity of the interfered light through a beam splitter, and homodyne laser interferometry is performed using the difference between the optical paths of the measurement light and the reference light.
  • FIG. 1 is a schematic diagram of a homodyne laser interferometer probe showing a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a homodyne laser interferometer probe showing a second embodiment of the present invention.
  • FIG. 3 shows a specific example of the second embodiment of the present invention.
  • the distance between the first focus lens and the reflection mirror is kept constant, and the first focus lens and It is a figure which shows an example of the adjustment mechanism which adjusts the space
  • FIG. 4 is a view showing a modification of the homodyne laser interferometer probe (FIG. 1) showing the first embodiment of the present invention.
  • FIG. 5 is a schematic view of a homodyne laser interferometer probe showing a third embodiment of the present invention.
  • FIG. 6 is a modification of the homodyne laser interferometer probe (FIG. 5) showing the third embodiment of the present invention.
  • FIG. 7 is a schematic view of a homodyne laser interferometer probe showing a fourth embodiment of the present invention.
  • FIG. 8 is a modification of the homodyne laser interferometer probe (FIG. 7) showing the fourth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a cantilever displacement measurement system of a scanning force microscope having a homodyne laser interferometer probe according to a first embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a cantilever displacement measuring system of a scanning force microscope corresponding to a homodyne laser interferometer probe (FIG. 4) according to a second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a cantilever displacement measuring system of a scanning force microscope corresponding to a homodyne laser interferometer probe (FIG. 6) according to a third embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a cantilever displacement measuring system of a scanning force microscope corresponding to a homodyne laser interferometer probe (FIG. 8) according to a fourth embodiment of the present invention.
  • the homodyne laser interferometer probe of the present invention includes an optical fiber that guides light, a collimator lens that receives light from the optical fiber, and light from the collimator lens, and linearly polarizes the light.
  • a quarter-wave plate that converts light into circularly polarized light
  • a beam splitter that splits the light from this quarter-wave plate into reference and measurement light
  • a first focal point that receives the reference light from this beam splitter
  • a lens, a reflection mirror that reflects the reference light from the first focus lens, and a second focus lens that receives the measurement light from the beam splitter, and the reference light of the reflection mirror force is the same.
  • the path is returned to the measurement means, and the measurement light from the second focus lens is irradiated onto the measurement object, and the measurement light of the measurement object force is returned to the measurement means along the same path. .
  • FIG. 1 is a schematic diagram of a homodyne laser interferometer probe showing a first embodiment of the present invention.
  • 1 is an optical probe (homodyne laser interferometer probe body: T-shaped metal column)
  • 2 is a light into which measurement light / reference light is introduced and measurement light / reference light is derived
  • Fibers 1 and 3 receive the measurement light and reference light from optical fiber 1 and collimate lenses that lead the measurement light 'reference light to optical fiber 1 and 4 indicate measurement light from collimating lens 3 •
  • Reference light 1Z4 wavelength plate that emits measurement light and reference light to the collimating lens 3 and 5 receives measurement light 'reference light from the 1Z4 wavelength plate 4, reflects the reference light, and emits it to the first focus lens 6
  • 7 is a reflection mirror that receives and reflects the reference light from the first focus lens 6
  • 8 is measurement light that is transmitted from the beam splitter 5.
  • A is a measurement object (for example, a cantilever) irradiated with measurement light from the second focus lens 8.
  • the measurement light (signal light) reflected by the displacement measurement object (for example, cantilever) A returns to the optical fiber 12 through the same path.
  • a homodyne laser interferometer probe having the optical system configured as described above is used.
  • optical probe homogene laser interferometer probe body: metal column
  • the light introduced from the optical fiber 12 is converted into parallel light by the collimating lens 3, converted from linearly polarized light to circularly polarized light by the 1Z4 wavelength plate 4, and divided into measurement light and reference light by the beam splitter 5. .
  • the reference light passes through the first focus lens 6 and is applied to the reflection mirror 7 at the focus position.
  • the reference light reflected by the reflecting mirror 7 follows the same path and returns to the measuring device (not shown).
  • the measurement light transmitted through the beam splitter 5 passes through the second focus lens 8 and is irradiated to the measurement object (here, the cantilever) A arranged near the focal position, and the measurement object.
  • the measurement light (signal light) of the object A force follows the same path and returns to the measurement device via the optical fiber 12.
  • the difference in the optical path between the returned reference light and measurement light Therefore, since light interference occurs, it is possible to detect the displacement of the measuring object A by detecting the change in brightness of the interference.
  • the light that interferes every time the optical path difference between the reference light and the measurement light causes a change of 1Z2 in the wavelength of the light causes a periodic change of bright interference, dark interference, and bright interference, and its changing force.
  • a periodic change of bright interference, dark interference, and bright interference causes a periodic change of bright interference, dark interference, and bright interference, and its changing force.
  • an intermediate point between bright and dark interference as the operating point, it is possible to measure minute displacements on the order of nm around this operating point with high sensitivity.
  • FIG. 2 is a schematic view of a homodyne laser interferometer probe showing a second embodiment of the present invention.
  • the piezo element 10 is provided while keeping the distance constant. Note that the drive unit of the piezo element 10 may be a normal one and is illustrated.
  • the second focus lens 8 with respect to the measurement object A can be adjusted. You can make fine settings.
  • FIG. 3 shows a specific example of the second embodiment of the present invention.
  • the distance between the first focus lens and the reflection mirror is kept constant. It is a figure which shows an example of the adjustment mechanism which adjusts the space
  • reference numeral 11 denotes a holder for fixing the reflecting mirror 7 and the first focus lens 6, and a pair of wedges 13 having a shear piezo element 14 fixed thereto are arranged on the holder 11.
  • the holder 11 is arranged so as to be movable linearly (left and right in the figure) along the guide 12.
  • FIG. 4 is a view showing a modification of the homodyne laser interferometer probe (FIG. 1) showing the first embodiment of the present invention.
  • the first focus lens 6 that receives the reference light that is the reflected light from the beam splitter 5 and the reflection that receives and reflects the reference light from the first focus lens 6.
  • the beam splitter 5 uses the light guided from the optical fiber 1 as the measurement light and the reference light. Because it is a function that only splits the light into two light beams, as shown in Fig. 4, from the first focus lens 6 and the first focus lens 6 that receive the reference light that is the transmitted light of 5 beamsplitter. It is possible to provide a reflection mirror 7 that receives and reflects the reference light and a second focus lens 8 that receives the measurement light reflected from the beam splitter 5.
  • FIG. 5 is a schematic view of a homodyne laser interferometer probe showing a third embodiment of the present invention.
  • 20 is an optical probe (homodyne laser interferometer probe body: cross-shaped metal column), 21 is an optical fiber, 22 is a collimating lens, 23 is a beam splitter, and 24 is a first focus lens.
  • 25 is a reflection mirror, 26 is a second focus lens, 27 is a third focus lens, 28 is a photodiode, 29 is a wiring, and A is a displacement measurement object.
  • the light from the optical fiber 21 is guided to the beam splitter 23 via the collimator lens 22, and the contrast of the interference caused by the optical path difference between the measurement light and the reference light is installed in the optical probe 20.
  • the measurement was performed directly by the photodiode 28 through the three focus lenses 27, and the optical fiber 21 was used only in one direction as the light propagation direction. In this configuration, the 1Z4 wave plate is not necessary.
  • FIG. 6 is a modification of the homodyne laser interferometer probe (FIG. 5) showing the third embodiment of the present invention.
  • the first focus lens 24 that receives the reference light that is the reflected light from the beam splitter 23 and the reference light from the first focus lens 24 are received and reflected.
  • the beam splitter 23 uses the light guided from the optical fiber 21 as the measurement light. Since it is a function that only divides the reference light into two light beams, as shown in FIG. 6, the first focus lens 24 and the first focus lens that receive the reference light that is transmitted from the beam splitter 23, as shown in FIG.
  • a reflection mirror 25 that receives and reflects the transmitted light from 24 and a second focus lens 26 that receives measurement light that is reflected from the beam splitter 23 may be provided.
  • FIG. 7 is a schematic diagram of a homodyne laser interferometer probe showing a fourth embodiment of the present invention.
  • 30 is an optical probe (homodyne laser interferometer probe body: cross-shaped metal column), 31 is the first optical fiber, 32 is a collimating lens, 33 is a beam splitter, 34 is the first Focus lens, 35 reflecting mirror, 36 second focus lens, 37 third focus lens, 37A focus of the third focus lens, 38 second optical fiber, 39 photo diode, 39A is a wiring, and A is a displacement measurement object.
  • 31 is the first optical fiber
  • 32 is a collimating lens
  • 33 is a beam splitter
  • 34 is the first Focus lens
  • 35 reflecting mirror 36 second focus lens
  • 37 third focus lens 37A focus of the third focus lens
  • 38 second optical fiber 39 photo diode
  • 39A is a wiring
  • A is a displacement measurement object.
  • the second optical fiber 38 is disposed at the position of the focal point 37 A of the third focal lens 37, and the light and darkness of the light due to interference is disposed outside the optical probe 30 using the second optical fiber 38.
  • the configuration leads to 39.
  • the first optical fiber 31 and the second optical fiber 38 are used to straddle partition walls in different environments such as vacuum and air, so that Only 38 and the optical probe 30 can be placed in a vacuum. In this configuration, a quarter wave plate is not necessary.
  • FIG. 8 is a modification of the homodyne laser interferometer probe (FIG. 7) showing the fourth embodiment of the present invention.
  • the first focus lens 34 that receives the reference light that is the reflected light from the beam splitter 33 and the reference light from the first focus lens 34 are received and reflected.
  • the second focus receiving the measurement light that is the transmitted light from the reflection mirror 35 and the beam splitter 33.
  • the force of providing a point lens 36Because the beam splitter 33 is a function that only divides the light guided from the optical fiber 31 into two lights, a measurement light and a reference light, as shown in FIG.
  • the first focus lens 34 that receives the reference light that is the transmitted light from the splitter 33, the reflection mirror 35 that receives and reflects the transmitted light from the first focus lens 34, and the reflected light from the beam splitter 33
  • a second focus lens 36 that receives the measurement light may be provided.
  • FIG. 9 is a schematic diagram of a cantilever displacement measuring system of a scanning force microscope having a homodyne laser interferometer probe (FIG. 1) according to the first embodiment of the present invention.
  • the configuration of the homodyne laser interferometer probe is the same as that described above.
  • 41 is a light irradiation light source
  • 42 is a beam splitter
  • 43 is an element (photodiode) that detects the intensity of the interfered light.
  • the light emitted from the light irradiation light source 41 passes through the beam splitter 42 and is guided to the optical fiber 12, and becomes parallel light by the collimator lens 3.
  • the linear polarization force becomes circularly polarized light by 4 and is divided into measurement light and reference light by the beam splitter 5.
  • the reference light passes through the first focus lens 6 and is applied to the reflection mirror 7 at the focus position.
  • the reference light reflected by the reflecting mirror 7 is reflected by the beam splitter 5, converted from circularly polarized light to linearly polarized light through the quarter-wave plate 4, and reflected by the beam splitter 42 through the collimating lens 3 optical fiber 2.
  • the light is guided to an element (photodiode) 43 that detects the intensity of the interference light.
  • the measurement light transmitted through the beam splitter 5 passes through the second focus lens 8 and is irradiated to a measurement object (here, a cantilever) 9 disposed near the focus position.
  • the measurement light (signal light) of the second focus lens 8 beam splitter 5-quarter-wave plate 4-collimating lens 3 is guided to the optical fiber 1, reflected by the beam splitter 42, Guided to element 43 (photodiode) that detects intensity. That is, the interference light and darkness caused by the optical path difference between the returned reference light and measurement light is guided to an element (photodiode) 43 for detecting the intensity of the light interfered by the beam splitter 42, and the intensity of this interfered light is reduced.
  • Detecting element (photodiode) 43 Change force of output Measure the displacement of the measuring object 9.
  • an adjustment mechanism for adjusting the distance between the first focus lens 6 and the beam splitter 5 described later can be added to the cantilever displacement measurement system of the scanning force microscope.
  • FIG. 10 is a schematic diagram of a cantilever displacement measuring system of a scanning force microscope corresponding to a homodyne laser interferometer probe (FIG. 4) according to a second embodiment of the present invention.
  • the homodyne laser interferometer probe has the configuration shown in FIG. 4, and the laser light from the laser light source 51 is transmitted from the optical isolator 52, the beam splitter 53, and a half-wave plate. 55, guided to optical fiber 1 through focusing lens 56 and input to homodyne laser interferometer probe 1 (Fig. 4), and the output from optical probe 1 is derived from optical fiber 1 to 53 And is output as a displacement signal from the wiring 54A via the photodiode 54.
  • A is a displacement measurement object.
  • FIG. 11 is a schematic view of a cantilever displacement measuring system of a scanning force microscope corresponding to a homodyne laser interferometer probe (FIG. 6) according to a third embodiment of the present invention.
  • the homodyne laser interferometer probe has the configuration shown in FIG. 6, and the laser light from the laser light source 61 is obtained from an optical isolator 62, a half-wave plate 63, and a focal lens. The light is guided to the optical fiber 21 through 64 and introduced into the optical probe 20. Further, the output light from the optical probe 20 is extracted as a displacement signal by the wiring 29.
  • FIG. 12 is a schematic diagram of a cantilever displacement measuring system of a scanning force microscope corresponding to a homodyne laser interferometer probe (FIG. 8) according to a fourth embodiment of the present invention.
  • the homodyne laser interferometer probe has the configuration shown in FIG. 8, and the laser light from the laser light source 61 is obtained from an optical isolator 62, a half-wave plate 63, a focus lens. The light is guided to the first optical fiber 31 through 64 and introduced into the optical probe 30. Further, the output light from the optical probe 30 is guided to the photodiode 39 via the second optical fiber 38, and a displacement signal is output by the wiring 39A.
  • a homodyne laser interferometer using a high reference light quantity with a simple configuration.
  • a good interference signal can be obtained even with slight changes in the angle and installation position of the optical probe and measurement object.
  • the homodyne laser interferometer probe of the present invention and the force niche displacement measuring device of a scanning force microscope using the probe can be used in the fields of substance identification, nanobiomechanics, and drug discovery.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

 構造が簡単で、安価で、かつ簡便な調整で容易に所定の性能が得られるホモダインレーザ干渉計プローブ及びそれを用いた変位計測システムを提供する。  ホモダインレーザ干渉計プローブであって、光を導く光ファイバー1と、この光ファイバー1からの光を受けるコリメートレンズ2と、このコリメートレンズ2からの光を受けて、この光を直線偏光から円偏光に変換する4分の1波長板3と、この4分の1波長板3からの光を基準光と計測光とに分けるビームスプリッタ4と、このビームスプリッタ4からの基準光を受ける第1の焦点レンズ5と、この第1の焦点レンズ5からの基準光を反射する反射ミラー6と、前記ビームスプリッタ4からの計測光を受ける第2の焦点レンズ7とを備え、前記反射ミラー6からの基準光を同一の経路をたどって計測手段に戻すとともに、前記第2の焦点レンズ7からの計測光を測定対象物8に照射してこの測定対象物8からの計測光(信号光)を同一の経路をたどって測定手段に戻す。  

Description

ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム 技術分野
[0001] 本発明は、ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム に関するものである。
背景技術
[0002] 従来の、走査型力顕微鏡のカンチレバーの変位計測方式としては、
(1)光てこ方式
(2)光ファイバ一端面を用いたホモダイン干渉計方式
(3)凹面レンズを用いたフアブリ一ペロー式ホモダインレーザ干渉計方式
(4)ヘテロダインレーザドップラー計方式
(5)焦点レンズを用いずに、平面ミラーのみを用いて基準光を反射させたホモダイ ン干渉計方式、等が挙げられる。
特許文献 1 :特開 2003— 114182
特許文献 2 :WO 2004/017329
非特許文献 1 :J. Yang et al. , 'Ultra― small single crystal silicon cantil evers for a new generation of SFM"
非特許文献 2 : Hans J. Hug et al. , "Scanning Force Microscopy with Ultrasmall Cantilevers
発明の開示
[0003] 以下に、上記した従来の各変位計測方式の問題点を列挙する。
(1)光てこ方式は、光軸調整が煩雑で、特に液中、真空中、低温中での使用が困難 である。
(2)光ファイバ一端面を用いたホモダイン干渉計方式は広く用いられて 、るが、光フ アイバー端面で生じる、入射光の 4%にあたる反射光を基準光としているため、信号 強度が小さい。また、切断したファイバーのままでは、その端面直径が数 100 mあ り、微小なカンチレバーの計測に適して!/、な!/、。 (3)フアブリ一ペロー式ホモダインレーザ干渉計方式は、高い感度が得られる力 凹 面レンズと光ファイバ一の同軸性をサブ μ mオーダで補償しな 、と性能が得られな!ヽ
(4)ヘテロダインレーザドップラー計方式は、高周波化に適するが、極めて高価であ る。
(5)ホモダイン干渉計方式は、光軸調整が困難であり、性能が出し難いなどの問題 点を有する。
[0004] 本発明は、上記状況に鑑みて、構造が簡単で、安価で、かつ簡便な調整で容易に 所定の性能が得られるホモダインレーザ干渉計プローブ及びそれを用いた変位計測 システムを提供することを目的とする。
[0005] 本発明は、上記目的を達成するために、
〔1〕ホモダインレーザ干渉計プローブにおいて、光を導く光ファイバ一と、この光フ アイバーからの光を受けるコリメートレンズと、このコリメートレンズからの光を受けて、 この光を直線偏光から円偏光に変換する 4分の 1波長板と、この 4分の 1波長板から の光を基準光と計測光とに分けるビームスプリッタと、このビームスプリッタからの基準 光を受ける第 1の焦点レンズと、前記第 1の焦点レンズからの基準光を反射する反射 ミラーと、前記ビームスプリツタカもの計測光を受ける第 2の焦点レンズとを備え、前記 反射ミラー力 の基準光を同一の経路をたどって測定手段に戻すとともに、前記第 2 の焦点レンズからの計測光を測定対象物に照射して該測定対象物力 の計測され た光を同一の経路をたどって計測手段に戻すことを特徴とする。
[0006] 〔2〕ホモダインレーザ干渉計プローブにお!/、て、光を導く光ファイバ一と、この光フ アイバーからの光を受けるコリメートレンズと、このコリメートレンズからの光を受けて、 基準光と計測光とに分けるビームスプリッタと、このビームスプリッタからの基準光を受 ける第 1の焦点レンズと、前記第 1の焦点レンズからの基準光を反射する反射ミラーと 、前記ビームスプリッタからの計測光を受ける第 2の焦点レンズと、この第 2の焦点レ ンズからの計測光は測定対象物に照射して該測定対象物力 反射された計測光を 前記ビームスプリッタに戻し、該ビームスプリツタカもの計測光を第 3の焦点レンズを 介して計測するとともに、前記反射ミラー力 の基準光を同一の経路をたどって計測 する光検出器とを具備することを特徴とする。
[0007] 〔3〕上記〔2〕記載のホモダインレーザ干渉計プローブにお!/、て、前記光検出器がフ オトダイオードであることを特徴とする。
[0008] 〔4〕上記〔2〕記載のホモダインレーザ干渉計プローブにお!/、て、前記光検出器が 前記第 3の焦点レンズの焦点部位に接続される光ファイバを介したフォトダイオード であることを特徴とする。
[0009] [5]上記〔1〕又は〔2〕記載のホモダインレーザ干渉計プローブにお!/、て、前記ビー ムスプリッタからの基準光を受ける第 1の焦点レンズとこの第 1の焦点レンズ力 の基 準光を受けて反射する反射ミラーとの間隔を一定に保ったまま、前記第 1の焦点レン ズと前記ビームスプリッタとの間隔を調整する調整機構を配置することを特徴とする。
[0010] 〔6〕上記〔5〕記載のホモダインレーザ干渉計プローブにお!/、て、前記調整機構がピ ェゾ素子であることを特徴とする。
[0011] 〔7〕上記〔5〕記載のホモダインレーザ干渉計プローブにおいて、前記調整機構が 剪断ピエゾ素子と楔であることを特徴とする。
[0012] 〔8〕ホモダインレーザ干渉計プローブを用いた変位計測システムであって、上記〔1 〕記載のホモダインレーザ干渉計プローブを用い、前記光ファイバ一に戻った前記基 準光と計測光をビームスプリッタを介して干渉した光の強度を検出する素子に導き、 前記計測光と基準光の光路の差を用いてホモダインレーザ干渉計測を行うことを特 徴とする。
[0013] 〔9〕上記〔2〕記載のホモダインレーザ干渉計プローブを用い、前記光検出器で得ら れる前記基準光と計測光に基づいて、前記計測光と基準光の光路の差を用いてホ モダインレーザ干渉計測を行うことを特徴とする。 図面の簡単な説明
[0014] [図 1]本発明の第 1実施例を示すホモダインレーザ干渉計プローブの模式図である。
[図 2]本発明の第 2実施例を示すホモダインレーザ干渉計プローブの模式図である。
[図 3]本発明の第 2実施例の具体例を示すホモダインレーザ干渉計プローブにおけ る第 1の焦点レンズと反射ミラーとの間隔を一定に保ったまま、第 1の焦点レンズとビ 一ムスプリッタとの間隔を調整する調整機構の一例を示す図である。 [図 4]本発明の第 1実施例を示すホモダインレーザ干渉計プローブ(図 1)の変形例を 示す図である。
[図 5]本発明の第 3実施例を示すホモダインレーザ干渉計プローブの模式図である。
[図 6]本発明の第 3実施例を示すホモダインレーザ干渉計プローブ(図 5)の変形例で ある。
[図 7]本発明の第 4実施例を示すホモダインレーザ干渉計プローブの模式図である。
[図 8]本発明の第 4実施例を示すホモダインレーザ干渉計プローブ(図 7)の変形例で ある。
[図 9]本発明の第 1実施例を示すホモダインレーザ干渉計プローブを有する走査型 力顕微鏡のカンチレバーの変位計測システムの模式図である。
[図 10]本発明の第 2実施例を示すホモダインレーザ干渉計プローブ(図 4)に対応し た走査型力顕微鏡のカンチレバーの変位計測システムの模式図である。
[図 11]本発明の第 3実施例を示すホモダインレーザ干渉計プローブ(図 6)に対応し た走査型力顕微鏡のカンチレバーの変位計測システムの模式図である。
[図 12]本発明の第 4実施例を示すホモダインレーザ干渉計プローブ(図 8)に対応し た走査型力顕微鏡のカンチレバーの変位計測システムの模式図である。
発明を実施するための最良の形態
[0015] 本発明のホモダインレーザ干渉計プローブは、光を導く光ファイバ一と、この光ファ ィバーからの光を受けるコリメートレンズと、このコリメートレンズからの光を受けて、こ の光を直線偏光から円偏光に変換する 4分の 1波長板と、この 4分の 1波長板からの 光を基準光と計測光とに分けるビームスプリッタと、このビームスプリツタカ の基準光 を受ける第 1の焦点レンズと、前記第 1の焦点レンズからの基準光を反射する反射ミラ 一と、前記ビームスプリッタからの計測光を受ける第 2の焦点レンズとを備え、前記反 射ミラー力 の基準光を同一の経路をたどって測定手段に戻すとともに、前記第 2の 焦点レンズからの計測光を測定対象物に照射して該測定対象物力 の計測光を同 一の経路をたどって計測手段に戻すようにした。
実施例
[0016] 以下、本発明の実施の形態について詳細に説明する。 [0017] 図 1は本発明の第 1実施例を示すホモダインレーザ干渉計プローブの模式図であ る。
[0018] この図において、 1は光プローブ(ホモダインレーザ干渉計プローブ本体: T字形状 の金属柱)、 2は計測光 ·基準光が導入されるとともに、計測光 ·基準光が導出される 光ファイバ一、 3は光ファイバ一 2からの計測光 ·基準光を受けるとともに、計測光'基 準光を光ファイバ一 2へ導出するコリメートレンズ、 4はコリメートレンズ 3からの計測光 •基準光を受けるとともに、計測光,基準光をコリメートレンズ 3へ出射する 1Z4波長 板、 5は 1Z4波長板 4より計測光'基準光を受けて、基準光を反射して、第 1の焦点 レンズ 6に出射するとともに、計測光を透過して出射するビームスプリッタ、 7はその第 1の焦点レンズ 6からの基準光を受けて反射する反射ミラー、 8はビームスプリッタ 5か らの透過光である計測光を受ける第 2の焦点レンズである。なお、 Aは第 2の焦点レン ズ 8からの計測光が照射される測定対象物 (例えば、カンチレバー)である。変位測 定対象物 (例えば、カンチレバー) Aで反射された計測光 (信号光)は、同一の経路を 経て、光ファイバ一 2へと戻る。
[0019] 本発明では、このように構成された光学系を有するホモダインレーザ干渉計プロ一 ブを用いる。特に、ビームスプリッタ 5と反射ミラー 7との間に第 1の焦点レンズ 6を用い ることが重要である。
[0020] これらのうち、測定対象物 A以外は、直径 10mm、長さ 50mm程度の体積の光プロ ーブ(ホモダインレーザ干渉計プローブ本体:金属柱) 1に内包される。
[0021] このように、光ファイバ一 2から導入された光は、コリメートレンズ 3により平行光となり 、 1Z4波長板 4によって直線偏光から円偏光となり、ビームスプリッタ 5によって計測 光と基準光に分けられる。基準光は第 1の焦点レンズ 6を経て、その焦点位置にある 反射ミラー 7に照射される。その反射ミラー 7で反射した基準光は同一の経路をたど つて測定装置 (図示なし)に戻る。
[0022] 一方、ビームスプリッタ 5を透過した計測光は、第 2の焦点レンズ 8を経て、その焦点 位置近傍に配置される測定対象物 (ここでは、カンチレバー) Aに照射され、その測 定対象物 A力 の計測光 (信号光)が同一の経路をたどって光ファイバ一 2を介して 計測装置に戻る。その計測装置においては、戻ってきた基準光と計測光の光路差に よって、光の干渉が生じるので、その干渉の明暗の変化を検出して測定対象物 Aの 変位を検出することができる。詳細に述べると、基準光と計測光の光路差が光の波長 の 1Z2の変化を生じるごとに干渉した光は明干渉、暗干渉、明干渉の周期的変化を 生じ、その変化力 変位測定対象の変位を知ることができる。特に、明干渉、暗干渉 の中間点を作動点とすることにより、この作動点周りの nmオーダの微小な変位を高 感度で計測可能になる。
[0023] 図 2は本発明の第 2実施例を示すホモダインレーザ干渉計プローブの模式図であ る。
[0024] この実施例では、ビームスプリッタ 5からの反射光である基準光を受ける第 1の焦点 レンズ 6とこの第 1の焦点レンズ 6からの基準光を受けて反射する反射ミラー 7との間 隔を一定に保ったまま、第 1の焦点レンズ 6とビームスプリッタ 5との間隔を調整する調 整機構、例えば、ピエゾ素子 10を設けるようにした。なお、ピエゾ素子 10の駆動部は 通常のものでよく図示はして 、な 、。
[0025] そこで、調整機構、例えば、ピエゾ素子 10の駆動により、第 1の焦点レンズ 6とビー ムスプリッタ 5との間隔を調整することにより、測定対象物 Aに対する第 2の焦点レンズ 8のより精妙 (ファイン)な設定を行うことができる。
[0026] 図 3は本発明の第 2実施例の具体例を示すホモダインレーザ干渉計プローブにお ける第 1の焦点レンズと反射ミラーとの間隔を一定に保ったまま、第 1の焦点レンズと ビームスプリッタとの間隔を調整する調整機構の一例を示す図である。
[0027] この図において、 11は反射ミラー 7と第 1の焦点レンズ 6を固定するホルダであり、こ のホルダ 11に剪断ピエゾ素子 14が固定された一対の楔 13が配置される。ホルダ 11 はガイド 12に沿って直線状(図中左右)に移動可能に配置されている。
[0028] そこで、剪断ピエゾ素子 14が駆動されて一対の楔 13が内側に移動する(実線)と、 ホルダ 11は右方に微小移動する。その状態から、剪断ピエゾ素子 14が駆動されて 一対の楔 13が外側に移動する(点線)と、ホルダ 11は左に微小移動する。ホルダ 11 と楔 13は、それぞれガイド 12と楔 13に自重、パネ、磁石、ローラベアリング等で摺動 方向以外の方向は拘束されている。楔 13はビームスプリッタ 5に対して、自重、パネ、 磁石等で押しつけられて 、る。 [0029] このような調整機構 (剪断移動機構)はそれ自身 lOnm程度の移動分解能を有する 力 楔 13を用いることにより、サブ nmへ移動分解能を高められる。さらに、ビームスプ リツタ 5を移動の基準面に直接用いているため、極めて高い剛性と機械的安定度、光 学的安定度が確保され、光路差を調整後、長時間にわたって再調整を要しない安定 な機構を提供することができる。
[0030] 図 4は本発明の第 1実施例を示すホモダインレーザ干渉計プローブ(図 1)の変形 例を示す図である。
[0031] 上記第 1〜第 2実施例では、ビームスプリッタ 5からの反射光である基準光を受ける 第 1の焦点レンズ 6とその第 1の焦点レンズ 6からの基準光を受けて反射する反射ミラ 一 7と、ビームスプリッタ 5からの透過光である計測光を受ける第 2の焦点レンズ 8を設 けるようにしたが、ビームスプリッタ 5は光ファイバ一 2から導かれた光を計測光と基準 光の 2つの光に分けるだけの機能であるために、図 4に示すように、ビームスプリッタ 5 力もの透過光である基準光を受ける第 1の焦点レンズ 6とその第 1の焦点レンズ 6から の基準光を受けて反射する反射ミラー 7と、ビームスプリッタ 5からの反射光である計 測光を受ける第 2の焦点レンズ 8を設けるようにしてもょ 、。
[0032] 図 5は本発明の第 3実施例を示すホモダインレーザ干渉計プローブの模式図であ る。
[0033] この図において、 20は光プローブ(ホモダインレーザ干渉計プローブ本体:十字形 状の金属柱)、 21は光ファイバ一、 22はコリメートレンズ、 23はビームスプリッタ、 24 は第 1の焦点レンズ、 25は反射ミラー、 26は第 2の焦点レンズ、 27は第 3の焦点レン ズ、 28はフォトダイオード、 29は配線、 Aは変位測定対象物である。
[0034] この実施例では、光ファイバ一 21から光をコリメートレンズ 22を介してビームスプリツ タ 23に導き、計測光と基準光の光路差によって生じる干渉の明暗を、光プローブ 20 内に設置した第 3の焦点レンズ 27を介してフォトダイオード 28によって直接計測し、 光ファイバ一 21を光の伝搬方向としては一方向のみで用いるようにした。この構成の 場合は 1Z4波長板は必要がない。
[0035] 図 6は本発明の第 3実施例を示すホモダインレーザ干渉計プローブ(図 5)の変形 例である。 [0036] 上記した第 3実施例(図 5)では、ビームスプリッタ 23からの反射光である基準光を 受ける第 1の焦点レンズ 24とその第 1の焦点レンズ 24からの基準光を受けて反射す る反射ミラー 25と、ビームスプリッタ 23からの透過光である計測光を受ける第 2の焦 点レンズ 26を設けるようにした力 ビームスプリッタ 23は光ファイバ一 21から導かれ た光を計測光と基準光の 2つの光に分けるだけの機能であるために、図 6に示すよう に、ビームスプリッタ 23からの透過光である基準光を受ける第 1の焦点レンズ 24とそ の第 1の焦点レンズ 24からの透過光を受けて反射する反射ミラー 25と、ビームスプリ ッタ 23からの反射光である計測光を受ける第 2の焦点レンズ 26を設けるようにしても よい。
[0037] 図 7は本発明の第 4実施例を示すホモダインレーザ干渉計プローブの模式図であ る。
[0038] この図において、 30は光プローブ(ホモダインレーザ干渉計プローブ本体:十字形 状の金属柱)、 31は第 1の光ファイバ一、 32はコリメートレンズ、 33はビームスプリッタ 、 34は第 1の焦点レンズ、 35は反射ミラー、 36は第 2の焦点レンズ、 37は第 3の焦点 レンズ、 37Aは第 3の焦点レンズの焦点、 38は第 2の光ファイバ一、 39はフォトダイォ ード、 39Aは配線、 Aは変位測定対象物である。
[0039] この実施例では、第 3の焦点レンズ 37の焦点 37A位置に第 2の光ファイバ一 38を 配置し、それを用いて干渉による光の明暗を光プローブ 30外に配置したフォトダイォ ード 39に導く構成となっている。
[0040] このように構成したので、例えば、第 1の光ファイバ一 31と第 2の光ファイバ一 38を 用いて、真空や大気などの異なる環境の隔壁を跨ぐことにより、光ファイバ一 31, 38 と光プローブ 30のみを真空内に配置することが可能になる。この構成の場合も 4分の 1波長板は必要がない。
[0041] 図 8は本発明の第 4実施例を示すホモダインレーザ干渉計プローブ(図 7)の変形 例である。
[0042] 上記した第 4実施例(図 7)では、ビームスプリッタ 33からの反射光である基準光を 受ける第 1の焦点レンズ 34とその第 1の焦点レンズ 34からの基準光を受けて反射す る反射ミラー 35と、ビームスプリッタ 33からの透過光である計測光を受ける第 2の焦 点レンズ 36を設けるようにした力 ビームスプリッタ 33は光ファイバ一 31から導かれ た光を計測光と基準光の 2つの光に分けるだけの機能であるために、図 8に示すよう に、ビームスプリッタ 33からの透過光である基準光を受ける第 1の焦点レンズ 34とそ の第 1の焦点レンズ 34からの透過光を受けて反射する反射ミラー 35と、ビームスプリ ッタ 33からの反射光である計測光を受ける第 2の焦点レンズ 36を設けるようにしても よい。
[0043] 次に、ホモダインレーザ干渉計プローブを有する変位計測システムについて説明 する。
[0044] 図 9は本発明の第 1実施例を示すホモダインレーザ干渉計プローブ(図 1)を有する 走査型力顕微鏡のカンチレバーの変位計測システムの模式図である。
[0045] この図において、ホモダインレーザ干渉計プローブの構成は、上記したものと同様 である。ここでは、 41は光照射光源、 42はビームスプリッタ、 43は干渉した光の強度 を検出する素子 (フォトダイオード)である。
[0046] 図 9に示すように、光照射光源 41から照射される光は、ビームスプリッタ 42を透過し て光ファイバ一 2に導かれ、コリメートレンズ 3により平行光となり、 4分の 1波長板 4に よって直線偏光力 円偏光となり、ビームスプリッタ 5によって計測光と基準光に分け られる。基準光は第 1の焦点レンズ 6を経て、その焦点位置にある反射ミラー 7に照射 される。その反射ミラー 7で反射した基準光は、ビームスプリッタ 5で反射され、 4分の 1波長板 4を経て円偏光から直線偏光に変換され、コリメートレンズ 3 光ファイバー 2 を介してビームスプリッタ 42で反射されて干渉した光の強度を検出する素子 (フォトダ ィオード) 43に導かれる。一方、ビームスプリッタ 5を透過した計測光は、第 2の焦点 レンズ 8を経て、その焦点位置近傍に配置される測定対象物(ここでは、カンチレバ 一) 9に照射され、その測定対象物 9からの計測光 (信号光)が、第 2の焦点レンズ 8 ビームスプリッタ 5— 4分の 1波長板 4ーコリメートレンズ 3 光ファイバ一 2と導かれ 、ビームスプリッタ 42で反射されて、干渉した光の強度を検出する素子 43 (フォトダイ オード)に導かれる。すなわち、戻ってきた基準光と計測光の光路差により生じた干 渉の明暗を、ビームスプリッタ 42によって干渉した光の強度を検出する素子 (フォトダ ィオード) 43に導き、この干渉した光の強度を検出する素子 (フォトダイオード) 43の 出力の変化力 測定対象物 9の変位の計測を行う。
[0047] なお、この走査型力顕微鏡のカンチレバーの変位計測システムにも後述する第 1の 焦点レンズ 6とビームスプリッタ 5との間隔を調整する調整機構を付加することができ る。
[0048] 図 10は本発明の第 2実施例を示すホモダインレーザ干渉計プローブ(図 4)に対応 した走査型力顕微鏡のカンチレバーの変位計測システムの模式図である。
[0049] この実施例では、ホモダインレーザ干渉計プローブは、図 4に示した構成を有して おり、レーザ光源 51からのレーザー光は、光アイソレータ 52、ビームスプリッタ 53、 2 分の 1波長板 55、焦点レンズ 56を介して、光ファイバ一 2に導かれ、ホモダインレー ザ干渉計プローブ 1 (図 4)に入力され、光プローブ 1からの出力は光ファイバ一 2から 導出され、ビームスプリッタ 53で反射されて、フォトダイオード 54を経て配線 54Aから 変位信号として出力される。なお、 Aは変位測定対象物である。
[0050] 図 11は本発明の第 3実施例を示すホモダインレーザ干渉計プローブ(図 6)に対応 した走査型力顕微鏡のカンチレバーの変位計測システムの模式図である。
[0051] この図において、ホモダインレーザ干渉計プローブは、図 6に示した構成を有して おり、レーザ光源 61からのレーザー光は、光アイソレータ 62、 2分の 1波長板 63、焦 点レンズ 64を介して光ファイバ一 21に導かれて光プローブ 20に導入される。また、 光プローブ 20からの出力光は配線 29により変位信号として取り出される。
[0052] 図 12は本発明の第 4実施例を示すホモダインレーザ干渉計プローブ(図 8)に対応 した走査型力顕微鏡のカンチレバーの変位計測システムの模式図である。
[0053] この図において、ホモダインレーザ干渉計プローブは、図 8に示した構成を有して おり、レーザ光源 61からのレーザー光は、光アイソレータ 62、 2分の 1波長板 63、焦 点レンズ 64を介して第 1の光ファイバ 31に導かれて光プローブ 30に導入される。ま た、光プローブ 30からの出力光は第 2の光ファイバ 38を介してフォトダイオード 39に 導かれ、配線 39Aにより変位信号が出力される。
[0054] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種 々の変形が可能であり、これらを本発明の範囲から排除するものではない。
[0055] 本発明によれば、簡便な構成で、高 、基準光量を用いたホモダインレーザ干渉計 測が可能になるとともに、基準光側にも焦点レンズを入れることによって光プローブや 測定対象の角度や設置位置の若干の変化に対しても良好な干渉信号を得ることが できる。
[0056] また、構造が簡単で、安価なホモダインレーザ干渉計プローブを用いた変位計測 システムを提供することができる。
産業上の利用可能性
[0057] 本発明のホモダインレーザ干渉計プローブ及びそれを用いた走査型力顕微鏡の力 ンチレバーの変位計測装置は、物質同定、ナノバイオメカ-タス、創薬の分野への利 用が可能である。

Claims

請求の範囲
[1] (a)光を導く光ファイバ一と、
(b)該光ファイバ一力もの光を受けるコリメートレンズと、
(c)該コリメートレンズからの光を受けて、該光を直線偏光力も円偏光に変換する 4分 の 1波長板と、
(d)該 4分の 1波長板力 の光を基準光と計測光とに分けるビームスプリッタと、
(e)該ビームスプリツタカもの基準光を受ける第 1の焦点レンズと、
(f)前記第 1の焦点レンズからの基準光を反射する反射ミラーと、
(g)前記ビームスプリツタカ の計測光を受ける第 2の焦点レンズとを備え、
(h)前記反射ミラー力 の基準光を同一の経路をたどって測定手段に戻すとともに、 前記第 2の焦点レンズからの計測光を測定対象物に照射して該測定対象物力 の 計測光を同一の経路をたどって計測手段に戻すことを特徴とするホモダインレーザ 干渉計プローブ。
[2] (a)光を導く光ファイバ一と、
(b)該光ファイバ一力もの光を受けるコリメートレンズと、
(c)該コリメートレンズからの光を受けて、基準光と計測光とに分けるビームスプリッタ と、
(e)該ビームスプリツタカもの基準光を受ける第 1の焦点レンズと、
(f)前記第 1の焦点レンズからの基準光を反射する反射ミラーと、
(g)前記ビームスプリツタカ の計測光を受ける第 2の焦点レンズと、
(h)該第 2の焦点レンズ力 の計測光は測定対象物に照射して該測定対象物から反 射され計測光を前記ビームスプリッタに戻し、該ビームスプリツタカもの計測光を第 3 の焦点レンズを介して計測するとともに、前記反射ミラー力 の基準光を同一の経路 をたどって計測する光検出器とを具備することを特徴とするホモダインレーザ干渉計 プローブ。
[3] 請求項 2記載のホモダインレーザ干渉計プローブにおいて、前記光検出器がフォト ダイオードであることを特徴とするホモダインレーザ干渉計プローブ。
[4] 請求項 2記載のホモダインレーザ干渉計プローブにおいて、前記光検出器が前記 第 3の焦点レンズの焦点部位に接続される光ファイバを介したフォトダイオードである ことを特徴とするホモダインレーザ干渉計プローブ。
[5] 請求項 1又は 2記載のホモダインレーザ干渉計プローブにおいて、前記ビームスプ リツタカ の基準光を受ける第 1の焦点レンズと該第 1の焦点レンズからの基準光を受 けて反射する反射ミラーとの間隔を一定に保ったまま、前記第 1の焦点レンズと前記 ビームスプリッタとの間隔を調整する調整機構を配置することを特徴とする。
[6] 請求項 5記載のホモダインレーザ干渉計プローブにおいて、前記調整機構がピエ ゾ素子であることを特徴とするホモダインレーザ干渉計プローブ。
[7] 請求項 5記載のホモダインレーザ干渉計プローブにおいて、前記調整機構が剪断 ピエゾ素子と楔であることを特徴とするホモダインレーザ干渉計プローブ。
[8] 請求項 1記載のホモダインレーザ干渉計プローブを用い、前記光ファイバ一に戻つ た前記基準光と計測光をビームスプリッタを介して干渉した光の強度を検出する素子 に導き、前記計測光と基準光の光路の差を用いてホモダインレーザ干渉計測を行う ことを特徴とするホモダインレーザ干渉計プローブを用いた変位計測システム。
[9] 請求項 2記載のホモダインレーザ干渉計プローブを用い、前記光検出器で得られ る前記基準光と計測光に基づいて、前記計測光と基準光の光路の差を用いてホモ ダインレーザ干渉計測を行うことを特徴とする変位計測システム。
PCT/JP2006/303935 2005-03-02 2006-03-02 ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム WO2006093210A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06715045.8A EP1860396B1 (en) 2005-03-02 2006-03-02 Homodyne laser interferometer probe and displacement measurement system using the same
US11/817,438 US7847953B2 (en) 2005-03-02 2006-03-02 Homodyne laser interferometer probe and displacement measurement system using the same
JP2007505995A JP4489804B2 (ja) 2005-03-02 2006-03-02 ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005056753 2005-03-02
JP2005-056753 2005-03-02

Publications (1)

Publication Number Publication Date
WO2006093210A1 true WO2006093210A1 (ja) 2006-09-08

Family

ID=36941239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303935 WO2006093210A1 (ja) 2005-03-02 2006-03-02 ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム

Country Status (4)

Country Link
US (1) US7847953B2 (ja)
EP (1) EP1860396B1 (ja)
JP (1) JP4489804B2 (ja)
WO (1) WO2006093210A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577406A (zh) * 2020-12-29 2021-03-30 华中科技大学 一种多探针电容位移传感器和表面测量方法
CN114440781A (zh) * 2022-01-21 2022-05-06 中国工程物理研究院流体物理研究所 一种间隙传感器、间隙测量方法及测量装置
CN115096341A (zh) * 2022-08-24 2022-09-23 浙江大学 一种侧边对光的复合光纤法布里-珀罗传感器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236384A1 (en) * 2006-02-12 2007-10-11 Gennadii Ivtsenkov Cost-effective friend-or-foe (IFF) combat infrared alert and identification system (CID)
WO2008109978A1 (en) * 2007-03-13 2008-09-18 Gennadii Ivtsenkov Cost-effective friend-or-foe (iff) battlefield infrared alarm and identification system
EP2163906B1 (en) 2008-09-16 2014-02-26 Mitutoyo Corporation Method of detecting a movement of a measuring probe and measuring instrument
EP2211187B1 (en) 2009-01-14 2013-10-02 Mitutoyo Corporation Method of actuating a system, apparatus for modifying a control signal for actuation of a system and method of tuning such an apparatus
KR101243213B1 (ko) * 2010-10-20 2013-03-13 한국표준과학연구원 간섭신호를 이용한 광섬유 이미징 장치, 이미지 기반의 샘플 위치 추적 장치, 간섭신호를 이용한 광섬유 이미징 방법, 이미지 기반의 샘플 위치 추적 방법 및 그 기록매체
CN102589444A (zh) * 2012-02-11 2012-07-18 西南大学 一种凹面镜反射成像式光杠杆微位移测量系统
US10119816B2 (en) * 2012-11-21 2018-11-06 Nikon Metrology Nv Low drift reference for laser radar
US10180496B2 (en) 2012-11-21 2019-01-15 Nikon Corporation Laser radar with remote local oscillator
KR101441109B1 (ko) * 2013-03-13 2014-10-30 경상대학교산학협력단 레이저 간섭을 이용한 공통 경로 거리 측정 장치
CN109341605B (zh) * 2018-11-08 2020-07-10 广西师范大学 一种基于激光外差干涉技术的复合测头
CN112284246A (zh) * 2020-09-21 2021-01-29 哈尔滨工业大学 零差激光干涉仪直流偏置误差修正方法及装置
CN112902851A (zh) * 2021-01-21 2021-06-04 华中科技大学 一种柔性铰链式触针位移传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185977A (ja) * 1992-12-22 1994-07-08 Topcon Corp 干渉測長装置
JP2003114182A (ja) * 2001-06-19 2003-04-18 Japan Science & Technology Corp カンチレバーアレイ、その製造方法及びそれを用いた走査型プローブ顕微鏡、案内・回転機構の摺動装置、センサ、ホモダインレーザ干渉計、試料の光励振機能を有するレーザドップラー干渉計ならびにカンチレバーの励振方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235738B2 (ja) * 1992-05-20 2001-12-04 株式会社トプコン アブソリュート測長器
US6191862B1 (en) * 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185977A (ja) * 1992-12-22 1994-07-08 Topcon Corp 干渉測長装置
JP2003114182A (ja) * 2001-06-19 2003-04-18 Japan Science & Technology Corp カンチレバーアレイ、その製造方法及びそれを用いた走査型プローブ顕微鏡、案内・回転機構の摺動装置、センサ、ホモダインレーザ干渉計、試料の光励振機能を有するレーザドップラー干渉計ならびにカンチレバーの励振方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1860396A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577406A (zh) * 2020-12-29 2021-03-30 华中科技大学 一种多探针电容位移传感器和表面测量方法
CN112577406B (zh) * 2020-12-29 2021-11-19 华中科技大学 一种多探针电容位移传感器和表面测量方法
CN114440781A (zh) * 2022-01-21 2022-05-06 中国工程物理研究院流体物理研究所 一种间隙传感器、间隙测量方法及测量装置
CN115096341A (zh) * 2022-08-24 2022-09-23 浙江大学 一种侧边对光的复合光纤法布里-珀罗传感器
CN115096341B (zh) * 2022-08-24 2022-11-15 浙江大学 一种侧边对光的复合光纤法布里-珀罗传感器

Also Published As

Publication number Publication date
JPWO2006093210A1 (ja) 2008-08-07
EP1860396B1 (en) 2014-04-23
EP1860396A4 (en) 2013-03-06
US20090079990A1 (en) 2009-03-26
EP1860396A1 (en) 2007-11-28
US7847953B2 (en) 2010-12-07
JP4489804B2 (ja) 2010-06-23

Similar Documents

Publication Publication Date Title
WO2006093210A1 (ja) ホモダインレーザ干渉計プローブ及びそれを用いた変位計測システム
US7292347B2 (en) Dual laser high precision interferometer
KR101775442B1 (ko) 변위 검출 장치
US10900773B2 (en) Distance measuring device and three-dimensional shape measuring apparatus
EP2163906B1 (en) Method of detecting a movement of a measuring probe and measuring instrument
EP1748276A1 (en) Interference measurement apparatus
WO2015079786A1 (ja) 光計測装置及び光計測方法
EP1748277B1 (en) Interference measurement apparatus
JP4208069B2 (ja) 屈折率及び厚さの測定装置ならびに測定方法
JP4223349B2 (ja) 耐振動型干渉計装置
JP5984555B2 (ja) 変位検出装置
JP4485571B2 (ja) ヘテロダインレーザドップラープローブ及びそれを用いた測定システム
JP5969274B2 (ja) 位置検出装置
JP5984554B2 (ja) 変位検出装置
JP2005283387A (ja) 厚さ測定装置ならびに厚さ測定方法
JP2005106706A (ja) 屈折率及び厚さの測定装置ならびに測定方法
US11519935B2 (en) Atomic force microscope
JPH08304027A (ja) 微少変位量測定方法及び装置
KR100523937B1 (ko) 광간섭계와 x선 간섭계를 이용한 lvdt의 교정장치
JP2008164357A (ja) 測定装置
JP2003035513A (ja) レーザー測長器
JP2001165631A (ja) 形状測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007505995

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006715045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11817438

Country of ref document: US