WO2006090726A1 - ターボチャージャ付きエンジンのバルブ駆動制御方法 - Google Patents

ターボチャージャ付きエンジンのバルブ駆動制御方法 Download PDF

Info

Publication number
WO2006090726A1
WO2006090726A1 PCT/JP2006/303136 JP2006303136W WO2006090726A1 WO 2006090726 A1 WO2006090726 A1 WO 2006090726A1 JP 2006303136 W JP2006303136 W JP 2006303136W WO 2006090726 A1 WO2006090726 A1 WO 2006090726A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
engine
valve
intake
cylinder
Prior art date
Application number
PCT/JP2006/303136
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Sugihara
Original Assignee
Hino Motors, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors, Ltd. filed Critical Hino Motors, Ltd.
Priority to US11/816,478 priority Critical patent/US7665433B2/en
Priority to EP06714276A priority patent/EP1852593B1/en
Priority to DE602006008582T priority patent/DE602006008582D1/de
Publication of WO2006090726A1 publication Critical patent/WO2006090726A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/08Shape of cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34446Fluid accumulators for the feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • F01L2013/001Deactivating cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/10Providing exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0273Multiple actuations of a valve within an engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a valve drive control method for an engine with a turbocharger that can perform reduced-cylinder operation with a variable valve mechanism.
  • the fuel efficiency of an engine such as an automobile is designed to be best around 40 to 60% of the maximum rotational speed of 70 to 80% load operation, so the load during normal driving However, the vehicle will be operated under conditions where the fuel efficiency is lower than the design value.
  • Patent Document 1 As prior art document information related to this type of reduced-cylinder operation, for example, the following Patent Document 1 and Patent Document 2 already exist.
  • Patent Document 1 JP 2004-137932 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-360577
  • Patent Documents 1 and 2 do not pose any particular problems, when the above-described reduced-cylinder operation is applied to an engine with a turbocharger, during the reduced-cylinder operation, Suction characteristics on the engine side are significantly reduced due to a sudden drop in the exhaust flow rate.
  • the turbocharger that supports normal all-cylinder operation is surging (when the relationship between the compressor discharge pressure and the intake air volume enters the surging area) Pressure and air volume pulsate and vibrate When the compressor is rotating at the required number of revolutions, it tends to fall into surging if the flow rate is below the specified limit or the discharge pressure exceeds the specified limit. In the case of high-load operation at a high level, there is a strong possibility that the compressor will cause surge, leading to inoperability and performance degradation.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to ensure that surging can be reliably prevented even when an engine with a turbocharger is operated with a reduced number of cylinders in a low speed range.
  • the present invention includes a variable valve mechanism that can adjust the opening / closing timing and lift of the intake / exhaust valve of each cylinder, and the variable valve mechanism opens the intake / exhaust valve in some cylinders.
  • This is a valve drive control method for a turbocharged engine in which the operation is deactivated and only the remaining cylinders are operated, and the intake pressure in the intake stroke is less than the exhaust pressure during the reduced cylinder operation in the low speed range. It is characterized by opening the exhaust valve aiming at a higher period.
  • FIG. 1 is a schematic view showing one embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a reduced cylinder cylinder of the engine of FIG. 1.
  • FIG. 3 is a schematic view showing an example of a variable valve mechanism used in the engine of FIG.
  • the intake side force is also a graph for explaining the blow-through of fresh air to the exhaust side.
  • FIGS. 1 to 4 show an embodiment of the present invention.
  • reference numeral 1 denotes an engine equipped with a turbocharger 2, and intake 4 guided from an air cleaner 3 passes through an intake pipe 5 and the turbocharger 2.
  • the intake air 4 pressurized by the compressor 2a is sent to the intercooler 6 to be cooled, and the intake air 4 is further guided to the intake manifold 7 from the intercooler 6 to the engine. It is distributed to each cylinder 8 of 1.
  • a control device 13 constituting an engine control computer (ECU) includes an accelerator sensor 14 (load sensor) that detects an accelerator opening (not shown) as a load of the engine 1.
  • the accelerator opening signal 14a and the rotation speed signal 15a from the rotation sensor 15 for detecting the rotation speed of the engine 1 are input, and based on the accelerator opening signal 14a and the rotation speed signal 15a.
  • a fuel injection signal 16a for instructing the fuel injection timing and the injection amount is output to the fuel injection device 16 for injecting fuel into each cylinder 8.
  • the fuel injection device 16 is configured by a plurality of injectors (not shown) provided for each cylinder 8, and the electromagnetic valve of each injector is a fuel injection signal 16a from the control device 13. Accordingly, the fuel injection timing and the injection amount (valve opening time) are appropriately controlled.
  • the control device 13 determines the fuel injection signal 16a in the normal mode based on the accelerator opening signal 14a and the rotation speed signal 15a, When it is determined that the engine 1 is operating in a predetermined operation region based on the accelerator opening signal 14a and the rotation speed signal 15a, the normal mode is switched to the reduced cylinder mode.
  • the fuel injection signal 16a (fuel injection command) is output to cut the fuel injection of the cylinder 8 of the part!
  • the engine 1 illustrated here is an in-line 6-cylinder engine having 6 cylinders and 8 forces as indicated by # 1 to # 6 in FIG. 2, and the ignition order is # 1 ⁇ # 4 ⁇ If # 2 ⁇ # 6 ⁇ # 3 ⁇ # 5 then cylinders 8 and # 4 in # 1, # 2 and # 3 will be burned evenly after cutting the fuel injection in half cylinders , # 5, # 6 and cylinder 8 and cut the fuel injection in one of the groups (for example, # 1, # 2, # 3, cylinder 8).
  • a valve 17 as shown in Fig. 3 (in the figure, the exhaust gas is used for the purpose of achieving optimum thermal efficiency according to the rotational speed and improving fuel consumption).
  • a variable valve mechanism 18 that can change the opening / closing timing and lift of the valve is employed, and the cylinders 8 (for example, # 1, # 2, etc.) in which fuel injection is cut in the aforementioned reduced cylinder mode are adopted.
  • the opening operation of valve 17 is reduced cylinder mode.
  • the variable valve mechanism 18 is also used as a valve operation stop means that is inoperative only during the period.
  • FIG. 3 shows an example of a hydraulic variable valve mechanism 18, and an intake cam and an exhaust cam 20 corresponding to each cylinder 8 (see FIG. Rocker arm that has a camshaft for exhaust (shown in the figure) in parallel and is tilted with one end being pushed up by the cam 20 via a roller 22 to one rocker shaft 21 extending in parallel in the vicinity of the camshaft 19. 23 is equipped!
  • one end of the rocker arm 23 pushes up a master piston 25 provided in the upper hydraulic unit 24 to generate an oil pressure in the valve opening oil passage 26 formed in the hydraulic unit 24.
  • the slave piston 27 immediately above the bridge 31 is lowered, and the slave piston 27 can open both valves 17 by pushing down both valves 17 via the bridge 31.
  • valve opening oil passage 26 in the hydraulic unit 24 is provided with a three-way solenoid valve 28 (hydraulic supply means for switching between holding and releasing the oil pressure of the valve opening oil passage 26. ) Is connected to the oil supply passage 29, and the hydraulic oil 30 fed by the engine-driven oil pump 30 is introduced into the valve opening oil passage 26 to fill the valve opening oil passage 26, not shown.
  • the follow-up timing and operation amount of the slave piston 27 are controlled by appropriately switching between holding and releasing the hydraulic pressure in the valve opening oil passage 26 based on the control signal 28a from the control device 13 described above. This makes it possible to adjust the opening / closing timing and lift of the nozzle 17.
  • the slave piston 27 immediately follows the operation of the master piston 25. Force If the oil pressure in the valve opening oil passage 26 generated by the operation of the master piston 25 is released to the accumulator, etc. by switching the solenoid valve 28, the master piston 25 will operate! Therefore, it is possible to delay the follow-up timing or reduce the operation amount, and furthermore, it is possible to completely disable the valve opening operation of the valve 17.
  • the cylinder 8 of the group whose fuel injection is cut in the aforementioned reduced cylinder mode (for example, # 1 , # 2 and # 3 cylinders 8), when using the variable valve mechanism 18 as a valve operation stop means that disables the valve opening operation of the valve 17 only during the reduced cylinder mode,
  • the control device 13 When the control at 13 is switched from the normal mode to the reduced cylinder mode, the control device 13 also outputs a control signal 28a as a pause command to the solenoid valve 28 of the variable valve mechanism 18, and the solenoid valve 28 is hydraulically supplied to the accumulator, etc. It is enough to keep it open.
  • the cylinder 8 (for example, # 4, #, etc.) that is continuously operating during the reduced-cylinder operation in the low speed region.
  • the exhaust side valve 17 is opened with a smaller lift than during normal valve opening operation, aiming at the period when the intake pressure in the intake stroke is higher than the exhaust pressure.
  • the exhaust pressure (pressure in the exhaust manifold 10) is higher when the intake valve with large exhaust pulsation is open. Since there is a period lower than (pressure in intake manifold 7), aiming at this period, open the exhaust valve (exhaust side valve 17) in period X in the lower graph of Figure 4, A part of fresh air (intake 4) is blown out to the exhaust side. In the beginning of this period X, there are some periods in which the exhaust pressure is higher than the intake pressure, but the exhaust pressure is lower than the intake pressure in most of the period X when the exhaust valve is opened. If this is the case, there will be no particular hindrance to blowing a part of the fresh air to the exhaust side.
  • the control device Based on the control signal 28a from No. 13, the hydraulic pressure by the sub-lift 32 is maintained by the solenoid valve 28 of the variable valve mechanism 18 corresponding to the cylinder 8 (for example, cylinders # 4, # 5, and # 6) that is continuously operating. Since the intake side valve 17 is opened in the period x (see the lower graph in FIG. 4) in which the intake pressure in the intake stroke is higher than the exhaust pressure, the intake pressure is taken into the cylinder 8 through the intake side valve 17.
  • a part of the fresh air (intake 4) is blown through the exhaust side valve 17 to the exhaust side as it is, and the apparent exhaust flow increases by the amount of the fresh air blow-in, and the intake on the engine 1 side is inhaled. Characteristic is bottom-up.
  • valve 17 in the cylinders that are at rest (for example, cylinders # 1, # 2, and # 3), the valve 17 is held in a closed state and air is sealed inside. Air expands and contracts within the cylinder 8 and does not reduce the output (since the resistance during compression is offset during expansion), rather, when the valve 17 continues to open (only fuel injection) The resistance that occurs when air enters and exits is avoided.
  • valve drive control method of the turbocharged engine of the present invention is not limited to the above-described embodiment, and can be implemented using a variable valve mechanism other than the illustrated one. It goes without saying that various modifications can be made without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 ターボチャージャ付きエンジンを低速域で減筒運転してもサージングを確実に防止し得るようにする。  各気筒8の吸・排気バルブ(図中では排気側のバルブ17のみを図示)の開閉タイミング及びリフトを調節し得るようにした可変バルブ機構18を備え且つ該可変バルブ機構18により一部の気筒8における吸・排気バルブの開弁動作を不作動として残りの気筒8だけで減筒運転を行い得るようにしたターボチャージャ付きエンジンのバルブ駆動制御方法に関し、低速域での減筒運転時に吸気行程における吸気圧力が排気圧力よりも高くなる期間を狙って排気側のバルブ17を開弁し、新気(吸気4)の排気側への吹き抜け量を増やして見掛け上の排気流量を増加し、これによりエンジン側の吸い込み特性を底上げする。

Description

明 細 書
ターボチャージャ付きエンジンのバルブ駆動制御方法
技術分野
[0001] 本発明は、可変バルブ機構により減筒運転を行い得るターボチャージャ付きェンジ ンのバルブ駆動制御方法に関するものである。
背景技術
[0002] 一般的に、自動車等のエンジンにおける燃費率は、 70〜80%負荷運転最高回転 速度の 40〜60%回転の付近で最良となるように設計されているため、普通走行時に は負荷が設計値より低い燃費率の悪い条件で運転されることになる。
[0003] この対策として、必要な出力に応じてエンジンの着火気筒を減らし、その減らした気 筒だけで負荷条件を上げてエンジンを駆動することにより燃費率の向上等を図る減 筒運転が従来より提案されて!ヽる。
[0004] また、近年においては、排気管途中に装備した排気浄化用触媒が低負荷時に活 性温度に達し難いことへの対策として、減筒運転を低負荷時に実行することで排気 温度を高温に維持できるようにすることも提案されて 、る。
[0005] 尚、この種の減筒運転に関連する先行技術文献情報としては、例えば、下記の特 許文献 1や特許文献 2等が既に存在している。
特許文献 1 :特開 2004— 137932号公報
特許文献 2:特開 2004 - 360577号公報
発明の開示
発明が解決しょうとする課題
[0006] しカゝしながら、これら特許文献 1や特許文献 2では特に問題提起されていないもの の、前述の減筒運転をターボチャージャ付きのエンジンに採用した場合には、その減 筒運転時に排気流量の急激な低下によりエンジン側の吸い込み特性が著しく下がり
、コンプレッサ性能曲線上でのエンジンの抵抗曲線が小空気量側に移動する結果、 通常の全筒運転に対応したターボチャージャがサージング (コンプレッサの吐出圧力 と吸込風量の関係がサージング領域に入った時に圧力と風量が大きく脈動して振動 や異常音が発生する現象;コンプレッサを所要の回転数で回転している時に所定限 度以下の流量又は所定限度以上の吐出圧力になるとサージングに陥る)に陥り易く なり、特に低速域 (例えば lOOOrpm程度)での高負荷運転では、コンプレッサがサー ジングを起こして運転不能や性能低下を招く虞れが高力つた。
[0007] 本発明は上述の実情に鑑みてなしたもので、ターボチャージャ付きエンジンを低速 域で減筒運転してもサージングを確実に防止し得るようにすることを目的とする。 課題を解決するための手段
[0008] 本発明は、各気筒の吸'排気バルブの開閉タイミング及びリフトを調節し得るように した可変バルブ機構を備え且つ該可変バルブ機構により一部の気筒における吸'排 気バルブの開弁動作を不作動として残りの気筒だけで減筒運転を行 、得るようにし たターボチャージャ付きエンジンのバルブ駆動制御方法であって、低速域での減筒 運転時に吸気行程における吸気圧力が排気圧力よりも高くなる期間を狙って排気バ ルブを開弁することを特徴とするものである。
[0009] 而して、このようにすれば、エンジンを低速域で全筒運転から減筒運転に切り替え た際に、ターボチャージャにおけるコンプレッサの吐出圧力と吸込風量の関係がサー ジング領域に近づいても、吸気行程における吸気圧力が排気圧力よりも高くなる期 間を狙って排気バルブを開弁すると、吸気バルブを通して気筒内に取り込まれた新 気の一部がそのまま排気バルブを通して排気側へ吹き抜けることになり、この新気の 吹き抜け量の分だけ見掛け上の排気流量が増加してエンジン側の吸い込み特性が 底上げされ、これによりコンプレッサにおける吸込風量が増加されると共に、吸気側 力 排気側へ吹き抜ける量が増えることでコンプレッサ側の吐出圧力も低下するので 、コンプレッサ性能曲線上でのエンジンの抵抗曲線が大空気量側に移動し、コンプ レッサの運転状態がサージング領域力も遠ざけられることになる。
発明の効果
[0010] 上記した本発明のターボチャージャ付きエンジンのバルブ駆動制御方法によれば
、ターボチャージャ付きエンジンを低速域で減筒運転してもサージングを確実に防止 することができるので、ターボチャージャがサージングに陥ることによる運転不能や性 能低下を未然に回避することができ、延いては、ターボチャージャ付きのエンジンで の減筒運転を支障なく実現することができるという優れた効果を奏し得る。
図面の簡単な説明
[0011] [図 1]本発明の一実施例を示す概略図である。
[図 2]図 1のエンジンの減筒気筒につ 、て説明する模式図である。
[図 3]図 1のエンジンに用いられている可変バルブ機構の一例を示す概略図である。
[図 4]吸気側力も排気側への新気の吹き抜けについて説明するグラフである。
符号の説明
[0012] 1 エンジン
2 ターボチャージャ
2a コンプレッサ
2b タービン
4 吸気 (新気)
8 気筒
9 排気ガス
13 制御装置
17 バルブ
18 可変バルブ機構
32 サブリフト
発明を実施するための最良の形態
[0013] 以下本発明の実施例を図面を参照しつつ説明する。
図 1〜図 4は本発明の一実施例を示すもので、図 1中 1はターボチャージャ 2を搭載 したエンジンを示し、エアクリーナ 3から導かれた吸気 4が吸気管 5を通し前記ターボ チャージャ 2のコンプレッサ 2aへと送られ、該コンプレッサ 2aで加圧された吸気 4がィ ンタークーラ 6へと送られて冷却され、該インタークーラ 6から更に吸気マ-ホールド 7 へと吸気 4が導かれてエンジン 1の各気筒 8に分配されるようになっている。
[0014] また、このエンジン 1の各気筒 8から排出された排気ガス 9は、排気マ-ホールド 10 を介しターボチャージャ 2のタービン 2bへと送られ、該タービン 2bを駆動した排気ガ ス 9が排気管 11及びマフラ 12を介し車外へ排出されるようになっている。 [0015] また、エンジン制御コンピュータ(ECU: Electronic Control Unit)を成す制御装置 1 3 (制御手段)には、図示しないアクセルの開度をエンジン 1の負荷として検出するァ クセルセンサ 14 (負荷センサ)と、エンジン 1の回転数を検出する回転センサ 15とから のアクセル開度信号 14a及び回転数信号 15aが入力されるようになっており、これら のアクセル開度信号 14a及び回転数信号 15aに基づいて、各気筒 8に燃料を噴射す る燃料噴射装置 16に向け燃料の噴射タイミング及び噴射量を指令する燃料噴射信 号 16aが出力されるようになっている。
[0016] ここで、前記燃料噴射装置 16は、各気筒 8毎に装備される図示しない複数のインジ ェクタにより構成されており、これら各インジェクタの電磁弁が前記制御装置 13からの 燃料噴射信号 16aにより適宜に開弁制御されて燃料の噴射タイミング及び噴射量( 開弁時間)が適切に制御されるようになって 、る。
[0017] ただし、本実施例にお!、ては、制御装置 13でアクセル開度信号 14a及び回転数信 号 15aに基づき通常モードの燃料噴射信号 16aが決定されるようになっている一方、 アクセル開度信号 14a及び回転数信号 15aに基づきエンジン 1が所定の運転領域で 運転されていると判定された時に通常モードから減筒モードに切り替わり、この減筒 モードに切り替わった際には、一部の気筒 8の燃料噴射をカットするよう燃料噴射信 号 16a (燃料噴射指令)が出力されるようになって!/ヽる。
[0018] 例えば、ここで例示しているエンジン 1が、図 2に # 1〜# 6で示す如き 6つの気筒 8 力も成る直列 6気筒エンジンであって、その着火順序が # 1→ # 4→ # 2→ # 6→ # 3 → # 5である場合には、半分の気筒の燃料噴射をカットした後も燃焼が等間隔で行 われるよう # 1, # 2, # 3の気筒 8と # 4, # 5, # 6の気筒 8とにグループ分けし、何 れか一方のグループ (例えば # 1, # 2, # 3の気筒 8)の燃料噴射をカットするように すれば良い。
[0019] また、本実施例におけるエンジン 1では、その回転数に応じた最適な熱効率を実現 して燃費の向上を図ること等を目的として、図 3に示す如きバルブ 17 (図中には排気 バルブを図示)の開閉タイミング及びリフトを変化させ得るようにした可変バルブ機構 18が採用されており、前述の減筒モードで燃料噴射をカットされるグループの気筒 8 (例えば # 1, # 2, # 3の気筒 8)について、そのバルブ 17の開弁動作を減筒モード の間だけ不作動とするバルブ動作休止手段としても前記可変バルブ機構 18が利用 されるようになつている。
[0020] 即ち、図 3は油圧式の可変バルブ機構 18の一例を示し、気筒 8の並び方向に延び るカムシャフト 19に、各気筒 8に対応して吸気用と排気用のカム 20 (図中では排気用 のカムを図示)が並設されており、前記カムシャフト 19の近傍を平行に延びるロッカ 一シャフト 21には、前記カム 20により一端をローラ 22を介し押し上げられて傾動する ロッカーアーム 23が装備されて!、る。
[0021] そして、このロッカーアーム 23の一端が上方の油圧ユニット 24に備えられたマスタ 一ピストン 25を押し上げ、前記油圧ユニット 24内に穿設された開弁用油通路 26に油 圧を発生させてブリッジ 31直上のスレーブピストン 27を下降せしめ、このスレーブピ ストン 27によりブリッジ 31を介し両バルブ 17を押し下げて開弁し得るようになつている
[0022] ここで、前記油圧ユニット 24内の開弁用油通路 26には、該開弁用油通路 26の油 圧の保持 ·開放を切り替えるための 3ウェイ式のソレノイドバルブ 28 (油圧供給手段) を介して給油通路 29が接続されており、図示しな 、エンジン駆動のオイルポンプに より送り込まれる作動油 30を開弁用油通路 26に導き入れて該開弁用油通路 26内を 満たし、マスターピストン 25の作動時には、前述の制御装置 13からの制御信号 28a に基づき、開弁用油通路 26の油圧の保持 ·開放を適宜に切り替えてスレーブピスト ン 27の追従時期や作動量を制御することでノ レブ 17の開閉タイミングやリフトを調 節し得るようにしてある。
[0023] 即ち、マスターピストン 25の作動時において、ソレノイドバルブ 28により開弁用油通 路 26の油圧を保持すれば、マスターピストン 25の作動に直ちに追従してスレーブピ ストン 27が作動することになる力 マスターピストン 25の作動により生じる開弁用油通 路 26の油圧をソレノイドバルブ 28の切り替えでアキュームレータ等へ逃がせば、マス ターピストン 25が作動して!/ヽてもスレーブピストン 27が追従しなくなるので、その追従 時期を遅らせたり作動量を減らしたりすることが可能となり、更には、バルブ 17の開弁 動作を全く不作動とすることも可能となる。
[0024] 従って、前述の減筒モードで燃料噴射をカットされるグループの気筒 8 (例えば # 1 , # 2, # 3の気筒 8)に関し、そのノ レブ 17の開弁動作を減筒モードの間だけ不作 動とするバルブ動作休止手段として可変ノ レブ機構 18を利用するにあたっては、制 御装置 13での制御が通常モードから減筒モードに切り替わった際に、制御装置 13 力も制御信号 28aが休止指令として可変バルブ機構 18のソレノイドバルブ 28に出力 されて、該ソレノイドバルブ 28がアキュームレータ等へ油圧を開放した状態に保持さ れるようにしておけば良い。
[0025] そして、以上に述べた如き減筒運転を行 、得るようにしたエンジン 1に関し、本実施 例においては、低速域での減筒運転時に稼働継続中の気筒 8 (例えば # 4, # 5, # 6の気筒 8)について吸気行程における吸気圧力が排気圧力よりも高くなる期間を狙 つて排気側のバルブ 17を通常開弁動作時よりも小さなリフトで開弁するようにしてあ る。
[0026] 即ち、図 4の下段のグラフで示す如ぐ低速域では排気の脈動が大きぐ吸気バル ブが開いている間に排気圧力(排気マ-ホールド 10内の圧力)の方が吸気圧力(吸 気マ-ホールド 7内の圧力)よりも低い期間が存在しているので、この期間を狙って図 4の下段のグラフ中の期間 Xで排気バルブ (排気側のバルブ 17)を開け、新気(吸気 4)の一部を排気側へ吹き抜けさせるようにしている。尚、この期間 Xの初期にあって は、排気圧力の方が吸気圧力よりも高い期間が若干含まれているが、排気バルブを 開く期間 Xの大半で排気圧力の方が吸気圧力よりも低くなつていれば新気の一部を 排気側へ吹き抜けさせるのに格別な支障はない。
[0027] 事実、このように吸気行程中の期間 Xで排気リフトを追加すると、図 4の上段のグラフ
(負の流量は気筒からの流出、正の流量は気筒内への流入を示し、実線は排気バル ブを通過したガス流量、鎖線は吸気ノ レブを通過したガス流量を示す)にハッチング を付して示して 、る通り、吸気バルブを通過して気筒内へ流入するガス流量が通常 より増加し且つ排気バルブを通過して気筒外へ流出するガス流量が増加する現象、 つまり、吸気バルブを通して気筒内に取り込まれた新気の一部がそのまま排気バル ブを通して排気側へ吹き抜ける現象が起こることが確認されている。
[0028] ここで、吸気行程で排気側のバルブ 17を開弁する具体的な手段にっ 、て説明する と、図 3に図示している排気用のカム 20には、吸気行程でも排気側のバルブ 17を開 弁し得るようサブリフト 32 (追加の小さなカム山)が形成されており、通常の開弁動作 にあっては、このサブリフト 32による油圧がソレノイドバルブ 28により瞬時に逃がされ て吸気行程における排気側のバルブ 17の開弁動作が行われな 、ようになって 、る 力 低速域での減筒運転時には、制御装置 13からの制御信号 28aに基づきソレノィ ドバルブ 28でサブリフト 32による油圧が保持され、吸気行程でも排気側のバルブ 17 が比較的小さなリフトで開弁されるようになって!/、る。
[0029] 而して、制御装置 13にて通常モードから減筒モードに切り替わると、該制御装置 1 3からの休止指令として制御信号 28aを受けた可変バルブ機構 18のソレノイドバルブ 28がアキュームレータ等へ油圧を開放した状態に保持され、マスターピストン 25が 作動していてもスレーブピストン 27が追従しなくなる結果、一部の気筒 8 (例えば # 1 , # 2, # 3の気筒 8)におけるバルブ 17の開弁動作が不作動となり、し力も、バルブ 1 7の開弁動作が不作動となった気筒 8 (例えば # 1, # 2, # 3の気筒 8)の燃料噴射 が制御装置 13から燃料噴射装置 16に向けた燃料噴射信号 16aによりカットされるの で、これら一部の気筒 8 (例えば # 1, # 2, # 3の気筒 8)が完全に休止状態となって 残りの気筒 8 (例えば # 4, # 5, # 6の気筒 8)だけで減筒運転が成されることになる。
[0030] この際、排気流量の急激な低下によりエンジン 1側の吸い込み特性が著しく下がり 、低速域でターボチャージャ 2におけるコンプレッサ 2aの吐出圧力と吸込風量の関係 がサージング領域に近づいても、制御装置 13からの制御信号 28aに基づき稼働継 続中の気筒 8 (例えば # 4, # 5, # 6の気筒 8)に対応した可変ノ レブ機構 18のソレ ノイドバルブ 28によりサブリフト 32による油圧が保持され、吸気行程における吸気圧 力が排気圧力よりも高くなる期間 x (図 4下段のグラフ参照)で吸気側のバルブ 17が 開弁されるので、吸気側のバルブ 17を通して気筒 8内に取り込まれた新気(吸気 4) の一部がそのまま排気側のバルブ 17を通して排気側へ吹き抜けることになり、この新 気の吹き抜け量の分だけ見掛け上の排気流量が増加してエンジン 1側の吸い込み 特性が底上げされる。
[0031] これによりコンプレッサ 2aにおける吸込風量が増加されると共に、吸気側力も排気 側へ吹き抜ける量が増えることでコンプレッサ 2a側の吐出圧力も低下するので、コン プレッサ性能曲線上でのエンジン 1の抵抗曲線が大空気量側に移動し、コンプレッサ 2aの運転状態がサージング領域力 遠ざけられることになる。
[0032] 尚、休止している気筒(例えば # 1, # 2, # 3の気筒 8)では、バルブ 17が閉じた状 態に保持されて内部に空気が封止されることになる力 この空気は気筒 8内で拡縮さ れるだけで出力を下げる作用が生じることはなく(圧縮時の抵抗が膨張時に相殺され るため)、寧ろバルブ 17の開弁動作を継続させた場合 (燃料噴射だけをカットした場 合)に空気が出入りすることで生じる抵抗が回避されることになる。
[0033] 従って、上記実施例によれば、ターボチャージャ 2付きのエンジン 1を低速域で減 筒運転してもサージングを確実に防止することができるので、ターボチャージャ 2がサ 一ジングに陥ることによる運転不能や性能低下を未然に回避することができ、延いて は、ターボチャージャ 2付きのエンジン 1での減筒運転を支障なく実現することができ る。
[0034] 尚、本発明のターボチャージャ付きエンジンのバルブ駆動制御方法は、上述の実 施例にのみ限定されるものではなぐ図示以外の可変バルブ機構を用いて実施する ことも可能であること、その他、本発明の要旨を逸脱しない範囲内において種々変更 をカロえ得ることは勿論である。

Claims

請求の範囲
各気筒の吸'排気バルブの開閉タイミング及びリフトを調節し得るようにした可変バ ルブ機構を備え且つ該可変バルブ機構により一部の気筒における吸 ·排気バルブの 開弁動作を不作動として残りの気筒だけで減筒運転を行 、得るようにしたターボチヤ ージャ付きエンジンのノ レブ駆動制御方法であって、低速域での減筒運転時に吸 気行程における吸気圧力が排気圧力よりも高くなる期間を狙って排気バルブを開弁 すること力 なるターボチャージャ付きエンジンのバルブ駆動制御方法。
PCT/JP2006/303136 2005-02-23 2006-02-22 ターボチャージャ付きエンジンのバルブ駆動制御方法 WO2006090726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/816,478 US7665433B2 (en) 2005-02-23 2006-02-22 Method for controlling actuation of valves in engine with turbocharger
EP06714276A EP1852593B1 (en) 2005-02-23 2006-02-22 Method for controlling actuation of valves in engine with turbocharger
DE602006008582T DE602006008582D1 (de) 2005-02-23 2006-02-22 Verfahren zur steuerung der betätigung von ventilen in einem motor mit turbolader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-046658 2005-02-23
JP2005046658A JP2006233788A (ja) 2005-02-23 2005-02-23 ターボチャージャ付きエンジンのバルブ駆動制御方法

Publications (1)

Publication Number Publication Date
WO2006090726A1 true WO2006090726A1 (ja) 2006-08-31

Family

ID=36927364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303136 WO2006090726A1 (ja) 2005-02-23 2006-02-22 ターボチャージャ付きエンジンのバルブ駆動制御方法

Country Status (5)

Country Link
US (1) US7665433B2 (ja)
EP (1) EP1852593B1 (ja)
JP (1) JP2006233788A (ja)
DE (1) DE602006008582D1 (ja)
WO (1) WO2006090726A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142374B2 (ja) * 2007-12-10 2013-02-13 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP5598406B2 (ja) * 2011-04-04 2014-10-01 三菱自動車工業株式会社 エンジンの制御装置
US8701607B2 (en) * 2011-08-25 2014-04-22 Chrysler Group Llc System and method for engine valve lift strategy
DE102012207517A1 (de) * 2012-05-07 2013-11-07 Schaeffler Technologies AG & Co. KG Steuereinheit für eine vollvariable hydraulische Ventilsteuervorrichtung von Gaswechselventilen an Hubkolbenbrennkraftmaschinen
US9863293B2 (en) * 2012-08-01 2018-01-09 GM Global Technology Operations LLC Variable valve actuation system including an accumulator and a method for controlling the variable valve actuation system
FI124813B (fi) * 2013-01-07 2015-01-30 Wärtsilä Finland Oy Ohjausjärjestely ja menetelmä pakoventtiilin ohjaamiseksi
FI20135019L (fi) * 2013-01-07 2014-07-08 Waertsilae Finland Oy Venttiilinnostojärjestely ja menetelmä venttiilinnostojärjestelyn käyttämiseksi
US9279350B2 (en) 2014-05-27 2016-03-08 Caterpillar Inc. Intake valve closure control for dual-fuel engines
JP6115580B2 (ja) * 2015-02-20 2017-04-19 トヨタ自動車株式会社 内燃機関の制御装置
DE102017203213B3 (de) * 2017-02-28 2018-07-26 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ventilhubumschaltsteuerung eines Verbrennungsmotors
CN112020599B (zh) * 2018-02-26 2023-04-14 普渡研究基金会 避免柴油发动机气缸停用期间压缩机喘振的系统和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164739A (en) * 1979-06-07 1980-12-22 Nissan Motor Co Ltd Turbocharged engine
JPS6338622A (ja) 1986-08-01 1988-02-19 Mazda Motor Corp 過給機付エンジンの制御装置
JPH02248624A (ja) 1989-03-22 1990-10-04 Tech Res Assoc Highly Reliab Marine Propul Plant 内燃機関における過給機サージング回避装置
JPH09505654A (ja) * 1993-11-22 1997-06-03 キュルティル,レミ 空気掃気熱機関の運転を改良する方法とこの方法を実施する熱機関
JPH11141375A (ja) * 1997-11-10 1999-05-25 Nissan Motor Co Ltd 過給機付内燃機関の過給圧制御装置
WO2003087544A2 (en) 2002-04-08 2003-10-23 Diesel Engine Retarders, Inc. Compact lost motion system for variable valve actuation
JP2004137932A (ja) 2002-10-16 2004-05-13 Komatsu Ltd ディーゼルエンジン
JP2004360577A (ja) 2003-06-04 2004-12-24 Toyota Motor Corp 可変気筒エンジンの制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2367859A (en) * 2000-10-12 2002-04-17 Lotus Car Methods of operating i.c. engines having electrically controlled actuators for the inlet and/or exhaust valves
DE10063750A1 (de) * 2000-12-21 2002-06-27 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US6647723B1 (en) * 2002-08-20 2003-11-18 International Engine Intellectual Property Company, Llc Control strategy for counteracting incipient turbocharger surging using a variable valve actuation mechanism for through-cylinder bleed

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164739A (en) * 1979-06-07 1980-12-22 Nissan Motor Co Ltd Turbocharged engine
JPS6338622A (ja) 1986-08-01 1988-02-19 Mazda Motor Corp 過給機付エンジンの制御装置
JPH02248624A (ja) 1989-03-22 1990-10-04 Tech Res Assoc Highly Reliab Marine Propul Plant 内燃機関における過給機サージング回避装置
JPH09505654A (ja) * 1993-11-22 1997-06-03 キュルティル,レミ 空気掃気熱機関の運転を改良する方法とこの方法を実施する熱機関
JPH11141375A (ja) * 1997-11-10 1999-05-25 Nissan Motor Co Ltd 過給機付内燃機関の過給圧制御装置
WO2003087544A2 (en) 2002-04-08 2003-10-23 Diesel Engine Retarders, Inc. Compact lost motion system for variable valve actuation
JP2004137932A (ja) 2002-10-16 2004-05-13 Komatsu Ltd ディーゼルエンジン
JP2004360577A (ja) 2003-06-04 2004-12-24 Toyota Motor Corp 可変気筒エンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1852593A4 *

Also Published As

Publication number Publication date
EP1852593A1 (en) 2007-11-07
EP1852593A4 (en) 2008-07-02
US20090071423A1 (en) 2009-03-19
DE602006008582D1 (de) 2009-10-01
EP1852593B1 (en) 2009-08-19
US7665433B2 (en) 2010-02-23
JP2006233788A (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
WO2006090726A1 (ja) ターボチャージャ付きエンジンのバルブ駆動制御方法
EP2206904B1 (en) Internal combustion engine controller
US7644586B2 (en) Control of supercharged engine
CN100501141C (zh) 延伸按需排量范围的脉冲进气控制
US20060070382A1 (en) Control of exhaust to a turbo of internal combustion engine
JP4816811B2 (ja) 内燃機関の制御装置
CN104364500A (zh) 内燃机及其控制方法
JP2008014198A (ja) 内燃機関の制御装置
EP2505806B1 (en) Cooling device for internal combustion engine
US9284881B2 (en) Method for operating a compressor
US7201143B2 (en) Intake amount control apparatus of internal combustion engine
JP2006207382A (ja) ターボチャージャのサージング防止装置
JP4501730B2 (ja) 可変気筒内燃機関
JP4196343B2 (ja) 内燃機関およびその運転方法
JP4563369B2 (ja) 内部egrシステム付き4サイクルエンジン
JP2008308998A (ja) 減筒運転の制御方法
US20030221643A1 (en) Turbocharged engine
KR101836296B1 (ko) Cda 시스템 및 그 제어 방법
JP5018974B2 (ja) 内燃機関の制御装置
JP2011241713A (ja) 内燃機関の制御装置
JP5906724B2 (ja) ターボ過給機付エンジンの制御装置
JP2001012252A (ja) ターボチャージャの制御装置
JP2019019771A (ja) 内燃機関の制御装置
JP2006307722A (ja) 過給機付エンジン
JP2007224867A (ja) ディーゼルエンジンの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006714276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816478

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714276

Country of ref document: EP