WO2006090594A1 - 走査型プローブ顕微鏡用微動機構およびこれを用いた走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡用微動機構およびこれを用いた走査型プローブ顕微鏡 Download PDF

Info

Publication number
WO2006090594A1
WO2006090594A1 PCT/JP2006/302316 JP2006302316W WO2006090594A1 WO 2006090594 A1 WO2006090594 A1 WO 2006090594A1 JP 2006302316 W JP2006302316 W JP 2006302316W WO 2006090594 A1 WO2006090594 A1 WO 2006090594A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine movement
movement mechanism
probe
probe microscope
stage
Prior art date
Application number
PCT/JP2006/302316
Other languages
English (en)
French (fr)
Inventor
Masato Iyoki
Masatsugu Shigeno
Original Assignee
Sii Nanotechnology Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sii Nanotechnology Inc. filed Critical Sii Nanotechnology Inc.
Priority to DE112006000456T priority Critical patent/DE112006000456T5/de
Priority to JP2007504663A priority patent/JP5111102B2/ja
Publication of WO2006090594A1 publication Critical patent/WO2006090594A1/ja
Priority to US11/842,735 priority patent/US7614288B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • G01Q30/025Optical microscopes coupled with SPM

Definitions

  • the present invention relates to a scanning probe provided in a scanning probe microscope for measuring various physical property information such as the surface shape and viscoelasticity of a sample by scanning with the probe approaching or contacting the surface of the sample.
  • the present invention relates to a fine movement mechanism for a microscope and a scanning probe microscope having the same.
  • samples of metals, semiconductors, ceramics, resin, polymers, biomaterials, insulators, etc. are measured in a micro area, and physical property information such as viscoelasticity of the sample and the surface shape of the sample are measured.
  • a scanning probe microscope (SPM) is known as an apparatus for performing observations and the like.
  • a scanning probe microscope fine movement mechanism is generally provided.
  • the fine movement mechanism for a scanning probe microscope has a drive unit such as a three-dimensional actuator for finely moving the stage and the probe. It has become.
  • a drive unit such as a three-dimensional actuator for finely moving the stage and the probe. It has become.
  • the speed in the Z direction is different from that in the X and Y directions. This is because it is necessary to follow the Z direction at any time so that the distance between the sample and the probe is constant during scanning in the XY direction.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-346784
  • the present invention has been made in view of such circumstances, and a fine movement mechanism for a scanning probe microscope capable of measuring with high accuracy while further improving the scanning speed of the probe, and
  • An object of the present invention is to provide a scanning probe microscope including the above. Means for solving the problem
  • the present invention provides the following means.
  • the present invention provides a fine movement for a scanning probe microscope provided in a scanning probe microscope having a stage on which a sample is placed and a probe that is brought close to or in contact with the surface of the sample placed on the stage.
  • the mechanism includes a first drive unit and a second drive unit that are provided separately and separately, and the first drive unit, and is parallel to the surface of the sample by the first drive unit.
  • a probe fine movement mechanism that finely moves the probe in the X and Y directions intersecting each other, and the second drive part, and the second drive part allows Z to be perpendicular to the surface of the sample.
  • a stage fine movement mechanism for finely moving the stage in the direction.
  • the probe is finely moved in the X and Y directions by the first drive section provided in the probe fine movement mechanism section. Also, stay The stage is finely moved in the Z direction by the second driving unit provided in the fine movement mechanism. At this time, the first and second drive units are independently driven separately.
  • the fine movement mechanism for a scanning probe microscope described above is characterized in that the probe movement mechanism section includes probe displacement detection means for detecting displacement of the probe.
  • the probe displacement is detected by the probe displacement detecting means.
  • the probe movement mechanism section includes a probe-side through-hole directed in the z direction.
  • illumination light is passed through the probe-side through hole.
  • a probe fine through mechanism is provided with a probe side through hole, and illumination light is passed through the probe side through hole.
  • the illumination device can be easily installed in the scanning probe microscope in which the illumination light is not obstructed by the probe fine movement mechanism.
  • the stage fine movement mechanism section includes a stage side through hole directed in the z direction.
  • illumination light is passed through the stage side through hole.
  • a stage fine movement mechanism is provided with a stage side through hole, and illumination light is passed through the stage side through hole.
  • the scanning type pro- gram in which the illumination light is not obstructed by the stage fine movement mechanism.
  • the illumination device can be easily installed on the probe microscope.
  • the fine movement mechanism for a scanning probe microscope described above includes an objective lens at a position where the probe or the cantilever provided with the probe can be observed through the probe side through hole.
  • the objective lens is disposed at a position where the probe or the cantilever can be observed through the probe-side through hole.
  • the objective lens can be brought closer to the probe sample without the objective lens being obstructed by the probe fine movement mechanism, and therefore, an objective lens with a high NA can be provided.
  • the fine movement mechanism for a scanning probe microscope described above is characterized in that an objective lens is provided at a position where the sample can be observed through the stage side through hole.
  • the objective lens is disposed at a position where the sample can be observed through the stage side through hole.
  • the objective lens can be brought closer to the sample without the objective lens being obstructed by the stage fine movement mechanism, and therefore, a high NA objective lens can be provided.
  • the fine moving mechanism for a scanning probe microscope described above is provided with a plurality of the objective lenses, and provided with an arrangement changing means for changing the arrangement of the plurality of objective lenses.
  • the arrangement of the plurality of objective lenses is changed by the arrangement changing means.
  • an objective lens having a plurality of types of magnifications can be selected according to various samples.
  • the stage fine movement mechanism section includes a mechanism main body section having the second driving section, and the mechanism main body section. Extending in a direction crossing the thickness direction of the mechanism body, and supporting the stage, and the thickness dimension of the extension is set to be smaller than the thickness dimension of the mechanism body. It is characterized by being.
  • the thickness dimension force of the extension part is set smaller than the thickness dimension of the mechanism main body part. Space is freed up.
  • the thickness dimension of the extension part and the mechanism main body part are equal, for example, when an objective lens is provided below the extension part, there is not enough space. Cannot be close to. Therefore, it is conceivable to provide a concave part below the sample and install an objective lens in the concave part. However, if the objective lens is installed in the concave part, the objective is changed when changing to another objective lens with a different magnification. It becomes difficult to move the lens.
  • the objective lens since the space in the thickness direction of the extension portion is opened, the objective lens can be easily moved, and the space near the extension portion can be effectively used. it can.
  • the fine movement mechanism for a scanning probe microscope described above is characterized in that the mechanism body is cantilevered.
  • the mechanism body is cantilevered to sufficiently open the space near the extension with a simple configuration. It is out.
  • the second drive unit is constituted by a plurality of actuators that can expand and contract in the Z-axis direction.
  • the moving ends of the actuator are connected to each other.
  • the stage portion is supported by a plurality of actuators, the rigidity of the stage portion can be increased, and movement in the Z direction can be achieved. It can be performed at high speed.
  • an objective lens can be arranged in a space surrounded by a plurality of actuators, and illumination light can be irradiated onto the sample from the space portion.
  • the objective lens can be exchanged by the objective lens arrangement converting means between the adjacent actuators.
  • the second drive unit includes a cylindrical piezoelectric element.
  • the stage can be moved with high accuracy by the cylindrical piezoelectric element. Further, it is possible to irradiate the illumination through the hollow portion of the cylinder or to arrange the objective lens.
  • the first drive unit includes a cylindrical piezoelectric element.
  • the probe can be finely moved with high accuracy by the cylindrical piezoelectric element, and illumination is irradiated by the hollow portion of the cylinder.
  • an objective lens can be arranged.
  • the probe fine movement mechanism section includes a plurality of concentric and flush surfaces connected to each other via the first drive section. It is characterized by having a frame part.
  • the probe is finely moved through the frame portion by the drive of the first drive portion. Since the frame portions are concentrically and flush with each other, the probe fine movement mechanism portion can be made smaller and the thickness can be reduced. Therefore, it is possible to arrange a higher NA objective lens.
  • the fine movement amount of the probe in the X direction, the fine movement amount of the probe in the Y direction, or the Z direction of the stage A fine movement amount detection means for detecting at least one of the fine movement amounts is provided, or an error of the fine movement amount in the X direction, the Y direction, or the Z direction is calculated based on a detection result from the fine movement amount detection means.
  • a calculating means is provided.
  • the fine movement amount detecting means At least the fine movement amount in the X direction of the probe, the fine movement amount in the Y direction of the probe, or the fine movement amount in the Z direction of the stage is detected by the fine movement amount detecting means. One is detected. Further, based on the detection result from the fine movement amount detection means, the calculation means calculates an error in the fine movement amount in the X direction, the Y direction, or the Z direction.
  • the present invention is a scanning probe microscope including any one of the fine movement mechanisms for a scanning probe microscope described above.
  • the scanning probe microscope according to the present invention can achieve the same effects as those of the invention according to the above-described fine movement mechanism for a scanning probe microscope.
  • the present invention it is possible to prevent the first and second driving units from affecting each other as well as to increase the resonance frequency of the first and second driving units. It is possible to improve the measurement accuracy while further improving the scanning speed of the probe.
  • the vertical driving force illumination light of the first and second drive units can be irradiated and the high NA objective lens can be exchangeably disposed, a high magnification optical microscope and a scanning type It is possible to easily combine the microscope.
  • FIG. 1 is a diagram showing a first embodiment of a scanning probe microscope according to the present invention, in which (a) is a front view of the scanning probe microscope, and (b) is a symbol A in ( a ).
  • FIG. 1 is a diagram showing a first embodiment of a scanning probe microscope according to the present invention, in which (a) is a front view of the scanning probe microscope, and (b) is a symbol A in ( a ).
  • FIG. 2 is an enlarged plan view showing the probe fine movement mechanism shown in FIG.
  • FIG. 3 is an enlarged plan view showing a stage fine movement mechanism portion of FIG.
  • FIG. 4 is a bottom view showing the stage fine movement mechanism section of FIG. 3.
  • FIG. 5 is an enlarged plan view showing a modification of the stage fine movement mechanism in FIG. 1.
  • FIG. 6 is an enlarged plan view showing another modification of the stage fine movement mechanism shown in FIG.
  • FIG. 7A is a plan view and FIG. 7B is a front view of another modification of the stage fine movement mechanism.
  • FIG. 8 is a front view showing a second embodiment of the scanning probe microscope according to the present invention. Explanation of symbols
  • This scanning probe microscope 1 is combined with an inverted microscope, and as shown in Figs. 1 (a) and (b), a main body 3 installed on a vibration isolation table 2 as a base.
  • a measuring unit 4 provided above the main body 3, an inverted microscope 8 provided below the measuring unit 4, and an illuminating unit 5 provided above the measuring unit 4 and connected to the inverted microscope 8, It has.
  • the inverted microscope 8 is placed on the vibration isolation table 2 via the XY stage 31.
  • the main body 3 includes a flat base 13 supported by a column 12 extending vertically from the vibration isolation table 2.
  • a base opening 15 is formed at the center of the base 13, and a stage 16 on which the sample S is placed is provided in the base opening 15.
  • a stage 16 is provided at the center of the stage 16.
  • An opening 17 is formed.
  • the stage 16 is finely moved along the Z direction by a stage fine movement mechanism 27 described later.
  • the Z direction is a direction perpendicular to the surface of the sample S and the stage 16 and means the height direction of the scanning probe microscope 1.
  • the measuring section 4 includes a probe fine movement mechanism section 26, which will be described later.
  • the probe fine movement mechanism section 26 is provided with a crank-shaped crank fixing section 30.
  • the probe fine mechanism 26 is installed by the crank fixing portion 30 so that the center thereof coincides with the stage opening 17.
  • probe fine movement mechanism section 26 and the stage fine movement mechanism section 27 constitute a fine movement mechanism for a scanning probe microscope.
  • a cantilever holder 22 that supports the cantilever 20 is provided on the lower surface of the probe fine movement mechanism portion 26.
  • a glass holder 23 made of glass is provided in the center of the cantilever holder 22.
  • This glass holder 23 is composed of the sample S and the glass holder 23.
  • a film due to the viscosity of the liquid is formed to prevent irregular reflection of illumination light during measurement in the liquid.
  • the cantilever 20 is not limited to a long one, but has a triangular shape when viewed from the top, or a near-field microscope having a circular cross section and a sharpened tip of the optical fiber. Vent probes for use are also included in the present invention.
  • the cantilever 20 is provided above the stage opening 17.
  • a sharpened probe 21 is provided at the front end of the cantilever 20, and the rear end is fixed to the cantilever holder 22.
  • the cantilever 20 is cantilevered so that the tip side on which the probe 21 is provided is a free end.
  • the cantilever 20 is vibrated at a predetermined frequency and amplitude along the Z direction by an unillustrated vibration means, and further, the probe fine movement mechanism section 26 makes an X , It moves finely in the Y direction.
  • the XY direction is a direction orthogonal to each other parallel to the surface of the sample S and the stage 16 and orthogonal to the Z direction. Further, the X direction refers to the width direction of the scanning probe microscope 1, and the Y direction refers to the depth direction of the scanning probe microscope 1.
  • a Z coarse movement mechanism section 33 for roughly moving the cantilever 20 in the Z direction by the motor 37.
  • the base of the Z coarse movement mechanism section 33 is provided.
  • the part 34 is fixed to the base 13 of the main body part 3.
  • An XY stage 35 is provided on the upper surface of the Z coarse movement mechanism portion 33, and the crank fixing portion 30 is fixed to the upper surface of the XY stage 35.
  • the illumination unit 5 described above is provided above the probe fine movement mechanism unit 26.
  • the illumination unit 5 includes a light source 40 that emits illumination light and a condenser lens 41 that collects the illumination light from the light source 40.
  • the condenser lens 41 is arranged above the center of the probe fine movement mechanism section 26 by a lens support section 42 connected to the inverted microscope 8 and supported so as to be movable up and down with respect to the probe fine movement mechanism section 26.
  • the probe fine movement mechanism portion 26 in this embodiment includes a rectangular frame-shaped outer frame portion (frame portion) 48 and inner frame portion (frame portion) 4 9 having different width dimensions.
  • These outer frame part 48 and inner frame part 49 are made of low thermal expansion pig iron. It is formed in a flat shape.
  • the outer frame portion 48 and the inner frame portion 49 are concentrically connected to each other via an X driving portion (first driving portion) 52 and a Y driving portion (first driving portion) 51.
  • the upper surfaces of the outer frame portion 48 and the inner frame portion 49 are arranged flush with each other.
  • the X drive unit 52 is installed in an X side cavity 60 formed in the outer frame 48 and extending in the Y direction
  • the Y drive unit 51 is installed in a Y side cavity 57 similarly extending in the X direction. It has been.
  • the X drive unit 52 includes a stacked X-side piezoelectric element 61 oriented in the Y direction.
  • the X-side piezoelectric element 61 is provided with a substantially rhombic X-side displacement enlarging mechanism 62 as viewed from above so as to surround the periphery.
  • the X-side displacement magnifying mechanism 62 is connected to the inner frame part 49 via the X-side connecting part 63.
  • the Y drive unit 51 includes a laminated Y-side piezoelectric element 54 oriented in the X direction. Similarly to the above, the Y-side piezoelectric element 54 is provided with a substantially rhombic Y-side displacement magnifying mechanism 55. The Y-side displacement magnifying mechanism 55 is connected to the inner frame via the Y-side coupling 56. It is connected to part 49.
  • Parallel panels 67 are installed at the four corners of the inner frame portion 49.
  • a substantially rectangular substrate portion 68 is provided on the bottom surface of the inner frame portion 49.
  • a probe-side through hole 70 oriented in the Z direction is formed in the center of the substrate portion 68. Then, illumination light from the light source 40 shown in FIG. 1 is allowed to pass through the probe side through hole 70.
  • the cantilever 20 is provided on the lower surface of the substrate portion 68 via the cantilever holder 22, and the substrate portion 68 and the cantilever holder 22 are moved by the fine movement of the inner frame portion 49 in the XY direction. At the same time, the cantilever 20 is finely moved in the XY directions.
  • a Y-direction fine movement amount detecting portion 73 is provided on the upper surface of the outer frame portion 48 and the inner frame portion 49.
  • an X-direction fine movement amount detection unit 74 is provided on the upper surface of the outer frame portion 48 and the inner frame portion 49.
  • the Y-direction fine movement amount detection unit 73 is fixed to the inner frame portion 49 and is fixed to the Y-direction target 77 extending in the X direction and the outer frame portion 48, and detects the amount of movement of the Y-direction target 77 in the Y direction.
  • Y direction sensor 78 is provided on the upper surface of the outer frame portion 48 and the inner frame portion 49.
  • the X-direction fine movement amount detection unit 74 includes an X-direction target 80 that extends in the Y direction and an X-direction sensor 81 that detects the amount of movement of the X-direction target 80 in the Y direction.
  • Capacitance sensors are used as the Y direction sensor 78 and the X direction sensor 81.
  • the present invention is not limited to this, and a strain gauge, an optical displacement system, a differential transformer, or the like may be used.
  • the X direction target 80 when the inner frame portion 49 finely moves in the X direction, the X direction target 80 also finely moves in the X direction, and the X direction sensor 81 detects the amount of fine movement in the X direction. Talk to you.
  • the Y direction target 77 is also finely moved in the Y direction, and the Y direction sensor 78 detects the amount of fine movement in the Y direction. That is, the X direction sensor 81 detects the amount of fine movement in the X direction of the cantilever 20 via the X direction target 80 and the inner frame portion 49, and the Y direction sensor 78 also detects the Y direction target 77 and the inner frame portion. It functions as a fine movement amount detecting means for detecting the fine movement amount of the cantilever 20 in the Y direction via 49.
  • the X direction sensor 81 and the Y direction sensor 78 are electrically connected to the calculation unit (calculation means) 83, respectively, and the detection result force calculation unit 83 from the X direction sensor 81 and the Y direction sensor 78 is connected to the calculation unit 83. It is designed to be entered.
  • the calculation unit 83 calculates an error in the amount of fine movement in the XY direction of the cantilever 20 based on the applied voltage and the amount of fine movement according to the detection result. That is, the calculation unit 83 functions as a calculation unit. Further, the calculation unit 83 is electrically connected to a control unit 84 that performs various controls, and the calculation result is input to the control unit 84.
  • the control unit 84 controls the probe fine movement mechanism unit 27 to operate linearly with respect to the applied voltage.
  • the probe fine movement mechanism unit 26 receives a laser light source (probe displacement detecting means) 44 that emits laser light and laser light from the laser light source 44, for example, A four-divided photodetector (probe displacement detecting means) 45 is provided.
  • the laser light source 44 and the photodetector 45 are mutually obliquely above the cantilever 20. Opposed to each other. Then, the laser light power emitted from the laser light source 44 reaches the upper surface of the cantilever 20 and is reflected there, and the reflected light reaches the photodetector 45.
  • the stage fine movement mechanism portion 27 in the present embodiment includes a mechanism main body portion 86 formed in a substantially rectangular shape, and the mechanism main body portion 86. And an extending portion 87 extending in a direction (namely, X direction) intersecting the thickness direction (namely, Z direction).
  • the thickness dimension R of the extension part 87 is set smaller than the thickness dimension M of the mechanism main body part.
  • the upper surface of the extension portion 87 and the upper surface of the mechanism main body portion 86 are substantially the same, and thereby, a space J is provided below the extension portion 87.
  • a stage-side through hole 109 oriented in the Z direction is formed in the extending portion 87, and the stage 16 described above is placed in the stage-side through hole 109.
  • the mechanism main body 86 is provided with a main body fixing portion 91 extending in the direction opposite to the extending direction of the extending portion 87.
  • the main body fixing portion 91 is fixed at a predetermined position of the base 13 shown in FIG. 1, whereby the mechanism main body portion 86 is cantilevered.
  • a hollow portion 93 is provided inside the mechanism main body 86.
  • the first parallel panel 101 is provided at the end of the upper inner wall portion 94 of the cavity portion 93 in the X direction where the main body fixing portion 91 is provided, and the extending portion 87 is provided.
  • a second parallel panel 102 is provided at the other end.
  • the third parallel panel 103 is provided at the end where the extension 87 is provided, and at the end where the main body fixing part 91 is provided.
  • the fourth parallel panel 104 is provided.
  • a lower wall portion 95 extending downward from the upper inner wall portion 94 is provided in the vicinity of the second parallel panel 102, and in the vicinity of the fourth parallel panel 104, the lower wall portion 97 extends upward.
  • An upper wall portion 96 is provided that extends toward the top. In other words, the lower wall portion 95 and the upper wall portion 96 are extended in opposite directions to be opposed to each other.
  • a Z drive portion (second drive portion) 85 is provided between the lower wall portion 95 and the upper wall portion 96.
  • the Z drive unit 85 is physically separated from the X drive unit 52 and the Y drive unit 51 and provided separately, and functions independently.
  • Z drive 8 5 is composed of a laminated Z-side piezoelectric element 90 oriented in the X direction.
  • the Z-side piezoelectric element 90 has one end fixed to the lower wall portion 95 and the other end fixed to the upper wall portion 96. Further, a bottom wall 107 extending in the X direction is provided at the lower end of the mechanism main body 86.
  • the end on which the main body fixing portion 91 is provided is integrally fixed to the side wall of the mechanism main body 86, and the extending portion 87 is provided.
  • One end is a free end.
  • a Z-direction fine movement amount detection unit 108 connected to the calculation unit 83 is provided.
  • the Z-direction fine movement detection unit 108 uses a capacitance sensor, but is not limited to this, and may be a strain gauge, an optical displacement system, a differential transformer, or the like.
  • the Z-side piezoelectric element 90 when a voltage is applied to the Z-side piezoelectric element 90, the Z-side piezoelectric element 90 expands and contracts.
  • the Z-side piezoelectric element 90 extends, the lower wall portion 95 and the upper wall portion 96 are pressed outward in the X direction, and the upper wall portion 96 rotates in the clockwise direction in FIG. 3 around the fixed end.
  • the lower wall portion 95 also rotates clockwise around the vicinity of the fixed end.
  • the lower wall portion 95 is guided by the first to fourth parallel panels 101, 102, 103, 104, and the extension portion 87 becomes Z.
  • the stage 16 connected to the extension 87 is moved in the Z direction.
  • the Z-direction fine movement amount detection unit 108 detects the fine movement amount of the mechanism main body 86. That is, the Z-direction fine movement amount detection unit 108 functions as fine movement amount detection means for detecting the fine movement amount of the stage 16 in the Z direction via the mechanism main body 86. Then, the calculation unit 83 calculates an error of the fine movement amount in the Z direction of the stage 16 based on the applied voltage and the actual fine movement amount in accordance with the detection result of the Z direction fine movement detection unit 108. ing. This calculation result is input to the control unit 84, and the control unit 84 controls the stage fine movement mechanism unit 27 to operate linearly with respect to the applied voltage.
  • the fine movement amount may be simply detected by the Z direction fine movement detection unit 108 and displayed as the height above the scanning probe microscope.
  • the stage fine movement mechanism 27 configured as described above is small and highly rigid, and has a higher resonance frequency than that of the probe fine movement mechanism section 26 and can operate at high speed.
  • an objective lens 10 is provided in the space J. It has been. That is, a revolver (arrangement changing means) 9 is provided at the upper end of the inverted microscope 8, and the revolver 9 is provided with a plurality of objective lenses 10 having different magnifications. Then, by rotating the revolver 9, the arrangement of the plurality of objective lenses 10 is changed, so that the plurality of objective lenses 10 can be selectively arranged at the observation position K in the space J. It has become.
  • the observation position K is a position below the stage 16 and coincides with the stage opening 17 and is a position for observing the sample S.
  • the objective lens 10 can be moved up and down in the Z direction by operating a forcing single dial 8a provided in the inverted microscope 8 at the observation position K.
  • the sample S is placed on the stage 16 via a liquid cell (not shown). Then, the light source 40 is turned on and the illumination light is irradiated toward the sample S. Then, the illumination light passes through the probe-side through hole 70, passes through the sample S, and further passes through the stage-side through hole 109 to reach the objective lens 10 disposed at the observation position K. Thereby, the state of the sample S is observed through the objective lens 10.
  • the revolver 9 is turned, the first objective lens 10 passes through the space J and is disengaged from the observation position K, and the other objective lens 10 is placed at the observation position K. Thereby, the objective lens 10 having an appropriate magnification is selected.
  • the focusing dial 8a is operated, the objective lens 10 moves upward, the objective lens 10 approaches the sample S and is focused.
  • the position of the surface of the sample S and the position of the probe 21 are aligned on the XY stage 35 while viewing the image of the inverted microscope 8.
  • the positions of the laser light source 44 and the photodetector 45 are adjusted. That is, the laser beam L force radiated from the laser light source 44 is reflected from the upper surface of the cantilever 20, and the position is adjusted so as to be surely incident on the photodetector 45.
  • the motor 37 is driven and the cantilever 20 is coarsely moved by the Z coarse movement mechanism 33 to immerse the cantilever 20 in the culture medium of the submerged cell.
  • probe 21 is positioned near the surface of sample S.
  • the probe 21 is vibrated at a predetermined frequency and amplitude along the Z direction by the vibrating means via the cantilever 20. Then, a voltage is applied to the X-side piezoelectric element 61 and the Y-side piezoelectric element 54 shown in FIG. Then, the X-side piezoelectric element 61 and the Y-side piezoelectric element 54 expand and contract, and the inner frame portion 49 slightly moves in the XY direction via the X-side displacement enlarging mechanism 62 and the Y-side displacement enlarging mechanism 55. As a result, the probe 21 performs a raster scan on the sample S at a predetermined scanning speed.
  • the movement is linear in the XY direction without being affected by the hysteresis and creep of the X-side piezoelectric element 61 and the Y-side piezoelectric element 54.
  • the probe 21 receives a repulsive force or an attractive force due to an atomic force or an intermittent contact force.
  • the vibration state of the inch lever 20 changes, and the amplitude and phase change.
  • This change in amplitude and phase is detected as the output difference (referred to as the DIF signal) between the two pairs of divided surfaces of the photodetector 45.
  • This DIF signal is input to a Z voltage feedback circuit (not shown).
  • the Z voltage feedback circuit applies a voltage to the Z side piezoelectric element 90 shown in FIG. 3 so that the amplitude and phase are the same by the DIF signal.
  • the Z-side piezoelectric element 90 repeats expansion and contraction at a high speed when a voltage is applied.
  • the Z-side piezoelectric element 90 expands and contracts, the stage 16 moves in the Z direction at a very high frequency via the extension 87, and the sample S on the stage 16 moves in the Z direction.
  • the distance between the probe 21 and the surface of the sample S is always kept constant during the scanning.
  • the fine movement amount of the mechanism main body 86 is detected by the Z direction fine movement amount detection unit 108, and the fine movement amount of the stage 16 in the Z direction according to the detection result. Is calculated. Then, the calculation result is input to the control unit 84 and linear in the Z direction. Can be operated.
  • the fine movement amount may be detected by the Z-direction movement amount detection unit 108 and displayed as height information of the scanning probe microscope. In this case, faster scanning is possible.
  • the voltage applied to the X-side, Y-side, and Z-side piezoelectric elements 61, 54, and 90, or the signals from the X-, Y-, and Z-direction sensors 81, 78, and 108 are controlled by the control unit 84.
  • the shape image of the surface of the sample S can be measured by inputting into and imaging. Also, by measuring various forces and physical actions acting between the probe 21 and the sample S, various viscoelasticity, surface potential distribution of the sample S, leakage magnetic field distribution of the surface of the sample S, near-field optical image, etc. It is possible to measure physical property information.
  • the Z drive unit 85 is physically separated from the X drive unit 52 and the Y drive unit 51 and provided separately. Since each can function independently, the resonance frequency of the Z-side piezoelectric element 90 can be set higher than that of the X-side piezoelectric element 61 and the Y-side piezoelectric element 54. Therefore, even if the scanning speed of the probe 21 is increased, the stage 16 can be sufficiently followed, and the overall scanning speed can be improved.
  • the sample S can only be placed on the stage 16, whereas the cantilever 20 side has many components such as the cantilever holder 22, laser light source 44, and photodiode 45. Is generally larger and heavier.
  • the probe fine movement mechanism section 26, which may have a low scanning speed, is provided on the cantilever 20 side, and the stage fine movement mechanism section 27 is provided on the stage 16 side, which requires faster response, thereby further increasing the scanning speed. Can be improved.
  • the probe fine movement mechanism section 26 is provided with a laser light source 44 and a photodetector 45 as displacement detection means, the displacement amount of the cantilever 20 can be reliably increased while finely moving the cantilever 20. Can be measured.
  • the displacement detection means is not limited to this method, and for example, the cantilever 20 itself
  • a method in which a resistor is provided and measurement is performed by a change in resistance value associated with the sag of the cantilever 20 is also included in the present invention.
  • the probe fine movement mechanism portion 26 is provided with a probe-side through-hole 70, and illumination light is passed through the probe-side through-hole 70. Therefore, the probe fine-movement mechanism portion 26 has high accuracy without obstructing the progress of the illumination light. Can be measured.
  • the probe fine movement mechanism portion 26 is formed in a flat shape by the outer frame portion 48 and the inner frame portion 49, the whole can be made small and thin. Accordingly, it is possible to arrange a condenser lens with a short arc distance and a higher NA, and the resolution of the inverted microscope 8 can be improved.
  • the X-direction fine movement amount detection unit 74, the Y-direction fine movement amount detection unit 73, and the Z-direction fine movement amount detection unit 108 detect errors in the fine movement amounts in the XYZ directions, and the probe fine movement mechanism unit 26 and the stage fine movement. Since the mechanism unit 27 can be linearly operated, more accurate measurement can be performed.
  • a plurality of objective lenses 10 are provided via the revolver 9, and by rotating the revolver 9, the plurality of objective lenses 10 can be selectively arranged at the observation position K. It is possible to easily and quickly arrange the objective lens 10 having a high magnification.
  • the objective lens 10 can be brought closer to the sample S, and a high-NA objective lens can be provided to perform high-precision measurement.
  • the thickness dimension R of the extending portion 87 is set smaller than the thickness dimension M of the mechanism main body portion 86, and the space J is provided below the extending portion 87, this space J is It can be used effectively.
  • the arrangement of the objective lens 10 can be changed easily and quickly without obstructing the rotation of the revolver 9. Therefore, the operability of the inverted microscope 8 can be improved.
  • stage fine movement mechanism 27 is cantilevered via mechanism main body 86, sufficient space J can be secured with a simple configuration.
  • the stage fine movement mechanism 27 is cantilevered.
  • the present invention is not limited to this.
  • the mechanism main body 86 is arranged in the X direction.
  • the extension part 87 is arranged between them by the body fixing parts 91 at both ends in the X direction. You may make it support.
  • the mechanism main body portions 86 may be arranged so as to be 90 degrees toward each other in the XY directions, and may be supported at both ends by the main body fixing portion 91.
  • FIG. 7 (a) is a plan view of the stage fine movement mechanism
  • FIG. 7 (b) is a front view.
  • three actuators 120 having the same shape and the same movement characteristics are arranged in a triangular shape in plan view, and the end 120b of the multilayer piezoelectric element 120 is used as a base 13.
  • a stage 121 for fixing the sample S on the moving end 120a is fixed by a magnet 125.
  • the stage 121 is provided with a through-hole 122, and a space 123 surrounded by the multilayer piezoelectric element 120 is provided. Is a configuration in which the objective lens 10 is arranged. When a voltage is applied to each laminated piezoelectric element 120, the stage 121 moves in a direction perpendicular to the surface of the sample S.
  • the stage moving mechanism 27 configured as described above, since the stage 121 is supported by the three laminated piezoelectric elements 120, the rigidity of the stage 121 can be increased and the movement in the Z direction can be performed at high speed. Can be performed.
  • the objective lens 10 can be arranged in the space 123 surrounded by the three stacked piezoelectric elements 120, and the illumination light can be irradiated onto the sample S with a spatial partial force. Further, the objective lens 10 can be exchanged by an objective lens arrangement converting means (not shown) through the gap 124 between the adjacent laminated piezoelectric elements 120. (Example 2)
  • Fig. 8 shows a second embodiment of the present invention.
  • FIG. 8 the same components as those shown in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof is omitted.
  • This embodiment and the first embodiment have the same basic configuration, and differ in the following points.
  • the scanning probe microscope 1 in the present example is combined with an upright microscope. That is, the upright microscope 8 is provided with a light source 40, and a condenser lens 41 is provided at the upper end of the light source 40. In addition, above the condenser lens 41, the A fine movement mechanism 27 is provided.
  • the stage fine movement mechanism unit 27 includes a cylindrical Z-side piezoelectric element 90, and the Z-side piezoelectric element 90 is installed in the Z direction.
  • the Z-side piezoelectric element 90 is formed with a cylindrical hole (stage-side through hole) 110 directed in the Z direction, and illumination light from the light source 40 is passed through the cylindrical hole 110.
  • the objective lens 10 is provided at the observation position K above the probe fine movement mechanism 26.
  • the observation position K refers to a position where the cantilever 20 or the sample S is observed from above the probe fine movement mechanism 26.
  • the objective lens 10 moves up and down at the observation position K, and is inserted into the probe-side through hole 70 when moved downward.
  • the illumination light from the light source 40 passes through the sample S through the cylindrical hole 110. Further, when the objective lens 10 is moved downward and inserted into the probe side through hole 70, the object lens 10 comes close to the cantilever 20 or the sample S.
  • the stage fine movement mechanism 27 is provided with the cylindrical hole 110, and the illumination light passes through the cylindrical hole 110, so that the measurement can be performed with high accuracy without obstructing the progress of the illumination light.
  • the objective lens 10 can be inserted into the probe-side through hole 70, the objective lens 10 can be brought closer to the cantilever 20 and the sample S, and an objective lens with a high NA is provided. Highly accurate measurement can be performed.
  • the X-side piezoelectric element 61, the Y-side piezoelectric element 54, and the Z-side piezoelectric element 90 are stacked piezoelectric elements.
  • the present invention is not limited to this. It can be changed as needed.
  • a stack-type piezoelectric element or a voice coil can be used.
  • a cylindrical piezoelectric element can be used for the probe fine movement mechanism unit 26 or the stage fine movement mechanism unit 27.
  • the force observed in the DFM mode is not limited to this, and can be applied to various modes such as contact AFM. Furthermore, it can be applied to a near-field microscope. When applied to a near-field microscope, a high-NA objective lens can be used, so that the collection efficiency of near-field signals can be improved. [0125] Furthermore, the force measured in liquid is not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 プローブによる走査スピードをより一層向上させつつ、高精度に測定することができることができる走査型プローブ顕微鏡用微動機構およびこれを含む走査型プローブ顕微鏡を提供することを課題とする。  試料Sが載置されるステージ16と、このステージ16に載置された前記試料Sの表面に近接または接触させるプローブ20とを有する走査型プローブ顕微鏡(SPM)1に設けられる走査型プローブ顕微鏡用微動機構において、それぞれ独立して別個に設けられた第1の駆動部および第2の駆動部と、前記第1の駆動部を有し、この第1の駆動部により、前記試料Sの表面に平行な互いに交差するX方向およびY方向に、前記プローブ20を微動させるプローブ微動機構部26と、前記第2の駆動部を有し、この第2の駆動部により、前記試料Sの表面に垂直なZ方向に、前記ステージ16を微動させるステージ微動機構部27と、を備えることを特徴とする。                                                                                 

Description

明 細 書
走査型プローブ顕微鏡用微動機構およびこれを用いた走査型プローブ 顕微鏡
技術分野
[0001] 本発明は、試料の表面にプローブを近接または接触させて走査することにより、試 料の表面形状や粘弾性等の各種の物性情報を測定する走査型プローブ顕微鏡に 設けられる走査型プローブ顕微鏡用微動機構およびこれを有する走査型プローブ 顕微鏡に関するものである。
背景技術
[0002] 周知のように、金属、半導体、セラミック、榭脂、高分子、生体材料、絶縁物等の試 料を微小領域にて測定し、試料の粘弾性等の物性情報や試料の表面形状の観察等 を行う装置として、走査型プローブ顕微鏡(SPM : Scanning Probe Microscope)が知 られている。
[0003] これら走査型プローブ顕微鏡の中には、試料が載置されるステージと、先端にプロ ーブを有し、試料の表面に近接または接触させるカンチレバーとを備えたものが周知 となっている(例えば、特許文献 1参照。 ) oそして、これらステージとプローブとを X、 Y方向に相対的に移動させて、プローブにより試料を走査させるようになっており、こ の走査中にカンチレバーの変位量を測定しながら、ステージまたはプローブを Z方向 に動作させて、試料とプローブの距離制御を行うことにより、各種物性情報を測定す るようになっている。
[0004] ところで、測定精度を向上させるためには、走査のためのステージおよびプローブ の移動を高精度に行う必要がある。そのため、ステージおよびプローブを精度良く移 動させるために、走査型プローブ顕微鏡用微動機構が設けられているのが一般的で ある。
[0005] 走査型プローブ顕微鏡用微動機構は、ステージおよびプローブを微動させるため の 3次元ァクチユエータなどの駆動部を備えており、この 3次元ァクチユエータにより X 、 Υ、 Ζ方向に移動させるものが周知となっている。 [0006] ここで、プローブによる走査スピードを向上させるためには、 X、 Y方向の移動に比 して、 Z方向の移動について段違いの高速性が要求される。なぜなら、 Z方向につい ては、 XY方向に走査中に、試料とプローブの距離が一定となるように、随時追従さ せる必要があるからである。
特許文献 1:特開 2000— 346784号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、上記のように 3次元ァクチユエータを用いた構成では、その 3次元ァク チユエータによって、 Z方向だけでなく X、 Y方向にも動かす必要があるため、 3次元 ァクチユエータ自体が大きくなつてしまい、これにより 3次元ァクチユエータの共振周 波数が低下してしまう。そのため、 Z方向の振動の周波数を上げるのが困難になると いう問題がある。また、 3次元ァクチユエータによって XYZ方向に同時に動かすため 、それらが互いに影響し合い、移動精度が低下してしまう。
[0008] 本発明は、このような事情に鑑みてなされたものであって、プローブによる走査スピ ードをより一層向上させつつ、高精度に測定することができる走査型プローブ顕微鏡 用微動機構およびこれを含む走査型プローブ顕微鏡を提供することを目的とする。 課題を解決するための手段
[0009] 上記課題を解決するために、本発明は以下の手段を提供する。
[0010] 本発明は、試料が載置されるステージと、このステージに載置された前記試料の表 面に近接または接触させるプローブとを有する走査型プローブ顕微鏡に設けられる 走査型プローブ顕微鏡用微動機構において、それぞれ独立して別個に設けられた 第 1の駆動部および第 2の駆動部と、前記第 1の駆動部を有し、この第 1の駆動部に より、前記試料の表面に平行な互いに交差する X方向および Y方向に、前記プロ一 ブを微動させるプローブ微動機構部と、前記第 2の駆動部を有し、この第 2の駆動部 により、前記試料の表面に垂直な Z方向に、前記ステージを微動させるステージ微動 機構部と、を備えることを特徴とする。
[0011] この発明に係る走査型プローブ顕微鏡用微動機構にお!、ては、プローブ微動機構 部に設けられた第 1の駆動部により、 X、 Y方向にプローブが微動する。また、ステー ジ微動機構部に設けられた第 2の駆動部により、 Z方向にステージが微動する。この とき、第 1および第 2の駆動部は、独立して別個に駆動させられる。
[0012] これにより、第 1および第 2の駆動部を分けてそれぞれを小さくすることによって、共 振周波数を上げることができ、また、第 1および第 2の駆動部が影響し合うのを防止す ることがでさる。
[0013] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記プローブ微 動機構部が、前記プローブの変位を検出するプローブ変位検出手段を備えることを 特徴とする。
[0014] この発明に係る走査型プローブ顕微鏡用微動機構においては、プローブ変位検出 手段によって、プローブの変位が検出される。
[0015] これにより、プローブを微動させながら、そのプローブの変位量を確実に測定するこ とがでさる。
[0016] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記プローブ微 動機構部が、前記 z方向に向けられたプローブ側貫通孔を備えることを特徴とする。
[0017] さらに、前記に記載の走査型プローブ顕微鏡用微動機構において、前記プローブ 側貫通孔に照明光が通されることを特徴とする。
[0018] この発明に係る走査型プローブ顕微鏡用微動機構にお!、ては、プローブ微動機構 部にプローブ側貫通孔が設けられ、このプローブ側貫通孔に照明光が通されること になる。
[0019] これにより、プローブ微動機構部によって照明光が邪魔されることなぐ走査型プロ ーブ顕微鏡に照明装置を容易に設置することができる。
[0020] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記ステージ微 動機構部が、前記 z方向に向けられたステージ側貫通孔を備えることを特徴とする。
[0021] さらに、前記に記載の走査型プローブ顕微鏡用微動機構において、前記ステージ 側貫通孔に照明光が通されることを特徴とする。
[0022] この発明に係る走査型プローブ顕微鏡用微動機構にお!、ては、ステージ微動機構 部にステージ側貫通孔が設けられ、このステージ側貫通孔に照明光が通される。
[0023] これにより、ステージ微動機構部によって照明光が邪魔されることなぐ走査型プロ ーブ顕微鏡に照明装置を容易に設置することができる。
[0024] 本また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記プローブ 側貫通孔を通して、プローブまたはプローブが設けられたカンチレバーが観察可能 な位置に対物レンズを備えることを特徴とする。
[0025] この発明に係る走査型プローブ顕微鏡用微動機構においては、プローブ側貫通孔 を通して、プローブまたはカンチレバーが観察可能な位置に対物レンズが配置される
[0026] これにより、プローブ微動機構部によって対物レンズが邪魔されることなぐプロ一 ブゃ試料に対物レンズを一層近づけることができ、そのため高 NAの対物レンズを設 けることができる。
[0027] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記ステージ側 貫通孔を通して試料が観察可能な位置に対物レンズを備えることを特徴とする。
[0028] この発明に係る走査型プローブ顕微鏡用微動機構にお!、ては、ステージ側貫通孔 を通して、試料が観察可能な位置に対物レンズが配置される。
[0029] これにより、ステージ微動機構部によって対物レンズが邪魔されることなぐ試料に 対物レンズを一層近づけることができ、そのため高 NAの対物レンズを設けることがで きる。
[0030] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記対物レンズ が複数設けられており、前記複数の対物レンズの配置を変更する配置変更手段を備 えることを特徴とする。
[0031] この発明に係る走査型プローブ顕微鏡用微動機構においては、配置変更手段によ つて、複数の対物レンズの配置が変更される。
[0032] これにより、種々の試料に応じて、複数種類の倍率の対物レンズを選択することが できる。
[0033] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記ステージ微 動機構部が、前記第 2の駆動部を有する機構本体部と、この機構本体部から、前記 機構本体部の厚さ方向に交差する方向に延出し、前記ステージを支持する延出部と を備え、この延出部の厚さ寸法が、前記機構本体部の厚さ寸法より小さく設定されて いることを特徴とする。
[0034] この発明に係る走査型プローブ顕微鏡用微動機構においては、延出部の厚さ寸法 力 前記機構本体部の厚さ寸法より小さく設定されていることから、延出部の厚さ方 向のスペースが開放される。
[0035] ここで、延出部および機構本体部の厚さ寸法が同等であると、例えば延出部の下 方に対物レンズなどを設けるときに、充分なスペースがないため、対物レンズを試料 に近づけることができない。そこで、試料の下方に凹部などを設けて、この凹部内に 対物レンズを設置することが考えられるが、対物レンズを凹部内に設置すると、異なる 倍率の他の対物レンズに変更するときに、対物レンズを移動させるのが困難になる。
[0036] 本発明においては、延出部の厚さ方向のスペースが開放されることから、対物レン ズを容易に移動させることができる等、延出部近傍のスペースを有効に活用すること ができる。
[0037] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記機構本体 部が片持ち支持されて 、ることを特徴とする。
[0038] この発明に係る走査型プローブ顕微鏡用微動機構にお!、ては、機構本体部が片 持ち支持されることにより、簡易な構成により充分に延出部近傍のスペースを開放す ることがでさる。
[0039] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記第 2の駆動 部が、 Z軸方向に伸縮可能な複数本のァクチユエ一タカ 構成され、前記ステージ部 により前記ァクチユエータの移動端同士が互いに連結されていることを特徴とする。
[0040] この発明に係る走査型プローブ顕微鏡用微動機構にお!、ては、ステージ部が複数 本のァクチユエータにより支持されているため、ステージ部の剛性を高めることができ 、 Z方向の移動を高速に行うことが可能となる。また、複数のァクチユエータで囲まれ る空間内に、対物レンズを配置したり、空間部分から照明光をサンプルに照射するこ とが可能となる。また、隣り合うァクチユエ一タの間を通して、対物レンズ配置変換手 段により対物レンズの交換も行うことが可能となる。
[0041] また、前記に記載の走査型プローブ顕微鏡用微動機構において、前記第 2の駆動 部が、円筒状の圧電素子を備えることを特徴とする。 [0042] この発明に係る走査型プローブ顕微鏡用微動機構にお!、ては、円筒状の圧電素 子により、ステージを高精度に移動させることができる。また、円筒の中空部により照 明を照射したり、対物レンズを配置することが可能となる。
[0043] また、前記に記載の走査型プローブ顕微鏡用微動機構において、前記第 1の駆動 部が、円筒状の圧電素子を備えることを特徴とする。
[0044] この発明に係る走査型プローブ顕微鏡用微動機構にお!、ては、円筒状の圧電素 子により、プローブを高精度に微動させることができ、また、円筒の中空部により照明 を照射したり、対物レンズを配置することが可能となる。
[0045] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記プローブ微 動機構部が、第 1の駆動部を介して互いに同心上かつ面一に連結された複数のフレ 一ム部を備えることを特徴とする。
[0046] この発明に係る走査型プローブ顕微鏡用微動機構においては、第 1の駆動部の駆 動により、フレーム部を介してプローブが微動する。このフレーム部は互いに同心上 かつ面一に連結されていることから、プローブ微動機構部を小さくすることができ、厚 さも薄く構成することができる。したがって、より高 NAの対物レンズを配置することが 可能となる。
[0047] また、前記に記載の走査型プローブ顕微鏡用微動機構にお!、て、前記プローブの 前記 X方向の微動量、前記プローブの前記 Y方向の微動量、または前記ステージの 前記 Z方向の微動量の少なくとも一つを検出する微動量検出手段を備え、または、 前記微動量検出手段からの検出結果に基づいて、前記 X方向、 Y方向、または Z方 向の微動量の誤差を算出する算出手段を備えることを特徴とする。
[0048] これら発明に係る走査型プローブ顕微鏡用微動機構においては、微動量検出手 段により、プローブの X方向の微動量、プローブの Y方向の微動量、またはステージ の Z方向の微動量の少なくとも一つが検出される。また、この微動量検出手段からの 検出結果に基づいて、算出手段により、 X方向、 Y方向、または Z方向の微動量の誤 差が算出される。
[0049] これにより、例えば圧電素子のヒステリシスやクリープに起因する微動量の誤差につ いての情報を得ることができ、走査型プローブ顕微鏡に設置したときに、その情報に 基づ 、て、走査型プローブ顕微鏡による測定結果を容易に補正することができる。
[0050] また、前記に記載の走査型プローブ顕微鏡用微動機構のいずれか一つを備えた 走査型プローブ顕微鏡であることを特徴とする。
[0051] この発明に係る走査型プローブ顕微鏡においては、上記の走査型プローブ顕微鏡 用微動機構に係る発明と同様の効果を奏することができる。
発明の効果
[0052] 本発明によれば、第 1および第 2の駆動部の共振周波数を上げることができるだけ でなぐ第 1および第 2の駆動部が影響し合うのを防止することができるため、プロ一 ブによる走査スピードをより一層向上させつつ、測定精度の向上を図ることができる。
[0053] また、第 1および第 2の駆動部の上下方向力 照明光を照射したり、高 NAの対物レ ンズを交換可能に配置することができるため、高倍率の光学顕微鏡と走査型プロ一 ブ顕微鏡を容易に組み合わせることが可能となる。
図面の簡単な説明
[0054] [図 1]本発明に係る走査型プローブ顕微鏡の第 1の実施例を示す図であって、(a)は 走査型プローブ顕微鏡の正面図、(b)は (a)において符号 Aによって示す領域の拡 大図である。
[図 2]図 1のプローブ微動機構部を拡大して示す平面図である。
[図 3]図 1のステージ微動機構部を拡大して示す平面図である。
[図 4]図 3のステージ微動機構部を示す底面図である。
[図 5]図 1のステージ微動機構部の変形例を拡大して示す平面図である。
[図 6]図 1のステージ微動機構部の他の変形例を拡大して示す平面図である。
[図 7]ステージ微動機構部の別の変形例の (a)平面図、(b)正面図である。
[図 8]本発明に係る走査型プローブ顕微鏡の第 2の実施例を示す正面図である。 符号の説明
[0055] 1 走査型プローブ顕微鏡
9 レボルバ (配置変更手段)
10 対物レンズ
16 ステージ 20 カンチレバー
21 プローブ
26 プローブ微動機構部
27 ステージ微動機構部
44 レーザ光源 (プローブ変位検出手段)
45 フォトダイオード (プローブ変位検出手段)
48 外フレーム § フレーム音
49 内フレーム部(フレーム部)
51 X駆動部 (第 1の駆動部)
52 Y駆動部 (第 1の駆動部)
54 X側圧電素子
61 Y側圧電素子
70 プローブ側貫通孔
73 X方向微動量検出部 (微動量検出手段)
74 Y方向微動量検出部 (微動量検出手段) 83 演算部 (算出手段)
85 Z駆動部 (第 2の駆動部)
86 機構本体部
87 延出部
90 Z側圧電素子
108 Z方向微動量検出部 (微動量検出手段)
109 ステージ側貫通孔
110 筒孔 (ステージ側貫通孔)
120 積層型圧電素子
121 ステージ
M 厚さ寸法 (機構本体部の厚さ寸法) R 厚さ寸法 (延出部の厚さ寸法)
S 試料 発明を実施するための最良の形態
[0056] (実施例 1)
以下、本発明の第 1実施例における走査型プローブ顕微鏡について、図面を参照 して説明する。本実施例においては、カンチレバーを共振周波数付近で振動させな 力 試料に近づけ、振巾や位相の変化量により、プローブと試料間の距離を一定に 保ちながら走査する DFMモード(Dynamic Force Mode)による液中測定を行うものと する。
[0057] この走査型プローブ顕微鏡 1は、倒立顕微鏡と組み合わせたものであり、図 1 (a)お よび (b)に示すように、基台としての除振台 2に設置された本体部 3と、この本体部 3 の上方に設けられた測定部 4と、測定部 4の下方に設けられた倒立顕微鏡 8と、この 測定部 4の上方に設けられ、倒立顕微鏡 8に連なる照明部 5とを備えている。
[0058] 倒立顕微鏡 8は、 XYステージ 31を介して除振台 2に載置されている。
[0059] 本体部 3は、除振台 2から垂直に延びる支柱 12に支持された、平板状のベース 13 を備えて構成されるものである。ベース 13の中央部には、ベース開口部 15が形成さ れており、このベース開口部 15内に、試料 Sが載置されるステージ 16が設けられて おり、このステージ 16の中央にはステージ開口部 17が形成されている。ステージ 16 は、後述するステージ微動機構部 27により、 Z方向に沿って微動するようになってい る。なお、 Z方向とは、試料 Sの表面およびステージ 16に垂直な方向であって、走査 型プローブ顕微鏡 1の高さ方向をいう。
[0060] ステージ 16の上面には、上述の測定部 4が設置されている。測定部 4は、後述する プローブ微動機構部 26を備えており、このプローブ微動機構部 26には、クランク状 のクランク固定部 30が設けられている。そして、クランク固定部 30により、プローブ微 動機構部 26は、その中心がステージ開口部 17に一致するように設置されている。
[0061] なお、プローブ微動機構部 26およびステージ微動機構部 27は、走査型プローブ 顕微鏡用微動機構を構成するものである。
[0062] プローブ微動機構部 26の下面には、カンチレバー 20を支持するカンチレバーホル ダー 22が設けられている。カンチレバーホルダー 22の中央には、ガラスからなるガラ スホルダ 23が設けられている。このガラスホルダ 23は、試料 Sとガラスホルダ 23との 間に、液の粘性による膜を形成させて、これによつて液中測定時の照明光の乱反射 等を防止するためのものである。
[0063] なお、カンチレバー 20は、長尺状のものに限定されず、上面視して三角形状のもの や、断面が円形で光ファイバ一の先端を先鋭ィ匕して湾曲させた近接場顕微鏡用の ベントプローブなども本発明に含まれる。
[0064] カンチレバー 20は、ステージ開口部 17の上方に設けられている。カンチレバー 20 の先端には、先鋭ィ匕されたプローブ 21が設けられており、後端は、カンチレバーホル ダー 22に固定されている。これにより、カンチレバー 20は、プローブ 21が設けられた 先端側が自由端となるように片持ち支持されている。また、カンチレバー 20は、不図 示の加振手段により、 Z方向に沿つて所定の周波数及び振幅で振動するようになつ ており、さらに、プローブ微動機構部 26により、ステージ 16に対して、 X、 Y方向に微 動するようになっている。なお、 XY方向とは、試料 Sの表面およびステージ 16に平行 な互いに直交する方向であって、 Z方向と直交する方向をいう。さらに、 X方向とは、 走査型プローブ顕微鏡 1の幅方向をいい、 Y方向とは、走査型プローブ顕微鏡 1の 奥行方向をいうものとする。
[0065] また、プローブ微動機構部 26の近傍には、モーター 37によってカンチレバー 20を Z方向に粗動移動させるための Z粗動機構部 33が設けられており、 Z粗動機構部 33 のベース部 34が本体部 3のベース 13に固定されている。この Z粗動機構部 33の上 面には XYステージ 35が設けられており、この XYステージ 35の上面に、前記クランク 固定部 30が固定されている。
[0066] また、プローブ微動機構部 26の上方には、上述の照明部 5が設けられている。照 明部 5は、照明光を発する光源 40と、この光源 40からの照明光を集光するためのコ ンデンサレンズ 41とを備えている。コンデンサレンズ 41は、倒立顕微鏡 8に連なるレ ンズ支持部 42によって、プローブ微動機構部 26の中心上方に配されて、プローブ微 動機構部 26に対して上下動可能に支持されている。
[0067] さらに、本実施例におけるプローブ微動機構部 26は、図 2に示すように、幅寸法の 異なる矩形枠状の外フレーム部(フレーム部) 48および内フレーム部(フレーム部) 4 9を備えており、これら外フレーム部 48および内フレーム部 49は、低熱膨張铸鉄によ りフラット状に形成されている。また、外フレーム部 48と内フレーム部 49とは、 X駆動 部 (第 1の駆動部) 52と Y駆動部 (第 1の駆動部) 51とを介して、互いに同心上に連結 されており、外フレーム部 48および内フレーム部 49の上面は面一にして配されてい る。 X駆動部 52は、外フレーム部 48に形成された Y方向に延びる X側空洞部 60内に 設置されており、 Y駆動部 51は、同様に X方向に延びる Y側空洞部 57内に設置され ている。
[0068] X駆動部 52は、 Y方向に向けられた積層型の X側圧電素子 61を備えて ヽる。 X側 圧電素子 61には、その周囲を取り囲むように、上面視して略ひし形の X側変位拡大 機構部 62が設けられている。そして、 X側変位拡大機構部 62は、 X側連結部 63を介 して、内フレーム部 49に連結されている。
[0069] また、 Y駆動部 51は、 X方向に向けられた積層型の Y側圧電素子 54を備えている 。 Y側圧電素子 54には、上記と同様に、略ひし形の Y側変位拡大機構部 55が設けら れており、 Y側変位拡大機構部 55は、 Y側連結部 56を介して、内フレーム部 49に連 結されている。
[0070] 内フレーム部 49の四隅には、平行パネ 67が設置されている。
[0071] このような構成のもと、 X側圧電素子 61および Y側圧電素子 54に電圧を印加するこ とにより、 X側変位拡大機構部 62および Y側変位拡大機構部 55が、それぞれ X方向 、 Y方向に拡大縮小し、これにより内フレーム部 49を XY方向に微動させるようになつ ている。
[0072] また、内フレーム部 49の底面には、略矩形の基板部 68が設けられている。基板部 68の中央には、 Z方向に向けられたプローブ側貫通孔 70が形成されている。そして 、このプローブ側貫通孔 70に、図 1に示す光源 40からの照明光が通されるようになつ ている。
[0073] なお、基板部 68の下面に、上述したように、カンチレバーホルダー 22を介してカン チレバー 20が設けられており、内フレーム部 49の XY方向の微動により、基板部 68 およびカンチレバーホルダー 22とともに、カンチレバー 20も XY方向に微動するよう になっている。
[0074] また、外フレーム部 48および内フレーム部 49の上面には、 Y方向微動量検出部 73 および X方向微動量検出部 74が設けられている。 Y方向微動量検出部 73は、内フ レーム部 49に固定され、 X方向に延びる Y方向ターゲット 77と、外フレーム部 48に固 定され、 Y方向ターゲット 77の Y方向の移動量を検出する Y方向センサ 78とを備えて いる。また、 X方向微動量検出部 74は、同様にして Y方向に延びる X方向ターゲット 8 0と、 X方向ターゲット 80の Y方向の移動量を検出する X方向センサ 81とを備えてい る。これら Y方向センサ 78および X方向センサ 81としては、静電容量センサが用いら れるが、これに限定されるものではなぐひずみゲージや光学式変位系、差動トラン スなどでもよい。
[0075] このような構成のもと、内フレーム部 49が X方向に微動すると、 X方向ターゲット 80 も X方向に微動し、その X方向の微動量を X方向センサ 81が検出するようになって ヽ る。また、内フレーム部 49が Y方向に微動すると、 Y方向ターゲット 77も Y方向に微 動し、その Y方向の微動量を Y方向センサ 78が検出するようになっている。すなわち 、 X方向センサ 81は、 X方向ターゲット 80および内フレーム部 49を介して、カンチレ バー 20の X方向の微動量を検出し、 Y方向センサ 78は、また Y方向ターゲット 77お よび内フレーム部 49を介して、カンチレバー 20の Y方向の微動量を検出する微動量 検出手段として機能するものである。
[0076] X方向センサ 81および Y方向センサ 78は、それぞれ演算部(算出手段) 83に電気 的に接続されており、 X方向センサ 81および Y方向センサ 78からの検出結果力 演 算部 83に入力されるようになっている。演算部 83は、検出結果に応じて、印加された 電圧と微動量とによって、カンチレバー 20の XY方向の微動量の誤差を算出するよう になっている。すなわち、演算部 83は算出手段として機能するものである。さらに、演 算部 83は、各種制御を行う制御部 84に電気的に接続されており、算出結果を制御 部 84に入力するようになっている。そして、この制御部 84によって、印加電圧に対し て、プローブ微動機構部 27が線形に動作するように制御される。
[0077] また、プローブ微動機構部 26には、図 1に示すように、レーザ光を発するレーザ光 源 (プローブ変位検出手段) 44と、このレーザ光源 44からのレーザ光を受光し、例え ば 4分割されたフォトディテクタ (プローブ変位検出手段) 45とが設けられて 、る。これ らレーザ光源 44およびフォトディテクタ 45は、カンチレバー 20の斜め上方に互いに 対向して配置されている。そして、レーザ光源 44から出射されたレーザ光力 カンチ レバー 20の上面に到達してそこで反射し、その反射光がフォトディテクタ 45に到達 するようになっている。
[0078] さらに、本実施例におけるステージ微動機構部 27は、図 3および図 4に示すように、 略長方形状に形成された機構本体部 86と、この機構本体部 86から、機構本体部 86 の厚さ方向(すなわち Z方向)に交差する方向(すなわち X方向)に延出する延出部 8 7とを備えている。
[0079] 延出部 87の厚さ寸法 Rは、機構本体部の厚さ寸法 Mよりも小さく設定されている。
そして、延出部 87の上面と機構本体部 86の上面とは略同一にされており、これによ り、延出部 87の下方には、スペース Jが設けられている。
[0080] 延出部 87には、 Z方向に向けられたステージ側貫通孔 109が形成されており、この ステージ側貫通孔 109内に、上述のステージ 16が載せられている。
[0081] 機構本体部 86には、延出部 87の延出方向と反対方向に延びる本体固定部 91が 設けられている。本体固定部 91は、図 1に示すベース 13の所定の位置に固定され ており、これにより、機構本体部 86が片持ち支持されている。
[0082] また、機構本体部 86の内部には、空洞部 93が設けられている。空洞部 93の上内 壁部 94の X方向の両端のうち、本体固定部 91が設けられた方の端部には、第 1平行 パネ 101が設けられており、延出部 87が設けられた方の端部には、第 2平行パネ 10 2が設けられている。一方、下内壁部 97の X方向の両端のうち、延出部 87が設けら れた方の端部には、第 3平行パネ 103が、本体固定部 91が設けられた方の端部に は、第 4平行パネ 104が設けられている。また、第 2平行パネ 102の近傍には、上内 壁部 94から下方に向けて延びる下方壁部 95が設けられており、第 4平行パネ 104の 近傍には、下内壁部 97から上方に向けて延びる上方壁部 96が設けられている。す なわち、下方壁部 95および上方壁部 96が、互いに反対方向に延ばされて対向して 配置されている。
[0083] そして、これら下方壁部 95と上方壁部 96との間に、 Z駆動部(第 2の駆動部) 85が 設けられている。 Z駆動部 85は、 X駆動部 52および Y駆動部 51とは、物理的に分離 して別個に設けられたものであり、それぞれ独立して機能するものである。 Z駆動部 8 5は、 X方向に向けられた積層型の Z側圧電素子 90からなるものである。そして、 Z側 圧電素子 90は、その一端が下方壁部 95に固定され、他端が上方壁部 96に固定さ れている。さらに、機構本体部 86の下端には、 X方向に延びる底壁部 107が設けら れている。この底壁部 107の X方向の両端のうち、本体固定部 91が設けられた方の 端部は、機構本体部 86の側壁に一体的に固定されており、延出部 87が設けられた 方の端部は、自由端となっている。この底壁部 107の先端部には、演算部 83に接続 された Z方向微動量検出部 108が設けられている。 Z方向微動量検出部 108には、 静電容量センサが用いられるが、これに限定されるものではなぐひずみゲージや光 学式変位系、差動トランスなどでもよい。
[0084] このような構成のもと、 Z側圧電素子 90に電圧を印加すると、 Z側圧電素子 90が伸 縮するようになっている。そして、 Z側圧電素子 90が伸びると、下方壁部 95および上 方壁部 96が X方向外方に押圧され、上方壁部 96は固定端付近を中心に図 3におけ る時計方向に回転するとともに、下方壁部 95も固定端付近を中心に時計方向に回 転し、結果として、第 1から第 4の平行パネ 101, 102, 103, 104に案内されて、延 出部 87が Z方向に移動し、延出部 87に連結されたステージ 16が Z方向に移動する ようになつている。このとき、 Z方向微動量検出部 108により、機構本体部 86の微動 量が検出されるようになっている。すなわち、 Z方向微動量検出部 108は、機構本体 部 86を介して、ステージ 16の Z方向の微動量を検出する微動量検出手段として機能 するものである。そして、演算部 83が、 Z方向微動量検出部 108の検出結果に応じ て、印加された電圧と実際の微動量とによって、ステージ 16の Z方向の微動量の誤 差を算出するようになっている。この算出結果は制御部 84に入力され、この制御部 8 4によって、印加電圧に対して、ステージ微動機構部 27が線形に動作するように制 御される。
[0085] なお、 Z方向については、単に Z方向微動量検出部 108により微動量を検出し、そ れを走査型プローブ顕微鏡の高さ上方として表示させてもょ ヽ。
[0086] このように構成されたステージ微動機構 27は、小型かつ高剛性であり、プローブ微 動機構部 26に比べて共振周波数が高く高速動作が可能となっている。
[0087] さらに、本実施例においては、図 1に示すように、スペース Jに対物レンズ 10が設け られている。すなわち、倒立顕微鏡 8の上端に、レボルバ (配置変更手段) 9が設けら れており、このレボルバ 9に、それぞれ倍率の異なる複数の対物レンズ 10が設けられ ている。そして、レボルバ 9を回すことにより、複数の対物レンズ 10の配置が変更され るようになっており、複数の対物レンズ 10をスペース J内の観察位置 Kに選択的に配 置することができるようになつている。観察位置 Kとは、ステージ 16の下方であって、 ステージ開口部 17に一致する位置をいい、試料 Sを観察するための位置をいう。
[0088] また、対物レンズ 10は、観察位置 Kにおいて、倒立顕微鏡 8に設けられたフォー力 シングダイヤル 8aを操作することにより Z方向に上下動することができるようになって いる。
[0089] 次に、このように構成された本実施例における走査型プローブ顕微鏡 1の作用につ いて説明する。
[0090] まず、試料 Sを不図示の液中セルを介してステージ 16に載置する。そして、光源 40 をオンにし、試料 Sに向けて照明光を照射する。すると、その照明光は、プローブ側 貫通孔 70を通り、試料 Sを透過して、さらにステージ側貫通孔 109を通ることにより、 観察位置 Kに配された対物レンズ 10に到達する。これによつて、対物レンズ 10を介 して、試料 Sの状態が観察される。このとき、レボルバ 9を回すと、はじめの対物レンズ 10がスペース Jを通って観察位置 K力 外れ、他の対物レンズ 10が観察位置 Kに配 置される。これにより、適切な倍率の対物レンズ 10が選択される。また、フォーカシン グダイヤル 8aを操作すると、対物レンズ 10が上方に移動し、対物レンズ 10が試料 S に近接し、フォーカシングされる。
[0091] これによつて試料 Sの初期観察が行われ、この結果に応じて、詳細測定が行われる
[0092] 詳細測定を行うには、試料 Sの表面とプローブ 21の位置を、倒立顕微鏡 8の像を見 ながら、 XYステージ 35で位置合わせをする。次に、レーザ光源 44およびフォトディ テクタ 45の位置を調整する。すなわち、レーザ光源 44から照射したレーザ光 L力 力 ンチレバー 20の上面で反射し、フォトディテクタ 45に確実に入射するよう位置調整を 行う。それから、モータ 37を駆動して、 Z粗動機構部 33により、カンチレバー 20を粗 動移動させて、カンチレバー 20を液中セルの培養液に浸漬させる。そして、プローブ 21を試料 Sの表面近傍に位置させる。
[0093] この状態から、加振手段により、カンチレバー 20を介してプローブ 21を、 Z方向に 沿って所定の周波数および振幅で振動させる。そして、図 2に示す X側圧電素子 61 および Y側圧電素子 54に電圧を印加する。すると、 X側圧電素子 61および Y側圧電 素子 54が伸縮し、 X側変位拡大機構部 62および Y側変位拡大機構部 55を介して、 内フレーム部 49が XY方向に微動する。これにより、プローブ 21が試料 S上を所定の 走査速度でラスタースキャンする。
[0094] このとき、内フレーム部 49が XY方向に微動すると、 X方向ターゲット 81および Y方 向ターゲット 78がそれぞれ X方向、 Y方向に微動し、その X、 Y方向の微動量が X方 向センサ 81および Y方向センサ 78によって検出される。これら検出結果は演算部 83 に入力されて、カンチレバー 20の XY方向の微動量の誤差が算出され、この算出結 果が制御部 84に入力される。このように、 XY方向の微動量を補正することによって、 X側圧電素子 61や Y側圧電素子 54のヒステリシスやクリープに影響されず、 XY方向 に線形に動作する。
[0095] 走査の際、試料 Sの凹凸に応じて、プローブ 21と試料 Sの表面との距離が変わると 、原子間力や間欠的な接触力によりプローブ 21が斥力または引力を受けるので、力 ンチレバー 20の振動状態が変化し、振巾や位相が変わる。この振巾や位相の変化 は、フォトディテクタ 45の異なる 2対の分割面の出力差 (DIF信号と呼ぶ)として検出 される。この DIF信号は、不図示の Z電圧フィードバック回路に入力される。そして、 Z 電圧フィードバック回路は、 DIF信号により振巾や位相が同じになるように、図 3に示 す Z側圧電素子 90に電圧を印加する。
[0096] Z側圧電素子 90は、電圧が印加されることにより高速で伸縮を繰り返す。 Z側圧電 素子 90が伸縮すると、延出部 87を介してステージ 16が非常に高い周波数で Z方向 に移動し、ステージ 16上の試料 Sが Z方向に移動する。これにより、上記走査の際、 プローブ 21と試料 Sの表面との間の距離が常に一定に保たれる。
[0097] また、ステージ 16が Z方向に移動すると、 Z方向微動量検出部 108により、機構本 体部 86の微動量が検出され、この検出結果に応じて、ステージ 16の Z方向の微動量 の誤差が算出される。そして、その算出結果が制御部 84に入力され、 Z方向に線形 に動作させることができる。
[0098] なお、 Z方向移動量検出部 108により微動量を検出し、それを走査型プローブ顕微 鏡の高さ情報として表示させてもよい。この場合、より高速走査が可能となる。
[0099] このようにして、 X側、 Y側、 Z側圧電素子 61、 54、 90に印加した電圧、または X方 向、 Y方向、 Z方向センサ 81、 78、 108の信号を制御部 84に入力し、画像化すること で試料 Sの表面の形状像を測定することができる。また、プローブ 21と試料 Sとの間 に働くいろいろな力や物理作用を測定することで、粘弾性、試料 Sの表面電位分布、 試料 Sの表面の漏れ磁界分布、近接場光学像等の各種の物性情報の測定を行うこ とがでさる。
[0100] 以上より、本実施例における走査型プローブ顕微鏡 1によれば、 Z駆動部 85が、 X 駆動部 52および Y駆動部 51とは、物理的に分離して別個に設けられたものであり、 それぞれ独立して機能させることができることから、 Z側圧電素子 90の共振周波数を X側圧電素子 61および Y側圧電素子 54よりも高く設定することができる。そのため、 プローブ 21の走査速度を速くしても、ステージ 16を充分に追従させることができ、全 体の走査スピードを向上させることができる。
[0101] また、それぞれ独立して機能させることから、 Z側圧電素子 90の動きが X側圧電素 子 61および Y側圧電素子 54によって影響を受けないようにすることができる。そのた め、走査スピードを向上させつつ、測定精度を向上させることができる。
ここで、ステージ 16には試料 Sが載せられるだけなのに対して、カンチレバー 20側 には、カンチレバーホルダー 22やレーザ光源 44、フォトダイオード 45などの多くの部 品が設けられるため、カンチレバー 20側の機構は、全体的に大きくかつ重くなるのが 一般的である。そのため、カンチレバー 20側に、走査速度が遅くてもよいプローブ微 動機構部 26を設け、より高速応答性が必要なステージ 16側に、ステージ微動機構 部 27を設けることで、より一層走査スピードを向上させることができる。
[0102] また、プローブ微動機構部 26には、変位検出手段としてのレーザ光源 44およびフ オトディテクタ 45が設けられていることから、カンチレバー 20を微動させながら、カン チレバー 20の変位量を確実に測定することができる。
[0103] なお、変位検出手段は、この方式に限定されず、例えば、カンチレバー 20自体に 抵抗体を設けて、カンチレバー 20の橈みに伴う抵抗値変化により測定を行う方式な ども本発明に含まれる。
[0104] また、プローブ微動機構部 26には、プローブ側貫通孔 70が設けられ、このプロ一 ブ側貫通孔 70に照明光を通していることから、照明光の進行を邪魔することなぐ高 精度に測定することができる。
[0105] さらに、プローブ微動機構部 26は、外フレーム部 48および内フレーム部 49によつ てフラット状に形成されているため、全体を小さく薄くすることができる。したがって、ヮ ークディスタンスの短い、より高 NAのコンデンサレンズを配置することができ、倒立顕 微鏡 8の分解能を向上させることができる。
[0106] また、 X方向微動量検出部 74、 Y方向微動量検出部 73および Z方向微動量検出 部 108により、 XYZ方向の微動量の誤差を検出し、プローブ微動機構部 26とステー ジ微動機構部 27を線形動作させることができるため、より高精度な測定を行うことが できる。
[0107] さらに、レボルバ 9を介して複数の対物レンズ 10が設けられており、レボルバ 9を回 すことにより、複数の対物レンズ 10を観察位置 Kに選択的に配することができること から、適切な倍率の対物レンズ 10を容易かつ迅速に配置することができる。
[0108] また、対物レンズ 10を試料 Sに一層近接させることができ、高 NAの対物レンズを設 けて高精度な測定を行うことができる。
[0109] また、延出部 87の厚さ寸法 Rを機構本体部 86の厚さ寸法 Mよりも小さく設定して、 延出部 87の下方にスペース Jを設けたことから、このスペース Jを有効活用することが できる。本実施例においては、スペース Jに対物レンズ 10を配置したことによって、レ ボルバ 9の回転が邪魔されることなぐ簡単かつ迅速に対物レンズ 10の配置変更を することができる。したがって、倒立顕微鏡 8の操作性を向上させることができる。
[0110] さらに、機構本体部 86を介してステージ微動機構部 27が片持ち支持されているこ とから、簡易な構成により充分なスペース Jを確保することができる。
[0111] なお、本実施例においては、ステージ微動機構部 27が片持ち支持されるとしたが、 これに限ることはなぐ例えば、図 5に示すように、機構本体部 86を X方向に並べて、 その間に延出部 87を配置する構成として、 X方向両端の本体固定部 91によって、両 持ち支持するようにしてもよい。また、図 6に示すように、機構本体部 86をそれぞれ X Y方向に向けて互いに 90度になるように配置する構成とし、本体固定部 91によって 両持ち支持するようにしてもょ ヽ。
[0112] さらに、図 7に示すようなァクチユエータを複数本利用したステージ微動機構 27でも よい。図 7(a)はこのステージ微動機構の平面図、図 7(b)は正面図である。このステー ジ微動機構 27では同じ形状で同一の移動特性を有する 3本のァクチユエータである 積層型圧電素子 120を平面視で三角形型に配置し、積層型圧電素子 120の末端 1 20bをベース 13に固定し、移動端 120aに試料 Sを載置するためのステージ 121を磁 石 125により固定した構造であり、ステージ 121には貫通孔 122が設けられ、積層型 圧電素子 120で囲まれる空間 123には対物レンズ 10が配置された構成である。各々 の積層型圧電素子 120に電圧を印加すると、ステージ 121は試料 S表面に垂直な方 向に移動する。
[0113] このように構成されたステージ移動機構 27においては、ステージ 121が 3本の積層 型圧電素子 120により支持されているため、ステージ 121の剛性を高めることができ 、 Z方向の移動を高速に行うことが可能となる。また、 3本の積層型圧電素子 120で囲 まれる空間 123内に、対物レンズ 10を配置したり、空間部分力も照明光を試料 Sに照 射することが可能となる。また、隣り合う積層型圧電素子 120の間 124を通して、対物 レンズ配置変換手段(図示せず)により対物レンズ 10の交換も行うことが可能となる。 (実施例 2)
次に、本発明の第 2の実施例について説明する。
[0114] 図 8は、本発明の第 2の実施例を示したものである。
[0115] 図 8において、図 1から図 7に記載の構成要素と同一部分については同一符号を付 し、その説明を省略する。
[0116] この実施例と上記第 1の実施例とは基本的構成は同一であり、以下の点において 異なるものとなっている。
[0117] すなわち、本実施例における走査型プローブ顕微鏡 1は、正立顕微鏡と組み合わ せたものである。すなわち、正立顕微鏡 8には光源 40が設けられ、光源 40の上端に はコンデンサレンズ 41が設けられている。また、コンデンサレンズ 41の上方にはステ ージ微動機構部 27が設けられている。ステージ微動機構部 27は円筒状の Z側圧電 素子 90からなり、 Z側圧電素子 90は Z方向に向けて設置されている。 Z側圧電素子 9 0には、 Z方向に向けられた筒孔 (ステージ側貫通孔) 110が形成されており、この筒 孔 110に光源 40からの照明光が通されるようになって 、る。
[0118] また、プローブ微動機構部 26の上方には、観察位置 Kに対物レンズ 10が設けられ ている。ここでの観察位置 Kとは、プローブ微動機構部 26の上方から、カンチレバー 20または試料 Sを観察する位置をいう。対物レンズ 10は、観察位置 Kにおいて上下 動するようになっており、下方に移動させると、プローブ側貫通孔 70に挿入されるよう になっている。
[0119] このような構成のもと、光源 40からの照明光は、筒孔 110を通って試料 Sを透過す る。また、対物レンズ 10を下方に移動させて、プローブ側貫通孔 70に挿入すると、対 物レンズ 10はカンチレバー 20または試料 Sに近接する。
[0120] 以上より、ステージ微動機構部 27には筒孔 110が設けられ、この筒孔 110に照明 光を通していることから、照明光の進行を邪魔することなぐ高精度に測定することが できる。
[0121] また、この対物レンズ 10を、プローブ側貫通孔 70に挿入することができることから、 カンチレバー 20や試料 Sに対物レンズ 10を一層近接させることができ、高 NAの対 物レンズを設けて高精度な測定を行うことができる。
[0122] なお、上記第 1および第 2の実施例では、 X側圧電素子 61、 Y側圧電素子 54およ び Z側圧電素子 90を積層型の圧電素子としたが、これに限ることはなぐ適宜変更可 能である。例えば、スタック型の圧電素子としたり、またはボイスコイルなどを用いたり することも可會である。
[0123] また、プローブ微動機構部 26またはステージ微動機構部 27に、円筒状の圧電素 子を用いることも可能である。
[0124] また、 DFMモードによる観察とした力 これに限ることはなぐコンタクト AFMなどの 種々のモードに適用可能である。さらに、近接場顕微鏡にも適用することができる。 近接場顕微鏡に適用すると、高 NAの対物レンズを使用することができるため、近接 場信号の集光効率を向上させることができる。 [0125] さらに、液中測定とした力 これに限ることはなぐ大気中であってもよい。
[0126] なお、本発明の技術範囲は上記実施例に限定されるものではなぐ本発明の趣旨 を逸脱しな 、範囲にぉ 、て、種々の変更をカ卩えることが可能である。

Claims

請求の範囲
[1] 試料が載置されるステージと、前記試料の表面に近接または接触させるプローブと を有する走査型プローブ顕微鏡に設けられる走査型プローブ顕微鏡用微動機構に おいて、
第 1の駆動部を含み、該第 1の駆動部により前記試料の表面に平行な互いに交差 する X方向および Y方向に、前記プローブを微動させるプローブ微動機構部と、 前記第 1の駆動部とは独立して設けられた前記第 2の駆動部を含み、該第 2の駆動 部により前記試料の表面に垂直な Z方向に、前記ステージを微動させるステージ微 動機構部と、を含む走査型プローブ顕微鏡用微動機構。
[2] 前記プローブ微動機構部が、前記プローブの変位を検出するプローブ変位検出手 段を含む請求項 1に記載の走査型プローブ顕微鏡用微動機構。
[3] 前記ステージ微動機構部が、前記第 2の駆動部を有する機構本体部と、該機構本 体部から、前記機構本体部の厚さ方向に交差する方向に延出し、前記ステージを支 持する延出部とを備え、
該延出部の厚さ寸法が、前記機構本体部の厚さ寸法より小さい請求項 1または請 求項 2に記載の走査型プローブ顕微鏡用微動機構。
[4] 前記機構本体部が片持ち支持されている請求項 3に記載の走査型プローブ顕微 鏡用微動機構。
[5] 前記プローブ微動機構部が、前記 Z方向に向けられたプローブ側貫通孔を有する ことを特徴とする請求項 1から請求項 4のいずれか一項に記載の走査型プローブ顕 微鏡用微動機構。
[6] 前記プローブ側貫通孔に照明光が透過させることを特徴とする照明装置を含む請 求項 5に記載の走査型プローブ顕微鏡用微動機構。
[7] 前記ステージ微動機構部が、前記 Z方向に向けられたステージ側貫通孔を有する ことを特徴とする請求項 1から請求項 6のいずれか一項に記載の走査型プローブ顕 微鏡用微動機構。
[8] 前記ステージ側貫通孔に照明光を透過させることを特徴とする請求項 7に記載の 走査型プローブ顕微鏡用微動機構。
[9] 前記プローブ側貫通孔を通して、前記プローブが観察可能な位置に対物レンズを 含む請求項 5または請求項 6に記載の走査型プローブ顕微鏡用微動機構。
[10] 前記ステージ側貫通孔を通して、前記試料が観察可能な位置に対物レンズを含む 請求項 7または請求項 8に記載の走査型プローブ顕微鏡用微動機構。
[11] 前記対物レンズが複数設けられ、該複数の対物レンズの配置を変更する配置変更 手段を含む請求項 9に記載の走査型プローブ顕微鏡用微動機構。
[12] 前記対物レンズが複数設けられ、該複数の対物レンズの配置を変更する配置変更 手段を含む請求項 10に記載の走査型プローブ顕微鏡用微動機構。
[13] 前記第 2の駆動部が、 Z軸方向に伸縮可能な複数のァクチユエータを含み、前記ス テージにより前記ァクチユエータの移動端同士が互いに連結されている請求項 1から 請求項 12のいずれか一項に記載の走査型プローブ顕微鏡用微動機構。
[14] 前記第 2の駆動部が、円筒状の圧電素子を含む請求項 1から請求項 13のいずれ か一項に記載の走査型プローブ顕微鏡用微動機構。
[15] 前記第 1の駆動部が、円筒状の圧電素子を含む請求項 1から請求項 14のいずれ か一項に記載の走査型プローブ顕微鏡用微動機構。
[16] 前記プローブ微動機構部が、第 1の駆動部を介して互いに同心上かつ面一に連結 された複数のフレーム部を含む請求項 1から請求項 15のいずれか一項に記載の走 查型プローブ顕微鏡用微動機構。
[17] 前記プローブの前記 X方向の微動量、前記プローブの前記 Y方向の微動量、また は前記ステージの前記 Z方向の微動量の少なくとも一つを検出する微動量検出手段 を含む請求項 1から請求項 16のいずれか一項に記載の走査型プローブ顕微鏡用微 動機構。
[18] 前記微動量検出手段力 の検出結果に基づいて、前記 X方向、 Y方向、または Z 方向の少なくとも一つの微動量の誤差を算出する算出手段を含む請求項 17に記載 の走査型プローブ顕微鏡用微動機構。
[19] 請求項 1から請求項 18のいずれか一項に記載の走査型プローブ顕微鏡用微動機 構を含む走査型プローブ顕微鏡。
PCT/JP2006/302316 2005-02-24 2006-02-10 走査型プローブ顕微鏡用微動機構およびこれを用いた走査型プローブ顕微鏡 WO2006090594A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112006000456T DE112006000456T5 (de) 2005-02-24 2006-02-10 Abtastsondenmikroskop-Feinbewegungsmechanismus und Abtastsondenmikroskop, welches dergleichen verwendet
JP2007504663A JP5111102B2 (ja) 2005-02-24 2006-02-10 走査型プローブ顕微鏡用微動機構およびこれを用いた走査型プローブ顕微鏡
US11/842,735 US7614288B2 (en) 2005-02-24 2007-08-21 Scanning probe microscope fine-movement mechanism and scanning probe microscope using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005048262 2005-02-24
JP2005-048262 2005-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/842,735 Continuation US7614288B2 (en) 2005-02-24 2007-08-21 Scanning probe microscope fine-movement mechanism and scanning probe microscope using same

Publications (1)

Publication Number Publication Date
WO2006090594A1 true WO2006090594A1 (ja) 2006-08-31

Family

ID=36927236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302316 WO2006090594A1 (ja) 2005-02-24 2006-02-10 走査型プローブ顕微鏡用微動機構およびこれを用いた走査型プローブ顕微鏡

Country Status (4)

Country Link
US (1) US7614288B2 (ja)
JP (1) JP5111102B2 (ja)
DE (1) DE112006000456T5 (ja)
WO (1) WO2006090594A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073006A (ja) * 2014-09-26 2016-05-09 有限会社メカノトランスフォーマ ステージ装置およびそれに用いる駆動機構

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660782B2 (ja) * 2005-10-31 2011-03-30 セイコーインスツル株式会社 液中セル
DE202008013982U1 (de) * 2008-10-20 2009-01-08 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Messsystem zum Bestimmen von Streuparametern
EP2367016A4 (en) * 2008-12-10 2014-03-05 Univ Kyoto METHOD FOR PROCESSING THE RESULTS OF A RASTER-TERM MICROSCOPE AND RASTER-TERM MICROSCOPE
US20150075264A1 (en) * 2012-03-27 2015-03-19 Hysitron, Inc. Microscope objective mechanical testing instrument
CN110108627A (zh) * 2019-05-21 2019-08-09 苏州大学 一种基于微球透镜的细胞原位观测及操作装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285865A (ja) * 1995-04-13 1996-11-01 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JPH0933543A (ja) * 1995-07-14 1997-02-07 Olympus Optical Co Ltd 走査型近接場光学顕微鏡
JPH1090610A (ja) * 1996-09-17 1998-04-10 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JPH11133040A (ja) * 1997-10-31 1999-05-21 Hitachi Constr Mach Co Ltd 微動機構装置および走査型プローブ顕微鏡
JP2004257849A (ja) * 2003-02-26 2004-09-16 Seiko Instruments Inc 走査型プローブ顕微鏡用の走査機構及び走査型プローブ顕微鏡

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127681A (en) * 1987-08-12 2000-10-03 Olympus Optical Co., Ltd. Scanning tunnel microscope
JP3013858B2 (ja) * 1994-08-27 2000-02-28 インターナシヨナル・ビジネス・マシーンズ・コーポレーション 原子的分解能を持った微細位置決め装置
US6246652B1 (en) * 1997-12-05 2001-06-12 Hitachi, Ltd. Device using sensor for small rotation angle
JP2000346784A (ja) 1999-06-04 2000-12-15 Shimadzu Corp 粘弾性分布測定方法
US6612160B2 (en) * 2001-03-09 2003-09-02 Veeco Instruments, Inc. Apparatus and method for isolating and measuring movement in metrology apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285865A (ja) * 1995-04-13 1996-11-01 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JPH0933543A (ja) * 1995-07-14 1997-02-07 Olympus Optical Co Ltd 走査型近接場光学顕微鏡
JPH1090610A (ja) * 1996-09-17 1998-04-10 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JPH11133040A (ja) * 1997-10-31 1999-05-21 Hitachi Constr Mach Co Ltd 微動機構装置および走査型プローブ顕微鏡
JP2004257849A (ja) * 2003-02-26 2004-09-16 Seiko Instruments Inc 走査型プローブ顕微鏡用の走査機構及び走査型プローブ顕微鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073006A (ja) * 2014-09-26 2016-05-09 有限会社メカノトランスフォーマ ステージ装置およびそれに用いる駆動機構

Also Published As

Publication number Publication date
DE112006000456T5 (de) 2008-01-17
JPWO2006090594A1 (ja) 2008-07-24
JP5111102B2 (ja) 2012-12-26
US7614288B2 (en) 2009-11-10
US20080061232A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
CN107449939B (zh) 采用磁驱峰值力调制原子力显微镜进行的多参数同步测量方法
US5672816A (en) Large stage system for scanning probe microscopes and other instruments
US8910311B2 (en) Probe assembly for a scanning probe microscope
US20100180356A1 (en) Nanoindenter
JP5111102B2 (ja) 走査型プローブ顕微鏡用微動機構およびこれを用いた走査型プローブ顕微鏡
JP2005517911A (ja) 走査型プローブ顕微鏡
US7170054B2 (en) Scanning probe microscopy cantilever holder and scanning probe microscope using the cantilever holder
JP2007171021A (ja) 走査プローブ装置及び走査プローブ装置用の駆動ステージ
JP5305650B2 (ja) 走査型プローブ顕微鏡用変位検出機構およびこれを用いた走査型プローブ顕微鏡
US20090255016A1 (en) Apparatus structure and scanning probe microscope including apparatus structure
KR101198178B1 (ko) 고속 및 고정밀 원자힘 현미경
US6437343B1 (en) Scanner system and piezoelectric micro-inching mechansim used in scanning probe microscope
CN107850620B (zh) 用于扫描探针显微镜的样本容器保持器
JP2007003246A (ja) 走査形プローブ顕微鏡
JP4914580B2 (ja) 走査型プローブ顕微鏡
JP4575250B2 (ja) 走査型プローブ顕微鏡
WO1993025928A1 (en) Large stage system for scanning probe microscopes and other instruments
JP3892184B2 (ja) 走査型プローブ顕微鏡
Cai et al. A mini review of the key components used for the development of high-speed atomic force microscopy
US10564181B2 (en) Atomic force microscope with optical guiding mechanism
Hidaka et al. A high-resolution, self-sensing and self-actuated probe for micro-and nano-coordinate metrology and scanning force microscopy
JPH07174767A (ja) 走査型プローブ顕微鏡
JP4162508B2 (ja) 走査型プローブ顕微鏡用の走査機構及び走査型プローブ顕微鏡
JP3512259B2 (ja) 走査型プローブ顕微鏡
JP2006023443A (ja) 顕微鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504663

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11842735

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060004565

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006000456

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

WWP Wipo information: published in national office

Ref document number: 11842735

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06713459

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713459

Country of ref document: EP