WO2006088187A1 - 水添ブロック共重合体及びその組成物 - Google Patents

水添ブロック共重合体及びその組成物 Download PDF

Info

Publication number
WO2006088187A1
WO2006088187A1 PCT/JP2006/302974 JP2006302974W WO2006088187A1 WO 2006088187 A1 WO2006088187 A1 WO 2006088187A1 JP 2006302974 W JP2006302974 W JP 2006302974W WO 2006088187 A1 WO2006088187 A1 WO 2006088187A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
hydrogenated
block copolymer
polymer
parts
Prior art date
Application number
PCT/JP2006/302974
Other languages
English (en)
French (fr)
Inventor
Katumi Suzuki
Shigeru Sasaki
Takahiro Hisasue
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to US11/884,795 priority Critical patent/US7935756B2/en
Priority to JP2007503772A priority patent/JP5214236B2/ja
Priority to EP06714114A priority patent/EP1852446B1/en
Publication of WO2006088187A1 publication Critical patent/WO2006088187A1/ja
Priority to HK08105857.3A priority patent/HK1115758A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to a hydrogenated block copolymer having a specific structure, a hydrogenated block copolymer obtained by combining the hydrogenated block copolymer with a rubber softener, and other thermoplastic resin rubber-like polymer.
  • the present invention relates to a polymer composition.
  • the composition of the present invention is excellent in flexibility, heat resistance, abrasion resistance, surface feel (no adhesive bleed or oil bleed, etc.), has good workability, and is a packaging material for home appliances, industrial parts, etc. Providing various molded products used for toys, automobile parts and medical equipment.
  • a block copolymer composed of a conjugated diene and a vinyl aromatic hydrocarbon has a relatively small amount of a bulu aromatic hydrocarbon, and in the case where it is not vulcanized, it is the same as a vulcanized natural rubber or synthetic rubber. Since it has the same elasticity at room temperature and the same strength as thermoplastic resin at high temperatures, it is widely used in the fields of footwear, plastic modification, asphalt modification, and adhesives. It is. In addition, when there is a relatively high content of bully aromatic hydrocarbons, it is possible to obtain a thermoplastic resin that is transparent and excellent in impact resistance. Therefore, packaging materials for food packaging containers, household products, home appliances, industrial parts, etc. It is used for toys. In addition, these copolymer hydrogenated products are excellent in weather resistance and heat resistance, and thus have been widely put into practical use in automobile parts, medical instruments and the like in addition to the above-mentioned fields of application.
  • the block copolymer which has a relatively small amount of buy aromatic hydrocarbons, has good flexibility but is inferior in wear resistance. It is a restriction.
  • the conventional block copolymer having a relatively high content of the bull aromatic hydrocarbon is inferior in flexibility and suitable as a soft material.
  • a composition (for example, see Patent Document 1) of a hydrogenated gen copolymer obtained by hydrogenating a copolymer having a bule bond amount of 10 to 90% in the gen part therein and polypropylene resin is disclosed. Yes.
  • hydrogen was added to a random copolymer having a butyl aromatic hydrocarbon content of 5 to 60% by weight and having a vinyl bond content in the gen part of the copolymer of 60% or more.
  • a composition of hydrogenated gen copolymer and polypropylene resin is disclosed (for example, see Patent Document 2).
  • the hydrogenated copolymer disclosed here is unsuitable for applications in which soft salty vinyl resin having poor flexibility is used.
  • Patent Document 4 JP-A-2-1588643
  • Patent Document 2 JP-A-6-287365
  • Patent Document 3 W098 / 12240
  • Patent Document 4 WO03Z35705
  • the present invention is a hydrogenated block copolymer or a composition thereof excellent in flexibility, heat resistance, abrasion resistance, surface feel (adhesive feeling without oil bleed, etc.) and good workability.
  • the challenge is to provide
  • the present invention is a hydrogenated product of a copolymer consisting of a conjugated diene and a bull aromatic compound, and has the following characteristics (1) to (6).
  • the present invention relates to a polymer and a composition containing the same.
  • the content of the bull aromatic compound is more than 50% by weight and less than 95% by weight.
  • the weight average molecular weight is 50,000 to 1,000,000.
  • the vinyl bond content of the conjugation monomer unit constituting the pre-hydrogenation polymer of the hydrogenated polymer block B is 10 or more and less than 20%.
  • the hydrogenation rate of the double bond of the conjugation monomer unit is 75% or more.
  • the content of the above-mentioned bu aromatic compound block A is 20% to 50% by weight, and the content of hydrogenated copolymer block B is 30% to 80% by weight. The content is 10% to 35% by weight.
  • the hydrogenated block copolymer of the present invention or a composition containing the same is excellent in flexibility, heat resistance, abrasion resistance, surface feel and processability, and has a soft salty bulle.
  • a substitute material for fat it can be suitably used for packaging materials such as home appliances and industrial parts, toys, automobile parts and medical equipment.
  • the hydrogenated block copolymer of the present invention is a hydrogenated product of a copolymer consisting of conjugation and bull aromatic compounds.
  • the hydrogenated block copolymer of the present invention has at least one vinyl aromatic compound polymer block A (hereinafter sometimes referred to as “polymer block A”), preferably two or more.
  • polymer block A has at least one hydrogenated copolymer block B which is a random copolymer with an aromatic compound and one hydrogenated polymer block C which is a conjugated polymer having a vinyl bond content of 30% or more.
  • the polymer block A has heat resistance and surface feel.
  • the content of the polymer block A is preferably 20% by weight or more in terms of heat resistance and surface feel, and 50% by weight or less in terms of flexibility.
  • the content of the polymer block A is recommended to be 25% to 50% by weight, preferably 30% to 50% by weight. It is recommended that the content of polymer block A is 20% to 45% by weight, preferably 20% to 40% by weight, particularly when obtaining a hydrogenated block copolymer having good flexibility. Is done.
  • the content of the polymer block A is determined by acid-decomposing the copolymer before hydrogen addition with tertiary butylno and id-peroxide using osmium tetroxide as a catalyst.
  • osmium tetroxide method Method described in IM KOLTHOFF et al., J. Polym. Sci. 1, 429 (1946). Hereinafter referred to as osmium tetroxide method.
  • the content of Polymer Prox A was measured using a nuclear magnetic resonance apparatus (NMR) with the copolymer before hydrogenation and the copolymer after hydrogenation as samples (Y. Tanaka, et al.
  • NMR method RUBBER CHEMIST RY and TECHNOLOGY 54, 685 (1981), hereinafter referred to as NMR method. Huh. ) May be measured.
  • Os the content of polymer block A measured using the copolymer before hydrogenation by the tetraacid-osmotic acid method and the copolymer after hydrogenation by the NMR method are used.
  • the content (referred to as Ns) of the polymer block A measured by use has a correlation represented by the following formula (F).
  • the value of (Os) determined by the above formula (F) is determined according to the present invention. It is the content of polymer block A specified in.
  • the hydrogenated block copolymer of the present invention has at least one hydrogenated copolymer block B which is a random copolymer of a conjugated diene and a bulu aromatic compound.
  • a hydrogenated product in which the crystallization peak due to the hydrogenated copolymer block B does not substantially exist in the range of 20 ° C to 80 ° C is preferable.
  • the crystallization peak due to the hydrogenated polymer block B does not substantially exist in the range of ⁇ 20 ° C. to 80 ° C.” means that the hydrogenated copolymer block B portion in this temperature range.
  • the crystallization peak heat due to crystallization is less than 3jZg, preferably less than 2jZg, more preferably less than UZg. Yes, and particularly preferably means no crystallization peak heat.
  • a hydrogenated block copolymer that does not have a crystallization peak due to hydrogenated copolymer block B in the range of 20 ° C to 80 ° C has good flexibility and is a soft vinyl chloride vinyl. Suitable for use in applications where rosin is used.
  • a vinyl as described later is used.
  • a hydrogenation reaction may be performed.
  • the content of the hydrogenated copolymer block B is preferably 30 to 80% by weight in terms of wear resistance. More preferred is 35% by weight to 70% by weight, and particularly preferred is 40% by weight to 60% by weight.
  • the random copolymer constituting the hydrogenated copolymer block B It is recommended that the weight ratio of conjugation gen and bulu aromatic compound is 50Z50 ⁇ : L0Z90, preferably 40Z60 ⁇ 15Z85, more preferably 35 ⁇ 65 ⁇ 20 ⁇ 80.
  • the microstructure of the conjugation moiety in the polymer block before hydrogenation of the hydrogenated copolymer block ⁇ is arbitrary depending on the use of a polar compound described later.
  • the amount of 1,2-bule bond is 10% to 20% from the viewpoint of wear resistance.
  • the vinyl bond content of the conjugate before hydrogenation of hydrogenated polymer block C is 30 in terms of flexibility and surface feel (no oil bleed or the like). % Or more. Preferably it is 35% to 80%, more preferably 39% to 75%, particularly preferably 43% to 70%.
  • the total amount of 1,2 vinyl bonds and 3,4 vinyl bonds (however, when 1,3 butadiene is used as the conjugation gene, 1,2 vinyl bond content and isoprene are used as the conjugation gene. If used, 3, 4-vinyl bond amount) is hereinafter referred to as vinyl bond amount.
  • the amount of vinyl bonds can be determined by measurement with an infrared spectrophotometer (for example, the Hampton method) using a copolymer before hydrogenation as a specimen.
  • the content of the hydrogenated polymer block C in the hydrogenated block copolymer of the present invention is 10% by weight in terms of flexibility, wear resistance, and surface feel (no oil bleed or the like). More than 35 weight% is preferred. More preferably, it is 13 to 30% by weight.
  • the content of the bull aromatic compound in the hydrogenated block copolymer is more than 50% by weight and 95% by weight in terms of flexibility, heat resistance, wear resistance, etc. Is less than. Preferably, it is 55% by weight to less than 90% by weight, more preferably 58% by weight to 85% by weight.
  • the content of the vinyl aromatic compound in the hydrogenated block copolymer is measured with an ultraviolet spectrophotometer using the block copolymer before hydrogenation or the block copolymer after hydrogenation as a specimen. You can know by using.
  • the weight average molecular weight of the hydrogenated block copolymer of the present invention is 50,000 to 1,000,000 in terms of the balance between heat resistance, mechanical strength, wear resistance, etc. and molding cacheability. . It is recommended that it is preferably 100,000 to 700,000, more preferably 150,000 to 500,000. In the present invention, the molecular weight distribution is 10 or less, generally 1 to 8, and preferably 1.01 to 5.
  • the molecular weight of the hydrogenated block copolymer was measured by gel permeation chromatography (GPC), and the molecular weight of the chromatogram peak was determined from a calibration curve obtained from the measurement of commercially available standard polystyrene (peak of standard polystyrene). The weight average molecular weight was determined using the molecular weight).
  • the molecular weight distribution of the hydrogenated block copolymer can also be determined from the measurement by GPC, and is the ratio of the weight average molecular weight to the number average molecular weight.
  • the hydrogenated block copolymer of the present invention is a hydrogenated block copolymer comprising conjugation and buyl aromatic compounds, and is a copolymer from the viewpoint of heat resistance, wear resistance, and surface feel. 75% or more, preferably 80% or more, more preferably 85% or more, particularly preferably 90% or more of the double bond based on the conjugated genie compound is hydrogenated.
  • the hydrogenation rate of the aromatic double bond based on the vinyl aromatic hydrocarbon in the hydrogenated block copolymer is not particularly limited, but the hydrogenation rate is 50% or less, preferably 30% or less, more preferably Is preferably 20% or less.
  • the hydrogenation rate of the hydrogenated copolymer can be determined using a nuclear magnetic resonance apparatus (NMR) or the like.
  • the structure of the hydrogenated block copolymer is not particularly limited, and V can be used.
  • the hydrogenated copolymer having at least one polymer block A, preferably two, at least one hydrogenated copolymer block B, and at least one hydrogenated polymer block C are as follows. Examples thereof include those having a structure represented by the formula.
  • A is a polymer block mainly composed of a bull aromatic compound
  • B is This is a hydrogenated copolymer block of a random copolymer of conjugation and a vinyl aromatic compound
  • C is a hydrogenated polymer block of a polymer mainly composed of conjugation.
  • the boundaries of each block need not be clearly distinguished.
  • the vinyl aromatic hydrocarbons in the hydrogenated copolymer block B of the random copolymer may be uniformly distributed or distributed in a tapered shape.
  • the block B may include a portion where vinyl aromatic hydrocarbons are uniformly distributed and a plurality of portions where Z is distributed in a taper shape.
  • Block B may contain a plurality of segments having different vinyl aromatic hydrocarbon contents.
  • X represents a residue of a coupling agent or a residue of a polyfunctional initiator.
  • the A—C—B—A structure in which a copolymer having a block A at both ends is preferred in terms of heat resistance and mechanical strength, is particularly preferable.
  • the hydrogenated block copolymer of the present invention may be any mixture having the structure represented by the above general formula. Further, a hydrogenated block copolymer may be mixed with a vinyl aromatic compound polymer or a copolymer having an A—B structure or a B—A—B structure.
  • conjugation is a diolefin having a pair of conjugated double bonds, such as 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1, Forces such as 3-butadiene, 1,3-pentagen, 2-methyl-1,3-pentagen, 1,3 monohexagen, etc. Particularly common are 1,3-butadiene and isoprene. These may be used alone or in combination of two or more.
  • butyl aromatic compound examples include styrene, OC-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N, N-dimethyl-p-aminoethylstyrene, N, N— Examples thereof include jetyl p-aminoethylstyrene, and these may be used alone or in combination of two or more.
  • the copolymer before hydrogenation is, for example, an organic solvent in a hydrocarbon solvent. It can be obtained by on-living polymerization using an initiator such as a Lucari metal compound.
  • hydrocarbon solvents include aliphatic hydrocarbons such as n-butane, isobutane, n-pentane, n-hexane, n-heptane, and n-octane, cyclohexane, cycloheptane, and methylcycloheptane. Alicyclic hydrocarbons such as these, and aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene.
  • an aliphatic hydrocarbon alkali metal compound, an aromatic hydrocarbon alkali which are generally known to have a cation polymerization activity with respect to a conjugated diene compound and a vinyl aromatic compound.
  • a metal compound, an organic amino alkali metal compound, etc. are mentioned, and lithium, sodium, potassium etc. are mentioned as an alkali metal.
  • Suitable organic alkali metal compounds are lithium and aromatic hydrocarbon lithium compounds having 1 to 20 carbon atoms, a compound containing one lithium in one molecule, and a plurality of lithiums in one molecule. Dilithium compounds, trilithium compounds, and tetralithium compounds are included.
  • n-propynolethium, n-butynolethium, sec-butinorelithium, tert-butynolethium, n-pentyllithium, n-hexyllithium, benzyllithium, ferryllithium, tolyllithium examples include the reaction product of diisopropylbenzene and sec-butyllithium, and the reaction product of dibutylbenzene, sec-butyllithium and a small amount of 1,3-butadiene.
  • organoalkali metal compounds disclosed in US Pat. No. 5,708,092, British Patent 2,241,239, US Pat. No. 5,527,753, etc. Can also be used.
  • a tertiary amine compound R 2 and R 3 are compounds having 1 to 20 carbon atoms or a hydrocarbon group having a tertiary amino group.
  • the etheric compound is selected from linear ether compounds and cyclic ether compounds, and the linear etheric compound includes dimethyl ether, jetyl ether, diphenylenoateolene, ethylene glycolo-resin methacrylate.
  • the linear etheric compound includes dimethyl ether, jetyl ether, diphenylenoateolene, ethylene glycolo-resin methacrylate.
  • Nore ethereol, ethylene glycol noreci Nole ethereol, ethylene glycol dialkyl ether compounds such as ethylene glycol dibutyl ether, diethylene glycol dialkyl ether compounds such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether It is done.
  • Cyclic ether compounds such as tetrahydrofuran, dioxane, 2,5-dimethyloxolane, 2,2,5,5-tetramethyloxolane, 2,2-bis (2-oxosolal) propane, and furfuryl alcohol.
  • Examples include alkyl ethers.
  • the method of copolymerizing a conjugated diene compound and a vinyl aromatic compound using an organic alkali metal compound as a polymerization initiator may be batch polymerization or continuous polymerization, or they may be used. A combination of these may be used. In particular, batch polymerization is recommended to obtain copolymers with excellent heat resistance.
  • the polymerization temperature is generally 0 ° C to 180 ° C, preferably 30 ° C to 150 ° C.
  • the time required for the polymerization varies depending on the conditions. Usually, it is within 48 hours, particularly preferably 0.1 to 10 hours.
  • the polymerization atmosphere is preferably an inert gas atmosphere such as nitrogen gas.
  • the polymerization pressure is not particularly limited as long as it is carried out within a range of pressure sufficient to maintain the monomer and solvent in a liquid phase within the above polymerization temperature range. Furthermore, care must be taken not to mix impurities, such as water, oxygen, carbon dioxide, etc., that make the catalyst and living polymer inert.
  • a coupling reaction can be performed by adding a necessary amount of a bifunctional or higher functional coupling agent at the end of the polymerization.
  • the bifunctional coupling agent is not particularly limited, and any known bifunctional coupling agent may be used.
  • dimethyl dichlorosilane, dimethyl dib mouth Examples include dihalogen compounds such as orchid, acid esters such as methyl benzoate, ethyl benzoate, phenyl benzoate, and phthalates.
  • any known trifunctional or higher polyfunctional coupling agent is not particularly limited.
  • polyalcohols having a valence of 3 or more epoxidized soybean oil, polyhydric epoxy compounds such as diglycidyl bisphenol A, general formula R—SIX (where R is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen, n is an integer of 3 to 4), such as methylsilyl trichloride, t-butylsilyl trichloride, tetrasaltium silicon and bromides thereof, etc.
  • Tin halide compounds represented by the formula R4—SnX (wherein R is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen, and n is an integer of 3 to 4), such as methyltin trichloride, t-butyl Examples thereof include polyvalent halogen compounds such as tin trichloride and tetrachloride-tin. Dimethyl carbonate or jetyl carbonate can also be used.
  • the present invention also includes a modified hydrogenated copolymer in which an atomic group having a functional group is bonded to the hydrogenated copolymer described above.
  • the functional group-containing atomic group include a hydroxyl group, a carbonyl group, a thiocarbonyl group, an acid halide group, an acid anhydride group, a carboxyl group, a thiocarboxylate group, an aldehyde group, a thioaldehyde group, a carboxylic acid ester group, Amide group, sulfonic acid group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, amino group, imino group, nitryl group, pyridyl group, quinoline group, epoxy group, thioepoxy group, sulfide group, isocyanate group, Isothiocyanate group, halogen key group, silanol group, alkoxy key group,
  • An atomic group containing at least one selected functional group Can be mentioned.
  • a modified hydrogenated block copolymer in which an atomic group having at least one functional group selected from a hydroxyl group, an epoxy group, an amino group, a silanol group, and an alkoxysilane group is bonded is preferable.
  • Examples of the modifying agent having a functional group include tetraglycidyl meta-xylenediamine, tetraglycidyl mono 1,3-bisaminomethylcyclohexane, ⁇ -force prolataton, ⁇ -valerolataton, 4-methoxybenzo Phenone, ⁇ -Glycidchichetinoletrimethoxysilane, ⁇ -Grin, Bis ( ⁇ -Glycidoxypropyl) methylpropoxysilane, 1,3-Dimethyl-2-diimidazolidinone, 1,3-Detyl-2-Imidazo Lydinone, ⁇ , ⁇ '-dimethylpropylene Rare, N-methylpyrrolidone and the like.
  • the modified hydrogenated block copolymer of the present invention is a modifying agent that generates a functional group-containing atomic group at the living end of the block copolymer obtained by the above-described method using an organolithium compound as a polymerization catalyst. It can be obtained by adding hydrogen to the block copolymer obtained by addition reaction.
  • the reaction temperature is preferably 0 ° C. to 150 ° C., more preferably 20 ° C. to 120 ° C.
  • the time required for the denaturation reaction varies depending on other conditions, preferably within 24 hours, and particularly preferably from 0.1 hour to 10 hours.
  • the hydrogenated block copolymer of the present invention By hydrogenating the block copolymer or the modified block copolymer obtained above, the hydrogenated block copolymer of the present invention and the like can be obtained.
  • the hydrogenation catalyst is not particularly limited, and is conventionally known (l) Supported heterogeneous water in which a metal such as Ni, Pt, Pd, Ru is supported on carbon, silica, alumina, diatomaceous earth, or the like.
  • titanocene compound compounds described in JP-A-8-109219 can be used. Specific examples thereof include biscyclopentagel titanium dichloride and monopentamethylcyclopentagel titanium trichloride. Examples thereof include compounds having at least one ligand having a (substituted) cyclopentagel skeleton, an indur skeleton or a fluorenyl skeleton such as chloride. Examples of the reducing organometallic compound include organic alkali metal compounds such as organolithium, organomagnesium compounds, organoaluminum compounds, organoboron compounds, and organozinc compounds.
  • the hydrogenation reaction is generally performed in a temperature range of 0 ° C to 200 ° C, more preferably 30 ° C to 150 ° C.
  • the pressure of hydrogen used in the hydrogenation reaction is 0.1 lMPa to 15MP. a, preferably 0.2 MPa to 10 MPa, more preferably 0.3 MPa to 5 MPa is recommended.
  • the hydrogenation reaction time is usually 3 minutes to 10 hours, preferably 10 minutes to 5 hours. Hydrogenation reactions can be used in batch processes, continuous processes, or combinations thereof.
  • the catalyst residue can be removed if necessary, and the hydrogenated block copolymer can be subjected to solution force separation.
  • Solvent separation methods include, for example, a method in which a polar solvent that is a poor solvent for the hydrogenated block copolymer such as acetone or alcohol is added to the reaction solution after hydrogenation, and the polymer is precipitated and recovered. Examples thereof include a method in which the liquid is poured into hot water with stirring and the solvent is removed by steam stripping, or a method in which the solvent is distilled off by directly heating the polymer solution.
  • stabilizers such as various phenol stabilizers, phosphorus stabilizers, thio stabilizers, and amine stabilizers can be added.
  • the hydrogenated copolymer of the present invention has a functional group which is graft-modified with a, ⁇ -unsaturated carboxylic acid or a derivative thereof such as an anhydride, esterified product, amidized compound or imidized product thereof. Can be combined with atomic groups.
  • ⁇ , j8-unsaturated carboxylic acid or derivatives thereof include maleic anhydride, maleic anhydride imide, acrylic acid or ester thereof, methacrylic acid or ester thereof, endo-cis-bicyclo [2, 2, 1 1-5 heptene-1,2-dicarboxylic acid or its anhydride.
  • the addition amount of a, j8-unsaturated carboxylic acid or derivative thereof is generally 0.01 to 20 parts by weight, preferably 0.1 to 0 parts by weight per 100 parts by weight of the hydrogenated polymer.
  • the reaction temperature for graft modification is preferably 100 to 300 ° C, more preferably 120 to 280 ° C.
  • the graft modification method reference can be made to, for example, JP-A-62-79211.
  • the above-described hydrogenated block copolymer of the present invention (hereinafter also referred to as component (1)) is suitable for various molding materials in combination with a softener for rubber (hereinafter also referred to as component (2)).
  • component (1) a hydrogenated block copolymer of the present invention
  • component (2) a softener for rubber
  • the rubber softener used in the present invention softens the composition and imparts processability.
  • Softeners for rubber include mineral oil and liquid or low molecular weight synthetic softeners. Of these, naphthenic and Z or paraffinic process oils or extender oils are preferred.
  • Mineral oil rubber softener is a mixture of aromatic ring, naphthene ring and paraffin chain. Paraffin chain occupies 50% or more of total carbon is called paraffin, and carbon of naphthene ring Those with 30-45% are called naphthenic, and those with more than 30% aromatic carbon are called aromatic.
  • the composition can use polybutene, low molecular weight polybutadiene, liquid paraffin, etc., which can use synthetic softeners.
  • the above-mentioned mineral oil-based rubber softeners are preferred.
  • the compounding amount of the rubber softener in the composition is 5 to: LOO parts by weight, preferably 10 to 80 parts by weight, and more preferably 20 to 60 parts by weight with respect to 100 parts by weight of the hydrogenated block copolymer. . If the amount of the rubber softener exceeds 100 parts by weight, bleed-out occurs and the surface feel is deteriorated immediately.
  • the hydrogenated block copolymer composition comprising the hydrogenated block copolymer of the present invention and a rubber softener has a peak of tan ⁇ (loss tangent) of 0 ° C in the obtained viscoelasticity measurement chart. It is recommended that at least one be present at ⁇ 40 ° C., preferably 5 ° C.-35 ° C., more preferably 10 ° C.-30 ° C.
  • the tan ⁇ peak is a peak attributed to the hydrogenated polymer block ⁇ of a random copolymer of conjugated diene and a vinyl aromatic compound in the polymer chain of the hydrogenated block copolymer and a softener for rubber. is there.
  • the presence of at least one peak in the range of 0 ° C to 40 ° C is necessary in terms of the balance between the wear resistance and flexibility of the hydrogenated copolymer composition.
  • the position of the peak of tan ⁇ attributed to the butyl aromatic compound polymer block A bonded in the polymer chain such as a hydrogenated copolymer is not particularly limited, but generally 80 ° Exceeds C and exists within a temperature range of 150 ° C.
  • the hydrogenated block copolymer (component (1)) of the present invention is at least selected from the group consisting of a thermoplastic resin and a rubber-like polymer in addition to a rubber softener (component (2)). Hydrogenated block copolymer compositions suitable for various molding materials can be obtained in combination with one kind of component (hereinafter also referred to as component (3)).
  • component (3) is 5 to 100 parts by weight, preferably 10 to 80 parts by weight, more preferably 20 to 60 parts by weight, based on 100 parts by weight of component (1). When the amount of the component (3) is increased, the flexibility is lowered or the transparency is deteriorated.
  • thermoplastic resin block copolymerized resin of conjugated genie compound and vinyl aromatic compound and hydrogenated product thereof (however, different from the above-mentioned hydrogenated block copolymer of the present invention).
  • a polymer of the vinyl aromatic compound, the vinyl aromatic compound and other vinyl monomers such as ethylene, propylene, butylene, butyl chloride, vinylidene chloride, butyl acetate, acrylic acid and acrylmethyl Acrylic acid esters, methacrylic acid esters such as methacrylic acid and methyl methacrylate, acrylonitrile, methacrylic acid-to-tolyl resin, rubber-modified styrene resin (HIPS), acrylonitrile-butadiene-styrene copolymer Examples thereof include fat (ABS), methacrylic acid ester-butadiene-styrene copolymerized resin (MBS), and the like.
  • ABS fat
  • MVS methacrylic acid ester-butadiene-styrene copolymerized resin
  • it contains at least 50% by weight of a polymer of acrylic acid and its esters and amides, a polymer of poly acrylate, a polymer of talari-tolyl and Z or meta-tali-tolyl, and these acrylonitrile monomers.
  • Copolymers with other copolymerizable monomers such as tolyl resin, nylon 46, nylon 6, nylon 66, nylon 610, nylon 11, nylon-12, nylon-6 nylon-12 copolymer
  • Polyamide-based resin polyester-based resin, thermoplastic polyurethane-based resin, polycarbonate-based polymer such as poly-4,4'-dioxydiphenyl-2,2'-propane carbonate, thermoplastic polysulfone such as polyethersulfone and polyarylsulfone, Polyphenolene resins such as polyoxymethylene resin and poly (2,6-dimethyl-1,4phenol) ether -Tel-based resin, polyph Polyphenylene sulfide, polyarylate resin, polyarylate resin, polyetherketone polymer or copolymer, polyketone resin, fluorine resin, polyoxybenzoe Examples thereof include polyethylene polymers, polyimide resins, polybutadiene resins such as 1,2-polybutadiene and transpolybutadiene.
  • thermoplastic resins particularly preferred are styrene resins such as polystyrene and rubber-modified styrene resins, polyethylene, ethylene propylene copolymers, ethylene propylene copolymers.
  • polyethylene polymers such as polyethylene copolymers, polypropylene resins such as polypropylene and propylene ethylene copolymers, polyamide resins, polyester resins, and polycarbonate resins.
  • the number average molecular weight of these thermoplastic rosins is generally 1000 or more, preferably 5,000 to 5,000,000, more preferably 10,000 to 1,000,000.
  • Rubber-like polymers include butadiene rubber and its hydrogenated product, styrene-butadiene rubber and its hydrogenated product (but different from the hydrogenated copolymer of the present invention), isoprene rubber, acrylonitrile-butadiene rubber. And its hydrogenated products, 1,2-polybutadiene, chloroprene rubber, ethylene propylene rubber, ethylene propylene gen rubber (EPD M), ethylene butene gen rubber, ethylene butene rubber, ethene hexene rubber, ethylene olefin rubber, etc. Butinore rubber, attalinole rubber, fluoro rubber, silicone rubber, chlorinated polyethylene rubber and the like.
  • epichlorohydrin rubber a, j8-unsaturated-tolyl-acrylic ester-conjugated gen copolymer rubber, urethane rubber, polysulfide rubber, styrene butadiene block copolymer and hydrogenated product thereof, styrene
  • examples thereof include styrene elastomers such as isoprene block copolymers and hydrogenated carbohydrates thereof, and natural rubber.
  • styrene butadiene block copolymer and hydrogenated product thereof styrene isoprene block copolymer and its product are preferable.
  • Styrene-based elastomers such as hydrogenated products, 1,2-polybutadiene, ethylene-butene rubber, ethylene-one-year-old Kuten rubber, ethylene-propylene-gen rubber (EPDM), and other olefin-based elastomers, and butyl rubber.
  • EPDM ethylene-propylene-gen rubber
  • These rubbery polymers may be modified rubbers with functional groups added.
  • the number average molecular weight of these rubbery polymers is preferably 10,000 or more, more preferably 20,000 to 1,000,000, still more preferably 30,000 to 800,000.
  • thermoplastic resins and rubber-like polymers may be used in combination as required.
  • any thermoplastic resin component, rubber-like polymer component, or a combination of thermoplastic resin and rubber-like polymer may be used.
  • the present invention also provides a hydrogenated block copolymer composition comprising the hydrogenated block copolymer according to the present invention described above.
  • the hydrogenated block copolymer composition includes a hydrogenated block copolymer according to the present invention (hereinafter referred to as “component (I) t”), and a hydrogenated block different from component (I).
  • component (I) t a hydrogenated block copolymer according to the present invention
  • component (I) t) a hydrogenated block copolymer according to the present invention
  • component (mouth) thermoplastic resin
  • component (2) rubber softener
  • the component (mouth) is composed of at least two polymer blocks D mainly composed of a vinyl aromatic compound and at least one polymer block E mainly composed of a conjugate gen.
  • the content of the total bully aromatic compound in the hydrogenated block copolymer is 10 wt% or more and 40 wt% or less, and the heavy weight mainly composed of the vinyl aromatic compound in the total vinyl aromatic compound.
  • the proportion of combined block D is 80% by weight or more.
  • the weight average molecular weight of the hydrogenated block copolymer is 200,000 or more and 600,000 or less.
  • D is a polymer block mainly composed of a vinyl aromatic compound
  • E is a polymer block mainly composed of a conjugated gen compound.
  • N is an integer of 2 to 10
  • m is an integer of 2 to 8
  • X is a residue of a coupling agent or a residue of a polyfunctional initiator, and has a single structure or a different structure, It may be a mixture of materials having different hydrogenation rates.
  • the expression “mainly” means that it occupies at least 50% or more, preferably 70% or more of the corresponding monomer.
  • the total vinyl aromatic compound content is 10 wt% or more and 40 wt% or less, preferably 24 wt% or more and 36 wt% or less. It is necessary to use a material having a total vinyl aromatic compound content within the range specified by the present invention in order to obtain a material having good flexibility and heat resistance.
  • the ratio of the polymer block D mainly composed of the beer aromatic compound in the total bu aromatic compound is a material having a good mechanical strength. Is 80% by weight or more, preferably 85% by weight or more, and more preferably 90% by weight or more.
  • polymer block mainly composed of conjugated Jen compound or hydrogenated product thereof E is a random, tapered distribution of conjugated diene compounds in the molecular chain or hydrogenated products of the polymer chain and the bull aromatic compound in each polymer block (the monomer component increases or decreases along the molecular chain).
  • each polymer block may have the same structure or a different structure.
  • Examples of the vinyl aromatic compound constituting the hydrogenated block copolymer of the component (mouth) include at least one of styrene, ⁇ -methylstyrene, butyltoluene, ⁇ -tert-butylstyrene, and the like. Among them, styrene is preferable.
  • the conjugated diene compound for example, one or more types can be selected from butadiene, isoprene, 1,3-pentagen, 2,3-dimethyl-1,3 butene, etc., among which butadiene, isoprene and these. The combination of is preferable.
  • the polymer block B mainly composed of a conjugated diene compound or a hydrogenated product thereof can be arbitrarily selected in the microstructure of the block.
  • the flexibility is flexible. 1 in terms of the softening agent holding power, 2-Bulle bond 25 to 55 weight 0/0, preferably from 30 to 50 wt%.
  • the weight average molecular weight of the hydrogenated block copolymer of component (mouth) is 200,000 or more and 600,000 or less, preferably 220,000 or more and 500,000 in terms of polystyrene in terms of heat resistance, mechanical strength, and oil absorption.
  • the molecular weight distribution is 5 or less, generally 1 to 4, preferably 1 to 3.
  • the production method is not limited. For example, it is described in JP-B-40-23798.
  • a vinyl aromatic compound-conjugated gen compound block copolymer can be synthesized in an inert solvent using a lithium catalyst.
  • methods for producing vinyl aromatic compound-hydrogenated conjugated conjugated compound block copolymers that exhibit more preferable performance include, for example, Japanese Patent Publication No. 42-8704 and Japanese Patent Publication No. 43-6636.
  • the method described in the publication may be used, the use of a titanium-based hydrogenation catalyst is recommended, particularly in applications where high weather resistance and heat aging resistance are required.
  • JP-A-59-133203 And the method disclosed in Japanese Patent Publication No. 60-79005. At that time, 75% or more, preferably 80% or more, more preferably 90% or more of the aliphatic double bonds derived from the conjugated genie compound are hydrogenated, and most of the conjugated genie compounds are It has been converted into an olefinic compound morphologically.
  • a butadiene polymer block is converted into a polymer block mainly composed of ethylene-butylene.
  • the hydrogenated block copolymer of the component (mouth) has a polymer block D mainly composed of a vinyl aromatic compound, and a polymer mainly composed of a conjugated diene compound or a hydrogenated product thereof.
  • a polymer block D mainly composed of a vinyl aromatic compound
  • a polymer mainly composed of a conjugated diene compound or a hydrogenated product thereof There is no particular limitation on the hydrogenation rate of the aromatic double bond derived from the vinyl aromatic compound, which is copolymerized as necessary with the block E! /, But 20% or less is preferred.
  • thermoplastic rosin of component (c) is not particularly limited, but the following may be mentioned as examples.
  • the thermoplastic resin of component (c) includes a block copolymerized resin of a conjugated diene compound and a vinyl aromatic compound and a hydrogenated product thereof (provided that the above-described component (i) and (But different from the hydrogenated block copolymer), a polymer of the above vinyl aromatic compound, the above bu aromatic compound and other bulu monomers, such as ethylene, propylene, butylene, butyl chloride, chlorinated.
  • Copolymer resins such as vinylidene, butyl acetate, acrylic acid esters such as acrylic acid and acrylmethyl, methacrylic acid esters such as methacrylic acid and methyl methacrylate, acrylonitrile, and methacrylic acid-tolyl, etc., rubber-modified styrene resin (HIP S), acrylonitrile one butadiene one styrene copolymer ⁇ (ABS), methacrylate ester Lou butadiene styrene copolymer ⁇ (MBS), polyethylene, ethylene which is copolymerizable containing ethylene 50 weight 0/0 or more Copolymers with other possible monomers, such as ethylene propylene copolymer, ethylene-butylene copolymer 50 units of polyethylene, ethylene hexene copolymer, ethylene otaten copolymer, ethylene acetate butyl copolymer and its hydrolyzate, polyethylene acrylate resin
  • copolymer of propylene and copolymerizable therewith other monomers containing by weight 0/0 or more for example, propylene-ethylene copolymer, flop propylene polypropylene ⁇ such as acrylic acid Echiru copolymer and chlorinated polypropylene Cyclic polyolefin resin such as ethylene norbornene resin, polybutene resin, polysalt vinyl resin, polyacetate resin and hydrolysates thereof, acrylic acid and esters and amides.
  • Polyamide series resin Polyester series resin, Thermoplastic Polyurethane series resin, Poly 4, 4, Dioxydiphenyl 2, 2 'Polycarbonate polymer such as propane carbonate, Polyether Thermoplastic polysulfones such as sulfone and polyallylsulfone, polyoxymethylene-based resins, polyphenylene ether-based resins such as poly (2, 6 dimethyl-1, 4-phenylene) ether, polyphenylene sulfide, poly-4 , 4, Polyphenylene sulfide fluids such as diphenylsulfide, polyarylate based grease, poly Ether ketone polymer or copolymer, polyketone resin, fluorine resin, polyoxybenzoyl polymer, polyimide resin, 1, 2-polybutadiene, transpoly Polybutadiene-based resin such as butadiene.
  • the number average molecular weight of these thermoplastic rosins is generally 1000 or more, preferably 5,000 to 500,000, and more preferably 10,000 to 1,000,000.
  • Preferred thermoplastic resins for component (c) are styrene-based resins, ethylene-based and propylene-based olefin resins (polyolefin resins), heat resistance, mechanical strength, fluidity ( From the viewpoint of molding processability and versatility, more preferred are olefin resins, and among these, propylene resins are particularly preferred.
  • the amount of the thermoplastic resin of component (c) is 100 parts by weight in total of the hydrogenated block copolymer of component (i) and the hydrogenated block copolymer of component (mouth).
  • the component (c) is 20 to 200 parts by weight, preferably 25 to 150 parts by weight, more preferably 30 to 100 parts by weight. If the blending amount of the force component (c) depending on the rigidity and hardness of the target composition is less than 20 parts by weight, the heat resistance and fluidity (moldability) of the resulting composition are undesirably lowered. On the other hand, if it exceeds 200 parts by weight, the flexibility of the resulting composition is not preferred because the wear resistance is reduced. Moreover, two or more kinds of these thermoplastic resins may be used in combination as required.
  • the blending ratio of the component (ii) and the component (mouth) in a total of 100 parts by weight is 10% to 90% by weight of the component (ii) and 90% to 10% by weight of the component (mouth). %.
  • the rubber softener of component (2) softens the composition obtained and imparts fluidity (molding processability).
  • Component (2) rubber softeners include mineral oils and liquid or low molecular weight synthetic softeners, among which naphthenic and Z- or paraffinic process oils or extender oils are preferred.
  • Mineral oil rubber softener is a mixture of aromatic ring, naphthene ring and paraffin chain. Paraffin chain with 50% or more of total carbon is called paraffin, and naphthene ring has carbon number. Those with 30% to 45% are called naphthenic, and those with more than 30% aromatic carbon are called aromatic.
  • the composition of the present invention polybutene, low molecular weight polybutadiene, liquid paraffin, etc., which may use a synthetic softener, can be used, but the above-mentioned mineral oil rubber softener is preferred.
  • the kinematic viscosity at 40 ° C of the mineral oil rubber softener is preferably 60 cst or more, particularly preferably 120 cst or more.
  • the blending amount of the rubber softener of component (2) is 20 parts by weight to 250 parts by weight, preferably 30 parts by weight with respect to 100 parts by weight of the total of component (i) and component (mouth).
  • Parts to 230 parts by weight more preferably 40 parts to 200 parts by weight.
  • the amount of component (2) is less than 20 parts by weight, the fluidity (formability) of the resulting composition will be reduced. It is not preferable.
  • the amount exceeds 250 parts by weight the resulting composition is not preferable because it shows an adhesive feeling in the wear resistance and surface feel.
  • these rubber softeners may be used in combination of two or more as required.
  • a composition having further improved wear resistance can be obtained by adding an organic polysiloxane.
  • Organopolysiloxane is excellent in the surface modification effect of the resulting composition and is used as a wear resistance improving aid.
  • the form of the organic polysiloxane may be a low-viscosity liquid, a high-viscosity liquid, or a solid, and is not particularly limited. However, from the viewpoint of dispersibility in the composition, a liquid so-called silicon oil is preferable.
  • the kinematic viscosity is preferably 90 cst or more, more preferably kinematic viscosity lOOOcst or more, from the viewpoint of the surface feel due to bleeding of the polysiloxane itself.
  • the types of organic polysiloxanes include general-purpose silicone oils such as dimethylpolysiloxane (polydimethylsiloxane) and methylphenol polysiloxane, and various modified silicones such as alkyl modification, polyether modification, fluorine modification, alcohol modification, amino modification, and epoxy modification. Although there is oil and there is no particular limitation, dimethylpolysiloxane is particularly preferred from the viewpoint of the effect as an anti-wearing aid.
  • the amount of the organic polysiloxane added is in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight in total of the components (i), (mouth), (c), and (2). Quality effect and bleed viewpoint power Preferably they are 0.2 to 7 parts by weight.
  • These organic polysiloxanes may be used in combination of two or more as required.
  • the above-mentioned hydrogenated block copolymer composition (ii), (mouth), (c), and (2) has a powerful melt flow at 230 ° C 2.16 kg from the viewpoint of moldability.
  • the rate (MFR) is preferably in the range of 0.1 lgZ 10 minutes to lOOg / 10 minutes, more preferably 0.lg / 10 minutes to 75 g Z10 minutes, particularly preferably 0. lgZlO minutes to 30 gZl0 minutes. is there.
  • the hydrogenated block copolymer composition of the present invention has a rebound resilience at 23 ° C of 0% or less, and preferably 35% or less.
  • the hydrogenated block copolymer of the present invention, the hydrogenated block copolymer composition, or! ⁇ is a hydrogenated composition comprising the components (i), (mouth), (c), and (2).
  • Arbitrary additives can be mix
  • the type of additive is not particularly limited as long as it is generally used for the blending of thermoplastic resin and rubbery polymer.
  • pigments and colorants such as carbon black and titanium oxide, stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearoamide and other lubricants, mold release agents, phthalates Fatty acid ester compounds such as acid ester compounds, adipic acid ester compounds, and azelaic acid ester compounds, plasticizers such as mineral oil, antioxidants such as hindered phenolic acid antioxidants, phosphorus heat stabilizers, Examples include hindered amine light stabilizers, benzotriazole ultraviolet absorbers, antistatic agents, reinforcing agents such as organic fibers, glass fibers, carbon fibers, and metal whiskers, other additives, and mixtures thereof.
  • the hydrogenated block copolymer composition of the present invention may contain any filler and flame retardant as required.
  • the filler and the flame retardant are not particularly limited as long as they are generally used for the blending of a thermoplastic resin and a rubbery polymer.
  • Examples of the filler include silica, calcium carbonate, magnesium carbonate, magnesium hydroxide, sodium hydroxide, calcium sulfate, barium sulfate, carbon black, glass fiber, glass beads, glass balloons, glass flakes, Graphite, Titanium oxide, Potassium titanate whisker, Carbon fiber, Alumina, Kaolin clay, Caic acid, Calcium silicate, Quartz, My strength, Talc, Clay, Zircoyu, Potassium titanate, Aluminum, Metal particles Examples thereof include inorganic fillers such as wood chips, wooden chips, wood powders, and pulps. There are no particular restrictions on the shape, such as scaly, spherical, granular, powder, and irregular shapes. These can be used alone or in combination.
  • examples of the flame retardant include flame retardants such as halogen compounds mainly composed of bromine compounds, phosphorus compounds mainly composed of aromatic compounds, and inorganic materials mainly composed of metal hydroxides.
  • flame retardants such as halogen compounds mainly composed of bromine compounds, phosphorus compounds mainly composed of aromatic compounds, and inorganic materials mainly composed of metal hydroxides.
  • inorganic flame retardants include metal hydroxides such as magnesium hydroxide, aluminum hydroxide and calcium hydroxide, metal oxides such as zinc borate and barium borate, other calcium carbonate, clay, basic magnesium carbonate, In particular, hydrated metal compounds and the like can be exemplified.
  • metal hydroxides such as magnesium hydroxide and magnesium hydroxide are preferable in terms of improvement in flame retardancy.
  • the above flame retardants include so-called flame retardant aids that have a low flame retardant effect by themselves and that exhibit synergistically superior effects when used in combination with other flame retardants.
  • the filler and the flame retardant a type that has been subjected to a surface treatment with a surface treatment agent such as a silane coupling agent can be used.
  • fillers and flame retardants may be used in combination of two or more as required. When used in combination, it is not particularly limited, but it is also possible to use both filler components and flame retardant components, or a combination of filler and flame retardant.
  • the hydrogenated block copolymer of the present invention, the hydrogenated block copolymer composition, or! ⁇ is a hydrogenated block copolymer composition comprising the above components (i), (mouth), (c), and (2), and other “rubber / plastic compounding chemicals” (rubber digest) as necessary. Additives described in the company edition) or a mixture thereof may be added.
  • the hydrogenated block copolymer of the present invention, the hydrogenated block copolymer composition, or! ⁇ is a hydrogenated composition comprising the above components (i), (mouth), (c), and (2).
  • the block copolymer composition can be cross-linked as necessary.
  • the crosslinking method include a chemical method using a crosslinking agent such as peroxide and xio, and an additive such as a co-crosslinking agent as required, and radiation crosslinking.
  • Examples of the crosslinking process include a static method and a dynamic vulcanization method.
  • crosslinking agent examples include organic peroxides, sulfur, phenols, isocyanates, thiurams, morpholine disulfides, and the like. These include stearic acid, oleic acid, zinc stearate, zinc oxide. Such a crosslinking aid, co-crosslinking agent, vulcanization accelerator and the like can be used in combination.
  • organic peroxide crosslinking agent examples include hydroperoxide, dialkyl peroxide, diallyl peroxide, disilver oxide, peroxide ester, ketonic peroxide and the like. It is also possible to use a physical bridge method using electron beams or radiation.
  • the method for producing a powerful hydrogenated block copolymer composition is not particularly limited. Any known method can be used. For example, a banolly mixer, a single screw extruder
  • a melt kneading method using a general mixer such as a twin screw extruder, a kneader, a multi-screw extruder, or a method in which each component is dissolved or dispersed and then the solvent is removed by heating is used.
  • a melt mixing method using an extruder is preferred from the viewpoint of productivity and good kneading properties.
  • the shape of the resulting hydrogenated copolymer composition is not particularly limited, and examples thereof include pellets, sheets, strands, and chips. In addition, it can be made directly into a molded product after melt-kneading.
  • the hydrogenated block copolymer of the present invention, the hydrogenated block copolymer composition or the hydrogenated block copolymer of the present invention are components (i), (mouth), (c), and
  • methods applicable to the present invention include chemical methods and physical methods, and chemical foaming such as inorganic foaming agents and organic foaming agents, respectively. Air bubbles can be distributed inside the material by adding a foaming agent such as an agent or a physical foaming agent.
  • a foaming agent such as an agent or a physical foaming agent.
  • the inorganic foaming agent include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, ammonium nitrite, azide compound, sodium borohydride, metal powder and the like.
  • Organic foaming agents include azodicarbonamide, azobisformamide, azobisisobutyro-tolyl, barium azodicarboxylate, N, N, di-trosopentamethylenetetramine, N, N, one di-troso-one.
  • Examples include N, N, monodimethyl terephthalamide, benzenesulfur hydrazide, p-toluenesulfur hydrazide, ⁇ , ⁇ , monooxybisbenzenesulfur hydrazide, ⁇ -toluenesulfol semicarbazide, and the like. .
  • Physical blowing agents include hydrocarbons such as pentane, butane and hexane, halogenated hydrocarbons such as methyl chloride and chloromethylene, nitrogen, air and other gases, trichlorofluoromethane, dichlorodiphenolo Examples thereof include fluorinated hydrocarbons such as lomethane, trichlorotrinoleoethane, chlorodiphenoloethane, and hydrated fluorocarbon.
  • the molded body of the copolymer composition should be subjected to decoration such as printing, painting, and embossing on the surface of the molded product as necessary for the purpose of improving the appearance, weather resistance, scratch resistance, etc. Can do. Eyes that improve printability and paintability When surface treatment is performed on a surface, there are no particular restrictions on physical methods and chemical methods that can be used, such as corona discharge treatment, ozone treatment, plasma treatment, flame treatment, acid treatment, and the like. ⁇ Alkali treatment can be mentioned. Among these, corona discharge treatment is preferable because of its ease of implementation, cost, and continuous treatment.
  • the copolymer composition can be used for various purposes by blending various additives as desired.
  • the hydrogenated copolymer and hydrogenated copolymer composition of the present invention (0 reinforcing filler compound, GO bridge, (m) foam, Gv) multilayer film and multilayer Molded products such as sheets, (V) building materials, (vi) vibration damping and soundproofing materials, (vii) wire coating materials, (viii) high frequency fusible compositions, (ix) slush molding materials, (X) viscosity It can be suitably used for adhesive compositions, (xi) asphalt compositions, (xii) medical device materials, (xiii) automobile materials, and the like.
  • the copolymer composition can be used for various applications as described above.
  • the molding method includes extrusion molding, injection molding, hollow molding, pressure molding, vacuum molding, foam molding, compound molding. Layer extrusion molding, multilayer injection molding, high frequency fusion molding, slush molding, calendar molding, and the like can be used.
  • molded products include sheets, films, tubes, nonwoven fabrics and fibrous molded products, and synthetic leather.
  • Molded articles comprising the hydrogenated copolymer and hydrogenated copolymer composition of the present invention include food packaging materials, medical device materials, home appliances and parts thereof, electronic devices and parts thereof, automobile parts, industrial parts, It can be used as materials for household goods, toys, footwear materials, textile materials, adhesive materials, asphalt modifiers, etc.
  • automotive parts include side moldings, grommets, knobs, weather strips, window frames and their sealing materials, armrests, door grips, handle grips, console boxes, bed rests, instrument panels, bumpers, boilers, air
  • a storage cover for the back device for example, a storage cover for the back device.
  • the medical device include a blood bag, a platelet storage bag, an infusion (medical solution) bag, an artificial dialysis bag, a medical tube, and a catheter.
  • the copolymer before hydrogenation was used and measured using an ultraviolet spectrophotometer (manufactured by Shimadzu Corporation, UV-2450).
  • the copolymer before hydrogenation was used and measured using an infrared spectrophotometer (manufactured by JASCO Corporation, FTZIR-230).
  • the vinyl bond amount of the copolymer was calculated by the Hampton method.
  • the weight average molecular weight was determined using a calibration curve prepared using commercially available standard polystyrene with known weight average molecular weight and number average molecular weight.
  • the molecular weight distribution is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
  • a nuclear magnetic resonance apparatus (device name: DPX-400; Germany, BRUKER).
  • a viscoelasticity analyzer (model DVE-V4, manufactured by Rheology Co., Ltd.), a viscoelastic spectrum was measured and determined.
  • the measurement frequency is 10Hz.
  • Tensile properties were measured according to JIS K6251. Flexibility was measured by the stress at 100% stretching (hereinafter referred to as 100% Mo). The smaller the 100% Mo, the better the flexibility. The tensile speed was 500mmZmin and the measurement temperature was 23 ° C.
  • a compression set test was performed in accordance with JIS K6262.
  • the measurement conditions are a temperature of 70 ° C and 22 hours.
  • the surface of the molded sheet (skin shiboka surface) is rubbed with friction cloth Kanakin No. 3 cotton with a load of 500 g. Judgment was made according to the following criteria depending on the amount of decrease.
  • a 2 mm thick press sheet was prepared and evaluated by the following method.
  • the surface of the molded sheet (Leather wrinkled surface Z Wrinkle depth: approx. After rubbing, the wrinkle depth was measured, and the wrinkle depth remaining rate (calculated by the following formula 1) was used to make the judgment based on the following criteria.
  • the grain depth was measured with a surface roughness meter E-35A manufactured by Tokyo Seimitsu Co., Ltd.
  • Wrinkle depth remaining rate (Wrinkle depth after friction) / (Wrinkle depth before friction) X 100 (Formula 1) ⁇ ; After 20,000 times of friction, the wrinkle depth remaining rate is 75% more than
  • a press sheet with a thickness of 2 mm was prepared, and the surface of the sheet was touched with a finger to check for stickiness (stickiness), and judged according to the following criteria.
  • blended is as follows.
  • the hydrogenation catalyst used for the hydrogenation reaction of the copolymer was prepared by the following method.
  • Batch polymerization was carried out using an agitator with an internal volume of 10 L and a jacketed tank reactor. First, a cyclohexane solution (concentration 20% by weight) containing 15 parts by weight of styrene was added. Next, 0.06 parts by weight of n-butyllithium with respect to 100 parts by weight of all monomers and 1 mole of ⁇ -butyllithium with N, N, ⁇ ', ⁇ , and -tetramethylethylenediamine (hereinafter referred to as TMEDA) In contrast, 0.7 mol was added and polymerized at 70 ° C. for 1 hour.
  • TMEDA ⁇ -butyllithium with N, N, ⁇ ', ⁇ , and -tetramethylethylenediamine
  • a cyclohexane solution (concentration: 20% by weight) containing 14 parts by weight of butadiene and 42 parts by weight of styrene was added and polymerized at 70 ° C. for 1 hour. The bull bond amount of the sampled polymer at this point was measured and found to be 36%.
  • a polymer was prepared in the same manner as Polymer 1. After adding cyclohexane solution containing 17 parts by weight of styrene, 0.05 parts by weight of n-butyllithium per 100 parts by weight of all monomers and 0.65 moles of T MEDA per mole of n-butyllithium And polymerized at 70 ° C for 1 hour. Thereafter, a cyclohexane solution containing 20 parts by weight of butadiene was added and polymerized at 70 ° C. for 1 hour. The bull bond content of the polybutadiene portion of the polymer sampled at this time was measured and found to be 39%.
  • the resulting hydrogenated copolymer (Polymer 2) had a hydrogenation rate of 98%.
  • a polymer was prepared in the same manner as Polymer 1. After adding cyclohexane solution containing 20 parts by weight of styrene, 0.06 parts by weight of n-butyllithium with respect to 100 parts by weight of all monomers and 0.7 moles of T MEDA with respect to 1 mole of n-butyllithium. The mixture was added and polymerized at 70 ° C for 1 hour. Thereafter, a cyclohexane solution containing 15 parts by weight of butadiene was added and polymerization was performed at 70 ° C for 1 hour. The amount of bull bonds in the polybutadiene portion of the polymer sampled at this time was measured and found to be 53%.
  • a cyclohexane solution containing 15 parts by weight of butadiene and 35 parts by weight of styrene was added and polymerized at 70 ° C. for 1 hour.
  • a cyclohexane solution containing 15 parts by weight of styrene was charged and polymerized at 70 ° C. for 1 hour.
  • the resulting polymer scan styrene content 70 wt 0/0, polystyrene block content of 40 wt 0/0, a vinyl bond content 53% by weight of the polybutadiene block unit, molecular weight 192,000, molecular weight distribution 1.1 Met.
  • the obtained polymer is subjected to a hydrogenation reaction in the same manner as in Polymer 1 to form a hydrogenated copolymer.
  • Body (Polymer 3) was obtained.
  • the resulting hydrogenated copolymer (Polymer 3) had a hydrogenation rate of 99%.
  • a polymer was prepared in the same manner as Polymer 1. After adding cyclohexane solution containing 17 parts by weight of styrene, 0.05 parts by weight of n-butyllithium with respect to 100 parts by weight of all monomers and 0.7 moles of T MEDA with respect to 1 mole of n-butyllithium The mixture was added and polymerized at 70 ° C for 1 hour. Thereafter, a cyclohexane solution containing 30 parts by weight of butadiene was added and polymerized at 70 ° C. for 1 hour. At this time point, the amount of bull bonds in the polybutadiene portion of the polymer sampled was measured and found to be 48%.
  • a cyclohexane solution containing 12 parts by weight of butadiene and 28 parts by weight of styrene was added and polymerized at 70 ° C. for 1 hour.
  • the vinyl bond content of the polymer sampled at this time was measured and found to be 39%.
  • a cyclohexane solution containing 13 parts by weight of styrene was added and polymerized at 70 ° C. for 1 hour.
  • the resulting polymer had a styrene content of 58 wt 0/0, polystyrene block content of 34 wt 0/0, Bulle bond content 48% by weight of a polybutadiene block part, molecular weight 224,000, molecular weight distribution 1.1 met It was.
  • the obtained polymer was subjected to a hydrogenation reaction in the same manner as in Polymer 1 to obtain a hydrogenated copolymer (Polymer 4).
  • the resulting hydrogenated copolymer (Polymer 4) had a hydrogenation rate of 99%.
  • Batch polymerization was carried out using an agitator with an internal volume of 10 L and a jacketed tank reactor. First, a cyclohexane solution (concentration 20% by weight) containing 15 parts by weight of styrene was introduced. Next, 0.04 parts by weight of n-butyllithium with respect to 100 parts by weight of all monomers and 0.7 mol of TMEDA with respect to 1 mole of n-butyllithium were added, and polymerization was performed at 70 ° C. for 1 hour. Thereafter, a cyclohexane solution containing 20 parts by weight of butadiene (concentration: 20% by weight) was added and polymerized at 70 ° C. for 1 hour.
  • the resulting polymer had a styrene content of 65 weight 0/0, polystyrene block content of 26 by weight%, vinyl bond content 49% by weight of a polybutadiene block part of a weight-average molecular weight 250,000, molecular weight distribution 1.2 met It was.
  • the obtained polymer was subjected to a hydrogenation reaction in the same manner as in Polymer 1 to obtain a hydrogenated block copolymer (Polymer 5).
  • the hydrogenation rate of the resulting hydrogenated block copolymer was 99%.
  • the DSC of the obtained hydrogenated block copolymer was measured, no crystallization peak existed.
  • Continuous polymerization was carried out using two agitators and jacketed tank reactors with an internal volume of 10L. From the bottom of the first reactor, a cyclohexane solution with a butadiene concentration of 24% by weight at a feed rate of 4.51 LZhr and a cyclohexane solution with a styrene concentration of 24% by weight at a feed rate of 5.97 LZhr.
  • a cyclohexane solution adjusted to a concentration of 0.077 g per 100 g of monomer n-butyllithium was added at the rate of OLZhr, and TMEDA cyclohexane solution was added to n-butyllithium 1
  • TMEDA cyclohexane solution was added to n-butyllithium 1
  • the reaction temperature was adjusted by the jacket temperature, the temperature near the bottom of the reactor was about 88 ° C, and the temperature near the top of the reactor was about 90 ° C.
  • the average residence time in the polymerization reactor was about 45 minutes, the butadiene conversion was almost 100%, and the styrene conversion was 99%.
  • Batch polymerization was carried out using an agitator with an internal volume of 10 L and a jacketed tank reactor. First, a cyclohexane solution (concentration 20% by weight) containing 16 parts by weight of styrene was added. Next, 0.058 parts by weight of n-butyllithium with respect to 100 parts by weight of all monomers and 1 mole of ⁇ -butyllithium with N, N, ⁇ ', ⁇ , and monotetramethylethylenediamine (hereinafter referred to as TMEDA) In contrast, 0.7 mol was added and polymerized at 70 ° C. for 1 hour.
  • TMEDA monotetramethylethylenediamine
  • a cyclohexane solution (concentration: 20% by weight) containing 20 parts by weight of butadiene was added and polymerized at 70 ° C. for 1 hour. At this time, the amount of bull bonds in the polybutadiene portion of the polymer sampled was measured and found to be 50%. Then for 1 hour the polymerization in hexane consequent opening (concentration 20 weight 0/0) with mosquito ⁇ Ete 30 ° C containing butadiene 14 parts by weight of styrene 42 parts by weight. Finally, a cyclohexane solution containing 10 parts by weight of styrene was charged and polymerized at 70 ° C. for 1 hour.
  • the obtained polymer was subjected to a hydrogenation reaction in the same manner as in Polymer 1 to obtain a hydrogenated block copolymer (Polymer 7).
  • the hydrogenation rate of the obtained hydrogenated block copolymer was 98%.
  • a polymer was prepared in the same manner as Polymer 1. First, after introducing a cyclohexane solution containing 15 parts by weight of styrene, 0.06 parts by weight of n-butyllithium with respect to 100 parts by weight of all monomers and 0.07 moles of TMEDA with respect to 1 mole of n-butyllithium. And polymerized at 70 ° C for 1 hour. Thereafter, a cyclohexane solution containing 6 parts by weight of butadiene was added and polymerized at 70 ° C. for 1 hour. Next, a cyclohexane solution containing 27 parts by weight of butadiene and 43 parts by weight of styrene was added and polymerized at 70 ° C.
  • a cyclohexane solution containing 9 parts by weight of styrene was charged and polymerized at 70 ° C. for 1 hour.
  • the resulting polymer had a styrene content of 67 wt 0/0, polystyrene block content of 30 wt 0/0, Bulle bond content 49% by weight of a polybutadiene block portion molecular weight 192,000, and a molecular weight distribution of 1.1 .
  • the obtained polymer was subjected to a hydrogenation reaction in the same manner as in Polymer 1 to obtain a hydrogenated copolymer (Polymer 8).
  • the resulting hydrogenated copolymer (Polymer 8) had a hydrogenation rate of 99%.
  • a polymer was prepared in the same manner as Polymer 1. After adding cyclohexane solution containing 14 parts by weight of styrene, 0.065 parts by weight of n-butyllithium with respect to 100 parts by weight of all monomers and 0.665 moles of T MEDA with respect to 1 mole of n-butyllithium. And polymerized at 70 ° C for 1 hour. Thereafter, a cyclohexane solution containing 40 parts by weight of butadiene was added and polymerized at 70 ° C. for 1 hour. The bull bond content of the polybutadiene portion of the polymer sampled at this time was measured and found to be 39%.
  • the resulting hydrogenated copolymer (Polymer 9) had a hydrogenation rate of 98%.
  • a cyclohexane solution (concentration: 20% by weight) containing 20 parts by weight of butadiene was added and polymerization was performed at 70 ° C. for 1 hour. At this time, the amount of bull bonds in the polybutadiene part of the polymer sampled was measured and found to be 50%.
  • a cyclohexane solution (concentration 20% by weight) containing 13 parts by weight of butadiene and 37 parts by weight of styrene was polymerized at 70 ° C. for 1 hour.
  • the resulting hydrogenated copolymer (Polymer 10) had a hydrogenation rate of 98%.
  • Batch polymerization was carried out using an agitator with an internal volume of 10 L and a jacketed tank reactor.
  • a cyclohexane solution (concentration 20% by weight) containing 20 parts by weight of styrene was introduced.
  • 0.09 parts by weight of n-butyllithium with respect to 100 parts by weight of all monomers and 0.7 mole of TMEDA with respect to 1 mole of n-butyllithium were added, and polymerization was performed at 70 ° C. for 30 minutes.
  • a cyclohexane solution (concentration: 20% by weight) containing 33 parts by weight of butadiene and 47 parts by weight of styrene was polymerized at 70 ° C. for 1 hour.
  • the resulting living polymer of the copolymer was reacted with 0.5 mol of n-butyllithium used as a coupling agent in the polymerization with ethyl benzoate.
  • the obtained polymer had a styrene content of 67% by weight, a polystyrene block content of 20% by weight, a weight average molecular weight of 19000, and a molecular weight distribution of 1.4.
  • the obtained polymer was subjected to a hydrogenation reaction in the same manner as in Polymer 1 to obtain a hydrogenated block copolymer (Polymer 11).
  • the resulting hydrogenated copolymer (Polymer 11) had a hydrogenation rate of 99%.
  • SEBS A commercially available hydrogenated block copolymer (Clayton G1651: manufactured by Kraton Polymer Co., Ltd.) was used.
  • Batch polymerization was carried out using an agitator with an internal volume of 10 L and a jacketed tank reactor. First, a cyclohexane solution (concentration: 12% by weight) containing 15 parts by weight of styrene was introduced. Next, 0.055 parts by weight of n-butyllithium was added to 100 parts by weight of all monomers, and 0.3 mol of TMEDA was added to 1 mole of n-butyllithium.
  • a cyclohexane solution containing 12 parts by weight of butadiene (concentration 12% by weight) is added for polymerization
  • a cyclohexane solution containing 14 parts by weight of styrene (concentration 12% by weight) is added for polymerization.
  • the temperature was controlled between 40-80 ° C.
  • the obtained polymer had a styrene content of 29% by weight, a weight average molecular weight of 2020,000 and a molecular weight distribution of 1.1.
  • the obtained polymer was subjected to a hydrogenation reaction in the same manner as in Polymer 1 to obtain a hydrogenated copolymer (Polymer 13).
  • the hydrogenation rate of the obtained hydrogenated copolymer (Polymer 13) was 99%.
  • Batch polymerization was carried out using an agitator with an internal volume of 10 L and a jacketed tank reactor. First, a cyclohexane solution (concentration: 12% by weight) containing 16 parts by weight of styrene was introduced. Next, 0.04 parts by weight of n-butyllithium was added to 100 parts by weight of all monomers, and 0.3 mol of T MEDA was added to 1 mole of n-butyllithium.
  • a cyclohexane solution containing 68 parts by weight of butadiene (concentration 12% by weight) was added for polymerization, and finally a cyclohexane solution containing 16 parts by weight of styrene (concentration 12% by weight) was added for polymerization.
  • the polymerization temperature was controlled between 40 and 80 ° C.
  • the polymer obtained had a styrene content of 32 wt%, a vinyl bond content of 37% by weight of the probe Tajen portion, the weight average molecular weight 280,000, molecular weight distribution 1.05, polystyrene block content of 97 weight 0 /. Met.
  • the obtained polymer was subjected to a hydrogenation reaction in the same manner as in the component (ii) -1 to obtain a hydrogenated block copolymer.
  • the hydrogenation rate of the resulting hydrogenated block copolymer was 99%
  • Thermoplastic resin Polypropylene resin, PC630A (manufactured by Sanalomer), MFR (230 ° C, 2.16 kg); 7.5 gZlO min.
  • Rubber softener Oil 1) Paraffin oil, PW-90 (made by Idemitsu Kosan) Oil 1) Paraffin oil, PW-380 (made by Idemitsu Kosan)
  • Silicon oil SH200 5000cs (manufactured by Toray Dow Coung)
  • the obtained hydrogenated copolymer (Polymers 1 to 4) was powdered, an oil having the composition shown in Table 2 was obtained. Was absorbed for 24 hours. Thereafter, the copolymer composition was obtained by kneading with a twin screw extruder (PCM30) and pelletizing. The extrusion conditions were a cylinder temperature of 220 ° C and a screw speed of 300 rpm. The obtained composition was compression-molded at 200 ° C. to produce a sheet having a thickness of 2 mm, and a physical property measurement piece was obtained.
  • PCM30 twin screw extruder
  • Polymer 5 was compression molded at 200 ° C to form a 2 mm thick molded sheet, and the physical properties were measured.
  • Polymer 12 was used, and the force obtained to obtain the composition in the same manner as in the example was strong enough to make a molded sheet.
  • polymer 1 is powdered as a hydrogenated block copolymer
  • the components shown in Table 3 are mixed with a Henschel mixer and then melt-kneaded at 230 ° C using a 30 mm diameter twin screw extruder. A pellet of the composition was obtained. Further, the composition pellets were rolled with a 3.5 inch roll at 200 ° C., and then pressed with a hydraulic press at 200 ° C. and lOOkgZcm 2 to form a 2 mm thick molded sheet.
  • the physical properties are shown in Table 3.
  • each component shown in Table 3 was prepared in the same manner as in Examples 1 to 3 to form a 2 mm thick molded sheet. Table 3 shows the physical properties.
  • polymer 1 and polymer 5 are powdered as hydrogenated block copolymer, roll out at 200 ° C in a 3.5 inch tool, then at 220 ° C in a hydraulic press, lOOkg / cm performs a press-molded at 2, was to create a molded sheet of 2mm thickness.
  • the oil absorption is shown in Table-4.
  • the hydrogenated copolymer of the present invention and the composition thereof have flexibility, heat resistance, abrasion resistance, surface feeling. Excellent touch (no oil bleed if sticky) and good workability. And its properties can be a substitute for soft salt vinyl vinyl resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、柔軟性、耐熱性、耐磨耗性、表面感触(粘着感やオイルブリード等が無い)に優れ、且つ加工性が良好な水添ブロック共重合体又はその組成物を提供することを課題とする。本発明は、ビニル芳香族化合物重合体ブロックA、共役ジエンとビニル芳香族化合物とのランダム共重合体の水添重合体ブロックB、及びビニル結合量が30%以上の共役ジエン重合体の水添重合体ブロックCをそれぞれ1個以上有し、且つビニル芳香族化合物の含有量が50重量%越え、95重量%未満の水添ブロック共重合体、及び当該水添ブロック共重合体を含む組成物を提供するものである。                                                                                    

Description

水添ブロック共重合体及びその組成物
技術分野
[0001] 本発明は、特定構造を有する水添ブロック共重合体及び該水添ブロック共重合体 とゴム用軟化剤、他の熱可塑性榭脂ゃゴム状重合体とを組み合わせた水添ブロック 共重合体組成物に関する。本発明の組成物は、柔軟性、耐熱性、耐磨耗性、表面 感触 (粘着感ゃオイルブリード等が無い)に優れ、且つ加工性が良好であり、家電' 工業部品等の包装材料、玩具、自動車部品や医療器具等に用いられる各種成形品 を提供する。
背景技術
[0002] 共役ジェンとビニル芳香族炭化水素からなるブロック共重合体は、比較的ビュル芳 香族炭化水素が少な 、場合、加硫をしなくても加硫された天然ゴムや合成ゴムと同 様の弾性を常温にて有し、し力も高温では熱可塑性榭脂と同様の加工性を有するこ とから、履物、プラスチック改質、アスファルト改質、粘接着材等の分野で広く利用さ れている。又、比較的ビュル芳香族炭化水素含有量が多い場合は、透明で耐衝撃 性に優れた熱可塑性榭脂が得られることから、食品包装容器、家庭用製品、家電- 工業部品等の包装材料、玩具などに利用されている。更に、これらの共重合体の水 添物は、耐候性、耐熱性に優れることから、上記の用途分野以外に、自動車部品や 医療器具等にも幅広く実用化されている。
[0003] し力しながら、比較的ビュル芳香族炭化水素が少な 、ブロック共重合体は、柔軟性 は良好であるものの耐磨耗性に劣るという欠点があり、その用途を更に拡大する上で 制約となっている。一方、従来の比較的ビュル芳香族炭化水素含有量が多いブロッ ク共重合体は柔軟性に劣り、軟質材料として適当でな力つた。
[0004] 柔軟性を有する材料として、ビニル芳香族炭化水素含有量が 3〜50重量%のラン ダム共重合体であって、分子量分布(Mw/Mn)が 10以下であり、かつ共重合体中 のジェン部のビュル結合量が 10〜90%である共重合体を水素添加した水添ジェン 系共重合体とポリプロピレン榭脂との組成物 (例えば、特許文献 1参照)が開示されて いる。また、ビュル芳香族炭化水素含有量が 5〜60重量%のランダム共重合体であ つて、かつ共重合体中のジェン部のビニル結合量が 60%以上である共重合体を水 素添加した水添ジェン系共重合体とポリプロピレン榭脂との組成物(例えば、特許文 献 2参照)が開示されている。
[0005] 上記のような水添ジェン系共重合体に関しては、軟質塩化ビニル榭脂が従来用い られているような用途に用いることが試みられている。軟質塩ィ匕ビュル榭脂には、燃 焼時におけるハロゲンの問題、可塑剤による環境ホルモンの環境問題等が懸念され ており、その代替材料の開発が急務である。しかし、上記のような水添ジェン系共重 合体は、軟質塩ィ匕ビニル榭脂が従来用いられているような用途に用いるには、柔軟 性ゃ耐磨耗性と 、つた特性が不十分であった。
[0006] 近年、比較的ビュル芳香族炭化水素含有量が多!、ブロック共重合体にお 、て、柔 軟性を有する材料を得る試みが行われており、スチレン主体のブロックとブタジエン zスチレンを主体とするブロックを含有する共重合体力 なる水添ブロック共重合体 をベースとする成形材料 (例えば、特許文献 3参照)が開示されている。しかしながら
、ここに開示されている水添共重合体は柔軟性に乏しぐ軟質塩ィ匕ビニル榭脂が使 用されている用途には不適であった。
[0007] 上記のように、様々な環境上の問題が懸念されて 、る軟質塩ィ匕ビニル榭脂の代替 材料の開発が急務であるにも関わらず、軟質塩ィ匕ビュル榭脂に匹敵する特性 (柔軟 性ゃ耐磨耗性等)の材料が得られな!/、のが現実であった。
[0008] 我々は、軟質塩化ビニル榭脂の代替材料の開発を行い、同榭脂に匹敵する柔軟 性ゃ耐磨耗性を有する水添共重合体 (例えば、特許文献 4参照)をさきに開発した。 しかしながら、該共重合体よりも、さらに耐熱性の優れた材料の出現が望まれていた 特許文献 1:特開平 2— 158643号公報
特許文献 2:特開平 6— 287365号公報
特許文献 3: W098/ 12240
特許文献 4:WO03Z35705
発明の開示 発明が解決しょうとする課題
[0009] 本発明は、柔軟性、耐熱性、耐磨耗性、表面感触 (粘着感ゃオイルブリード等が無 い)に優れ、且つ加工性が良好な水添ブロック共重合体又はその組成物を提供する ことを課題とする。
課題を解決するための手段
[0010] 本発明者らは上記課題を解決するため鋭意検討を重ねた結果、ビニル芳香族化 合物重合体ブロック A、共役ジェンとビニル芳香族化合物とのランダム共重合体の水 添重合体ブロック B、及びビニル結合量が 30%以上の共役ジェン重合体の水添重 合体ブロック Cをそれぞれ 1個以上有し、且つビュル芳香族化合物の含有量が 50重 量%越え、 95重量%未満の水添ブロック共重合体が上記課題を効果的に解決する こと、また力かる水添ブロック共重合体を含む所定の組成物が同様の効果を奏するこ とを見いだし、本発明を完成するに至った。
[0011] 即ち本発明は、共役ジェンとビュル芳香族化合物力 なる共重合体の水素添加物 であって、下記の(1)〜(6)の特性を有することを特徴とする水添ブロック共重合体 及びそれを含む組成物に関するものである。
[0012] (1)下記 a、 b、 cの重合体ブロックを少なくとも 1個有する。
a.ビニル芳香族化合物重合体ブロック A
b.共役ジェンとビニル芳香族化合物とのランダム共重合体の水添重合体ブロック
B
cビュル結合量が 30%以上の共役ジェン重合体の水添重合体ブロック C
(2)前記ビュル芳香族化合物の含有量が 50重量%越え、 95重量%未満である。
(3)重量平均分子量が 5万〜 100万である。
(4)前記水添重合体ブロック Bの水添前重合体を構成する共役ジェン単量体単位の ビニル結合量が 10以上 20%未満である。
(5)該共役ジェン単量体単位の二重結合の水添率が 75%以上である。
(6)前記ビュル芳香族化合物重合体ブロック Aの含有量が 20重量%〜50重量%、 水添共重合体ブロック Bの含有量が 30重量%〜80重量%、水添重合体ブロックじの 含有量が 10重量%〜35重量%である。 発明の効果
[0013] 本発明の水添ブロック共重合体あるいはそれを含む組成物は、柔軟性、耐熱性、 耐磨耗性、表面感触に優れ、且つ加工性が良好であり、軟質塩ィ匕ビュル榭脂の代 替材料として、家電'工業部品等の包装材料、玩具、 自動車部品や医療器具等の用 途に好適に用いることができる。
発明を実施するための最良の形態
[0014] 以下本発明の好ましい実施形態を詳細に説明する。
[0015] 本発明の水添ブロック共重合体は、共役ジェンとビュル芳香族化合物力 なる共 重合体の水素添加物である。
[0016] 本発明の水添ブロック共重合体は、ビニル芳香族化合物重合体ブロック A (以下「 重合体ブロック A」という場合もある。)を少なくとも 1個、好ましくは 2個以上有し、ビ- ル芳香族化合物とのランダム共重合体の水添共重合体ブロック B、及びビニル結合 量が 30%以上の共役ジェン重合体の水添重合体ブロック Cを、それぞれ少なくとも 1 個有する。
[0017] 本発明の水添ブロック共重合体において、重合体ブロック Aは、耐熱性と表面感触
(粘着感が無い)の点で重要である。重合体ブロック Aの含有量は、耐熱性と表面感 触の点で 20重量%以上、柔軟性の点で 50重量%以下が好ましい。特に耐熱性の 良好な水添ブロック共重合体等を得る場合、重合体ブロック Aの含有量は 25重量% 〜50重量%、好ましくは 30重量%〜50重量%であることが推奨される。また、特に 柔軟性の良好な水添ブロック共重合体等を得る場合、重合体ブロック Aの含有量は 2 0重量%〜45重量%、好ましくは 20重量%〜40重量%であることが推奨される。
[0018] 本発明にお 、て、重合体ブロック Aの含有量は、四酸ィ匕オスミウムを触媒として水 素添加前の共重合体をターシャリーブチルノ、イド口パーオキサイドにより酸ィ匕分解す る方法(I. M. KOLTHOFFゝ etal. 、J. Polym. Sci. 1、 429 (1946)に記載の方 法。以後、四酸化オスミウム酸法と呼ぶ。)で測定することができる。また、重合体プロ ック Aの含有量は、水素添加前の共重合体や水素添加後の共重合体を検体として、 核磁気共鳴装置(NMR)を用いて(Y. Tanaka、 et al. 、 RUBBER CHEMIST RY and TECHNOLOGY 54、 685 (1981)に記載の方法。以後、 NMR法と呼 ぶ。)測定しても良い。尚、この場合、四酸ィ匕オスミウム酸法により水素添加前の共重 合体を用いて測定した重合体ブロック Aの含有量 (Osとする)と、 NMR法により水添 後の共重合体を用いて測定した重合体ブロック Aの含有量 (Nsとする)には、下記式 (F)に示される相関関係がある。
[0019] (Os) =— 0. 012 (Ns) 2+ l. 8 (Ns)— 13. 0 · · ·式(F)
従って、本発明にお 、て NMR法で水添後のブロック共重合体における重合体ブロ ック Aの含有量を求める場合、上式 (F)で求められた (Os)の値を本発明で規定する 重合体ブロック Aの含有量とする。
[0020] 本発明の水添ブロック共重合体は、共役ジェンとビュル芳香族化合物とのランダム 共重合体の水添共重合体ブロック Bを少なくとも 1個有する。そして、示差走査熱量 測定(DSC)チャートにおいて、 20°C〜80°Cの範囲に水添共重合体ブロック Bに 起因する結晶化ピークが実質的に存在しない水素添加物が好ましい。ここで、 「— 20 °C〜80°Cの範囲に水添重合体ブロック Bに起因する結晶化ピークが実質的に存在 しない」とは、この温度範囲において水添共重合体ブロック B部分の結晶化に起因す るピークが現れない、もしくは結晶化に起因するピークが認められる場合においても 、その結晶化による結晶化ピーク熱量が 3jZg未満、好ましくは 2jZg未満、更に好 ましくは UZg未満であり、特に好ましくは結晶化ピーク熱量が無いことを意味する。
[0021] 20°C〜80°Cの範囲に水添共重合体ブロック Bに起因する結晶化ピークが存在 しない水添ブロック共重合体は、柔軟性が良好であり、軟質な塩ィ匕ビニル榭脂が使 用されている用途への展開に好適である。上記のような 20°C〜80°Cの範囲に水 添共重合体ブロック Bに起因する結晶化ピークが実質的に存在しない水添ブロック 共重合体を得るためには、後述するようなビニル結合量の調整や共役ジェン化合物 とビニル芳香族化合物とのランダム共重合性を調整する調整剤を用いて後述するよ うな条件下で重合反応を行うことによって得られる非水添共重合体を用いて、水素添 加反応を行えばよい。
[0022] 水添共重合体ブロック Bの含有量は、耐磨耗性の点で 30重量%〜80重量%が好 ましい。更に好ましくは 35重量%〜70重量%、とりわけ好ましくは 40重量%〜60重 量%である。本発明において、水添共重合体ブロック Bを構成するランダム共重合体 における共役ジェンとビュル芳香族化合物の重量割合は、 50Z50〜: L0Z90、好ま しくは 40Z60〜15Z85、更に好ましくは 35Ζ65〜20Ζ80であることが推奨される
[0023] 本発明において、水添共重合体ブロック Βの水素添加前の重合体ブロックにおける 共役ジェン部分のミクロ構造 (シス、トランス、ビュルの比率)は、後述する極性化合 物等の使用により任意に変えることができ、一般的に共役ジェンとして 1、 3 ブタジ ェンを使用した場合には、耐摩耗性の点から、 1, 2—ビュル結合量は 10%〜20% である。
[0024] 本発明の水添ブロック共重合体において、水添重合体ブロック Cの水添前の共役 ジェンのビニル結合量は、柔軟性と表面感触 (オイルブリード等が無 ヽ)の点で 30% 以上である。好ましくは 35%〜80%、更に好ましくは 39%〜75%、とりわけ好ましく は 43%〜70%である。なお、本発明においては、 1, 2 ビニル結合と 3、 4 ビニル 結合の合計量 (但し、共役ジェンとして 1, 3 ブタジエンを使用した場合には、 1, 2 ビニル結合量、共役ジェンとしてイソプレンを用いた場合は 3, 4—ビニル結合量) を以後ビニル結合量と呼ぶ。ビニル結合量は、水素添加前の共重合体を検体とした 赤外分光光度計による測定 (例えば、ハンプトン法)により把握することができる。
[0025] また、本発明の水添ブロック共重合体における水添重合体ブロック Cの含有量は、 柔軟性と耐磨耗性、表面感触 (オイルブリード等が無 ヽ)の点で 10重量%以上 35重 量%以下が好ま 、。更に好ましくは 13〜30重量%である。
[0026] 本発明にお 、て、水添ブロック共重合体におけるビュル芳香族化合物の含有量は 、柔軟性、耐熱性、耐磨耗性等の点で、 50重量%を越え、 95重量%未満である。好 ましくは 55重量%〜90重量%未満、更に好ましくは 58重量%〜85重量%である。 尚本発明にお 、て、水添ブロック共重合体におけるビニル芳香族化合物の含有量 は、水素添加前のブロック共重合体や水素添加後のブロック共重合体を検体として、 紫外分光光度計を用いて知ることができる。
[0027] 本発明の水添ブロック共重合体の重量平均分子量は、耐熱性、機械的強度、耐磨 耗性等と成形カ卩ェ性とのバランスの点で、 5万〜 100万である。好ましくは 10万〜 70 万、更に好ましくは 15万〜 50万であることが推奨される。 [0028] 本発明において、分子量分布は 10以下、一般に 1〜8、好ましくは 1. 01〜5である 。水添ブロック共重合体の分子量は、ゲルパーミュエーシヨンクロマトグラフィー(GP C)による測定を行い、クロマトグラムのピークの分子量を、市販の標準ポリスチレンの 測定から求めた検量線 (標準ポリスチレンのピーク分子量を使用して作成)を使用し て求めた重量平均分子量である。水添ブロック共重合体の分子量分布は、同様に G PCによる測定から求めることができ、重量平均分子量と数平均分子量の比率である
[0029] 本発明の水添ブロック共重合体は共役ジェンとビュル芳香族化合物力 なるブロッ ク共重合体の水素添加物であり、耐熱性、耐磨耗性、表面感触の点から共重合体中 の共役ジェンィ匕合物に基づく二重結合の 75%以上、好ましくは 80%以上、更に好 ましくは 85%以上、特に好ましくは 90%以上が水添されている。なお、水添ブロック 共重合体におけるビニル芳香族炭化水素に基づく芳香族二重結合の水添率につい ては特に制限はないが、水添率を 50%以下、好ましくは 30%以下、更に好ましくは 2 0%以下にすることが好ましい。水添共重合体の水添率は、核磁気共鳴装置 (NMR )等を用いて知ることができる。
[0030] 本発明にお 、て、水添ブロック共重合体の構造は特に制限はなぐ V、かなる構造の ものでも使用できる。重合体ブロック Aが少なくとも 1個、好ましくは 2個、水添共重合 体ブロック Bが少なくとも 1個、及び水添重合体ブロック Cが少なくとも 1個力 なる水 添共重合体としては、例えば下記一般式で表されるような構造を有するものが挙げら れる。
[0031] C- (B-A) 、 C- (A-B) 、 C— (A—B—A) 、
C一 (B-A-B) 、 A— C一 (B-A) 、 A— C一 (A— B) 、
n 1 1
A-C- (B-A) -B, [ (A-B-C) ] —X、 [A—(B— C) ] —X、
1 1 m 1 m
[(A-B)— C] — X、 [ (A—B—A)— C] — X、
1 m 1 m
[(B-A-B) -C] X、 [ (C B— A) ] — X、
1 m 1 m
[C- (B-A) ] 一 X、 [C一 (A—B—A) ] — X、
1 m 1 m
[C- (B-A-B) ] -X
1 m
(上式において、 Aはビュル芳香族化合物を主体とする重合体ブロックであり、 Bは 共役ジェンとビニル芳香族化合物とのランダム共重合体の水添共重合体ブロックで あり、 Cは共役ジェンを主体とする重合体の水添重合体ブロックである。各ブロックの 境界は必ずしも明瞭に区別される必要はない。ランダム共重合体の水添共重合体ブ ロック B中のビニル芳香族炭化水素は均一に分布していても、又はテーパー状に分 布していてもよい。またブロック Bには、ビニル芳香族炭化水素が均一に分布してい る部分及び Z又はテーパー状に分布して ヽる部分がそれぞれ複数個共存して ヽて もよい。またブロック Bには、ビニル芳香族炭化水素含有量が異なるセグメントが複数 個共存していてもよい。又、 1は 1以上の整数、好ましくは 1〜5の整数、 nは 2以上の 整数、好ましくは 2〜5の整数である。 mは 2以上の整数、好ましくは 2〜: L 1の整数で ある。 Xはカップリング剤の残基又は多官能開始剤の残基を示す。共重合体中にブ ロック A、ブロック B或いはブロック Cがそれぞれ複数存在する場合、それらの分子量 や組成等の構造は同一でも、異なっていても良い。また、 Xに結合しているポリマー 鎖の構造は同一でも、異なっていても良い。 )
この中でも、両末端にブロック Aを有する構造の共重合体が、耐熱性と機械的強度 の点で好ましぐ A— C— B— A構造が、特に好ましい。
[0032] 本発明の水添ブロック共重合体は、上記一般式で表される構造を有するものの任 意の混合物でも良い。また、水添ブロック共重合体にビニル芳香族化合物重合体や A— B構造、 B— A— B構造を有する共重合体が混合されていても良い。
[0033] 本発明において共役ジェンは 1対の共役二重結合を有するジォレフインであり、例 えば 1, 3—ブタジエン、 2—メチルー 1, 3—ブタジエン(イソプレン)、 2, 3—ジメチル - 1, 3—ブタジエン、 1, 3—ペンタジェン、 2—メチルー 1, 3—ペンタジェン、 1, 3 一へキサジェンなどである力 特に一般的なものとしては 1, 3—ブタジエン、イソプレ ンが挙げられる。これらは一種のみならず二種以上を使用してもよい。また、ビュル芳 香族化合物としては、例えばスチレン、 OC—メチルスチレン、 p—メチルスチレン、ジビ ニルベンゼン、 1, 1ージフエニルエチレン、 N, N—ジメチルー p—アミノエチルスチ レン、 N, N—ジェチルー p—アミノエチルスチレン等があげられ、これらは一種のみ ならず二種以上を使用してもよい。
[0034] 本発明において、水素添加前の共重合体は、例えば、炭化水素溶媒中で有機ァ ルカリ金属化合物等の開始剤を用いてァ-オンリビング重合により得られる。炭化水 素溶媒としては、例えば n—ブタン、イソブタン、 n—ペンタン、 n—へキサン、 n—ヘプ タン、 n—オクタンの如き脂肪族炭化水素類、シクロへキサン、シクロヘプタン、メチル シクロヘプタンの如き脂環式炭化水素類、また、ベンゼン、トルエン、キシレン、ェチ ルベンゼンの如き芳香族炭化水素である。
[0035] また、開始剤としては、一般的に共役ジェン化合物及びビニル芳香族化合物に対 しァ-オン重合活性があることが知られている脂肪族炭化水素アルカリ金属化合物、 芳香族炭化水素アルカリ金属化合物、有機アミノアルカリ金属化合物等が挙げられ、 アルカリ金属としてはリチウム、ナトリウム、カリウム等が挙げられる。好適な有機アル カリ金属化合物としては、炭素数 1から 20の脂肪族及び芳香族炭化水素リチウムィ匕 合物であり、 1分子中に 1個のリチウムを含む化合物、 1分子中に複数のリチウムを含 むジリチウム化合物、トリリチウム化合物、テトラリチウム化合物が含まれる。具体的に は n—プロピノレリチウム、 n—ブチノレリチウム、 sec—ブチノレリチウム、 tert—ブチノレリ チウム、 n—ペンチルリチウム、 n—へキシルリチウム、ベンジルリチウム、フエ-ルリチ ゥム、トリルリチウム、ジイソプロべ-ルベンゼンと sec—ブチルリチウムの反応生成物 、さらにジビュルベンゼンと sec—ブチルリチウムと少量の 1、 3—ブタジエンの反応生 成物等があげられる。
[0036] さらに、米国特許第 5, 708, 092号明細書、英国特許第 2, 241, 239号明細書、 米国特許第 5, 527, 753号明細書等に開示されている有機アルカリ金属化合物も 使用することができる。
[0037] 本発明にお 、て有機アルカリ金属化合物を重合開始剤として共役ジェンィ匕合物と ビニル芳香族化合物を共重合する際に、重合体に組み込まれる共役ジェン化合物 に起因するビュル結合(1, 2—又は 3, 4—結合)量の調整や共役ジェン化合物とビ -ル芳香族化合物とのランダム共重合性を調整するために、調整剤として第 3級アミ ン化合物又はエーテルィ匕合物を添加することができる。第 3級アミンィ匕合物としては
Figure imgf000010_0001
R2、 R3は炭素数 1から 20の炭化水素基又は第 3級ァミノ 基を有する炭化水素基である)の化合物である。たとえば、トリメチルァミン、トリェチ ルァミン、トリブチルァミン、 N, N—ジメチルァニリン、 N—ェチルビペリジン、 N—メ チルピロリジン、 N, N, Ν' , Ν,ーテトラメチルエチレンジァミン、 Ν, Ν, Ν' , Ν,ーテ トラェチルエチレンジァミン、 1, 2—ジピベリジノエタン、トリメチルアミノエチルピペラ ジン、 Ν, Ν, Ν,, Ν", Ν"—ペンタメチルエチレントリアミン、 Ν, Ν,一ジォクチルー ρ —フエ-レンジアミン等である。
[0038] またエーテルィ匕合物としては、直鎖状エーテル化合物及び環状エーテル化合物か ら選ばれ、直鎖状エーテルィ匕合物としてはジメチルエーテル、ジェチルエーテル、ジ フエニノレエーテノレ、エチレングリコーノレジメチノレエーテノレ、エチレングリコーノレジェチ ノレエーテノレ、エチレングリコールジブチルエーテル等のエチレングリコールのジアル キルエーテル化合物類、ジエチレングリコールジメチルエーテル、ジエチレングリコー ルジェチルエーテル、ジエチレングリコールジブチルエーテル等のジエチレングリコ 一ルのジアルキルエーテル化合物類が挙げられる。また、環状エーテル化合物とし てはテトラヒドロフラン、ジォキサン、 2, 5—ジメチルォキソラン、 2, 2, 5, 5—テトラメ チルォキソラン、 2, 2—ビス(2—ォキソラ -ル)プロパン、フルフリルアルコールのァ ルキルエーテル等が挙げられる。
[0039] 本発明にお 、て有機アルカリ金属化合物を重合開始剤として共役ジェンィ匕合物と ビニル芳香族化合物を共重合する方法は、バッチ重合であっても連続重合であって も、或いはそれらの組み合わせであってもよい。特に耐熱性に優れた共重合体を得 るにはバッチ重合方法が推奨される。重合温度は、一般に 0°C乃至 180°C、好ましく は 30°C乃至 150°Cである。重合に要する時間は条件によって異なる力 通常は 48 時間以内であり、特に好適には 0. 1時間乃至 10時間である。又、重合系の雰囲気 は窒素ガスなどの不活性ガス雰囲気にすることが好ましい。重合圧力は、上記重合 温度範囲でモノマー及び溶媒を液相に維持するに充分な圧力の範囲で行えばよぐ 特に限定されるものではない。更に、重合系内は触媒及びリビングポリマーを不活性 ィ匕させるような不純物、例えば水、酸素、炭酸ガスなどが混入しないように留意する必 要がある。
[0040] 本発明において、前記重合終了時に 2官能以上のカップリング剤を必要量添加し てカップリング反応を行うことができる。 2官能カップリング剤としては公知のもの 、ず れでも良ぐ特に限定されない。例えば、ジメチルジクロロシラン、ジメチルジブ口モシ ラン等のジハロゲンィ匕合物、安息香酸メチル、安息香酸ェチル、安息香酸フ ニル、 フタル酸エステル類等の酸エステル類等が挙げられる。また、 3官能以上の多官能力 ップリング剤としては公知のものいずれでも良ぐ特に限定されない。例えば、 3価以 上のポリアルコール類、エポキシ化大豆油、ジグリシジルビスフエノール A等の多価 エポキシィ匕合物、一般式 R— SIX (ただし、 Rは炭素数 1から 20の炭化水素基、 X はハロゲン、 nは 3から 4の整数を示す)で示されるハロゲン化珪素化合物、例えばメ チルシリルトリクロリド、 tーブチルシリルトリクロリド、四塩ィ匕珪素及びこれらの臭素化 物等、一般式 R4— SnX (ただし、 Rは炭素数 1から 20の炭化水素基、 Xはハロゲン 、 nは 3から 4の整数を示す)で示されるハロゲン化錫化合物、例えばメチル錫トリクロ リド、 t—ブチル錫トリクロリド、四塩ィ匕錫等の多価ハロゲンィ匕合物が挙げられる。炭酸 ジメチルゃ炭酸ジェチル等も使用できる。
[0041] 本発明は、上述した水添共重合体に官能基を有する原子団が結合した変性水添 共重合体も含む。官能基含有原子団としては、例えば水酸基、カルボニル基、チォ カルボ-ル基、酸ハロゲン化物基、酸無水物基、カルボキシル基、チォカルボキシル 酸基、アルデヒド基、チォアルデヒド基、カルボン酸エステル基、アミド基、スルホン酸 基、スルホン酸エステル基、リン酸基、リン酸エステル基、アミノ基、イミノ基、二トリル 基、ピリジル基、キノリン基、エポキシ基、チォエポキシ基、スルフイド基、イソシァネー ト基、イソチオシァネート基、ハロゲンィ匕ケィ素基、シラノール基、アルコキシケィ素基 、ハロゲンィ匕スズ基、アルコキシスズ基、フエ-ルスズ基等力 選ばれる官能基を少な くとも 1種含有する原子団が挙げられる。そして、水酸基、エポキシ基、アミノ基、シラ ノール基、アルコキシシラン基力 選ばれる官能基を少なくとも 1個有する原子団が 結合して 、る変性水添ブロック共重合体が好ま 、。
[0042] 官能基を有する変性剤の例としては、テトラグリシジルメタキシレンジァミン、テトラグ リシジル一 1, 3—ビスアミノメチルシクロへキサン、 ε—力プロラタトン、 δ —バレロラタ トン、 4ーメトキシベンゾフエノン、 γ—グリシドキシェチノレトリメトキシシラン、 γ—グリ ン、ビス(γ—グリシドキシプロピル)メチルプロポキシシラン、 1, 3—ジメチルー 2—ィ ミダゾリジノン、 1, 3—ジェチル一 2—イミダゾリジノン、 Ν, Ν'—ジメチルプロピレンゥ レア、 N—メチルピロリドンなどが挙げられる。
[0043] 本発明の変性水添ブロック共重合体は、有機リチウム化合物を重合触媒として上述 のような方法で得たブロック共重合体のリビング末端に、官能基含有原子団を生成す る変性剤を付加反応させることにより得られるブロック共重合体に水素を添加すること により得ることができる。
[0044] 本発明においては、反応温度は好ましくは 0°C〜150°C、より好ましくは 20°C〜12 0°Cである。変性反応に要する時間は他の条件によって異なる力 好ましくは 24時間 以内であり、特に好適には 0. 1時間〜 10時間である。
[0045] 上記で得られたブロック共重合体或いは変性ブロック共重合体を水素添加すること により、本発明の水添ブロック共重合体等が得られる。水添触媒としては、特に制限 されず、従来力 公知である(l) Ni、 Pt、 Pd、 Ru等の金属をカーボン、シリカ、アルミ ナ、ケイソゥ土等に担持させた担持型不均一系水添触媒、(2) Ni、 Co、 Fe、 Cr等の 有機酸塩又はァセチルアセトン塩などの遷移金属塩と有機アルミ-ユウム等の還元 剤とを用いる、いわゆるチーグラー型水添触媒、(3)Ti、 Ru、 Rh、 Zr等の有機金属 化合物等のいわゆる有機金属錯体等の均一系水添触媒が用いられる。具体的な水 添触媒としては、特公昭 42— 8704号公報、特公昭 43— 6636号公報、特公昭 63 —4841号公報、特公平 1— 37970号公報、特公平 1— 53851号公報、特公平 2— 9041号公報に記載された水添触媒を使用することができる。好ましい水添触媒とし てはチタノセンィ匕合物及び Z又は還元性有機金属化合物との混合物が挙げられる。
[0046] チタノセンィ匕合物としては、特開平 8— 109219号公報に記載された化合物が使用 できるが、具体例としては、ビスシクロペンタジェ-ルチタンジクロライド、モノペンタメ チルシクロペンタジェ-ルチタントリクロライド等の(置換)シクロペンタジェ-ル骨格、 インデュル骨格あるいはフルォレニル骨格を有する配位子を少なくとも 1つ以上もつ 化合物があげられる。また、還元性有機金属化合物としては、有機リチウム等の有機 アルカリ金属化合物、有機マグネシウム化合物、有機アルミニウム化合物、有機ホウ 素化合物あるいは有機亜鉛ィ匕合物等があげられる。
[0047] 本発明において、水添反応は一般的に 0°C〜200°C、より好ましくは 30°C〜150°C の温度範囲で実施される。水添反応に使用される水素の圧力は 0. lMPa〜15MP a、好ましくは 0. 2MPa〜10MPa、更に好ましくは 0. 3MPa〜5MPaが推奨される。 また、水添反応時間は通常 3分〜 10時間、好ましくは 10分〜 5時間である。水添反 応は、バッチプロセス、連続プロセス、或いはそれらの組み合わせのいずれでも用い ることがでさる。
[0048] 上記のようにして得られた水添ブロック共重合体の溶液は、必要に応じて触媒残查 を除去し、水添ブロック共重合体を溶液力 分離することができる。溶媒の分離の方 法としては、例えば水添後の反応液にアセトン又はアルコール等の水添ブロック共重 合体に対する貧溶媒となる極性溶媒を加えて重合体を沈澱させて回収する方法、反 応液を撹拌下熱湯中に投入し、スチームストリツビングにより溶媒を除去して回収する 方法、又は直接重合体溶液を加熱して溶媒を留去する方法等を挙げることができる 。尚、本発明の水添ブロック共重合体には、各種フエノール系安定剤、リン系安定剤 、ィォゥ系安定剤、アミン系安定剤等の安定剤を添加することができる。
[0049] 本発明の水添共重合体は、 a、 β 不飽和カルボン酸又はその誘導体、例えばそ の無水物、エステル化物、アミドィ匕物、イミド化物でグラフト変性させ、官能基を有す る原子団と結合させることができる。 α、 j8—不飽和カルボン酸又はその誘導体の具 体例としては、無水マレイン酸、無水マレイン酸イミド、アクリル酸又はそのエステル、 メタアクリル酸又はそのエステル、エンド一シス一ビシクロ〔2, 2, 1〕一 5 ヘプテン一 2、 3—ジカルボン酸又はその無水物などが挙げられる。 a、 j8—不飽和カルボン酸 又はその誘導体の付加量は、水添重合体 100重量部当たり、一般に 0. 01〜20重 量部、好ましくは 0. 1〜: L0重量部である。
[0050] 本発明においては、グラフト変性する場合の反応温度は、好ましくは 100〜300°C 、より好ましくは 120〜280°Cである。グラフト変性する方法の詳細については、例え ば、特開昭 62— 79211号公報を参照できる。
[0051] 上述した本発明の水添ブロック共重合体 (以下、成分(1)とも呼ぶ)は、ゴム用軟ィ匕 剤(以下、成分(2)とも呼ぶ)と組み合わせて各種成形材料に適した水添ブロック共 重合体組成物を得ることができる。
[0052] 本発明で用いるゴム用軟化剤は、組成物を柔軟化させると共に加工性を付与する 。ゴム用軟化材としては、鉱物油や、液状もしくは低分子量の合成軟化剤が挙げられ 、中でも、ナフテン系及び Z又はパラフィン系のプロセスオイル又はェクステンダーォ ィルが好ましい。鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環及びパラフィン鎖 の混合物であり、パラフィン鎖の炭素数が全炭素の 50%以上を占めるものがパラフィ ン系と呼ばれ、ナフテン環の炭素数が 30〜45%のものがナフテン系、また芳香族炭 素数が 30%を超えるものが芳香族系と呼ばれる。組成物には合成軟化剤を用いても よぐポリブテン、低分子量ポリブタジエン、流動パラフィン等が使用可能である力 上 記した鉱物油系ゴム用軟化剤が好ま Uヽ。組成物におけるゴム用軟化剤の配合量は 、水添ブロック共重合体 100重量部に対して 5〜: LOO重量部、好ましくは 10〜80重 量部、更に好ましくは 20〜60重量部である。ゴム用軟化剤の量が 100重量部を超え るとブリードアウトを生じやすぐ表面感触を悪化させる。
[0053] 本発明の水添ブロック共重合体とゴム用軟化剤からなる水添ブロック共重合体組成 物は、得られた粘弾性測定チャートにおいて、 tan δ (損失正接)のピークが 0°C〜4 0°C、好ましくは 5°C〜35°C、更に好ましくは 10°C〜30°Cに少なくとも 1つ存在するこ とが推奨される。該 tan δのピークは、水添ブロック共重合体の重合体鎖中における 共役ジェンとビニル芳香族化合物とのランダム共重合体の水添重合体ブロック Βとゴ ム用軟化剤に起因するピークである。このピークの存在が 0°C〜40°Cの範囲に少な くとも 1つ存在することは、水添共重合体組成物の耐磨耗性と柔軟性とのバランスの 点で必要である。なお、本発明において、水添共重合体等の重合体鎖中に結合して いるビュル芳香族化合物重合体ブロック Aに起因する tan δのピークの存在位置は 特に制限はないが、一般に 80°Cを超え、 150°Cの温度範囲内に存在する。
[0054] 本発明の水添ブロック共重合体 (成分(1) )は、ゴム用軟化剤 (成分 (2) )に加え、熱 可塑性榭脂及びゴム状重合体からなる群から選ばれた少なくとも 1種の成分 (以下、 これらを成分(3)とも呼ぶ)と組み合わせて各種成形材料に適した水添ブロック共重 合体組成物を得ることができる。成分(3)の配合量は、成分(1) 100重量部に対して 5〜100重量部、好ましくは 10〜80重量部、更に好ましくは 20〜60重量部である。 成分 (3)の量が多くなると、柔軟性を低下させたり、透明性を悪化させる。
[0055] 本発明の水添ブロック共重合体組成物とポリプロピレン等の熱可塑性榭脂とをブレ ンドした場合、機械特性や耐熱性等に優れた組成物が得られる。 [0056] 熱可塑性榭脂としては、共役ジェンィ匕合物とビニル芳香族化合物とのブロック共重 合榭脂及びその水素添加物 (但し、上述した本発明の水添ブロック共重合体とは異 なる)、前記のビニル芳香族化合物の重合体、前記のビニル芳香族化合物と他のビ -ルモノマー、例えばエチレン、プロピレン、ブチレン、塩化ビュル、塩化ビ-リデン、 酢酸ビュル、アクリル酸及びアクリルメチル等のアクリル酸エステル、メタクリル酸及び メタクリル酸メチル等のメタクリル酸エステル、アクリロニトリル、メタタリ口-トリル等との 共重合榭脂、ゴム変性スチレン系榭脂 (HIPS)、アクリロニトリル—ブタジエン—スチ レン共重合榭脂 (ABS)、メタクリル酸エステル一ブタジエン一スチレン共重合榭脂( MBS)などが挙げられる。
[0057] また、ポリエチレン、エチレンを 50重量0 /0以上含有するエチレンとこれと共重合可 能な他のモノマーとの共重合体、例えば、エチレン プロピレン共重合体、エチレン ーブチレン共重合体、エチレン一へキセン共重合体、エチレン オタテン共重合体、 エチレン 酢酸ビニル共重合体及びその加水分解物、エチレン アクリル酸アイォ ノマーや塩素化ポリエチレンなどのポリエチレン系榭脂、ポリプロピレン、プロピレンを 50重量%以上含有するプロピレンとこれと共重合可能な他のモノマーとの共重合体 、例えば、プロピレン エチレン共重合体、プロピレン アクリル酸ェチル共重合体 や塩素化ポリプロピレンなどのポリプロピレン系榭脂、エチレン ノルボルネン榭脂等 の環状ォレフィン系榭脂、ポリブテン系榭脂、ポリ塩ィ匕ビ二ル系榭脂、ポリ酢酸ビニル 系榭脂及びその加水分解物などが挙げられる。
[0058] また、アクリル酸及びそのエステルやアミドの重合体、ポリアタリレート系榭脂、アタリ 口-トリル及び Z又はメタタリ口-トリルの重合体、これらのアクリロニトリル系モノマー を 50重量%以上含有する他の共重合可能なモノマーとの共重合体である-トリル榭 脂、ナイロン 46、ナイロン 6、ナイロン 66、ナイロン 610、ナイロン 11、ナイ ロン— 12、ナイロン— 6ナイロン— 12共重合体などのポリアミド系榭脂、ポリエステル 系榭脂、熱可塑性ポリウレタン系榭脂、ポリ 4, 4'ージォキシジフエ二ルー 2, 2' プロパンカーボネートなどのポリカーボネート系重合体、ポリエーテルスルホンやポリ ァリルスルホンなどの熱可塑性ポリスルホン、ポリオキシメチレン系榭脂、ポリ(2, 6— ジメチルー 1, 4 フエ-レン)エーテルなどのポリフエ-レンエーテル系榭脂、ポリフ ェ-レンスルフイド、ポリ 4, 4,ージフエ-レンスルフイドなどのポリフエ-レンスルフイド 系榭脂、ポリアリレート系榭脂、ポリエーテルケトン重合体又は共重合体、ポリケトン 系榭脂、フッ素系榭脂、ポリオキシベンゾィル系重合体、ポリイミド系榭脂、 1, 2—ポ リブタジエン、トランスポリブタジエンなどのポリブタジエン系榭脂などが挙げられる。
[0059] これらの熱可塑性榭脂 (成分(3) )のうち、特に好ましいのは、ポリスチレン、ゴム変 性スチレン系榭脂等のスチレン系榭脂、ポリエチレン、エチレン プロピレン共重合 体、エチレン プロピレンーブチレン共重合体、エチレンーブチレン共重合体、ェチ レン一へキセン共重合体、エチレン オタテン共重合体、エチレン 酢酸ビュル系 共重合体、エチレン アクリル酸エステル系共重合体、エチレンーメタクリル酸エステ ル系共重合体等のポリエチレン系重合体、ポリプロピレン、プロピレン エチレン共 重合体等のポリプロピレン系榭脂、ポリアミド系榭脂、ポリエステル系榭脂、ポリカー ボネート系榭脂である。これらの熱可塑性榭脂の数平均分子量は一般に 1000以上 、好ましくは 5000〜500万、更に好ましくは 1万〜 100万である。
[0060] また、本発明の水添ブロック共重合体とゴム状重合体とをブレンドした場合、伸び特 性等に優れた組成物が得られる。
[0061] ゴム状重合体としては、ブタジエンゴム及びその水素添加物、スチレンーブタジェ ンゴム及びその水素添加物(但し本発明の水添共重合体とは異なる)、イソプレンゴ ム、アクリロニトリル一ブタジエンゴム及びその水素添加物、 1, 2—ポリブタジエン、ク ロロプレンゴム、エチレン プロピレンゴム、エチレン プロピレン ジェンゴム(EPD M)、エチレンーブテン ジェンゴム、エチレンーブテンゴム、ェチェン一へキセンゴ ム、エチレン一オタテンゴム等のォレフィン系エラストマ一、ブチノレゴム、アタリノレゴム 、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴムなどが挙げられる。
[0062] また、ェピクロルヒドリンゴム、 a、 j8—不飽和-トリル—アクリル酸エステル—共役 ジェン共重合ゴム、ウレタンゴム、多硫化ゴム、スチレン ブタジエンブロック共重合 体及びその水素添加物、スチレン イソプレンブロック共重合体及びその水素添カロ 物等のスチレン系エラストマ一、天然ゴムなどが挙げられる。
[0063] これらのゴム状重合体(成分(3) )のうち、好ましいのは、スチレン ブタジエンブロ ック共重合体及びその水素添加物、スチレン イソプレンブロック共重合体及びその 水素添加物等のスチレン系エラストマ一、 1、 2—ポリブタジエン、エチレンーブテンゴ ム、エチレン一才クテンゴム、エチレン プロピレン ジェンゴム(EPDM)等の才レ フィン系エラストマ一、ブチルゴムである。これらのゴム状重合体は、官能基を付与し た変性ゴムであっても良!、。これらのゴム状重合体の数平均分子量は 1万以上が好 ましぐより好ましくは 2万〜 100万、更に好ましくは 3万〜 80万である。
[0064] また、これらの熱可塑性榭脂及びゴム状重合体は必要に応じ 2種以上を併用しても 良い。併用する場合は特に限定される物ではなぐ熱可塑性榭脂成分同志でもゴム 状重合体成分同志でも、あるいは熱可塑性榭脂とゴム状重合体の併用でもかまわな い。
[0065] また、本発明は、上述した本発明に係る水添ブロック共重合体を含む水添ブロック 共重合体組成物も提供する。当該水添ブロック共重合体組成物は、上述した本発明 に係る水添ブロック共重合体 (以下、成分 (ィ) t 、うこともある)と、成分 (ィ)とは異な る水添ブロック共重合体 (以下、成分 (口)ということもある)と、熱可塑性榭脂(以下成 分 (ハ)ということもある)と、ゴム用軟化剤 (以下、成分 (二)ということもある)とを含むも のである。
[0066] ここで、成分 (口)は、ビニル芳香族化合物を主体とする少なくとも 2個の重合体プロ ック Dと、共役ジェンを主体とする少なくとも 1個の重合体ブロック Eと力 なるブロック 共重合体を水添して得られる水添ブロック共重合体であって、以下の(7)〜(9)の特 性を有する水添ブロック共重合体である。
[0067] (7)水添ブロック共重合体中の全ビュル芳香族化合物の含有量が 10重量%以上 4 0重量%以下で、全ビニル芳香族化合物中のビニル芳香族化合物を主体とする重 合体ブロック Dの割合が 80重量%以上である。
(8)水添ブロック共重合体の重量平均分子量が 20万以上 60万以下である。
(9)水添ブロック共重合体中の共役ジェン単量体単位の二重結合の 75%以上が 水添されている。
[0068] 成分 (口)としては、例えば下記の一般式で表されるような構造を有するものが好適 である。
D- (E-D) , E- (D-E)、 (D-E)、(D— E) -X 上式にお 、て Dはビニル芳香族化合物を主体とする重合体ブロックであり、 Eは共 役ジェン化合物を主体とする重合体ブロックである。又、 nは 2〜10の整数、 mは 2〜 8の整数、 Xはカップリング剤の残基又は多官能開始剤の残基を示し、単一の構造を 有する物や構造の異なる物、水素添加率の事なる物の混合物であっても良い。
[0069] 成分(口)の水添ブロック共重合体において、「主体とする」と言う表現は、該当モノ マーの少なくとも 50%以上、好ましくは 70%以上を占める事を意味する。
[0070] 成分 (口)の水添ブロック共重合体にお!、て全ビニル芳香族化合物の含有量は 10 重量%以上 40重量%以下、好ましくは 24重量%以上 36重量%以下である。全ビニ ル芳香族化合物の含有量が本発明で規定する範囲のものを使用することは柔軟性 、耐熱性の良好な材料を得るために必要である。
[0071] また、成分 (口)の水添ブロック共重合体において全ビュル芳香族化合物中のビ- ル芳香族化合物を主体とする重合体ブロック Dの割合としては、機械的強度の良好 な材料を得る点で 80重量%以上、好ましくは 85重量%以上、更に好ましくは 90重量 %以上である。
[0072] 成分 (口)の水添ブロック共重合体にお!、て、ビニル芳香族化合物を主体とする重 合体ブロック D、共役ジェンィ匕合物又はその水素添加物を主体とする重合体ブロック Eは、それぞれの重合体ブロック中における分子鎖中の共役ジェンィ匕合物又はその 水素添加物とビュル芳香族化合物の分布がランダム、テーパード (分子鎖中に沿つ てモノマー成分が増加又は減少するもの)、一部ブロック状又はこれらの任意の組み 合わせであっても良ぐ該ビニル芳香族化合物を主体とする重合体ブロック Dと共役 ジェンィ匕合物又はその水素添加物を主体とする重合体ブロック Eとがそれぞれ 2個以 上ある場合には、各重合体ブロックはそれぞれが同一構造であっても、又は異なる構 造であっても良い。
[0073] 成分 (口)の水添ブロック共重合体を構成するビニル芳香族化合物としては、例えば 、スチレン、 α—メチルスチレン、ビュルトルエン、 ρ—第 3ブチルスチレンなどのうち 力も 1種以上が選択でき、なかでもスチレンが好ましい。また、共役ジェン化合物とし ては、例えばブタジエン、イソプレン、 1, 3—ペンタジェン、 2, 3—ジメチルー 1, 3ブ タジェンなどのうちから 1種以上が選択でき、中でもブタジエン、イソプレン及びこれら の組み合わせが好ましい。そして、共役ジェン化合物又はその水素添加物を主体と する重合体ブロック Bは、そのブロックにおけるミクロ構造を任意に選ぶことができ、例 えば水素添加前のポリブタジエンブロックの場合に於 ヽて、柔軟性と軟化剤保持力 の点で 1, 2—ビュル結合が 25〜55重量0 /0、好ましくは 30〜50重量%である。
[0074] 成分 (口)の水添ブロック共重合体の重量平均分子量は、耐熱性、機械的強度、吸 油性の点でポリスチレン換算値で 20万以上 60万以下、好ましくは 22万以上 50万以 下の範囲であり、分子量分布が 5以下、一般に 1〜4、好ましくは 1〜3である。
[0075] 成分 (口)の水添ブロック共重合体は、上記した構造を有するもので有れば、その製 造方法を制限するものではなぐ例えば、特公昭 40— 23798号公報に記載された 方法により、リチウム触媒を用いて不活性溶媒中でビニル芳香族化合物一共役ジェ ン化合物ブロック共重合体を合成することができる。また、より好ましい性能を発揮す るビニル芳香族化合物—水素添加された共役ジェンィ匕合物ブロック共重合体の製 造方法としては、例えば、特公昭 42— 8704号公報、特公昭 43— 6636号公報に記 載された方法でよいが、特に高度の耐候性や耐熱老化性を求められる用途にあって は、チタン系水添触媒の使用が推奨され、例えば、特開昭 59— 133203号公報、特 開昭 60— 79005号公報の方法が挙げられる。その際の共役ジェンィ匕合物に由来す る脂肪族二重結合は、 75%以上、好ましくは 80%以上、更に好ましくは 90%以上が 水素添加されており、共役ジェンィ匕合物の多くは形態的にォレフィン性ィ匕合物に変 換されたことになる。例えば、ブタジエン重合体ブロックは、エチレンーブチレンを主 体とする重合体ブロックへと変換する。
[0076] また、成分 (口)の水添ブロック共重合体にぉ 、て、ビニル芳香族化合物を主体とす る重合体ブロック D、及び共役ジェン化合物又はその水素添加物を主体とする重合 体ブロック Eに必要に応じて共重合されて 、るビニル芳香族化合物に由来する芳香 族二重結合の水素添加率にっ 、ての制限は特にな!/、が、 20%以下が好ま 、。
[0077] 次に成分 (ハ)の熱可塑性榭脂は特に制限はないが以下のものが例として挙げられ る。
[0078] 成分 (ハ)の熱可塑性榭脂としては、共役ジェン化合物とビニル芳香族化合物との ブロック共重合榭脂及びその水素添加物 (但し、本発明に係わる前述の成分 (ィ)及 び (口)の水添ブロック共重合体とは異なる)、前記のビニル芳香族化合物の重合体、 前記のビュル芳香族化合物と他のビュルモノマー、例えばエチレン、プロピレン、ブ チレン、塩化ビュル、塩化ビ-リデン、酢酸ビュル、アクリル酸及びアクリルメチル等 のアクリル酸エステル、メタクリル酸及びメタクリル酸メチル等のメタクリル酸エステル、 アクリロニトリル、メタタリ口-トリル等との共重合榭脂、ゴム変性スチレン系榭脂 (HIP S)、アクリロニトリル一ブタジエン一スチレン共重合榭脂 (ABS)、メタクリル酸エステ ルーブタジエン スチレン共重合榭脂(MBS)、ポリエチレン、エチレンを 50重量0 /0 以上含有するエチレンとこれと共重合可能な他のモノマーとの共重合体、例えば、ェ チレン プロピレン共重合体、エチレンーブチレン共重合体、エチレン一へキセン共 重合体、エチレン オタテン共重合体、エチレン 酢酸ビュル共重合体及びその加 水分解物、エチレン アクリル酸アイオノマーや塩素化ポリエチレンなどのポリェチレ ン系榭脂、ポリプロピレン、プロピレンを 50重量0 /0以上含有するプロピレンとこれと共 重合可能な他のモノマーとの共重合体、例えば、プロピレン エチレン共重合体、プ ロピレン アクリル酸ェチル共重合体や塩素化ポリプロピレンなどのポリプロピレン系 榭脂、エチレン ノルボルネン榭脂等の環状ォレフィン系榭脂、ポリブテン系榭脂、 ポリ塩ィ匕ビ二ル系榭脂、ポリ酢酸ビュル系榭脂及びその加水分解物、アクリル酸及 びそのエステルやアミドの重合体、ポリアタリレート系榭脂、アクリロニトリル及び Z又 はメタクリロ-トリルの重合体、これらのアクリロニトリル系モノマーを 50重量%以上含 有する他の共重合可能なモノマーとの共重合体である-トリル榭脂、ナイロン— 46、 ナイロン 6、ナイロン 66、ナイロン 610、ナイロン 11、ナイロン 12、ナイロン 6ナイロン 12共重合体などのポリアミド系榭脂、ポリエステル系榭脂、熱可塑性 ポリウレタン系榭脂、ポリ 4, 4,ジォキシジフエ-ルー 2, 2' プロパンカーボネート などのポリカーボネート系重合体、ポリエーテルスルホンやポリアリルスルホンなどの 熱可塑性ポリスルホン、ポリオキシメチレン系榭脂、ポリ(2, 6 ジメチルー 1, 4ーフ ェ-レン)エーテルなどのポリフエ-レンエーテル系榭脂、ポリフエ-レンスルフイド、 ポリ 4, 4,ジフエ-レンスルフイドなどのポリフエ-レンスルフイド系榭脂、ポリアリレート 系榭脂、ポリエーテルケトン重合体又は共重合体、ポリケトン系榭脂、フッ素系榭脂、 ポリオキシベンゾィル系重合体、ポリイミド系榭脂、 1, 2—ポリブタジエン、トランスポリ ブタジエンなどのポリブタジエン系榭脂などである。
[0079] これらの熱可塑性榭脂の数平均分子量は一般に 1000以上、好ましくは 5000〜5 00万、更に好ましくは 1万〜 100万である。成分 (ハ)の熱可塑性榭脂として、好まし いものは、スチレン系榭脂、エチレン系やプロピレン系のォレフィン系榭脂(ポリオレ フィン榭脂)で、耐熱性、機械的強度、流動性 (成形加工性)、汎用性の点から、更に 好ましいものはォレフイン系榭脂で、その中でもとりわけ好ましいものはプロピレン系 榭脂である。
[0080] 成分 (ハ)の熱可塑性榭脂の配合量としては、前記した成分 (ィ)の水添ブロック共 重合体及び前記した成分 (口)の水添ブロック共重合体の合計 100重量部に対し、 ( ハ)成分が 20重量部〜 200重量部、好ましくは 25重量部〜 150重量部、更に好まし くは 30重量部〜 100重量部である。 目的の組成物の剛性や硬度にもよる力 成分( ハ)の配合量が 20重量部未満であると、得られる組成物の耐熱性や流動性 (成形性 )が低下し好ましくない。逆に 200重量部を越えると得られた組成物の柔軟性ゃ耐磨 耗性が低下し好ましくない。また、これら成分 (ハ)の熱可塑性榭脂は必要に応じ 2種 以上を併用しても良い。
[0081] なお、前記成分 (ィ)と成分 (口)の合計 100重量部における配合割合は、成分 (ィ) 10重量%〜90重量%に対し、成分(口)が 90重量%〜10重量%である。
[0082] 成分 (二)のゴム用軟化剤は、得られる組成物を柔軟化させると共に、流動性 (成形 加工性)を付与する。成分 (二)のゴム用軟化剤としては、鉱物油や液状もしくは低分 子量の合成軟化剤が挙げられ、中でも、ナフテン系及び Z又はパラフィン系のプロセ スオイル又はェクステンダーオイルが好ま ヽ。鉱物油系ゴム用軟化剤は芳香族環、 ナフテン環及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素の 50 %以上を占めるものがパラフィン系と呼ばれ、ナフテン環の炭素数が 30%〜45%の ものがナフテン系、また芳香族炭素数が 30%を超えるものが芳香族系と呼ばれる。 本発明の組成物には合成軟化剤を用いてもよぐポリブテン、低分子量ポリブタジェ ン、流動パラフィン等が使用可能であるが、上記した鉱物油系ゴム用軟化剤が好まし い。特に高度な耐熱性、機械的物性が要求される場合、鉱物油系ゴム用軟化剤の 4 0°Cの動粘度としては 60cst以上が好ましぐ特に好ましくは 120cst以上である。 [0083] 成分 (二)のゴム用軟化剤の配合量としては、前記成分 (ィ)及び前記成分 (口)の合 計 100重量部に対し、 20重量部〜 250重量部、好ましくは 30重量部〜 230重量部 、更に好ましくは 40重量部〜 200重量部である。 目的の組成物の硬度や流動性 (成 形加工性)にもよるが、成分 (二)の配合量が 20重量部未満であると、得られる組成 物の流動性 (成形性)が低下し好ましくない。逆に 250重量部を越えると得られた組 成物の耐磨耗性や表面感触に粘着感が現れ好ましくない。また、これらのゴム用軟 ィ匕剤は必要に応じ 2種以上を併用しても良 、。
[0084] さらに本発明の組成物においては、有機ポリシロキサンを添加して、耐摩耗性がさ らに向上した組成物を得ることができる。有機ポリシロキサンは、得られる組成物の表 面改質効果に優れ、耐磨耗性改善助剤として用いられる。有機ポリシロキサンの形 態としては低粘度の液状から高粘度の液状、さらには固体状のものがあり特に制限 はないが、組成物への分散性の観点から、液状物いわゆるシリコンオイルが好ましい 。更に動粘度はポリシロキサン自体のブリードによる表面感触の観点から、 90cst以 上が好ましぐ更に好ましくは動粘度 lOOOcst以上である。また有機ポリシロキサンの 種類としては、ジメチルポリシロキサン(ポリジメチルシロキサン)、メチルフエ-ルポリ シロキサン等汎用シリコンオイルやアルキル変性、ポリエーテル変性、フッ素変性、ァ ルコール変性、ァミノ変性、エポキシ変性等各種変性シリコンオイルがあり特に制限 は無いが、耐磨耗性改善助剤としての効果の観点からその中でも特に好ましいのは ジメチルポリシロキサンである。有機ポリシロキサンの添加量は、前記成分 (ィ)、(口) 、(ハ)、及び (二)の合計 100重量部に対して 0. 1重量部〜 10重量部の範囲にあり、 特に改質効果とブリードの観点力 好ましくは 0. 2重量部〜 7重量部である。また、こ れらの有機ポリシロキサンは必要に応じ 2種以上を併用しても良 、。
[0085] 上述した成分 (ィ)、(口)、(ハ)、及び (二)力もなる水添ブロック共重合体組成物は 、成型加工性の観点から、 230°C2. 16kgでのメルトフローレート(MFR)が 0. lgZ 10分〜 lOOg/10分の範囲であることが好ましぐより好ましくは 0. lg/10分〜 75g Z10分、特に好ましくは、 0. lgZlO分〜 30gZl0分である。
[0086] また、本発明の水添ブロック共重合体組成物は、その 23°Cでの反撥弾性力 0% 以下であり、好ましくは 35%以下である。 [0087] 本発明の水添ブロック共重合体、該水添ブロック共重合体組成物、或!ヽは前記成 分 (ィ)、(口)、(ハ)、及び (二)からなる水添ブロック共重合体組成物には、必要に応 じて任意の添加剤を配合することができる。添加剤の種類は、熱可塑性榭脂ゃゴム 状重合体の配合に一般的に用いられるものであれば特に制限はない。
[0088] 例えば、カーボンブラック、酸化チタン等の顔料や着色剤、ステアリン酸、ベへニン 酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレン ビスステアロアミド等の滑剤、離型剤、フタル酸エステル系やアジピン酸エステル化合 物、ァゼライン酸エステルイ匕合物等の脂肪酸エステル系、ミネラルオイル等の可塑剤 、ヒンダードフエノール系酸ィ匕防止剤、りん系熱安定剤等の酸化防止剤、ヒンダード アミン系光安定剤、ベンゾトリアゾール系紫外線吸収剤、帯電防止剤、有機繊維、ガ ラス繊維、炭素繊維、金属ウイスカ等の補強剤、その他添加剤或いはこれらの混合物 等が挙げられる。
[0089] 本発明の水添ブロック共重合体組成物には、必要に応じて任意の充填材及び難 燃剤を配合することができる。充填材及び難燃剤は熱可塑性榭脂ゃゴム状重合体の 配合に一般的に用いられる物であれば特に制限はな 、。
[0090] 充填剤としては例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネ シゥム、水酸ィ匕アルミニウム、硫酸カルシウム、硫酸バリウム、カーボンブラック、ガラ ス繊維、ガラスビーズ、ガラスバルーン、ガラスフレーク、グラフアイト、酸化チタン、チ タン酸カリウムゥイスカー、カーボンファイバー、アルミナ、カオリンクレー、ケィ酸、ケ ィ酸カルシウム、石英、マイ力、タルク、クレー、ジルコユア、チタン酸カリウム、アルミ ナ、金属粒子等の無機充填剤、木製チップ、木製パウダー、パルプ等の有機充填剤 を例示することができる。 形状としては、鱗片状、球状、粒状、粉体、不定形状等、特 に制限は無 、。これらは単独又は複数を組み合わせて使用することが可能である。
[0091] 次に難燃剤としては、臭素化合物が主なハロゲン系、芳香族化合物が主なリン系、 金属水酸ィ匕物が主な無機系等の難燃剤があげられるが、近年環境問題等により無 機難燃剤が主流となっており好ましい。無機難燃剤としては例えば、水酸化マグネシ ゥム、水酸化アルミニウム、水酸化カルシウム等の金属水酸化物、硼酸亜鉛、硼酸バ リウム等の金属酸化物、その他炭酸カルシウム、クレー、塩基性炭酸マグネシウム、 ノ、イド口タルサイト等、主に含水金属化合物等を例示することができる。本発明にお いては、上記難燃剤のうち、難燃性向上の点力も水酸ィ匕マグネシウム等の金属水酸 化物が好ましい。なお、上記難燃剤の中には、それ自身の難燃性発現効果は低い 力 他の難燃剤と併用することで相乗的により優れた効果を発揮する、いわゆる難燃 助剤も含まれる。
[0092] 充填剤、難燃剤は、シランカップリング剤等の表面処理剤であらカゝじめ表面処理を 行ったタイプを使用することもできる。
[0093] また、これらの充填剤、難燃剤は必要に応じ 2種以上を併用しても良い。併用する 場合は特に限定される物ではなぐ充填剤成分同志でも難燃剤成分同志でも、ある いは充填剤と難燃剤の併用でも力まわな 、。
[0094] 本発明の水添ブロック共重合体、該水添ブロック共重合体組成物、或!ヽは前記成 分 (ィ)、(口)、(ハ)、及び (二)からなる水添ブロック共重合体組成物には、必要に応 じてその他「ゴム ·プラスチック配合薬品」(ラバーダイジェスト社編)などに記載された 添加剤或いはこれらの混合物等を添加してもよ 、。
[0095] 本発明の水添ブロック共重合体、該水添ブロック共重合体組成物、或!ヽは前記成 分 (ィ)、(口)、(ハ)、及び (二)からなる水添ブロック共重合体組成物は、必要に応じ て架橋することができる。架橋の方法は、過酸化物、ィォゥ等の架橋剤及び必要に応 じて共架橋剤等の添カ卩による化学的方法、放射線架橋等を例示することができる。 架橋プロセスとしては、静的な方法、動的加硫法等を例示することができる。
[0096] 架橋剤としては、有機過酸化物、硫黄、フエノール系、イソシァネート系、チウラム系 、モルフォリンジスルフイド等を挙げることができ、これらはステアリン酸、ォレイン酸、 ステアリン酸亜鉛、酸化亜鉛等の架橋助剤、共架橋剤、加硫促進剤等を併用するこ とができる。有機過酸化物架橋剤としては、ヒドロパーオキサイド、ジアルキルバーオ キサイド、ジァリルパーオキサイド、ジァシルバーオキサイド、パーォキシエステル、ケ トンパーオキサイド等を例示することができる。また電子線、放射線等による物理的架 橋法も使用可能である。
[0097] 本発明の該水添ブロック共重合体組成物、或いは前記成分 (ィ)、(口)、(ハ)、及び
(二)力 なる水添ブロック共重合体組成物の製造方法は、特に制限されるものでは なぐ公知の方法が利用できる。例えば、バンノ リーミキサー、単軸スクリュー押出機
、 2軸スクリュー押出機、コニーダ、多軸スクリュー押出機等の一般的な混和機を用い た溶融混練方法、各成分を溶解又は分散混合後、溶剤を加熱除去する方法等が用 いられる。本発明においては押出機による溶融混合法が生産性、良混練性の点から 好ましい。得られる水添共重合体組成物の形状に特に制限はないが、ペレット状、シ ート状、ストランド状、チップ状等を挙げることができる。また、溶融混練後、直接成形 品とすることちでさる。
[0098] 本発明の水添ブロック共重合体、該水添ブロック共重合体組成物、或!ヽは前記成 分 (ィ)、(口)、(ハ)、及び (二)力もなる水添ブロック共重合体組成物の発泡成形体を 得る場合、本発明に適用可能な方法は、化学的方法、物理的方法等があり、各々、 無機系発泡剤、有機系発泡剤等の化学的発泡剤、物理発泡剤等の発泡剤の添カロ 等により材料内部に気泡を分布させることができる。発泡材料とすることにより、軽量 ィ匕、 柔軟性向上、意匠性向上等を図ることができる。無機系発泡剤としては、重炭酸 ナトリウム、炭酸アンモ-ゥム、重炭酸アンモ-ゥム、亜硝酸アンモ-ゥム、アジド化合 物、ホウ水素化ナトリウム、金属粉等を例示することができる。
[0099] 有機系発泡剤としては、ァゾジカルボンアミド、ァゾビスホルムアミド、ァゾビスイソブ チロ-トリル、ァゾジカルボン酸バリウム、 N、 N,ージ-トロソペンタメチレンテトラミン、 N、 N,一ジ-トロソ一 N、 N,一ジメチルテレフタルアミド、ベンゼンスルホ-ルヒドラジ ド、 p—トルエンスルホ-ルヒドラジド、 ρ、 ρ, 一ォキシビスベンゼンスルホ-ルヒドラジ ド、 ρ -トルエンスルホ-ルセミカルバジド等を例示することができる。
[0100] 物理的発泡剤としては、ペンタン、ブタン、へキサン等の炭化水素、塩化メチル、塩 ィ匕メチレン等のハロゲン化炭化水素、窒素、空気等のガス、トリクロ口フルォロメタン、 ジクロロジフノレオロメタン、トリクロロトリフノレォロェタン、クロロジフノレォロェタン、ハイド 口フルォロカーボン等のフッ素化炭化水素等を例示することができる。
[0101] 本発明の水添ブロック共重合体、該水添ブロック共重合体組成物、或 ヽは前記成 分 (ィ)、(口)、(ハ)、及び (二)力もなる水添ブロック共重合体組成物の成形体は、成 形品の表面に必要に応じて外観性向上、耐候性、耐傷つき性等向上等を目的として 、印刷、塗装、シボ等の加飾等を行うことができる。印刷性、塗装性等を向上させる目 的で表面処理を行う場合、表面処理の方法としては、特に制限は無ぐ物理的方法、 化学的方法等を使用可能であり、例えば、コロナ放電処理、オゾン処理、プラズマ 処理、火炎処理、酸 ·アルカリ処理等を挙げることができる。これらのうち、コロナ放電 処理が実施の容易さ、コスト、連続処理が可能等の点力 好ましい。
[0102] 本発明の水添ブロック共重合体、該水添ブロック共重合体組成物、或 ヽは前記成 分 (ィ)、(口)、(ハ)、及び (二)からなる水添ブロック共重合体組成物は、所望により 各種添加剤を配合して様々な用途に用いることができる。本発明の水添共重合体及 び水添共重合体組成物の具体的態様に関しては、 (0補強性充填剤配合物、 GO架 橋物、(m)発泡体、 Gv)多層フィルム及び多層シートなどの成形品、(V)建築材料、 (vi )制振,防音材料、 (vii)電線被覆材料、 (viii)高周波融着性組成物、 (ix)スラッシュ成 形材料、(X)粘接着性組成物、 (xi)アスファルト組成物、 (xii)医療用具材料、 (xiii)自 動車材料等に好適に用いることができる。
[0103] 本発明の水添ブロック共重合体、該水添ブロック共重合体組成物、或 ヽは前記成 分 (ィ)、(口)、(ハ)、及び (二)からなる水添ブロック共重合体組成物は、上記のよう に様々な用途に使用できるが、成形品として使用する場合、成形方法としては、押出 成形、射出成形、中空成形、圧空成形、真空成形、発泡成形、複層押出成形、複層 射出成形、高周波融着成形、スラッシュ成形及びカレンダー成形などを用いることが できる。成形品の例としては、シート、フィルム、チューブや、不織布や繊維状の成形 品、合成皮革等が挙げられる。本発明の水添共重合体及び水添共重合体組成物か らなる成形品は、食品包装材料、医療用具材料、家電製品及びその部品、電子デバ イス及びその部品、自動車部品、工業部品、家庭用品、玩具等の素材、履物用素材 、繊維素材、粘'接着剤用素材、アスファルト改質剤などに利用できる。自動車部品 の具体例としては、サイドモール、グロメット、ノブ、ウエザーストリップ、窓枠とそのシ 一リング材、アームレスト、ドアグリップ、ハンドルグリップ、コンソールボックス、ベッド レスト、インストルメントパネル、バンパー、スボイラー、エアバック装置の収納カバー 等が挙げられる。医療用具の具体例としては、血液バッグ、血小板保存バック、輸液 (薬液)バック、人工透析用バック、医療用チューブ、カテーテル等が挙げられる。そ の他工業用或いは食品用ホース、掃除機ホース、電冷パッキン、電線その他の各種 被覆材、グリップ用被覆材、軟質人形等、粘接着テープ'シート'フィルム基材、表面 保護フィルム基材及び該フィルム用粘接着剤、カーペット用粘接着剤、ストレッチ包 装用フィルム、熱収縮性フィルム、被覆鋼管用被覆材、シーラントなどに用いることが できる。
実施例 1
[0104] 以下実施例により本発明を具体的に説明する力 本発明はこれらの例によって何ら 限定されるものではない。
[0105] また以下の実施例にお!、て、重合体の特性や物性の測定は次のようにして行った
[0106] I.水添ブロック共重合体の調整と特性
1- 1)水添ブロック共重合体のスチレン含有量
水添前の共重合体を用い、紫外分光光度計 (島津製作所製、 UV— 2450)を用い て測定した。
1- 2)水添ブロック共重合体のポリスチレンブロック A含有量
水添前の共重合体を用い、 I. M. Kolthoff、 etal.、J. Polym. Sci. 1、 429 (1946)に 記載の四酸ィ匕オスミウム酸法で測定した。共重合体の分解にはオスミウム酸 0. lgZ 125ml第 3級ブタノール溶液を用いた。
I 3)水添ブロック共重合体のビニル結合量
水添前の共重合体を使用し、赤外分光光度計(日本分光社製、 FTZIR— 230)を 用いて測定した。共重合体のビニル結合量はハンプトン法により算出した。
1-4)水添ブロック共重合体の分子量及び分子量分布
GPC〔装置は、ウォーターズ製〕で測定した。溶媒にはテトラヒドロフランを用い、測 定条件は、温度 35°Cで行った。重量平均分子量と数平均分子量が既知の市販の標 準ポリスチレンを用いて作成した検量線を使用し、重量平均分子量を求めた。また、 分子量分布は、重量平均分子量 (Mw)と数平均分子量 (Mn)との比である。
I 5)水添ブロック共重合体の共役ジェン単量単位の二重結合の水素添加率(水添 率)
水添後の水添共重合体を用い、核磁気共鳴装置 (装置名: DPX— 400 ;ドイツ国、 BRUKER社製)で測定した。
I 6)結晶化ピーク及び結晶化ピーク熱量
DSC [マックサイエンス社製、 DSC3200S]で測定した。室温から 30°CZ分の昇 温速度で 150°Cまで昇温し、その後 10°C/分の降温速度で— 100°Cまで降温して 結晶化カーブを測定して結晶化ピークの有無を確認した。また、結晶化ピークがある 場合、そのピークが出る温度を結晶化ピーク温度とし、結晶化ピーク熱量を測定した
I 7) tan δ (損失正接)のピーク温度
粘弾性測定解析装置((株)レオロジ社製、型式 DVE— V4)を用い、粘弾性スぺク トルを測定して求めた。測定周波数は 10Hzである。
II.水添ブロック共重合体組成物の特性
II 1)柔軟性
JIS K6251に準拠して引張特性を測定した。柔軟性は 100%延伸時の応力(以 下、 100%Moと呼ぶ)をその指標とした。 100%Moが小さいほど柔軟性が良好であ る。引張速度は 500mmZmin、測定温度は 23°Cで行った。
Π— 2)耐熱性
JIS K6262に準拠し、圧縮永久歪試験を行った。測定条件は、温度 70°C、 22時 間である。
Π— 3)耐磨耗性
学振型摩擦試験器 (テスター産業株式会社製、 AB— 301型)を用い、成形シート 表面 (皮シボカ卩工面)を、摩擦布カナキン 3号綿、荷重 500gで摩擦し、摩擦後の体 積減少量によって、以下の基準で判定した。
◎;摩擦回数 10、 000回後に、体積減少量が 0. 01ml以下
〇; " 0. 01を越し 0. 1ml以下
△ ; " 0. 1を越し 0. 2ml以下
X; " 0. 2mlを越したもの
II 4)加工性 <メルトフローレート(MFR) >
JIS K6758に準拠して測定した 230。C、荷重 2. 16kgのメルトフローレートである II 5)表面感触
2mm厚のプレスシートを作成し、以下の方法で評価した。
'粘着感:シートを指で触り、ベタツキの有無を確認した。
'オイルブリード:シート間に紙を挟み、 24時間後、紙へのオイルの移行の有無を確 した 0
[0108] III.成分 (ィ)、(口)、(ハ)、(二)からなる組成物の物性
III 1)流動性 <メルトフローレート(MFR) >
JIS K6758【こ従!ヽ、 230°C、荷重 2. 16kgの MFRを ¾J定した。
ΠΙ— 2)硬さ
JIS K6253に従い、デュロメータタイプ Aで 10秒後の値を測定した。
III 3)引張応力、引張強度、切断時伸び
JIS K6251に従い、 3号ダンベル、クロスヘッドスピード 500mm/分で測定した。
III 4)ダンロップ反撥弾性
BS903【こ従!ヽ、 23°Cで¾定した。
III 5)耐磨耗性 1 (シボ深さ残存率の測定)
学振磨耗試験器 (テスター産業株式会社製、 AB— 301型)を用い、成形シート表 面(皮シボ加工面 Zシボ深さ約 90 μ m)を、摩擦布カナキン 3号綿布、荷重 500gで 摩擦後、シボ深さを測定し、シボ深さ残存率 (下記式 1で計算)によって、以下の基準 で判定した。シボ深さは東京精密社製の表面粗さ計 E - 35Aで測定した。
[0109] シボ深さ残存率 = (摩擦後のシボ深さ) / (摩擦前のシボ深さ) X 100 (式 1) ◎;摩擦回数 20、 000回後に、シボ深さ残存率が 75%以上
〇; " 75%未満 50%以上
△ ; " 50%未満 25%以上
X; " 25%未満
III 6)耐磨耗性 2 (摩擦後の表面状態)
上記 m— 5)の学振磨耗試験後のシート表面を指で触り粘着感 (ベとつき)の有無を 確認し、以下の基準で判定した。 〇;摩擦終了後、ベとつき無し
X; // ベとつき有り
III 7)表面感触
2mm厚のプレスシートを作成し、シート表面を指で触り粘着感 (ベとつき)の有無を 確認し、以下の基準で判定した。
〇;シート表面が、ベとつき無し
X; // ベとつき有り
III 8)吸油性
2mm厚のプレスシートを作成し、シートをパラフィンオイル(PW— 90Z出光興産社 製)中に 70°C、 30日間で浸漬させ、シート 100重量部に対して吸収するオイルの重 量を測定し、以下の基準で判定した。
〇;吸収したオイルが 100重量部以上
X; 〃 力 S 100重量部未満
また、配合した各成分は以下のとおりである。
[0110] <水添触媒の調整 >
以下の実施例及び比較例において、共重合体の水添反応に用いた水添触媒は下 記の方法で調製した。
[0111] 窒素置換した反応容器に乾燥、精製したシクロへキサン 1リットルを仕込み、ビス(
7? 5 シクロペンタジェ -ル)チタニウムジクロリド 100ミリモルを添カ卩し、十分に攪拌 しながらトリメチルアルミニウム 200ミリモルを含む n—へキサン溶液を添カ卩して、室温 にて約 3日間反応させた。
[0112] [水添ブロック共重合体の調整]
<ポリマー 1 >
内容積が 10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を 行った。はじめに、スチレン 15重量部を含むシクロへキサン溶液 (濃度 20重量%)を 投入した。次いで n—ブチルリチウムを全モノマー 100重量部に対して 0. 06重量部 と N, N, Ν' , Ν,ーテトラメチルエチレンジァミン(以下 TMEDAとする)を η—ブチル リチウム 1モルに対して 0. 7モル添カ卩し、 70°Cで 1時間重合した。その後、ブタジエン 20重量部を含むシクロへキサン溶液 (濃度 20重量%)を加えて 70°Cで 1時間重合し た。この時点でサンプリングしたポリマーのポリブタジエン部のビュル結合量を測定し たところ、 50%であった。次にブタジエン 14重量部とスチレン 42重量部を含むシクロ へキサン溶液 (濃度 20重量%)を加えて 70°Cで 1時間重合した。この時点でサンプリ ングしたポリマーのビュル結合量を測定したところ、 36%であった。最後にスチレン 9 重量部を含むシクロへキサン溶液を投入して、 70°Cで 1時間重合した。得られたポリ マーは、スチレン含有量 66重量0 /0、ポリスチレンブロック含有量 30重量0 /0、ポリブタ ジェンブロック部のビュル結合量 50重量%、分子量 18. 8万、分子量分布 1. 1であ つた o
[0113] 次に、得られたポリマーに、上記水添触媒をポリマー 100重量部当たりチタンとして lOOppm添加し、水素圧 0. 7MPa、温度 65°Cで水添反応を行った。その後メタノー ルを添カ卩し、次に安定剤としてォクタデシル一 3— (3, 5—ジ一 t—ブチル 4—ヒド ロキシフエニル)プロピオネートを重合体 100質量部に対して 0. 3質量部添加した。
[0114] 得られた水添共重合体 (ポリマー 1)の水素添加率は、水素添加率 98%であった。
得られた水添共重合体の特性を表 1に示した。
[表 1]
表一 1.水添ブロック共重合体の特性
Figure imgf000033_0001
また、得られた水添共重合体の DSCを測定したところ、結晶化ピークは存在しなか つた o
[0115] <ポリマー 2 >
ポリマー 1と同様にポリマーを作成した。スチレン 17重量部を含むシクロへキサン溶 液を投入後、 n—ブチルリチウムを全モノマー 100重量部に対して 0. 05重量部と T MEDAを n—ブチルリチウム 1モルに対して 0. 65モル添加し、 70°Cで 1時間重合し た。その後、ブタジエン 20重量部を含むシクロへキサン溶液をカ卩えて 70°Cで 1時間 重合した。この時点でサンプリングしたポリマーのポリブタジエン部のビュル結合量を 測定したところ、 39%であった。次にブタジエン 12重量部とスチレン 40重量部を含 むシクロへキサン溶液をカ卩えて 70°Cで 1時間重合した。最後にスチレン 11重量部を 含むシクロへキサン溶液を投入して、 70°Cで 1時間重合した。得られたポリマーは、 スチレン含有量 68重量0 /0、ポリスチレンブロック含有量 34重量0 /0、ポリブタジエンブ ロック部のビュル結合量 39重量%、分子量 22. 2万、分子量分布 1. 1であった。 次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添共重合 体 (ポリマー 2)を得た。
得られた水添共重合体 (ポリマー 2)の水素添加率は、水素添加率 98%であった。
[0116] <ポリマー 3 >
ポリマー 1と同様にポリマーを作成した。スチレン 20重量部を含むシクロへキサン溶 液を投入後、 n—ブチルリチウムを全モノマー 100重量部に対して 0. 06重量部と T MEDAを n—ブチルリチウム 1モルに対して 0. 7モル添カ卩し、 70°Cで 1時間重合した 。その後、ブタジエン 15重量部を含むシクロへキサン溶液をカ卩えて 70°Cで 1時間重 合した。この時点でサンプリングしたポリマーのポリブタジエン部のビュル結合量を測 定したところ、 53%であった。次にブタジエン 15重量部とスチレン 35重量部を含む シクロへキサン溶液をカ卩えて 70°Cで 1時間重合した。最後にスチレン 15重量部を含 むシクロへキサン溶液を投入して、 70°Cで 1時間重合した。得られたポリマーは、ス チレン含有量 70重量0 /0、ポリスチレンブロック含有量 40重量0 /0、ポリブタジエンブロ ック部のビニル結合量 53重量%、分子量 19. 2万、分子量分布 1. 1であった。 次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添共重合 体 (ポリマー 3)を得た。得られた水添共重合体 (ポリマー 3)の水素添加率は、水素添 加率 99%であった。
[0117] <ポリマー 4 >
ポリマー 1と同様にポリマーを作成した。スチレン 17重量部を含むシクロへキサン溶 液を投入後、 n—ブチルリチウムを全モノマー 100重量部に対して 0. 05重量部と T MEDAを n—ブチルリチウム 1モルに対して 0. 7モル添カ卩し、 70°Cで 1時間重合した 。その後、ブタジエン 30重量部を含むシクロへキサン溶液をカ卩えて 70°Cで 1時間重 合した。この時点でサンプリングしたポリマーのポリブタジエン部のビュル結合量を測 定したところ、 48%であった。次にブタジエン 12重量部とスチレン 28重量部を含む シクロへキサン溶液をカ卩えて 70°Cで 1時間重合した。この時点でサンプリングしたポリ マーのビニル結合量を測定したところ、 39%であった。最後にスチレン 13重量部を 含むシクロへキサン溶液を投入して、 70°Cで 1時間重合した。得られたポリマーは、 スチレン含有量 58重量0 /0、ポリスチレンブロック含有量 34重量0 /0、ポリブタジエンブ ロック部のビュル結合量 48重量%、分子量 22. 4万、分子量分布 1. 1であった。 次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添共重合 体 (ポリマー 4)を得た。得られた水添共重合体 (ポリマー 4)の水素添加率は、水素添 加率 99%であった。
[0118] <ポリマー 5 >
内容積が 10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を 行った。始めに、スチレン 15重量部を含むシクロへキサン溶液 (濃度 20重量%)を投 入した。次いで、 n—ブチルリチウムを全モノマー 100重量部に対して 0. 04重量部と TMEDAを n—ブチルリチウム 1モルに対して 0. 7モル添加し、 70°Cで 1時間重合し た。その後、ブタジエン 20重量部を含むシクロへキサン溶液 (濃度 20重量%)を加え て 70°Cで 1時間重合した。この時点でサンプリングしたポリマーのポリブタジエン部の ビュル結合量を測定したところ、 50%であった。次にブタジエン 15重量部とスチレン 41重量部を含むシクロへキサン溶液 (濃度 20重量%)を加えて 70°Cで 1時間重合し た。この時点でサンプリングしたポリマーのビュル結合量を測定したところ、 36%であ つた。最後にスチレン 9重量部を含むシクロへキサン溶液を投入して、 70°Cで 1時間 Oした o
得られたポリマーは、スチレン含有量 65重量0 /0、ポリスチレンブロック含有量 26重 量%、ポリブタジエンブロック部のビニル結合量 49重量%、重量平均分子量 25. 0 万、分子量分布 1. 2であった。
次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添ブロック 共重合体 (ポリマー 5)を得た。得られた水添ブロック共重合体の水素添加率は 99% であった。また得られた水添ブロック共重合体の DSCを測定したところ、結晶化ピー クは存在しな力 た。
<ポリマー 6 >
内容積が 10Lの攪拌装置及びジャケット付き槽型反応器を 2基使用して連続重合 を行った。 1基目の反応器の底部から、ブタジエン濃度が 24重量%のシクロへキサン 溶液を 4. 51LZhrの供給速度で、スチレン濃度が 24重量%のシクロへキサン溶液 を 5. 97LZhrの供給速度で、また n—ブチルリチウムをモノマー 100gに対して 0. 0 77gになるような濃度に調整したシクロへキサン溶液を 2. OLZhrの供給速度で、更 に TMEDAのシクロへキサン溶液を n—ブチルリチウム 1モルに対して 0. 44モルに なるような供給速度でそれぞれ供給し、 90°Cで連続重合した。反応温度はジャケット 温度で調整し、反応器の底部付近の温度は約 88°C、反応器の上部付近の温度は 約 90°Cであった。重合反応器における平均滞留時間は、約 45分であり、ブタジエン の転化率はほぼ 100%、スチレンの転化率は 99%であった。
1基目力 出たポリマー溶液を 2基目の底部から供給、また同時に、スチレン濃度が 24重量%のシクロへキサン溶液を 2. 38LZhrの供給速度で 2基目の底部に供給し 、 90°Cで連続重合した。 2基目出口でのスチレンの転ィ匕率は 98%であった。
連続重合で得られたポリマーを分析したところ、スチレン含有量は 67重量0 /0、ポリス チレンブロック含有量が 20重量0 /0、ランダムブロック部のブタジエン部のビュル結合 量 14重量%、重量平均分子量 20万、分子量分布 1. 9であった。
次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添共重合 体 (ポリマー 6)を得た。得られた水添共重合体の水素添加率は、水素添加率 99%で あった。 [0120] <ポリマー 7 >
内容積が 10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を 行った。はじめに、スチレン 16重量部を含むシクロへキサン溶液 (濃度 20重量%)を 投入した。次いで n—ブチルリチウムを全モノマー 100重量部に対して 0. 058重量 部と N, N, Ν' , Ν,一テトラメチルエチレンジァミン(以下 TMEDAとする)を η—ブチ ルリチウム 1モルに対して 0. 7モル添カ卩し、 70°Cで 1時間重合した。その後、ブタジェ ン 20重量部を含むシクロへキサン溶液 (濃度 20重量%)を加えて 70°Cで 1時間重合 した。この時点でサンプリングしたポリマーのポリブタジエン部のビュル結合量を測定 したところ、 50%であった。次にブタジエン 14重量部とスチレン 42重量部を含むシク 口へキサン溶液 (濃度 20重量0 /0)をカ卩えて 30°Cで 1時間重合した。最後にスチレン 1 0重量部を含むシクロへキサン溶液を投入して、 70°Cで 1時間重合した。得られたポ リマーは、スチレン含有量 68重量0 /0、ポリスチレンブロック含有量 30重量0 /0、ポリブタ ジェンブロック部のビュル結合量 45重量%、分子量 21. 5万、分子量分布 1. 1であ つた。次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添プロ ック共重合体 (ポリマー 7)を得た。得られた水添ブロック共重合体の水素添加率は 9 8%であった。
[0121] <ポリマー 8 >
ポリマー 1と同様にポリマーを作成した。はじめに、スチレン 15重量部を含むシクロ へキサン溶液を投入後、 n—ブチルリチウムを全モノマー 100重量部に対して 0. 06 重量部と TMEDAを n—ブチルリチウム 1モルに対して 0. 07モル添加し、 70°Cで 1 時間重合した。その後、ブタジエン 6重量部を含むシクロへキサン溶液をカ卩えて 70°C で 1時間重合した。次にブタジエン 27重量部とスチレン 43重量部を含むシクロへキ サン溶液をカ卩えて 70°Cで 1時間重合した。最後にスチレン 9重量部を含むシクロへキ サン溶液を投入して、 70°Cで 1時間重合した。得られたポリマーは、スチレン含有量 67重量0 /0、ポリスチレンブロック含有量 30重量0 /0、ポリブタジエンブロック部のビュル 結合量 49重量%、分子量 19. 2万、分子量分布 1. 1であった。
次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添共重合 体 (ポリマー 8)を得た。 得られた水添共重合体 (ポリマー 8)の水素添加率は、水素添加率 99%であった。
[0122] <ポリマー 9 >
ポリマー 1と同様にポリマーを作成した。スチレン 14重量部を含むシクロへキサン溶 液を投入後、 n—ブチルリチウムを全モノマー 100重量部に対して 0. 065重量部と T MEDAを n—ブチルリチウム 1モルに対して 0. 65モル添加し、 70°Cで 1時間重合し た。その後、ブタジエン 40重量部を含むシクロへキサン溶液をカ卩えて 70°Cで 1時間 重合した。この時点でサンプリングしたポリマーのポリブタジエン部のビュル結合量を 測定したところ、 39%であった。次にブタジエン 9重量部とスチレン 29重量部を含む シクロへキサン溶液をカ卩えて 70°Cで 1時間重合した。最後にスチレン 9重量部を含む シクロへキサン溶液を投入して、 70°Cで 1時間重合した。得られたポリマーは、スチレ ン含有量 52重量0 /0、ポリスチレンブロック含有量 26重量0 /0、ポリブタジエンブロック 部のビュル結合量 46重量%、分子量 17. 6万、分子量分布 1. 1であった。
次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添共重合 体 (ポリマー 9)を得た。
得られた水添共重合体 (ポリマー 9)の水素添加率は、水素添加率 98%であった。
[0123] <ポリマー 10>
内容積が 10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を 行った。はじめに、スチレン 30重量部を含むシクロへキサン溶液 (濃度 20重量%)を 投入した。次いで n—ブチルリチウムを全モノマー 100重量部に対して 0. 06重量部 と N, N, Ν' , Ν,ーテトラメチルエチレンジァミン(以下 TMEDAとする)を η—ブチル リチウム 1モルに対して 0. 7モル添カ卩し、 70°Cで 1. 2時間重合した。その後、ブタジ ェン 20重量部を含むシクロへキサン溶液 (濃度 20重量%)を加えて 70°Cで 1時間重 合した。この時点でサンプリングしたポリマーのポリブタジエン部のビュル結合量を測 定したところ、 50%であった。次にブタジエン 13重量部とスチレン 37重量部を含む シクロへキサン溶液 (濃度 20重量%)をカ卩えて 70°Cで 1時間重合した。得られたポリ マーは、スチレン含有量 67重量0 /0、ポリスチレンブロック含有量 30重量0 /0、ポリブタ ジェンブロック部のビュル結合量 47重量%、分子量 19. 4万、分子量分布 1. 1であ つた o 次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添共重合 体 (ポリマー 10)を得た。
得られた水添共重合体 (ポリマー 10)の水素添加率は、水素添加率 98%であった
[0124] <ポリマー 11 >
内容積が 10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を 行った。始めに、スチレン 20重量部を含むシクロへキサン溶液 (濃度 20重量%)を投 入した。次いで、 n—ブチルリチウムを全モノマー 100重量部に対して 0. 09重量部と TMEDAを n—ブチルリチウム 1モルに対して 0. 7モル添加し、 70°Cで 30分重合し た。次にブタジエン 33重量部とスチレン 47重量部を含むシクロへキサン溶液 (濃度 2 0重量%)をカ卩えて 70°Cで 1時間重合した。次に、得られた共重合体のリビングポリマ 一にカップリング剤として、安息香酸ェチルを重合に使用した n—ブチルリチウムに 対して 0. 5モル反応させた。得られたポリマーは、スチレン含有量 67重量%、ポリス チレンブロック含有量 20重量%、重量平均分子量 19. 0万、分子量分布 1. 4であつ た。
次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添ブロック 共重合体 (ポリマー 11)を得た。得られた水添共重合体 (ポリマー 11)の水素添加率 は 99%であった。
[0125] <ポリマー 12>
SEBS:市販の水素添加ブロック共重合体(クレイトン G1651:クレイトンポリマー社 製)を用いた。
[0126] <ポリマー 13 >
内容積が 10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を 行った。始めに、スチレン 15重量部を含むシクロへキサン溶液 (濃度 12重量%)を投 入した。次いで n—ブチルリチウムを全モノマー 100重量部に対して 0. 055重量部と TMEDAを n—ブチルリチウム 1モルに対して 0. 3モル添加した。次に、ブタジエン 7 1重量部を含むシクロへキサン溶液 (濃度 12重量%)を加えて重合し、最後にスチレ ン 14重量部を含むシクロへキサン溶液 (濃度 12重量%)を投入して重合した。重合 温度は 40〜80°Cの間で制御した。得られたポリマーは、スチレン含有量 29重量%、 重量平均分子量 20. 2万、分子量分布 1. 1であった。
次に、得られたポリマーをポリマー 1と同様の方法で水添反応を行い、水添共重合 体 (ポリマー 13)を得た。得られた水添共重合体 (ポリマー 13)の水素添加率は 99% であった。
[0127] <成分 (口) >
内容積が 10Lの攪拌装置及びジャケット付き槽型反応器を使用してバッチ重合を 行った。始めに、スチレン 16重量部を含むシクロへキサン溶液 (濃度 12重量%)を投 入した。次いで n ブチルリチウムを全モノマー 100重量部に対して 0. 04重量部と T MEDAを n—ブチルリチウム 1モルに対して 0. 3モル添カ卩した。次に、ブタジエン 68 重量部を含むシクロへキサン溶液 (濃度 12重量%)を加えて重合し、最後にスチレン 16重量部を含むシクロへキサン溶液 (濃度 12重量%)を投入して重合した。重合温 度は 40〜80°Cの間で制御した。得られたポリマーは、スチレン含有量 32重量%、ブ タジェン部のビニル結合量 37重量%、重量平均分子量 28万、分子量分布 1. 05、 ポリスチレンブロック含有率は 97重量0 /。であった。
次に、得られたポリマーを成分 (ィ)—1と同様の方法で水添反応を行い、水添プロ ック共重合体を得た。得られた水添ブロック共重合体の水素添加率は 99%であった
[0128] <成分 (ハ) >
熱可塑性榭脂:ポリプロピレン榭脂、 PC630A (サンァロマー製)、 MFR(230°C、 2 . 16kg) ; 7. 5gZlO分。
[0129] <成分 (二) >
ゴム用軟化剤:オイル一 1)パラフィンオイル、 PW- 90 (出光興産社製) オイル一 2)パラフィンオイル、 PW- 380 (出光興産社製)
[0130] <成分 (ホ) >
シリコンオイル: SH200 5000cs (東レダウコーユング社製)
[実施例 1〜5]
得られた水添共重合体 (ポリマー 1〜4)を粉体状にした後、表 2の組成でオイル を 24時間吸収させた。その後、二軸押出機 (PCM30)で混練し、ペレット化すること により共重合体組成物を得た。押出条件は、シリンダー温度 220°C、スクリュー回転 数 300rpmであった。得られた組成物を 200°Cで圧縮成形して 2mm厚のシートを作 成し、物性測定片を得た。
各試験片の物性を測定し、その結果を表 2に示した。
[表 2]
表 2.水添ブロック共重合体組成物の物性一 1
Figure imgf000042_0001
[比較例 1]
ポリマー 5を 200°Cで圧縮成形して 2mm厚の成形シートを作成し、物性を測定した 。 [比較例 2]
ポリマー 5を用い、実施例と同様に組成物を得、成形シートを作成し、物性を測定し た。
[0132] [比較例 3〜6、 8]
ポリマー 7〜10、 13を用い、実施例と同様に組成物を得、成型シートを作成し、物 性を測定した。
[0133] [比較例 7]
ポリマー 12を用い、実施例と同様に組成物を得た力 し力しながら、成形シートが 作成できな力つた。
[0134] [実施例 6〜8]
水添ブロック共重合体としてポリマー 1を粉体状にした後、表 3に示す各成分をへ ンシェルミキサーで混合後、 30mm径の二軸押出機にて 230°Cの条件で溶融混練し 、組成物のペレットを得た。更にその組成物ペレットを 3. 5インチロールにて 200°Cで ロールだしを行い、その後油圧プレスにて 200°C、 lOOkgZcm2でプレス成形を行い 、 2mm厚の成形シートを作成した。その物性を表 3に示す。
[表 3]
表 3.水添ブロック共重合体組成物の物性一 2
Figure imgf000044_0001
[実施例 9]
水添ブロック共重合体としてポリマー 5を粉体状にした後、表 3に示す各成分を実 施例 1〜3と同様の方法で、 2mm厚の成形シートを作成した。その物性を表 3に示 す。
[0135] [比較例 9〜18]
水添ブロック共重合体としてポリマー 1、ポリマー 6、ポリマー 11、成分 (口)を粉体状 にした後、表 3に示す各成分をヘンシェルミキサーで混合後、 30mm径のニ軸押 出機にて 230°Cの条件で溶融混練し、組成物のペレットを得た。この組成物を用い て実施例 1〜3と同様の方法で、 2mm厚の成形シートを作成した。その物性を表 3 に示す。
[0136] [実施例 10、 11]
水添ブロック共重合体としてポリマー 1、ポリマー 5を粉体状にした後、 3. 5インチ口 ールにて 200°Cでロールだしを行い、その後油圧プレスにて 220°C、 lOOkg/cm2 でプレス成形を行い、 2mm厚の成形シートを作成した。その吸油性を表ー4に示す
[表 4] 表 4.水添ブロック共重合体の吸油性
Figure imgf000045_0001
[比較例 19、 20]
水添ブロック共重合体としてポリマー 6、ポリマー 11を粉体状にした後、 3. 5インチ ロールにて 200°Cでロールだしを行い、その後油圧プレスにて 210°C、 100kg/cm: でプレス成形を行い、 2mm厚の成形シートを作成した。その吸油性を表ー4に示す
産業上の利用可能性
[0137] 本発明の水添共重合体及びその組成物は、柔軟性、耐熱性、耐磨耗性、表面感 触 (粘着感ゃオイルブリードが無い)に優れ、且つ加工性が良好である。そして、その 特性は、軟質塩ィ匕ビニル榭脂の代替材料となり得る。
これらの特徴を生力して、射出成形、押出成形などによって各種形状の成形品に 加工でき、自動車部品(自動車内装材料、自動車外装材料)、医療用具材料、食品 包装容器などの各種容器、家電用品、工業部品、玩具等に用いることができる。

Claims

請求の範囲 [1] 共役ジェンとビニル芳香族化合物からなる共重合体の水素添加物であって、下記 の(1)〜(6)の特性を有する水添ブロック共重合体:
(1)下記 a、 b、 cの重合体ブロックを少なくとも 1個有する
a.ビニル芳香族化合物重合体ブロック A
b.共役ジェンとビニル芳香族化合物とのランダム共重合体の水添重合体ブロック
B
cビュル結合量が 30%以上の共役ジェン重合体の水添重合体ブロック C
(2)前記ビュル芳香族化合物の含有量が 50重量%越え、 95重量%未満
(3)重量平均分子量が 5万〜 100万
(4)前記水添重合体ブロック Bの水添前重合体を構成する共役ジェン単量体単 位のビニル結合量が 10%以上 20%未満
(5)前記共役ジェン単量体単位の二重結合の水添率が 75%以上
(6)前記ビュル芳香族化合物重合体ブロック Aの含有量が 20重量%〜50重量 %、水添共重合体ブロック Bの含有量が 30重量%〜80重量%、水添重合体ブロック Cの含有量が 10重量%〜35重量%。
[2] 前記水添重合体ブロック Cの含有量は、 10重量%〜30重量%である、請求項 1記 載の水添ブロック共重合体。
[3] 前記水添ブロック共重合体は、少なくとも 2個の前記ビニル芳香族化合物重合体ブ ロック Aを有する、請求項 1又は 2に記載の水添ブロック共重合体。
[4] 前記水添ブロック共重合体は、両末端に前記ビニル芳香族化合物重合体ブロック
Aを有する、請求項 3に記載の水添ブロック共重合体。
[5] 前記水添ブロック共重合体は、さらに、官能基を有する原子団と結合している、請 求項 1から 4のいずれ力 1項に記載の水添ブロック共重合体。
[6] (1)請求項 1〜5に記載の水添ブロック共重合体 100重量部と、(2)ゴム用軟化剤 5 重量部〜 100重量部とからなる水添ブロック共重合体組成物。
[7] 前記水添ブロック共重合体組成物は、得られた粘弾性測定チャートにお 、て、 tan
δ (損失正接)のピークが 0°C〜40°Cに少なくとも 1つ存在する、請求項 6に記載の水 添ブロック共重合体,袓成物。
[8] (1)請求項 1〜5に記載の水添ブロック共重合体 100重量部と、(2)ゴム用軟化剤 5 重量部〜 100重量部と、(3)熱可塑性榭脂及び Z又はゴム状重合体 5重量部〜 10 0重量部とからなる水添ブロック共重合体組成物。
[9] (ィ)請求項 1〜5に記載の水添ブロック共重合体、
(口)ビニル芳香族化合物を主体とする少なくとも 2個の重合体ブロック Dと、共役ジ ェンを主体とする少なくとも 1個の重合体ブロック Eと力 なるブロック共重合体を水添 して得られる水添ブロック共重合体であって、下記の(7)〜(9)の特性を有する水添 ブロック共重合体:
(7)水添ブロック共重合体中の全ビュル芳香族化合物の含有量が 10重量%以 上 40重量%以下で、全ビニル芳香族化合物中のビニル芳香族化合物を主体とする 重合体ブロック Dの割合が 80重量%以上
(8)水添ブロック共重合体の重量平均分子量が 20万以上 60万以下
(9)水添ブロック共重合体中の共役ジェン単量体単位の二重結合の 75%以上が 水添されている、
(ハ)熱可塑性榭脂、及び
(二)ゴム用軟ィ匕材、を含む組成物であって、
上記 (ィ)及び (口)成分の合計 100重量部に対して、(ハ)成分が 20重量部〜 200 重量部、ゴム用軟化材 20重量部〜 250重量部で構成されている、水添ブロック共重 合体組成物。
[10] 前記熱可塑性榭脂は、少なくとも 1種類のポリオレフイン榭脂を含む、請求項 9に記 載の水添ブロック共重合体組成物。
[11] 前記水添ブロック共重合体組成物は、有機ポリシロキサンを、該水添ブロック共重 合体組成物 100重量部に対し 0. 1重量部〜 10重量部さらに含む、請求項 9又は 10 に記載の水添ブロック共重合体糸且成物。
[12] 前記有機ポリシロキサンは、液状のポリジメチルシロキサンであり、 25°Cでの動粘度 力^ Ocst以上である、請求項 11に記載の水添ブロック共重合体組成物。
[13] 前記水添ブロック共重合体組成物は、 230°C2. 16kgでの MFRが 0. lgZlO分 00gZlO分の範囲にあり、 23°Cでの反発弾性力 0%以下である、 のいずれか 1項に記載の水添ブロック共重合体組成物。
PCT/JP2006/302974 2005-02-21 2006-02-20 水添ブロック共重合体及びその組成物 WO2006088187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/884,795 US7935756B2 (en) 2005-02-21 2006-02-20 Hydrogenated block copolymer and composition thereof
JP2007503772A JP5214236B2 (ja) 2005-02-21 2006-02-20 水添ブロック共重合体及びその組成物
EP06714114A EP1852446B1 (en) 2005-02-21 2006-02-20 Hydrogenated block copolymer and composition thereof
HK08105857.3A HK1115758A1 (en) 2005-02-21 2008-05-26 Hydrogenated block copolymer and composition thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005043331 2005-02-21
JP2005-043331 2005-02-21
JP2005-370133 2005-12-22
JP2005370133 2005-12-22

Publications (1)

Publication Number Publication Date
WO2006088187A1 true WO2006088187A1 (ja) 2006-08-24

Family

ID=36916583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302974 WO2006088187A1 (ja) 2005-02-21 2006-02-20 水添ブロック共重合体及びその組成物

Country Status (6)

Country Link
US (1) US7935756B2 (ja)
EP (1) EP1852446B1 (ja)
JP (1) JP5214236B2 (ja)
HK (1) HK1115758A1 (ja)
TW (1) TW200636004A (ja)
WO (1) WO2006088187A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208213A (ja) * 2007-02-26 2008-09-11 Asahi Kasei Chemicals Corp 制振材用水添共重合体及びアスファルト制振材組成物
WO2008146210A1 (en) 2007-05-25 2008-12-04 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic composition and articles comprising the same
JP2009242463A (ja) * 2008-03-28 2009-10-22 Asahi Kasei Chemicals Corp 熱可塑性エラストマー組成物
WO2010018743A1 (ja) * 2008-08-12 2010-02-18 旭化成ケミカルズ株式会社 水添ブロック共重合体組成物及びこれを用いた成形体
JP2010053319A (ja) * 2008-08-29 2010-03-11 Asahi Kasei Chemicals Corp 水添ブロック共重合体及びその組成物
JP2010090267A (ja) * 2008-10-08 2010-04-22 Asahi Kasei Chemicals Corp 水添ブロック共重合体組成物
US7737218B2 (en) 2006-12-29 2010-06-15 Bridgestone Corporation Method for generating free radical capable polymers using tin or silicon halide compounds
JP2011111499A (ja) * 2009-11-25 2011-06-09 Kuraray Co Ltd 家電製品用防振部材
US8030410B2 (en) * 2006-12-29 2011-10-04 Bridgestone Corporation Method for generating free radical capable polymers using carbonyl-containing compounds
JP2017025144A (ja) * 2015-07-16 2017-02-02 旭化成株式会社 水添ブロック共重合体、並びにこれを用いた粘接着組成物、改質アスファルト組成物及び改質アスファルト混合物
WO2017130681A1 (ja) * 2016-01-29 2017-08-03 日本ゼオン株式会社 樹脂組成物、及びその用途
WO2018221661A1 (ja) * 2017-05-31 2018-12-06 株式会社クラレ ゲル組成物、ケーブル充填材、ケーブル、及びゲル組成物用クラム
JP2020128523A (ja) * 2018-12-06 2020-08-27 ティエスアールシー・コーポレイションTSRC Corporation ポリマー組成物、発泡体およびその方法
JP2020152779A (ja) * 2019-03-19 2020-09-24 旭化成株式会社 水添共重合体、水添共重合体組成物、発泡体及び成形体

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582692B2 (en) 2004-04-01 2009-09-01 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic composition and articles comprising the same
KR101508023B1 (ko) * 2007-09-07 2015-04-06 가부시키가이샤 구라레 튜브 및 그것을 사용한 의료용구
US20100010154A1 (en) * 2008-07-08 2010-01-14 Kraton Polymers U.S. Llc Gels prepared from dpe containing block copolymers
US20100056721A1 (en) * 2008-09-03 2010-03-04 Kathryn Wright Articles prepared from certain hydrogenated block copolymers
EP2177336A1 (en) * 2008-10-17 2010-04-21 Grupo Antolin-Ingenieria, S.A. Method for manufacturing a vehicle trim panel
US20120029139A1 (en) * 2009-01-30 2012-02-02 Centre National De La Recherche Scientifique (Cnrs Block copolymers having associative groups, and adhesive containing same
WO2011040586A1 (ja) * 2009-09-30 2011-04-07 株式会社クラレ 熱可塑性エラストマー組成物、成形体および医療用シーリング材
EP2546291B1 (en) * 2010-03-08 2016-04-20 Asahi Kasei Chemicals Corporation Foam composition, method for producing same, and foam
JP2013536313A (ja) * 2010-09-17 2013-09-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション 柔軟な材料およびそれから作製された物品
EP2716663B1 (en) * 2011-05-27 2015-06-24 Asahi Kasei Chemicals Corporation Method for manufacturing hydrogenated conjugated diene copolymer
WO2014129561A1 (ja) * 2013-02-22 2014-08-28 株式会社クラレ 繊維、布及び不織布
US10053603B2 (en) * 2014-04-02 2018-08-21 Kraton Polymers U.S. Llc Block copolymers containing a copolymer myrcene block
EP3150673B1 (en) * 2014-05-29 2019-03-20 Asahi Kasei Kabushiki Kaisha Asphalt composition
TWI551615B (zh) * 2014-12-31 2016-10-01 奇美實業股份有限公司 共軛二烯-乙烯基芳香烴共聚物
KR102665102B1 (ko) * 2015-07-24 2024-05-09 다이나솔 엘라스토메로스, 에스.에이.유. Tpe 조성물 내 개선된 성능을 가지는 수소화 고무
EP3830193A1 (en) 2018-07-30 2021-06-09 Dow Global Technologies, LLC Elastomer composition
JP7166433B2 (ja) * 2019-03-20 2022-11-07 旭化成株式会社 水添ブロック共重合体
EP3819339B1 (en) * 2019-11-08 2023-04-26 TSRC Corporation Polymer composition and fiber or non-woven fabric made therefrom
JPWO2021261241A1 (ja) * 2020-06-22 2021-12-30

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118335A (ja) * 1993-10-25 1995-05-09 Japan Synthetic Rubber Co Ltd 水添ジエン系共重合体
JPH07238111A (ja) * 1994-02-25 1995-09-12 Kuraray Co Ltd 水添ブロック共重合体、及び該水添ブロック共重合体を含有する熱可塑性樹脂組成物
WO2004003027A1 (ja) * 2002-06-27 2004-01-08 Asahi Kasei Chemicals Corporation 水添共重合体及びその組成物
JP2005126485A (ja) * 2003-10-21 2005-05-19 Asahi Kasei Chemicals Corp 水添共重合体
JP2005255856A (ja) * 2004-03-11 2005-09-22 Jsr Corp 水添ジエン系共重合体及びその製造方法
JP2006051632A (ja) * 2004-08-10 2006-02-23 Jsr Corp 多層積層体及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333024A (en) 1963-04-25 1967-07-25 Shell Oil Co Block polymers, compositions containing them and process of their preparation
SE307674B (ja) 1963-12-26 1969-01-13 Shell Int Research
US3792127A (en) 1971-09-22 1974-02-12 Shell Oil Co Hydrogenated block copolymers and process for preparing same
JPS634841A (ja) 1986-06-25 1988-01-09 Hitachi Ltd プラズマ処理装置
US4743014A (en) 1987-07-30 1988-05-10 Loane R Joel Ski exercising apparatus
JPS6453851A (en) 1987-08-25 1989-03-01 Hitachi Ltd Printing system
JP2536074B2 (ja) 1988-06-28 1996-09-18 ソニー株式会社 回転ドラムのア―ス装置
JP2638165B2 (ja) 1988-12-09 1997-08-06 日本合成ゴム株式会社 水添ジエン系共重合体樹脂組成物、およびその製造方法
JPH02158673A (ja) 1988-12-12 1990-06-19 Toyoda Gosei Co Ltd 塗料組成物
US5191024A (en) * 1989-05-19 1993-03-02 Japan Synthetic Rubber Co., Ltd. Hydrogenated diene block copolymer and composition comprising the same
GB9002804D0 (en) 1990-02-08 1990-04-04 Secr Defence Anionic polymerisation
IT1246287B (it) 1990-07-25 1994-11-17 Enichem Elastomers Copolimero a blocchi ramificato e idrogenato e procedimenti per la sua preparazione
JP3367142B2 (ja) 1993-04-07 2003-01-14 ジェイエスアール株式会社 熱可塑性樹脂組成物
US5708092A (en) * 1994-05-13 1998-01-13 Fmc Corporation Functionalized chain extended initiators for anionic polymerization
JP3460005B2 (ja) 1994-10-11 2003-10-27 旭化成株式会社 水添重合体
US5527753A (en) * 1994-12-13 1996-06-18 Fmc Corporation Functionalized amine initiators for anionic polymerization
DE19638254A1 (de) 1996-09-19 1998-03-26 Basf Ag Thermoplastische Elastomere
WO2003035705A1 (fr) 2001-10-23 2003-05-01 Asahi Kasei Kabushiki Kaisha Copolymere hydrogene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118335A (ja) * 1993-10-25 1995-05-09 Japan Synthetic Rubber Co Ltd 水添ジエン系共重合体
JPH07238111A (ja) * 1994-02-25 1995-09-12 Kuraray Co Ltd 水添ブロック共重合体、及び該水添ブロック共重合体を含有する熱可塑性樹脂組成物
WO2004003027A1 (ja) * 2002-06-27 2004-01-08 Asahi Kasei Chemicals Corporation 水添共重合体及びその組成物
JP2005126485A (ja) * 2003-10-21 2005-05-19 Asahi Kasei Chemicals Corp 水添共重合体
JP2005255856A (ja) * 2004-03-11 2005-09-22 Jsr Corp 水添ジエン系共重合体及びその製造方法
JP2006051632A (ja) * 2004-08-10 2006-02-23 Jsr Corp 多層積層体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1852446A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737218B2 (en) 2006-12-29 2010-06-15 Bridgestone Corporation Method for generating free radical capable polymers using tin or silicon halide compounds
US8030410B2 (en) * 2006-12-29 2011-10-04 Bridgestone Corporation Method for generating free radical capable polymers using carbonyl-containing compounds
JP2008208213A (ja) * 2007-02-26 2008-09-11 Asahi Kasei Chemicals Corp 制振材用水添共重合体及びアスファルト制振材組成物
WO2008146210A1 (en) 2007-05-25 2008-12-04 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic composition and articles comprising the same
JP2009242463A (ja) * 2008-03-28 2009-10-22 Asahi Kasei Chemicals Corp 熱可塑性エラストマー組成物
WO2010018743A1 (ja) * 2008-08-12 2010-02-18 旭化成ケミカルズ株式会社 水添ブロック共重合体組成物及びこれを用いた成形体
JP5437247B2 (ja) * 2008-08-12 2014-03-12 旭化成ケミカルズ株式会社 水添ブロック共重合体組成物及びこれを用いた成形体
JP2010053319A (ja) * 2008-08-29 2010-03-11 Asahi Kasei Chemicals Corp 水添ブロック共重合体及びその組成物
JP2010090267A (ja) * 2008-10-08 2010-04-22 Asahi Kasei Chemicals Corp 水添ブロック共重合体組成物
JP2011111499A (ja) * 2009-11-25 2011-06-09 Kuraray Co Ltd 家電製品用防振部材
JP2017025144A (ja) * 2015-07-16 2017-02-02 旭化成株式会社 水添ブロック共重合体、並びにこれを用いた粘接着組成物、改質アスファルト組成物及び改質アスファルト混合物
WO2017130681A1 (ja) * 2016-01-29 2017-08-03 日本ゼオン株式会社 樹脂組成物、及びその用途
WO2018221661A1 (ja) * 2017-05-31 2018-12-06 株式会社クラレ ゲル組成物、ケーブル充填材、ケーブル、及びゲル組成物用クラム
JP6483934B1 (ja) * 2017-05-31 2019-03-13 株式会社クラレ ゲル組成物、ケーブル充填材、ケーブル、及びゲル組成物用クラム
US11753545B2 (en) 2017-05-31 2023-09-12 Kuraray Co., Ltd. Gel composition, cable filler, cable, and crumb for gel composition
JP2020128523A (ja) * 2018-12-06 2020-08-27 ティエスアールシー・コーポレイションTSRC Corporation ポリマー組成物、発泡体およびその方法
JP7042248B2 (ja) 2018-12-06 2022-03-25 ティエスアールシー・コーポレイション ポリマー組成物、発泡体およびその方法
US11746226B2 (en) 2018-12-06 2023-09-05 Tsrc Corporation Polymer composition, foam and method thereof
JP2020152779A (ja) * 2019-03-19 2020-09-24 旭化成株式会社 水添共重合体、水添共重合体組成物、発泡体及び成形体
JP7313167B2 (ja) 2019-03-19 2023-07-24 旭化成株式会社 水添共重合体、水添共重合体組成物、発泡体及び成形体

Also Published As

Publication number Publication date
EP1852446A4 (en) 2010-11-10
US20080161485A1 (en) 2008-07-03
EP1852446B1 (en) 2012-01-25
TWI312001B (ja) 2009-07-11
HK1115758A1 (en) 2008-12-05
JP5214236B2 (ja) 2013-06-19
JPWO2006088187A1 (ja) 2008-07-03
US7935756B2 (en) 2011-05-03
TW200636004A (en) 2006-10-16
EP1852446A1 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP5214236B2 (ja) 水添ブロック共重合体及びその組成物
TWI399387B (zh) 氫化嵌段共聚物及其交聯用組合物
JP3949110B2 (ja) 水添共重合体
JP4776155B2 (ja) 水添共重合体
JP5437247B2 (ja) 水添ブロック共重合体組成物及びこれを用いた成形体
CN100591699C (zh) 氢化嵌段共聚物及其组合物
EP2239299B1 (en) Thermoplastic elastomer composition and method for producing the same
JP7304202B2 (ja) 水添ブロック共重合体
JP5378730B2 (ja) 水添ブロック共重合体及びその組成物
JP5236417B2 (ja) 水添ブロック共重合体組成物
JP2021017562A (ja) 水添ブロック共重合体、水添ブロック共重合体組成物、及び成形体
JP3916479B2 (ja) 制振、防音材料
JP7166433B2 (ja) 水添ブロック共重合体
JP2004059741A (ja) 共重合体及びその組成物
JP5637765B2 (ja) 変性水添ブロック共重合体組成物及びこれを用いた成形体
JP5121014B2 (ja) 動的架橋組成物
JP2020152779A (ja) 水添共重合体、水添共重合体組成物、発泡体及び成形体
CN112239511B (zh) 氢化嵌段共聚物、氢化嵌段共聚物组合物以及成型体
WO2023145369A1 (ja) 水添ブロック共重合体、水添ブロック共重合体組成物、及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503772

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006714114

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11884795

Country of ref document: US

Ref document number: 200680005602.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714114

Country of ref document: EP