WO2006085427A1 - 容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装置 - Google Patents

容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装置 Download PDF

Info

Publication number
WO2006085427A1
WO2006085427A1 PCT/JP2006/300250 JP2006300250W WO2006085427A1 WO 2006085427 A1 WO2006085427 A1 WO 2006085427A1 JP 2006300250 W JP2006300250 W JP 2006300250W WO 2006085427 A1 WO2006085427 A1 WO 2006085427A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
period
chamber
supplied
raw material
Prior art date
Application number
PCT/JP2006/300250
Other languages
English (en)
French (fr)
Inventor
Kenji Matsumoto
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2006085427A1 publication Critical patent/WO2006085427A1/ja
Priority to US11/834,715 priority Critical patent/US20070287248A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Definitions

  • Capacitance element manufacturing method semiconductor device manufacturing method, and semiconductor manufacturing apparatus
  • the present invention relates to a capacitor element manufacturing method, a semiconductor device manufacturing method, and a semiconductor manufacturing apparatus, and more particularly to a manufacturing technique and a manufacturing apparatus suitable for manufacturing a capacitor element including a dielectric made of a metal oxide. .
  • a semiconductor device has been configured with a capacitive element in which a dielectric layer is formed on a lower electrode, and an upper electrode is formed on the dielectric layer! RU
  • the dielectric layer of such a capacitive element is required to have a low leakage current and a high dielectric constant in order to ensure element characteristics.
  • Dielectric layers that satisfy these requirements include (Ba, Sr) TiO (hereinafter referred to as “BST”) and Ta.
  • High-dielectric materials made of metal oxides such as O are attracting attention, and DRAM (dynamic
  • PZT Pb (Zr, Ti) 0
  • Ferroelectric materials made of metal oxides are attracting attention as non-volatile memory materials and are used in FeR AM (Ferroelectric Random Access Memory).
  • metals such as Ir, Ru, and Pt, which are platinum group elements, are mainly used as the material constituting the lower electrode. V, but importance is placed on relaxation of polarization fatigue and oxygen barrier properties at high temperatures.
  • oxide conductors such as IrO and SrRuO may be used.
  • dielectric includes both “high dielectric” and “ferroelectric”.
  • the sol-gel method is a method of polycrystallizing by applying a sol-gel raw material solution on the lower electrode and subjecting it to an annealing treatment in an oxygen atmosphere, but the orientation of the polycrystal is uneven.
  • the sputtering method is This is a method in which a film is formed using a target of a ramix sintered body and then annealed in an oxygen atmosphere.
  • the composition of the dielectric is determined by the target, so the composition of the dielectric layer is optimized. Difficult to do. Furthermore, since the annealing method has a high annealing temperature, there is a risk of causing problems in the process such as thermal effects on other layers.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-58525
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-57156
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-334875
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-318171
  • JP-A-2003-324101 discloses a method for changing the concentration of an oxidizing gas during the formation of a dielectric layer, and an atmosphere in which the substrate surface is at an oxygen concentration of 100% before the film formation. A method of heat treatment in it was proposed!
  • Non-Patent Document 1 3 ms "Japan Jouurnal of Applied Physics Vol. 43, No. 5A, 2004, pp.2655— 2600 Japan Society of Applied Physics (Non-Patent Document 1) is a PZT thin film formed by MOCVD on the lower electrode with IrO force.
  • Non-Patent Document 1 IrO is easily reduced to Ir by the solvent butyl acetate or THF (tetrahydrofuran), or an organometallic material gas (precursor), and oxidation and reduction
  • the boundary depends on the solvent, the partial pressure ratio between the precursor and O, and the wafer temperature.
  • Fatigue characteristics of polarization reversal This is a characteristic that the polarization amount (capacitance value) of the capacitive element decreases by repetition.
  • the imprint characteristic is a characteristic in which the hysteresis characteristic of the capacitive element shifts in the positive voltage direction or the negative voltage direction.
  • the retention characteristic is a characteristic indicating a change with time in the polarization amount (capacitance value).
  • the lower electrode made of a metal material such as Ir may be exposed to an oxidizing atmosphere.
  • the surface of the lower electrode is insufficiently oxidized or is different from the dielectric layer as described later.
  • a metal oxide having a composition adheres.
  • the film quality of the dielectric layer is affected by the acid atmosphere, the reproducibility of the interface state between the lower electrode and the dielectric layer and the film quality of the dielectric layer is reduced, and the reproducibility of the electric characteristics of the capacitive element is ensured.
  • the surface of the dielectric film formed on the surface of the lower electrode may be roughened due to acidification of the surface of the lower electrode (resulting in surface morphology). .
  • the object of the present invention is to ensure and stabilize the reproducibility of the electrical characteristics of the capacitive element, It is an object of the present invention to provide a capacitor element manufacturing method, a semiconductor device manufacturing method, and a semiconductor manufacturing apparatus capable of smoothing the surface of a dielectric layer (improvement of surface morphology).
  • the temperature in the chamber is changed with the oxygen-containing gas and the inert gas first introduced into the chamber. While adjusting the pressure conditions, the flow rate of the organometallic material gas is stabilized by flowing the organometallic material gas from the raw material supply system to a path that does not pass through the chamber such as the bypass line, and these various conditions are sufficiently stable. Then, by introducing the organometallic material gas into the chamber, the reaction between the organometallic material gas and the oxidizing gas started to start film formation on the substrate.
  • the present inventor examined the situation at the beginning of such a film formation process.
  • the introduction of the oxygen-containing gas before the organometallic material gas was introduced into the chamber caused Ir and It has been found that the surface of the lower electrode, which is a metal material force such as Ru, is incompletely oxidized, and an unintended impurity element adheres to the surface of the lower electrode.
  • these defects reduce the reproducibility of the interface state between the lower electrode and the dielectric layer, and also cause poor crystallinity and surface morphology of the dielectric layer due to non-uniformity of the surface structure of the lower electrode.
  • the reproducibility of the electrical characteristics (fatigue characteristics, imprint characteristics, retention characteristics) of the capacitive elements would be reduced and unstable.
  • the present inventor has made it possible to prevent the oxygen-containing gas that accompanies at least one organometallic material gas from reaching the surface of the lower electrode before the film formation is started. Focusing on the fact that the surface state uniformity and reproducibility of the lower electrode before the film can be improved, the present invention described below has been completed.
  • a method for manufacturing a capacitive element according to the present invention includes: (a) forming an insulating film on a substrate to be processed; (b) forming a lower electrode layer on the insulating film; A first step (cl) of supplying at least one of one or more kinds of organometallic material gases and a vaporized organic solvent on the lower electrode layer in a state where no inert gas is supplied; A second step (c2) for supplying both a material gas and an oxidizing gas onto the lower electrode layer, and the first step (cl) and the second step (c2) are the same.
  • a dielectric layer is formed on the lower electrode layer by continuously performing in a chamber; and (d) an upper electrode layer is formed on the dielectric layer. Is formed.
  • one or a plurality of types of organometallic material gas may be supplied or a vaporized organic solvent may be supplied.
  • the vaporized organic solvent is supplied, and at least one kind of organometallic material gas is supplied.
  • the organometallic material gas supplied in the first step (cl) and the organometallic material gas supplied in the second step (c2) have the same composition. Furthermore, it is desirable that the partial pressure of the organic metal material gas is substantially the same in the first step (cl) and the second step (c2).
  • the lower electrode layer in step (b) preferably contains a platinum group element. In particular, it is more effective when the platinum group element is Ir or Ru.
  • the dielectric formed in step (c) is preferably a ferroelectric. Furthermore, the dielectric formed in step (c) is particularly effective when it is Pb (Zr, Ti) 0.
  • the organometallic material solution is desirably produced by dissolving an organometallic material in an organic solvent.
  • organic solvent examples include butyl acetate.
  • the capacitive element is usually configured by forming the metal layer as a lower electrode and forming the upper electrode on the dielectric layer.
  • each of the lower electrode and the upper electrode may be composed of a single layer, or may be composed of a plurality of conductor layers.
  • a method for manufacturing a semiconductor device includes (a) partially removing the surface of a substrate to be processed to form an element isolation film, and (b) implanting impurities into a part of the element region. Forming a source region and a drain region; (c) forming a gate insulating film between the source region and the drain region; (d) forming a gate electrode on the gate insulating film; ) Forming an interlayer insulating film so as to cover the element isolation film and the gate electrode; (f) forming a contact hole in the interlayer insulating film; and (g) the source region and the drain through the contact hole.
  • a semiconductor manufacturing apparatus has a mounting table for supporting a substrate, a chamber surrounding the periphery of the substrate, and one or a plurality of types of organometallic material gas and oxidizing gas in the chamber. And a raw material supply unit for supplying the vaporized organic solvent, an exhaust unit for exhausting the chamber, and one or a plurality of types of organics that do not supply the oxidizing gas into the chamber in the first period. At least one of a metal material gas and a vaporized organic solvent is supplied into the chamber, and then the organometallic material gas and the oxidizing gas are both supplied from the source supply unit in a second period. A control unit that controls the raw material supply unit so that the supply operation in the first period and the supply operation in the second period are continuously performed. , Characterized by including the.
  • the control unit supplies at least one kind of organometallic material gas, supplies a vaporized organic solvent, or vaporizes the raw material supply unit into the chamber from the raw material supply unit.
  • An organic solvent may be supplied, and at least one organic metal material gas may be supplied.
  • At least one of the organometallic material gases supplied in the first period has substantially the same composition as the organometallic material gas supplied in the second period.
  • the treatment in the first period and the treatment in the second period are suitable for continuous treatment.
  • FIG. 1 is an overall configuration block diagram showing a semiconductor manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a fluid circuit diagram of a raw material supply unit of a semiconductor manufacturing apparatus.
  • FIG. 3 is a control block diagram of a semiconductor manufacturing apparatus.
  • FIG. 4] (a) to (e) are timing charts showing changes in the flow rates of various gases in the film formation process of the comparative example.
  • FIG. 5 (a) to (e) are timing charts showing changes in flow rates of various gases in the film forming process of the embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a capacitor element in a semiconductor device.
  • FIG. 7 is a schematic cross-sectional view showing FeRAM in a semiconductor device.
  • FIG. 8 is a characteristic diagram showing the amount of element attached to the substrate by atmosphere before film formation.
  • FIG. 9 is a characteristic diagram showing part of an XRD profile for the PZTZRu structure of the example and the PZTZRu structure of the comparative example.
  • FIG. 10 is a schematic cross-sectional view showing the PZTZRu structure of the example and the PZTZRu structure of the comparative example side by side.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of the semiconductor manufacturing apparatus 100 of the present embodiment.
  • This semiconductor manufacturing apparatus 100 is a MOCVD apparatus equipped with a liquid material vaporization supply system that uses liquid organic metal or an organic metal solution as a liquid material and vaporizes and supplies the liquid material.
  • the semiconductor manufacturing apparatus 100 includes a raw material supply unit 110, a vaporizer (liquid vaporization unit) 120, a processing unit 130, and an exhaust unit 140.
  • the raw material supply unit 110 supplies a liquid material such as a liquid organic metal, an organic metal solution, or an organic solvent.
  • the vaporizer (liquid vaporization unit) 120 vaporizes the liquid material supplied from the raw material supply unit 110 to generate gas.
  • the processing unit 130 performs film formation based on the gas supplied from the vaporizer 120.
  • the exhaust unit 140 exhausts the atmosphere of the vaporizer 120, the processing unit 130, and the raw material supply unit 110, respectively.
  • FIG. 2 shows a fluid circuit of the raw material supply unit 110.
  • Raw material supply unit 110 is a solvent supply unit, A material A material supply unit, a B material supply unit, and a C material supply unit.
  • the solvent supply unit has a pressurized line Xa, a solvent container Xb, and a supply line 110X.
  • the solvent container Xb stores an organic solvent having a predetermined component therein.
  • the pressurization line Xa is provided between a supply source (not shown) of a pressurized inert gas (for example, compressed nitrogen gas) and the solvent container Xb, and introduces the pressurized inert gas into the solvent container Xb.
  • the organic solvent is pumped from the solvent container Xb.
  • an on-off valve 115 On the pressurization line Xa, an on-off valve 115, a pressure gauge P2, a check valve Xe, an on-off valve Xf, and an on-off valve Xg are installed.
  • the supply line 110X is provided between the solvent container Xb and the main line (raw material supply line) 11 OS, and allows the organic solvent to flow from the solvent container Xb to the main line 110S.
  • On / off valve Xh, on-off valve Xi, filter Xj, flow controller Xc and on-off valve Xd are attached to supply line 110X!
  • the A material supply unit includes a pressurization line Aa, a raw material container Ab, and a supply line 110A.
  • the raw material container Ab stores a liquid organic metal raw material or an organic metal raw material solution (hereinafter simply referred to as “raw material”).
  • the pressurization line Aa is connected to the pressurization line Xa through a branch line Ya that branches downstream of the pressure gauge P2.
  • a check valve Ae, an on-off valve Af, and an on-off valve Ag are attached to the pressurization line Aa.
  • the supply line 110A is provided between the raw material container Ab and the main line 110S, and feeds the raw material to the raw material container Ab power main line 110S.
  • an on-off valve Ah, an on-off valve Ai, a filter Aj, an on-off valve Ap, a flow rate controller Ac, and an on-off valve Ad are attached.
  • the B material supply unit includes a pressurization line Ba, a raw material container Bb, and a supply line 110B.
  • the raw material container Bb stores other raw materials.
  • the pressurization line Ba is connected to the pressurization line Xa via a branch line Ya that branches downstream of the pressure gauge P2.
  • a check valve Be, an on-off valve Bf, and an on-off valve Bg are attached to the pressurization line Ba.
  • the supply line 110B is provided between the raw material container Bb and the main line 110S, and feeds the raw material from the raw material container Bb to the main line 110S.
  • an on-off valve Bh, an on-off valve Bi, a filter Bj, an on-off valve Bp, a flow rate controller Be and an on-off valve Bd are attached.
  • the C material supply unit includes a pressurization line Ca, a raw material container Cb, and a supply line 110C.
  • the raw material container Cb stores other raw materials.
  • the pressurization line Ca is connected to the pressurization line Xa via a branch line Ya that branches downstream of the pressure gauge P2.
  • Pressure line C At a, a check valve Ce, an on-off valve Cf, and an on-off valve Cg are attached.
  • the supply line 11 OC is provided between the raw material container Cb and the main line 110S, and feeds the raw material from the raw material container Cb to the main line 110S.
  • Supply line 110C is provided with on-off valve Ch, on-off valve Ci, filter Cj, on-off valve Cp, flow controller Cc and on-off valve Cd.
  • an organic solvent such as butyl acetate, octane, hexane, or THF (tetrahydrofuran) can be used as the organic solvent.
  • organic Pb raw materials such as Pb (DPM) are used as raw materials supplied by the A material supply unit.
  • organic Zr raw materials such as Zr (0—i—Pr) (DPM) or Zr (0—i—Pr) (DPM) or Zr (DPM) are used.
  • the raw material supplied by the C material supply unit is Ti (0—i—Pr) (
  • Organic Ti raw materials such as DPM
  • organic Pb raw materials organic Zr raw materials
  • organic Ti raw materials are all solid at room temperature and normal pressure, it is desirable to use them as solution raw materials that have been melted to a predetermined concentration by the above-mentioned organic solvent.
  • Zr (Ot-Bu) Use liquid organic Zr raw material or liquid organic Ti raw material such as Ti (0—i-Pr)
  • the present invention is not limited to the above raw materials.
  • various organic metal materials such as an organic Ba raw material and an organic Sr raw material can be used as the raw material. Can do.
  • the organometallic material may be liquid or solid at room temperature, but in this embodiment, a solution obtained by dissolving the organometallic material in an organic solvent such as butyl acetate is used. It was.
  • the solvent supply unit, the A material supply unit, the B material supply unit, and the C material supply unit are respectively connected to the supply lines 110X, 11 OA, HOB, and 110C with on-off valves Xh, Ah, Bh, C h, on-off valve Xi, Ai, Bi, Ci ⁇ filter Xj, Aj, Bj, Cj, on-off valve Ap, Bp, Cp, mass flow meter and flow control valve Xc, Ac, Be, Cc, and open / close valves Xd, Ad, Bd, and Cd are provided in order toward the downstream side, and are connected to the raw material mixing unit 113.
  • check valves Xe, Ae, Be, Ce, on-off valves Xf, Af, Bf, Cf, and on-off valves Xg, Ag, Bg, Cg are downstream in the pressurization lines Xa, Aa, Ba, Ca. It is provided in order toward the side.
  • the on-off valves Xf, Af, Bf, Cf in the pressurization lines Xa, Aa, Ba, Ca are opened and closed.
  • Apportionment between valves Xg, Ag, Bg, Cg and on-off valves Xi, Ai, Bi, Ci and on-off valves Xh, Ah, Bh, Ch Are connected via open / close valves Xk, Ak, Bk, Ck.
  • the portions between the on-off valves Xi, Ai, Bi, Ci and the on-off valves Xh, Ah, Bh, Ch in the supply lines 110X, 11 OA, 1 10B, 110C are on-off valves XI, AI, BI, respectively.
  • C1 is connected to the exhaust line 110D.
  • the portion of the supply line 110X between the filter Xj and the flow rate controller Xc is connected to the pressurization lines Aa, Ba, Ca via the on-off valves Xm and An, Bn, Cn. Further, it is connected to the supply lines 110A, HOB, and 110C through the on-off valves Xm and Ao, Bo, and Co.
  • the upstream portions of the pressurization lines Xa, Aa, Ba, and Ca are connected to each other and connected to a pressurization gas source such as an inert gas via an on-off valve 115.
  • a pressure gauge P2 is connected to the downstream side of the on-off valve 115.
  • the exhaust line 110D is connected to a no-pass line 116 and is connected to the raw material mixing section 113 via an on-off valve 117.
  • the downstream end of the raw material mixing section 113 is connected to a main line 110S introduced into the vaporizer 120 via an on-off valve 114.
  • the upstream end of the raw material mixing section 113 is connected to a carrier gas source such as an inert gas via an on-off valve 111 and a flow rate controller 112.
  • a carrier gas source such as an inert gas
  • the exhaust line 110D is connected to the drain tank D through the on-off valve 118, and this drain tank is connected to the raw material supply exhaust line 140C through the on-off valve 119.
  • the vaporizer 120 includes a spray nozzle 121 to which a main line 110S derived from the raw material supply unit 110 and a spray gas line 120T for supplying a spray gas (for example, an inert gas) are connected.
  • the spray nozzle 121 sprays the mist of the liquid material into the heated vaporizer 120 to vaporize the liquid material and generate a raw material gas.
  • the vaporizer 120 is connected to the gas supply line 120S, and the gas supply line 120S is connected to the processing unit 130 via the gas introduction valve 131 !.
  • a carrier supply line 130T for supplying a carrier gas such as an inert gas is connected to the gas supply line 120S, and the carrier gas can be introduced into the processing unit 130 together with the raw material gas through the gas supply line 130S.
  • the carrier supply line 130T has a flow controller Ec and an open / close valve Ed. Therefore, the flow rate of the carrier gas can be controlled by the flow rate controller Ec.
  • the oxidizing gas line 130V supplies an oxidizing gas such as O, O, N 0, NO to the processing unit 130.
  • the acid gas line 130V is provided with a flow rate controller Fc and an on-off valve Fd, and the flow rate controller Fc can control the flow rate of the acid gas.
  • a carrier gas supply line may be separately provided in addition to the 130V line. Although illustration is omitted, specifically, a carrier gas supply line for purging the acidic gas line connected to the downstream side portion of the acidic gas line 130V, a loading / unloading gate valve for the substrate W (Fig. And a carrier gas supply line for purging a shield plate (not shown) inside the chamber 132, and the like.
  • the processing unit 130 includes a chamber 132 as a film forming chamber configured by an airtight sealed container.
  • the chamber 132 includes a gas introduction unit 133 to which the gas lines 130S and 130V are connected.
  • the gas introduction unit 133 includes a shower head structure that introduces the raw material gas and the oxidizing gas into the chamber 132 through fine holes.
  • this single head structure is a post-mix type introduction structure in which the raw material gas and the oxidizing gas are introduced into the chamber 132 from the pores provided separately.
  • a susceptor 134 is provided in the chamber 132 so as to be opposed to the gas introduction part 133, and the substrate W to be processed is placed on the susceptor 134.
  • the susceptor 134 is heated by a heater or a light irradiation device (not shown) so that the substrate W can be set to a predetermined temperature.
  • the pressure gauge P1 measures the pressure inside the chamber 132.
  • the exhaust unit 140 includes a main exhaust line 140 A connected to the chamber 132.
  • the main exhaust line 140A is provided with a pressure regulating valve 141, an on-off valve 142, an exhaust trap 143, an on-off valve 144, and an exhaust device 145 in this order from the upstream side.
  • the pressure regulating valve 141 (automatic pressure regulating means) has a function to control the valve opening according to the detected pressure of the pressure gauge P1 and automatically adjust the internal pressure of the chamber 132 to the set value! .
  • the exhaust section 140 is disposed between the gas supply line 120S and the main exhaust line 140A.
  • a connected no-pass exhaust line 140B is provided.
  • the upstream end of the binos exhaust line 140B is connected between the carburetor 120 and the gas introduction valve 131, and the downstream end thereof is connected between the exhaust trap 143 and the on-off valve 144.
  • the bypass exhaust line 140B is sequentially provided with an on-off valve 146 and an exhaust trap 147 toward the downstream side.
  • the exhaust unit 140 is provided with the raw material supply exhaust line 140C derived from the raw material supply unit 110.
  • the raw material supply exhaust line 140C is connected between the on-off valve 144 of the main exhaust line 140A and the exhaust device 145.
  • the exhaust device 145 is for exhausting the chamber 132, and preferably has a two-stage series configuration, for example, a first stage partial power-cal booster pump and a second stage part constituted by a dry pump.
  • a main control unit 100X having an MPU (microprocessing unit), an operation unit 100P, an on-off valve control unit 100Y, a flow rate control unit 100Z, and a detection signal input unit 100W are provided.
  • the operation unit 100P has an operation panel and a screen for performing various inputs to the main control unit 100X.
  • the on-off valve control unit 100Y sends a signal for controlling the operation of the on-off valves 131, 146, Fd and the like based on an instruction from the main control unit 100X. Instead of opening / closing control of the on-off valve Fd, it may be determined whether the acidic gas is introduced into the processing unit 130 by controlling the flow rate of the flow rate controller Fc.
  • the flow controller 100Z receives signals from the flow detector and transmits signals for controlling the operations of the flow controllers Xc, Ac, Be, Cc and the like.
  • the detection signal input unit 100W receives a detection signal of sensor power not shown and transmits a detection value signal corresponding to the detection signal to the main control unit 100X.
  • the flow rate controller 100Z is connected to the flow rate controllers Xc, Ac, Be, Cc, Ec, and Fc, and sets these flow rates.
  • the flow rate detection values output from the flow rate controllers Xc, Ac, Be, Cc, Ec, and Fc are received, and the flow rate detection values are fed back to the flow rate control unit 100Z.
  • the flow controllers Xc, Ac, Bc, Cc, Ec, and Fc may be controlled so as to match the set values.
  • the flow controllers Xc, Ac, Be, and Cc can be configured by, for example, a flow detector such as an MFM (mass flow meter) and a flow regulating valve such as a high-precision variable flow valve.
  • the step of forming the dielectric layer made of the metal oxide on the substrate (metal layer) by reacting the source gas of the organic metal material and the acidic gas. is included.
  • This step is performed by the semiconductor manufacturing apparatus 100 described above.
  • the dielectric layer a high dielectric layer or a ferroelectric layer can be used depending on the application.
  • the ferroelectric layer is preferably a polycrystalline thin film having a perovskite structure such as PZT or a polycrystalline thin film having a layered structure such as SBT.
  • the entire apparatus can be automatically operated by executing an operation program in the control unit 100X shown in FIG.
  • the operation program is stored in advance in the internal memory of the MPU, and this operation program is read from the internal memory and executed by the CPU.
  • the operation program has various operation parameters, and that the operation parameters can be appropriately set by an input operation from the operation unit 100P.
  • FIG. 5 is a timing chart showing the operation timing of each part of the semiconductor manufacturing apparatus 100.
  • FIG. 5 (a) shows the flow rate of the solvent supplied through the supply line 110X. This solvent flow rate is controlled by the flow controller Xc.
  • FIG. 5 (b) shows the raw material flow rate (bypass), and FIG. 5 (c) shows the raw material flow rate (chamber).
  • the raw material flow rate (bypass) corresponds to the flow rate of the raw material gas vaporized by the vaporizer 120 and flowing through the bypass exhaust line 140B.
  • the raw material flow rate (chamber) corresponds to the flow rate through the raw material gas supply line 130S.
  • These raw material flow rates (bypass) and raw material flow rates (chambers) are the total flow rate of the raw materials supplied via the supply lines 110A, HOB, and 110C, and are controlled by the flow controllers Ac, Be, and Cc.
  • FIG. 5 shows the oxidant flow rate.
  • the oxidant flow rate corresponds to the flow rate of the acidic gas flowing through the acidic gas line 130V.
  • Fig. 5 (e) shows the inert gas flow rate.
  • the inert gas flow rate corresponds to the total flow rate of inert gas such as nitrogen gas flowing through all carrier gas supply lines including the carrier supply line 130T.
  • each flow rate of (a) to (e) in FIG. 5 is indicated by a different flow rate scale.
  • the flow state and vaporization state of the air heater 120 are mainly stabilized.
  • the solvent flow rate was 1.2 mlZmin (200 sccm in terms of gas), and the total flow rate of the inert gas was 1200 sccm.
  • the flow rate of the carrier gas supplied to the raw material mixing unit 113 of the raw material supply unit 110 is, for example, 200 sccm, and the flow rate of the spray gas supplied to the vaporizer 120 is 50 sccm.
  • the flow rates of the carrier gas and the spray gas are not limited to the standby period tl to t2, but are always constant in order to maintain the spray state of the vaporizer 120. Also, during the standby period tl to t2, the liquid raw material is supplied, so that the raw material gas is generated in the vaporizer 120!
  • the waiting period tl to t2 is preferably set to about 20 to 40 seconds, for example.
  • the liquid raw material is flowed as shown in the raw material flow rate (bypass) (Fig. 5 (b)), the solvent flow rate is decreased (Fig. 5 (a)), and the inert gas is further flown. (Fig. 5 (e)).
  • the liquid material was 0.5 mlZmin
  • the solvent flow rate was 0.7 mlZmin
  • the inert gas flow rate was 2900 sccm.
  • the preflow period t2 to t3 since the liquid raw material is supplied as described above, the raw material and the solvent are vaporized in the vaporizer 120, and the raw material gas is generated.
  • the source gas is exhausted via the bypass exhaust line 140B.
  • the source gas can be supplied into the chamber 132 at a stable flow rate in the next preceding period t3 to t4 and the film formation period t4 to t5.
  • the preflow period t2 to t3 is preferably set to about 30 to 150 seconds, for example.
  • the substrate W is heated on the acceptor 134 and set to a predetermined temperature, and the chamber 132 is exhausted by the exhaust device 145.
  • a predetermined pressure is set.
  • the temperature of the substrate W during the film formation period t4 to t5 is set to 500 to 650 ° C, preferably about 600 to 630 ° C. Determined.
  • the internal pressure of the chamber 132 during the film formation period t4 to t5 is preferably in the range of 50 Pa to 5 kPa, and most preferably about 533.3 Pa.
  • the gas introduction valve 131 is opened and the on-off valve 146 is closed as shown in (c) Raw material flow rate (chamber).
  • the source gas is introduced into the chamber 132.
  • the source gas is introduced together with the organic solvent gas.
  • the acidic gas is not supplied.
  • the flow rate of the inert gas supplied through the carrier supply line 130T is reduced, and the total gas flow rate introduced into the chamber 132 is substantially reduced. It is preferable to adjust so as not to change. For example, when the flow rate of the source gas introduced into the chamber 1 32 is 0.5 mlZmin and the flow rate of the solvent is 0.7 mlZmin, the flow rate of the inert gas is reduced by a corresponding amount of 200 sccm.
  • the preceding period t3 to t4 since the oxidant is not supplied, the raw material molecules are uniformly adsorbed on the surface of the substrate W, thereby suppressing the influence of the base. It is preferable that the preceding period t3 to t4 is continued until the source gas is uniformly and stably supplied onto the substrate in the chamber 132, for example, set to about 10 to 60 seconds. It is desirable that
  • an acidic gas is introduced into the chamber 132 as shown in (d) of FIG. Start film formation for.
  • the source molecules exist on the substrate surface, a uniform and flat film formation state can be obtained.
  • the source gas and the acidic gas react to form a dielectric layer on the substrate W.
  • This film formation period t4 to t5 depends on the type of source gas and oxidizing gas, the composition of the dielectric layer, the film formation temperature (the temperature of the substrate W during film formation), the thickness of the dielectric layer, etc. Normally, it is set in the range of 100 to 500 seconds.
  • the gas introduction valve 131 is closed, the on-off valve 146 is opened, and the process proceeds to the post-purge period t5 to t6 after film formation. . Further, at timing t6, as shown in FIG. 5 (d), the supply of the acidic gas is stopped, and the process proceeds to a waiting period t6 to t7 in which only the inert gas is purged. It is preferable that the raw material gas flow rate in the preceding period t3 to t4 is the same as the raw material gas flow rate in the film formation period t4 to t5.
  • the oxidizing gas is continuously introduced in order to prevent the dielectric layer (PZT) from being deteriorated, and the oxidizing atmosphere in the chamber 132 is maintained.
  • the processing in the post-purge period t5 to t6 is different from the processing in the preflow period t2 to t3 in that the oxidizing gas is continuously supplied.
  • the reason for this is that, generally, a ferroelectric material having a bottom bumskite structure is greatly deteriorated in dielectric properties due to oxygen desorption when placed in a high-temperature reducing atmosphere.
  • the introduction of the acidic gas during the post-purge period t5 to t6 after the film formation prevents the inside of the chamber 132 from becoming a reducing atmosphere, and conversely the inside of the chamber 132.
  • an oxidizing atmosphere it is possible to completely prevent the deterioration of the ferroelectric characteristics.
  • a plurality of film forming processes are sequentially repeated by repeating the processes of preflow period ⁇ preceding period ⁇ film forming period ⁇ post purge period.
  • the operation timing of each unit as described above may be set in advance in the control unit 100X, or may be configured as appropriate by an operation on the operation unit 100P. If the operation timing is set, the control unit 100X automatically controls the entire apparatus via the on-off valve control unit 100Y and the flow rate control unit 100Z, and the above operation procedure is executed.
  • the above apparatus is a method similar to the conventional method.
  • a comparative example when operated in Fig. 4 will be described with reference to Fig. 4.
  • description of the part which a comparative example overlaps with said Example is abbreviate
  • the oxidant flow rate and (e) the inert gas flow rate in FIG. 4 are different from those in the above example.
  • the introduction of the oxygen-containing gas into the chamber 132 is started at the timing 12 when the standby period tl 1 to tl2 shifts to the preflow period tl2 to tl3 ((d) in FIG. 4), and the raw material flow rate (bypass)
  • the source gas at the source flow rate (chamber) is supplied to the chamber 132 to perform film formation ((c) in FIG. 4).
  • the surface of the substrate W is oxidized by the oxidizing agent.
  • the interface of the underlayer Z film formation layer has an adverse effect (such as surface oxidation) and degrades the film quality of the film formation layer.
  • FIG. 6 is a schematic cross-sectional view showing the capacitive element formed by the manufacturing method according to the present embodiment.
  • a SiO insulating film 12 is formed on the silicon substrate 11. On this insulating film 12, there are burrs.
  • a lower electrode 13 made of a metal layer such as Ir or Ru is formed through the upper layer 12b.
  • the lower electrode 13 can be formed by, for example, a sputtering method using a metal target such as Ir or Ru.
  • a dielectric layer 14 made of PZT, BST or the like is formed on the lower electrode 13 by the MOCVD method using the above apparatus.
  • the dielectric layer 14 is made of a metal oxide having a perovskite structure formed by reacting an organometallic material gas and an oxidizing gas by the method of the above-described embodiment.
  • an upper electrode 15 having a force such as Pt, Ir or IrO is formed by a sputtering method.
  • the laminated structure of the lower electrode 13, the dielectric layer 14, and the upper electrode 15 constitutes the capacitive element Cp.
  • the capacitive element Cp is formed as a part of the semiconductor device 10 having the substrate 11 and the circuit structure thereon.
  • an adhesion layer that also becomes Ta or T and a barrier layer 12b that also has Ta N or TiN force between the lower electrode 13 that also has metal layer force such as u.
  • FIG. 7 is a schematic cross-sectional view showing the semiconductor device 10 having FeRAM on the substrate 11.
  • the FeRAM memory is formed in the same way as when forming a normal MOS transistor.
  • Cell transistors (l is, l lf, l id, l lx) are formed. That is, the element isolation structure is configured by partially removing the surface of the substrate 11 to form the element isolation film llx. Next, an impurity is implanted into a part of the element region isolated by this element isolation structure to form a source region 1 Is and a drain region 1 Id, and a gate insulating film 11 f is formed on the region between them. Through this, a gate electrode l lg (word line) is formed.
  • the first interlayer insulating film 1 li is formed on the gate electrode l lg, and the wiring (bit line) 1 lp is conducted to the source region 1 Is through the contact hole provided in the first interlayer insulating film 1 li. Connect.
  • a second interlayer insulating film 12 is further formed on the wiring l ip, and then a lower electrode 13 similar to that shown in FIG. 6 is formed.
  • the lower electrode 13 is conductively connected to the drain region 1 Id through a contact hole provided in the second interlayer insulating film 12 and the first interlayer insulating film 1 li.
  • a dielectric layer 14 and an upper electrode 15 are laminated on the lower electrode 13 in the same manner as described above, and a capacitive element Cp similar to the above is obtained.
  • the semiconductor device 10 including the capacitive element Cp as a ferroelectric memory cell (FeRAM) is obtained.
  • the acidic gas when the acidic gas is first introduced into the chamber 132 without flowing the organometallic material gas, the acidic gas comes into contact with the substrate W at a high temperature.
  • the substrate surface of the substrate W is the surface of a metal layer such as Ir or Ru, the surface is partially oxidized.
  • the acidity at this time is determined by the acidity of the acidic gas introduced into the chamber 132, the partial pressure of the oxidizing gas, the substrate temperature, the material of the metal layer, etc. Complete and reproducible!
  • Fig. 8 is a characteristic diagram showing the results of experiments conducted using an apparatus that has been used to deposit PZT in the past.
  • a substrate W formed by forming a metal layer such as Ir or Ru on a silicon substrate via an insulating film is disposed in the chamber 132, and a pressure of 533 is introduced while introducing a predetermined gas into the chamber 132. After evacuating to 3 Pa, the substrate W was heated for 300 seconds at a set temperature of 625 ° C.
  • the substrate W thus treated was analyzed with an X-ray fluorescence analyzer, and the amounts of elements of Pb, Zr and Ti adhering to the surface of the substrate W were determined.
  • the diamonds in Fig. 8 The result of introducing only the inert gas into the bar 132 is shown, and the square mark indicates that the acidic gas (O) is introduced into the chamber 132 together with the inert gas so as to have the same partial pressure as the preparation period of the above comparative example.
  • the triangle mark shows the result of introducing the same amount of solvent into the chamber 132 together with the inert gas in the waiting period.
  • the substrate W is formed by forming a PZT thin film on the metal layer by using the above-described apparatus on the metal layer using the substrate W formed by forming a metal layer of Ru et al.
  • Figure 9 shows a part of the surface X-ray diffraction (XRD) spectrum.
  • the solid line in the figure shows the result of the PZT thin film formed by the method of the comparative example, and the broken line shows the result of the PZT thin film formed by the method of the above example.
  • C in the figure shows diffraction peaks due to the (110) plane and (101) plane of PZT
  • D in the figure shows diffraction peaks due to the (100) plane of PZT.
  • FIG. 10 is a cross-sectional view schematically showing the surface roughness of the PZT dielectric layers of the comparative example and the example of FIG.
  • the left half area of Fig. 10 shows a comparative example, and the right half area shows an example.
  • the thickness of the Ru metal layer (lower electrode) is about 130 ⁇ m
  • the thickness of the PZT dielectric layer is about lOOnm. From this figure, it can be seen that in the example, the surface roughness of the PZ T dielectric layer is significantly improved compared to that of the comparative example.
  • the interface state with the upper electrode is expected to be stabilized, and the electrical characteristics of the capacitive element (for example, reduction of leakage current) ) Can be improved, and effects such as easy post-processing such as etching can be expected.
  • an improvement in the morphology of the surface of the dielectric layer can also be expected to be able to easily perform in-film particle measurement.
  • a ferroelectric layer such as PZT is formed by the MOCVD method
  • the facet that appears on the crystal surface grows as PZT grows, making it difficult to flatten the surface morphology.
  • the laser beam is irradiated onto the substrate surface and the number of particles is counted by detecting the laser scattered light from the particles.
  • the surface morphology of the PZT ferroelectric layer is poor.
  • it is difficult to determine whether the scattered laser light is caused by particles and whether it is caused by facets on the surface of the PZT crystal.
  • the dielectric layer (ferroelectric layer) made of the metal oxide (polycrystal) having the perovskite structure is formed as described above has been described.
  • a polycrystalline thin film having another orientation state or an amorphous thin film may be formed, which is not the case with a bevelskite structure exhibiting ferroelectric characteristics. These are not excluded. Even these thin films are effective as dielectrics or insulators, and amorphous thin films are heat-treated after film formation. Can be polycrystallized.
  • the raw material is supplied in a state where no acidic gas is supplied immediately before the film formation period t4 to t5 in which the dielectric layer is formed by the reaction of the raw material gas and the oxidizing gas.
  • the substrate is placed in a reducing atmosphere during the preceding period t3 to t4. If you are deceived, you will never lose it.
  • the organometallic material gas that flows in the preceding periods t3 to t4 is not necessarily the same as the source gas.
  • the source gas in which three types of organometallic material gases are mixed is formed into a film.
  • at least one kind of organometallic material gas among these three kinds may be supplied.
  • film formation is performed by flowing the same source gas as the film formation period t4 to t5 in the preceding period t3 to t4.
  • the source gas partial pressure in the initial period of the deposition period t4 to t5 It is possible to eliminate changes and to start film formation stably.
  • the preceding periods t3 to t4 are provided immediately before the film forming periods t4 to t5. .
  • the raw material gas is introduced into the chamber 132 in a state where no acidic gas is introduced, and the raw material gas and the acid are continuously introduced in the film formation period t4 to t5.
  • the inert gas By introducing the inert gas into the chamber 132, the surface state of the base surface is prevented from becoming uncontrollable.
  • the vaporized gas of the organic solvent is introduced in a state where the acidic gas is not introduced, but the organometallic material gas may not be introduced.
  • the raw material molecules do not adhere to the substrate surface, but since the film formation can be started in a clean state without oxidizing the substrate surface, the controllability of the base surface can be ensured. As a result, it is possible to improve the homogeneity and surface morphology of the formed thin film.
  • a first period is provided in which the vaporized gas of the organic solvent is introduced but the organometallic material gas is not introduced in a state where the oxidizing gas is not introduced.
  • a second period for introducing the source gas may be provided in a state where the oxidizing gas is not introduced, and the film formation period may be started following this second period. . Even in this case, the cleanliness of the substrate surface is maintained in the first period, and the raw material molecules uniformly adhere to the substrate surface in the second period, so that the same effect as in the above embodiment can be obtained.
  • a part of the plurality of organometallic material gases is introduced in a state where the oxygen-containing gas is not introduced, and the subsequent second period.
  • all organometallic material gases are introduced in a state where no acidic gas is introduced, and immediately after that, the acidic gas is introduced in the same raw material gas introduction state as in the second period. It is possible to start the film formation by introducing a new one.
  • the vaporized gas of the organic solvent and the source gas are selectively supplied to the film formation chamber.
  • a gas supply system that can introduce only the vaporized gas of the organic solvent is provided in parallel. It is preferable to provide it. Accordingly, switching between the preceding period t3 to t4 and the film forming period t4 to t5, or between the first period, the second period, and the film forming period t4 to t5 only by operating the valve of the supply system.
  • ferroelectric PZT is formed as a dielectric layer
  • ferroelectrics with elements such as La, Ca and Nb added to PZT and ferroelectrics such as PbTiO, SrBi Ta O, BiLaTiO
  • the acidic gas before the film-forming step, the acidic gas is not supplied in a state where at least part of the organometallic material gas is not accompanied to the metal layer. Therefore, the surface of the metal layer is incompletely oxidized and deposits hardly adhere to the surface of the metal layer due to the acidic gas.
  • the metal oxide film does not intervene between the metal layer and the dielectric layer, the stability and reproducibility of the interface state is ensured, and the film quality of the dielectric layer and the reproducibility thereof are improved. As a result, the electrical characteristics of the capacitive element can be improved, and the surface of the dielectric layer can be smoothed.
  • the capacitive element manufacturing method, the semiconductor device manufacturing method, and the semiconductor manufacturing device of the present invention are not limited to the above-described illustrated examples, and do not depart from the gist of the present invention. Of course, various changes can be obtained.

Abstract

 容量素子の製造方法は、(a)基板上に絶縁膜を形成し、(b)前記絶縁膜の上に下部電極層を形成し、(c)酸化性ガスを供給しない状態で、一種又は複数種の有機金属材料ガスおよび気化した有機溶媒のうちの少なくとも一方を前記下部電極層の上に供給する第1の工程(c1)と、有機金属材料ガスおよび酸化性ガスを共に前記下部電極層の上に供給する第2の工程(c2)と、を含み、前記第1の工程(c1)と前記第2の工程(c2)とを同じチャンバ内で連続して実施することにより前記下部電極層の上に誘電体層を形成し、(d)前記誘電体層の上に上部電極層を形成する。

Description

容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装 置
技術分野
[0001] 本発明は容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装 置に係り、特に、金属酸化物からなる誘電体を備えた容量素子の製造に好適な製造 技術並びに製造装置に関する。
背景技術
[0002] 従来から、半導体装置には、下部電極上に誘電体層を形成し、この誘電体層上に 上部電極を形成してなる容量素子が構成されて!、る。このような容量素子の誘電体 層としては、一般に、素子特性を確保するために、リーク電流が少ないこと、高い誘 電率を有することなどが要求される。特に、近年の半導体装置の高集積化に伴い、リ ーク電流が小さぐコンパクトで大きな容量値を備えた容量素子が要求されている。こ れらの要求を満たす誘電体層としては、(Ba, Sr)TiO (以下、「BST」という)や Ta
3 2
Oなどの金属酸ィ匕物からなる高誘電体材料が注目されており、 DRAM (ダイナミック
5
アクセスメモリ)で用いられている。また、 Pb (Zr, Ti) 0 (以下、「PZT」という)などの
3
金属酸化物からなる強誘電体材料が不揮発性メモリ材料として注目されており、 FeR AM (Ferroelectric Random Access Memory)で用いられている。ここで、下部電極を 構成する材料としては、白金族元素である Ir, Ru, Ptのような金属が主に用いられて V、るが、分極疲労の緩和や高温での酸素バリア特性を重視する場合などにお!ヽては IrO , SrRuOなどの酸化物導電体を用いることもある。なお、本願明細書では特に
2 3
言及しない限り、「誘電体」は「高誘電体」と「強誘電体」の双方を含むものとする。
[0003] ところで、 PZTを下部電極上に形成する方法としては、ゾル'ゲル法、スパッタリング 法、 CVD法などが提案されている。このうち、ゾル'ゲル法は、ゾル'ゲル原料溶液を 下部電極上に塗布し、酸素雰囲気中にてァニール処理を施すことにより多結晶化さ せる方法であるが、多結晶の配向性が不揃いで、し力も、段差被覆性 (ステップカバ レツジ)が悪ぐデバイスの高集積ィ匕には不向きである。また、スパッタリング法は、セ ラミックス焼結体のターゲットを用いて成膜し、その後、酸素雰囲気中でァニール処 理を施す方法であるが、誘電体の組成がターゲットによって決定されるため、誘電体 層の組成を最適化することが難しい。さらに、スパッタリング法は、ァニール処理温度 が高いため、他層に熱影響が及ぶなどプロセス上の問題を生ずるおそれがある。
[0004] そこで、近年、有機金属化合物化学気相成長法(MOCVD ;Meta卜 Organics Chem ical Vapor Deposition)が注目され、例えば特開 2000— 58525号公報(特許文献 1) 、特開 2002— 57156号公報 (特許文献 2)、特開 2002— 334875号公報 (特許文 献 3)、特開 2003— 318171号公報 (特許文献 4)では PZTなどの強誘電体の成膜 方法について種々の提案がなされている。 MOCVDでは、誘電体層の配向性や結 晶性、あるいは下部電極と誘電体層の界面状態など力 容量素子の電気特性に大き く影響するため、下部電極上にどのように成膜を行うかが重要とされる。上記のうち特 許文献 1乃至 3の方法では、所定の条件で下部電極上に誘電体層の初期核形成を 行った後に、条件を変更して正規の成膜を行う。また、特許文献 4の方法では、誘電 体層の成膜工程の前後においてガス圧力やガス温度の変化を低減する。
[0005] さらに、特開 2003— 324101号公報 (特許文献 5)では、誘電体層の成膜中に酸 化ガスの濃度を変化させる方法及び成膜前に基板表面を酸素濃度 100%の雰囲気 中で熱処理する方法が提案されて!ヽる。
[0006] また、 Kyung— Mun BYUN他" Thermochemical Stability of IrO Bottom Electrodes in
2
Direct-Liquid-Injection Metalorganic Chemical Vapor Deposition of Pb(Zr,Ti)0 Fil
3 ms" Japan Jouurnal of Applied Physics Vol. 43, No. 5A, 2004, pp.2655— 2600 日本 応用物理学会(非特許文献 1)は、 IrO力 なる下部電極上に MOCVD法で PZT薄
2
膜を成膜したときの下部電極表面の膜質や界面状態などを開示して 、る。この非特 許文献 1では、溶媒の酢酸ブチルや THF (テトラヒドロフラン)、あるいは有機金属材 料ガス(プリカーサ)によって IrOは容易に Irに還元されること、および、酸化と還元の
2
境目はこれら溶媒やプリカーサと Oとの分圧比およびウェハ温度に依存すること、が
2
報告されている。
[0007] ところで、容量素子の電気特性に関してユーザーからの要望として、疲労特性、ィ ンプリント特性、および保持特性の改善があげられている。疲労特性は、分極反転の 繰り返しにより容量素子の分極量 (静電容量値)が減少する特性である。インプリント 特性は、容量素子のヒステリシス特性が正電圧方向又は負電圧方向へシフトする特 性である。保持特性は、分極量 (静電容量値)の経時的変化を示す特性である。
[0008] 上記の各特性の劣化は、電極と誘電体との間の界面における酸素空孔、誘電体中 の酸素空孔など、界面状態や誘電体構造の欠陥などによって生ずるものと推測され ているが、未だ詳細な原因は不明である。ちなみに上記特許文献 1乃至 3の従来方 法では、 MOCVDを用いて誘電体層を形成する際に、下部電極と誘電体層との界 面状態を制御するために、ベロブスカイト型結晶構造の初期核または初期層を形成 する。
[0009] 一方、成膜条件によっては Irなどの金属材料で構成された下部電極が酸化雰囲気 にさらされる場合がある。下部電極が酸化雰囲気にさらされた場合、上記の非特許文 献 1に記載されているように、下部電極の表面が不十分に酸ィ匕されたり、後述するよう に誘電体層とは異なる組成の金属酸化物が付着したりする場合がある。また、酸ィ匕 雰囲気によって誘電体層の膜質も影響を受けるので、下部電極と誘電体層の界面 状態や誘電体層の膜質の再現性が低下し、容量素子の電気特性の再現性を確保 するとともに電気特性の安定ィ匕を図ることが難しくなると懸念される。さらに、下部電 極表面が酸ィ匕することでその表面が荒れてしまい(表面モホロジ一の悪ィ匕が生じ)、 その上に形成した誘電体膜の表面も荒れてしまうことが懸念される。
[0010] しかし、上記特許文献 1, 2, 3, 5の方法では、誘電体層の形成前に下部電極が酸 化雰囲気にさらされるようになっており、下部電極と誘電体層との間に IrOなどの界
2 面層(不純酸化物層)が形成される可能性が考えられ、これらの界面層が容量素子 の電気特性や表面モホロジ一に悪影響を及ぼすおそれがある。 IrO
2は電極にも用い られている酸化物導電体材料である。しかし、上記特許文献 1, 2, 3, 5の方法にお いては、 IrOの堆積条件が全く制御されていないため、容量素子の電気特性 (疲労
2
特性、インプリント特性、保持特性)の再現性を得ることは難しぐこれらの電気特性を 不安定にするおそれがある。
発明の開示
[0011] 本発明の目的は、容量素子の電気的特性の再現性確保および安定化、さらには 誘電体層表面の平滑化 (表面モホロジ一の改善)を図ることができる容量素子の製造 方法、半導体装置の製造方法、および半導体製造装置を提供することにある。
[0012] 従来の MOCVD法による下部電極上への誘電体層の形成工程においては、一般 に、最初に酸ィ匕性ガスと不活性ガスをチャンバ内に導入した状態でチャンバ内の温 度や圧力条件を整える一方、原料供給系からバイパスラインなどのチャンバを経由し ない経路に有機金属材料ガスを流すことにより有機金属材料ガスの流量などの安定 化を図り、これらの各種条件が十分に安定したところで、有機金属材料ガスをチャン バ内に導入することで、有機金属材料ガスと酸化性ガスの反応が始まり、基板上への 成膜が開始されるようにして 、た。
[0013] このような成膜過程の開始当初の状況について本発明者が検討したところ、有機 金属材料ガスがチャンバ内に導入される前に酸ィ匕性ガスが導入されることで、 Irや R uのような金属材料力 なる下部電極の表面が不完全に酸ィ匕されたり、下部電極の 表面に意図しない不純物元素が付着したりすることが判明した。さらに、これらの不 具合によって、下部電極と誘電体層の界面状態の再現性が低下するとともに、下部 電極の表面構造の不均一性に起因して誘電体層の結晶性や表面モホロジーも悪ィ匕 し、容量素子の電気特性 (疲労特性、インプリント特性、保持特性)の再現性の低下 や不安定ィ匕が生ずることが想定された。
[0014] そこで、本発明者は、成膜が開始される前に、有機金属材料ガスの少なくとも一種 を伴うことなぐ酸ィ匕性ガスが下部電極の表面に到達しないようにすることで、成膜前 の下部電極の表面状態の均一性や再現性および清浄度を向上させ得ることに着目 し、以下に述べる本発明を完成させるに至ったものである。
[0015] 本発明に係る容量素子の製造方法は、(a)被処理基板の上に絶縁膜を形成し、 (b )前記絶縁膜の上に下部電極層を形成し、(c)酸ィ匕性ガスを供給しない状態で、一 種又は複数種の有機金属材料ガスおよび気化した有機溶媒のうちの少なくとも一方 を前記下部電極層の上に供給する第 1の工程 (cl)と、有機金属材料ガスおよび酸 化性ガスを共に前記下部電極層の上に供給する第 2の工程 (c2)と、を含み、前記第 1の工程 (cl)と前記第 2の工程 (c2)とを同じチャンバ内で連続して実施することによ り前記下部電極層の上に誘電体層を形成し、 (d)前記誘電体層の上に上部電極層 を形成する、ことを特徴とする。
[0016] 上記第 1の工程 (cl)では、一種又は複数種の有機金属材料ガスを供給してもよ!/ヽ し、または気化した有機溶媒を供給するようにしてもよい。あるいは上記第 1の工程 (c 1)では、気化した有機溶媒を供給し、かつ有機金属材料ガスの少なくとも一種を供 給するようにしてちょい。
[0017] 第 1の工程 (cl)で供給する有機金属材料ガスと第 2の工程 (c2)で供給する有機 金属材料ガスとは同じ組成である。さら〖こ、第 1の工程 (cl)と第 2の工程 (c2)とで有 機金属材料ガスの分圧も実質的に同じとすることが望ましい。
[0018] 本発明において、工程 (b)の下部電極層は白金族元素を含むことが好ましい。特 に、白金族元素が Ir又は Ruである場合に、さらに効果的である。また、工程 (c)で形 成される誘電体は強誘電体であることが好ましい。さらに、工程 (c)で形成される誘電 体は Pb (Zr, Ti) 0である場合に特に効果的である。また、前記有機金属材料ガス
3
は有機金属材料溶液を気化器で気化させて生成したものであることが好ましく、この 場合に、前記有機金属材料溶液は有機金属材料を有機溶媒に溶解させて生成した ものであることが望まし 、。この有機溶媒としては酢酸ブチルが挙げられる。
[0019] 上記の容量素子の製造方法では、通常、上記金属層を下部電極とし、上記誘電体 層上に上部電極を形成することによって容量素子が構成される。ここで、下部電極及 び上部電極は、それぞれ単一層で構成されてもよぐまたは、複数の導電体層で構 成されていてもよい。
[0020] 本発明に係る半導体装置の製造方法は、(a)被処理基板の表面を部分的に除去 して素子分離膜を形成し、 (b)素子領域の一部に不純物を注入してソース領域およ びドレイン領域を形成し、 (c)前記ソース領域と前記ドレイン領域との間にゲート絶縁 膜を形成し、(d)前記ゲート絶縁膜の上にゲート電極を形成し、(e)前記素子分離膜 および前記ゲート電極を覆うように層間絶縁膜を形成し、(f)前記層間絶縁膜にコン タクトホールを形成し、(g)前記コンタクトホールを介して前記ソース領域および前記 ドレイン領域のうちの少なくとも一方に導通するように、前記層間絶縁膜の上に第 1の 金属層を形成し、(h)酸化性ガスを供給しない状態で、一種又は複数種の有機金属 材料ガスおよび気化した有機溶媒のうちの少なくとも一方を前記第 1の金属層の上に 供給する第 1の工程 (hi)と、有機金属材料ガスおよび酸ィヒ性ガスを共に前記第 1の 金属層の上に供給して誘電体を成膜する第 2の工程 (h2)と、を含み、前記第 1のェ 程 (hi)と前記第 2の工程 (h2)とを同じチャンバ内で連続して実施することにより前記 第 1の金属層の上に誘電体層を形成し、(i)前記誘電体層の上に第 2の金属層を形 成する、ことを特徴とする。
[0021] 本発明に係る半導体製造装置は、基板を支持するための載置台を有し、基板の周 囲を取り囲むチャンバと、前記チャンバ内に一種又は複数種の有機金属材料ガス、 酸化性ガスおよび気化した有機溶媒をそれぞれ供給する原料供給部と、前記チャン バ内を排気する排気部と、第 1の期間において、前記酸化性ガスを前記チャンバ内 に供給することなぐ一種又は複数種の有機金属材料ガスおよび気化した有機溶媒 のうちの少なくとも一方を前記原料供給部力 前記チャンバ内に供給させ、次いで第 2の期間において前記有機金属材料ガスおよび前記酸化性ガスを共に前記原料供 給部から前記チャンバ内に供給させ、かつ前記第 1の期間の供給動作と前記第 2の 期間の供給動作とが連続して実施されるように前記原料供給部を制御する制御部と 、を具備することを特徴とする。
[0022] 上記の制御部は、第 1の期間において原料供給部からチャンバ内に、有機金属材 料ガスの少なくとも一種を供給させるか、または、気化した有機溶媒を供給させるか、 あるいは、気化した有機溶媒を供給させ、かつ有機金属材料ガスの少なくとも一種を 供給させるようにしてもよい。
[0023] 第 1の期間において供給される有機金属材料ガスの少なくとも一種を、第 2の期間 において供給される有機金属材料ガスと実質的に同じ組成とすることが望ましい。こ のように同一糸且成のガスを用いることにより、第 1の期間の処理と第 2の期間の処理と が連続的な処理に適したものとなる。さら〖こ、有機金属材料の溶液を気化させて有機 金属材料ガスを生成する気化器を有することができる。有機金属材料ガスの凝集防 止のために、気化器力も処理チャンバまでの配管はできるだけ短くし、加熱するのが 望ましい。
図面の簡単な説明
[0024] [図 1]本発明の実施形態に係る半導体製造装置を示す全体構成ブロック図。 [図 2]半導体製造装置の原料供給部の流体回路図。
[図 3]半導体製造装置の制御ブロック図。
[図 4] (a)〜(e)は比較例の成膜プロセスにおける各種ガスの流量変化を示すタイミン グチャート。
[図 5] (a)〜(e)は実施形態の成膜プロセスにおける各種ガスの流量変化を示すタイ ミングチャート。
[図 6]半導体装置内の容量素子を示す断面模式図。
[図 7]半導体装置内の FeRAMを示す断面模式図。
[図 8]成膜前雰囲気別の基板への元素付着量を示す特性図。
[図 9]実施例の PZTZRu構造と比較例の PZTZRu構造に対する XRDプロファイル の一部を示す特性図。
[図 10]実施例の PZTZRu構造と比較例の PZTZRu構造を並べて示す断面模式図 発明を実施するための最良の形態
[0025] 以下、本発明を実施するための最良の形態について添付の図面を参照して説明 する。図 1は、本実施形態の半導体製造装置 100の全体構成を示す概略構成図で ある。この半導体製造装置 100は、液体有機金属若しくは有機金属溶液を液体材料 とし、この液体材料を気化して供給する液体材料気化供給系を備えた MOCVD装 置である。
[0026] [装置の構成]
半導体製造装置 100は、原料供給部 110、気化器 (液体気化部) 120、処理部 13 0および排気部 140を備えている。原料供給部 110は、液体有機金属や有機金属溶 液あるいは有機溶媒のような液体材料を供給するものである。気化器 (液体気化部) 120は、原料供給部 110から供給された液体材料を気化してガスを生成するもので ある。処理部 130は、気化器 120から供給されたガスに基づいて成膜を行うものであ る。排気部 140は、気化器 120、処理部 130及び原料供給部 110の雰囲気をそれぞ れ排気するものである。
[0027] 図 2に原料供給部 110の流体回路を示す。原料供給部 110は、溶媒供給部、 A材 料供給部、 B材料供給部および C材料供給部を備えている。溶媒供給部は、加圧ラ イン Xa、溶媒容器 Xb、供給ライン 110Xを有している。溶媒容器 Xbは、内部に所定 成分の有機溶媒を貯留している。加圧ライン Xaは、加圧不活性ガス (例えば圧縮窒 素ガス)の供給源 (図示せず)から溶媒容器 Xbまでの間に設けられ、溶媒容器 Xb内 に加圧不活性ガスを導入し、溶媒容器 Xbカゝら有機溶媒を圧送するものである。加圧 ライン Xaには開閉弁 115、圧力計 P2、逆止弁 Xe、開閉弁 Xfおよび開閉弁 Xgが取り 付けられている。供給ライン 110Xは、溶媒容器 Xb力ゝら主ライン (原料供給ライン) 11 OSまでの間に設けられ、有機溶媒を溶媒容器 Xbから主ライン 110Sに通流させる。 供給ライン 110Xには開閉弁 Xh、開閉弁 Xi、フィルタ Xj、流量制御器 Xcおよび開閉 弁 Xdが取り付けられて!/、る。
[0028] A材料供給部は、加圧ライン Aa、原料容器 Abおよび供給ライン 110Aを備えて ヽ る。原料容器 Abは、液体有機金属原料または有機金属原料溶液 (以下、単に「原料 」という)を貯留している。加圧ライン Aaは、圧力計 P2の下流側で分岐する分岐ライ ン Yaを介して上記の加圧ライン Xaに接続している。加圧ライン Aaには、逆止弁 Ae、 開閉弁 Afおよび開閉弁 Agが取り付けられている。供給ライン 110Aは、原料容器 A bから主ライン 110Sまでの間に設けられ、原料を原料容器 Ab力 主ライン 110Sに 通流させる。供給ライン 110Aには開閉弁 Ah、開閉弁 Ai、フィルタ Aj、開閉弁 Ap、 流量制御器 Acおよび開閉弁 Adが取り付けられている。
[0029] B材料供給部は、加圧ライン Ba、原料容器 Bbおよび供給ライン 110Bを備えて 、る 。原料容器 Bbは、別の原料を貯留している。加圧ライン Baは、圧力計 P2の下流側で 分岐する分岐ライン Yaを介して上記の加圧ライン Xaに接続して ヽる。加圧ライン Ba には、逆止弁 Be、開閉弁 Bfおよび開閉弁 Bgが取り付けられている。供給ライン 110 Bは、原料容器 Bbから主ライン 110Sまでの間に設けられ、原料を原料容器 Bbから 主ライン 110Sに通流させる。供給ライン 110Bには開閉弁 Bh、開閉弁 Bi、フィルタ Bj 、開閉弁 Bp、流量制御器 Beおよび開閉弁 Bdが取り付けられている。
[0030] C材料供給部は、加圧ライン Ca、原料容器 Cbおよび供給ライン 110Cを備えて ヽ る。原料容器 Cbは、別の原料を貯留している。加圧ライン Caは、圧力計 P2の下流側 で分岐する分岐ライン Yaを介して上記の加圧ライン Xaに接続して ヽる。加圧ライン C aには、逆止弁 Ce、開閉弁 Cfおよび開閉弁 Cgが取り付けられている。供給ライン 11 OCは、原料容器 Cbから主ライン 110Sまでの間に設けられ、原料を原料容器 Cbから 主ライン 110Sに通流させる。供給ライン 110Cは開閉弁 Ch、開閉弁 Ci、フィルタ Cj、 開閉弁 Cp、流量制御器 Ccおよび開閉弁 Cdが取り付けられて 、る。
[0031] ここで、 PZTの誘電薄膜を成膜する場合には、上記有機溶媒として酢酸ブチルや オクタン、へキサン、 THF (テトラヒドロフラン)などの有機溶媒を用いることができる。 また、上記 A材料供給部が供給する原料としては Pb (DPM)などの有機 Pb原料を
2
用いることができる。また、上記 B材料供給部が供給する原料としては Zr(0— i— Pr) (DPM)もしくは Zr (0— i— Pr) (DPM)もしくは Zr (DPM)などの有機 Zr原料を用
3 2 2 4
いることができる。また、上記 C材料供給部が供給する原料としては Ti (0— i— Pr) (
2
DPM)などの有機 Ti原料を用いることができる。これらの有機 Pb原料、有機 Zr原料
2
、有機 Ti原料は、常温常圧においてはいずれも固体であるので、前述の有機溶媒に よって所定の濃度に溶力された溶液原料として用いることが望ましいが、例えば Zr ( O-t-Bu)などの液体有機 Zr原料や、 Ti (0— i-Pr)などの液体有機 Ti原料を使
4 4
用することも可能である。なお、本発明は上記各原料に限定されるものではなぐ例 えば、 BSTを成膜する場合には原料として有機 Ba原料や有機 Sr原料を用いること ができるなど、種々の有機金属材料を用いることができる。またなお、有機金属材料( 原料)は、常温で液体であっても固体であってもよいが、本実施例では有機金属材 料を酢酸ブチル等の有機溶媒に溶力してなる溶液を用いた。
[0032] 上記の溶媒供給部、 A材料供給部、 B材料供給部及び C材料供給部にお ヽては、 それぞれ、上記供給ライン 110X, 11 OA, HOB, 110Cに、開閉弁 Xh, Ah, Bh, C h、開閉弁 Xi, Ai, Bi, Ciゝフィルタ Xj, Aj, Bj, Cj、開閉弁 Ap, Bp, Cp、マスフロー メータ及び流量制御弁などで構成される流量制御器 Xc, Ac, Be, Cc、並びに、開 閉弁 Xd, Ad, Bd, Cdがそれぞれ下流側に向けて順に設けられ、原料混合部 113に 接続されている。また、上記加圧ライン Xa, Aa, Ba, Caには、逆止弁 Xe, Ae, Be, Ce、開閉弁 Xf, Af, Bf, Cf、及び、開閉弁 Xg, Ag, Bg, Cgが下流側に向けて順に 設けられている。
[0033] また、上記加圧ライン Xa, Aa, Ba, Caにおける上記開閉弁 Xf, Af, Bf, Cfと開閉 弁 Xg, Ag, Bg, Cgとの間の咅分と、供給ライン 110X, 11 OA, HOB, 110Cにおけ る上記開閉弁 Xi, Ai, Bi, Ciと上記開閉弁 Xh, Ah, Bh, Chとの間の部分とは、開 閉弁 Xk, Ak, Bk, Ckを介して接続されている。さらに、供給ライン 110X, 11 OA, 1 10B, 110Cにおける上記開閉弁 Xi, Ai, Bi, Ciと上記開閉弁 Xh, Ah, Bh, Chとの 間の部分は、それぞれ開閉弁 XI, AI, BI, C1を介して排気ライン 110Dに接続されて いる。
[0034] そして、供給ライン 110Xにおける上記フィルタ Xjと上記流量制御器 Xcとの間の部 分は、開閉弁 Xm及び An, Bn, Cnを介して加圧ライン Aa, Ba, Caに接続され、また 、開閉弁 Xm及び Ao, Bo, Coを介して供給ライン 110A, HOB, 110Cに接続され ている。
[0035] 上記加圧ライン Xa, Aa, Ba, Caの上流部は相互に連結され、開閉弁 115を介して 不活性ガスなどの加圧ガス源に接続されている。また、開閉弁 115の下流側には圧 力計 P2が接続されている。さらに、上記排気ライン 110Dはノ ィパスライン 116に接 続され、開閉弁 117を介して原料混合部 113に接続されている。この原料混合部 11 3の下流端は開閉弁 114を介して気化器 120に導入される主ライン 110Sに接続され ている。また、この原料混合部 113の上流端は、開閉弁 111及び流量制御器 112を 介して不活性ガスなどのキャリアガス源に接続されている。さらに、排気ライン 110D は、開閉弁 118を介してドレンタンク Dに接続され、このドレンタンクは開閉弁 119を 介して原料供給排気ライン 140Cに接続されて 、る。
[0036] 図 1に示すように、気化器 120は、原料供給部 110から導出された主ライン 110S及 び噴霧ガス (例えば不活性ガス)を供給する噴霧ガスライン 120Tが接続された噴霧 ノズル 121を有し、この噴霧ノズル 121で液体材料のミストを加熱された気化器 120 の内部に噴霧することで、液体材料を気化し、原料ガスを生成するように構成されて いる。気化器 120はガス供給ライン 120Sに接続され、ガス供給ライン 120Sは、ガス 導入弁 131を介して処理部 130に接続されて!、る。このガス供給ライン 120Sには、 不活性ガスなどのキャリアガスを供給するキャリア供給ライン 130Tが接続され、ガス 供給ライン 130Sを介して原料ガスとともに処理部 130にキャリアガスを導入できるよう になっている。キャリア供給ライン 130Tには流量制御器 Ec及び開閉弁 Edが設けら れ、流量制御器 Ecにより上記キャリアガスの流量を制御することができるようになって いる。
[0037] 酸化性ガスライン 130Vは、 O , O , N 0, NOなどの酸化性ガスを処理部 130に
2 3 2 2
供給するために、図示しない単一または複数のガス供給源に接続されている。この 酸ィ匕性ガスライン 130Vには流量制御器 Fc及び開閉弁 Fdが設けられ、流量制御器 Fcにより上記酸ィ匕性ガスの流量を制御することができるようになつている。なお、必要 に応じて、上記ライン 130V以外にも別途にキャリアガス供給ラインを設けてもよい。 図示は省略するが、具体的には、酸ィ匕性ガスライン 130Vの下流側部分に接続され た、酸ィ匕性ガスラインパージ用のキャリアガス供給ライン、基板 Wの搬入出ゲートバル ブ(図示せず)のパージのためのキャリアガス供給ライン、チャンバ 132内部のシール ド板(図示せず)のパージのためのキャリアガス供給ラインなどを挙げることができる。
[0038] 処理部 130は、気密な密閉容器で構成される成膜室としてのチャンバ 132を備え ている。チャンバ 132は、上記ガスライン 130S及び 130Vがそれぞれ接続されたガス 導入部 133を備えている。ガス導入部 133は、原料ガス及び酸化性ガスを微細な細 孔からチャンバ 132の内部に導入するシャワーヘッド構造を備えて 、る。このシャヮ 一ヘッド構造は、図示例の場合、原料ガスと酸化性ガスを別々に設けられた細孔か らチャンバ 132内に導入するポストミックス型の導入構造となっている。また、チャンバ 132の内部には、上記ガス導入部 133に対向配置されたサセプタ 134が設けられ、 このサセプタ 134上には被処理基板 Wが載置されるようになつて!、る。サセプタ 134 は図示しないヒータや光照射装置などによって加熱され、基板 Wを所定温度に設定 することができるようになつている。なお、圧力計 P1はチャンバ 132の内部の圧力を 計測するものである。
[0039] 排気部 140は、チャンバ 132に接続された主排気ライン 140Aを備えている。この 主排気ライン 140Aには、上流側から順に、圧力調整弁 141、開閉弁 142、排気トラ ップ 143、開閉弁 144、排気装置 145が設けられている。圧力調整弁 141 (自動圧力 調整手段)は、圧力計 P1の検出圧力に応じて弁開度を制御し、チャンバ 132の内圧 を自動的に設定値に調整する機能を有して!/、る。
[0040] また、排気部 140〖こは、上記ガス供給ライン 120Sと、主排気ライン 140Aとの間に 接続されたノ ィパス排気ライン 140Bが設けられて 、る。このバイノス排気ライン 140 Bの上流端は、気化器 120とガス導入弁 131との間に接続され、その下流端は、排 気トラップ 143と開閉弁 144との間に接続されている。バイパス排気ライン 140Bには 、下流側に向けて、開閉弁 146、排気トラップ 147が順次に設けられている。
[0041] 排気部 140には、上記原料供給部 110から導出される上記の原料供給排気ライン 140Cが設けられている。この原料供給排気ライン 140Cは、上記主排気ライン 140 Aの開閉弁 144と、排気装置 145との間に接続されている。排気装置 145はチャンバ 132を排気するためのものであり、例えば、初段部分カ 力-カルブースターポンプ、 次段部分がドライポンプで構成されるなど、 2段直列構成を有することが好ま 、。
[0042] 次に、図 3を参照して半導体製造装置の制御系統について説明する。
本実施形態では、 MPU (マイクロプロセシングユニット)を有する主制御部 100X、 操作部 100P、開閉弁制御部 100Y、流量制御部 100Zおよび検出信号入力部 100 Wを備えている。操作部 100Pは、主制御部 100Xに対して各種の入力を行うために 操作パネルと画面を有している。開閉弁制御部 100Yは、主制御部 100Xからの指 令に基づいて開閉弁 131, 146, Fd等の動作を制御するための信号を送るようにな つている。なお、開閉弁 Fdを開閉制御する代わりに、流量制御器 Fcの流量を制御す ることによって処理部 130への酸ィ匕性ガスの導入の有無を決定するようにしてもょ ヽ 。流量制御部 100Zは、流量検出器からの信号を受けて、流量制御器 Xc, Ac, Be, Cc等の動作を制御する信号を送信するようになっている。検出信号入力部 100Wは 、図示しないセンサ類力もの検出信号を受け、検出信号に応じた検出値信号を主制 御部 100Xに送信するようになって ヽる。
[0043] 流量制御部 100Zは、上記流量制御器 Xc, Ac, Be, Cc, Ec, Fcに接続され、これ らの流量設定を行う。この場合、上記流量制御器 Xc, Ac, Be, Cc, Ec, Fcから出力 される流量検出値を受け、この流量検出値を流量制御部 100Zにフィードバックし、 流量制御部 100Zが流量検出値を設定値に一致させるように流量制御器 Xc, Ac, B c, Cc, Ec, Fcを制御するようにしてもよい。この場合、流量制御器 Xc, Ac, Be, Cc は、例えば、 MFM (マスフローメータ)などの流量検出器と、高精度流量可変バルブ などの流量調整弁とによって構成することができる。 [0044] 本実施形態では、上記のように、有機金属材料の原料ガスと酸ィ匕性ガスとを反応さ せて基板 (金属層)上に金属酸化物からなる誘電体層を形成する工程を含むもので ある。この工程は上記の半導体製造装置 100によって実施される。誘電体層としては 、用途に応じて高誘電体層や強誘電体層を用いることができる。強誘電体層としては 、例えば PZTのようにぺロブスカイト構造を有する多結晶薄膜や、例えば SBTのよう に層状構造を有する多結晶薄膜であることが好まし 、。
[0045] [実施例]
以下、誘電体層の製造工程及び当該工程における半導体製造装置の動作につい て説明する。本装置 100では、図 3に示す制御部 100Xにおいて動作プログラムを実 行することにより、装置全体を自動的に動作させることができるようになつている。例え ば、動作プログラムは MPUの内部メモリに予め格納されており、この動作プログラム は内部メモリから読み出され、 CPUによって実行される。また、動作プログラムは種々 の動作パラメータを有し、操作部 100Pからの入力操作により、上記の動作パラメータ を適宜に設定できるように構成することが好ま 、。
[0046] 図 5は半導体製造装置 100の各部の動作タイミングを示すタイミングチャートである 。図 5の(a)は供給ライン 110Xを介して供給される溶媒の流量を示す。この溶媒流 量は流量制御器 Xcにより制御される。
[0047] 図 5の(b)は原料流量 (バイパス)を示し、図 5の(c)は原料流量 (チャンバ)を示す。
原料流量 (バイパス)は、気化器 120で気化された原料ガスの流量のうち、バイパス 排気ライン 140Bを流れる流量にあたる。また、原料流量 (チャンバ)は原料ガス供給 ライン 130Sを流れる流量にあたる。これらの原料流量 (バイパス)及び原料流量 (チ ヤンバ)は、供給ライン 110A, HOB, 110Cを介して供給される原料を合計した総 流量にあたり、流量制御器 Ac, Be, Ccにより制御される。
[0048] 図 5の(d)は酸化剤流量を示す。酸化剤流量は、酸ィ匕性ガスライン 130Vを流れる 酸ィ匕性ガスの流量にあたる。図 5の(e)は不活性ガス流量を示す。不活性ガス流量は 、キャリア供給ライン 130Tを含む、すべてのキャリアガス供給ラインを流れる窒素ガス などの不活性ガスの総流量にあたる。なお、図 5の(a)〜(e)の各流量はそれぞれ異 なる流量スケーノレで示してある。 [0049] 先ず半導体基板 Wをチャンバ 132内に搬入し、サセプタ 134上に載置する。タイミ ング tlに、図 5の(e)に示す不活性ガス流量でチャンバ 132内への窒素ガスなどの 不活性ガスの供給を開始する。タイミング tlからタイミング t2まで一定流量で窒素ガ スなどの不活性ガスを流し続ける。この待機期間 tl〜t2では、主に気ィ匕器 120の通 流状態と気化状態を安定させる。待機期間 tl〜t2において、例えば溶媒流量を 1. 2mlZmin (ガス換算で 200sccm)とし、不活性ガスの総流量を 1200sccmとした。 なお、原料供給部 110の原料混合部 113に供給されるキャリアガスの流量は例えば 200sccmとし、気化器 120に供給される噴霧ガスの流量は 50sccmとした。これらの キャリアガス及び噴霧ガスの流量は、当該待機期間 tl〜t2に限らず、気化器 120の 噴霧状態を維持するために常時一定とされる。また、待機期間 tl〜t2において、液 体原料が供給されて 、な 、ので、気化器 120にお 、て原料ガスは生成されて 、な!/ヽ 。待機期間 tl〜t2は、例えば 20〜40秒程度に設定することが好ましい。
[0050] 次のプリフロー期間 t2〜t3において、原料流量 (バイパス)に示すように液体原料 を流し(図 5 (b) )、溶媒流量を減少させ(図 5 (a) )、さらに不活性ガスの流量を増加さ せる(図 5 (e) )。このプリフロー期間 t2〜t3では、例えば液体材料を 0. 5mlZminと し、溶媒流量を 0. 7mlZminとし、不活性ガス流量を 2900sccmとした。このように上 記の待機期間 tl〜t2とプリフロー期間 t2〜t3とで溶媒と液体材料とを合算した液体 総供給量は不変であることが好ましい。このプリフロー期間 t2〜t3においては、上記 のように液体原料が供給されるので、原料及び溶媒が気化器 120内で気化され、原 料ガスが生成される。次いで、ガス導入弁 131を閉鎖し、開閉弁 146を開放すること により、原料ガスはバイパス排気ライン 140Bを介して排気される。このプリフロー期間 t2〜t3の処理により、次の先行期間 t3〜t4及び成膜期間 t4〜t5において原料ガス を安定した流量でチャンバ 132内へ供給することが可能になる。なお、プリフロー期 間 t2〜t3は、例えば 30〜150秒程度に設定することが好ましい。
[0051] なお、上記の待機期間 tl〜t2またはプリフロー期間 t2〜t3において、基板 Wはサ セプタ 134上において加熱され、既定の温度に設定されるとともにチャンバ 132内が 排気装置 145によって排気され、所定の圧力に設定される。本実施例では、成膜期 間 t4〜t5における基板 Wの温度は 500〜650°C、好ましくは 600〜630°C程度に設 定される。また、成膜期間 t4〜t5におけるチャンバ 132の内圧は 50Pa〜5kPaの範 囲とすることが好ましぐ 533. 3Pa程度とすることが最も好ましい。
[0052] 次に、上記のプリフロー期間 t2〜t3において原料ガスの流量が安定した後に、(c) 原料流量 (チャンバ)に示すように、ガス導入弁 131を開放し、開閉弁 146を閉鎖して 、原料ガスをチャンバ 132内へ導入する。なお、この原料ガスは有機溶媒のガスとと も〖こ導入される。このチャンバ 132内に原料ガスが最初に導入された先行期間 t3〜t 4においては、図 5の(d)に示すように酸ィ匕性ガスが供給されていない。
[0053] ここで、原料ガスがチャンバ 132内に導入されると同時に、キャリア供給ライン 130T により供給されていた不活性ガスの流量が低減され、チャンバ 132内に導入される総 ガス流量が実質的に変化しないように調整されることが好ましい。例えば、チャンバ 1 32に導入される原料ガスの流量を 0. 5mlZminとし、溶媒の流量を 0. 7mlZminと したとき、これに対応する量 200sccmだけ不活性ガスの流量が低減される。この先 行期間 t3〜t4では、酸化剤が供給されていないために基板 Wの表面に原料分子が 均一に吸着された状態となり、これによつて下地の影響を抑制することができる。先行 期間 t3〜t4は、チャンバ 132内にぉ 、て原料ガスが均一かつ安定して基板上に供 給されるようになるまで継続されることが好ましぐ例えば、 10〜60秒程度に設定され ることが望ましい。
[0054] 上記の先行期間 t3〜t4が終了すると、タイミング t4において、図 5の(d)に示すよう に酸ィ匕性ガスをチャンバ 132内に導入し、チャンバ 132内にぉ ヽて基板 Wに対する 成膜を開始する。このとき、基板表面に原料分子が存在することにより、均一で平坦 な成膜状態が得られる。また、酸化性ガスの導入量に対応する流量だけ不活性ガス 流量を低下させることにより、チャンバ 132内に導入される総ガス流量が実質的に変 化しないように調整することが好ましい。例えば、酸ィ匕性ガスの流量が 2000sccmで あるとき、酸ィ匕性ガスの導入と同時に不活性ガスの流量を 2000sccmだけ減少させ る。
[0055] 成膜期間 t4〜t5にお ヽて、原料ガスと酸ィ匕性ガスとが反応して、基板 W上に誘電 体層が形成される。この成膜期間 t4〜t5は、原料ガスや酸化性ガスの種類、誘電体 層の組成、成膜温度 (成膜時の基板 Wの温度)および誘電体層の厚さなどに依存す る力 通常は 100〜500秒間の範囲に設定される。
[0056] 基板 W上の成膜が完了すると (既定の成膜時間が満了すると)、ガス導入弁 131を 閉じ、開閉弁 146を開けて、成膜後のポストパージ期間 t5〜t6に移行する。さらに、 タイミング t6に図 5の(d)に示すように酸ィ匕性ガスの供給を停止し、不活性ガスのパ ージのみとする待機期間 t6〜t7に移行する。なお、上記の先行期間 t3〜t4におけ る原料ガス流量と、成膜期間 t4〜t5における原料ガス流量とを同じにすることが好ま しい。
[0057] なお、ポストパージ期間 t5〜t6では、誘電体層(PZT)の劣化を防止するために酸 化性ガスを導入し続け、チャンバ 132内の酸ィ匕性雰囲気を維持している。酸化性ガ スの継続供給という点で、ポストパージ期間 t5〜t6の処理は、プリフロー期間 t2〜t3 の処理とは異なる。この理由は、一般にべ口ブスカイト構造を有する強誘電体は高温 の還元性雰囲気中に配置されると酸素離脱によって誘電特性が大きく劣化するから である。本実施例では、成膜後のポストパージ期間 t5〜t6において酸ィ匕性ガスを導 入し続けることにより、チャンバ 132内が還元性雰囲気になることが防止され、逆にチ ヤンバ 132内を酸化性雰囲気とすることで、強誘電体の特性の劣化を完全に防止す ることがでさる。
[0058] なお、本装置 100において、待機期間 t6〜t7の後に、プリフロー期間→先行期間 →成膜期間→ポストパージ期間の処理を繰り返すことによって、複数の成膜処理工 程を順次繰り返して行うこともできる。すなわち、図 5では単一の成膜処理工程のみを 示してあるが、実際には、成膜処理工程を 1回のみ行うだけでもよぐまた、中間に基 板 Wの入れ替え作業を挟んで 2以上の成膜処理工程を順次に行うこともできる。
[0059] 上記のような各部の動作タイミングは、制御部 100Xに予め設定されていてもよぐ 或いは、操作部 100Pに対する操作により適宜に設定されるように構成してもよい。そ して、動作タイミングがー且設定されれば、制御部 100Xにより、開閉弁制御部 100Y 及び流量制御部 100Zを介して装置全体が自動的に制御され、上記の動作手順が 実行される。
[0060] [比較例]
次に、本実施形態の上記動作と比較する上で、上記装置を従来方法と同様の方法 で動作させたときの比較例について図 4を参照して説明する。なお、比較例が上記の 実施例と重複する部分の説明は省略する。
[0061] この比較例では、図 4の(d)酸化剤流量、および (e)不活性ガス流量が、上記の実 施例のそれとは異なる。すなわち、待機期間 tl l〜tl2からプリフロー期間 tl2〜tl3 に移行するタイミング 12に、酸ィ匕性ガスのチャンバ 132内への導入を開始し(図 4の (d) )、原料流量 (バイパス)が安定したら(図 4の (b) )、原料流量 (チャンバ)の原料ガ スをチャンバ 132に供給して成膜が行われる(図 4の(c) )。
[0062] このように従来の方法では、成膜前のプリフロー期間 tl2〜tl3に、酸化性ガスの チャンバ 132内への導入が開始されるので、酸化剤によって基板 Wの表面が酸化さ れる。基板 Wの表面が酸化された状態で成膜が開始されると、下地層 Z成膜層の界 面に悪影響 (表面酸ィ匕など)があり、成膜層の膜質を劣化させる。
[0063] [容量素子及び半導体装置の製造方法]
図 6は、本実施形態による製造方法で形成された容量素子を示す概略断面図であ る。シリコン基板 11上に SiO絶縁膜 12が形成されている。この絶縁膜 12上に、バリ
2
ァ層 12bを介して Ir, Ruなどの金属層からなる下部電極 13が形成されている。この 下部電極 13は、例えば、 Irや Ruなどの金属ターゲットを用いたスパッタリング法によ つて成膜することができる。その後、この下部電極 13上に上記の装置を用いて PZT や BSTなどからなる誘電体層 14が MOCVD法により形成される。この誘電体層 14 は、上述した実施例の方法により有機金属材料ガスと酸化性ガスを反応させること〖こ よって形成されるぺロブスカイト構造を有する金属酸化物からなる。誘電体層 14上に は、 Pt、 Ir, IrOなど力もなる上部電極 15がスパッタリング法により形成される。
2
[0064] 上記の下部電極 13、誘電体層 14及び上部電極 15の積層構造は、容量素子 Cpを 構成するものである。この容量素子 Cpは、基板 11及びその上の回路構造を備えた 半導体装置 10の一部として形成される。なお、 SiOで構成された絶縁膜 12と、 Ir, R
2
uなどの金属層力もなる下部電極 13との間には、 Ta若しくは T もなる密着層や Ta N若しくは TiN力もなるバリア層 12bを形成することが好まし 、。
[0065] 図 7は、基板 11上に FeRAMを有する半導体装置 10を示す概略断面図である。基 板 11には、通常の MOSトランジスタを形成する場合と同様にして、 FeRAMのメモリ セルトランジスタ(l is, l lf, l id, l lx)を形成する。すなわち、基板 11の表面を部 分的に除去して素子分離膜 l lxを形成することによって素子分離構造を構成する。 次に、この素子分離構造によって分離された素子領域の一部に不純物を注入してソ ース領域 1 Is及びドレイン領域 1 Idを形成し、これらの間の領域上にゲート絶縁膜 11 fを介してゲート電極 l lg (ワード線)を形成する。その後、ゲート電極 l lg上に第 1層 間絶縁膜 1 liを形成し、第 1層間絶縁膜 1 liに設けたコンタクトホールを介して配線 ( ビット線) 1 lpを上記ソース領域 1 Isに導電接続させる。
[0066] 一方、配線 l ip上にはさらに第 2層間絶縁膜 12を形成し、その後、図 6に示したも のと同様の下部電極 13を形成する。この下部電極 13は、第 2層間絶縁膜 12及び上 記の第 1層間絶縁膜 1 liに設けたコンタクトホールを介して上記ドレイン領域 1 Idに 導電接続される。下部電極 13上には上記と同様にして誘電体層 14及び上部電極 1 5が積層され、上記と同様の容量素子 Cpが得られる。さらに、容量素子 Cpを強誘電 体のメモリセル (FeRAM)として備えた半導体装置 10が得られる。
[0067] [作用効果]
上記の比較例のように、有機金属材料ガスを流さな 、状態で酸ィ匕性ガスを先にチ ヤンバ 132に導入すると、高温下にて酸ィ匕性ガスが基板 Wに接触するので、基板 W の成膜下地面が Ir, Ruなどの金属層の表面である場合には、当該表面が部分的に 酸化される。このときの酸ィ匕度合は、チャンバ 132内に導入される酸ィ匕性ガスの酸ィ匕 力、酸化性ガスの分圧、基板温度、金属層の材質などによって決まるが、通常は、不 完全で再現性のな!ヽ酸化状態となる。
[0068] また、上記のように有機金属材料ガスを流さな ヽ状態でも、酸化性ガスを導入する ことによって基板 W上に堆積物の付着が生ずることもある。図 8は、過去に PZTを成 膜した実績のある装置を用いて行った実験結果を示す特性図である。この実験では 、シリコン基板上に絶縁膜を介して Ir, Ruなどの金属層を形成してなる基板 Wをチヤ ンバ 132内に配置し、チャンバ 132内に所定のガスを導入しながら圧力が 533. 3Pa となるように排気した上で、基板 Wを設定温度 625°Cで加熱した状態で 300秒保持し た。そして、このように処理した基板 Wを蛍光 X線分析装置によって分析し、基板 W の表面に付着した Pb, Zr, Tiの各元素量を求めた。ここで、図 8中の菱形印はチャン バ 132に不活性ガスのみを導入した結果を示し、正方形印はチャンバ 132に上記の 比較例の準備期間と同じ分圧となるように酸ィ匕性ガス (O )を不活性ガスとともに導入
2
した結果を示し、三角形印は上記待機期間と同じ量の溶媒を不活性ガスとともにチヤ ンバ 132に導入した結果を示す。
[0069] 上記の実験によれば、チャンバ 132内に酸素と不活性ガスを導入した場合、明らか に基板 Wの金属層の表面上に Pb, Zr, Tiが堆積している。これは、実験前に行った PZT成膜時にぉ 、てチャンバ 132内に残留した原料やチャンバ 132の内壁から脱 離した Pbなどが酸素と反応して基板 W上に付着したものと思われる。また、不活性ガ スのみを導入した場合でも、 Pbは僅かではあるが基板 W上に付着して ヽる。
[0070] 一方、溶媒を導入した場合には、 Pb, Zr, Tiのいずれもほとんど基板 W上に付着 せず、金属層の表面が清浄な状態に維持されていることがわかる。したがって、成膜 前に酸ィ匕性ガスをチャンバ 132内に導入すると、チャンバ 132内に残留した原料など と酸ィ匕性ガスとが反応して組成制御できな 、堆積物が基板表面に付着するので、金 属層と誘電体層との間の界面制御ができず、また、金属層の表面状態の再現性が悪 くなることにより誘電体層の膜質の再現性にも影響が出ることが想定される。
[0071] 次に、シリコン基板上に絶縁膜を介して Ruカゝらなる金属層を形成してなる基板 Wを 用い、その金属層上に上記の装置により PZT薄膜を成膜したときの基板表面の X線 回折 (XRD)スペクトルの一部を図 9に示す。図中の実線は上記比較例の方法で成 膜した PZT薄膜の結果を、破線は上記実施例の方法で成膜した PZT薄膜の結果を それぞれ示す。この特性図において、図中 Cは PZTの(110)面および(101)面によ る回折ピークを示し、図中 Dは PZTの(100)面による回折ピークを示している。これ を見ると、 PZTの(110)面および(101)面による回折ピーク Cはほとんど同様である のに対し、 PZTの(100)面による回折ピーク Dは実施例の方が大幅に低下している ことから、実施例においては配向性がより高ぐより均質な結晶構造になっているもの と考えられる。実施例にお 、て PZTの( 100)面による回折ピークが大幅に低下して いることに関して言えば、もともと PZTの(100)配向の結晶は強誘電性を示さないこ と力も差し支えないものと考えられる。これは、 PZTの分極方向がく 001 >であること に由来している。 [0072] 図 10は、図 9の比較例及び実施例の PZT誘電体層の表面粗さをそれぞれ模式的 に示す断面図である。図 10の左半分の領域が比較例を示し、右半分の領域が実施 例を示す。比較例及び実施例のいずれも、 Ru金属層(下部電極)の厚さを約 130η mとし、 PZT誘電体層の厚さを lOOnm程度としている。この図から、実施例では、 PZ T誘電体層の表面粗さが比較例のそれに較べて大幅に向上していることがわかる。 特に、実施例の PZT誘電体層の表面のモホロジ一が向上しているので、上部電極と の間の界面状態が安定化されることが期待され、容量素子の電気特性 (例えばリーク 電流の低減)を改善することが可能になるとともに、リソグラフィーゃエッチングなどの 後工程が容易になるなどの効果も期待できる。
[0073] さらに、誘電体層の表面のモホロジ一が向上することによって、 in— filmパーテイク ル測定が容易に行い得るという効果も期待できる。従来は、 MOCVD法によって PZ Tなどの強誘電体層を形成すると、 PZTが結晶成長するに従って結晶表面に現れる ファセットも成長するため、その表面モホロジーを平坦ィ匕することはきわめて困難であ つた。一般的なパーティクル測定においては、基板表面にレーザー光線を照射し、 パーティクルからのレーザー散乱光を検出することによってパーティクル数をカウント する仕組みになっている力 PZT強誘電体層の表面モホロジ一が悪いために、散乱 したレーザー光がパーティクルに起因しているの力、 PZT結晶表面のファセットに起 因して ヽるのかを判別することは難しぐ PZT強誘電体層の in— filmパーティクル測 定が困難であるという問題点があった。しかし、本実施形態のように表面モホロジー が向上すれば、 PZT結晶表面のファセットに起因するレーザー散乱光を極力低く抑 えることが可能になるので、 PZT強誘電体層の in— filmパーティクル測定を容易か つ高精度に行うことが可能になる。
[0074] なお、本実施形態は、上述のようにぺロブスカイト構造を有する金属酸化物(多結 晶)からなる誘電体層(強誘電体層)を形成する場合について説明したが、金属層上 に誘電体層を形成する場合、強誘電体特性を示すベロブスカイト構造ではなぐ他 の配向状態を備えた多結晶薄膜が形成されたり、アモルファス薄膜が形成されたりす る場合もあり、本発明はこれらを除外するものではない。これらの薄模であっても誘電 体或いは絶縁体としては有効であり、また、アモルファス薄膜は、成膜後の加熱処理 によって多結晶化させることが可能である。
[0075] 以上のように、本実施形態では、原料ガス及び酸化性ガスの反応により誘電体層を 成膜する成膜期間 t4〜t5の直前に、酸ィ匕性ガスを供給しない状態で原料ガスを供 給する先行期間 t3〜t4を設けることにより、この先行期間 t3〜t4では基板が還元性 雰囲気中に配置されて 、ることとなるので、成膜の下地面が不十分に酸ィ匕されると ヽ つたことがなくなる。
[0076] また、この先行期間 t3〜t4で酸ィ匕性ガスが導入されないことにより下地面上に組成 制御できな!/、堆積物が付着することも防止することができ、下地面が比較的清浄なま まで成膜が実施されることとなる。その結果、下地面と誘電体層との界面状態に起因 する容量素子の電気的特性の再現性の低下や不安定性を回避することができるとと もに、下地面上に成膜される誘電体層の膜質を向上させることができる。また、誘電 体層表面の平滑化 (モホロジー改善)も期待できる。したがって、容量素子の電気的 特性のばらつきの低減や安定ィ匕を図ることが可能になる。
[0077] 上記の先行期間 t3〜t4において流す有機金属材料ガスは、上記原料ガスと完全 に同一である必要はなぐ例えば、上記のように三種の有機金属材料ガスを混合した 原料ガスを成膜期間 t4〜t5において供給する場合には、これら三種のうちの少なく とも一種の有機金属材料ガスが供給されていればよい。ただし、本発明では先行期 間 t3〜t4力 成膜期間 t4〜t5へ連続的に移行するため、先行期間 t3〜t4におい て成膜期間 t4〜t5と同じ原料ガスを流すことで、成膜期間 t4〜t5の初期における原 料ガスの供給状態の変化を低減することができ、誘電体層の組成比の安定ィ匕を図る ことが可能になるとともに、有機金属材料ガスの供給制御も容易になる。この場合、先 行期間 t3〜t4における原料ガスの組成が成膜期間 t4〜t5における組成と実質的に 同一であれば、成膜期間 t4〜t5の初期における原料ガス組成の変化を実質的にな くすことができる。さらに、先行期間 t3〜t4における原料ガスの分圧が先行期間 t3〜 t4と成膜期間 t4〜t5とで実質的に同一であれば、成膜期間 t4〜t5の初期における 原料ガス分圧の変化もなくすことができ、安定的に成膜を開始することが可能になる
[0078] 本実施形態においては、成膜期間 t4〜t5の直前に先行期間 t3〜t4を設けている 。先行期間 t3〜t4にお 、て酸ィ匕性ガスが導入されな 、状態で原料ガスをチャンバ 1 32内に導入し、弓 Iき続き成膜期間 t4〜t5にお ヽて原料ガスおよび酸ィ匕性ガスをチ ヤンバ 132内に導入することにより、下地面の表面状態が制御できない状態になるこ とを防止している。ただし、上記の先行期間 t3〜t4において、酸ィ匕性ガスが導入され ない状態で、有機溶媒の気化ガスは導入するが、有機金属材料ガスは導入しないよ うにしてもよい。この場合には、原料分子が基板表面に付着することはないが、基板 表面を酸化させずに清浄な状態のまま成膜を開始することができるので、下地面の 制御性を確保することが可能であり、その結果、形成された薄膜の均質性や表面モ ホロジ一の改善を図ることができる。
[0079] また、上記の先行期間 t3〜t4において、酸化性ガスが導入されない状態で、有機 溶媒の気化ガスは導入するが有機金属材料ガスは導入しない第 1の期間を設け、こ の第 1の期間に引き続いて、酸化性ガスが導入されない状態で、原料ガスを導入す る第 2の期間を設け、この第 2の期間に引き続いて上記の成膜期間を開始するように してもよい。この場合でも、第 1の期間では基板表面の清浄性が維持され、第 2の期 間では基板表面に原料分子が均一に付着するので、上記実施形態と同様の効果を 得ることができる。
[0080] また、上記先行期間 t3〜t4の第 1の期間において、酸ィ匕性ガスが導入されない状 態で複数の有機金属材料ガスの一部を導入し、これに引き続く上記第 2の期間にお V、て酸ィ匕性ガスが導入されな 、状態で全ての有機金属材料ガスを導入し、さらに、 その直後に、第 2の期間と同じ原料ガスの導入状態で酸ィ匕性ガスを新たに導入する ことにより成膜を開始するといつたことも可能である。
[0081] なお、上記のように有機溶媒の気化ガスと原料ガス (有機金属材料ガス、或 ヽは、 有機金属材料ガスと有機溶媒の気化ガスの混合ガス)とを選択的に成膜室に導入す る場合には、上記実施形態で説明した、原料ガスを導入することのできる上述の原料 ガス供給系とは別に、有機溶媒の気化ガスのみを導入することのできるガス供給系を 並列に設けることが好ましい。これによつて、供給系のバルブ操作のみで、上記の先 行期間 t3〜t4と成膜期間 t4〜t5の切り替え、或いは、第 1の期間、第 2の期間及び 成膜期間 t4〜t5の切り替えを容易かつ確実に行うことができる。 [0082] 上記実施形態では、誘電体層として強誘電体の PZTを成膜する場合を例として説 明したが、本発明はこれに限定されるものではない。例えば、 PZTに Laや Ca, Nbな どの元素を添加した強誘電体や、 PbTiO、 SrBi Ta O、 BiLaTiOなどの強誘電体
3 2 2 9
をはじめとする、複合酸ィ匕物誘電材料に適用可能である。
[0083] 本発明によれば、成膜段階前にお!/、て金属層に対して有機金属材料ガスの少なく とも一部を伴わない状態で酸ィ匕性ガスが供給されることがなくなるので、金属層の表 面が不完全に酸化されたり、酸ィ匕性ガスに起因して金属層の表面に堆積物が付着し たりすることがほとんどなくなることから、金属層表面の不均一性が生じにくぐし力も 、金属層と誘電体層の間に金属酸化膜が介在することもなくなるため、界面状態の安 定性及び再現性が確保されるとともに誘電体層の膜質及びその再現性が向上し、そ の結果、容量素子の電気的特性が改善され、また、誘電体層表面が平滑化されると いう優れた効果を奏し得る。
[0084] 尚、本発明の容量素子の製造方法及び半導体装置の製造方法並びに半導体製 造装置は、上述の図示例にのみ限定されるものではなぐ本発明の要旨を逸脱しな V、範囲内にお 、て種々変更をカ卩ぇ得ることは勿論である。

Claims

請求の範囲
[1] 容量素子の製造方法は、
(a)被処理基板の上に絶縁膜を形成し、
(b)前記絶縁膜の上に下部電極層を形成し、
(c)酸化性ガスを供給しな!、状態で、一種又は複数種の有機金属材料ガスおよび 気化した有機溶媒のうちの少なくとも一方を前記下部電極層の上に供給する第 1の 工程 (cl)と、有機金属材料ガスおよび酸ィ匕性ガスを共に前記下部電極層の上に供 給する第 2の工程 (c2)と、を含み、前記第 1の工程 (cl)と前記第 2の工程 (c2)とを 同じチャンバ内で連続して実施することにより前記下部電極層の上に誘電体層を形 成し、
(d)前記誘電体層の上に上部電極層を形成する、
ことを特徴とする。
[2] 請求項 1の方法において、
前記第 1の工程 (cl)では、一種又は複数種の有機金属材料ガスを供給する。
[3] 請求項 1の方法において、
前記第 1の工程 (cl)では、気化した有機溶媒を供給する。
[4] 請求項 1の方法において、
前記第 1の工程 (cl)では、気化した有機溶媒を供給し、かつ有機金属材料ガスの 少なくとも一種を供給する。
[5] 請求項 1の方法において、
前記第 1の工程 (cl)で供給する有機金属材料ガスと前記第 2の工程 (c2)で供給 する有機金属材料ガスとは同じ組成である。
[6] 請求項 1の方法において、
前記工程 (b)の下部電極層は白金族元素を含む。
[7] 請求項 6の方法において、
前記白金族元素は Irである。
[8] 請求項 6の方法において、
前記白金族元素は Ruである。
[9] 請求項 1の方法において、
前記工程 (c)で形成される誘電体は強誘電体である。
[10] 請求項 9の方法において、
前記工程 (c)で形成される誘電体は Pb (Zr, Ti) 0である。
3
[11] 請求項 1の方法において、
前記有機金属材料ガスは、有機金属材料溶液を気化器で気化させたものである。
[12] 請求項 11の方法において、
前記有機金属材料溶液は、有機金属材料を有機溶媒に溶解させたものである。
[13] 請求項 12の方法において、
前記有機溶媒は、酢酸ブチルである。
[14] 半導体装置の製造方法は、
(a)被処理基板の表面を部分的に除去して素子分離膜を形成し、
(b)素子領域の一部に不純物を注入してソース領域およびドレイン領域を形成し、
(c)前記ソース領域と前記ドレイン領域との間にゲート絶縁膜を形成し、
(d)前記ゲート絶縁膜の上にゲート電極を形成し、
(e)前記素子分離膜および前記ゲート電極を覆うように層間絶縁膜を形成し、
(f)前記層間絶縁膜にコンタクトホールを形成し、
(g)前記コンタクトホールを介して前記ソース領域および前記ドレイン領域のうちの 少なくとも一方に導通するように、前記層間絶縁膜の上に第 1の金属層を形成し、
(h)酸化性ガスを供給しな!、状態で、一種又は複数種の有機金属材料ガスおよび 気化した有機溶媒のうちの少なくとも一方を前記第 1の金属層の上に供給する第 1の 工程 (hi)と、有機金属材料ガスおよび酸ィヒ性ガスを共に前記第 1の金属層の上に 供給して誘電体を成膜する第 2の工程 (h2)と、を含み、前記第 1の工程 (hi)と前記 第 2の工程 (h2)とを同じチャンバ内で連続して実施することにより前記第 1の金属層 の上に誘電体層を形成し、
(i)前記誘電体層の上に第 2の金属層を形成する、
ことを特徴とする。
[15] 半導体製造装置は、 基板を支持するための載置台を有し、基板の周囲を取り囲むチャンバと、 前記チャンバ内に一種又は複数種の有機金属材料ガス、酸化性ガスおよび気化し た有機溶媒をそれぞれ供給する原料供給部と、
前記チャンバ内を排気する排気部と、
第 1の期間において、前記酸ィ匕性ガスを前記チャンバ内に供給することなぐ一種 又は複数種の有機金属材料ガスおよび気化した有機溶媒のうちの少なくとも一方を 前記原料供給部から前記チャンバ内に供給させ、次 、で第 2の期間にお 、て前記有 機金属材料ガスおよび前記酸ィ匕性ガスを共に前記原料供給部カゝら前記チャンバ内 に供給させ、かつ前記第 1の期間の供給動作と前記第 2の期間の供給動作とが連続 して実施されるように前記原料供給部を制御する制御部と、
を具備することを特徴とする。
[16] 請求項 15の装置において、
前記制御部は、前記第 1の期間に、前記有機金属材料ガスの少なくとも一種を前 記原料供給部から前記チャンバ内に供給させる。
[17] 請求項 15の装置において、
前記制御部は、前記第 1の期間に、気化した有機溶媒を前記原料供給部から前記 チャンバ内に供給させる。
[18] 請求項 15の装置において、
前記制御部は、前記第 1の期間に、気化した有機溶媒を前記原料供給部から前記 チャンバ内に供給させ、前記有機金属材料ガスの少なくとも一種を前記原料供給部 力 前記チャンバ内に供給させる。
[19] 請求項 15の装置において、
前記第 1の期間において供給される前記有機金属材料ガスの少なくとも一種が、前 記第 2の期間において供給される前記有機金属材料ガスと実質的に同じ組成である
[20] 請求項 15の装置において、
さらに、前記有機金属材料の溶液を気化させて前記有機金属材料ガスを生成する 気化器を有する。
PCT/JP2006/300250 2005-02-08 2006-01-12 容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装置 WO2006085427A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/834,715 US20070287248A1 (en) 2005-02-08 2007-08-07 Method for manufacturing capacity element, method for manufacturing semiconductor device and semiconductor-manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-031820 2005-02-08
JP2005031820A JP2006222136A (ja) 2005-02-08 2005-02-08 容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/834,715 Continuation US20070287248A1 (en) 2005-02-08 2007-08-07 Method for manufacturing capacity element, method for manufacturing semiconductor device and semiconductor-manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2006085427A1 true WO2006085427A1 (ja) 2006-08-17

Family

ID=36793005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300250 WO2006085427A1 (ja) 2005-02-08 2006-01-12 容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装置

Country Status (5)

Country Link
US (1) US20070287248A1 (ja)
JP (1) JP2006222136A (ja)
KR (2) KR100945096B1 (ja)
CN (1) CN101116183A (ja)
WO (1) WO2006085427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719849B2 (ja) * 2010-09-21 2015-05-20 株式会社アルバック 薄膜製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461786B2 (ja) 2008-04-01 2014-04-02 株式会社フジキン 気化器を備えたガス供給装置
US8659124B2 (en) * 2008-12-29 2014-02-25 Nxp B.V. Physical structure for use in a physical unclonable function
JP5720406B2 (ja) * 2011-05-10 2015-05-20 東京エレクトロン株式会社 ガス供給装置、熱処理装置、ガス供給方法及び熱処理方法
JP6047308B2 (ja) * 2012-05-28 2016-12-21 日精エー・エス・ビー機械株式会社 樹脂容器用コーティング装置
KR102358566B1 (ko) * 2015-08-04 2022-02-04 삼성전자주식회사 물질막 형성 방법
CN110473780B (zh) * 2019-08-30 2021-12-10 上海华力微电子有限公司 改善栅极氧化层的方法及半导体器件的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275548A (ja) * 1993-01-25 1994-09-30 Osaka Gas Co Ltd Cvd薄膜形成方法
JP2004281762A (ja) * 2003-03-17 2004-10-07 Seiko Epson Corp 強誘電体薄膜の形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573009B2 (ja) * 2000-08-09 2010-11-04 日本電気株式会社 金属酸化物誘電体膜の気相成長方法
US6635497B2 (en) * 2001-12-21 2003-10-21 Texas Instruments Incorporated Methods of preventing reduction of IrOx during PZT formation by metalorganic chemical vapor deposition or other processing
JP3891848B2 (ja) * 2002-01-17 2007-03-14 東京エレクトロン株式会社 処理装置および処理方法
JP3931683B2 (ja) * 2002-01-21 2007-06-20 株式会社高純度化学研究所 化学気相成長法によるpzt薄膜の製造方法
KR20040059436A (ko) * 2002-12-30 2004-07-05 주식회사 하이닉스반도체 강유전체 메모리 소자의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275548A (ja) * 1993-01-25 1994-09-30 Osaka Gas Co Ltd Cvd薄膜形成方法
JP2004281762A (ja) * 2003-03-17 2004-10-07 Seiko Epson Corp 強誘電体薄膜の形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719849B2 (ja) * 2010-09-21 2015-05-20 株式会社アルバック 薄膜製造方法

Also Published As

Publication number Publication date
KR20090125827A (ko) 2009-12-07
KR100945096B1 (ko) 2010-03-02
US20070287248A1 (en) 2007-12-13
KR20070099643A (ko) 2007-10-09
CN101116183A (zh) 2008-01-30
JP2006222136A (ja) 2006-08-24

Similar Documents

Publication Publication Date Title
US7968437B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP5719849B2 (ja) 薄膜製造方法
JP3612839B2 (ja) 高誘電率薄膜構造、高誘電率薄膜形成方法および高誘電率薄膜形成装置
KR100363081B1 (ko) 박막 형성장치
KR100838436B1 (ko) 반도체 장치의 제조방법
JP4505494B2 (ja) 半導体装置の製造方法及び基板処理装置
WO2006085427A1 (ja) 容量素子の製造方法及び半導体装置の製造方法並びに半導体製造装置
JP2002319521A (ja) タンタルオキシナイトライドキャパシタの形成方法
JP5194737B2 (ja) 成膜方法、成膜装置及び半導体装置の製造方法
US8586430B2 (en) Method of forming dielectric film and capacitor manufacturing method using the same
JP2006222318A (ja) 成膜方法及び成膜装置
KR20010004751A (ko) 반도체 소자의 캐패시터 제조 방법
JP4628954B2 (ja) 酸化物薄膜製造方法
KR100382742B1 (ko) 반도체 소자의 커패시터 형성방법
JP4212013B2 (ja) 誘電体膜の作製方法
JP4205565B2 (ja) 薄膜製造方法
KR100511914B1 (ko) 피이사이클 시브이디법을 이용한 반도체소자의 제조방법
JP3886921B2 (ja) 化学気相堆積方法
JP2009158539A (ja) 半導体装置の製造方法
JPH1143328A (ja) 強誘電体薄膜およびその製造方法並びに製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020077018134

Country of ref document: KR

Ref document number: 200680004212.0

Country of ref document: CN

Ref document number: 11834715

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11834715

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06711573

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097021694

Country of ref document: KR