WO2006077787A1 - 結晶性樹脂組成物および結晶性樹脂フィルム - Google Patents

結晶性樹脂組成物および結晶性樹脂フィルム Download PDF

Info

Publication number
WO2006077787A1
WO2006077787A1 PCT/JP2006/300427 JP2006300427W WO2006077787A1 WO 2006077787 A1 WO2006077787 A1 WO 2006077787A1 JP 2006300427 W JP2006300427 W JP 2006300427W WO 2006077787 A1 WO2006077787 A1 WO 2006077787A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline resin
porous filler
weight
film
acid
Prior art date
Application number
PCT/JP2006/300427
Other languages
English (en)
French (fr)
Inventor
Hajime Ohyama
Morio Tsunoda
Tetsuya Nakao
Original Assignee
Mitsubishi Engineering-Plastics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering-Plastics Corporation filed Critical Mitsubishi Engineering-Plastics Corporation
Priority to DE602006016911T priority Critical patent/DE602006016911D1/de
Priority to EP06711708A priority patent/EP1840168B1/en
Priority to CN2006800024353A priority patent/CN101107319B/zh
Publication of WO2006077787A1 publication Critical patent/WO2006077787A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic

Definitions

  • the present invention relates to a crystalline resin composition and a crystalline resin film, and more particularly to a crystalline resin composition and a crystalline resin film excellent in gas barrier properties, transparency and slipperiness. .
  • Polyamide films which are representative examples of crystalline resin films, are excellent in gas barrier properties and mechanical 'thermal properties. Therefore, single-layer films, multilayer films with other resins, and laminate films with other materials. As such, it is used in a wide range of applications, mainly food packaging.
  • the transparency of the polyamide film is an important characteristic because it greatly affects the appearance of the contents. In general, a film having good transparency is desired.
  • the slipperiness is poor, the film may be caught during bag making, or printing misalignment may occur during multicolor printing. For this reason, the slipperiness of the film is an extremely important characteristic of film productivity, quality and commercial value. In this way, both transparency and slipperiness must be achieved.
  • both characteristics are contradictory properties such that the surface of a film with good transparency is smooth and the smooth film surface has poor slipping. is there.
  • Patent Document 1 a method of blending talc, silica and other inorganic filler fine particles has been proposed.
  • Patent Document 1 Japanese Patent Publication No. 54-4741
  • Patent Document 2 JP-A-1-156333
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a crystalline resin composition and a crystalline resin film excellent in gas barrier properties, transparency, and slipperiness. It is in.
  • one cause of the decrease in transparency caused when the slipperiness of the film is improved by blending the inorganic filler fine particles is that, in the stretching process at the time of film formation, the particles and the surrounding resin as a matrix.
  • Such voids are less likely to occur in crystalline resins, such as polyester resins, which have a relatively low intermolecular force due to hydrogen bonding because the internal stress generated during stretching is relatively low.
  • the present inventors have formed a macro rough surface and a micro rough surface by using two kinds of particles having different particle diameters.
  • gas spherical properties were maintained by using spherical particles for large particles that contribute to macro rough surfaces and polyhedral particles for small particles that contribute to micro rough surfaces. From the above, it was found that a resin composition for a crystalline resin film having both transparency and slipperiness can be obtained.
  • the present invention has been completed based on the above-mentioned various findings.
  • the first gist of the present invention is that the porous filler (B) O.
  • ⁇ 1.5 m polyhedral porous filler ( ⁇ —2) force, and its weight ratio is in the range of 1 / 90 ⁇ ( ⁇ —1) ⁇ ( ⁇ —2) ⁇ 1Z1 Crystalline rosin composition Exist.
  • a second aspect of the present invention resides in a crystalline resin film characterized by being formed by molding the above-described crystalline resin composition
  • the third aspect of the present invention includes Oxygen permeation at 23 ° C6 5% RH is 50mlZ [m 2 'day atm] or less, haze is 2.5% or less, and coefficient of static friction between films is 0 at 23 ° C65% RH. It is a crystalline resin film characterized by being 5 or less and 0.6 or less at 23 ° C and 90% RH.
  • a crystalline resin composition and a crystalline resin film excellent in gas barrier properties, transparency, and slipperiness are provided.
  • the crystalline resin film of the present invention also has good secondary processing suitability for printing, bag making, laminating, etc., and can be used for food packaging and other wide applications.
  • crystalline resin examples include polyolefin (polyethylene, polypropylene, etc.), polyamide, polyester, etc.
  • polyolefin resin is preferably a resin having a larger intermolecular force than polyester resin.
  • polyamide resin is most suitable.
  • examples of the polyamide resin include polyamide resins obtained by polycondensation of ratata having three or more members, polymerizable ⁇ -amino acid, dibasic acid and diamine, and the like.
  • polycondensates such as ⁇ -force prolatatam, aminocaproic acid, enantolactam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, ⁇ -pyrrolidone and ⁇ -piperidone; Diams such as oxamethylene diamine, nonamethylene diamine, undecamethylene diamine, dodecamethylene diamine, metaxylene diamine, terephthalic acid, isophthalic acid, adipic acid, sebacic acid, dodecane
  • a polymer obtained by polycondensation with a dicarboxylic acid such as dibasic acid or glutaric acid; a copolymer thereof.
  • polyamide 4, 6, 7, 8, 11, 12, 6, 6, 6, 10, 6, 11, 12, 6 ⁇ , 6 / 6-6, 6/12, 6 / 6 ⁇ , 61 ⁇ 6 ⁇ , etc. Is mentioned. Two or more of these can be mixed and used. Of these, polyamide 6 resin and polyamide 6-666 copolymer resin are particularly preferred from the viewpoint of the thermal and mechanical properties of the resulting film.
  • the viscosity of the polyamide resin is usually 115 to 300, preferably 120 as a value measured in 96% by weight sulfuric acid at a concentration of 1% by weight and a temperature of 23 ° C in accordance with JIS-K-6933-99. ⁇ 250. If the viscosity number is too low, the resulting film has insufficient mechanical properties, and if it is too high, film formation becomes difficult.
  • examples of the porous filler include porous silica, calcium carbonate, zeolite, silica gel and the like.
  • the use of the primary particles constituting the porous filler having substantially the same shape and size makes the effect of the present invention remarkable, and as a porous filler used in the present invention, In particular, zeolite is preferred.
  • the pore volume of these porous fillers is DBO oil absorption is usually lOmlZlOOg or more, preferably 30mlZlOOg or more, and the upper limit is usually 100mlZlOOg, preferably 80ml ZlOOg, more preferably 60ml / lOOg. .
  • the specific surface area is usually 10 m 2 / g or more on a, preferably 30 m 2 Zg above, the upper limit is usually 100 m 2 Zg, preferably 50 m 2 Z g, and more preferably from 40 m 2 Zg.
  • the zeolite may be amorphous or crystalline, but amorphous zeolite is preferred as measured by the X-ray method.
  • amorphous zeolite is preferred as measured by the X-ray method.
  • the composition of amorphous zeolite is expressed by the formula: ⁇ ⁇ ⁇ 1 O -ySiO ⁇ ⁇ ⁇ . Where ⁇ is an alkali metal or
  • X represents an alkaline earth metal
  • X represents a number from 0.01 to 2
  • y represents a number from 1 to 100
  • represents a number from 0.1 to 5.
  • porous fillers having different particle sizes and shapes are used.
  • One porous filler is spherical and the other porous filler is polyhedral.
  • the spherical porous filler used in the present invention is preferably as the particle shape is close to a true spherical shape.
  • the degree of sphericalness can be expressed by the spherical ratio defined in the following formula (1).
  • the value is usually 0.90-1. 0, preferably 0.993-1. It is.
  • the slipperiness of the film is inferior, which is preferable.
  • the polyhedral porous filler is meaningful in terms of a shape having corners.
  • the polyhedron is not limited to a regular polyhedron such as a regular tetrahedron, a regular hexahedron, a regular octahedron, a regular dodecahedron, and a regular icosahedron, and may be a quasi-regular polyhedron.
  • Examples of the quasi-regular polyhedron include various “cut corner types” lacking corners, as well as various “star regular polyhedrons”, “polygonal cylinders”, and the like.
  • the number of surfaces is not particularly limited, but is usually 4 to 20, preferably 4 to 8.
  • the shape of the polyhedron can be confirmed by a micrograph, and a porous filler in which 90% or more is a hexahedron is particularly preferable.
  • the above-mentioned zeolite can be obtained, for example, by a method of synthesizing crystalline zeolite using sodium silicate, silica sol or acidic clay as a raw material and then acid-treating the obtained crystalline zeolite.
  • the synthesis of the crystalline zeolite is carried out by a known method in which the above raw materials are acid-treated, and the resulting keyed acid solution such as an active keyed acid gel is charged with alumina aluminate and heated.
  • the acid treatment of the crystalline zeolite 0.2 to 5 mol times of acid is added to the base content (sodium) of the zeolite and brought into sufficient contact, and after filtration, washing and drying, It is carried out by firing at 600 ° C and further crushing and classifying as necessary.
  • the acid used for the acid treatment can be either an inorganic acid or an organic acid, but economically, a mineral acid such as hydrochloric acid, sulfuric acid or nitric acid is preferred.
  • zeolite A As the type of zeolite, zeolite A, zeolite X, zeolite Y, zeolite ⁇ and the like are preferred because of ease of synthesis and processing. In particular, zeolite from the economic viewpoint is also preferred.
  • the particle size and shape of the crystalline zeolite obtained can be variously changed. In the above acid treatment of crystalline zeolite, care must be taken so that the shape of the amorphous aluminosilicate (zeolite) such as a cube or a sphere does not collapse.
  • zeolite in the present invention, a commercial product of zeolite can be used.
  • cubic zeolite is sold under the trade name “Silton AMT” by Mizusawa Chemical Co., Ltd.
  • spherical zeolite is also sold under the trade name “Silton JC” by Mizusawa i.
  • Cubic zeolite and spherical zeolite are different not only in their shapes but also in their compositions.
  • the composition of cubic “Silton AMT” is H 2 O / Al 2 O 3 / SiO 2
  • the oil absorption of zeolite is preferably 1 to 70 mlZl00g as measured by JIS K-5101 method. If the oil absorption is too low, the stretching stability of the film is lowered, and if it is too high, the effect of improving the slipperiness during stretching is small.
  • the oil absorption is preferably 5 to 70 ml Zl00g.
  • the content of the porous filler (B) is 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the crystalline resin (A).
  • the content is less than 0.01 parts by weight, the effect of improving the slipping property is reduced, and when it exceeds 0.5 parts by weight, the transparency is easily deteriorated.
  • the content of the porous filler (B) is preferably 0.015 to 0.4 parts by weight, more preferably 0.02 to 0.3 parts by weight.
  • a macro rough surface and a micro rough surface are formed by using two kinds of particles having different particle diameters to improve the slipperiness of the film.
  • Spherical particles are used for the large particles that approach the surface
  • polyhedral particles are used for the small particles that contribute to the micro rough surface.
  • the weight ratio of both is adjusted to the range of 1Z90 ⁇ (B—1) Z (B—2) ⁇ 1Z1.
  • the average particle size of the spherical porous filler (B-1) exceeds 6 ⁇ m, the transparency decreases, and when it is less than 1.5 m, the effect of improving the slipperiness is not observed.
  • the average particle size of the polyhedral porous filler (B-2) exceeds 1.5 m, the transparency deteriorates, and when it is less than 0, the effect of improving the slipperiness is not exhibited.
  • the weight ratio of the spherical porous filler (B-1) to the polyhedral porous filler (B-2) is larger than 1Z1, the transparency is lowered, and when it is smaller than 1Z90, the slipping property is not improved.
  • the weight ratio of the spherical porous filler (B-1) to the polyhedral porous filler (B-2) is preferably 1Z80 ⁇ (B-1) Z (B-2) ⁇ 9Z10, more preferably 1Z70 ⁇ (B-1) Z (B-2) ⁇ 8Z10.
  • spherical particles having no corners are used for large particles, and polyhedral particles having corners are used for small particles. Void formation is minimized by reducing the chance of gaps between the matrix and the surrounding grease. The point of suppression is significant.
  • a resin composition for a crystalline resin film having both transparency and slipperiness while maintaining gas nozzle properties can be obtained.
  • the particle size of the porous filler is easily measured by the Coulter counter method.
  • This method uses a particle counter manufactured by Coulter Electronics, and prepares a suspension by dispersing particles in an electrically conductive liquid such as an electrolyte solution. This is a method to measure the voltage distribution and the number of times of change when passing through the pores of a certain size.
  • the average grain size of the polyhedral porous filler (B-2) is represented by an average grain size value measured by a filter counter method.
  • the shape and size of the porous filler described above can be easily identified by SEM observation with a magnification of 5,000 to 10,000 times.
  • the aforementioned porous filler does not change its shape or size even when fired at 600 to 800 ° C. Therefore, even if it is a film formed from the crystalline resin composition of the present invention, If the ash is dry ashed at 600-800 ° C and the ash content is observed by SEM, the shape and size of the porous filler can be easily identified.
  • a silane coupling agent (C) is added to the crystalline resin composition of the present invention.
  • the silane coupling agent (C) include those having an organosiloxane group.
  • the organo group include: alkyl groups such as methyl, ethyl and propyl; alkenyl groups such as butyl and allyl; cycloalkyl groups such as cyclopropyl and cyclohexyl;
  • -Aryl benzyl and other aryl groups or aralkyl groups
  • ⁇ -aminopropyl ⁇ -( ⁇ -aminoethyl ) - ⁇ -aminoalkyl groups
  • aminopropyl ⁇ -glycidoxy
  • ⁇ -chloropropyl ⁇ mercaptopropyl
  • examples include those containing functional groups such as chloro, thiol and epoxy.
  • silane coupling agent examples of (C), trimethyl methoxy silane, Byurutorieto Kishishiran, .gamma. black port trimethoxysilane, I - ⁇ amino propyl triethoxysilane emissions, N-(J3- aminoethyl) ⁇ -Aminopropyltrimethoxysilane, ⁇ -mercaptopropyl pilltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, hexamethyldisilazane, ⁇ , N'-bis ( Trimethylsilyl
  • ⁇ , ⁇ , -bis (trimethylsilyl) trifluoroacetamide, stearyltrimethoxysilane, etc. Can be mentioned.
  • aminosilanes such as ⁇ -aminopropyltriethoxysilane are suitable.
  • the amount of the silane coupling agent (C) is usually 0.01 to 60% by weight, preferably 0.05 to 40% by weight, more preferably 0.1 to the porous filler ( ⁇ ⁇ ⁇ ). ⁇ 30% by weight.
  • the amount of the silane coupling agent (C) used is less than 0.01% by weight, the effect of preventing the clouding of the film is hardly seen, and when it exceeds 60% by weight, the coupling agents easily aggregate. It tends to remain as fish eyes in the film.
  • the method of adding the porous filler and the silane coupling agent to the crystalline resin is not particularly limited. Fat production capability At any stage until film formation, a porous filler and a silane coupling agent may be added, or a porous filler previously treated with a silane coupling agent may be added. Specific examples in the case where the crystalline rosin is a polyamide rosin include the following methods.
  • a porous filler treated with a silane coupling agent is prepared by mixing a porous filler with a silane coupling agent diluted with water under heating and stirring, and mixing the mixture.
  • a method in which the addition is carried out at an initial stage (normal pressure) in the fat production process, before the start of the polymerization reaction and before the start of the reduced pressure polymerization reaction.
  • the bisamide compound (D) is effective to combine.
  • the bisamido compound is represented by the following general formula [I] or [II]. Are used.
  • R o C RN-C— R 3 .
  • R 1 is a divalent hydrocarbon residue
  • R 2 and R 3 are monovalent hydrocarbon residues
  • R 4 and R 5 represent a hydrogen atom or a monovalent hydrocarbon residue.
  • Examples of the bisamido compound represented by the general formula [I] include alkylene bisfatty acid amides and arylene bisfatty acid amides obtained by reacting various diamines with fatty acids.
  • the above diamines include ethylenediamine, propylenediamine, butylene diamine, hexamethylene diamine, otatamethylene diamine, dodecamethylene diamine, and other aralkylene diamines, phenylene diamine, naphthalene diamine.
  • arylene alkyldiamines such as xylylenediamine and the like
  • the fatty acids include stearic acid, hexanoic acid, octanoic acid, decanoic acid, lauric acid, myristic acid, and palmitic acid.
  • examples thereof include acids, arachidic acid, behenic acid, oleic acid, elaidic acid, and montanic acid.
  • Typical examples among these include N, N, monomethylene bis-stearic acid amide and N, N'-ethylene bis-stearic acid amide.
  • Examples of the bisamido compound represented by the general formula [II] include bisamides obtained by reacting various monoamines with dicarboxylic acids.
  • Examples of the monoamine include ethylamine, methylamine, butylamine, hexylamine, decylamine, pentadecylamine, octadecylamine, alkylamines such as dodecylamine, aryl, naphthylamine and other aralkylamines, benzylamine and other aralkylamines, and cyclohexylamine. And the like, and the like.
  • dicarboxylic acid examples include terephthalic acid, p-phenol-dipropionic acid, succinic acid, and adipic acid.
  • typical examples include N, N, dioctadecyl terephthalic acid amide and the like. There may be mentioned octadecyl dibasic acid amide. These bisamide compounds can be used in combination of two or more.
  • the blending amount of the bisamide compound (D) is usually 0.01 to 1 part by weight, preferably 0.02 to 0.5 part by weight based on 100 parts by weight of the polyamide resin. If the amount is too small, the effect of improving the slipperiness is not observed. If the amount is too large, the printability of the film and the adhesiveness at the time of laminating decrease, which is not preferable.
  • the aforementioned bisamido compounds may be used in combination of two or more.
  • the blending method of the bisamide compound is not particularly limited.
  • the so-called external addition method in which dry blending is performed on the pelletized raw material of polyamide resin
  • the kneading method in which the mixture is melt-mixed into pellets, and a high concentration.
  • Any method such as the so-called masterbatch method in which the raw materials are blended or the internal addition method to be added at the time of polymerization can be used!
  • additives well known to those skilled in the art may be added to the crystalline rosin composition of the present invention as long as the effects of the present invention are not impaired. I can do it.
  • additives include antioxidants such as hindered phenols, phosphate esters and phosphites, weather resistance improvers such as triazine compounds, colorants such as pigments and dyes, antistatic agents, Examples thereof include a lubricant and a surfactant.
  • the method of blending these additives is not particularly limited, and any known method can be adopted.
  • the crystalline resin film of the present invention is obtained by molding the above-described crystalline resin composition of the present invention by employing a known film forming method.
  • Typical film-forming methods include the T-die method, in which the extruded film-like material is cooled and solidified by chilled rolls and cooled, and the die force having an annular slit also extrudes the tube-like material into the tube.
  • an inflation method may be used in which air is blown and expanded to form by cooling with air or water.
  • the film thus formed is used as an unstretched film or as a stretched film through a stretching process such as -axial stretching or biaxial stretching.
  • the crystalline resin film of the present invention has an oxygen permeation amount of 50 mlZ [m 2 'day atm] or less at 23 ° C and 65% RH at a thickness of 15 m, a haze of 2.5% or less, and a film.
  • the coefficient of static friction between each other is 0.5 or less at 23 ° C and 65% RH, and 0.6 or less at 23 ° C and 90% RH.
  • Oxygen permeation is preferably 40mlZ [m 2 'day' atm] or less, and haze is preferred. It is 2.2% or less, and the coefficient of static friction between films is 0.4 or less at 23 ° C and 65% RH, and 0.58 or less at 23 ° C and 90% RH.
  • the crystalline resin film of the present invention may be a single layer film! /, A multilayer film by coextrusion with other resin, or a laminated film by lamination.
  • the crystalline resin film of the present invention has excellent gas barrier properties, transparency, and slipperiness, and is easy to make secondary forces such as bag making, printing, and lamination. Useful as a film.
  • the film thickness in the present invention is usually less than 0.2 mm.
  • the lower limit of the thickness is usually 1 ⁇ m from the viewpoint of film formation difficulty.
  • the oxygen transmission rate mlZ [m 2 'day atm] was measured in an environment of 24 ° C and 65% RH using "OXY-TRAN100 type" manufactured by Mondan Control.
  • Haze was measured using a haze meter manufactured by Tokyo Denshoku Co., Ltd.
  • the coefficient of static friction (S) was measured by the parallel displacement method under the conditions of relative humidity 65% and 90%, and temperature 23 ° C.
  • the projected area of 500 particles and the circle equivalent area of the maximum diameter on the projected surface were obtained from an image taken by observing spherical porous particles with a SEM with a magnification of 5000 to 10000 times, and calculated by the above formula (1). .
  • Each of the four types of zeolites, a predetermined amount of silane coupling agent, and water 6 times the total amount of these are mixed in a super mixer while heating to 80 ° C, and the water is evaporated. Zeolite treatment was performed. Subsequently, four types of zeolite fine particles which were dried at 120 ° C. and surface-treated were obtained.
  • the obtained surface-treated zeolite fine particles were added to 100 parts by weight of polyamide 6 resin finally obtained during the polymerization of force prolatatum so as to be parts by weight shown in Table 2 or Table 3. Then, it was polymerized by a conventional method to obtain polyamide 6 resin having a viscosity number of 180.
  • the obtained zeolite particles-containing polyamide 6 rosin is treated in boiling water according to conventional methods to extract and remove low molecular weight substances. And dried with a vacuum dryer.
  • a bisamide compound was added to 100 parts by weight of polyamide 6 resin so as to have a weight part shown in Table 2 or Table 3, and a T-die film forming machine having an extruder diameter of 40 mm was used.
  • a film having a thickness of 135 m was formed at a resin temperature of 265 ° C and a cooling roll temperature of 30 ° C. Further, this film original film was biaxially stretched 3 ⁇ 3 times in the vertical and horizontal directions at 80 ° C., and then thermally fixed at 200 ° C. to obtain a biaxially stretched film having a thickness of 15; zm.
  • the evaluation results of the obtained stretched film are shown in Table 2 and Table 3.
  • the blending composition represents parts by weight with respect to 100 parts by weight of the polyamide resin.
  • the blending composition represents parts by weight with respect to 100 parts by weight of the polyamide resin.
  • Table 2 and Table 3 the following is clear. That is, films produced from the compositions of Examples 1 and 2 using two types of zeolites having different shapes and particle diameters in the combinations defined in the present invention are excellent in gas-noreness, transparency and slipperiness. ing.
  • the films obtained from the compositions of Comparative Examples 1 and 2 and Comparative Example 6 using any one type of zeolite are inferior in slipperiness and Z or transparency.
  • the films obtained in the compositions of Comparative Examples 3, 4 and 7 in which the two types of combinations are outside the scope of the present invention are inferior in transparency and slipperiness.
  • the composition strength of Comparative Example 8 using bulk silica (amorphous porous filler) instead of the spherical porous filler is inferior in gas barrier properties, transparency and slipperiness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 ガスバリヤー性、透明性、滑り性に優れた結晶性樹脂組成物および結晶性樹脂フィルムを提供する。  結晶性樹脂(A)100重量部に対し、多孔質フィラー(B)0.01~0.5重量部を含有し、多孔質フィラー(B)が、平均粒径1.5~6μmの球状多孔質フィラー(B-1)と平均粒径0.4~1.5μmの多面体状多孔質フィラー(B-2)から成り、その重量比が1/90≦(B-1)/(B-2)≦1/1の範囲である結晶性樹脂組成物、および、厚さ15μmにて23°C65%RHおける酸素透過量が50ml/[m2・day・atm]以下、ヘイズが2.5%以下、フィルム同士の静止摩擦係数が23°C65%RH下で0.5以下、23°C90%RH下で0.6以下である結晶性樹脂フィルム。

Description

明 細 書
結晶性樹脂組成物および結晶性樹脂フィルム
技術分野
[0001] 本発明は、結晶性榭脂組成物および結晶性榭脂フィルムに関し、詳しくは、ガスバ リヤー性、透明性、滑り性に優れた結晶性榭脂組成物および結晶性榭脂フィルムに 関する。
背景技術
[0002] 結晶性榭脂フィルムの代表例であるポリアミドフィルムは、ガスバリア性と機械的'熱 的特性に優れているため、単層フィルム或いは他榭脂との多層フィルム、他材料との ラミネートフィルム等として、食品包装を主体とする広範囲な用途に使用されている。 ポリアミドフィルムの透明性は、内容物の見栄えに大きく影響するので重要な特性で あり、一般的には透明性が良好なものが要望されている。また、滑り性が悪いと、製袋 時にフィルムが引っ掛力つたり、多色印刷時に印刷ズレが生じたりすることがある。こ のため、フィルムの滑り性は、フィルムの生産性や品質.商品価値の点力 極めて重 要な特性である。この様に透明性と滑り性の両立を図らねばならないが、透明性の良 好なフィルムの表面は平滑であり、平滑なフィルム表面は滑りが悪いという様に、両特 性は相反する性質である。
[0003] ポリアミドフィルムの滑り性改良のために、従来から種々の方法が試みられてきた。
例えば、タルク、シリカその他の無機フィラー微粒子を配合する方法が提案されてい る (特許文献 1)。
[0004] また、透明性と滑り性の出来る限りの両立を目指し、表面をシランカップリング剤で 処理した無定形アルミノシリケート (ゼオライト)を使用することが提案されて 、る(特許 文献 2)。この提案によれば、表面処理されたゼオライト粒子の使用により、シリカ、タ ルク等の無機粒子を使用した場合に比し、透明性および滑り性に優れたポリアミドフ イルムが得られるが、その透明性および滑り性は未だ不十分であり、更なる改善が切 望されている。
[0005] 特許文献 1 :特公昭 54— 4741号公報 特許文献 2:特開平 1― 156333号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記実情に鑑みなされたものであり、その目的は、ガスバリヤ一性、透 明性、滑り性に優れた結晶性榭脂組成物および結晶性榭脂フィルムを提供すること にある。
[0007] 本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、次の様な知見を 得た。すなわち、無機フィラー微粒子の配合によりフィルムの滑り性を改良した場合 に惹起される透明性低下の一因は、フィルム製膜時の延伸工程において、粒子と、 マトリックスであるその周りの榭脂との間に、空隙が生じることによって形成されたボイ ドである。斯カゝるボイドは、結晶性榭脂のなかでもポリエステル榭脂の様な、水素結合 による分子間力のやや低い榭脂では延伸時に発生する内部応力が比較的低いため に起こり難い。しかし、ポリアミド榭脂の様な、水素結合による分子間力が高い樹脂で は、延伸時に生成する内部応力が高ぐ粒子とマトリックスである樹脂の間に空隙が 生じ、ボイドが生成し易い。し力も、ポリアミド榭脂製フィルムの様なガスノリア一性( 低酸素透過性)フィルムにお ヽては、ボイドの形成はガスの通路を形成することとなり 、ガスバリアー性が低下してしまう(酸素透過度が大きくなる)。
[0008] 本発明者らは、上記の知見を基に更に検討を重ねた結果、粒径の異なる 2種の粒 子を使用してマクロな粗面とミクロな粗面を形成してフィルムの滑り性を改良するに際 し、マクロな粗面に寄する大粒子に球状の粒子を使用し、ミクロな粗面に寄与する小 粒子に多面体粒子を使用することにより、ガスノ リヤー性を維持した上で透明性と滑 り性を両立させた結晶性榭脂フィルム用の榭脂組成物が得られるとの知見を得た。 課題を解決するための手段
[0009] 本発明は、上記の種々の知見に基づき完成されたものであり、その第 1の要旨は、 結晶性榭脂 (A) 100重量部に対し、多孔質フイラ一(B) O. 01〜0. 5重量部を含有 し、多孔質フイラ一(B)が、平均粒径 1. 5〜6 /ζ πιの球状多孔質フイラ一(B— 1)と平 均粒径 0. 4〜1. 5 mの多面体状多孔質フイラ一(Β— 2)力 成り、その重量比が 1 /90≤ (Β—1)Ζ(Β— 2)≤1Z1の範囲であることを特徴とする結晶性榭脂組成物 に存する。
[0010] 本発明の第 2の要旨は、上記の結晶性榭脂組成物を成形して成ることを特徴とする 結晶性榭脂フィルムに存し、そして、本発明の第 3の要旨は、厚さ にて 23°C6 5%RHおける酸素透過量が 50mlZ [m2' day atm]以下、ヘイズが 2. 5%以下、フ イルム同士の静止摩擦係数が 23°C65%RH下で 0. 5以下、 23°C90%RH下で 0. 6 以下であることを特徴とする結晶性榭脂フィルムに存する。
発明の効果
[0011] 本発明によれば、ガスバリヤ一性、透明性、滑り性に優れた結晶性榭脂組成物およ び結晶性榭脂フィルムが提供される。本発明の結晶性榭脂フィルムは、更に、印刷 や製袋、ラミネート等の 2次加工適性も良好であり、食品包装用およびその他広範な 用途に使用可能である。
発明を実施するための最良の形態
[0012] 以下、本発明を詳細に説明する。一般に、結晶性榭脂としては、ポリオレフイン (ポリ エチレン、ポリプロピレン等)、ポリアミド、ポリエステル等が挙げられる力 本発明にお いては、ポリオレフイン榭脂ゃポリエステル榭脂より分子間力の大きな榭脂が好適で あり、特に、ポリアミド榭脂が最適である。
[0013] 本発明においてポリアミド榭脂としては、 3員環以上のラタタム、重合可能な ω—ァ ミノ酸、二塩基酸とジァミン等の重縮合によって得られるポリアミド榭脂が挙げられる。 具体的には、 ε—力プロラタタム、アミノカプロン酸、ェナントラクタム、 7—ァミノヘプ タン酸、 11—アミノウンデカン酸、 9—アミノノナン酸、 α—ピロリドン、 α—ピぺリドン 等の重縮合体;へキサメチレンジァミン、ノナメチレンジァミン、ゥンデカメチレンジアミ ン、ドデカメチレンジァミン、メタキシレンジァミン等のジァミンと、テレフタル酸、イソフ タル酸、アジピン酸、セバシン酸、ドデカン二塩基酸、グルタール酸などのジカルボン 酸とを重縮合せしめて得られる重合体;これらの共重合体である。例えば、ポリアミド 4 、 6、 7、 8、 11、 12、 6·6、 6· 10、 6· 11、 6· 12、 6Τ、 6/6-6, 6/12, 6/6Τ, 61 Ζ6Τ等が挙げられる。この中の 2種以上を混合して使用できる。これらのうち、得られ るフィルムの熱的.機械的特性の面から、特に、ポリアミド 6榭脂、ポリアミド 6Ζ66共 重合樹脂が好適である。 [0014] ポリアミド榭脂の粘度数は、 JIS—K— 6933— 99に従って、 96重量%硫酸中、濃 度 1重量%、温度 23°Cで測定した値として、通常 115〜300、好ましくは 120〜250 である。粘度数が低すぎる場合は得られるフィルムの機械的特性が不十分であり、高 すぎる場合は製膜が困難になる。
[0015] 本発明において、多孔質フイラ一としては、例えば、多孔質シリカ、炭酸カルシウム 、ゼォライト、シリカゲル等が挙げられる。中でも、多孔質フイラ一を構成する一次粒 子の形状や大きさが、ほぼ揃っているものを使用することで、本発明の効果が顕著と なるので、本発明に用いる多孔質フイラ一としては、特に、ゼォライトが好ましい。これ らの多孔質フイラ一の細孔容積は、 DBP吸油量として、通常 lOmlZlOOg以上、好 ましくは 30mlZlOOg以上であり、その上限は通常 100mlZlOOg、好ましくは 80ml ZlOOg、更に好ましくは 60ml/ lOOgである。また、比表面積は、通常 10m2/g以 上、好ましくは 30m2Zg以上であり、その上限は通常 100m2Zg、好ましくは 50m2Z g、更に好ましくは 40m2Zgである。
[0016] 本発明にお 、て、ゼォライトとしては、無定形、結晶形を問わな 、が、 X線法の測定 で無定形のゼォライトが好まし 、。 X線法で測定して結晶構造が認められるゼォライト を使用すると、延伸安定性が低下し、延伸破断が頻発し易い。無定形のゼォライトの 組成は、式: χΜΟ·Α1 O -ySiO ·ζΗ Οで表される。式中、 Μはアルカリ金属または
2 3 2 2
アルカリ土類金属を示し、 Xは 0. 01〜2、yは 1〜100、 ζは 0. 1〜5の数をそれぞれ 示す。
[0017] 本発明においては、粒径および形状の異なる 2種の多孔質フイラ一を使用する。一 方の多孔質フイラ一は球状であり、他方の多孔質フイラ一は多面体状である。
[0018] 本発明で使用する球状多孔質フイラ一は、その粒子形状が真球形状に近いほど好 ましい。本発明において、その球状の度合いは以下の式(1)式に定義する球形比で 表すこと力 S出来、その値は、通常 0. 90-1. 0、好ましくは 0. 93-1. 0である。球形 比が 0. 90未満の場合はフィルムの滑り性が劣って好ましくな 、。
[0019] [数 1] 球形比 =粒子の投影面積/粒子投影面における最大径の円相当面積 ( 1 )
[0020] 本発明において、多面体状多孔質フイラ一は、角部を有する形状という点で意味が あり、多面体は、正四面体、正六面体、正八面体、正十二面体、正二十面体などの 正多面体に限定されず、準正多面体であってもよい。準正多面体としては、角の欠 けた各種の「切り隅型」の他、各種の「星形正多面体」、「多角柱」等が挙げられる。面 の数は、特に制限されないが、通常 4〜20、好ましくは 4〜8である。多面体の形状は 顕微鏡写真で確認することが出来、 90%以上が六面体である多孔質フイラ一が特に 好ましい。
[0021] 前述のゼォライトは、例えば、原料として、ケィ酸ソーダ、シリカゾル又は酸性白土を 使用して結晶性ゼオライトを合成し、次いで、得られた結晶性ゼオライトを酸処理する 方法により得られる。
[0022] 結晶性ゼオライトの合成は、上記の原料を酸処理し、得られた活性ケィ酸ゲル等の ケィ酸溶液にアルミン酸アル力リをカ卩えて加熱する公知の方法によって行われる。結 晶性ゼオライトの酸処理は、含有するゼオライトの塩基分 (ナトリウム)に対して 0. 2〜 5モル倍の酸をカ卩えて十分に接触させ、次いで、ろ過、水洗、乾燥後、 300〜600°C で焼成し、更に、必要に応じて粉砕、分級することにより行われる。酸処理に使用す る酸は、無機酸でも有機酸でも使用可能であるが、経済的には、塩酸、硫酸、硝酸な どの鉱酸が好ましい。
[0023] ゼォライトの種類としては、合成および処理の容易性から、ゼォライト A、ゼォライト X、ゼォライト Y、ゼォライト Ρ等が好ましぐ特に、経済的観点カもゼオライト Αが好ま しい。上記の合成条件を選択することにより、得られる結晶性ゼオライトの粒径および 形状を種々に変えることが出来る。なお、上記の結晶性ゼオライトの酸処理において は、無定形のアルミノシリケート (ゼオライト)の立方体状、球状などの形状が崩れない 様に注意する必要がある。
[0024] 本発明において、ゼォライトの市販品を使用することも可能である。例えば、立方体 状のゼォライトは、水澤化学社より商品名「シルトン AMT」として、球状ゼォライトは同 じく水澤ィ匕学社より商品名「シルトン JC」として販売されている。
[0025] 立方体状のゼォライトと球状のゼォライトは、その形状が異なるだけでなぐ組成で も相違する。例えば、立方体状の「シルトン AMT」の組成は、 H O/Al O /SiO
2 2 3 2
/Na 0/CaO=4. 64/41. 56/47. 55/6. 25Z〇であり、球状の「シルトン JC 」の組成は、 H O/Al O /SiO /Na 0/CaO=4. 31/25. 91/54. 56/8.
2 2 3 2 2
48/6. 74と、 Al Oと SiOとの構成比および CaOの含有量に違いがある。
2 3 2
[0026] ゼォライトの吸油量は、 JIS K—5101法での測定で、好ましくは l〜70mlZl00g である。吸油量が低すぎるとフィルムの延伸安定性が低下し、高すぎると延伸時の滑 り性の改良効果が小さい。吸油量は、好ましくは 5〜70mlZl00gである。
[0027] 本発明の結晶性榭脂組成物において、多孔質フイラ一 (B)の含有量は結晶性榭 脂 (A) 100重量部に対し 0. 01-0. 5重量部である。含有量が 0. 01重量部未満で あると滑り性改良効果が小さくなり、 0. 5重量部を超えると透明性の悪ィ匕が起こり易 い。
多孔質フイラ一(B)の含有量は、好ましくは 0. 015〜0. 4重量部、更に好ましくは 0. 02〜0. 3重量部である。
[0028] また、本発明においては、粒径の異なる 2種の粒子を使用してマクロな粗面とミクロ な粗面を形成してフィルムの滑り性を改良するが、その際、マクロな粗面に寄する大 粒子に球状の粒子を使用し、ミクロな粗面に寄与する小粒子に多面体粒子を使用す る。すなわち、本発明においては、平均粒径 1. 5〜6 /ζ πιの球状多孔質フイラ一(B 1)と平均粒径 0. 4〜1. 5 /z mの多面体状多孔質フイラ一(Β— 2)とを使用する。し 力も、両者の重量比は、 1Z90≤(B—1)Z(B— 2)≤1Z1の範囲に調節する。
[0029] 球状多孔質フイラ一 (B- 1)の平均粒径が 6 μ mを超えると透明性が低下し、 1. 5 mより小さいと滑り性の改善効果が認められない。また、多面体状多孔質フイラ一( B— 2)の平均粒径が 1. 5 mを超えると透明性が悪くなり、 0. より小さいと滑り 性の改善効果が発揮されない。また、球状多孔質フイラ一 (B—1)と多面体状多孔質 フィラー(B— 2)の重量比が 1Z1より大きくなると透明性が低下し、 1Z90より小さく なると滑り性が改善されな 、。球状多孔質フイラ一 (B— 1)と多面体状多孔質フイラ一 (B— 2)の重量比は、好ましくは 1Z80≤(B— 1)Z(B— 2) < 9Z10、更に好ましく は 1Z70≤ (B— 1)Z(B— 2) < 8Z10である。
[0030] 特に、本発明においては、大粒子に角のない球状の粒子を使用し、小粒子に角の ある多面体粒子を使用することにより、フィルム製膜時の延伸工程にぉ ヽて粒子とマ トリックスである周りの榭脂との間に空隙が出来る機会を低減してボイドの形成を極力 抑制した点に意義がある。その結果、本発明によれば、ガスノ リヤー性を維持した上 で透明性と滑り性を両立させた結晶性榭脂フィルム用の榭脂組成物が得られる。
[0031] 多孔質フイラ一の粒径は、コールターカウンタ一法にて容易に測定される。この方 法は、コールターエレクトロニクス社製の粒子計数装置を使用し、電解質溶液などの 電気伝導性のある液中に粒子を分散させて懸濁液を調製し、前後に電圧を掛けた 1 00 μ m程度の細孔を通過させたときに変化する電圧と変化の回数力 粒子の直径 分布を測定する方法である。なお、多面体状多孔質フイラ一 (B— 2)の平均粒は、コ 一ルターカウンタ一法にて測定した平均粒径数値によって表される。
[0032] 倍率 5000〜10000倍の SEM〖こよる観察で、前述の多孔質フイラ一の形状やその 大きさが容易に判別できる。前述の多孔質フイラ一は、 600〜800°Cにて焼成しても その形状や大きさが変わらな 、ので、本発明の結晶性榭脂組成物を成形したフィル ムであっても、それを 600〜800°Cで乾式灰化し、その灰分を SEMで観察すれば、 多孔質フイラ一の形状や大きさが容易に判別できる。
[0033] 本発明の結晶性榭脂組成物にはシランカップリング剤 (C)を配合するのが好ま ヽ 。シランカップリング剤(C)としては、オルガノシロキサン基を有するものが挙げられる 。オルガノ基の具体例としては、メチル、ェチル、プロピル等のアルキル基;ビュル、 ァリル等のァルケ-ル基;シクロプロピル、シクロへキシル等のシクロアルキル基;フエ
-ル、ベンジル等のァリール基またはァラルキル基; γ—ァミノプロピル、 Ν - ( β - アミノエチル) - Ύ—ァミノプロピル等のアミノアルキル基、 Ί—グリシドキシ、 Ύ—ク ロロプロピル、 γ メルカプトプロピル等の様にクロル、チオール、エポキシ等の官能 基を含むものが挙げられる。
[0034] シランカップリング剤 (C)の具体例としては、トリメチルメトキシシラン、ビュルトリエト キシシラン、 γ—クロ口プロピルトリメトキシシラン、 Ί—ァミノプロピルトリエトキシシラ ン、 N—( J3—アミノエチル) γ—ァミノプロピルトリメトキシシラン、 γ—メルカプトプ 口ピルトリメトキシシラン、 γ—グリシドキシプロピルトリメトキシシラン、 γ—メタクリロキ シプロピルトリメトキシシラン、へキサメチルジシラザン、 Ν, N'—ビス(トリメチルシリル
Ν, Ν,—ビス(トリメチルシリル)トリフロロァセトアミド、ステアリルトリメトキシシラン等が 挙げられる。特に γ—ァミノプロピルトリエトキシシラン等のアミノシランが好適である。
[0035] シランカップリング剤 (C)の配合量は、多孔質フイラ一 (Β)に対し、通常 0. 01〜60 重量%、好ましくは 0. 05〜40重量%、更に好ましくは 0. 1〜30重量%である。シラ ンカップリング剤 (C)の使用量が 0. 01重量%より少ないとフィルムの白濁化防止効 果が殆んど見られなくなり、 60重量%を超えるとカップリング剤同志の凝集が起こり易 くなり、フィルム中のフィッシュアイ等となつて残存し易くなる。
[0036] 本発明の結晶性榭脂組成物を製造するには、結晶性榭脂に多孔質フイラ一及び シランカップリング剤を含有させればよぐその方法は特に限定されず、結晶性榭脂 の製造力 フィルム成形までの任意の段階で、多孔質フイラ一及びシランカップリン グ剤を添加、または、予めシランカップリング剤で処理した多孔質フイラ一を添加すれ ばよい。結晶性榭脂がポリアミド榭脂の場合の具体例としては、以下の方法が挙げら れる。
[0037] (a)多孔質フイラ一に、水で希釈したシランカップリング剤を加熱攪拌下に加えて混 合し、シランカップリング剤で処理した多孔質フイラ一を調製し、これをポリアミド榭脂 の製造プロセスにおける初期(常圧)、重合反応開始前から減圧重合反応開始前ま での任意の間に添加する方法。
[0038] (b)上記シランカップリング剤で処理した多孔質フイラ一をポリアミド榭脂とドライブレ ンドする方法、または、当該ブレンド物を更に溶融混練する方法。
[0039] (c)ポリアミド榭脂に多孔質フイラ一とシランカップリング剤をドライブレンドする方法、 または、当該ブレンド物を更に溶融混練する方法。
(d)上記の(b)または (c)の方法にて多孔質フイラ一及びシランカップリング剤を高濃 度で含有したマスターバッチを製造し、そのマスターバッチとポリアミド榭脂を混合す る方法。
[0040] ゼォライトの分散が良好であると!/、う観点から、上記の(a)又は (d)の方法が好ま 、
[0041] 更に、本発明の結晶性榭脂組成物、特に、ポリアミド榭脂組成物の場合には滑り性 および水冷却製膜法における透明性を改良する目的で、ビスアミドィ匕合物 (D)を配 合すると効果的である。ビスアミドィ匕合物としては、下記一般式〔I〕又は〔II〕で表され る化合物が使用される。
[0042] [化 1]
K R 5 0
R o C = R N - C— R 3 . . . [ I ]
Figure imgf000010_0001
(式中、 R 1は 2価の炭化水素残基、 R 2及び R 3は 1価の炭化水素残基、
R 4及び R 5は水素原子または 1価の炭化水素残基を示す。 )
[0043] 前記一般式〔I〕で表されるビスアミドィ匕合物としては、例えば、各種のジァミンと脂肪 酸との反応によって得られるアルキレンビス脂肪酸アミド、ァリーレンビス脂肪酸アミド 等が挙げられる。上記のジァミンとしては、エチレンジァミン、プロピレンジァミン、ブ チレンジァミン、へキサメチレンジァミン、オタタメチレンジァミン、ドデカメチレンジアミ ン等のァノレキレンジァミン、フエ二レンジァミン、ナフタレンジァミン等のァリーレンジァ ミン、キシリレンジァミン等のァリーレンアルキルジァミン等が挙げられ、上記の脂肪酸 としては、ステアリン酸、へキサン酸、オクタン酸、デカン酸、ラウリン酸、ミリスチン酸、 パルミチン酸、ァラキジン酸、ベへニン酸、ォレイン酸、エライジン酸、モンタン酸など が挙げられる。これらの中で代表的なものとしては、 N, N,一メチレンビスステアリン 酸アミド及び N, N'—エチレンビスステアリン酸アミドを挙げることが出来る。
[0044] 前記一般式〔II〕で表されるビスアミドィ匕合物としては、例えば、各種のモノアミンとジ カルボン酸との反応によって得られるビスアミドが挙げられる。上記のモノアミンとして は、ェチルァミン、メチルァミン、ブチルァミン、へキシルァミン、デシルァミン、ペンタ デシルァミン、ォクタデシルァミン、ドデシルァミン等のアルキルァミン、ァ-リン、ナフ チルァミン等のァリールァミン、ベンジルァミン等のァラルキルァミン、シクロへキシル ァミン等のシクロアルキルアミン等が挙げられる。上記のジカルボン酸としては、テレ フタル酸、 p—フエ-レンジプロピオン酸、コハク酸、アジピン酸などが挙げられる。こ れらの中で代表的なものとしては、 N, N,一ジォクタデシルテレフタル酸アミド等のジ ォクタデシルニ塩基酸アミドを挙げることができる。これらのビスアミドィ匕合物は、二種 以上を組み合わせて使用してもょ 、。
[0045] ビスアミド化合物(D)の配合量は、ポリアミド榭脂 100重量部に対し、通常 0. 01〜 1重量部、好ましくは 0. 02-0. 5重量部である。配合量が少ないと滑り性改良の効 果が観られず、多すぎるとフィルムの印刷性やラミネート加工時の密着性が低下し好 ましくない。なお、前記のビスアミドィ匕合物は、二種以上を組み合わせて使用してもよ い。
[0046] ビスアミド化合物の配合方法は、特に限定されるず、例えば、ポリアミド榭脂のペレ ット状原料にドライブレンドするいわゆる外添法、ペレットに溶融混合する練込法、高 濃度に含有する原料を配合する所謂マスターバッチ法、重合時に添加する内添法な どの何れの方法でもよ!/、。
[0047] 本発明の結晶性榭脂組成物には、上記の (A)〜(D)成分以外に、本発明の効果 を損なわない限り、当業者に周知の各種の添加物を配合することが出来る。この様な 添加物としては、例えば、ヒンダードフエノール、リン酸エステル、亜リン酸エステル等 の酸化防止剤、トリアジン系化合物などの耐候性改良剤、顔料、染料などの着色剤、 帯電防止剤、滑剤、界面活性剤などが挙げられる。これらの添加剤の配合方法は、 特に限定されず、公知の任意の方法を採用することが出来る。
[0048] 本発明の結晶性榭脂フィルムは、上記の本発明の結晶性榭脂組成物を、公知のフ イルム製膜法を採用して成形することにより得られる。代表的な製膜法としては、 T型 ダイ力 押し出されたフィルム状物の冷却固化をチルドロールによりキャストして冷却 する Tダイ法、環状スリットを有するダイ力もチューブ状物を押し出し、チューブ内に 空気を吹き込み膨張させて空冷または水冷し成形するインフレーション法などが挙げ られる。この様にして成形されたフィルムは、未延伸フィルムのまま、または、ー軸延 伸、二軸延伸などの延伸工程を経て延伸フィルムとして使用される。
[0049] また、本発明の結晶性榭脂フィルムは、厚さ 15 mにて 23°C65%RHおける酸素 透過量が 50mlZ [m2' day atm]以下、ヘイズが 2. 5%以下、フィルム同士の静止 摩擦係数が 23°C65%RH下で 0. 5以下、 23°C90%RH下で 0. 6以下であることを 特徴とする。酸素透過量は、好ましくは 40mlZ [m2' day' atm]以下、ヘイズは好ま しくは 2. 2%以下であり、フィルム同士の静止摩擦係数が 23°C65%RH下で 0. 4以 下、 23°C90%RH下で 0. 58以下である。なお、これらの物性値は後述の実施例に 示す測定方法による値である。
[0050] 前記の本発明の結晶性榭脂フィルムは、単層フィルムであってもよ!/、し、他の榭脂 との共押出による多層フィルムやラミネートによる積層フィルムであってもよい。本発 明の結晶性榭脂フィルムは、ガスバリヤ一性、透明性、滑り性に優れ、製袋、印刷、ラ ミネート等の 2次力卩ェも容易であり、食品などの広い範囲の包装用フィルムとして有用 である。
なお、本発明のおけるフィルムの厚さは通常 0. 2mm未満である。また、厚さの下限 は、製膜の困難性の観点から、通常 1 μ mである。
実施例
[0051] 以下に、本発明を実施例によって具体的に説明するが、本発明はその要旨を超え ない限り、以下の例に限定されるものではない。なお、以下の諸例で採用した測定方 法は次の通りである。また、使用した添加成分は以下の表 1に示す通りである。
[0052] (1)ガスバリヤ一性 (酸素透過度):
ASTM D— 3985に準拠し、モンダンコントロール社製「OXY— TRAN100型」を 使用し、 24°C、 65%RHの環境下にて酸素透過量 mlZ [m2' day atm]を測定した
[0053] (2)ヘイズ:
東京電色 (株)製ヘーズメーターを使用してヘイズを測定した。
[0054] (3)フィルム同士の静止摩擦係数:
相対湿度 65%及び 90%、温度 23°Cの条件下、平行移動式で静止摩擦係数( S )を測定した。
[0055] (4)球形比:
倍率 5000〜10000倍の SEMで球状多孔質粒子を観察して撮影した画像から粒 子 500個の投影面積と投影面における最大径の円相当面積を求め、前述の式(1) にて算出した。
[0056] (5) DBP吸油量: JIS6220に準拠して測定した。
[0057] [表 1]
Figure imgf000013_0001
[0058] 実施例 1〜2及び比較例 1〜8:
前記 4種の各ゼオライトと、所定量のシランカップリング剤と、これらの合計量に対し て 6倍重量の水とをスーパーミキサー中で 80°Cに加熱しながら混合し、水を蒸発させ ながらゼォライトの処理を行なった。次いで、 120°Cで乾燥させ、表面処理したゼオラ イト微粒子 4種を得た。
[0059] 得られた表面処理したゼォライト微粒子を力プロラタタムの重合中に、最終的に得ら れるポリアミド 6榭脂 100重量部に対し、表 2又は表 3に記載の重量部となる様に添カロ し、常法により重合し、粘度数 180のポリアミド 6榭脂を得た。得られたゼォライト粒子 含有ポリアミド 6榭脂を、常法に従って沸騰水中で処理して低分子量物を抽出、除去 し、減圧式乾燥機で乾燥した。
[0060] ビスアミド化合物を、ポリアミド 6榭脂 100重量部に対して表 2又は表 3に記載の重 量部となる様に添加し、押出機直径 40mmの Tダイ式製膜機を使用し、樹脂温度 26 5°C、冷却ロール温度 30°Cにて、厚さ 135 mのフィルム原反を製膜した。更にこの フィルム原反を、 80°Cで縦横 3 X 3倍に同時に二軸延伸し、その後、 200°Cでの熱固 定し、厚さ 15 ;z mの 2軸延伸フィルムを得た。得られた延伸フィルムについての評価 結果を表 2及び表 3に示した。
[0061] [表 2]
Figure imgf000014_0001
(配合組成は、 ポリアミド樹脂 1 0 0重量部に対する重量部を表す。 )
[0062] [表 3] 比較例 4 比較例 5 比較例 6 比較例 7 比較例 8
( B— 1 a ) 0.02 ― 0.001 一
( B - 1 b ) 0.075 ― 一
( B— 1 c ) ― ― ― 0.35
( B— 2 a ) 一 ― ― 0.35 配合組成
( B— 2 b ) 0.05 ― 0.03
( C) 0.01 0.01 0.01 0.01 0.01
(D) 0.08 0.08 0.08 0.08 0.08 酸素透過度
84 42 54 36 85
(ml/ [m2 · atm · day] )
フィルム ヘーズ(%) 3.4 2.2 2.6 2.1 3.2 評価
i s 6 5 (%) 0.38 0.40 0.41 0.55 0.62
/x s 9 0 ( ) 0.50 0.61 0.62 0.84 0.90
(配合組成は、 ポリアミド樹脂 1 0 0重量部に対する重量部を表す。 ) 表 2及び表 3から次のことが明らかである。すなわち、形状および粒径の異なる 2種 のゼオライトを、本発明に規定する組み合わせで使用した実施例 1及び 2の組成物か ら製造されたフィルムは、ガスノ リア性、透明性および滑り性に優れている。一方、何 れカ 1種のゼォライトを使用した比較例 1、 2及び比較例 6の組成物から得られたフィ ルムは滑り性および Zまたは透明性が劣っている。また、 2種の組み合わせが本発明 の規定外である比較例 3、 4及び 7の組成物力 得られたフィルムは、何れも透明性 や滑り性が劣っている。更に、球状多孔質フイラ一の代わりに塊状シリカ(不定形多 孔質フイラ一)を使用した比較例 8の組成物力 得られたフィルムは、ガスバリア性、 透明性および滑り性に劣る。

Claims

請求の範囲
[1] 結晶性榭脂 (A) 100重量部に対し、多孔質フイラ一(B) O. 01〜0. 5重量部を含 有し、多孔質フイラ一(B)が、平均粒径 1. 5〜6 /ζ πιの球状多孔質フイラ一(B— 1)と 平均粒径 0. 4〜1. 5 mの多面体状多孔質フイラ一(Β— 2)力 成り、その重量比 力 SlZ90≤ (B— 1) Z (B— 2)≤1Z1の範囲であることを特徴とする結晶性榭脂組 成物。
[2] 結晶性榭脂がポリアミド榭脂である請求項 1に記載の結晶性榭脂組成物。
[3] 多孔質フイラ一がゼォライト類である請求項 1又は 2に記載の結晶性榭脂組成物。
[4] 更に、多孔質フイラ一 (Β)に対して 0. 01〜60重量%のシランカップリング剤 (C)を 含有する請求項 1〜3の何れかに記載の結晶性榭脂組成物。
[5] シランカップリング剤 (C)がアミノシランカップリング剤である請求項 4に記載の結晶 性榭脂組成物。
[6] 更に、結晶性榭脂 (Α) 100重量部に対して 0. 01〜1重量部のビスアミドィ匕合物(D )を含有する請求項 1〜5の何れかに記載の結晶性榭脂組成物。
[7] 請求項 1〜6の何れかに記載の結晶性榭脂組成物を成形して成ることを特徴とする 結晶性榭脂フィルム。
[8] 延伸フィルムである請求項 7に記載の結晶性榭脂フィルム。
[9] 厚さ 15 111にて23°〇65%1¾1ぉける酸素透過量が5011117[1112'(1&^&1;111]以下、 ヘイズが 2. 5%以下、フィルム同士の静止摩擦係数が 23°C65%RH下で 0. 5以下 、 23°C90%RH下で 0. 6以下であることを特徴とする結晶性榭脂フィルム。
PCT/JP2006/300427 2005-01-21 2006-01-16 結晶性樹脂組成物および結晶性樹脂フィルム WO2006077787A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602006016911T DE602006016911D1 (de) 2005-01-21 2006-01-16 Kristalline harzzusammensetzung und kristalliner harzfilm
EP06711708A EP1840168B1 (en) 2005-01-21 2006-01-16 Crystalline resin composition and crystalline resin film
CN2006800024353A CN101107319B (zh) 2005-01-21 2006-01-16 结晶性树脂组合物和结晶性树脂膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-014769 2005-01-21
JP2005014769 2005-01-21

Publications (1)

Publication Number Publication Date
WO2006077787A1 true WO2006077787A1 (ja) 2006-07-27

Family

ID=36692177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300427 WO2006077787A1 (ja) 2005-01-21 2006-01-16 結晶性樹脂組成物および結晶性樹脂フィルム

Country Status (5)

Country Link
EP (1) EP1840168B1 (ja)
KR (1) KR20070097032A (ja)
CN (1) CN101107319B (ja)
DE (1) DE602006016911D1 (ja)
WO (1) WO2006077787A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163327A1 (ja) * 2014-04-23 2015-10-29 水澤化学工業株式会社 ポリオレフィンまたはポリエステル用アンチブロッキング剤

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969928B2 (en) 2016-10-03 2024-04-30 Viskase Companies, Inc. Method of manufacturing food packaging plastic films and food packaging plastic films thus produced
WO2018067110A1 (en) 2016-10-03 2018-04-12 Viskase Companies, Inc. Method of manufacturing food packaging cellulosic films and food packaging cellulosic films thus produced
JP2022074144A (ja) * 2020-11-02 2022-05-17 三菱ケミカル株式会社 組成物、液状封止剤、樹脂複合材、封止材、封止材の製造方法、及び電子デバイス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964647A (ja) * 1982-10-06 1984-04-12 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂組成物
JPS6136866B2 (ja) * 1982-06-07 1986-08-20 Mizusawa Industrial Chem
JPH07233266A (ja) * 1993-12-28 1995-09-05 Toyobo Co Ltd 滑り性の改善された二軸延伸ポリアミド樹脂フィルム
JPH07258478A (ja) * 1994-03-18 1995-10-09 Sumitomo Chem Co Ltd ポリオレフィン系樹脂組成物
JPH09157439A (ja) * 1995-12-11 1997-06-17 Fuji Photo Film Co Ltd 熱可塑性ポリマーフィルム
JP2000309702A (ja) * 1999-04-27 2000-11-07 Mitsubishi Chemicals Corp ポリアミド系樹脂組成物及びそれからなる包装用フィルム
JP2002080714A (ja) * 2000-02-18 2002-03-19 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物およびフィルム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136866B2 (ja) * 1982-06-07 1986-08-20 Mizusawa Industrial Chem
JPS5964647A (ja) * 1982-10-06 1984-04-12 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂組成物
JPH07233266A (ja) * 1993-12-28 1995-09-05 Toyobo Co Ltd 滑り性の改善された二軸延伸ポリアミド樹脂フィルム
JPH07258478A (ja) * 1994-03-18 1995-10-09 Sumitomo Chem Co Ltd ポリオレフィン系樹脂組成物
JPH09157439A (ja) * 1995-12-11 1997-06-17 Fuji Photo Film Co Ltd 熱可塑性ポリマーフィルム
JP2000309702A (ja) * 1999-04-27 2000-11-07 Mitsubishi Chemicals Corp ポリアミド系樹脂組成物及びそれからなる包装用フィルム
JP2002080714A (ja) * 2000-02-18 2002-03-19 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物およびフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1840168A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163327A1 (ja) * 2014-04-23 2015-10-29 水澤化学工業株式会社 ポリオレフィンまたはポリエステル用アンチブロッキング剤

Also Published As

Publication number Publication date
EP1840168A4 (en) 2009-03-18
EP1840168B1 (en) 2010-09-15
CN101107319A (zh) 2008-01-16
DE602006016911D1 (de) 2010-10-28
CN101107319B (zh) 2012-02-22
KR20070097032A (ko) 2007-10-02
EP1840168A1 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP5549584B2 (ja) フィルム用ポリアミド樹脂組成物
JP2003535203A (ja) マトリックスポリマーおよび石英含有率の低い層状粘土物質を含むポリマーナノ複合材
WO2006077787A1 (ja) 結晶性樹脂組成物および結晶性樹脂フィルム
JP2006241439A (ja) ポリアミド樹脂組成物及びそれからなるフィルム
JP5089047B2 (ja) 結晶性樹脂組成物および結晶性樹脂フィルム
JP7319926B2 (ja) 揮発性有機化合物の排出を削減するための沈降炭酸カルシウム
JP4336337B2 (ja) フィルム用ポリアミド樹脂成形材料
WO2006038507A1 (ja) フィルム用ポリアミド樹脂成形材料およびその製造方法
JP6834851B2 (ja) 多層フィルムおよび包装体
JPH06179813A (ja) ポリアミド樹脂製フィルム
JPH10168310A (ja) 滑り性の優れたポリアミドフィルム
Ghanshyam et al. Synthesis and characterization of CaCO3-SiO2 core-shell nanoparticles with PA6 nanocomposites
JP6718271B2 (ja) 滑り性と安定生産性の優れたポリアミドフィルム
JP6721269B2 (ja) ポリアミドフィルム
JP2009286921A (ja) ポリアミド樹脂組成物およびポリアミドフィルム
JP5652300B2 (ja) ポリアミド樹脂組成物
JP2002080714A (ja) ポリアミド樹脂組成物およびフィルム
JP2001225386A (ja) ポリアミドフィルム
JPH10168309A (ja) 滑り性に優れたポリアミドフィルム
JP6718270B2 (ja) 滑り性の優れたポリアミドフィルム
JP2005272601A (ja) フィルム用ポリアミド樹脂組成物
JP4311106B2 (ja) 脂肪族ポリエステル組成物およびそれからなるフイルム
WO2023149547A1 (ja) ポリアミド樹脂組成物及びそのフィルム
JPH05339498A (ja) フィルム用ポリアミド樹脂組成物
JP2000109577A (ja) ポリアミド樹脂フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077012424

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006711708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680002435.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006711708

Country of ref document: EP