WO2006073176A1 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
WO2006073176A1
WO2006073176A1 PCT/JP2006/300079 JP2006300079W WO2006073176A1 WO 2006073176 A1 WO2006073176 A1 WO 2006073176A1 JP 2006300079 W JP2006300079 W JP 2006300079W WO 2006073176 A1 WO2006073176 A1 WO 2006073176A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor integrated
integrated circuit
circuit device
current
control
Prior art date
Application number
PCT/JP2006/300079
Other languages
English (en)
French (fr)
Inventor
Masahiro Nomura
Koichi Takeda
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006550905A priority Critical patent/JP4835856B2/ja
Priority to US11/813,502 priority patent/US7659772B2/en
Publication of WO2006073176A1 publication Critical patent/WO2006073176A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption

Definitions

  • the present invention relates to a semiconductor integrated circuit device that operates in synchronization with a clock, and more particularly to a semiconductor integrated circuit device capable of changing at least one of a power supply voltage, a clock frequency, and a threshold value.
  • CMOS Complementary Meal-Oxide-Semiconductor
  • power consumption tends to increase as the number of transistors constituting the semiconductor integrated circuit device increases, and reduction of power consumption has been strongly demanded.
  • CMOS device technology As a technique for reducing power consumption in semiconductor integrated circuit devices, low power consumption is achieved by supplying the power supply voltage at the lower limit to each circuit block in the semiconductor integrated circuit device.
  • a power supply control method for achieving electric power has been proposed. For example, T. Kuroda et al.
  • JP 2001-345693 A prepares a correspondence table (TBL) that shows combinations of clock frequency, power supply voltage, and substrate bias voltage in advance.
  • TBL correspondence table
  • a semiconductor integrated circuit device capable of controlling a clock frequency, a power supply voltage, and a substrate bias voltage by referring to the reference is disclosed.
  • JP 2001-345693 corresponds to the specifications of US Pat. Nos. 6,774,705 and 6,943,613.
  • Non-Patent Document 1 T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama; "Variable Supply— Voltage Scheme for Low-Power High-Speed CMOS Digital Design," IEEE Journal of Solid-State Circuits, vol. 33, pp. 454-462, Mar. 1998.
  • Non-Patent Document 2 K. Nose, and T. Sakurai; "Optimization of VDD and VTH for Low-Power and High-Speed Applications," ASP—DAC, pp. 469-474, Jan. 2000.
  • An object of the present invention is to provide a power supply voltage and a threshold that realizes minimization of operating power for a given operation clock frequency without using a correspondence table or using a small number of correspondence table data.
  • An object of the present invention is to provide a semiconductor integrated circuit device capable of realizing optimization of value voltage.
  • a semiconductor integrated circuit device includes a switching current observation means for observing a switching current in a semiconductor integrated circuit device, a leakage current observation means for observing a leakage current in the semiconductor integrated circuit device, a switching current and a leakage current, And a threshold voltage control means for controlling the threshold voltage of the circuit elements constituting the semiconductor integrated circuit so that the ratio between the switching current and the leakage current is constant. .
  • the operating power is minimized by controlling the threshold voltage so that the ratio of the switching current and the leakage current becomes constant with respect to a given clock frequency. It becomes possible to.
  • Another semiconductor integrated circuit device of the present invention includes a switching current observing means for observing a switching current in the semiconductor integrated circuit device, a leakage current observing means for observing a leakage current in the semiconductor integrated circuit device, a switching current and a leakage current
  • a comparison means for comparing the current, a threshold voltage control means for controlling a threshold voltage of a circuit element constituting the semiconductor integrated circuit so that a ratio of the switching current and the leakage current is constant, and a semiconductor Delay observation means for observing a delay amount in the integrated circuit device; and power supply voltage control means for controlling a power supply voltage used for the operation of the semiconductor integrated circuit device so that the delay amount falls within a predetermined range.
  • a threshold voltage is controlled so that the ratio of the switching current and the leakage current is constant with respect to a given clock frequency, and a power supply is provided so as to guarantee the operation speed.
  • a power supply is provided so as to guarantee the operation speed.
  • the switching current observing means, the leakage current observing means, and the delay observing means are used, for example, in each circuit block for executing the original function of the semiconductor integrated circuit device.
  • the circuit element power of the same configuration is also included.
  • Switching current The observation means, the leakage current observation means, and the delay observation means are preferably formed at the same time as these circuit blocks in the semiconductor integrated circuit device by the same manufacturing process as each of these circuit blocks. .
  • the switching current observed by the switching current observation means, the leakage current observed by the leakage current observation means, and the delay amount observed by the delay observation means are: Even taking into account the manufacturing variations of the semiconductor integrated circuit device, each represents a switching current, a leakage current, and a delay amount in each circuit block of the semiconductor integrated circuit device.
  • circuit elements that are subject to threshold voltage control are, for example, pMOS transistors and nMOS transistors in a semiconductor integrated circuit device.
  • the substrate bias voltage of the semiconductor integrated circuit device for example, the bias voltage V applied to the p-well formed on the substrate and the bias voltage V applied to the n-well are controlled.
  • the threshold voltages of these transistors can be changed.
  • the threshold voltage control means may change the floating gate voltages of these transistors.
  • the threshold voltage control means may change the voltages of some of the plurality of gates in the transistor.
  • the pMOS transistor is controlled by controlling the power supply voltage V of the semiconductor integrated circuit device.
  • the substrate voltage is the noise voltage V applied to the nwell. Control the power supply voltage
  • the threshold value of the pMOS transistor can also be changed.
  • the voltage difference between the substrate voltage and the source voltage (GND) of the nMOS transistor changes.
  • the substrate voltage of the nMOS transistor is the bias voltage V applied to the p-well.
  • the threshold value of the nMOS transistor can also be changed.
  • the ratio of the leakage current and the switching current is made dynamic so as to keep constant. Threshold voltage control is performed, which makes it possible to always achieve a ratio that can minimize power during operation according to changes in the operating environment such as temperature, power supply voltage, and operating frequency. . Therefore, according to the present invention, it is possible to provide a semiconductor integrated circuit device capable of minimizing the power during operation by keeping the ratio between the leakage current and the switching current constant.
  • the dynamic threshold voltage control as described above, it is possible to reduce the influence of process variations and changes in the operating environment such as temperature and power supply voltage. Therefore, according to the present invention, it is possible to provide a semiconductor integrated circuit device capable of reducing the influence of variations caused by the manufacturing process, temperature, power supply voltage, etc. by setting the leakage current to a constant ratio of the switching current. Can do.
  • the delay observation means and the power supply voltage control means are provided, and the power supply voltage control means is preferentially controlled with respect to the threshold voltage control means, so that the critical path delay is more than the necessary clock period. Therefore, it is possible to supply a power supply voltage for always maintaining the operating condition of small. Therefore, according to the present invention, a semiconductor integrated circuit device capable of maintaining the required speed performance of the circuit can be obtained.
  • FIG. 1 is a block diagram showing a configuration of a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of the semiconductor integrated circuit device of the first embodiment.
  • FIG. 3 is a block diagram showing a configuration of a semiconductor integrated circuit device according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a semiconductor integrated circuit device according to a third embodiment of the present invention.
  • FIG. 5 is a flowchart showing the operation of the semiconductor integrated circuit device of the third embodiment.
  • FIG. 6 is a flowchart showing another example of the operation of the semiconductor integrated circuit device according to the third embodiment.
  • FIG. 7 is a flowchart showing still another example of the operation of the semiconductor integrated circuit device according to the third embodiment.
  • FIG. 8 is a block diagram showing a configuration of a semiconductor integrated circuit device according to a fourth embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing an example of a switching current observation unit.
  • FIG. 10 is a circuit diagram showing another example of the switching current observation unit.
  • FIG. 11 is a circuit diagram showing still another example of the switching current observation unit.
  • FIG. 12 is a timing chart showing the operation of the switching current observation unit shown in FIG.
  • FIG. 13 is a circuit diagram showing still another example of the switching current observation unit.
  • FIG. 14 is a timing chart showing the operation of the switching current observation unit shown in FIG.
  • FIG. 15 is a circuit diagram showing still another example of the switching current observation unit.
  • FIG. 16 is a timing chart showing the operation of the switching current observation unit shown in FIG.
  • FIG. 17 is a circuit diagram showing still another example of the switching current observation unit.
  • FIG. 18 is a timing chart showing the operation of the switching current observation unit shown in FIG.
  • FIG. 19 is a circuit diagram showing still another example of the switching current observation unit.
  • FIG. 20 is a timing chart showing the operation of the switching current observation unit shown in FIG.
  • FIG. 21 is a circuit diagram showing still another example of the switching current observation unit.
  • FIG. 22 is a timing chart showing the operation of the switching current observation unit shown in FIG. 23] A circuit diagram showing an example of a reference current generator.
  • FIG. 25 is a circuit diagram showing still another example of the switching current observation unit.
  • FIG. 26 is a circuit diagram showing still another example of the switching current observation unit.
  • FIG. 27 is a circuit diagram showing a configuration of a switching current leakage current comparison semiconductor integrated circuit device according to the present invention.
  • FIG. 28 is a circuit diagram showing an example of a leakage current observation unit.
  • FIG. 29 is a circuit diagram showing another example of a leakage current observation unit.
  • FIG. 30 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 31 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 32 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 33 is a circuit diagram showing still another example of the leakage current observation unit. [34] FIG. 34 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 35 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 36 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 37 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 39 is a circuit diagram showing another example of the configuration of the semiconductor integrated circuit device.
  • FIG. 40 is a circuit diagram showing another example of the configuration of the semiconductor integrated circuit device.
  • Switching current Leakage current comparison is a circuit diagram showing another example of the configuration of a semiconductor integrated circuit device.
  • FIG. 14 is a circuit diagram showing another example of the configuration of the semiconductor integrated circuit device.
  • FIG. 43 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 44 is a circuit diagram showing still another example of the leakage current observation unit.
  • FIG. 46 is a timing chart showing operations of the delay measuring unit and the control switching unit in the circuit shown in FIG. 45.
  • FIG. 47 is a graph showing the relationship between the operating current under the condition where the operating speed is constant and the switching current and leakage current as its components.
  • FIG. 48 is a block diagram showing a configuration of a semiconductor integrated circuit device according to a fifth embodiment of the present invention.
  • FIG. 49 is a block diagram showing a configuration of a semiconductor integrated circuit device according to a sixth embodiment of the present invention.
  • FIG. 50 is a block diagram showing an example of a threshold compensation unit.
  • FIG. 51 is a block diagram showing a configuration of an additional part of a control switching unit.
  • FIG. 52 is a block diagram showing another example of the configuration of the additional part of the control switching unit.
  • 53] is a circuit diagram showing a delay measurement unit and a control switching unit.
  • FIG. 54 is a truth table showing operations of the delay measuring unit and the control switching unit in the circuit shown in FIG. 53.
  • FIG. 55 is a timing chart showing operations of the delay measuring unit and the control switching unit in the circuit shown in FIG. 53.
  • FIG. 1 shows an overall configuration of a semiconductor integrated circuit device according to the first embodiment of the present invention.
  • This semiconductor integrated circuit device includes a power supply line 8 to which a power supply voltage V is supplied, and a semiconductor integrated circuit.
  • a substrate bias line 9 for supplying substrate bias potentials V and V in the product circuit.
  • the semiconductor integrated circuit device is provided with, for example, a CMOS logic circuit as a circuit function unit that realizes a function that the semiconductor integrated circuit device should originally perform.
  • the power supply line 8 supplies a power supply voltage for operating the circuit function unit to the circuit function unit.
  • the circuit function unit includes, for example, a p-well region and an n-well region formed in the semiconductor substrate, and a substrate bias voltage is applied to these well regions by the substrate bias line 9.
  • the circuit function section is for operation.
  • a clock signal CLK is also supplied as a clock for the above.
  • the semiconductor integrated circuit device is supplied with a power supply voltage V and a clock signal CLK.
  • the switching current observation unit 1 for observing the switching current in the semiconductor integrated circuit device is supplied with the power supply voltage V and the substrate bias potentials V and V.
  • the semiconductor integrated circuit is designed so that the ratio between the switching current and the leakage current is constant, and the leakage current observation section 2 that observes the leakage current in the device, the comparison section (comparison circuit) 3 that compares the switching current and the leakage current, and Threshold voltage control unit 4 for controlling the threshold voltage of each MOS transistor constituting the circuit device, power supply voltage V and substrate bias potentials V and V
  • a power supply voltage control unit 6 for controlling a power supply voltage used for the operation of the semiconductor integrated circuit device so that the amount of extension is within a predetermined range.
  • the threshold voltage control unit 4 controls the threshold voltage by changing the potential of the substrate bias line 9.
  • the power supply voltage control unit 6 changes the power supply voltage V supplied on the power supply line 8.
  • the comparison unit 3 also has a ratio.
  • the power supply voltage V is supplied for use as a reference during the comparison operation in the comparison unit 3.
  • Each of the switching current observation unit 1, the leakage current observation unit 2, and the delay observation unit 5 includes circuit elements having the same configuration as that used in the circuit function unit, and the same manufacturing process as the circuit function unit Thus, it is formed simultaneously with the circuit function unit in the semiconductor integrated circuit device. Therefore, although the switching current observation unit 1 does not measure the actual switching current in the circuit function unit, it can observe the switching current substantially the same as the switching current in the circuit function unit. Similarly, the leakage current observation unit 2 observes substantially the same leakage current as the leakage current in the circuit function unit, and the delay observation unit 5 exhibits a delay amount substantially the same as the signal delay amount in the circuit function unit. Observe. The power supply voltage V at the power supply line 8 or the substrate bias potential V, V at the substrate bias line 9 changes.
  • the switching current, leakage current, and delay amount in the circuit function section also change.
  • the switch The switching current observed by the ching current observation unit 1, the leak current observed by the leakage current observation unit 2, and the delay amount observed by the delay observation unit 5 also change.
  • the comparison unit 3 compares whether the ratio of the observation results of the switching current observation unit 1 and the leakage current observation unit 2 is a predetermined value, and the threshold value is obtained.
  • the voltage control unit 4 controls the threshold voltage (that is, the substrate bias potential) so that the switching current and the leakage current have a constant ratio.
  • the delay observation unit 5 observes whether the critical path delay falls within the operation clock cycle, and according to the observation result, the power supply voltage control unit 6 makes the critical path delay smaller than the operation clock cycle, and The power supply voltage V on the power supply line 8 is controlled so that the power supply voltage V is as low as possible.
  • FIG. Figure 2 shows the control procedure for the supply voltage V and threshold voltage V according to the operating clock.
  • step 11 the power supply voltage V is set, and the value V is set to an initial value.
  • the delay observation unit 5 determines whether the delay amount is appropriate, that is, whether the critical path delay is smaller than the clock period. If the critical path delay is smaller than the clock cycle, the control target circuit is in an operable state and can start operating.
  • step 15 If the delay amount is not appropriate in step 15, the process proceeds to step 14, where the power supply voltage control unit 6 has a critical path delay smaller than the clock cycle for the threshold voltage transistor at that time. Control the power supply voltage V so that the lower limit is reached, and return to step 15.
  • step 16 the comparison unit 3 compares the leakage current I and the switching power with respect to the operating frequency and the power supply voltage.
  • Ratio with SW It is determined whether LEAK SW is a predetermined ratio, that is, a target value. If the ratio is constant, the process is terminated. Otherwise, the process proceeds to step 13, and the threshold voltage is set so that the ratio of the leakage current and the switching current becomes the target value at that time.
  • the control unit 4 controls the threshold voltage V. I / ⁇ is the operating frequency and power supply at that time t LEAK SW If the constant value determined by the voltage is reached, the semiconductor integrated circuit device can be operated at a low power. After executing Step 13, go to Step 14.
  • Step 13 speed guarantee is essential, and when threshold voltage control is performed, it must be satisfied that the critical path delay is smaller than the clock cycle. Therefore, after executing Step 13, the process proceeds to Step 14. Also, when the operating clock frequency changes, especially when the frequency increases, the operation of the controlled circuit is temporarily stopped, and the semiconductor integrated circuit device can operate with a critical path delay smaller than the clock cycle. It is preferable to resume the operation after confirming that it is in the state.
  • the threshold voltage control unit 4 changes the floating gate voltage of the floating gate transistor.
  • the threshold value may be changed depending on the situation.
  • the threshold voltage control unit 4 changes the voltage of one or several of the gates in the transistor. The threshold value may be changed according to.
  • FIG. 3 shows the overall configuration of the semiconductor integrated circuit device according to the second embodiment.
  • the semiconductor integrated circuit device shown in FIG. 3 has a configuration in which the delay observation unit 5 and the power supply voltage control unit 6 are removed from those shown in FIG.
  • the power supply voltage V is the clock signal CLK (frequency
  • the comparison unit 3 compares whether the ratio between the switching current and the leakage current is a predetermined value, and determines the threshold value.
  • the voltage control unit 4 controls the threshold voltage so that the ratio of the leakage current and the switching current becomes a predetermined value.
  • FIG. 4 shows the overall configuration of the semiconductor integrated circuit device according to the third embodiment.
  • the threshold voltage control unit 4 and the power supply voltage control unit 6 can control the operation independently.
  • a control switching unit 10 is provided, and the control switching unit 10 is used to switch between power supply voltage control and threshold voltage control. The priority is switched.
  • the threshold voltage is satisfied only when the operating speed satisfies a certain speed performance, that is, when t ⁇ T ⁇ t.
  • Pressure control shall be performed. If the speed performance is not satisfied due to threshold voltage control or due to temperature change, etc., that is, if T t or t ⁇ and elk DO D3 elk, the power supply voltage control Like to do.
  • the control switching unit 10 ensures the stability of the control system by controlling exclusively between the threshold voltage control and the power supply voltage control. Where the clock period is T, critical path delay is t, margin DO additional delay elk D-1
  • the total is t.
  • FIG. 5 is a flowchart showing the operation of the semiconductor integrated circuit device shown in FIG. As in the case shown in FIG. 2, after steps 11 and 12 are performed, it is determined in step 151 whether t ⁇ T ⁇ t is satisfied. Step 1 if you are satisfied
  • Threshold voltage control is performed at 3, after which it is determined at step 152 whether a deviation from speed performance has occurred.
  • T ⁇ t or t ⁇ T the speed elk DO D3 elk
  • step 151 Judge that a deviation from performance has occurred. If a deviation has occurred, return to step 151; if no deviation has occurred, return to step 13. If t ⁇ T ⁇ t does not hold in step 151, power supply voltage control is performed in step 14.
  • Step 151 is again executed.
  • control switching unit 10 may output the operable signal Ready.
  • Fig. 6 is a flowchart showing the operation in such a case.
  • step 153 for determining whether t ⁇ T is satisfied is provided before step 151 in the processing shown in FIG.
  • step 171 l
  • step 172 is executed.
  • step 152 I
  • Step 16 is provided to determine whether ⁇ is an appropriate value, and is an appropriate value.
  • FIG. 7 is a flowchart showing the processing when such control is performed.
  • FIG. 7 shows a circuit for determining whether the power supply voltage V is between a predetermined upper limit and a lower limit in FIG. 6 before executing step 172 and proceeding to step 151.
  • Step 19 is provided. If the power supply voltage is within the upper and lower limits in step 19, the process proceeds to step 151 as it is. Otherwise, the threshold voltage control is performed in step 131 and then the process returns to step 153.
  • power supply voltage control is simply performed rather than performing the control as described above! You can switch between / and value voltage control alternately.
  • FIG. 8 shows the overall configuration of the semiconductor integrated circuit device according to the fourth embodiment.
  • the semiconductor integrated circuit device shown in FIG. 8 is obtained by removing the switching current observation unit 1, the leakage current observation unit 2, the comparison unit 3, and the delay observation unit 5 from those shown in FIG.
  • the threshold voltage control unit 4, the power supply voltage control unit 6, and the control switching unit 10 are configured as components.
  • the threshold voltage control and the power supply voltage control are performed exclusively using the control switching unit 10.
  • FIG. 9 shows an example of the configuration of the switching current observation unit 1.
  • This switching current observing unit 1 has a precharge pMOS transistor 21 and a capacitance (C) 2 with respect to the power supply voltage V.
  • the half period of the clock signal CLK is used as the evaluation period after the capacitor C is precharged or after predischarging. Whether the potential of the capacitor C becomes V Z2 during the evaluation period after the capacitor C is precharged is checked.
  • this circuit is equivalent to a current source of C XV X f, which is Can be considered to represent the current I.
  • f is the frequency of the clock signal CLK (clock
  • the switching current observation unit may have a configuration in which a pre-discharge nMOS transistor 23 and a capacitor (C) 22 are connected in parallel.
  • the switching current observation unit has a comparison circuit with a precharge pMOS transistor 21, a capacitor (C) 22, and a reference current generation circuit 24 that generates a reference current I.
  • a pMOS transistor 21 and a capacitor 22 are connected in series with each other, and a reference current generating circuit 24 is connected in parallel with the capacitor C.
  • the comparison circuit 25 is a half value of the voltage V at the interconnection point (comparison node) between the pMOS transistor 21 and the capacitor 22 and the power supply voltage V, that is, V / 2
  • the comparison result is captured in the register 26 in synchronization with the clock signal CLK! /.
  • the value of the reference current I should be increased or decreased according to this comparison result.
  • FIG. 12 is a timing chart showing the operation of the circuit shown in FIG.
  • the period of the clock signal CLK force ow (low) is a precharge period, and the comparison node voltage V changes to the power supply voltage V.
  • Comparison with REF A A DD Z2 is performed, and the comparison result is latched in the register 26 after TZ2, that is, at the falling edge of the clock signal CLK.
  • T is the time of one cycle of the clock CLK.
  • the switching current observation unit generates a capacitance (C) 22, a pre-discharge nMOS transistor 23 connected in parallel to the capacitance C, and a reference current I.
  • the generated reference current generation circuit 24, the comparison circuit 25, and the register 26 may be configured to be powerful.
  • the reference current I generated by the reference current generation circuit 24 is a capacitor 22 and an nMOS transistor.
  • FIG. 14 is a timing chart showing the operation of the circuit shown in FIG. The period when the clock signal CLK is High is a pre-discharge period, and the comparison node voltage V changes to the ground potential GND. Pre-dishes
  • a DD Z2 Small comparison is performed, and the comparison result is latched in the register 26 after TZ2, that is, at the rising edge of the clock signal CLK.
  • the UpZDown signal goes down and the reference current I decreases.
  • the UpZDown signal goes up.
  • FIG. 15 shows still another configuration example of the switching current observation unit.
  • the circuit shown in FIG. 15 is obtained by providing two comparison circuits 25 in the circuit shown in FIG. One comparison circuit is V
  • the other comparator circuit uses V / 2 ⁇ as the reference voltage
  • V Z2 Compares ⁇ and V and generates a Down signal.
  • FIG. 16 is a timing chart showing the operation of the circuit shown in FIG. In the circuit shown in Fig. 15, a steady state (hold) can be prepared by separately generating Up and Down signals. At the falling edge of the clock signal CLK, V is V / 2
  • FIG. 18 is a timing chart showing the operation of the circuit shown in FIG. Again, the Up and Down signals are generated separately, and V is V at the rising edge of the clock signal CLK.
  • FIG. 19 shows still another configuration example of the switching current observation unit.
  • the circuit shown in Fig. 11 has two strings and uses a current mirror circuit to generate an Up signal with the reference current in one circuit as I / a and the reference in the other circuit.
  • the current is I ⁇ a and the Down signal is generated.
  • the comparison node voltage is represented by V, and the comparison node voltage in the other circuit is represented by V.
  • the nMOS transistors 241 to 243 form a current mirror, and the reference current I generated by the reference current generation circuit 24 flows through the nMOS transistor 241.
  • the nMOS transistor 242 of one circuit generates the reference current I Z and the other
  • the nMOS transistor 243 of the circuit generates a reference current I ⁇ ⁇ .
  • FIG. 20 is a timing chart showing the operation of the circuit shown in FIG. In the case shown in Fig. 19, the steady state (hold) can be prepared by generating the Up and Down signals.
  • the one shown in FIG. 21 has two sets of the circuit shown in FIG. 13 and uses a current mirror circuit to generate an Up signal with the reference current in one circuit as I / a. ,
  • the Down signal is generated with the reference current in the other circuit as I ⁇ a.
  • FIG. 22 is a timing chart showing the operation of the circuit shown in FIG. Even in the case shown in Fig. 21, it is possible to prepare a steady state (hold) by generating up and down signals.
  • the reference current generation circuit 24 includes a reference current source 41, a current mirror array 4243, current switch arrays 44 and 45, and a control logic circuit 46. Yes.
  • the total current can be controlled by the on / off control in the current switch arrays 44 and 45. Further, the current value can be set by the external setting signal 49.
  • the control logic circuit 46 includes a shift register 47. The reference logic value can be increased or decreased by shifting up 1 according to the Up / Down signal and shifting down V by 0.
  • control logic circuit 46 may include a counter 48.
  • the clock signal CLK0 that controls the register is the clock signal for the switching current observation unit 1. This is a clock signal with the same or lower frequency than the signal CLK, and is determined so as to satisfy the stability of the feedback loop.
  • FIG. 25 a plurality of unit circuits each including a precharge pMOS transistor 21, a capacitor (C) 22, a reference current generation circuit 28 that generates a reference current, a comparison circuit 25, and a register 26 are arranged. It is. In each unit circuit, the pMOS transistor is connected between the power supply voltage V and the ground potential.
  • the capacitor 21 and the capacitor 22 are connected in series, and the reference current generating circuit 28 is connected in parallel to the capacitor C.
  • the comparison circuit 25 is a half value of the voltage V at the interconnection point (comparison node) between the pMOS transistor 21 and the capacitor 22 and the power supply voltage V, ie,
  • the comparison result is captured in the register 26 in synchronization with the clock signal CLK.
  • the reference current value generated by the reference current generating circuit 28 is different for each unit circuit. In this way, a bit string corresponding to the switching current can be generated by preparing a plurality of levels of reference current.
  • each unit circuit includes a capacitor (C) 22, a pre-discharge nMOS transistor 23 connected in parallel to the capacitor C, and a reference current I.
  • the illumination current generation circuit 24, the comparison circuit 25, the register 26, and the force are also configured.
  • the reference current I generated by the reference current generation circuit 24 is the parallel of the capacitor 22 and the nMOS transistor 23.
  • FIG. 27 shows an example of the configuration of a switching current leakage current comparison semiconductor integrated circuit device according to the present invention.
  • the circuit shown in FIG. 27 includes a precharge pMOS transistor 21, a capacitor (C) 22, a leak current generation circuit 27, a comparison circuit 25, and a register 26.
  • the leak current generation circuit 27 may be a leak current observation circuit because it may be one that observes the leak current and outputs a current corresponding to the result. Between supply voltage V and ground potential
  • the comparison circuit 25 has a voltage V at the interconnection point (comparison node) between the pMOS transistor 21 and the capacitor 22 and a half value of the power supply voltage (V
  • FIGS. 28 to 37 shows a configuration example of the leakage current observation unit.
  • the circuit shown in FIG. 28 includes an off-state nMOS transistor 271 in which a gate terminal and a source terminal are connected to each other. This is the current force S leakage current I flowing through the nMOS transistor 271 in the off state.
  • the circuit shown in Fig. 29 is the same as the pMOS transistor shown in Fig. 28.
  • the layout scale in order to observe the leakage current with a small leakage current in the off state where the voltage between the gate and the source is 0, the layout scale must be increased. If this is not possible, or if the leakage current is too large, a bias can be applied between the gate and source.
  • the circuit shown in FIG. 30 uses an nMOS transistor 273 to which a bias is applied in the configuration shown in FIG.
  • the circuit shown in FIG. 31 uses a pMOS transistor 274 to which noise is applied in the configuration shown in FIG.
  • the circuit shown in FIG. 32 is obtained by adding a current mirror 275 to the circuit shown in FIG. 29 to change the direction of leakage current flow.
  • a current mirror 276 is further added to the circuit shown in FIG. 28 to change the direction of leakage current flow.
  • the circuit shown in FIG. 34 does not depend on the comparison voltage of the comparison circuit connected to this leakage current observation section by connecting the current mirrors 275 and 276 to the circuit shown in FIG. It is what I did.
  • the drain-source voltage does not depend on the comparison voltage of the comparison circuit connected to this leakage current observation unit. It is what was made.
  • the circuit shown in FIG. 36 is configured to apply the power supply voltage to the drain-source voltage by inserting a differential amplifier 277 in the current mirror 275 in the circuit shown in FIG. is there.
  • the ground potential GND is input to the other input terminal of the differential amplifier 277.
  • FIG. 38 shows another configuration example of the switching current leakage current comparison semiconductor integrated circuit device according to the present invention.
  • the circuit shown in FIG. 38 is the same as the circuit shown in FIG. 27, the capacitance (C) 22, the pre-discharge nMOS transistor 23 connected in parallel to the capacitance C, the capacitance 22 and the pre-displacement. It consists of a leakage current generation circuit 27, a comparison circuit 25, and a register 26, which are connected to a parallel connection with a charge nMOS23 transistor.
  • FIG. 39 shows still another configuration example of the switching current-leakage current comparison semiconductor integrated circuit device.
  • the circuit shown in FIG. 39 is obtained by providing two comparison circuits 25 in the circuit shown in FIG. One comparison circuit uses V Z2 + ⁇ as the reference voltage.
  • V Z2 + ⁇ and V are compared to generate an Up signal.
  • V DD / 2- ⁇ reference voltage
  • a steady state (hold) with a fixed threshold value can be prepared by generating up and down signals.
  • two comparison circuits 25 may be provided in the configuration shown in FIG.
  • FIG. 41 shows still another configuration example of the switching current-leakage current comparison semiconductor integrated circuit device.
  • the circuit shown in FIG. 41 two sets of the circuit shown in FIG. 27 are provided, and the leakage current in one circuit is reduced by using a current mirror circuit.
  • the comparison node voltage is represented by V.
  • nMOS transistors 281 to 283 are
  • the leakage current I generated by the leakage current generation circuit 27 is the leakage current I generated by the leakage current generation circuit 27 .
  • the circuit shown in FIG. 42 has two circuits shown in FIG. 38 and uses a current mirror circuit to generate an Up signal with the leakage current in one circuit as IZ ⁇ . , The leak current in the other circuit is set to I ⁇ a and the Down signal is generated
  • the pMOS transistors 284 to 286 form a current mirror!
  • the leak current observation unit shown in FIG. 43 is provided with a plurality of unit circuits each including a leak current generation circuit (leakage current generation transistor) 27 and a reference current generation circuit 28. By preparing multiple levels of reference current, it is possible to generate a bit string corresponding to the leakage current.
  • the leakage current observation unit shown in FIG. 44 is also provided with a plurality of unit circuits each including a leakage current generation circuit (leakage current generation transistor) 27 and a reference current generation circuit 28.
  • the comparison circuit when comparing currents, can be realized by connecting the comparison currents and comparing the nodes with a voltage comparison circuit.
  • the voltage comparison circuit can be realized by a differential amplifier circuit or a buffer circuit.
  • the threshold voltage control circuit can be realized by, for example, a charge pump or a regulator that controls the substrate bias potential.
  • the substrate bias potential is controlled over a range from the forward potential to the reverse potential.
  • the substrate bias potential may be controlled only in the reverse potential range or only in the forward potential range. Upper and lower limits of the substrate bias potential range may be provided.
  • the power supply voltage control circuit can be realized by, for example, a regulator that controls the power supply voltage.
  • FIG. 45 shows a configuration example of the delay observation unit and the control switching unit.
  • the circuit shown in the figure includes a critical path circuit 51, a margin delay circuit 52, a register 53, and a control circuit 54.
  • the delay circuit 52 is connected to the output of the critical path circuit 51 in four stages in series, thereby generating t 1, t 2, t 3, t 3, and t signals. Signals t, t, t, t, t are clocks
  • the control circuit 54 outputs a power supply voltage control enable signal (PSCE) and a threshold voltage control enable signal (BBCE) according to the flowchart shown in FIG. Signal and down signal are output, and the ready signal is output according to the flowchart shown in Fig. 6. Use the RESET signal to It is possible to reliably start from the pressure control mode.
  • Figure 46 shows the timing chart for BBCE output.
  • the operating current of the semiconductor integrated circuit device that is, the total current I is composed of the switching current I and the leakage current I under the condition that the operation speed is constant.
  • the operating current of the integrated circuit device is minimized.
  • FIG. 48 shows the entire configuration of a semiconductor integrated circuit device according to the fifth embodiment of the present invention.
  • This semiconductor integrated circuit device is the same as the circuit shown in FIG. 4, but the control switching unit 10 is supplied from the delay observing unit 5 to the power supply voltage control unit 6 during power supply voltage control. The difference is that the same control signal as the control signal is given to the threshold voltage control unit 4 so that the substrate voltage is controlled to compensate for the change in the threshold accompanying the change in the power supply voltage. To do.
  • the control signal from the comparison unit 3 is given to the threshold voltage control unit 4 to control the substrate voltage.
  • control signal from the comparison unit 3 and the control signal from the delay measurement unit 5 are switched and input to the threshold voltage control unit 4.
  • a switch 20 is provided for this purpose.
  • the switching switch 20 is controlled by a control switching signal SEL from the control switching unit 10 to select which control signal is selected and input to the threshold voltage control unit 4.
  • FIG. 49 shows an overall configuration of a semiconductor integrated circuit device according to the sixth embodiment of the present invention.
  • the semiconductor integrated circuit device shown in FIG. 49 is the same as that shown in FIG. 4, but a threshold value that compensates for changes in the threshold voltage V accompanying changes in the power supply voltage V during power supply voltage control.
  • the difference is that the voltage compensation unit 40 is provided.
  • the threshold voltage compensator 40 supplies the power supply voltage V.
  • the threshold voltage is changed so that the threshold value changes in response to a change in the power supply voltage V.
  • a control signal for the pressure control unit 4 is generated.
  • the control switching unit 10 controls the substrate voltage by causing the control signal from the threshold! / And the value compensation unit 40 to be supplied to the value voltage control unit 4 when the power supply voltage is controlled. Compensates for changes in threshold value with changes.
  • the control signal from the comparison unit 3 is the threshold value as in the case described above.
  • the substrate voltage is controlled.
  • the control signal from the comparison unit 3 and the control signal from the threshold voltage compensation unit 40 are switched and input to the threshold voltage control unit 4.
  • the switching switch 20 is provided to select the deviation control signal by the control switching signal SEL from the control switching unit 10 and input to the value voltage control unit 4. Get to be controlled! / Speak.
  • FIG. 50 shows an example of the configuration of the value voltage compensator 40.
  • the threshold voltage compensation unit 40 inputs the substrate voltage (n-well bias voltage) V and the power supply voltage (source voltage) V.
  • the comparison unit 61 for obtaining the voltage V of the difference between the substrate voltage and the source voltage (power supply voltage) when the power supply voltage control is switched, the holding unit 62 for holding the difference voltage V, and the output of the comparison unit 61
  • a control unit 64 for generating a signal is provided with a control switching signal SEL, and the holding unit 62 determines when the power supply voltage control is switched based on the signal SEL, and holds the output of the comparing unit 61.
  • the comparison unit 61 uses the power supply voltage V
  • AZD Analog Z Digital Converter 611 that converts DD to digital value
  • AZD Converter 612 that converts board voltage V to digital value
  • a subtractor 613 that obtains a difference between the output of the ZD conversion unit 611 and the output of the AZD conversion unit 612.
  • FIG. 51 shows another example of the configuration of the control switching unit 10 in the present invention.
  • the control switching unit 10 switches between the power supply voltage control and the threshold voltage control in the manner described in the above embodiment, and the value of the transistor substrate-source voltage V is determined.
  • FIG. 51 shows the control switching according to the voltage V between the substrate and source of the transistor in the control switching unit 10.
  • the additional part is shown.
  • the power supply voltage control enable signal PSCE and the threshold voltage control enable signal BB CE are input. These signals are, for example, the circuit shown in FIG. In this example, the control switching unit power that does not include the additional part is supplied.
  • the transistor substrate-source voltage V must be within a predetermined range.
  • the power supply voltage control is switched to threshold voltage control, or the threshold voltage control is switched to power supply voltage control.
  • the comparison unit 631, 632 that compares the upper limit value and the lower limit value of the power supply, the power supply voltage control enable signal PSCE, and the threshold voltage control enable signal BBCE are input, and the comparison results in the comparison units 631, 63 And a control unit 64 for outputting a power supply voltage control enable signal PSCE ′ or a threshold voltage control enable signal BBCE ′ according to the above.
  • the substrate voltage here is n-well bias voltage V or p-well bias voltage V.
  • FIG. 52 shows still another control switching unit in the present invention, and shows the configuration of an additional part in the control switching unit, as in the case of FIG.
  • the control switching unit 10 shown here is used when the power supply voltage V reaches a predetermined upper and lower limit during power supply voltage control.
  • threshold voltage control threshold voltage or substrate voltage operates to switch to power supply voltage control when it reaches a predetermined upper / lower limit.
  • the substrate voltage is the n-well bias voltage V or the p-well bias voltage V. like this
  • the circuit shown in FIG. 52 enables control to the optimum power supply voltage or optimum threshold voltage, which was difficult due to the dead zone in the delay observation unit 5.
  • the control switching unit 10 shown in FIG. 52 includes an upper limit data storage unit 623 and a lower limit data storage unit 624 that respectively hold an upper limit value and a lower limit value for the power supply voltage, and a power supply voltage V
  • the comparison units 633 and 634 for comparing the upper limit value and the lower limit value stored in the storage units 623 and 624, and the upper limit data storage unit 625 for holding the upper limit value and the lower limit value for the substrate voltage, respectively.
  • Signal BBCE is input and power supply voltage control enable signal PSCE 'or And a control unit 64 for outputting a negative voltage control enable signal BBCE '! /
  • FIG. 53 shows another example of the configuration of the delay measuring unit and the control switching unit in the present invention.
  • the delay circuit 52 to which the output of the critical path circuit 51 is connected, the output register 53 in which the output of the critical path circuit 51 and the output of the plurality of delay circuits 52 are connected and synchronized with the clock CLK, and the output register 53 And a control circuit for generating signals such as error, Up, Down, PSCE (and SEL), and BBCE.
  • the amount of delay is determined based on the timing relationship between the output value of each delay circuit 52 and the clock CLK.
  • this circuit sets the output of the critical path circuit 51 to D-3 '
  • the output of the circuit is D-2 ', D-l', Dl ', D2, and the output register 53 determines the delay amount from the relationship between the edge of the clock CLK and the output edge of each delay circuit.
  • This circuit for example, is the force that the edge of the clock CLK is before the edge of D-2 ', whether it is between the edge of D-1 and the edge of D1, or after the edge of D2 It is determined whether. For example, when the edge of the clock CLK is before the edge of D 2, or after the edge of D 2, the control switching unit switches to power supply voltage (V) control, and the edge of the clock CLK Is the edge of D—1, and the edge of D1
  • FIG. 54 is a truth table showing operations of the delay measuring unit and the control switching unit in the circuit shown in FIG.
  • FIG. 55 is a timing chart showing operations of the delay measuring unit and the control switching unit in the circuit shown in FIG.
  • the power supply voltage control and the threshold voltage control are switched according to the relationship between the clock cycle and the delay determined by the delay observation unit, and the power supply voltage control, threshold value control, and value control are performed.
  • the power supply voltage that minimizes power is converged to the threshold voltage.
  • Examples of utilization of the present invention include mobile devices such as mobile phones and PDAs (personal digital assistants).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

 半導体集積回路装置は、スイッチング電流を観測するスイッチング電流観測部と、リーク電流を観測するリーク電流観測部と、スイッチング電流とリーク電流とを比較する比較部と、スイッチング電流とリーク電流との比が一定値になるように、基板バイアス電圧を制御するしきい値電圧制御部と、遅延量を観測する遅延観測部と、遅延量が所定の範囲内となるように電源電圧を制御する電源電圧制御部と、を有する。半導体集積回路装置では、与えられたクロック周波数に対してリーク電流とスイッチング電流との比率が一定になるようしきい値を制御し、かつ動作速度を保証するように電源電圧を制御することにより、動作時電力の最小化を可能とする処理が行われる。

Description

明 細 書
半導体集積回路装置
技術分野
[0001] 本発明は、クロックに同期して動作する半導体集積回路装置に関し、特に、電源電 圧、クロック周波数及びしきい値のうちの少なくとも 1つを変更可能な半導体集積回 路装置に関する。
背景技術
[0002] 現在主流となって!/、る半導体集積回路装置は、 CMOS(Complementary Meal-Oxi de-Semiconductor)トランジスタを集積したものである。半導体集積回路装置では、そ れを構成するトランジスタの数の増大に伴って消費電力が増加する傾向にあり、消費 電力の削減が強く求められるようになってきている。近年の低電力 CMOSデバイス技 術の発展に伴い、半導体集積回路装置における消費電力削減のための手法として 、必要下限の電源電圧を半導体集積回路装置内の各回路ブロックに供給することに よって低消費電力化を図る電源制御方式が提案されている。例えば、 T. Kurodaらは 、半導体集積回路装置においてそのクリティカルパス遅延がクロック周期に入る下限 になるように、電源電圧を動的に制御する電源制御方式を提案している (T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe, K. Mats uda, T. Maeda, T. Sakurai, and T. Furuyama; Variaole Supply-Voltage Scheme for Low-Power High-Speed CMOS Digital Design," IEEE Journal of Solid— State し ireuit s, vol. 33, pp. 454-462, Mar. 1998)。 Kurodaらの手法が適用される半導体集積回路 装置では、しきい値電圧を制御するための参照電流を、トランジスタデバイスの目標 とするリーク電流値に固定している。このためこの半導体集積回路装置では、しきい 値電圧の最適化は行われて!/、な!/、。
[0003] 半導体装置におけるスケーリングの進展により、半導体装置の全消費電力におけ るリーク電力の割合が増加している。リーク電力とは、半導体装置内でのリーク電流 に起因して消費される電力のことである。 K. Noseらは、全体電力に占めるリーク電力 の割合を最大 30%にするのが有効であると報告している (K. Nose, and T. Sakurai; " Optimization of V and V for Low-Power and High-Speed Applications," ASP— D
DD TH
AC, pp. 469-474, Jan. 2000)。 Noseらの結果は理論解析に基づくものであり、彼らは そのような半導体集積回路装置の実現法にっ 、ては明示して!/、な!/、。
[0004] 日本国特許公開:特開 2001— 345693号公報には、予めクロック周波数と電源電 圧と基板バイアス電圧との組み合わせを示した対応表 (TBL)を用意しておき、この 対応表を参照することによってクロック周波数、電源電圧、基板バイアス電圧を制御 可能な半導体集積回路装置が開示されている。なお、特開 2001— 345693号公報 は、米国特許第 6, 774, 705号及び第 6, 943, 613号の各明細書に対応している 特許文献 1:特開 2001— 345693号公報
非特許文献 1 : T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chi ba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama; "Variable S upply— Voltage Scheme for Low-Power High-Speed CMOS Digital Design," IEEE Jou rnal of Solid- State Circuits, vol. 33, pp. 454-462, Mar. 1998.
非特許文献 2 : K. Nose, and T. Sakurai; "Optimization of VDD and VTH for Low- Po wer and High-Speed Applications," ASP— DAC, pp. 469—474, Jan. 2000.
発明の開示
発明が解決しょうとする課題
[0005] 半導体集積回路装置の消費電力を低減するためには、単に電源電圧を制御する だけでなぐしきい値電圧も制御することが重要である。上述した特開 2001— 3456 93号公報に開示のものは、電源電圧と基板バイアス電圧とを制御し、基板バイアス 電圧の制御を介してしきい値電圧を変化させるものである力 対応表を用いるため、 電源電圧と基板バイアス電圧との組合せに関するデータが事前に必要である、という 問題点を有する。半導体集積回路装置において消費電力を最小のものとするための 電源電圧及びしき 、値電圧は、半導体集積回路装置の製造プロセスにおける種々 の要因によって、半導体集積回路装置ごとに異なる。したがって、対応表のデータは 実測値に基づいて定める必要があり、大量の対応表データを用意することは、半導 体集積回路装置の製造工程を大幅に複雑化させ、デバイスの製造コストを高くする。 [0006] 本発明の目的は、対応表を用いることなぐあるいは少数の対応表データを用いて 、与えられた動作クロック周波数に対して、動作時電力の最小化を実現する電源電 圧及びしきい値電圧の最適化を実現できる半導体集積回路装置を提供することにあ る。
課題を解決するための手段
[0007] 本発明の半導体集積回路装置は、半導体集積回路装置におけるスイッチング電流 を観測するスイッチング電流観測手段と、半導体集積回路装置におけるリーク電流を 観測するリーク電流観測手段と、スイッチング電流とリーク電流とを比較する比較手 段と、スイッチング電流とリーク電流との比が一定になるように、半導体集積回路を構 成する回路素子のしきい値電圧を制御するしきい値電圧制御手段と、を有する。
[0008] この半導体集積回路装置では、与えられたクロック周波数に対して、スイッチング電 流とリーク電流の比率が一定になるように、しきい値電圧を制御することによって、動 作時電力を最小にすることが可能となる。
[0009] 本発明の別の半導体集積回路装置は、半導体集積回路装置におけるスイッチング 電流を観測するスイッチング電流観測手段と、半導体集積回路装置におけるリーク 電流を観測するリーク電流観測手段と、スイッチング電流とリーク電流とを比較する比 較手段と、スイッチング電流とリーク電流との比が一定になるように、半導体集積回路 を構成する回路素子のしきい値電圧を制御するしきい値電圧制御手段と、半導体集 積回路装置における遅延量を観測する遅延観測手段と、遅延量が所定の範囲内と なるように半導体集積回路装置の動作に用いられる電源電圧を制御する電源電圧 制御手段と、を有する。
[0010] この半導体集積回路装置では、与えられたクロック周波数に対して、スイッチング電 流とリーク電流の比率が一定になるようにしきい値電圧を制御し、かつ、動作速度を 保証するように電源電圧を制御することによって、動作速度を保証しながら動作時電 力を最小とすることが可能となる。
[0011] 本発明において、スイッチング電流観測手段、リーク電流観測手段及び遅延観測 手段は、例えば、半導体集積回路装置の本来の機能を実行するための各回路プロ ックにお 、て使用されるものと同じ構成の回路素子力もなつている。スイッチング電流 観測手段、リーク電流観測手段及び遅延観測手段は、これらの各回路ブロックと同 一の製造プロセスにより、半導体集積回路装置にお 、てこれらの回路ブロックと同時 に形成されるものであることが好ましい。このように構成することにより、本発明の半導 体集積回路装置では、スイッチング電流観測手段が観測するスイッチング電流、リー ク電流観測手段が観測するリーク電流及び遅延観測手段が観測する遅延量は、半 導体集積回路装置の製造上のばらつきを考慮しても、それぞれ、その半導体集積回 路装置の各回路ブロックにおけるスイッチング電流、リーク電流及び遅延量を代表す るちのとなる。
[0012] 本発明において、しきい値電圧制御の対象となる回路素子は、例えば、半導体集 積回路装置内の pMOSトランジスタ及び nMOSトランジスタである。半導体集積回路 装置の基板バイアス電圧を制御することによって、例えば、基板に形成された pゥェ ルに印加されるバイアス電圧 V 及 nゥヱルに印加されるバイアス電圧 V を制御す
PW NW
ることによって、これらのトランジスタのしきい値電圧を変化させることができる。これら のトランジスタがフローティングゲートトランジスタである場合には、しきい値電圧制御 手段は、それらのトランジスタのフローティングゲート電圧を変化させてもよい。また、 これらのトランジスタが複数ゲート構造トランジスタである場合には、しき 、値電圧制 御手段は、そのトランジスタにおける複数ゲートのうちのいくつかのゲートの電圧を変 化させてもよい。
[0013] また、半導体集積回路装置の電源電圧 V を制御することによって、 pMOSトラン
DD
ジスタの基板電圧とソース電圧 (V )の間の電圧差は変化する。 pMOSトランジスタ
DD
の基板電圧は、 nゥエルに印加されるノィァス電圧 V である。電源電圧を制御して
NW
基板電圧とソース電圧との間の電位差を変化させることにより、 pMOSトランジスタの しき 、値も変化させること可能である。同様に GND電源電圧を制御することによって 、 nMOSトランジスタの基板電圧とソース電圧(GND)の間の電圧差は変化する。こ こで nMOSトランジスタの基板電圧は、 pゥエルに印加されるバイアス電圧 V である
PW
。 GND電源電圧を制御することにより、 nMOSトランジスタのしきい値も変化可能で ある。
[0014] 本発明では、リーク電流とスイッチング電流との比率を一定に保つように、動的にし きい値電圧制御を行っており、これによつて、温度、電源電圧、動作周波数等の動作 環境の変化に応じて、常に動作時電力の最小化が可能な比を達成することが可能と なる。したがって本発明によれば、リーク電流とスイッチング電流との比率を一定に保 つようにすることによって、動作時の電力の最小化を達成可能な半導体集積回路装 置を提供することができる。
[0015] また上述したように動的にしきい値電圧制御を行うことの結果、プロセスばらつきや 、温度、電源電圧、等の動作環境の変化の影響を低減することが可能となる。したが つて本発明によれば、リーク電流をスイッチング電流の一定比率とすることで、製造プ 口セス、温度、電源電圧等に起因するばらつきの影響を低減可能な半導体集積回路 装置を提供することができる。
[0016] さらに本発明では、遅延観測手段と電源電圧制御手段を設け、しきい値電圧制御 手段に対して電源電圧制御手段を優先的に制御することにより、クリティカルパス遅 延が必要クロック周期よりも小さい、という動作条件を常に保っための電源電圧を供 給することが可能となる。したがって本発明によれば、回路の必要速度性能を維持す ることが可能な半導体集積回路装置を得ることができる。
図面の簡単な説明
[0017] [図 1]本発明の第 1の実施形態の半導体集積回路装置の構成を示すブロック図であ る。
[図 2]第 1の実施形態の半導体集積回路装置の動作を示すフローチャートである。
[図 3]本発明の第 2の実施形態の半導体集積回路装置の構成を示すブロック図であ る。
[図 4]本発明の第 3の実施形態の半導体集積回路装置の構成を示すブロック図であ る。
[図 5]第 3の実施形態の半導体集積回路装置の動作を示すフローチャートである。
[図 6]第 3の実施形態の半導体集積回路装置の動作の別の例を示すフローチャート である。
[図 7]第 3の実施形態の半導体集積回路装置の動作のさらに別の例を示すフローチ ヤートである。 圆 8]本発明の第 4の実施形態の半導体集積回路装置の構成を示すブロック図であ る。
[図 9]スイッチング電流観測部の一例を示す回路図である。
[図 10]スイッチング電流観測部の別の例を示す回路図である。
[図 11]スイッチング電流観測部のさらに別の例を示す回路図である。
[図 12]図 11に示したスイッチング電流観測部の動作を示すタイミングチャートである。
[図 13]スイッチング電流観測部のさらに別の例を示す回路図である。
[図 14]図 13に示したスイッチング電流観測部の動作を示すタイミングチャートである。
[図 15]スイッチング電流観測部のさらに別の例を示す回路図である。
[図 16]図 15に示したスイッチング電流観測部の動作を示すタイミングチャートである。
[図 17]スイッチング電流観測部のさらに別の例を示す回路図である。
[図 18]図 17に示したスイッチング電流観測部の動作を示すタイミングチャートである。
[図 19]スイッチング電流観測部のさらに別の例を示す回路図である。
[図 20]図 19に示したスイッチング電流観測部の動作を示すタイミングチャートである。
[図 21]スイッチング電流観測部のさらに別の例を示す回路図である。
[図 22]図 21に示したスイッチング電流観測部の動作を示すタイミングチャートである。 圆 23]参照電流生成部の一例を示す回路図である。
圆 24]参照電流生成部の制御論理回路の別の例を示す回路図である。
[図 25]スイッチング電流観測部のさらに別の例を示す回路図である。
[図 26]スイッチング電流観測部のさらに別の例を示す回路図である。
圆 27]本発明に基づくスイッチング電流 リーク電流比較半導体集積回路装置の構 成を示す回路図である。
[図 28]リーク電流観測部の一例を示す回路図である。
[図 29]リーク電流観測部の別の例を示す回路図である。
[図 30]リーク電流観測部のさらに別の例を示す回路図である。
[図 31]リーク電流観測部のさらに別の例を示す回路図である。
[図 32]リーク電流観測部のさらに別の例を示す回路図である。
[図 33]リーク電流観測部のさらに別の例を示す回路図である。 圆 34]リーク電流観測部のさらに別の例を示す回路図である。
圆 35]リーク電流観測部のさらに別の例を示す回路図である。
圆 36]リーク電流観測部のさらに別の例を示す回路図である。
圆 37]リーク電流観測部のさらに別の例を示す回路図である。
圆 38]本発明に基づくスイッチング電流 リーク電流比較半導体集積回路装置の構 成の別の例を示す回路図である。
圆 39]スイッチング電流 リーク電流比較半導体集積回路装置の構成の別の例を示 す回路図である。
圆 40]スイッチング電流 リーク電流比較半導体集積回路装置の構成の別の例を示 す回路図である。
圆 41]スイッチング電流 リーク電流比較半導体集積回路装置の構成の別の例を示 す回路図である。
圆 42]スイッチング電流 リーク電流比較半導体集積回路装置の構成の別の例を示 す回路図である。
圆 43]リーク電流観測部のさらに別の例を示す回路図である。
[図 44]リーク電流観測部のさらに別の例を示す回路図である。
圆 45]遅延観測部と制御切替部の構成を示す回路図である。
[図 46]図 45に示した回路における遅延測定部と制御切替部の動作を示すタイミング チャートである。
[図 47]動作速度一定の条件での動作時電流とその成分であるスイッチング電流とリ ーク電流との関係を示すグラフである。
圆 48]本発明の第 5の実施形態の半導体集積回路装置の構成を示すブロック図で ある。
圆 49]本発明の第 6の実施形態の半導体集積回路装置の構成を示すブロック図で ある。
[図 50]しきい値補償部の一例を示すブロック図である。
[図 51]制御切替部の追加部分の構成を示すブロック図である。
[図 52]制御切替部の追加部分の構成の別の例を示すブロック図である。 園 53]遅延測定部と制御切替部を示す回路図である。
[図 54]図 53に示した回路における遅延測定部と制御切替部の動作を示す真理値表 である。
[図 55]図 53に示した回路における遅延測定部と制御切替部の動作を示すタイミング チャートである。
符号の説明
1 スイッチング電流観測部
2 リーク電流観測部
3, 61, 63, 631-636 比較部
4 しきい値電圧制御部
5 遅延観測部
6 電源電圧制御部
8 電源線
9 基板バイアス線
10 制御切替部
20 切替スィッチ
21 プリチャージ pMOSトランジスタ
22 容量 (C)
23 プリデイスチャージ nMOSトランジスタ
24 参照電流生成回路
25 比較回路
26, 53 レジスタ(REG)
27 リーク電流生成回路
28 参照電流生成回路
40 しきい値電圧補償部
41 基準電流源
42, 276 pMOSカレン卜ミラー回路
43, 275 nMOSカレントミラー回路 44 pMOSスィッチ
45 nMOSスィッチ
46, 64 制御部
47 シフトレジスタ咅
48 カウンタ言
49 外部設定信号
51 クリティカルパス回路
52 遅延回路
54 制御回路
63 保持部
241〜243, 271, 273, 281〜283 nMOSトランジスタ
244〜246, 272, 274, 284〜286 pMOS卜ランジスタ
277 差動増幅器
611, 612 AZD (アナログ Zデジタル)コンバータ
613 減算器
621, 623, 625 上限データ保持部
622, 624, 626 下限データ保持部
発明を実施するための最良の形態
[0019] 次に、本発明の好ましい実施の形態について図面を参照して詳細に説明する。
[0020] 図 1は、本発明の第 1の実施形態による半導体集積回路装置の全体構成を示して いる。この半導体集積回路装置は、電源電圧 V が供給される電源線 8と、半導体集
DD
積回路内に基板バイアス電位 V , V を供給するための基板バイアス線 9とを備え
PW NW
たものである。ここには図示していないが、半導体集積回路装置には、この半導体集 積回路装置が本来果たすべき機能を実現する回路機能部が、例えば CMOS論理 回路として設けられている。電源線 8は、回路機能部に対し、その回路機能部が動作 するための電源電圧を供給する。回路機能部は、例えば、半導体基板に形成された pゥエル領域や nゥエル領域を備えており、これらのゥエル領域に対して、基板バイァ ス線 9によって基板バイアス電圧が与えられることになる。回路機能部には、動作用 のクロックとして、クロック信号 CLKも供給される。なお、半導体集積回路装置が複数 の回路ブロックを有するとともに回路ブロックごとに消費電力の制御が行われる場合 には、これらの各回路ブロックが回路機能部に相当する。
[0021] さらに半導体集積回路装置は、電源電圧 V およびクロック信号 CLKが供給され
DD
て、半導体集積回路装置におけるスイッチング電流を観測するスイッチング電流観測 部 1と、電源電圧 V 及び基板バイアス電位 V , V が供給されて半導体集積回路
DD PW NW
装置におけるリーク電流を観測するリーク電流観測部 2と、スイッチング電流とリーク 電流とを比較する比較部(比較回路) 3と、スイッチング電流とリーク電流との比が一 定になるように、半導体集積回路装置を構成する各 MOSトランジスタのしきい値電 圧を制御するしきい値電圧制御部 4と、電源電圧 V 及び基板バイアス電位 V , V
DD PW N
が供給されて半導体集積回路装置における遅延量を観測する遅延観測部 5と、遅
W
延量が所定の範囲内となるように半導体集積回路装置の動作に用いられる電源電 圧を制御する電源電圧制御部 6と、を備えている。しきい値電圧制御部 4は、基板バ ィァス線 9の電位を変化させることによって、しきい値電圧を制御する。電源電圧制御 部 6は、電源線 8上に供給される電源電圧 V を変化させる。なお、比較部 3にも、比
DD
較部 3内での比較動作に際して参照として用いるために、電源電圧 V が供給されて
DD
いる。
[0022] スイッチング電流観測部 1、リーク電流観測部 2及び遅延観測部 5は、いずれも回路 機能部において使用されるものと同じ構成の回路素子を備えており、回路機能部と 同一の製造プロセスにより、半導体集積回路装置において回路機能部と同時に形成 される。したがって、スイッチング電流観測部 1は、回路機能部での実際のスィッチン グ電流を測定するものではな 、が、回路機能部におけるスイッチング電流と実質的に 同じスイッチング電流を観測することができる。同様に、リーク電流観測部 2は、回路 機能部におけるリーク電流と実質的に同じリーク電流を観測し、遅延観測部 5は、回 路機能部における信号の遅延量と実質的に同じ遅延量を観測することになる。電源 線 8での電源電圧 V または基板バイアス線 9での基板バイアス電位 V , V が変
DD PW NW
化したり、あるいはクロック信号 CLKの周波数が変化すれば、回路機能部におけるス イッチング電流、リーク電流、遅延量も変化するが、これらの変化に対応して、スイツ チング電流観測部 1が観測するスイッチング電流、リーク電流観測部 2が観測するリ ーク電流及び遅延観測部 5が観測する遅延量も変化する。
[0023] この半導体集積回路装置では、比較部 3にお 、て、スイッチング電流観測部 1及び リーク電流観測部 2の観測結果の比が所定の値であるかどうか比較が行われ、しき ヽ 値電圧制御部 4は、スイッチング電流とリーク電流とが一定比になるように、しきい値 電圧 (すなわち基板バイアス電位)を制御する。そして、遅延観測部 5は、クリティカル パス遅延が動作クロック周期内に収まるかどうかを観測し、その観測結果に応じて、 電源電圧制御部 6は、クリティカルパス遅延が動作クロック周期より小さくなり、かつ電 源電圧 V ができるだけ低くなるように、電源線 8上の電源電圧 V を制御する。
DD DD
[0024] 次に、図 2のフローチャートを用いて、この半導体集積回路装置の動作にっ 、て説 明する。図 2は、動作クロックに応じた電源電圧 V としきい値電圧 Vの制御手順を示
DD t
す。
[0025] まず、ステップ 11にお 、て、電源電圧 V としき 、値 Vを初期値に設定する。初期
DD t
値としては、標準的な値、または、正常動作が保証される値、または、最大電源電圧 と最小しきい値電圧が用いられる。また、ステップ 12において、遅延観測部 5にクロッ ク信号 CLKを入力する。そして、ステップ 15において、遅延観測部 5は、遅延量が適 切かどうか、すなわち、クリティカルパス遅延がクロック周期よりも小さいかどうかを判 定する。なお、クリティカルパス遅延がクロック周期よりも小さければ、制御対象回路 は、動作可能状態であり、動作を開始できる。
[0026] ステップ 15において遅延量が適切でない場合には、ステップ 14に移行し、電源電 圧制御部 6は、そのときのしき ヽ値電圧のトランジスタに対してクリティカルパス遅延が クロック周期よりも小さい下限となるように、電源電圧 V を制御し、ステップ 15に戻る
DD
。一方、ステップ 15において遅延量が適切である場合には、ステップ 16において、そ の動作周波数及び電源電圧に関して、比較部 3が、リーク電流 I とスイッチング電
LEAK
流 I I ZI
SWとの比 LEAK SWが所定の比率すなわち目標値になっているかを判定する。ここ で一定の比率になっていれば、処理を終了し、そうでなければ、ステップ 13に移行し て、リーク電流とスイッチング電流の比がそのときの目標値となるように、しきい値電圧 制御部 4は、しきい値電圧 Vを制御する。 I /\ がそのときの動作周波数や電源 t LEAK SW 電圧によって決まる一定の値になっていれば、この半導体集積回路装置は、低電力 動作が可能な状態になる。ステップ 13を実行した後は、ステップ 14に移行する。
[0027] ところで、同期回路では速度保証が必須であり、しきい値電圧制御が行われた場合 には、必ず、クリティカルパス遅延がクロック周期よりも小さいことを満足する必要があ る。そこでステップ 13を実行した後は、ステップ 14に移行する。また、動作クロック周 波数が変化する場合、特に、周波数が高くなる場合には、いったん、制御対象回路 の動作を停止し、クリティカルパス遅延がクロック周期よりも小さくてその半導体集積 回路装置が動作可能状態にあることを確認後、動作を再開することが好ましい。
[0028] なお本実施形態において、半導体集積回路装置を構成するトランジスタがフローテ イングゲートトランジスタである場合には、しきい値電圧制御部 4は、そのフローテイン グゲートトランジスタのフローティングゲート電圧を変化させることによってしきい値を 変化させてもよい。また、半導体集積回路装置を構成するトランジスタが複数ゲート 構造トランジスタである場合には、しきい値電圧制御部 4は、そのトランジスタにおける 複数ゲートのうちの 1またはいくつかのゲートの電圧を変化させることによってしきい 値を変化させてもよい。
[0029] 次に、本発明の第 2の実施形態について説明する。図 3は、第 2の実施形態による 半導体集積回路装置の全体構成を示している。図 3に示す半導体集積回路装置は 、図 1に示したものから、遅延観測部 5及び電源電圧制御部 6を取り除いた構成のも のである。この半導体集積回路装置では、電源電圧 V はクロック信号 CLK (周波数
DD
f)とともに与えられる。スイッチング電流観測部 1及びリーク電流観測部 2での観測結 果に基づき、比較部 3は、スイッチング電流とリーク電流との比が所定の値になってい るかどうかの比較を行い、しきい値電圧制御部 4は、リーク電流とスイッチング電流と の比が所定値になるよう、しきい値電圧を制御する。
[0030] 次に、本発明の第 3の実施形態について説明する。図 4は、第 3の実施形態による 半導体集積回路装置の全体構成を示して 、る。図 1に示した第 1の実施形態の半導 体集積回路装置においては、しきい値電圧制御部 4と電源電圧制御部 6とは独立に 動作を制御可能であつたが、第 3の実施形態の半導体集積回路装置では、制御切 替部 10を設け、この制御切替部 10によって、電源電圧制御としきい値電圧制御との どちらを優先させるかを切り替えるようにしている。ここでは、動作速度についてある 速度性能を満足する場合、すなわち t <T <t を満たす場合のみに、しきい値電
Dl elk D2
圧制御を行うものとする。しきい値電圧制御を行ったために、あるいは、温度変化など のために、その速度性能を満たさなくなった場合、すなわち T く t または t <τ と elk DO D3 elk なった場合には、電源電圧制御を行うようにしている。制御切替部 10で、しきい値電 圧制御と電源電圧制御との間で排他的に制御をすることで、制御系の安定性を確保 する。ここで、クロック周期は T 、クリティカルパス遅延が t 、マージン DO追加遅延 elk D-1
力 ^ 、マージン Dl追加遅延が t 、マージン D2追加遅延が t 、マージン D3追加遅
DO Dl D2
延が t である。
D3
[0031] 図 5は、図 4に示す半導体集積回路装置の動作を示すフローチャートである。図 2 に示したものと場合と同様にステップ 11、 12が実施された後、ステップ 151において 、 t <T <t を満足しているかどうかが判定される。満足する場合には、ステップ 1
Dl elk D2
3においてしきい値電圧制御が行われ、その後、ステップ 152において、速度性能か らの逸脱が起きたかどうかが判定される。ここで T <t または t <T であれば、速 elk DO D3 elk
度性能からの逸脱が起きたと判断する。逸脱が起きた場合にはステップ 151に戻り、 逸脱が起きていない場合には、ステップ 13に戻ればよい。また、ステップ 151におい て、 t <T <t が成立しない場合には、ステップ 14において、電源電圧制御が行
Dl elk D2
われ、再び、ステップ 151が実行される。
[0032] この第 3の実施形態においては、クリティカルパス遅延がクロック周期よりも小さい条 件 (t <T )のときに、制御切替部 10は、動作可能信号 Readyを出力してもよい。
D-1 elk
スイッチング電流 (I )
SWとリーク電流 (I )
し EAKとの比 I
し EAK Zi SWが適切な場合には、制御 切替部 10は、高電力効率信号 ECOを出力してもよい。図 6は、そのような場合の動 作を示すフローチャートである。ここに示した処理では、図 5に示したものにおいて、 ステップ 151の前に、 t <T を満たしているかどうかを判定するステップ 153が設け
D-1 elk
られており、 t <T を満たしている場合にはステップ 171において Ready= lとして
D-1 elk
力もステップ 151が実行され、 t <T を満たしていない場合にはステップ 172にお
D-1 elk
いて Ready=0としてからステップ 151が実行される。さらに、ステップ 152の前に、 I
LE
Λ が適切な値力どうかを判定するステップ 16が設けられており、適切な値である
AK SW 場合にはステップ 181において ECO= lとして力もステップ 152が実行され、適切な 値でない場合にはステップ 182において ECO = 0として力もステップ 152が実行され る。
[0033] さらに、電源電圧制御時に、電源電圧の制御限界 (上限または下限)に達した場合 、速度優先であれば、しきい値電圧制御に切り替えて、必要速度性能を実現するよう にしてもよい。図 7は、このような制御を行う場合の処理を示すフローチャートである。 図 7に示したものは、図 6に示したものにおいて、ステップ 172を実行しステップ 151 に移行する前に、電源電圧 V が所定の上限と下限の間にあるかどうかを判定するス
DD
テツプ 19を設けたものである。ステップ 19において電源電圧が上下限の範囲内にあ るときはそのままステップ 151に移行し、そうでない場合には、ステップ 131において しきい値電圧制御を行った後、ステップ 153に戻る。
[0034] 第 3の実施形態においては、上述のような制御を行うのではなぐ単純に、電源電 圧制御としき!/、値電圧制御とを交互に切り替えてもよ ヽ。
[0035] 次に、本発明の第 4の実施形態について説明する。図 8は、第 4の実施形態による 半導体集積回路装置の全体構成を示している。図 8に示す半導体集積回路装置は 、図 4に示したものから、スイッチング電流観測部 1、リーク電流観測部 2、比較部 3及 び遅延観測部 5を取り除 、たものであって、主要構成部としてのしき ヽ値電圧制御部 4、電源電圧制御部 6及び制御切替部 10から構成されている。この半導体集積回路 装置では、制御系の安定性を保証するために、しきい値電圧制御と電源電圧制御を 、制御切替部 10を用いて、排他的に行っている。
[0036] 以下、上述した各実施形態の半導体集積回路装置の細部の構成について説明す る。
[0037] 図 9は、スイッチング電流観測部 1の構成の一例を示して 、る。このスイッチング電 流観測部 1は、電源電圧 V に対してプリチャージ pMOSトランジスタ 21と容量 (C) 2
DD
2とを直列に接続したものである。容量 Cのプリチャージ後あるいはプリディスチヤー ジ後の評価期間として、クロック信号 CLKの半周期の期間を用いるものとする。容量 Cのプリチャージ後の評価期間において容量 Cの電位が V Z2になるかどうかを検
DD
出する場合、この回路は、 C XV X fの電流源と等価となり、この電流源は、スィッチ ング電流 I を表わすものとみなすことができる。 fはクロック信号 CLKの周波数 (クロッ
SW
ク周波数)である。容量 cのプリディスチャージ後の評価期間で容量 cの電位が V
DD
Z2になるかどうかを検出するのであれば、図 10に示す通り、スイッチング電流観測 部を、プリディスチャージ nMOSトランジスタ 23と容量 (C) 22とを並列に接続した構 成としてもよい。
[0038] 別の例として、図 11に示す通り、スイッチング電流観測部は、プリチャージ pMOSト ランジスタ 21と容量 (C) 22と参照電流 I を発生する参照電流生成回路 24と比較回
EF
路 25とレジスタ (REG) 26とから構成される。この回路では、電源電圧 V と接地電位
DD
との間に pMOSトランジスタ 21及び容量 22が直列に接続され、容量 Cに対して参照 電流生成回路 24が並列に接続されている。比較回路 25は、 pMOSトランジスタ 21と 容量 22の相互接続点(比較ノード)の電圧 Vと電源電圧 V の半値すなわち V /2
A DD DD
とを比較する。比較結果は、クロック信号 CLKに同期してレジスタ 26に取り込まれる ようになって!/、る。また、この比較結果に応じて、参照電流 I の値が増減するように
EF
なっている。
[0039] 図 12は、図 11に示す回路の動作を示すタイミングチャートである。
[0040] クロック信号 CLK力 ow (ロー)の期間はプリチャージ期間であり、比較ノード電圧 Vは電源電圧 V に変化する。プリチャージ後の評価期間では、容量 Cと参照電流 I
A DD
に応じて、比較ノード電圧 Vは低下する。比較回路 25において Vと V
REF A A DD Z2との 大小比較が行なわれ、 TZ2後に、すなわちクロック信号 CLKの立ち下がりエッジに おいて、レジスタ 26に比較結果がラッチされる。 Tはクロック CLKの 1周期の時間であ る。レジスタデータが High (ハイ)の場合、 UpZDown (アップ Zダウン)信号が Up ( アップ)となって参照電流 I が増加し、レジスタデータ力 owの場合、 UpZDown
REF
信号が Down (ダウン)となって参照電流 I は減少する。ここではクロックごとにフィー
EF
ドバックループが回っている力 回路の応答速度、特に、参照電流生成回路 24の応 答が遅い場合には、安定動作を保っために、 UpZDown制御信号の取り込みを間 引く必要がある。
[0041] 同様に、図 13に示す通り、スイッチング電流観測部は、容量 (C) 22と、容量 Cに対 して並列に接続されたプリディスチャージ nMOSトランジスタ 23と、参照電流 I を発
REF 生する参照電流生成回路 24と、比較回路 25と、レジスタ 26と、力もなる構成であって もよ 、。参照電流生成回路 24が発生する参照電流 I は、容量 22と nMOSトランジ
REF
スタ 23との並列接続体に対して供給される。図 14は、図 13に示す回路の動作を示 すタイミングチャートである。クロック信号 CLKが High (ハイ)の期間はプリデイスチヤ ージ期間であり、比較ノード電圧 Vは接地電位 GNDに変化する。プリディスチヤー
A
ジ後の評価期間では、容量 Cと参照電流 I に応じて、比較ノード電圧 Vは上昇する
REF A
。比較回路 25において Vと V との大
A DD Z2 小比較が行われ、 TZ2後に、すなわちク ロック信号 CLKの立ち上がりエッジにおいて、レジスタ 26に比較結果力ラッチされる 。レジスタデータが Highの場合、 UpZDown (アップ Zダウン)信号が Downとなつ て参照電流 I が減少し、レジスタデータが Lowの場合、 UpZDown信号が Upとな
REF
つて参照電流 I は上昇する。図 12の場合と同様に、回路の応答速度、特に、参照
REF
電流生成回路 24の応答が遅い場合には、安定動作を保っために、 UpZDown制 御信号の取り込みを間引く必要がある。
[0042] 図 15は、スイッチング電流観測部のさらに別の構成例を示している。図 15に示した 回路は、図 11に示した回路において、比較回路 25を 2つ設けるようにしたものである 。一方の比較回路は、 V
DD Z2+ Δを参照電圧として、 V
DD Z2+ Δと Vとを比較し、
A
Up (アップ)の信号を生成する。他方の比較回路は、 V /2- Δを参照電圧として、
DD
V Z2— Δと Vとを比較し、 Down (ダウン)の信号を生成する。
DD A
[0043] 図 16は、図 15に示す回路の動作を示すタイミングチャートである。図 15に示す回 路では、 Upと Downのそれぞれの信号を別個に生成することで、定常 (ホールド)状 態(hold)を用意できる。クロック信号 CLKの立ち下がりエッジにおいて Vが V /2
A DD
Δと V 、定常状態とされる。
DD Ζ2— Δの間にあるときは
[0044] 同様に、図 17に示す通り、図 13に示す構成において、 2つの比較回路 25を設ける ようにしてもよい。図 18は、図 17に示す回路の動作を示すタイミングチャートである。 ここでも Upと Downのそれぞれの信号が別個に生成されており、クロック信号 CLKの 立ち上がりエッジにおいて Vが V
A DD Z2— Δと V
DD Z2— Δの間にあるときは、定常状 態 (hold)とされる。
[0045] 図 19は、スイッチング電流観測部のさらに別の構成例を示している。図 19に示した 回路は、図 11に示した回路を 2糸且設け、カレントミラー回路を用いることによって、一 方の回路での参照電流を I / aとして Up信号を生成させ、他方の回路での参照
REF
電流を I · aとして Down信号を生成させるようにしたものである。一方の回路での
REF
比較ノード電圧は Vで表わされ、他方の回路での比較ノード電圧は Vで表わされて
A B
いる。ここで nMOSトランジスタ 241〜243はカレントミラーを構成しており、参照電流 発生回路 24によって発生した参照電流 I は nMOSトランジスタ 241を流れ、これに
REF
よって、一方の回路の nMOSトランジスタ 242は参照電流 I Z を発生し、他方の
EF
回路の nMOSトランジスタ 243は参照電流 I · αを発生する。
REF
[0046] 図 20は、図 19に示す回路の動作を示すタイミングチャートである。図 19に示したも のにおいても Upと Downそれぞれの信号を生成することで、定常状態 (hold)を用意 できる。
[0047] 同様に、図 21に示したものは、図 13に示した回路を 2組設け、カレントミラー回路を 用いることによって、一方の回路での参照電流を I / aとして Up信号を生成させ、
EF
他方の回路での参照電流を I · aとして Down信号を生成させるようにしたものであ
REF
る。ここで pMOSトランジスタ 244〜246はカレントミラーを構成している。また、図 22 は、図 21に示した回路の動作を示すタイミングチャートである。図 21に示したものに お!、ても Upと Downそれぞれの信号を生成することで、定常状態 (hold)を用意でき る。
[0048] ここで、上述した各スイッチング電流観測部で使用される参照電流発生回路 24の 構成例を説明する。
[0049] 図 23に示したように参照電流生成回路 24は、基準電流源 41と、カレントミラーァレ ィ 4243と、電流スィッチアレイ 44, 45と、制御論理回路 46と、力ら構成されている。 電流スィッチアレイ 44, 45におけるオンオフ制御により、合計電流を制御可能である 。また、外部設定信号 49により、電流値を設定することも可能である。制御論理回路 46は、シフトレジスタ 47を含み、 Up/Down信号に応じて 1をシフトアップさせ、ある Vヽは 0をシフトダウンさせて参照電流値を増減可能である。
[0050] 同様に、図 24に示す通り、制御論理回路 46は、カウンタ 48を含む構成でも構わな い。レジスタを制御するクロック信号 CLK0は、スイッチング電流観測部 1のクロック信 号 CLKと同じかそれよりも周波数の低いクロック信号であり、フィードバックループの 安定性を満足するように決定される。
[0051] さらに、スイッチング電流観測部 1の別の構成例を説明する。図 25に示したものは、 プリチャージ pMOSトランジスタ 21と容量 (C) 22と参照電流を発生する参照電流生 成回路 28と比較回路 25とレジスタ 26とから構成される単位回路を複数個配置したも のである。各単位回路において、電源電圧 V と接地電位との間に pMOSトランジス
DD
タ 21及び容量 22が直列に接続され、容量 Cに対して参照電流生成回路 28が並列 に接続されている。比較回路 25は、 pMOSトランジスタ 21と容量 22の相互接続点( 比較ノード)の電圧 Vと電源電圧 V の半値すなわち V
A DD DD Z2とを比較する。比較結 果は、クロック信号 CLKに同期してレジスタ 26に取り込まれるようになつている。単位 回路ごとに、参照電流発生回路 28が発生する参照電流値が異なるようになつている 。このように、参照電流を複数レベル用意することによりスイッチング電流に応じたビッ ト列を生成可能である。
[0052] 同様に図 26に示したものは、各単位回路を、容量 (C) 22と、容量 Cに対して並列 に接続されたプリディスチャージ nMOSトランジスタ 23と、参照電流 I を発生する参
REF
照電流生成回路 24と、比較回路 25と、レジスタ 26と、力も構成したものである。参照 電流生成回路 24が発生する参照電流 I は、容量 22と nMOSトランジスタ 23との並
EF
列接続体に対して供給される。
[0053] 図 27は、本発明に基づくスイッチング電流 リーク電流比較半導体集積回路装置 の構成の一例を示している。図 27に示す回路は、プリチャージ pMOSトランジスタ 21 と容量 (C) 22とリーク電流生成回路 27と比較回路 25とレジスタ 26からなる。リーク電 流生成回路 27は、リーク電流を観測してその結果に応じた電流を出力するものであ つてもよいから、リーク電流観測回路であってもよい。電源電圧 V と接地電位との間
DD
に pMOSトランジスタ 21及び容量 22が直列に接続され、容量 Cに対してリーク電流 生成回路 27が並列に接続されている。比較回路 25は、 pMOSトランジスタ 21と容量 22の相互接続点 (比較ノード)の電圧 Vと電源電圧の半値 (V
A DD Z2)とを比較する。 比較結果は、クロック信号 CLKに同期してレジスタ 26に取り込まれるようになつてい る。 [0054] 次に、本発明におけるリーク電流観測部の構成について説明する。図 28〜図 37は 、いずれも、リーク電流観測部の構成例を示している。
[0055] 図 28に示す回路は、ゲート端子とソース端子とを相互に接続したオフ状態の nMO Sトランジスタ 271からなつている。オフ状態の nMOSトランジスタ 271を流れる電流 力 Sリーク電流 I である。図 29に示す回路は、図 28に示した回路を pMOSトランジ
LEAK
スタ 272で構成したものである。
[0056] ここで、リーク電流観測部を構成する MOSトランジスタにおいて、ゲート ソース間 の電圧が 0のオフ状態ではリーク電流が小さぐリーク電流を観測するためにはレイァ ゥト規模が大きくしなければならない場合や、逆にリーク電流が大きすぎる場合には、 ゲート一ソース間にバイアスを与えることも可能である。図 30に示す回路は、図 28に 示す構成にぉ 、て、バイアスが印加された nMOSトランジスタ 273を用いるようにした ものである。同様に図 31に示す回路は、図 29に示す構成において、ノ ィァスが印加 された pMOSトランジスタ 274を用いるようにしたものである。
[0057] 図 32に示す回路は、図 29に示す回路にさらにカレントミラー 275を付加し、リーク 電流の流れる方向を変えたものである。同様に図 33に示す回路は、図 28に示す回 路にさらにカレントミラー 276を付加し、リーク電流の流れる方向を変えたものである。
[0058] 図 34に示す回路は、図 28に示す回路にカレントミラー 275, 276を接続することに よって、ドレイン ソース間電圧力 このリーク電流観測部に接続する比較回路の比 較電圧に依存しないようにしたものである。同様に図 35に示す回路は、図 29に示す 回路にカレントミラー 275, 276を接続することによって、ドレイン一ソース間電圧が、 このリーク電流観測部に接続する比較回路の比較電圧に依存しないようにしたもの である。
[0059] 図 36に示す回路は、図 32に示す回路において、カレントミラー 275内に差動増幅 器 277を挿入することによって、ドレイン一ソース間電圧に電源電圧を印加するように 構成したものである。差動増幅器 277の他の入力端子には接地電位 GNDが入力し ている。同様に、図 37に示す回路は、図 33に示す回路において、カレントミラー 276 内に差動増幅器 277を挿入することによって、ドレイン一ソース間電圧に電源電圧 V
D
を印加するように構成したものである。差動増幅器 277の他の入力端子には電源電 圧 V が入力している。
DD
[0060] 図 38は、本発明に基づくスイッチング電流 リーク電流比較半導体集積回路装置 の他の構成例を示している。図 38を示す回路は、図 27に示す回路と同様のものであ る力 容量 (C) 22と、容量 Cに対して並列に接続されたプリディスチャージ nMOSトラ ンジスタ 23と、容量 22とプリデイスチャージ nMOS23トランジスタとの並列接続体に 対して接続するリーク電流生成回路 27と、比較回路 25と、レジスタ 26とからなってい る。
[0061] 図 39は、スイッチング電流—リーク電流比較半導体集積回路装置のさらに別の構 成例を示している。図 39に示す回路は、図 27に示した回路において、比較回路 25 を 2つ設けるようにしたものである。一方の比較回路は、 V Z2+ Δを参照電圧とし
DD
て、 V Z2+ Δと Vとを比較し、 Up (アップ)の信号を生成する。他方の比較回路は
DD A
、 V
DD /2- Δを参照電圧として、 V
DD Z2— Δと Vとを比較し、 Down (ダウン)の信
A
号を生成する。この回路では、 Upと Downのそれぞれの信号を生成することで、しき い値固定の定常状態 (hold)を用意できる。同様に、図 40に示す通り、図 38に示す 構成にお 、て、 2つの比較回路 25を設けるようにしてもょ 、。
[0062] 図 41は、スイッチング電流—リーク電流比較半導体集積回路装置のさらに別の構 成例を示している。図 41に示した回路は、図 27に示した回路を 2組設け、カレントミラ 一回路を用いることによって、一方の回路でのリーク電流を I
LEAK Ζ αとして Up信号を 生成させ、他方の回路でのリーク電流を I · aとして Down信号を生成させるように
LEAK
したものである。一方の回路での比較ノード電圧は Vで表わされ、他方の回路での
A
比較ノード電圧は Vで表わされている。ここで nMOSトランジスタ 281〜283はカレ
B
ントミラーを構成しており、リーク電流発生回路 27によって発生したリーク電流 I は
LEAK
nMOSトランジスタ 281を流れ、これによつて、一方の回路の nMOSトランジスタ 282 はリーク電流 I Z を発生し、他方の回路の nMOSトランジスタ 283はリーク電流 I
LEAK
• αを発生する。この回路でも、 Upと Downそれぞれの信号を個別に生成するこ し EAK
とで、しきい値固定の定常状態を用意できる。
[0063] 同様に、図 42に示したものは、図 38に示した回路を 2組設け、カレントミラー回路を 用いることによって、一方の回路でのリーク電流を I Z αとして Up信号を生成させ 、他方の回路でのリーク電流を I · aとして Down信号を生成させるようにしたもの
LEAK
である。ここで pMOSトランジスタ 284〜286はカレントミラーを構成して!/、る。
[0064] 図 43に示したリーク電流観測部は、リーク電流生成回路(リーク電流生成トランジス タ) 27と参照電流生成回路 28とからなる単位回路を複数個設けたものである。参照 電流を複数レベル用意することにより、リーク電流に応じたビット列を生成可能である 。同様に図 44に示したリーク電流観測部も、リーク電流生成回路 (リーク電流生成トラ ンジスタ) 27と参照電流生成回路 28とからなる単位回路を複数個設けたものである。
[0065] 上述した各実施形態において、比較回路は、例えば、電流の比較を行う場合には 、比較電流を結線し、そのノードを電圧比較回路で比較することで実現可能である。 電圧比較回路は、差動増幅回路やバッファ回路によって実現可能である。
[0066] しきい値電圧制御回路は、例えば、基板バイアス電位を制御するチャージポンプや レギユレータによって実現可能である。基板バイアス電位は、順方向電位から逆方向 電位までの範囲にわたって制御される。逆方向電位の範囲だけ、または順方向電位 の範囲だけで基板バイアス電位を制御しても構わな ヽ。基板バイアス電位範囲の上 限、下限を設けてもよい。
[0067] 電源電圧制御回路は、例えば、電源電圧を制御するレギユレータによって実現可 能である。
[0068] これら、比較回路、しきい値電圧制御回路、電源電圧制御回路の構成は当業者に は周知のものであるから、その説明を割愛する。
[0069] 図 45は、遅延観測部と制御切替部の構成例を示している。図示される回路は、タリ ティカルパス回路 51とマージン用遅延回路 52とレジスタ 53と制御回路 54からなつて いる。遅延回路 52はクリティカルパス回路 51の出力に 4段直列に接続し、これによつ て、 t , t , t , t , t の各信号が生成する。信号 t , t , t , t , t は、クロック
D-l DO Dl D2 D3 D- 1 DO Dl D2 D3
CLKに同期してレジスタ 53に取り込まれ、制御回路 54に出力する。制御回路 54は 、図 5に示したフローチャートにしたがって、電源電圧制御イネ一ブル信号 (PSCE) としき ヽ値電圧制御イネ一ブル信号 (BBCE)を出力するとともに、電源電圧を増減 するための up信号及び down信号を出力し、図 6に示したフローチャートにしたがつ て、動作可能信号 (Ready)を出力する。 RESET (リセット)信号を用いれば、電源電 圧制御モードから確実に開始できる。 BBCE出力に関するタイミングチャートを図 46 に示す。
[0070] 図 47に示す通り、動作速度一定の条件において、半導体集積回路装置の動作時 電流すなわち全電流 I は、スイッチング電流 I とリーク電流 I を成分としている
TOTAL SW LEAK
。そして、ある電源電圧 V 及びそれに対応するしきい値電圧 V において、半導体
DD TH
集積回路装置の動作時電流が最小となる。
[0071] 本発明のさらに別の実施形態の半導体集積回路について説明する。図 48は、本 発明の第 5の実施形態の半導体集積回路装置の全体構成を示している。この半導 体集積回路装置は、図 4に示した回路と同様のものであるが、電源電圧制御の際に 、制御切替部 10が、遅延観測部 5から電源電圧制御部 6へ供給される制御信号と同 じ制御信号がしきい値電圧制御部 4にも与えられるようにすることによって基板電圧を 制御し、電源電圧の変化に伴うしきい値の変化を補償するようにした点で相違する。 しきい値電圧制御の際は、上述した場合と同様に、比較部 3からの制御信号がしきい 値電圧制御部 4に与えられて、基板電圧が制御される。このような基板電圧の制御を 可能にするため、この半導体集積回路装置では、比較部 3からの制御信号と遅延観 測部 5からの制御信号とを切り替えてしきい値電圧制御部 4に入力するための切替ス イッチ 20が設けられている。切替スィッチ 20は、制御切替部 10からの制御切替信号 SELによって、いずれの制御信号を選択してしきい値電圧制御部 4に入力するかを 制御されるようになっている。
[0072] 図 49は、本発明の第 6の実施形態の半導体集積回路装置の全体構成を示してい る。図 49に示す半導体集積回路装置は、図 4に示すものと同様のものであるが、電 源電圧制御時に電源電圧 V の変化に伴うしきい値 V の変化を補償するしきい値
DD TH
電圧補償部 40を有する点で相違する。しきい値電圧補償部 40は、電源電圧 V を
DD
入力として、電源電圧 V の変化に対応してしきい値を変化させるように、しきい値電
DD
圧制御部 4に対する制御信号を生成する。制御切替部 10は、電源電圧制御の際に 、しき!/、値補償部 40からの制御信号がしき 、値電圧制御部 4に与えられるようにする ことによって基板電圧を制御し、電源電圧の変化に伴うしきい値の変化を補償する。 しきい値電圧制御の際は、上述した場合と同様に、比較部 3からの制御信号がしきい 値電圧制御部 4に与えられて、基板電圧が制御される。このような基板電圧の制御を 可能にするためこの半導体集積回路装置では、比較部 3からの制御信号としきい値 電圧補償部 40からの制御信号とを切り替えてしきい値電圧制御部 4に入力するため の切替スィッチ 20が設けられており、この切替スィッチ 20は、制御切替部 10からの 制御切替信号 SELによって、 、ずれの制御信号を選択してしき!/、値電圧制御部 4に 入力するかを制御されるようになって!/ヽる。
[0073] 図 50は、しき 、値電圧補償部 40の構成の一例を示して 、る。しき 、値電圧補償部 40は、基板電圧(nゥエルのバイアス電圧) V と電源電圧(ソース電圧) V とを入力
NW DD
として、電源電圧制御切り替わり時の基板電圧とソース電圧 (電源電圧)との差の電 圧 V を求める比較部 61と、差の電圧 V を保持する保持部 62と、比較部 61の出力
BS BS
と保持部 62に保持されている値とを比較することにより、電源電圧制御の切り替わり の前後での電圧 V を比較する比較部 63と、比較部 63での比較結果に応じて、基板
BS
電圧(nゥエルのバイアス電圧 V )を増減させるための、 Upまたは Downの制御信
NW
号を生成する制御部 64と、を有する。ここで保持部 62には、制御切替信号 SELが与 えられており、保持部 62はこの信号 SELに基づいて電源電圧制御の切り替わり時を 判別し、比較部 61の出力を保持する。
[0074] 比較部 61は、電源電圧 V
DDをデジタル値に変換する AZD (アナログ Zデジタル) コンバータ 611と、基板電圧 V をデジタル値に変換する AZDコンバータ 612と、 A
NW
ZD変換部 611の出力と AZD変換部 612の出力との差を求める減算器 613と、を 備えている。
[0075] 図 51は、本発明における制御切替部 10の構成の別の例を示している。ここでは、 制御切替部 10は、上述の実施形態で述べたような態様で電源電圧制御としき!/ヽ値 電圧制御の切り替えを行うとともに、トランジスタの基板—ソース間電圧 V の値が所
BS
定の範囲内にあるかどうかによっても制御の切り替えを実行する。したがって、図 51 は、制御切替部 10のうち、トランジスタの基板 ソース間電圧 V に応じた制御の切り
BS
替えを実行する部分、すなわち追加部分のみを示している。図示される回路部分に は、電源電圧制御イネ一ブル信号 PSCE及びしき 、値電圧制御イネ一ブル信号 BB CEが入力する力 これらの信号は、例えば、図 45に示した回路、すなわちここで示 す例での追加部分を含まない制御切替部力 供給される。
[0076] 図 51に示す回路は、トランジスタの基板—ソース間電圧 V が所定の範囲限界すな
BS
わち上限または下限に到達すると、電源電圧制御をしきい値電圧制御に、または、し きい値電圧制御を電源電圧制御に切り替えて、 V
BSが所定の範囲内に収まるように制 御する。具体的には、電源電圧 V (あるいは GND電源電圧)と基板電圧が入力し
DD
て電圧 V を求める比較部 61と、 V の許容される上限値を格納する上限データ格納
BS BS
部 621と、 V の許容される下限値を格納する下限データ格納部 622と、 V とこれら
BS BS
の上限値及び下限値とを比較する比較部 631, 632と、電源電圧制御ィネーブル信 号 PSCE及びしきい値電圧制御イネ一ブル信号 BBCEとが入力し、比較部 631, 63 2での比較結果に応じて電源電圧制御イネ一ブル信号 PSCE'またはしき 、値電圧 制御イネ一ブル信号 BBCE'を出力する制御部 64と、を備えている。ここでの基板電 圧は、 nゥエルのバイアス電圧 V または pゥエルのバイアス電圧 V である。
■ PW
[0077] 図 52は、本発明におけるさらに別の制御切替部を示すものであって、図 51の場合 と同様に、制御切替部における追加部分の構成を示している。ここで示す制御切替 部 10は、電源電圧制御の際に電源電圧 V が所定の上下限に到達した場合にしき
DD
V、値電圧制御へ切り替え、しき ヽ値電圧制御の際にしき!ヽ値電圧または基板電圧が 所定の上下限に到達した場合に電源電圧制御へ切り替えるように動作する。基板電 圧は、 nゥエルのバイアス電圧 V または pゥエルのバイアス電圧 V である。このよう
■ PW
な動作を行うことによって、図 52に示す回路は、遅延観測部 5における不感帯のため に困難であった最適電源電圧または最適しきい値電圧への制御を可能にする。
[0078] 図 52に示す制御切替部 10は、電源電圧に対する上限値及び下限値をそれぞれ 保持する上限データ格納部 623及び下限データ格納部 624と、電源電圧 V (ある
DD
いは GND電源電圧)と格納部 623, 624に格納された上限値及び下限値とを比較 する比較部 633, 634と、基板電圧に対する上限値及び下限値をそれぞれ保持する 上限データ格納部 625及び下限データ格納部 626と、基板電圧と格納部 625, 626 に格納された上限値及び下限値とを比較する比較部 633, 634と、電源電圧制御ィ ネーブル信号 PSCE及びしき 、値電圧制御イネ一ブル信号 BBCEとが入力し、比較 部 633〜636での比較結果に応じて電源電圧制御イネ一ブル信号 PSCE'またはし ヽ値電圧制御イネ一ブル信号 BBCE'を出力する制御部 64と、を備えて!/、る。
[0079] 図 53は、本発明における遅延測定部と制御切替部の構成の別の例を示している。
この回路は、図 45に示すものと同様に、クロック CLKに同期した入力レジスタ 53と、 入力レジスタ 53の出力が接続されるクリティカルパス回路 51と、相互に縦続接続され てその縦続接続の一端にクリティカルパス回路 51の出力が接続される複数の遅延回 路 52と、クリティカルパス回路 51の出力と複数の遅延回路 52の出力とが接続されク ロック CLKに同期した出力レジスタ 53と、出力レジスタ 53の出力側に設けられて、ェ ラー、 Up、 Down, PSCE (及び SEL)、 BBCEなどの各信号を生成する制御回路と 、を備えている。遅延測定部では、各遅延回路 52の出力値とクロック CLKとのタイミ ング関係に基づいて遅延量が決定される力 特にこの回路は、クリティカルパス回路 51の出力を D— 3'とし、各遅延回路の出力を D— 2' , D- l ' , Dl ' , D2,として、出 力レジスタ 53においてクロック CLKのエッジと各遅延回路の出力のエッジとの関係か ら遅延量を判別する。この回路は、例えば、クロック CLKのエッジが D— 2'のエッジよ り前にあるの力、 D— 1,のエッジと D1,のエッジの間にあるのか、 D2,のエッジよりも 後にあるのかを判定する。そして制御切替部は、例えば、クロック CLKのエッジが D 2,のエッジより前にある場合、もしくは D2,のエッジよりも後にある場合には、電源 電圧(V )制御に切り替え、クロック CLKのエッジが D— 1,のエッジと D1,のエッジ
DD
の間にある場合にはしき 、値電圧 (V
TH )制御に切り替える。
[0080] 図 54は、図 53に示した回路における遅延測定部と制御切替部の動作を示す真理 値表である。図 55は、図 53に示した回路における遅延測定部と制御切替部の動作 を示すタイミングチャートである。図示されるように、遅延観測部で判定される、クロッ ク周期と遅延との関係に従い、電源電圧制御としきい値電圧制御とが切り替わり、電 源電圧制御およびしき 、値制御が行われ、動作電力を最小にする電源電圧としき ヽ 値電圧に収束する。
産業上の利用可能性
[0081] 本発明の活用例として、携帯電話や PDA(personal digital assistant)のようなモバイ ル装置が挙げられる。

Claims

請求の範囲
[1] 半導体集積回路装置であって、
前記半導体集積回路装置におけるスイッチング電流を観測するスイッチング電流 観測手段と、
前記半導体集積回路装置におけるリーク電流を観測するリーク電流観測手段と、 前記スイッチング電流と前記リーク電流とを比較する比較手段と、
前記スイッチング電流と前記リーク電流との比が一定になるように、前記半導体集 積回路を構成する回路素子のしきい値電圧を制御するしきい値電圧制御手段と、 前記半導体集積回路装置における遅延量を観測する遅延観測手段と、 前記遅延量が所定の範囲内となるように前記半導体集積回路装置の動作に用いら れる電源電圧を制御する電源電圧制御手段と、
を有する半導体集積回路装置。
[2] 半導体集積回路装置であって、
前記半導体集積回路装置におけるスイッチング電流を観測するスイッチング電流 観測手段と、
前記半導体集積回路装置におけるリーク電流を観測するリーク電流観測手段と、 前記スイッチング電流と前記リーク電流とを比較する比較手段と、
前記スイッチング電流と前記リーク電流との比が一定になるように、前記半導体集 積回路を構成する回路素子のしきい値電圧を制御するしきい値電圧制御手段と、 を有する半導体集積回路装置。
[3] 前記スイッチング電流観測手段は、
プリチャージまたはプリデイスチャージ素子と、
前記プリチャージまたはプリディスチャージ素子に接続する容量素子及び Zまたは 寄生容量と、
力 なる請求項 1または 2に記載の半導体集積回路装置。
[4] 前記スイッチング電流観測手段は、
プリチャージまたはプリデイスチャージ素子と、
前記プリチャージまたはプリディスチャージ素子に接続する容量素子及び Zまたは 寄生容量と、
前記プリチャージまたはプリディスチャージ素子に接続し参照電流を生成する参照 電流生成回路と、
前記容量素子及び Zまたは寄生容量の電圧と所定の電圧とを比較する比較回路 と、
前記比較回路による比較結果を保持するレジスタと、
力 なり、前記レジスタに保持された前記比較結果に応じて前記参照電流が調整さ れ、スイッチング電流に応じた参照電流を生成する、請求項 1または 2に記載の半導 体集積回路装置。
[5] プリチャージまたはプリデイスチャージ手段と、
前記プリチャージまたはプリディスチャージ手段に接続する電荷蓄積手段と、 前記プリチャージまたはプリディスチャージ手段に接続し参照電流を生成する参照 電流生成手段と、
前記電荷蓄積手段の電圧と所定の電圧とを比較する比較手段と、
前記比較手段による比較結果を記憶する同期記憶手段と、
を有するスイッチング電流観測半導体集積回路装置。
[6] 前記参照電流生成回路は、基準電流源と、前記基準電流源に接続するカレントミラ 一アレイと、前記カレントミラーアレイの出力に接続する電流スィッチアレイと、前記電 流スィッチアレイを制御する制御論理回路と、からなり、比較結果入力に応じて参照 電流を生成する、請求項 4または 5に記載の半導体集積回路装置。
[7] 前記参照電流生成回路は、基準電流源と、前記基準電流源に接続するカレントミラ 一アレイと、前記カレントミラーアレイの出力に接続する電流スィッチアレイと、前記電 流スィッチアレイを制御する制御論理回路と、からなり、参照電流の初期値及び Zま たは固定値を設定可能である、請求項 4または 5に記載の半導体集積回路装置。
[8] 前記制御論理回路はカウンタを含む、請求項 6または 7に記載の半導体集積回路 装置。
[9] 前記制御論理回路はシフトレジスタを含む、請求項 6または 7に記載の半導体集積 回路装置。
[10] 前記スイッチング電流観測手段は、
プリチャージまたはプリデイスチャージ素子と、
前記プリチャージまたはプリディスチャージ素子に接続する容量素子及び Zまたは 寄生容量と、
前記プリチャージまたはプリディスチャージ素子に接続し参照電流を生成する参照 電流生成回路と、
前記容量素子及び Zまたは寄生容量の電圧と所定の電圧とを比較する比較回路 と、
前記比較回路による比較結果を保持するレジスタと、
力 なり、複数の参照電流との比較によりスイッチング電流に応じたビット列を生成 する、請求項 1または 2に記載の半導体集積回路装置。
[11] プリチャージまたはプリデイスチャージ手段と、
前記プリチャージまたはプリディスチャージ手段に接続する電荷蓄積手段と、 リーク電流を観測するリーク電流観測手段と、
前記電荷蓄積手段の電圧と所定の電圧とを比較する比較手段と、
前記比較手段による比較結果を記憶する同期記憶手段と、
を有する、スイッチング電流 リーク電流比較半導体集積回路装置。
[12] 前記プリチャージまたはプリディスチャージ素子は、制御対象回路のクロック信号ま たは該クロック信号を分周して得られる信号で制御される、請求項 3、 4及び 10のい ずれか 1項に記載の半導体集積回路装置。
[13] 前記プリチャージまたはプリディスチャージ手段は、制御対象回路のクロック信号ま たは該クロック信号を分周して得られる信号で制御される、請求項 5または 11に記載 の半導体集積回路装置。
[14] 前記レジスタは、制御対象回路のクロック信号または該クロック信号を分周して得ら れる信号で制御される、請求項 4または 10に記載の半導体集積回路装置。
[15] 前記同期記憶手段は、制御対象回路のクロック信号または該クロック信号を分周し て得られる信号で制御される、請求項 5または 11に記載の半導体集積回路装置。
[16] 前記プリチャージまたはプリディスチャージ素子は、制御対象回路の動作率に反比 例してその動作クロック周波数を分周したクロック信号で制御される、請求項 3、 4及 び 10のいずれか 1項に記載の半導体集積回路装置。
[17] 前記プリチャージまたはプリディスチャージ手段は、制御対象回路の動作率に反比 例してその動作クロック周波数を分周したクロック信号で制御される、請求項 5または
11に記載の半導体集積回路装置。
[18] 前記レジスタは、制御対象回路の動作率に反比例してその動作クロック周波数を分 周したクロック信号で制御される、請求項 4または 10に記載の半導体集積回路装置。
[19] 前記同期記憶手段は、制御対象回路の動作率に反比例してその動作クロック周波 数を分周したクロック信号で制御される、請求項 5または 11に記載の半導体集積回 路装置。
[20] 前記リーク電流観測手段は、ゲート端子とソース端子との間に 0または一定値のバ ィァス電位が印加されたトランジスタである、請求項 1、 2及び 11のいずれ力 1項に記 載の半導体集積回路装置。
[21] 前記リーク電流観測手段は、ドレイン端子とソース端子との間に電源電圧または電 源電圧に比例した電圧が印加されたトランジスタである、請求項 1、 2及び 11のいず れか 1項に記載の半導体集積回路装置。
[22] 前記リーク電流観測手段は、リーク電流を生成するリーク電流生成トランジスタと、 参照電流を生成する参照電流生成回路と、前記リーク電流と前記参照電流とを比較 する比較回路と、からなり、複数の参照電流との比較によりリーク電流に応じたビット 列を生成する、請求項 1、 2及び 11のいずれか 1項に記載の半導体集積回路装置。
[23] 前記比較手段は、比較対象とする電流の一定比率を比較する、請求項 1、 2、 4、 5
Figure imgf000031_0001
、ずれか 1項に記載の半導体集積回路装置。
[24] 前記比較手段は、比較対象とする電流の流れる信号配線の結線と電圧比較回路と を有する、請求項 1または 2に記載の半導体集積回路装置。
[25] 前記比較手段は、ビット列の比較回路を有する、請求項 1または 2に記載の半導体 集積回路装置。
[26] 前記電源電圧の制御を行うか前記しき ヽ値電圧の制御を行うかを切り替える制御 切替手段をさらに有する請求項 1に記載の半導体集積回路装置。
[27] 半導体集積回路装置であって、
前記半導体集積回路装置の動作に用いられる電源電圧を制御する電源電圧制御 手段と、
前記半導体集積回路を構成する回路素子のしきい値電圧を制御するしきい値電圧 制御手段と、
前記電源電圧の制御を行うか前記しきい値電圧の制御を行うかを切り替える制御 切替手段と、
を有する半導体集積回路装置。
[28] 前記制御切替手段は、電源電圧制御としきい値電圧制御を排他的に切り替える、 請求項 26または 27に記載の半導体集積回路装置。
[29] 前記制御切替手段は、電源電圧制御としき!ヽ値電圧制御を交互に切り替える、請 求項 26または 27に記載の半導体集積回路装置。
[30] 前記制御切替手段は、速度を保証できる条件でのみしきい値電圧制御が行われる ようにする、請求項 26または 27に記載の半導体集積回路装置。
[31] 前記制御切替手段は、速度を保証できる条件、または電源電圧制御の上限または 下限の制御限界でのみしき!/、値電圧制御が行われるようにする、請求項 26または 2
7に記載の半導体集積回路装置。
[32] 前記電源電圧制御手段及び Zまたは前記しきい値電圧制御手段は初期値を与え られる、請求項 1または 27に記載の半導体集積回路装置。
[33] 前記しき 、値電圧制御手段は初期値を与えられる、請求項 2に記載の半導体集積 回路装置。
[34] 動作可能信号生成手段をさらに有する、請求項 1、 2及び 27のいずれか 1項に記 載の半導体集積回路装置。
[35] 前記動作可能信号生成手段は速度を保証できる条件で動作可能信号を出力する 請求項 34に記載の半導体集積回路装置。
[36] 前記動作可能信号生成手段は速度を保証できる条件かつスイッチング電流とリー ク電流の比率が許容範囲内の条件で動作可能信号を出力する、請求項 34に記載 の半導体集積回路装置。
[37] 前記しき 、値電圧制御手段は、電源電圧制御時に電源電圧の変化に伴うしき 、値 の変化を補償する、請求項 1または 27に記載の半導体集積回路装置。
[38] 前記制御切替手段は、電源電圧制御の際に、前記電源電圧制御手段に与えられ る制御信号と同じ制御信号を前記しきい値電圧制御手段に与えて基板電圧を制御 し、電源電圧の変化に伴うしきい値の変化を補償する、請求項 26または 27に記載の 半導体集積回路装置。
[39] 前記電源電圧制御時に電源電圧の変化に伴うしき!、値の変化を補償するしき!ヽ値 補償手段をさらに有する請求項 1または 27に記載の半導体集積回路装置。
[40] 前記しきい値補償手段は、電源電圧制御切り替わり時の基板電圧とソース電圧の 差を比較して第 1の差を求める第 1の比較手段と、前記第 1の差を保持する保持手段 と、電源電圧制御切り替わり後の前記基板電圧と前記ソース電圧との差を前記第 1の 差と比較する第 2の比較手段と、前記第 2の比較手段での比較結果に応じて前記基 板電圧を増減させる制御信号を生成する制御手段と、を有する、請求項 39に記載の 半導体集積回路装置。
[41] 前記制御切替手段は、電源電圧制御の際に、前記しきい値補償手段からの制御 信号を前記しきい値電圧制御手段に入力する、請求項 39に記載の半導体集積回路 装置。
[42] 前記制御切替手段は、前記半導体集積回路装置内のトランジスタの基板とソースと の間の電圧が所定の範囲限界内にあるように、電源電圧制御としきい値電圧制御と を切り替える、請求項 26または 27に記載の半導体集積回路装置。
[43] 前記制御切替手段は、電源電圧制御の際に前記電源電圧が所定の上下限に到 達した場合にしき 、値電圧制御へ切り替え、しき 、値電圧制御の際に前記しき 、値 電圧または前記基板電圧が所定の上下限に到達した場合に電源電圧制御へ切り替 える、請求項 26または 27に記載の半導体集積回路装置。
[44] 前記遅延観測手段は、クロックに同期した入力レジスタと、前記入力レジスタの出力 が接続されるクリティカルパス回路と、相互に縦続接続されてその縦続接続の一端に 前記クリティカルパス回路の出力が接続される複数の遅延回路と、クリティカルパス回 路の出力と前記複数の遅延回路の出力とが接続され前記クロックに同期した出カレ ジスタと、を有し、前記複数の遅延回路の出力値と前記クロックとのタイミング関係に 基づ!、て前記遅延量を観測する、請求項 1に記載の半導体集積回路装置。
[45] 前記制御切替手段は、前記遅延観測手段により得られる前記遅延量が所定の範 囲内であればしきい値電圧制御に切り替え、前記所定の範囲の外または別の所定 の範囲の外であれば電源電圧制御に切り替える、請求項 26、 27及び 44のいずれか
1項に記載の半導体集積回路装置。
[46] 前記しきい値電圧制御手段は、フローティングゲートトランジスタのフローティングゲ ート電圧を変化させる、請求項 1、 2、 27及び 31のいずれか 1項に記載の半導体集 積回路装置。
[47] 前記しきい値電圧制御手段は、複数ゲート構造トランジスタのいくつかのゲートの 電圧を変化させる、請求項 1、 2、 27及び 31のいずれか 1項に記載の半導体集積回 路装置。
[48] 前記スイッチング電流と前記リーク電流の比は、横軸が電源電圧で、遅延一定とな るようしきい値を変化させた場合に、縦軸がそれぞれの対数表示のグラフにおいて、 それぞれの直線近似線の傾きの絶対値の比の逆数、またはそれに近い整数、または それに近い 2のべき乗であることを特徴とする、請求項 1または 2に記載の半導体集 積回路装置。
PCT/JP2006/300079 2005-01-06 2006-01-06 半導体集積回路装置 WO2006073176A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006550905A JP4835856B2 (ja) 2005-01-06 2006-01-06 半導体集積回路装置
US11/813,502 US7659772B2 (en) 2005-01-06 2006-01-06 Semiconductor integrated circuit device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-001411 2005-01-06
JP2005001411 2005-01-06
JP2005-168529 2005-06-08
JP2005168529 2005-06-08

Publications (1)

Publication Number Publication Date
WO2006073176A1 true WO2006073176A1 (ja) 2006-07-13

Family

ID=36647652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300079 WO2006073176A1 (ja) 2005-01-06 2006-01-06 半導体集積回路装置

Country Status (3)

Country Link
US (1) US7659772B2 (ja)
JP (1) JP4835856B2 (ja)
WO (1) WO2006073176A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028897A (ja) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd 半導体集積回路およびその関連技術
WO2009119727A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 並列処理半導体集積回路装置、並列処理方法及びプログラム
JP2019186943A (ja) * 2018-04-16 2019-10-24 アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー 低自己消費電流パワーオンリセット回路

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750695B2 (en) * 2004-12-13 2010-07-06 Mosaid Technologies Incorporated Phase-locked loop circuitry using charge pumps with current mirror circuitry
JP5056765B2 (ja) * 2006-12-28 2012-10-24 日本電気株式会社 半導体集積回路装置及び電源電圧制御方式
JP4374064B1 (ja) * 2008-08-27 2009-12-02 学校法人 芝浦工業大学 電源遮断制御回路および電源遮断制御方法
US8710899B2 (en) * 2008-09-17 2014-04-29 Lockheed Martin Corporation Stepped delay control of integrated switches
KR100990089B1 (ko) * 2008-09-29 2010-10-29 충북대학교 산학협력단 차지 펌프 회로
US7973594B2 (en) * 2009-02-05 2011-07-05 Indian Institute Of Science Power monitoring for optimizing operation of a circuit
US8214777B2 (en) * 2009-04-07 2012-07-03 International Business Machines Corporation On-chip leakage current modeling and measurement circuit
JP2011029965A (ja) * 2009-07-27 2011-02-10 Panasonic Corp 半導体装置
US9094001B2 (en) 2009-11-12 2015-07-28 Freescale Semiconductors, Inc. Integrated circuit and method for reduction of supply voltage changes by using a current consuming component to temporarily modify overall current consumption before a newly changed input signal being processed
US8258861B2 (en) * 2010-01-08 2012-09-04 Analog Devices, Inc. Systems and methods for minimizing power consumption
US20130173944A1 (en) * 2011-12-28 2013-07-04 Lsi Corporation Reducing power consumption of memory
JP6003420B2 (ja) 2012-09-06 2016-10-05 富士通株式会社 回路システムおよび半導体装置
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9223327B1 (en) * 2012-11-26 2015-12-29 Marvell International Ltd. Universal adaptive voltage scaling system
US9535445B2 (en) * 2014-04-04 2017-01-03 Lattice Semiconductor Corporation Transistor matching for generation of precise current ratios
US10120967B2 (en) * 2014-07-25 2018-11-06 Plsense Ltd. Methods and apparatuses for SW programmable adaptive bias control for speed and yield improvement in the near/sub-threshold domain
US9625924B2 (en) * 2015-09-22 2017-04-18 Qualcomm Incorporated Leakage current supply circuit for reducing low drop-out voltage regulator headroom
US10419701B2 (en) 2017-06-26 2019-09-17 Facebook Technologies, Llc Digital pixel image sensor
US10686996B2 (en) 2017-06-26 2020-06-16 Facebook Technologies, Llc Digital pixel with extended dynamic range
US10598546B2 (en) 2017-08-17 2020-03-24 Facebook Technologies, Llc Detecting high intensity light in photo sensor
US11393867B2 (en) 2017-12-06 2022-07-19 Facebook Technologies, Llc Multi-photodiode pixel cell
US10969273B2 (en) 2018-03-19 2021-04-06 Facebook Technologies, Llc Analog-to-digital converter having programmable quantization resolution
US11004881B2 (en) 2018-04-03 2021-05-11 Facebook Technologies, Llc Global shutter image sensor
US10804926B2 (en) * 2018-06-08 2020-10-13 Facebook Technologies, Llc Charge leakage compensation in analog-to-digital converter
US11089210B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Configurable image sensor
US11906353B2 (en) 2018-06-11 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
US11089241B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Pixel cell with multiple photodiodes
US11463636B2 (en) 2018-06-27 2022-10-04 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
US10897586B2 (en) 2018-06-28 2021-01-19 Facebook Technologies, Llc Global shutter image sensor
US10931884B2 (en) 2018-08-20 2021-02-23 Facebook Technologies, Llc Pixel sensor having adaptive exposure time
US10847189B1 (en) * 2018-08-21 2020-11-24 Dialog Semiconductor B.V. Voltage regulator for generation of a voltage for a RAM cell
US11956413B2 (en) 2018-08-27 2024-04-09 Meta Platforms Technologies, Llc Pixel sensor having multiple photodiodes and shared comparator
US11595602B2 (en) 2018-11-05 2023-02-28 Meta Platforms Technologies, Llc Image sensor post processing
US11102430B2 (en) 2018-12-10 2021-08-24 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
US11218660B1 (en) 2019-03-26 2022-01-04 Facebook Technologies, Llc Pixel sensor having shared readout structure
US11943561B2 (en) 2019-06-13 2024-03-26 Meta Platforms Technologies, Llc Non-linear quantization at pixel sensor
US11936998B1 (en) 2019-10-17 2024-03-19 Meta Platforms Technologies, Llc Digital pixel sensor having extended dynamic range
US11139017B2 (en) * 2019-11-12 2021-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. Self-activated bias generator
US11902685B1 (en) 2020-04-28 2024-02-13 Meta Platforms Technologies, Llc Pixel sensor having hierarchical memory
US11910114B2 (en) 2020-07-17 2024-02-20 Meta Platforms Technologies, Llc Multi-mode image sensor
US11956560B2 (en) 2020-10-09 2024-04-09 Meta Platforms Technologies, Llc Digital pixel sensor having reduced quantization operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108194A (ja) * 1991-10-17 1993-04-30 Hitachi Ltd 低消費電力型半導体集積回路
JP2001345693A (ja) * 2000-05-30 2001-12-14 Hitachi Ltd 半導体集積回路装置
JP2003324158A (ja) * 2002-05-07 2003-11-14 Hitachi Ltd 半導体集積回路装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146614A (ja) * 1986-12-10 1988-06-18 Ricoh Co Ltd 電界効果トランジスタのドレイン電流検出回路
US5604467A (en) * 1993-02-11 1997-02-18 Benchmarg Microelectronics Temperature compensated current source operable to drive a current controlled oscillator
JP3714696B2 (ja) * 1994-10-21 2005-11-09 富士通株式会社 半導体記憶装置
JP3245037B2 (ja) 1996-02-05 2002-01-07 株式会社東芝 半導体集積回路装置
US5990705A (en) * 1997-06-04 1999-11-23 Oak Technology, Inc. CMOS I/O circuit with high-voltage input tolerance
JPH1194908A (ja) * 1997-09-17 1999-04-09 Fujitsu Ltd 静止電流値算出方法、静止電流値算出装置、及び、記録媒体
JP2001074804A (ja) * 1999-09-08 2001-03-23 Sony Corp 試験装置および試験方法
JP3505467B2 (ja) * 2000-03-30 2004-03-08 株式会社東芝 半導体集積回路
US6967522B2 (en) * 2001-04-17 2005-11-22 Massachusetts Institute Of Technology Adaptive power supply and substrate control for ultra low power digital processors using triple well control
US6957163B2 (en) * 2002-04-24 2005-10-18 Yoshiyuki Ando Integrated circuits having post-silicon adjustment control
JP4346373B2 (ja) 2002-10-31 2009-10-21 株式会社ルネサステクノロジ 半導体装置
JP4106033B2 (ja) 2004-02-04 2008-06-25 株式会社ルネサステクノロジ 半導体集積回路装置
JP2007172766A (ja) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd 半導体リーク電流検出器とリーク電流測定方法および電圧トリミング機能付半導体リーク電流検出器とリファレンス電圧トリミング方法およびこれらの半導体集積回路
JP4757108B2 (ja) * 2006-06-21 2011-08-24 富士通株式会社 半導体集積回路及びその電力低減方法
US8330483B2 (en) * 2006-11-29 2012-12-11 Nec Corporation Semiconductor device to detect abnormal leakage current caused by a defect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05108194A (ja) * 1991-10-17 1993-04-30 Hitachi Ltd 低消費電力型半導体集積回路
JP2001345693A (ja) * 2000-05-30 2001-12-14 Hitachi Ltd 半導体集積回路装置
JP2003324158A (ja) * 2002-05-07 2003-11-14 Hitachi Ltd 半導体集積回路装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028897A (ja) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd 半導体集積回路およびその関連技術
WO2009119727A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 並列処理半導体集積回路装置、並列処理方法及びプログラム
JP2019186943A (ja) * 2018-04-16 2019-10-24 アナログ・ディヴァイシス・グローバル・アンリミテッド・カンパニー 低自己消費電流パワーオンリセット回路

Also Published As

Publication number Publication date
US7659772B2 (en) 2010-02-09
JP4835856B2 (ja) 2011-12-14
US20080191791A1 (en) 2008-08-14
JPWO2006073176A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006073176A1 (ja) 半導体集積回路装置
KR100465248B1 (ko) 기판 바이어스 전압 발생 회로
US7449917B2 (en) Level shifting circuit for semiconductor device
US7176740B2 (en) Level conversion circuit
JP2005136322A (ja) 半導体集積回路および電源電圧・基板バイアス制御回路
US7952409B2 (en) Clock generation circuit and integrated circuit
TW200925819A (en) Self-aware adaptive power control system and a method for determining the circuit state
JP4237221B2 (ja) 半導体装置
US20060176099A1 (en) Semiconductor integrated circuit and method of controlling the semiconductor integrated circuit
US7999574B2 (en) Level conversion circuit and solid-state imaging device using the same
US7671657B1 (en) Voltage level shifter with voltage boost mechanism
JP5724663B2 (ja) 遅延回路およびシステム
US7532142B1 (en) Structures for systems and methods of generating an analog signal
JP2007227990A (ja) タイミング生成回路及びそれを用いたデジタル/アナログ変換器
US7388411B2 (en) Semiconductor integrated circuit device and semiconductor integrated circuit system
US10340857B2 (en) Amplifier circuit
GB2495177A (en) A capacitor array ADC using alternate comparators in successive conversion steps
JP4972634B2 (ja) 半導体装置
US9581973B1 (en) Dual mode clock using a common resonator and associated method of use
JP3767697B2 (ja) 半導体集積回路装置
JP4134160B2 (ja) 半導体集積回路装置
JP2008199673A (ja) 半導体集積回路装置
JP2021175162A (ja) 半導体装置
TWI393348B (zh) 積體電路之時鐘電路(一)
JP2009284267A (ja) 信号出力回路及びこれを用いたセレクタ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550905

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11813502

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06702073

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6702073

Country of ref document: EP