WO2006069535A1 - Catalyseur et procede de craquage d’une huile hydrocarbure - Google Patents

Catalyseur et procede de craquage d’une huile hydrocarbure Download PDF

Info

Publication number
WO2006069535A1
WO2006069535A1 PCT/CN2005/002338 CN2005002338W WO2006069535A1 WO 2006069535 A1 WO2006069535 A1 WO 2006069535A1 CN 2005002338 W CN2005002338 W CN 2005002338W WO 2006069535 A1 WO2006069535 A1 WO 2006069535A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
weight
phosphorus
mixture
oil
Prior art date
Application number
PCT/CN2005/002338
Other languages
English (en)
French (fr)
Inventor
Jun Long
Wenbin Jiang
Mingde Xu
Huiping Tian
Yibin Luo
Xingtian Shu
Jiushun Zhang
Beiyan Chen
Haitao Song
Original Assignee
China Petroleum & Chemical Corporation
Research Institute Of Petroleum Processing, Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNB2004101028138A external-priority patent/CN100389174C/zh
Priority claimed from CNB2004101028104A external-priority patent/CN100497530C/zh
Application filed by China Petroleum & Chemical Corporation, Research Institute Of Petroleum Processing, Sinopec filed Critical China Petroleum & Chemical Corporation
Priority to KR1020077017616A priority Critical patent/KR101229756B1/ko
Priority to US11/813,056 priority patent/US20080308455A1/en
Priority to JP2007548676A priority patent/JP5053098B2/ja
Priority to EP05824020A priority patent/EP1867388A4/en
Priority to AU2005321726A priority patent/AU2005321726B2/en
Publication of WO2006069535A1 publication Critical patent/WO2006069535A1/zh
Priority to US12/813,110 priority patent/US20100311569A1/en
Priority to US13/565,145 priority patent/US8658024B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a catalyst and a hydrocarbon oil cracking process thereof, and more particularly to a catalyst and a hydrocarbon oil cracking method for increasing the concentration of propylene in a catalytic cracking liquefied gas.
  • Propionate is an important organic chemical raw material. With the rapid growth of demand for derivatives such as polypropylene, the demand for propylene in the world is also increasing year by year. Fluid catalytic cracking is one of the important production processes for the production of light olefins and propylene. For most catalytic cracking units, the use of catalysts or auxiliaries containing zeolites having an MFI structure is an effective technical route for the production of light olefins and propylene.
  • USP 3,758,403 discloses earlier that the addition of ZSM-5 zeolite to a catalytic cracking catalyst can increase the octane number of gasoline and increase the yield of C 3 -C 4 olefins. For example, after adding 1.5, 2. 5, 5 to 10% of ZSM-5 zeolite in a conventional catalyst containing 10% REY, the gasoline octane number increases, and the yield of light olefins increases; using ZSM-containing 5 Zeolite additives have the same effect.
  • a hydrocarbon conversion process based on a catalyst comprising a large pore zeolite and a silica-aluminum ratio of less than 30 zeolite having an MFI structure is proposed in U.S. Patent 5,318,696.
  • the process produces high octane gasoline through an improved catalytic cracking process and produces low carbon olefins, particularly propylene.
  • a method for the extensive use of selective cracking aids in the catalytic cracking of heavy feedstocks is disclosed in U.S. Patent No. 5,997,728.
  • the auxiliaries are composed of 12-40% ZSM-5 zeolite added to the amorphous matrix, and the system reserves at least 10%, so that the proportion of ZSM-5 in the catalyst exceeds 3%.
  • This method can greatly increase the yield of aromatics and the loss of gasoline yield while substantially increasing the low carbon olefins.
  • ZSM-5 zeolite modified with a tablet compound can improve the stability of cracking activity and reduce the amount of zeolite
  • the zeolite has excellent hydrothermal activity stability and good low carbon olefin selectivity when used for high temperature conversion of hydrocarbons.
  • CN 1034223C discloses a cracking catalyst for producing low-carbon olefins, which is composed of 0 to 70% (based on the weight of the catalyst) of clay, 5 to 99% of inorganic oxides and 1 50% zeolite composition.
  • the zeolite therein is a mixture of 0 to 25 wt% of REY or high silica Y zeolite and 75 100 wt% of a five-membered cyclosilate zeolite containing phosphorus and rare earth.
  • a process for the preparation of a phosphorus modified ZSM-5 zeolite catalyst is disclosed in U.S. Patent No. 5,110,776.
  • the phosphorus modification process is to disperse the zeolite in an aqueous solution of a phosphorus-containing compound having a pH of 2 to 6, and then beat it with a substrate and spray-dry it.
  • the resulting catalyst does not increase the dry gas and coke yield while increasing the gasoline octane number.
  • a cracking catalyst for a phosphorus-containing modified ZSM-5 zeolite is disclosed in USP 6,566,293.
  • the phosphorus-modified ZSM-5 is prepared by dispersing the zeolite in an aqueous solution of a solution containing at least pH 4.5, supporting the zeolite with at least 10% by weight of phosphorus (as P 2 0 5 ), and then with the matrix and others.
  • the zeolite component is beaten and spray dried.
  • the resulting catalyst has a higher yield of lower olefins.
  • a ZSM-5 zeolite modified with phosphorus is disclosed in USP 5,171,921.
  • the zeolite has a silica-alumina ratio of 20 to 60, and is treated with a transient compound impregnated with 500-700 Torr of water vapor for conversion of 3 ⁇ (: 2 () hydrocarbons into (: 2 ⁇ ( 5 olefins) ZSM-5 is more active than phosphorus.
  • a method for increasing the catalytic activity of small and medium pore zeolites is disclosed in USP 6,080,303.
  • the method involves treating the small and medium pore zeolite with a tablet compound and then combining the phosphorus treated zeolite with a ⁇ 1 ⁇ 0 4 gel. This method can improve the activity and hydrothermal stability of small and medium pore zeolites.
  • a hydrocarbon conversion process based on a catalyst consisting of a large pore zeolite and a phosphorus-containing MFI structure mesoporous zeolite is disclosed in USP 5,472,59.
  • the process produces high octane gasoline through an improved catalytic cracking process and produces low carbon olefins, particularly C 4 /C 5 .
  • a catalytic cracking process for increasing the yield of propylene is disclosed in USP 2002/0003103 A1.
  • the catalyst composition contains a medium pore zeolite such as ZSM-5 and cracking properties in addition to the macroporous USY zeolite.
  • Inorganic binder component contains phosphorus and has a P/A1 ratio of 0.1 to 10. This process can significantly increase the production of low carbon olefins, especially propylene yield.
  • a catalyst having a high zeolite content and high wear resistance is disclosed in USP 2002/0049133 Al.
  • the catalyst contains 30 to 85 wt% of ZSM-5 zeolite, 6 to 24 wt% of phosphorus (as P 2 0 5 ), and less than 10 wt% of A1 2 0 3 and the balance of other components such as clay. , the phosphorus is present in the base shield.
  • the catalyst is used in a catalytic cracking process to increase the yield of light olefins, especially propylene.
  • the method of modifying the zeolite with a metal and its application are as follows. Catalysts comprising zeolites of the MFI or MEL structure are disclosed in, for example, USP 5,236,880.
  • the zeolite used therein is modified with a Group VIII metal, preferably Ni, which, after introduction of Ni, undergoes heat or hydrothermal treatment at a severe controlled temperature to enrich the Group VIII metal and aluminum at the surface.
  • the catalyst can be used to increase the octane number of the gasoline and increase the yield of the C 3 -C 4 olefin when the alkane is converted.
  • CN 1057408A discloses a cracking catalyst containing a high silica zeolite having a high catalytic cracking activity, wherein the high silica zeolite contains 0. 01 ⁇ 3 ⁇ 0 wt% phosphorus, 0.01-1.0 wt% iron or ZSM-5, ⁇ zeolite or mordenite of 0.01 ⁇ 10% by weight of aluminum is heated to 350 ⁇ 820 °C with a hydrogen or potassium type ZSM-5 zeolite, zeolite beta or mordenite with a silica-alumina ratio greater than 15. ⁇ 10 hours - 1 volume airspeed into the aluminum halide aqueous solution, iron! It is obtained by using an aqueous solution of an aqueous solution or an aqueous solution of ammonium phosphate.
  • CN 1465527A discloses an MFI structure zeolite containing phosphorus and a transition metal, and the anhydrous chemical expression of the zeolite is (0 ⁇ 0.3) Na 2 0-(0.5 ⁇ 5) ⁇ 1 2 0 based on the mass of the oxide. 3 ⁇ (1.3 - 10) ⁇ 2 0 5 ⁇ (0.7 - 15) ⁇ 2 0 3 ⁇ (70 ⁇ 97) Si0 2 , where M is selected from one of the transition metals Fe, Co and Ni.
  • the zeolite is applied to the catalytic cracking process of petroleum hydrocarbons, can be improved (2 ⁇ (: 4 olefins yield and selectivity, a higher yield of the liquefied gas.
  • the inventors have found that the modification of phosphorus and transition metals disclosed in CN 1465527A
  • the MFI structure zeolite is an active component, and the catalyst prepared by further introducing an appropriate amount of transition metal additive and an appropriate amount of phosphorus additive is applied to the cracking method of the hydrocarbon oil, which can effectively increase the productivity of the catalytic cracking liquefied gas and improve the catalytic cracking.
  • the octane number of gasoline can also significantly increase the concentration of propylene in the catalytic cracking liquefied gas.
  • the present invention provides a catalyst characterized in that the catalyst comprises a dry basis
  • metal additive 10 to 65% by weight of ZSM-5 molecular sieve, 0 to 60% by weight of clay, 15 to 60% by weight of inorganic oxide binder, and 0.55% by weight of one or more selected from Group VIIIB metals
  • the metal additive and 2 to 25 wt% of the phosphorus additive, both the metal additive and the phosphorus additive are based on the oxide.
  • the catalyst provided by the invention preferably comprises 20 to 50% by weight of ZSM-5 molecular sieve, 10 to 45% by weight of clay, 25 to 50% by weight of inorganic oxide binder, 1.0 to 10% by weight on a dry basis. It is composed of one or more metal additives selected from the group VIIIB metals and 5 to 15% by weight of phosphorus additives.
  • the ZSM-5 molecular sieve is preferably a metal-modified ZSM-5 molecular sieve selected from phosphorus and one selected from the group consisting of Fe, Co or Ni, and the anhydrous chemical expression thereof is (0 ⁇ 0.3) Na based on the oxide.
  • the modified ZSM-5 molecular sieve is modified by phosphorus and Fe, and its anhydrous chemical expression is (0 ⁇ 0.2) Na 2 0- (0.9 ⁇ 3.5) ⁇ 1 2 0 3 based on the oxide. ⁇ (1.5 ⁇ 7) ⁇ 2 0 5 ⁇ (0.9 - 10)M x O y - (82 - 92) Si0 2 .
  • the content of the Group VIIIB metal additive and the phosphorus additive in the catalyst provided by the present invention does not include the content of transition metals and phosphorus in the modified ZSM-5 molecular sieve.
  • the catalyst provided by the present invention preferably, the Group VIIIB metal is selected from one or more of Fe, Co and Ni, and more preferably Fe.
  • the clay in the catalyst provided by the present invention is well known to those skilled in the art, and the present invention is not particularly limited, and may be selected from the group consisting of kaolin, metakaolin, sepiolite, attapulgite, montmorillonite, and talcite. a mixture of one or more of clay materials, such as diatomaceous earth, halloysite, saponite, borax, and hydrotalcite. Among them, a mixture of one or more of kaolin, metakaolin, diatomaceous earth, sepiolite, attapulgite, montmorillonite and smectite is preferred.
  • the inorganic oxide binder is selected from the group consisting of inorganic binders used as catalyst base shields and binder components
  • the oxides are well known to those skilled in the art, and the present invention is not particularly limited, and includes a pseudoboehmite, an aluminum sol, a silica alumina sol, a water glass, and an aluminum phosphate sol.
  • a mixture of one or more of them preferably a mixture of one or more of pseudoboehmite, aluminum sol and phosphor aluminum sol.
  • the additive contains a phosphorus aluminum sol, the content of phosphorus in the aluminum sol is calculated as the content of the phosphorus additive based on the phosphorus pentoxide.
  • the catalyst may be prepared by any of the existing cracking catalyst preparation techniques including zeolite, clay, and inorganic oxide binder, including spray drying molding, and the present invention is not particularly limited.
  • the VI I IB family of transition metal additives are present in the form of their oxides, phosphates, phosphites, basic phosphates, acid phosphates.
  • One or more of various inorganic compounds and organic compounds of the transition metal may be water-soluble or water-insoluble or water-insoluble.
  • the transition metal compound include oxides, hydroxides, chlorides, nitrates, sulfates, phosphates, organic compounds of transition metals, and the like of the transition metal compound.
  • Preferred transition metal compounds are selected from one or more of their chlorides, nitrates, sulfates and phosphates.
  • the VI I IB group transition metal additive is preferably introduced by adding a transition metal compound to the slurry in any step prior to spray drying of the catalyst preparation process; of course, it may be calcined by impregnation or chemisorption of the transition metal compound after the catalyst spray drying molding.
  • the introduction comprises the steps of impregnating or chemically adsorbing the catalyst with an aqueous solution containing a transition metal compound, followed by solid-liquid separation (if necessary), drying and calcination, wherein the drying temperature is from room temperature to 400 ° C, preferably from 100 to 300. 5 ⁇ 10 ⁇
  • the calcination temperature is 400 ⁇ 700" C, preferably 450 ⁇ 650 ⁇ , roasting time is 0. 5 ⁇ 100 hours, preferably 0. 5 ⁇ 10 hours.
  • the transition metal additive may be present at any possible location of the catalyst, such as may be present in the pores of the zeolite, on the surface of the zeolite, may be present in the base shield material, or may be present simultaneously in the pores of the zeolite, zeolite
  • the surface and the matrix material are preferably present in the matrix material.
  • the phosphorus additive in the catalyst is present in the form of a phosphorus compound (e.g., oxide, phosphate, phosphite, basic phosphate, acid phosphate).
  • a phosphorus compound e.g., oxide, phosphate, phosphite, basic phosphate, acid phosphate.
  • the phosphorus additive may be one of the following methods or a combination of several methods, but is not limited to the introduction of these methods into the catalyst: 1. Adding a phosphorus compound to the slurry in the spray drying of the catalyst;
  • an inorganic oxide binder Introduced into the catalyst by an inorganic oxide binder.
  • the inorganic oxide binder contains a phosphor alumina sol
  • the catalyst is both entrained in the calcined catalyst, and the phosphor alumina sol can serve as a matrix material and bond.
  • the role of the agent, this part of phosphorus also belongs to the phosphorus additive of the present invention.
  • the drying temperature is from room temperature to 400, preferably from 100 to 300 ° C, calcination.
  • the temperature is 400 to 700 ° C, preferably 450 to 650 ° C, and the baking time is 0.5 to 100 hours, preferably 0.5 to 10 hours.
  • the phosphorus additive may be present at any location where the catalyst may be present, such as may be present in the pores of the zeolite, on the surface of the zeolite, may be present in the matrix material, or may be present simultaneously in the pores of the zeolite, zeolite The surface and the matrix material.
  • the phosphorus compound is selected from one or more of various inorganic compounds and organic compounds of phosphorus.
  • the phosphorus compound may be readily soluble in water or may be a phosphorus compound which is poorly soluble in water or insoluble in water.
  • Examples of the phosphorus compound include phosphorus oxides, phosphoric acid, phosphates, phosphites, hypophosphites, organic compounds containing a trace, and the like.
  • Preferred scale compounds are selected from one or more of the group consisting of phosphoric acid, ammonium ammonate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, aluminum onlum, and phosphor aluminosol.
  • the present invention also provides a hydrocarbon oil cracking process using the above catalyst, which is carried out by contacting a hydrocarbon oil with a catalyst mixture containing the above catalyst under hydrocarbon oil cracking conditions, and then recovering the cracked product.
  • the cracking process provided by the present invention the contacting of the hydrocarbon oil with the catalyst mixture can be carried out in various reactors.
  • the reactor may be in the form of a riser reactor, a fixed bed reactor, a fluidized bed reactor or a moving bed reactor, preferably a riser reactor.
  • the contact conditions include a contact temperature of 400 to 650 TC, preferably 420 to 600 ° C, and a ratio of the ratio of the agent to the oil (weight ratio of the catalyst to the hydrocarbon oil) of 1 to 25, preferably 3 to 20.
  • the contact conditions also include a weight hourly space velocity of 10 to 120 hours - preferably 15 to 80 hours - ⁇ for a riser reactor
  • the contact member further includes a reaction time of 0.5 to 15 seconds, preferably 0.5 to 10 seconds.
  • the catalyst mixture containing the above catalyst is mainly composed of a main cracking catalyst and the above catalyst, and the respective contents are known to those skilled in the art.
  • the content of the main cracking catalyst is
  • the content of the catalyst provided by the present invention is from 1 to 30% by weight, preferably from 3 to 20% by weight, based on 70 to 99% by weight, preferably from 80 to 95% by weight.
  • the type and composition of the primary cracking catalyst are well known to those skilled in the art and may be various cracking catalysts such as various cracking catalysts containing zeolite.
  • the hydrocarbon oil is selected from various petroleum fractions, such as crude oil, atmospheric residue, vacuum residue, atmospheric wax oil, vacuum wax oil, straight wax oil, propane light/ One or more of heavy oil, coking wax oil and coal liquefaction products.
  • the content of the metal shield of vanadium, nickel, etc. may be as high as 3.0% by weight, and the content of nitrogen may be as high as 2.0% by weight. Up to 3000ppm.
  • the catalyst mixture may be used at one time, but preferably, the catalyst mixture is regenerated and recycled.
  • the regeneration of the catalyst mixture is a process in which coke in the catalyst mixture is burned off in an oxygen-containing atmosphere (generally air), which is a common knowledge well known to those skilled in the art.
  • the regeneration temperature is 600 to 77 (TC, preferably 650 to 730 ° C.
  • the catalyst provided by the invention adds an appropriate amount of VI I IB transition metal additive and an appropriate amount of phosphorus additive, especially the sample with the modified ZSM-5 molecular sieve as the active component, can improve the selection of propylene during the catalytic cracking reaction process.
  • concentration of propylene in the catalytic cracking liquefied gas is increased, for example, the propylene content of the product is increased by 0.776-4. 05 percentage points (Tables 3, 4, 5), and the propylene concentration in the liquefied gas is increased to 35.70. the above.
  • Figures 1 - 5 are XRD spectra of the catalysts prepared in the examples and comparative examples and comparative catalysts. detailed description
  • Ai-Ag ⁇ modified ZSM-5 molecular sieve samples were prepared by the method disclosed in CN1465527A, and the anhydrous chemical expression was determined by X-ray fluorescence spectrometry to determine the elemental composition of the molecular sieve, and then converted. of.
  • Sample A 0. 04Na 2 0 ⁇ 3. 57A1 2 0 3 ⁇ 4. 0P 2 0 5 ' 2. 4Fe 2 0 3 ⁇ 90. 49S i0 2 .
  • Sample A 2 0. lNa 2 0 - 5. 0Al 2 O 3 - 2. 0P 2 0 5 ⁇ 0. 9Fe 2 0 3 ⁇ 92Si0 2 .
  • Sample A 4 0. 03Na 2 0 ⁇ 2. 2A1 2 0 3 ⁇ 4. 9P 2 0 5 . 2. lFe 2 0 3 ⁇ 90. 8Si0 2 .
  • Sample A 5 0. lNa 2 0 ⁇ 0. 94A1 2 0 3 ⁇ 5. 1P 2 0 5 ⁇ 10. lFe 2 0 3 ⁇ 84Si0 2 .
  • Sample A 6 0. 03Na 2 O - 5. 1A1 2 0 3 - 4. 8P 2 0 5 - 3. 6Co 2 0 3 ⁇ 86. 5Si0 2 .
  • Sample A 7 0. lNa 2 0 - 4. 6A1 2 0 3 ⁇ 6. 9P 2 0 5 - 6. 4Ni 2 0 3 ⁇ 82Si0 2.
  • Sample A 8 0. lNa 2 0 ⁇ 5. 2A1 2 0 3 ' 4. 5P 2 0 5 ⁇ 2. 0Ni 2 O 3 - 88. 2Si0 2 .
  • the pseudo-boehmite is an industrial product produced by Shandong Aluminum Plant with a solid content of 60% by weight.
  • the aluminum sol is an industrial product produced by Qilu Petrochemical Catalyst Plant.
  • the A1 2 0 3 content is 21.5% by weight; the water glass is Qilu Petrochemical Catalyst Factory.
  • the industrial product produced S i0 2 content 28.9% by weight, Na 2 0 content 8.9%; kaolin is the special kaolin for cracking catalyst produced by Suzhou Kaolin Company, the solid content is 78% by weight; ZRP-5 zeolite is Qilu Petrochemical catalyst An industrial product of a conventional MFI structure zeolite produced by the plant, wherein P 2 0 5 2.5 wt%, crystallinity 85 wt%, and silica-alumina ratio 50.
  • the XRD pattern of the catalyst sample was tested as follows:
  • the analytical instrument was a Japanese D/MAX-X-ray X-ray diffractometer.
  • Catalyst phase Test conditions Cu ⁇ K ct radiation, Ni filter, voltage 40 kV, current 40 mA, slit 2 mm / 2 mm / 0. 2 mm step length 0. 02 s tep t ime ls.
  • Examples 1 to 19 illustrate the preparation of the catalysts described in the process provided by the present invention.
  • Example 1
  • phosphorus-aluminum sol 1. 05 kg of pseudo-boehmite (dry basis) and 3.35 kg of deionized water for 30 minutes, while stirring, adding 4. 9 kg of concentrated phosphoric acid (chemically pure, containing tannic acid) 85 wt%), the temperature was raised to 70, and then reacted at this temperature for 45 minutes to prepare a colorless transparent phosphorus aluminum sol.
  • ⁇ 2 0 5 30. 6 wt%, ⁇ 1 2 0 3 10. 5 wt%, ⁇ 1. 7.
  • microspheres were calcined at 500 Torr for 1 hour to obtain a 35-weight o/o Ap 28% by weight high cold soil, 27.5% by weight human 1 2 0 3 , 2. 0 ⁇ %? 6
  • Additives as Fe 2 0 3
  • 7.5 % by weight of phosphorus additive as P 2 0 5
  • the diffraction peak at the point is the characteristic peak of the FePO species.
  • microspheres were calcined at 500 Torr for 1 hour, resulting in a weight of 36. 8 . / ⁇ 26. 6% by weight of kaolin and 31.6% by weight of 1 2 0 3 and 5.0% by weight of 6 additives (in terms of Fe 2 0 3 ) of microspheres.
  • the diffraction peak at 90° is the characteristic peak of the FePO species.
  • the diffraction peak at the point is the characteristic peak of the FePO species.
  • the preparation method was the same as in Example 1, except that the amount of kaolin was 1.25 kg (dry basis), and 1 liter of Co(N0 3 ) 2 .6H 2 0 aqueous solution (containing 250 g of CoO) was used instead of FeCl 3 .6H 2 0 aqueous solution.
  • the preparation method was the same as in Example 1, except that the amount of kaolin was 1.25 kg (dry basis), and 1 liter of Ni(N0 3 ) 2 .6H 2 0 aqueous solution (containing 250 g of NiO) was used instead of FeCl 3 .6H 2 0 aqueous solution.
  • 5% by weight phosphorus additive containing 35 wt%, 25 wt% kaolin, 27.5 wt% 1 2 0 3 , 5 3 ⁇ 4 % Ni additive (as NiO) and excluding phosphorus contained in the modified MFI zeolite was obtained ( Catalyst ZJ 5 in terms of P 2 0 5 ).
  • the catalyst was prepared in the same manner as in Example 1 except that the weight of 1 was 2.25 kg (dry basis) and the weight of kaolin was 0.9 kg (dry basis) to give a weight of 45. / ⁇ 18% high cold soil, 27.5 weight% 1 2 0 3 , 2 weight. / ⁇ 6 Additive (as Fe 2 O 3 ) and 7.5 wt% phosphorus additive (as P 2 0 5 ) catalyst ZJ S .
  • the obtained slurry was spray-dried at an inlet temperature of 500*C and a tail gas temperature of 180 Torr to obtain an average particle diameter of 65 ⁇ m.
  • Microspheres The microspheres were calcined at 500 ° C for 1 hour to obtain 20% by weight, 37% by weight of high cold soil, 30% by weight of human 1 2 0 3 , and 8 weight.
  • / ⁇ 6 additive Fe 2 0 3 in the count
  • 5 wt% phosphorus additive (as P 2 0 5 basis) catalyst ZJ 9.
  • the catalyst was prepared in the same manner as in Example 9 except that the same weight of A 2 was used instead of Ap to obtain 20% by weight of 2 , 37% by weight of kaolin, 30% by weight of human 1 2 0 3 and 8 % by weight of ? Catalyst ZJ 10 of 2 0 3 ) and 5 wt % phosphorus additive (as P 2 0 5 ).
  • the obtained slurry was spray-dried at an inlet temperature of 500 ° C and a tail gas temperature of 180 ° C to obtain an average particle diameter of 65 micron microspheres.
  • the microspheres were calcined at 500 ° C for 1 hour to obtain 25 wt% 3 , 20 wt% kaolin, 45 wt% 1 2 0 3 , and 5 wt. / ⁇ 6 additive (Fe 2 0 3 in the count), and 5 wt% phosphorus additive (as P 2 0 5 basis) catalyst ZJ U.
  • microspheres having an average particle diameter of 65 ⁇ m.
  • the microspheres were calcined at 50 (TC for 1 hour to obtain 40% by weight of 4 , 15% by weight of kaolin, 35% by weight of 1 2 0 3 , 5 weights of /6 additives (in terms of Fe 2 0 3 ) and 5 Catalyst ZJ 12 with a heavy % phosphorus additive (based on P 2 0 5 ).
  • the diffraction peak at the point is the characteristic peak of the FePO species.
  • the diffraction peak at the point is the characteristic peak of the FePO species.
  • Microspheres having a particle diameter of 65 ⁇ m were calcined at 500 ° C for 1 hour to obtain 30% by weight of human 6 , 30% by weight of kaolin, 30% by weight, 1 2 0 3 , 2. 5 weight % / ⁇ 6 additives (in terms of Fe 2 0 3 ) and 7.5 weight % phosphorus additives (based on P 2 0 5 ) catalyst ZJ ⁇
  • the diffraction peak at the point is the characteristic peak of the FePO species.
  • the obtained slurry was spray-dried at an inlet temperature of 500 Torr and a tail gas temperature of 180 Torr.
  • the microspheres were calcined at 500 for 1 hour to obtain 25 wt% 7 and 20 wt% high alumina, 45 wt% 1 2 0 3 , 5 weights.
  • the diffraction peak at the point is the characteristic peak of the FePO species.
  • the diffraction peak is the characteristic peak of FePO species.
  • the catalyst was prepared in the same manner as in Example 1 except that the same weight of A 3 was used instead of A 15 to obtain 35 wt% 3 , 28 wt% kaolin, 27.5 wt% human 1 2 0 3 , 2.0 wt. / ⁇ 6 Additive (as Fe 2 0 3 ) and 7.5 wt% phosphorus additive (as P 2 0 5 i ⁇ ) catalyst ZJ 17 .
  • the catalyst was prepared in the same manner as in Example 1, except that the same weight of A 6 was used instead of A 15 to obtain 35 wt% 6 , 28 wt% high cold soil, 27.5 wt% 1 2 0 3 , 2.0 weight.
  • a catalyst was prepared by the method of Example 1, except 35 weight% is obtained containing 8, 28 wt% kaolin by weight of the same system instead of A 8, 27.5 weight. / U1 2 0 3 , 2.0 heavy. / ⁇ 6 additive (to Fe 2 0 3 basis) and 7.5 wt% phosphorus additive (as P 2 0 5 basis) catalyst ZJ 19.
  • the diffraction peak at the location is characteristic of the FePO species.
  • Comparative Examples 1 to 5 illustrate the preparation of a reference catalyst.
  • microspheres were calcined at 500 ° C for 1 hour to give a weight of 35. / ⁇ 30% by weight of kaolin, 27.5 wt% 1 2 0 3 and 7.5 wt% phosphorus additive (as P 2 0 5 ) of reference catalyst CB
  • This comparative example illustrates the preparation of a reference catalyst containing modified ZSM-5 molecular sieves (samples, VIIIB-free metal additives, and monument additives).
  • This comparative example illustrates the preparation of a reference catalyst for conventional ZRP-5 zeolite.
  • the catalyst was prepared in the same manner as in Comparative Example 2 except that the same weight of ZRP-5 zeolite was used instead to prepare a reference catalyst CB 3 containing 35% by weight of ZRP-5 zeolite, 30% by weight of kaolin and 35% by weight of human 1 2 3 3 . .
  • This comparative example illustrates the preparation of a reference catalyst for conventional ZRP-5 zeolite and phosphorus additives.
  • An auxiliary was prepared as in Example 1, except that the same weight of ZRP-5 zeolite was substituted for A 15 to obtain a 35 wt% ZRP-5 zeolite, 30 wt% kaolin and 35 wt% human 1 2 3 3 and not included.
  • This comparative example illustrates the preparation of a reference catalyst modified with ZSM-5 molecular sieve (sample, VII IB metal additive, and no phosphorus additive).
  • microspheres were calcined at 500 ° C for 1 hour to obtain 35 weight% kaolin, 30 ⁇ % ⁇ 1 2 0 3 , 5 weights.
  • Examples 20-38 illustrate the methods provided by the present invention in a fixed fluidized bed reactor.
  • ZJf ZJ 19 30 g was aged for 8 hours under 800 Torr and 100% steam atmosphere, respectively. Different amounts of aged ZJf 2 19 were mixed with different amounts of industrial FCC equilibrium catalyst (FCC equilibrium catalyst of industrial grade MLC-500, the main properties are shown in Table 1). The catalyst mixture was charged into a reactor of a small fixed fluidized bed reactor, and catalytic cracking of the feedstock oil shown in Table 2 was carried out (see Table 2 for the properties of the feedstock oil).
  • Comparative Examples 6 to 11 illustrate comparative methods for fixed fluidized bed reactors.
  • Example 20 The same feedstock oil was subjected to catalytic cracking as in Example 20 except that the catalyst used was a mixture of 100% industrial FCC equilibrium catalyst, CB-CBs and industrial FCC equilibrium catalyst. Table 3 shows the catalyst mixture composition, reaction conditions and reaction results used in the comparative method.
  • Examples 39-47 illustrate the methods provided by the present invention in riser reactors.
  • ZJ 14 , ⁇ 16 and MLC-500 industrial equilibrium catalyst were separately mixed.
  • the catalyst mixture is continuously passed into a small catalytic cracking riser reactor while continuously feeding the feedstock oil shown in Table 2 or the feedstock oil and water vapor shown in Table 2, bringing the vacuum-reduced wax oil into contact with the catalyst mixture, and the catalyst and The reaction product is separated, the separated catalyst is regenerated into a regenerator, and the regenerated catalyst is recycled to the riser reactor.
  • Table 6 and Table 7 show the composition of the catalyst mixture used (both percent by weight), reaction conditions and reaction results.
  • Comparative Example 12-16 illustrates the comparison of the use of a reference catalyst in a riser reactor.
  • Example 39 The same feedstock oil was subjected to catalytic cracking as in Example 39, except that the catalyst mixture used was 100% industrial FCC equilibrium catalyst, a mixture with an industrial FCC equilibrium catalyst, a mixture of CB 2 and an industrial FCC equilibrium catalyst, 8 3 A mixture with an industrial FCC equilibrium catalyst and a mixture of CB 4 and an industrial FCC equilibrium catalyst are substituted.
  • Table 6 shows the catalyst mixture composition, reaction conditions and reaction results used in the comparative method.
  • the amount of steam added is equivalent to 10% by weight of the oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

一种催化剂及其烃油裂化方法 技术领域
本发明是关于一种催化剂及其烃油裂化方法, 更进一步说是关于 一种催化剂和提高催化裂化液化气中丙烯浓度的烃油裂化方法。
背景技术
丙晞是重要的有机化工原料, 随着聚丙烯等衍生物需求的迅速增 长,全世界对丙烯的需求也在逐年倶增。 流化催化裂化是生产轻烯烃 和丙烯的重要生产工艺之一。 对于大多数催化裂化装置而言, 为了增 产轻烯烃和丙烯, 采用含有具有 MFI 结构沸石的催化剂或助剂是有效 的技术途径。
USP3, 758, 403较早披露在催化裂化催化剂中添加 ZSM-5沸石的方 法可以提高汽油的辛烷值和增加 C3 ~ C4烯烃的产率。 例如, 在含 10 % REY的常规催化剂中添加从 1· 5、 2. 5、 5到 10 %的 ZSM-5沸石后, 汽 油辛烷值提高, 低碳烯烃的产率增加; 使用含 ZSM- 5 沸石的助剂时也 有同样的效果。
USP 5, 318, 696中提出了基于一种大孔沸石和硅铝比小于 30的具 有 MFI 结构的沸石组成的催化剂的烃转化工艺过程。 该工艺通过改进 的催化裂化过程生产高辛烷值汽油, 并增产低碳烯烃, 特别是丙烯。
USP 5, 997, 728 中公开了在重质原料催化裂化过程中大量使用择 形裂化助剂的方法。 所说助剂由无定形基质中加入 12 ~ 40 %的 ZSM-5 沸石组成, 系统藏量至少 10 %, 使得 ZSM- 5在催化剂中的比例超过 3 %。 此方法可以在大幅度提高低碳烯烃的同时, 不额外增加芳烃产量 和损失汽油产率。
ZSM-5 沸石用含碑化合物进行改性后, 其裂化活性稳定性可以提 高, 并减少沸石的用量
CN 1049406C 中公开了一种含磷和稀土并具有 MFI 结构的沸石, 其无水化学组成为 aRE203 bNa20-Al203 cP205 dSi02 , 其中 a=0. 01 - 0. 25 , b=0. 005 - 0. 02 , c=0. 2 ~ 1. 0 , d=35 ~ 120。 该沸石在用于烃类高温转 化时具有优异的水热活性稳定性和良好的低碳烯烃选择性。
CN 1034223C 中公开了一种用于生产低碳烯烃的裂解催化剂, 是 由 0 ~ 70 % (以催化剂重量为基准) 的粘土、 5 ~ 99 %的无机氧化物和 1 50%的沸石组成。 其中的沸石为 0~ 25重%的 REY或高硅 Y型沸 石和 75 100重%的含磷和稀土的五元环高硅沸石的混合物。 该催化 剂具有较以 ZSM- 5 沸石为活性组分的催化剂更高的水热活性稳定性、 转化率和(2=~(4 =产率。
USP5, 110, 776 中公开了以磷改性的 ZSM- 5 沸石催化剂的制备方 法。 所说的磷改性过程是将沸石分散在 PH值 2 ~ 6的含磷化合物水溶 液中, 然后与基质打浆, 喷雾干燥成型。 所得催化剂在提高汽油辛烷 值的同时不增加干气和焦炭产率。
USP6, 566, 293中公开了一种含磷改性 ZSM-5沸石的裂化催化剂。 所说的磷改性 ZSM- 5 的制备是将沸石分散在 PH值 4.5 以上的含碑化 合物水溶液中, 使沸石负载至少 10 重%的磷(以 P205计) , 然后与 基质和其它沸石组分打浆, 喷雾干燥成型。 所得催化剂具有较高的低 碳烯烃产率。
USP 5, 171, 921 中公开了一种用磷改性的 ZSM-5 沸石。 该沸石具 有 20~ 60 的硅铝比, 用含瞬化合物浸渍后经 500 ~ 700Ό水蒸汽处理 后, 用于 3~(:2()烃转化成 (:2~(;5烯烃的反应时, 相对不用磷处理的 ZSM- 5有更高的活性。
USP6, 080, 303 中公开了一种提高小孔和中孔沸石催化活性的方 法。 该方法是用碑化合物处理小孔和中孔沸石, 然后将经磷处理过的 沸石与 Α1Ρ04凝胶组合。 该方法可以改善小孔和中孔沸石的活性和水 热稳定性。
USP 5, 472, 59 中公开了基于一种大孔沸石和含磷的 MFI 结构中 孔沸石组成的催化剂的烃转化工艺过程。 该工艺通过改进的催化裂化 过程生产高辛烷值汽油, 并增产低碳烯烃, 特别是 C4/C5
除了对 ZSM-5 沸石进行磷改性外, 也有才艮道称往基质中引入磷化 合物, 可以提高催化剂或助剂对低碳烯烃的选择性。
USP 2002/0003103 A1 中公开了一种增加丙烯产率的催化裂化工 艺过程。 该工艺过程除了将至少部分汽油产物进入第二个提升管内重 新进行裂化反应外, 所采用的催化剂组合物中除了含大孔 USY沸石外, 还含有 ZSM-5 等中孔沸石以及具有裂化性能的无机粘结剂组分。 其中 的无机粘结剂组分中含磷, 其 P/A1比为 0.1~ 10。 该工艺过程可大幅 度增产低碳烯烃, 特别是增加丙烯产率。 USP 2002/0049133 Al 中公开了一种高沸石含量、 高耐磨强度的 催化剂。该催化剂含有 30 ~ 85重%的 ZSM-5沸石, 6 ~ 24重%的磷(以 P205计) , 以及低于 10重%的 A1203和余量的粘土等其它组分, 其中 的磷存在于基盾中。 该催化剂用于催化裂化过程中, 可增加轻烯烃, 尤其丙烯产率。
沸石用金属改性的方法及其应用有下述相关 4艮道。 例如 USP 5, 236, 880 中公开了含 MFI或 MEL结构沸石的催化剂。 其中所用沸石 是经 VIII族金属、 优选以 Ni 改性的, 该沸石引入 Ni后, 经历苛刻 的控制温度下的热或水热处理, 使得 VIII 族金属和铝在表面富集。 所说催化剂用于烷烃转化时可以提高汽油辛烷值, 增加 C3~C4烯烃的 产率。
CN 1057408A 中公开了一种含高硅沸石的裂解催化剂, 具有较高 的催化裂解活性, 其中所说的高硅沸石为含有 0·01~ 3· 0 重%磷、 0.01-1.0重%铁或 0.01~10重%铝的 ZSM-5、 β沸石或丝光沸石, 是将硅铝比大于 15 的氢型或钾型 ZSM- 5 沸石、 β沸石或丝光沸石加 热至 350 ~ 820°C, 以 0.1~10小时— 1的体积空速通入铝的卤化物水溶 液、 铁的! ¾化物水溶液或磷酸铵盐水溶液后得到。
CN 1465527A 中公开了一种含磷和过渡金属的 MFI 结构沸石, 该 沸石的无水化学表达式, 以氧化物的质量计为(0~ 0.3)Na20-(0.5 ~ 5) Α1203· (1.3 - 10) Ρ205· (0.7 - 15) Μ203· (70 ~ 97) Si02 , 其中, M 选自过 渡金属 Fe、 Co和 Ni 中的一种。 该沸石应用于石油烃的催化裂化过程 时, 可提高(2~(:4烯烃的产率及选择性, 具有更高的液化气产率。
目前, 对于绝大多数的催化裂化装置而言, 在相同液化气产率的 前提下, 提高液化气中的丙烯浓度是提高催化裂化装置经济效益的重 要途径。 现有技术所公开的沸石材料和催化剂用于催化裂化过程中, 虽然能有效地增加低碳烯烃的产率, 提高催化裂化汽油产物的辛烷 值, 但在催化裂化反应过程中对于丙烯的选择性并不是很高, 从而提 高液化气中丙烯浓度的幅度有限。
发明内容
本发明的目的是在现有技术的基础上提供一种新的催化剂并提供 应用该催化剂的烃油裂化方法。
本发明人发现, 以 CN 1465527A 中所公开的含磷和过渡金属的改 性 MFI 结构沸石为活性组元, 进一步引入适量的过渡金属添加剂和适 量磷添加剂所制成的催化剂应用于烃油的裂化方法中, 不仅能有效地 增加催化裂化液化气的产率, 提高催化裂化汽油的辛烷值, 同时还可 以显著地提高催化裂化液化气中的丙烯浓度。
因此, 本发明提供的催化剂, 其特征在于该催化剂包括按干基计
10~65重%的 ZSM- 5分子筛、 0~60重%的粘土、 15~60重%的无 机氧化物粘结剂、 0.5 15 重%的选自 VIIIB族金属中的一种或几种 的金属添加剂和 2~25 重%的磷添加剂, 所说的金属添加剂和磷添加 剂均以氧化物计。
本发明提供的催化剂, 按干基计优选由 20~50重%的 ZSM - 5分 子筛、 10~45重%的粘土、 25 ~ 50 重%的无机氧化物粘结剂、 1.0~ 10重%的选自 VIIIB族金属中的一种或几种的金属添加剂和 5 ~ 15重 %的磷添加剂组成。 其中, 所说的 ZSM- 5分子筛优选经磷和选自 Fe、 Co或 Ni之一的金属改性的 ZSM- 5分子筛, 其无水化学表达式, 以氧 化物计 为 (0 ~ 0.3)Na2O-(0.5 - 5)Α1203·(1.3 ~ 10)Ρ205·(0.7 ~ 15)Mx0y' (70~97)Si02, x表示 M的原子数, y表示满足 M氧化态所需 的一个数。 在优选情况下, 所述改性 ZSM- 5分子筛经磷和 Fe改性, 其无水化学表达式, 以 氧化物计为 (0 ~ 0.2)Na20- (0.9 ~ 3.5) Α1203· (1.5~7) Ρ205· (0.9 - 10)MxOy- (82 - 92) Si02
本发明提供的催化剂中所说的 VIIIB族金属添加剂和磷添加剂的 含量不包括改性的 ZSM - 5分子筛中过渡金属和磷的含量。
本发明提供的催化剂, 优选情况下, 所说 VIIIB族金属选自 Fe、 Co和 Ni 中的一种或几种, 其中更优选 Fe。 当以 Fe为添加剂时, 所 述催化剂的 XRD谱图中, 至少具有 2 Θ =16· 35 ±0.5。 , 2Θ =26.12 ± 0.5° 和 2 Θ - 30.94土 0.5。 的 FePO物种特征衍射峰。
本发明提供的催化剂中所述粘土为本领域技术人员所公知, 本发 明对其没有特别的限制, 可以选自包括高岭土、 偏高岭土、 海泡石、 凹凸棒石、 蒙脱石、 累脱石、 硅藻土、 埃洛石、 皂石、 硼润土、 水滑 石在内的粘土材料中的一种或几种的混合物。 其中优选高岭土、 偏高 岭土、 硅藻土、 海泡石、 凹凸棒石、 蒙脱石和累脱石中的一种或几种 的混合物。
所述无机氧化物粘结剂选自用作催化剂基盾和粘结剂组分的无机 氧化物中的一种或几种, 它们均为本领域技术人 所公知, 本发明对 其没有特别的限制, 包括拟薄水铝石、 铝溶胶、 硅铝溶胶、 水玻璃、 磷铝溶胶在内的一种或几种的混合物, 其中优选拟薄水铝石、 铝溶胶 和磷铝溶胶中的一种或几种的混合物。 当助剂中含有磷铝溶胶时, 碑 铝溶胶中磷的含量以五氧化二磷计、 计算归入所说磷添加剂的含量。
所说的催化剂可由沸石、 粘土、 无机氧化物粘结剂采用包括喷雾 干燥成型在内的现有裂化催化剂制备技术中的任何方法来制备, 本发 明对其没有特别的限制。
所述 VI I IB 族过渡金属添加剂以它们的氧化物、 磷酸盐、 亚磷酸 盐、 碱式磷酸盐、 酸式磷酸盐的形式存在。
所述过渡金属的各种无机化合物和有机化合物中的一种或几种, 可以是易溶于水的, 也可以是难溶于水或不溶于水的化合物。 过渡金 属化合物的实例包括过渡金属化合物的氧化物、 氢氧化物、 氯化物、 硝酸盐、 硫酸盐、 磷酸盐、 过渡金属的有机化合物等。 优选的过渡金 属化合物选自它们的氯化物、 硝酸盐、 硫酸盐和磷酸盐中的一种或几 种。
VI I IB 族过渡金属添加剂优选在催化剂制备过程的喷雾干燥成型 之前的任何步骤中往浆液中添加过渡金属化合物而引入; 当然也可以 在催化剂喷雾干燥成型之后通过浸渍或化学吸附过渡金属化合物后焙 烧而引入, 包括将催化剂用含过渡金属化合物的水溶液进行浸渍或化 学吸附处理, 然后进行固液分离 (如果需要的话) 、 干燥和焙烧, 其 中干燥的温度为室温至 400°C ,优选 100 ~ 300°C, 焙烧的温度为 400 ~ 700"C ,优选为 450 ~ 650Ό,焙烧时间为 0. 5 ~ 100小时,优选为 0. 5 ~ 10小时。
因此, 所述过渡金属添加剂可以存在于催化剂任何可能存在的位 置, 如可以存在于沸石的孔道内部、 沸石的表面, 可以存在于基盾材 料中, 还可以同时存在于沸石的孔道内部、 沸石的表面和所述基质材 料中, 优选是存在于基质材料中。
所说的催化剂中磷添加剂以磷化合物 (如碑的氧化物、 磷酸盐、 亚磷酸盐、 碱式磷酸盐、 酸式磷酸盐) 的形式存在。 所说的磷添加剂 可以采用下列方法之一或者几种方法的组合, 但并不局限于这些方法 引入催化剂中: 1. 在催化剂喷雾干燥成型之前往浆液中添加磷化合物;
2. 由无机氧化物粘结剂引入到催化剂中, 比如无机氧化物粘结 剂中含有磷铝溶胶时, 焙烧后催化剂中既带进了磷, 磷铝溶胶又可以 起到基质材料和粘结剂的作用, 这部分磷也属于本发明所述的磷添加 剂;
3. 在催化剂喷雾干燥成型之后经浸渍或化学吸附磷化合物, 经 固液分离 (如果需要的话) 、 干燥和焙烧过程引入, 所说干燥的温度 为室温至 400 , 优选 100~ 300°C, 焙烧的温度为 400 ~ 700°C, 优选 为 450 ~ 650°C, 焙烧时间为 0.5 ~ 100小时, 优选为 0.5~ 10小时。
因而, 所述磷添加剂可以存在于催化剂任何可能存在的位置, 如 可以存在于沸石的孔道内部、 沸石的表面, 可以存在于所述基质材料 中, 还可以同时存在于沸石的孔道内部、 沸石的表面和所述基质材料 中。
所说的催化剂, 其制备方法中所述磷化合物选自磷的各种无机化 合物和有机化合物中的一种或几种。 所述磷化合物可以是易溶于水 的, 也可以是难溶于水或不溶于水的磷化合物。 磷化合物的实例包括 磷的氧化物、 磷酸、 磷酸盐、 亚磷酸盐、 次磷酸盐、 含碑的有机化合 物等。 优选的鱗化合物选自磷酸、 碑酸铵、 磷酸二氢铵、 磷酸氢二铵、 碑酸铝和磷铝溶胶中的一种或几种。
本发明还提供了采用上述催化剂的烃油裂化方法, 该方法是在烃 油裂化条件下, 将烃油与一种含有上述催化剂的催化剂混合物接触, 然后回收裂化产物。
本发明提供的裂化方法, 所述烃油与所述催化剂混合物的接触可 以在各种反应器中进行。 所述反应器形式可以是提升管反应器、 固定 床反应器、 流化床反应器或移动床反应器, 优选情况下所述反应器为 提升管反应器。
所述接触条件包括接触温度为 400 - 650TC、 优选为 420 ~ 600°C, 剂油比 (催化剂与烃油的重量比) 为 1 ~ 25、 优选为 3~ 20。
对于固定床反应器、 流化床反应器或移动床反应器来说, 所述接 触条件还包括重时空速为 10 ~ 120 小时— 优选为 15~ 80 小时— ^ 而 对于提升管反应器来说, 所述接触奈件还包括反应时间为 0.5~ 15秒、 优选为 0.5~10秒。 本发明提供的裂化方法中, 所述含有上述催化剂的催化剂混合物 主要由主裂化催化剂和上述催化剂组成, 各自的含量为本领域技术人 员所公知。 一般来说, 在该催化剂混合物中, 主裂化催化剂的含量为
70 ~ 99重%、 优选为 80 ~ 95重%, 本发明提供的催化剂的含量为 1 ~ 30重%、 优选为 3 ~ 20重%。
所述催化剂混合物中, 主裂化催化剂的种类和组成为本领域技术 人员所公知, 可以是各种裂化催化剂, 如各种含有沸石的裂化催化剂。
本发明提供的裂化方法中, 所述烃油选自各种石油馏分, 如原油、 常压渣油、 减压渣油、 常压蜡油、 减压蜡油、 直镏蜡油, 丙烷轻 /重 脱油、 焦化蜡油和煤液化产物中的一种或几种。 所述烃油可以含有镍、 钒等重金属杂质及硫、 氮杂质, 如硫的含量可高达 3. 0 重% , 氮的含 量可高达 2. 0重%, 钒、 镍等金属杂盾的含量高达 3000ppm。
本发明提供的裂化方法中, 所述催化剂混合物可以一次性使用, 但是, 优选情况下, 将所述催化剂混合物再生并循环使用。 所述催化 剂混合物的再生就是在含氧气氛 (一般为空气) 中, 将催化剂混合物 中的焦炭烧掉的过程, 该过程是本领域技术人 公知的常识。 例如, 一般来说, 所述再生温度为 600 ~ 77 (TC, 优选 650 ~ 730 °C。 当所述 烃油与催化剂混合物的接触在固定床反应器、 流化床反应器或移动床 反应器中进行时, 可以在原位通入含氧气氛再生。 当所述烃油与催化 剂混合物的接触在提升管反应器中进行时, 可以直接利用现有的反应 -再生系统来完成。 在 《渣油加工工艺》 (李春年编著, 中国石化出 版社 2002 年出版) 中, 笫 282 ~ 338 页对现有的催化裂化反应 -再生 系统和再生器进行了综述。
本发明提供的催化剂加入适量 VI I IB族过渡金属添加剂和适量的 磷添加剂, 特别是同时以改性的 ZSM-5 分子筛为活性组分的样品, 可 以提高了催化裂化反应过程中对于丙烯的选择性, 从而显箸地提高催 化裂化液化气中的丙烯浓度, 例如, 产物丙烯含量增加 0. 76-4. 05 个 百分点 (表 3、 4、 5 ) , 液化气中丙烯浓度提高到 35. 70以上。
附图说明
图 1-图 5为实施例和对比例制备的催化剂和对比催化剂的 XRD谱 图。 具体实施方式
下面的实施例将对本发明作进一步地说明, 但并不因此而限制本 发明的内容。
实施例和对比例中, Ai - Ag ^个改性 ZSM - 5 分子筛样品由 CN1465527A所公开的方法制备, 其无水化学表达式是用 X射线荧光光 谱法测定分子筛的元素组成, 再经换算得到的。
样品 A : 0. 04Na20 · 3. 57A1203 · 4. 0P205 ' 2. 4Fe203 · 90. 49S i02。 样品 A2: 0. lNa20 - 5. 0Al2O3 - 2. 0P205 · 0. 9Fe203 · 92Si02
样品 A3: 0. lNa20 · 5· 3A1203 · 1. 5P205 · 1. lFe203 · 92Si02
样品 A4: 0. 03Na20 · 2. 2A1203 · 4. 9P205 . 2. lFe203 · 90. 8Si02。 样品 A5: 0. lNa20 · 0. 94A1203 · 5. 1P205 · 10. lFe203 · 84Si02
样品 A6: 0. 03Na2O - 5. 1A1203 - 4. 8P205 - 3. 6Co203 · 86. 5Si02。 样品 A7: 0. lNa20 - 4. 6A1203 · 6. 9P205 - 6. 4Ni203 · 82Si02
样品 A8: 0. lNa20 · 5. 2A1203 ' 4. 5P205■ 2. 0Ni2O3 - 88. 2Si02。 拟薄水铝石为山东铝厂生产工业产品, 固含量 60 重%; 铝溶胶 为齐鲁石化催化剂厂生产的工业产品, A1203含量为 21. 5 重%; 水玻 璃为齐鲁石化催化剂厂生产的工业产品, S i02含量 28. 9 重%, Na20 含量 8. 9%; 高岭土为苏州高岭土公司生产的裂化催化剂专用高岭土, 固含量 78重%; ZRP-5沸石为齐鲁石化催化剂厂生产的常规 MFI结构 沸石的工业产品, 其中 P205 2. 5重%, 结晶度 85重%, 硅铝比 50。
实施例和对比例中, 所说的催化剂样品的 XRD谱图的测试方法为: 分析仪器为日本理学 D/MAX- ΙΠΑ 型 X射线衍射仪。 催化剂物相 测试条件: Cu耙 K ct辐射, Ni滤光片, 电压 40kV、 电流 40mA、 狭缝 2mm/2mm/0. 2mm 步长 0. 02 s tep t ime ls。
实施例 1 ~ 19说明本发明提供的方法中所说的催化剂的制备。 实施例 1
磷铝溶胶制备: 将 1. 05公斤拟薄水铝石 (干基) 与 3. 35公斤去 阳离子水打浆 30分钟, 搅拌下往浆液中加入 4. 9 公斤浓磷酸(化学 纯, 含癬酸 85重% ) , 升温至 70 , 然后在此温度下反应 45分钟, 制成无色透明的磷铝溶胶。 其中 Ρ205 30. 6重量%, Α1203 10. 5重量%, ΡΗ = 1. 7。
取 1. 75公斤 (干基) 、 1. 4公斤 (干基) 高岭土和 0. 65公斤 (干基)拟薄水铝石, 加入 6. 2 公斤脱阳离子水和 2. 79公斤铝溶胶 打浆 120分钟, 搅拌下加入 1升 FeCl3. 6H20的水溶液(其中含 100克 Fe203 ) , 浆液的 PH值 3. 0。 将混合物继续打浆 45分种, 然后往混合 浆液中加入 1. 22 公斤磷铝溶胶, 搅拌均勾后, 将得到的浆液在入口 温度 50(TC, 尾气温度 180 Ό的条件下进行喷雾干燥, 得到平均颗粒 直径为 65微米的微球。 将微球于 500 Ό下焙烧 1 小时, 制得含 35重 o/o Ap 28重%高冷土、 27. 5重%人1203、 2. 0重%?6添加剂 (以 Fe203 计)和 7. 5重%磷添加剂 (以 P205计 ) 的催化剂 7^。
该催化剂的 XRD奄图见图 1 的曲线 a, 其中 2 Θ = 16. 35° , 2 Θ
= 26. 12。 和 2 Θ = 30. 94。 处的衍射峰为 FePO物种特征峰。
实施例 2
取 1. 84公斤 (干基) 、 1. 33公斤 (干基) 高岭土和 0. 98公斤 (干基)拟薄水铝石, 加入 7. 2公斤脱阳离子水和 2. 79公斤铝溶胶 打浆 120分钟, 搅拌下加入 1升 FeCl3. 6H20的水溶液(其中含 250克 Fe203 ) , 浆液的 PH值 3. 0。 将混合物继续打浆 45分种, 然后将得到 的浆液在入口温度 500 V , 尾气温度 180 °C的条件下进行喷雾干燥, 得到平均颗粒直径为 65微米的微球。 将微球于 500 Ό下焙烧 1小时, 制得含 36. 8重。/^ 26. 6重%高岭土和 31. 6重%人1203和 5. 0重%?6 添加剂 (以 Fe203计) 的微球。
取所得微球产物 1 公斤 (干基) , 加入 10 升脱阳离子水和 100 克磷酸氢二铵, 搅拌下升温至 60 °C, 在此温度下反应 20分钟后, 将 浆液真空过滤、 干燥, 然后于 50ITC下焙烧 2小时, 制得含 35重。/^^ 25. 3重%高冷土、 30重%人1203、 4· 7重%Fe添加剂 (以 Fe203计) , 5重%磷添加剂 (以 P205计 ) 的催化剂 ZJ2
该催化剂的 XRD谱图见图 2 的曲线 e, 其中 2 Θ = 16. 37。 , 2 Θ = 26. 22° 和 2 Θ = 30. 90° 处的衍射峰为 FePO物种特征峰。
实施例 3
取 1. 94公斤 (干基) 和 1. 91公斤 (干基 )拟薄水铝石, 加入 7. 2公斤脱阳离子水和 2. 79公斤铝溶胶打浆 120分钟, 搅拌下加入 1 升 FeCl3. 6H20的水溶液(其中含 550克 Fe203 ), 浆液的 PH值 3. 0。 将混合物继续打浆 45分种, 然后将得到的浆液在入口温度 500Ό , 尾 气温度 180 °C的条件下进行喷雾干燥, 得到平均颗粒直径为 65微米的 微球。 将微球于 500Ό下焙烧 1 小时, 制得含 38.8重°/^1、 50.2 重 %A1203和 11重% 添加剂 (以 Fe203计) 的微球。
取所得微球产物 1公斤 (干基) , 加入 10 升脱阳离子水和 210 克磷酸氢二铵, 搅拌下升温至 60Ό, 在此温度下反应 20分钟后, 将 浆液真空过滤、 干燥, 然后于 500°C下焙烧 2小时, 制得含 35重。/^^ 45.1 ί %A1203, 9.9重。/^6添加剂 (以 Fe203计)和 10重%磷添加 剂 (以 P205计) 的催化剂 ZJ3
该催化剂的 XRD潘图见图 1 的曲线 f, 其中 2 Θ =16.25。 , 2 Θ = 26.18。 和 2 Θ = 30.87。 处的衍射峰为 FePO物种特征峰。
实施例 4
制备方法同实施例 1,不同的是,高岭土用量为 1.25公斤(干基), 并用 1升 Co(N03)2.6H20水溶液(含 250克 CoO)代替 FeCl3.6H20水溶 液, 制得含? 重^ ^ 25重%高岭土、 27.5重% 1203、 5重%(0添 加剂 (以 CoO计)和 7· 5重%碑添加剂 (以 Ρ205计) 的催化剂 ZJ4
实施例 5
制备方法同实施例 1,不同的是,高岭土用量为 1.25公斤(干基), 并用 1升 Ni(N03)2.6H20水溶液 (含 250克 NiO)代替 FeCl3.6H20水溶 液, 制得含 35重% 、 25重%高岭土、 27.5重% 1203、 5 ¾%Ni添 加剂 (以 NiO计)和不包括改性 MFI沸石中所含磷在内的 7.5重%磷 添加剂 (以 P205计) 的催化剂 ZJ5
实施例 6
取 ZJ^助剂 1公斤 (干基) , 加入 10升脱阳离子水和 157克磷酸 氢二铵, 搅拌下升温至 60Ό, 在此温度下反应 20 分钟后, 将浆液真 空过滤、干燥,然后于 500Ό下焙烧 2小时,制得含 32.38重。/^^ 25.9 重%高冷土、25· 重%人1203、1.85重%?6添加剂(以 Fe203计)和 14.47 重%磷添加剂 (以 P205计) 的催化剂 ZJfi
该催化剂的 XRD谱图见图 2 的曲线 g, 其中 2 Θ = 16.42° , 2 Θ = 26.08。 和 2 Θ = 30.97° 处的衍射峰为 FePO物种特征峰。
实施例 7
取 1.75公斤 (干基) A" 1公斤 (干基) 高岭土和 3.46公斤水 玻璃,加入 5公斤脱阳离子水打浆 120分钟,搅拌下加入 1升 FeCl3.6H20 的水溶液(其中含 750克 Fe203 ) , 浆液的 PH值 3.0。 将混合物继续 打浆 45分种, 然后往混合浆液中加入 1· 22公斤磷铝溶胶, 搅拌均匀 后, 将得到的浆液在入口温度 500Ό, 尾气温度 180°C的条件下进行 喷雾干燥, 得到平均颗粒直径为 65微米的微球。 将微球于 400Ό下焙 烧 1小时。
取上述焙烧后的微球 1公斤(干基),加入 10升脱阳离子水和 100 克氯化铵, 搅拌下升温至 60Ό, 在此温度下洗涤 20 分钟后, 将浆液 真空过滤。 按以上相同的方法将滤饼重新洗涤一次, 于 1201C温度下 烘干, 制得含 35重% 1、 20重%高岭土、 2.5重% 1203、 20重%8102、 15重%?6添加剂 (以 Fe203计)和 7.5重%磷添加剂 (以 P205计) 的 催化剂 ZJ7
该催化剂的 XRD i普图见图 2 的曲线 h, 其中 2 Θ = 16.35° , 2 Θ = 26.07° 和 2 Θ = 30.88° 处的衍射峰为 FePO物种特征峰。
实施例 8
按实施例 1的方法制备催化剂, 不同是 1的重量为 2.25公斤(干 基) , 高岭土的重量为 0.9公斤 (干基) , 制得含 45 重。/^^ 18 重 %高冷土、 27.5重%人1203、 2重。/^6添加剂 (以 Fe203计)和 7.5重 %磷添加剂 (以 P205计) 的催化剂 ZJS
该催化剂的 XRD语图见图 3 的曲线 i, 其中 2 Θ = 16.38。 , 2 Θ = 26.20° 和 2 Θ = 30.91° 处的衍射峰为 FePO物种特征峰。
实施例 9
取 1公斤 (干基) 、 1.85公斤 (干基) 高岭土和 0.9公斤 (干 基)拟薄水铝石,加入 7.2公斤脱阳离子水和 2.79公斤铝溶胶打浆 120 分钟, 搅拌下加入 1升 FeCl3.6H20的水溶液(其中含 400克 Fe203 ) , 浆液的 PH值 3.0盐酸的用量使得浆液的 PH值 3.0。 将混合物继续打 浆 30分种, 加入 465克磷酸氢二铵, 再打浆 30分钟, 然后将得到的 浆液在入口温度 500*C, 尾气温度 180Ό的条件下进行喷雾干燥, 得 到平均颗粒直径为 65微米的微球。 将微球于 500°C下焙烧 1小时, 制 得含 20重% 、 37重%高冷土、 30重%人1203、 8重。/^6添加剂 (以 Fe203计)和 5重%磷添加剂 (以 P205计) 的催化剂 ZJ9
该催化剂的 XRD潘图见图 3 的曲线 j, 其中 2 Θ = 16.35。 , 2 Θ = 26.07° 和 2 Θ = 30.82° 处的衍射峰为 FePO物种特征峰 实施例 10
按实施例 9的方法制备催化剂, 不同是用相同重量的 A2代替 Ap 制得含 20重% 2、 37重%高岭土、 30重%人1203、 8重%?6添加剂(以 Fe203计 )和 5重%磷添加剂 (以 P205计 ) 的催化剂 ZJ10
该催化剂的 XRD谱图见图 3曲线 k , 其中 2 Θ = 16. 32。 , 2 Θ = 2
5. 97° 和 2 Θ = 30. 90° 处的衍射峰为 FePO物种特征峰。
实施例 11
取 1. 25公斤 (干基) A3、 1公斤 (干基) 高岭土和 1· 65公斤 (干 基)拟薄水铝石,加入 7. 2公斤脱阳离子水和 2. 79公斤铝溶胶打浆 120 分钟, 搅拌下加入 1升 FeC l3. 6H20的水溶液(其中含 250克 Fe203 ) , 浆液的 PH值 3. 0盐酸的用量使得浆液的 PH值 3. 0。 将混合物继续打 浆 30分种, 加入 465克磷酸氢二铵, 再打浆 30分钟, 然后将得到的 浆液在入口温度 500 °C, 尾气温度 180 °C的条件下进行喷雾干燥, 得 到平均颗粒直径为 65微米的微球。 将微球于 500 °C下焙烧 1小时, 制 得含 25重% 3、 20重%高岭土、 45重% 1203、 5重。/^6添加剂 (以 Fe203计)和 5重%磷添加剂 (以 P205计 ) 的催化剂 ZJU
该催化剂的 XRD谱图见图 3曲线 1 , 其中 2 Θ = 16. 31。 , 2 Θ = 2
6. 06° 和 2 Θ = 30. 92° 处的衍射峰为 FePO物种特征。
实施例 12
取 2公斤 (干基) A4、 0. 75公斤 (干基) 高岭土和 1. 15公斤 (干 基)拟薄水铝石,加入 7. 2公斤脱阳离子水和 2. 79公斤铝溶胶打浆 120 分钟, 搅拌下加入 1升 FeC l3. 6H20的水溶液(其中含 250克 Fe203 ) , 浆液的 PH值 3. 0盐酸的用量使得浆液的 PH值 3. 0。 将混合物继续打 浆 30分种, 加入 465克磷酸氢二铵, 再打浆 30分钟, 然后将得到的 浆液在入口温度 尾气温度 180 Ό的条件下进行喷雾干燥, 得 到平均颗粒直径为 65微米的微球。 将微球于 50(TC下焙烧 1小时, 制 得含 40重% 4、 15重%高岭土、 35重% 1203、 5重。/^6添加剂 (以 Fe203计)和 5重%磷添加剂 (以 P205计 ) 的催化剂 ZJ12
该催化剂的 XRD醤图见图 4曲线 m, 其中 2 Θ = 16. 38 ° , 2 Θ = 2 6. 02° 和 2 Θ = 30. 91。 处的衍射峰为 FePO物种特征峰。
实施例 13
2. 89公斤(干基) A5和 1. 4公斤(干基 )拟薄水铝石,加入 7. 2 公斤脱阳离子水和 2. 79公斤铝溶胶打浆 120分钟, 搅拌下加入 1升 FeCl3. 6H20的水溶液(其中含 105. 5克 Fe203 ) , 浆液的 PH值 3. 0。 将混合物继续打浆 45分种, 然后将得到的浆液在入口温度 500 Ό , 尾 气温度 180 Ό的条件下进行喷雾干燥, 得到平均颗粒直径为 65微米的 微球。将微球于 500 下焙烧 1小时,制得含 57. 89重%人8、40重% 1203 和 2· l l重%Fe添加剂 (以 Fe203计) 的微球。
取所得微球产物 1 公斤 (干基) , 加入 10 升脱阳离子水和 210 克磷酸氢二铵, 搅拌下升温至 60 °C, 在此温度下反应 20分钟后, 将 浆液真空过滤、 干燥, 然后于 500 °C下焙烧 2小时, 制得含 55重%人5、 38重%人1203、 2重%?6添加剂 (以 Fe203计)和 5重%磷添加剂 (以 P205计) 的催化剂 ZJ13
该催化剂的 XRD谱图见图 4曲线 n, 其中 2 Θ = 16. 31° , 2 Θ = 2 6. 09。 和 2 Θ = 30. 80。 处的衍射峰为 FePO物种特征峰。
实施例 14
取 1. 5公斤 (干基) A6、 1. 5公斤 (干基) 高岭土和 0· 9公斤 (干 基)拟薄水铝石,加入 6. 2公斤脱阳离子水和 2. 79公斤铝溶胶打浆 120 分钟, 搅拌下加入 1升 FeCl3. 6H20的水溶液(其中含 125克 Fe203 ) , 浆液的 PH值 3. 0。 将混合物继续打浆 45分种, 然后往混合浆液中加 入 1. 22公斤磷铝溶胶,搅拌均匀后,将得到的浆液在入口温度 500 Ό , 尾气温度 18 (TC的条件下进行喷雾干燥, 得到平均颗粒直径为 65微米 的微球。 将微球于 500 °C下焙烧 1小时, 制得含 30重%人6、 30重%高 岭土、 30重% 1203、 2. 5重°/^6添加剂 (以 Fe203计)和 7. 5重%磷 添加剂 (以 P205计 ) 的催化剂 ZJ^
该催化剂的 XRD谱图见图 4曲线 0 , 其中 2 Θ = 16. 30° , 2 Θ = 2 6. 12。 和 2 Θ = 30. 92。 处的衍射峰为 FePO物种特征峰。
实施例 15
取 1. 25公斤 (干基) A7、 1公斤 (干基) 高岭土和 1. 65公斤 (干 基)拟薄水铝石,加入 7. 2公斤脱阳离子水和 2. 79公斤铝溶胶打浆 120 分钟, 搅拌下加入 1升 FeCl3. 6H20的水溶液(其中含 250克 Fe203 ) , 浆液的 PH值 3. 0盐酸的用量使得浆液的 PH值 3. 0。 将混合物继续打 浆 30分种, 加入 465克磷酸氢二铵, 再打浆 30分钟, 然后将得到的 浆液在入口温度 500 Ό , 尾气温度 180 Ό的奈件下进行喷雾干燥, 得 到平均颗粒直径为 65微米的微球。 将微球于 500 下焙烧 1小时, 制 得含 25重% 7、 20重%高呤土、 45重% 1203、 5重
Figure imgf000016_0001
添加剂 (以 Fe203计 )和 5重%磷添加剂 (以 P205计 ) 的催化剂 ZJ15
该催化剂的 XRD 图见图 4曲线 p, 其中 2 Θ = 16.30° , 2 Θ = 2 6.12。 和 2 Θ = 30.99。 处的衍射峰为 FePO物种特征峰。
实施例 16
取 2.5公斤(干基)人8和1.63公斤(干基)拟薄水铝石,加入 7.2 公斤脱阳离子水和 2.79公斤铝溶胶打浆 120分钟, 搅拌下加入 1升 FeCl3.6H20的水溶液(其中含 270克 Fe203 ) , 浆液的 PH值 3· 0。 将 混合物继续打浆 45分种, 然后将得到的浆液在入口温度 50(TC, 尾气 温度 180TC的条件下进行喷雾干燥, 得到平均颗粒直径为 65微米的微 球。 将微球于 500°C下焙烧 1小时, 制得含 50重% 8、 44.6重% 1203 和 5.4重%Fe添加剂 (以 Fe203计) 的微球。
取所得微球产物 1 公斤 (干基) , 加入 10 升脱阳离子水和 210 克磷酸氢二铵, 搅拌下升温至 60°C, 在此温度下反应 20 分钟后, 将 浆液真空过滤、 干燥, 然后于 50(TC下焙烧 2小时, 制得含 45重% 8、 40.1重%人1203、 4.9 重%?6添加剂 (以 Fe203计)和 10重%磷添加 剂 (以 P205计) 的催化剂 ZJlfi
该催化剂的 XRD谱图见图 5曲线 q, 其中 2 Θ = 16.38。 , 2 Θ = 2 6.17° 和 2 Θ = 30.93° 处的衍射峰为 FePO物种特征峰。
实施例 17
按实施例 1的方法制备催化剂, 不同是用相同重量的 A3代替 A15 制得含 35重% 3、 28重%高岭土、 27.5重%人1203、 2.0重。/^6添加 剂 (以 Fe203计)和 7· 5重%磷添加剂 (以 P205 i†)的催化剂 ZJ17
该催化剂的 XRD潘图见图 5曲线 r, 其中 2 Θ = 16.25。 , 2 Θ = 2
6.12。 和 2 Θ = 30.92。 处的衍射峰为 FePO物种特征峰
实施例 18
按实施例 1的方法制备催化剂, 不同是用相同重量的 A6代替 A15 制得含 35重% 6、 28重%高冷土、 27.5重% 1203、 2.0重
Figure imgf000016_0002
添加 剂 (以 Fe203计)和 7.5重%碑添加剂 (以 P205计)的催化剂 ZJ18
该催化剂的 XRD錯图见图 5曲线 s, 其中 2 Θ = 16.31。 , 2 Θ = 2 6.13。 和 2 Θ = 30.91。 处的衍射峰为 FePO物种特征峰 a。 实施例 19
按实施例 1的方法制备催化剂, 不同是用相同重量的 A8代替 制得含 35重% 8、 28重%高岭土、 27.5重。/ U1203、 2.0重。/^6添加 剂 (以 Fe203计)和 7.5重%磷添加剂 (以 P205计) 的催化剂 ZJ19
该催化剂的 XRD谱图见图 5曲线 t, 其中 2 Θ =16.45。 , 2 Θ = 2 6.12° 和 2 Θ = 30.92。 处的衍射峰为 FePO物种特征。
对比例 1 ~ 5说明参比催化剂的制备。
对比例 1
本对比例说明含改性 ZSM- 5 分子筛 (样品 、 磷添加剂, 不 含 VIIIB金属添加剂的参比催化剂的制备。
取 1.75公斤 (干基) 、 1.5公斤 (干基) 高岭土和 0· 65公斤 (干基)拟薄水铝石, 加入 7.2公斤脱阳离子水和 2.79公斤铝溶胶 打浆 120分钟, 搅拌下加入浓度为 36 重%的盐酸, 盐酸的用量使得 浆液的 PH值 3.0。 将混合物继续打浆 45分种, 然后往混合浆液中加 入 1.22公斤磷铝溶胶,搅拌均勾后,将得到的浆液在入口温度 500°C, 尾气温度 180Ό的条件下进行喷雾干燥, 得到平均颗粒直径为 65微米 的微球。 将微球于 500°C下焙烧 1小时, 制得含 35重。/ ^ 30重%高 岭土、 27.5重% 1203和 7.5 重%磷添加剂 (以 P205计) 的参比催化 剂 CB
该催化剂的 XRD谱图见图 1 曲线 c, 其中 2 Θ = 18.50° ~23.65 ° 处的弥散衍射峰为 A1P04物种特征峰。
对比例 2
本对比例说明含改性 ZSM- 5分子筛 (样品 、 不含 VIIIB金 属添加剂和碑添加剂的参比催化剂的制备。
取 1.75公斤 (干基) A 1.5公斤 (干基) 高岭土和 1· 15公斤 (干基)拟薄水铝石, 加入 7.2公斤脱阳离子水和 2.79公斤铝溶胶 打浆 120分钟, 搅拌下加入浓度为 36 重%的盐酸, 盐酸的用量使得 浆液的 PH值 3.0。 将混^ ^物继续打浆 45分种。 然后将得到的浆液在 入口温度 500Ό, 尾气温度 180°C的条件下进行喷雾干燥, 得到平均 颗粒直径为 65微米的微球。 将微球于 500Ό下焙烧 1小时, 制得含 35 重。/^^ 30重%高岭土和35重°/^1203的参比催化剂 CB2
该催化剂的 XRD谱图见图 1的曲线 d。 对比例 3
本对比例说明常规 ZRP - 5沸石的参比催化剂的制备。
按对比例 2的方法制备催化剂, 不同是用同样重量的 ZRP-5沸石 取代 制得含 35重% ZRP- 5沸石, 30重%高岭土和 35重%人1203的 参比催化剂 CB3
对比例 4
本对比例说明常规 ZRP - 5沸石和磷添加剂的参比催化剂的制备。 按实施例 1 的方法制备助剂, 不同是用同样重量的 ZRP-5沸石取 代 A15 制得含 35重% ZRP-5沸石, 30重%高岭土和 35重%人1203和不 包括 ZRP-5沸石中所含磷在内的 5重%磷添加剂的参比催化剂 CB4
对比例 5
本对比例说明以改性 ZSM- 5分子筛 (样品 、 VII IB金属添加 剂, 而不含磷添加剂的参比催化剂的制备。
取 1.75公斤(干基) A" I· 5公斤(干基)高岭土和 0.9公斤(干 基)拟薄水铝石,加入 6.2公斤脱阳离子水和 2.79公斤铝溶胶打浆 120 分钟, 搅拌下加入 1升 FeCl3.6H20的水溶液(其中含 250克 Fe203 ) , 浆液的 PH值 3.0。 将混合物继续打浆 45分种, 将得到的浆液在入口 温度 500°C, 尾气温度 的条件下进行喷雾干燥, 得到平均颗粒 直径为 65微米的微球。 将微球于 500°C下焙烧 1 小时, 制得含 35重 ο/οΑ 30重%高岭土、 30 ΐ%Α1203、 5重°/^6添加剂 (以 Fe203计) 的参比催化剂 CB5
该催化剂的 XRD谱图见图 1 曲线 b, 2 Θ = 24.11° , 2 Θ = 33.08 。 , 2 Θ = 35.58° 和 26 = 49.40° 处的衍射峰为 Fe203物种特征峰。
实施例 20~ 38
实施例 20 ~ 38说明固定流化床反应器中本发明提供的方法。
分别将 30克 ZJf ZJ19在 800Ό、 100%水蒸气气氛条件下进行 8 小时的老化处理。 取不同量的经老化处理的 ZJf 2 19与不同量的工业 FCC平衡催化剂 (工业牌号为 MLC- 500的 FCC平衡催化剂, 主要性质 见表 1 )进行混合。 将催化剂混合物装入小型固定流化床反应装置的 反应器中, 对表 2所示原料油油进行催化裂化(原料油性质见表 2) 。
表 3、 表 4和表 5给出了所用催化剂混合物组成, 反应条件和反 应结果。 对比例 6~11
对比例 6 ~ 11说明固定流化床反应器的对比方法。
按实施例 20 中的方法对同样的原料油进行催化裂化, 不同的是 所用催化剂分别为 100%工业 FCC 平衡催化剂、 CB -CBs与工业 FCC 平衡催化剂的混合物。 表 3给出了对比方法中所用催化剂混合物组成, 反应条件和反应结果。
Figure imgf000019_0001
表 2
原料油名称 管输蜡油掺渣油
密度(20Ό ) , 克 /厘米 3 0.9070
粘度(100Ό ),亳米 2/秒 10.41
凝固点, °C 40
残炭, 重量% 3.1
元素组成, 重量%
C/H 86.39/12.53
S/N 0.8/0.29
四组分, 重量。 /0
饱和烃 56.8
芳 烃 24.2
胶 质 18.2
沥青质 0.8
金属含量, pm
V Ni 0.8/7.0
Fe/ Cu 7.8/0.1
Na 2.6
馏程, 。C
初馏点 /5% 241/309
10%/ 20% 343/387
30%/40% 413/432
50%/ 60% 450/466
70%/ 80% 493/535 从表 3、 表 4和表 5 可以看出, 与使用参比催化剂的方法相比, 本发明提供的方法,不仅能有效地增加催化裂化液化气产率, 提高催 化裂化汽油的辛烷值, 同时还能显著地提高催化裂化液化气中的丙埽 浓度。 表 3
实施例编号 对比例 6 20 对比例 7 21 对比例 8 对比例 9 对比例 10 对比例 11
100% 10%ZJ!+ 10%CB1+ 10%ZJ2+ 10%CB2+ 10%CB3+ 10%CB4+ 10%CB4+ 催化剂
平衡剂 90%平翻 90%平衡剂 90%平衡剂 90%平衡剂 90%平衡剂 90%平衡剂 90%平衡剂 反应温度, 。C 500 500 500 500 500 500 500 500 空速,小时— 1 16 16 16 16 16 16 16 16 剂油重量比 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92 水蒸气(对原料
0 0 0 0 0 0 0 0
油),重%
物料平衡,重%:
干气 1.60 1.59 1.47 1.58 1.70 1.60 1.56 2.10 液化气 18.04 23.21 20.58 23.54 21.37 21.03 20.76 21.29 c5+汽油 43.13 37.30 40.09 38.36 39.55 39.88 39.78 38.60 柴油 17.17 17.84 17.46 17.63 17.10 17.04 17.11 17.18 重油 13.61 13.96 14.83 13.25 13.77 14.34 14.60 13.82 焦炭 6.45 6.10 5.57 5.64 6.51 6.12 6.19 7.01 转化率,重% 69.23 68.20 67.71 69.11 69.13 68.62 68.30 69.00 液收,重% 78.34 78.36 78.13 79.53 78.02 77.95 77.65 77.07 丙烯,重% 5.07 8.41 7.14 8.57 6.87 6.65 6.77 6.91 丙烯 /液化气 28.13 36.23 34.69 36.41 32.16 31.64 32.62 32.47
汽油组成,重%
烷 烃 33. 59 26. 39 31. 33 26. 10 29. 69 30. 56 29. 78 29. 58 烯 烃 23. 89 26. 35 24. 86 25. 27 25. 4 24. 54 24. 93 25. 51 环烷烃 8. 26 8. 99 7. 98 9. 22 8. 2 8. 26 8. 5 8. 33 芳 烃 34. 08 38. 27 35. 66 39. 39 36. 48 36. 38 36. 44 36. 35
RON (色谱法) 87. 1 89. 4 89. 8 89. 5 89. 2 88. 9 89. 0 89. 4
M0N (色谱法) 82. 0 82. 6 82. 7 82. 6 82. 7 82. 7 82. 7 82. 8
ο
表 4
实施例编号 22 23 24 25 26 77 28 29
10%ZJ3+ 10%ZJ4+ 10%ZJ5+ 12%ZJ6+ 10%ZJ7+ 8%ZJ8+ 15%ZJ9+ 15%ZJ10+ 催化剂
90%平衡剂 90%平衡剂 90%平衡剂 88%平衡剂 90%平衡剂 92%平衡剂 85%平衡剂 85%平衡剂 反应温度, °C 500 500 500 500 500 500 500 500 空速,小时— 1 16 16 16 16 16 16 16 16 剂油重量比 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92 水蒸气(对原料
0 0 0 0 0 0 0 0 油),重%
物料平衡,重%:
干气 1.60 1.62 1.45 1.56 1.52 1.41 1.69 1.71 液化气 23.46 24.22 23.58 25.28 22.18 22.26 24.49 23.73
C5 +汽油 38.54 38.75 37.61 36.65 39.78 39.26 35.50 36.16 柴油 17.49 16.89 17.82 17.31 17.38 17.67 18.55 18.29 重油 13.14 12.45 13.89 13.41 13.39 13.59 13.59 14.02 焦炭 5.77 6.06 5.65 5.79 5.74 5.80 6.19 6.09 转化率,重% 69.37 70.66 68.29 . 69.28 69.23 68.74 67.87 67.69 液收,重% 79.48 79.86 79.01 79.24 79.35 79.20 78.54 78.18 丙烯,重% 8.47 8.66 8.44 9.12 8.07 7.90 9.05 8.53 丙烯 /液化气 36.11 35.74 35.79 36.09 36.39 35.49 36.94 35.94
汽油组成,重°/。
烷 烃 25. 85 25. 06 24. 87 26. 37 26. 85 24. 26 28. 07 28. 36 烯 烃 23. 22 26. 1 26. 93 26. 08 23. 73 23. 92 27. 19 27. 20 环烷烃 8. 62 8. 64 8. 85 8. 53 8. 63 8. 54 8. 66 8. 28 芳 烃 42. 14 40 39. 36 39. 02 40. 67 41. 23 36. 09 36. 17
RON- GC (色谱法) 90. 0 89. 9 89. 5 89. 6 89. 9 89. 5 89. 7 89. 6
M0N- GC (色谱法) 82. 7 82. 8 82. 6 82. 8 82. 8 82. 7 82. 7 82. 5
实施例编号 30 31 32 33 34 35 36 37 38
12%ZJU+ 10%ZJ12+ 6%ZJ13+ 10%ZJ14+ 12%ZJ15+ 4%ZJ16+ 8%ZJ17+ 8 %ZJ18+ 6%ZJ19+ 催化剂
88%平衡剂 90%平衡剂 94%平衡剂 90%平衡剂 88%平衡剂 96%平衡剂 92%平衡剂 92%平衡剂 92%平衡剂 反应温度' °C 500 500 510 500 490 520 490 500 520 空速,小时 _1 16 16 10 16 20 10 20 30 10 剂油重量比 5.0 4.5 7.0 5.92 5.0 6.5 5.5 7.0 6.5 氷蒸气(对原料
5 5 5 5 5 10 10 10 10 油),重%
液化气,重% 23.41 23.06 24.62 22.78 23.78 22.38 22.56 24.19 23.56 丙烯,重% 8.41 8.33 9.03 8.15 8.58 7.99 8.06 8.79 8.49 丙烯 /液化气 35.91 36.12 36.68 35.79 36.09 35.70 35.71 36.34 36.04 汽油烯烃,重。 /» 23.82 23.42 26.1 26.91 26.18 23.61 23.81 27.25 27.81
RON- GC (色谱法) 90.1 90.1 89.9 89.7 89.6 89.8 89.5 89.8 89.7
MON- GC (色谱法) 82.8 82.5 82.8 82.6 82.7 82.7 82.6 82.8 · 82.7
实例 39 - 47
实施例 39 ~ 47说明提升管反应器中本发明提供的方法。
分别将 ZJfZJ^ ZJ10、 ZJn , ZJ14、 2 6在 8001、 100 %水蒸气气 氛条件下进行 8小时的老化处理。 分别取不同量的经老化处理的 ZJf ZJ5、 ZJ10, ZJn. ZJ14、 ∑ 16与 MLC- 500 工业平衡催化剂进行混合。 将 催化剂混合物连续通入小型催化裂化提升管反应器, 同时连续通入表 2 所示原料油或表 2 所示原料油和水蒸气, 使所述减压蜡油与催化剂 混合物接触, 将催化剂和反应产物分离, 分离出的催化剂进入再生器 再生, 再生后的催化剂循环回提升管反应器。 表 6和表 7给出了所用 催化剂混合物组成 (均为百分重量) , 反应条件和反应结果。
对比例 12-16
对比例 12- 16说明提升管反应器中, 说明使用参比催化剂的对比 方法。
按实施例 39 中的方法对同样的原料油进行催化裂化, 不同的是 所用催化剂混合物分别用 100 %工业 FCC平衡催化剂、 与工业 FCC 平衡催化剂的混合物、 CB2与工业 FCC平衡催化剂的混合物、 83与工 业 FCC平衡催化剂的混合物和 CB4与工业 FCC平衡催化剂的混合物代 替。 表 6 给出了对比方法中所用催化剂混合物组成, 反应条件和反应 结果。
表 6和表 7结果进一步表明, 与使用参比催化剂的对比方法相比, 本发明提供的方法,不仅能有效地增加催化裂化液化气产率, 提高催 化裂化汽油的辛烷值, 同时还能明显提高催化裂化液化气中的丙烯浓 度。
表 6
对比例
实施例编号 39 对比例 13 40 对比例 14 41 对比例 15 对比例 16
12
100 % 5 % Z 5 % CBX+ 5 % ZJ2+ 5 % CB2+ 5 % ZJ3+ 5 % CB3+ 5 % CB4+95 催化剂
平衡剂 95% 平衡剂 95% 平衡剂 95% 平衡剂 95% 平翻 95% 平衡剂 95% 平衡剂 平衡剂 反应时间, 秒 2. 8
再生温度, °c 670
反应温度, °C 500
剂油比 5. 0
水蒸气加入量 相当于所 料油的 10重量%
物料平衡,重量%
干 气 1. 73 1. 61 1. 78 1. 68 1. 70 1. 65 1. 76 1. 71 液化气 11. 95 17. 23 14. 71 17. 03 14. 27 16. 97 14. 03 14. 23 cs +汽油 45. 71 40. 29 42. 61 40. 46 42. 57 41. 25 42. 80 43. 16 柴 油 17. 09 17. 14 17. 31 17. 30 17. 83 17. 18 17. 88 17. 28 重 油 17. 49 17. 78 17. 58 17. 57 17. 53 16. 94 17. 51 17. 61 焦 炭 6. 03 5. 95 6. 01 5. 96 6. 10 6. 01 6. 02 6. 01 转化率,重量% 65. 42 65. 08 65. 11 65. 13 64. 64 65. 88 64. 61 65. 11 丙烯,重量% 3. 29 6. 49 5. 00 6. 60 4. 56 6. 30 4. 11 4. 47
ΙΟΟχ丙烯 /液化气 27. 55 37. 65 33. 98 38. 76 31. 96 37. 13 29. 27 31. 40 汽油组成,重量%
Figure imgf000028_0001
表 7
实施例编号 42 43 44 45 46 47
5%ZJ4+ 5%ZJ5+ 12%ZJU+ 8%ZJ14+ 3%ZJ16+ 15%ZJ10+ 催化剂
95%平翻 95%平翻 88%平衡剂 92%平翻 97%平衡剂 85%平衡剂 反应时间, 秒 2.5 2.8 1.5 3.5 3.0 3.0 再生温度, °c 695 670 670 695 670 670 反应温度, °C 490 500 500 510 515 495 剂油比 6 5.0 4 5.5 5 6.5 水蒸气加入量 (相当
10 10 5 15 0 10 于原料油的重量% )
物料平衡, 重量%
干 气 1.69 1.63 1.71 1.70 1.82 1.89 液化气 18.75 17.01 21.18 19.15 15.83 22.07
。5 +汽油 39.28 40.36 35.17 40.73 42.41 35.31 柴 油 17.37 17.25 17.91 15.79 17.23 16.98 重 油 16.71 17.84 18.01 16.52 16.70 17.53 焦 炭 6.20 5.91 6.02 6.11 6.01 6.22 转化率, 重量% 65.92 64.91 64.08 67.69 66.07 65.49 丙烯,重量% 7.10 6.32 8.40 7.29 5.85 8.44
ΙΟΟχ丙烯 /液化气 37.87 37.15 39.68 38.05 36.98 38.25
汽油组成, 重量 °/。
烷 烃 27. 61 24. 31 23. 16 26. 46 24. 31 27. 51 烯 烃 36. 00 40. 37 43. 23 37. 85 40. 27 34. 97 环烷烃 8. 11 8. 86 8. 06 8. 06 8. 65 8. 45 芳 烃 28. 28 26. 42 25. 52 27. 63 26. 74 29. 06
RON (实测 ) 90. 1 90. 1 90. 5 89. 2 90. 1 90. 1
M0N (实测 ) 80. 0 80. 2 80. 4 80. 4 79. 8 80. 4

Claims

权 利 要 求
1. 一种催化剂, 该催化剂含有按干基计 10 ~ 65 重%的 ZSM-5 分子筛、 0~60重%的粘土、 15 ~ 60重%的无机氧化物粘结剂、 0.5~ 15重%的选自 VIIIB族金属中的一种或几种的金属添加剂和 2 25重 %的磷添加剂, 其中, 所说的金属添加剂和磷添加剂均是以氧化物计。
2. 按照权利要求 1的催化剂, 该催化剂按干基计由 20~50重% 的 ZSM-5分子筛、 10~45重%的粘土、 25 50重%的无机氧化物粘 结剂、 1.0~10重%的选自 VIIIB族金属中的一种或几种的金属添加 剂和 5 ~ 15重%的磷添加剂组成。
3. 按照权利要求 1的催化剂, 所说的 ZSM- 5分子筛经磷和选自 Fe、 Co或 Ni之一的金属改性, 其无水化学表达式, 以氧化物计为(0~ 0.3) Na20- (0.5~5) Α1203· (1.3 10) Ρ205· (0.7 - 15) Mx0y- (70 ~ 97) Si02, x表示 M的原子数, y表示满足 M氧化态所需的一个数。
4. 按照权利要求 3的催化剂, 所述 ZSM- 5分子筛的无水化学表 达式, 以 氧化物计为 (0 ~ 0.2) Na20 (0.9 3.5) Α1203· (1.5 ~ 7) Ρ205' (0.9 - 10)MxOy- (82 ~ 92) Si02
5. 按照权利要求 3的催化剂, 其特征在于 M为 Fe。
6. 按照权利要求 1或 2的催化剂, 所述 VIIIB族金属选自 Fe、 Co 和 Ni中的一种或几种。
7. 按照权利要求 6的催化剂, 所述 VIIIB族金属为 Fe。
8. 按照权利要求 7 的催化剂, 其特征在于其 XRD谱图中, 至少 具有 2Θ =16.35 ±0.5° , 2 Θ = 26.12 ± 0.5° 和 2 Θ - 30.94 ± 0.5° 的 FePO物种特征衍射峰。
9. 按照权利要求 1 的催化剂, 所述粘土选自高岭土、 偏高岭土、 硅藻土、 海泡石、 凹凸棒石、 蒙脱石和累脱石中一种或几种的混合物。
10. 按照权利要求 1 的催化剂, 所述无机氧化物粘结剂选自拟薄 水铝石、 铝溶胶、 硅铝溶胶、 水玻璃和磷铝溶胶的一种或几种的混合 物。
11. 按照权利要求 1 催化剂, 所述的无机氧化物粘结剂选自拟薄 水铝石、 铝溶胶和磷铝溶胶中的一种或几种的混合物。
12. —种烃油裂化方法, 其特征在于在烃油裂化条件下, 将烃油 与一种含有权利要求 1-11 之一催化剂的催化剂混合物接触, 然后回 收裂化产物。
13. 按照权利要求 12的方法, 所述将烃油与含权利要求 1-11之 一催化剂的催化剂混合物接触的过程在固定床反应器、 流化床反应器 或移动床反应器中进行, 反应温度为 400 ~ 650°C、 剂油比为 1~25、 重时空速为 10 ~ 120小时—
14. 按照权利要求 13 的方法, 反应温度为 420 - 600Γ, 剂油比 为 3~20、 重时空速为 15 80小时
15. 按照权利要求 12的方法, 所述将烃油与含权利要求 1-11之 一催化剂的催化剂混合物接触的过程在提升管反应器中进行, 所述烃 油裂化条件包括反应温度为 400 ~ 650"C, 剂油比为 1~25, 反应时间 为 0.5~15秒。
16. 按照权利要求 15 的方法, 反应温度为 420 ~60(TC:、 剂油比 为 3~20、 反应时间为 0.5~10秒。
17. 按照权利要求 12的方法, 所述催化剂混合物中权利要求 1-11 之一催化剂的含量为 1 ~ 30重量%。
18. 按照权利要求 17的方法, 权利要求 1-11之一催化剂的含量 为 3~20重量%。
PCT/CN2005/002338 2004-12-28 2005-12-28 Catalyseur et procede de craquage d’une huile hydrocarbure WO2006069535A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020077017616A KR101229756B1 (ko) 2004-12-28 2005-12-28 탄화수소 분해 촉매 및 탄화수소 분해 방법
US11/813,056 US20080308455A1 (en) 2004-12-28 2005-12-28 Catalyst and a Method for Cracking Hydrocarbons
JP2007548676A JP5053098B2 (ja) 2004-12-28 2005-12-28 炭化水素をクラッキングするための触媒及び方法
EP05824020A EP1867388A4 (en) 2004-12-28 2005-12-28 CATALYST AND HYDROCARBON OIL CRACKING PROCESS
AU2005321726A AU2005321726B2 (en) 2004-12-28 2005-12-28 A catalyst and a hydrocarbon oil cracking method
US12/813,110 US20100311569A1 (en) 2004-12-28 2010-06-10 Catalyst and a method for cracking hydrocarbons
US13/565,145 US8658024B2 (en) 2004-12-28 2012-08-02 Catalyst and a method for cracking hydrocarbons

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200410102813.8 2004-12-28
CNB2004101028138A CN100389174C (zh) 2004-12-28 2004-12-28 一种提高丙烯浓度的裂化助剂
CN200410102810.4 2004-12-28
CNB2004101028104A CN100497530C (zh) 2004-12-28 2004-12-28 一种烃油裂化方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/813,056 A-371-Of-International US20080308455A1 (en) 2004-12-28 2005-12-28 Catalyst and a Method for Cracking Hydrocarbons
US12/813,110 Continuation US20100311569A1 (en) 2004-12-28 2010-06-10 Catalyst and a method for cracking hydrocarbons

Publications (1)

Publication Number Publication Date
WO2006069535A1 true WO2006069535A1 (fr) 2006-07-06

Family

ID=36614501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/002338 WO2006069535A1 (fr) 2004-12-28 2005-12-28 Catalyseur et procede de craquage d’une huile hydrocarbure

Country Status (8)

Country Link
US (3) US20080308455A1 (zh)
EP (1) EP1867388A4 (zh)
JP (1) JP5053098B2 (zh)
KR (1) KR101229756B1 (zh)
AU (1) AU2005321726B2 (zh)
RU (1) RU2397811C2 (zh)
SG (1) SG158176A1 (zh)
WO (1) WO2006069535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259711B2 (en) 2008-05-20 2016-02-16 China Petroleum & Chemical Corporation Catalyst for upgrading inferior acid-containing crude oil, process for manufacturing the same, and application thereof

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818132B2 (ja) * 2007-01-16 2011-11-16 一般財団法人石油エネルギー技術センター 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法
JP4818136B2 (ja) * 2007-01-19 2011-11-16 一般財団法人石油エネルギー技術センター 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法
JP4916321B2 (ja) * 2007-01-19 2012-04-11 一般財団法人石油エネルギー技術センター 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法
JP4818157B2 (ja) * 2007-02-19 2011-11-16 一般財団法人石油エネルギー技術センター 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法
US8123933B2 (en) * 2008-06-30 2012-02-28 Uop Llc Process for using iron oxide and alumina catalyst for slurry hydrocracking
BRPI0805207B1 (pt) * 2008-11-25 2019-11-12 Petroleo Brasileiro Sa Petrobras processo de craqueamento catalítico de uma corrente de hidrocarbonetos para maximização de olefinas leves
CN101935266B (zh) * 2009-06-30 2013-07-31 中国石油化工股份有限公司 一种制取丙烯和高辛烷值汽油的催化转化方法
CN102851058B (zh) * 2011-06-30 2015-05-20 中国石油天然气股份有限公司 一种提高催化裂化汽油辛烷值的方法
SG11201407468WA (en) * 2012-06-14 2014-12-30 Saudi Arabian Oil Co Direct catalytic cracking of crude oil by a temperature gradient process
CN103521249B (zh) * 2012-07-05 2016-08-24 中国科学院大连化学物理研究所 一种用于合成气转化的磷化物催化剂和制备方法及其应用
WO2014116801A1 (en) * 2013-01-23 2014-07-31 Basf Corporation Zsm-5 additive activity enhancement by improved zeolite and phosphorus interaction
KR102262792B1 (ko) * 2014-04-04 2021-06-09 에네오스 가부시키가이샤 알루미노실리케이트 촉매의 제조 방법, 알루미노실리케이트 촉매 및 단환 방향족 탄화수소의 제조 방법
CA3027447A1 (en) 2016-06-13 2017-12-21 Basf Corporation Catalyst composite and use thereof in the selective catalytic reduction of nox
NL2018256B1 (en) * 2016-12-21 2018-06-28 Inovacat B V Process to prepare propylene
BR112019017590A2 (pt) 2017-03-17 2020-03-24 Albemarle Corporation Aditivo de catalisador fcc com alumina mista
JP2020531603A (ja) * 2017-08-28 2020-11-05 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company 触媒炭化水素分解のための化学ループプロセス
US11252486B2 (en) * 2018-01-11 2022-02-15 Shell Oil Company Wireless monitoring and profiling of reactor conditions using arrays of sensor-enabled RFID tags placed at known reactor heights
CA3087941A1 (en) 2018-01-11 2019-07-18 Shell Internationale Research Maatschappij B.V. Wireless monitoring and profiling of reactor conditions using plurality of sensor-enabled rfid tags and multiple transceivers
BR112020013209A2 (pt) * 2018-01-11 2020-12-01 Shell Internationale Research Maatschappij B.V. sistema de monitoramento sem fio de reator que usa etiqueta de rfid ativada por sensor passivo
EP3738320A1 (en) * 2018-01-11 2020-11-18 Shell Internationale Research Maatschappij B.V. Wireless monitoring and profiling of reactor conditions using plurality of sensor-enabled rfid tags having known locations
RU2688662C1 (ru) * 2018-07-24 2019-05-22 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Способ каталитического крекинга бутан-бутиленовой фракции и катализатор для его осуществления
CN111686791B (zh) * 2019-03-12 2023-04-25 中国石油天然气股份有限公司 一种催化裂化汽油辛烷值助剂及其制备方法
RU2710855C1 (ru) * 2019-09-16 2020-01-14 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Способ крекинга нефтяных фракций
RU2709521C1 (ru) * 2019-09-16 2019-12-18 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Катализатор крекинга нефтяных фракций
CN114425430B (zh) * 2020-10-29 2024-03-12 中国石油化工股份有限公司 催化裂解催化剂
KR20230124886A (ko) 2020-10-07 2023-08-28 존슨 맛세이 프로세스 테크놀로지즈 인코퍼레이티드 Fcc 공정에서의 경질 올레핀의 최대화
WO2022076169A1 (en) 2020-10-07 2022-04-14 Johnson Matthey Process Technologies, Inc Additive for fcc process
US11299680B1 (en) * 2020-12-01 2022-04-12 Chevron U.S.A. Inc. Catalytic cracking of glyceride oils with phosphorus-containing ZSM-5 light olefins additives
RU2768115C1 (ru) * 2021-04-13 2022-03-23 Общество С Ограниченной Ответственностью "Новые Газовые Технологии-Синтез" (Ооо "Нгт-Синтез") Катализатор и способ его получения
RU2768118C1 (ru) * 2021-04-13 2022-03-23 Общество С Ограниченной Ответственностью "Новые Газовые Технологии-Синтез" (Ооо "Нгт-Синтез") Способ получения катализатора

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758403A (en) 1970-10-06 1973-09-11 Mobil Oil Olites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze
US4472518A (en) * 1981-11-04 1984-09-18 Mobil Oil Corporation Shape selective reactions with zeolite catalysts modified with iron and/or cobalt
CN1057408A (zh) 1990-06-20 1992-01-01 中国石油化工总公司石油化工科学研究院 含高硅沸石的裂解催化剂
US5110776A (en) 1991-03-12 1992-05-05 Mobil Oil Corp. Cracking catalysts containing phosphate treated zeolites, and method of preparing the same
US5171921A (en) 1991-04-26 1992-12-15 Arco Chemical Technology, L.P. Production of olefins
US5236880A (en) 1989-12-11 1993-08-17 W. R. Grace & Co.-Conn. Catalyst for cracking of paraffinic feedstocks
US5318696A (en) 1992-12-11 1994-06-07 Mobil Oil Corporation Catalytic conversion with improved catalyst catalytic cracking with a catalyst comprising a large-pore molecular sieve component and a ZSM-5 component
US5472594A (en) 1994-07-18 1995-12-05 Texaco Inc. FCC process for producing enhanced yields of C4 /C5 olefins
CN1034223C (zh) 1993-03-29 1997-03-12 中国石油化工总公司 制取低碳烯烃的裂解催化剂
US5997728A (en) 1992-05-04 1999-12-07 Mobil Oil Corporation Catalyst system for maximizing light olefin yields in FCC
CN1049406C (zh) 1995-10-06 2000-02-16 中国石油化工总公司 具有mfi结构含磷和稀土的分子筛
US6080303A (en) 1998-03-11 2000-06-27 Exxon Chemical Patents, Inc. Zeolite catalyst activity enhancement by aluminum phosphate and phosphorus
US20020003103A1 (en) 1998-12-30 2002-01-10 B. Erik Henry Fluid cat cracking with high olefins prouduction
US20020049133A1 (en) 1999-03-02 2002-04-25 Michael S. Ziebarth High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith
US6566293B1 (en) 1999-11-22 2003-05-20 Akzo Nobel N.V. Catalyst composition with high efficiency for the production of light olefins
CN1465527A (zh) 2002-06-27 2004-01-07 中国石油化工股份有限公司 一种含磷和过渡金属的mfi结构分子筛
RU2235590C1 (ru) * 2003-02-03 2004-09-10 Общество с ограниченной ответственностью "Томскнефтехим" Катализатор для превращения алифатических углеводородов c2-c12, способ его получения и способ превращения алифатических углеводородов c2-c12 в высокооктановый бензин и/или ароматические углеводороды

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384572A (en) 1964-08-03 1968-05-21 Mobil Oil Corp Catalytic hydrocracking
US3506440A (en) 1965-03-22 1970-04-14 Mitsui Mining & Smelting Co Method of reinforcing photosensitive resists formed on photoengraving plates
US3293192A (en) 1965-08-23 1966-12-20 Grace W R & Co Zeolite z-14us and method of preparation thereof
US4503023A (en) 1979-08-14 1985-03-05 Union Carbide Corporation Silicon substituted zeolite compositions and process for preparing same
US4376039A (en) 1980-10-10 1983-03-08 Exxon Research And Engineering Co. Hydrocarbon conversion catalysts and processes utilizing the same
US4900428A (en) 1985-07-26 1990-02-13 Union Oil Company Of California Process for the catalytic cracking of vanadium-containing feedstocks
US4985384A (en) 1986-08-25 1991-01-15 W. R. Grace & Co-Conn. Cracking catalysts having aromatic selectivity
DE3807910A1 (de) * 1988-03-10 1989-09-21 Merck Patent Gmbh Verfahren zur herstellung von 2,3-difluorbenzolen
US4938863A (en) 1988-06-10 1990-07-03 Mobil Oil Corporation Metals tolerant catalytic cracking catalyst, method of manufacture and use thereof
CN1034223A (zh) 1988-09-23 1989-07-26 广州市医学院 用花生麸、豆粕、鸡肉渣为原料用酶水解法制备复合氨基酸的工艺
US5164073A (en) 1989-04-13 1992-11-17 Akzo N.V. Catalytic cracking catalyst containing diatomaceous earth
US5535817A (en) 1989-07-28 1996-07-16 Uop Sorption cooling process and apparatus
CN1017372B (zh) 1989-08-09 1992-07-08 徐石 一种提高燃烧热效率的装置
CN1020269C (zh) 1989-11-30 1993-04-14 中国石油化工总公司石油化工科学研究院 含稀土五元环结构高硅沸石的合成
CN1027632C (zh) 1990-07-23 1995-02-15 中国石油化工总公司石油化工科学研究院 含稀土五元环结构高硅沸石的制备方法
US5194412A (en) * 1991-01-22 1993-03-16 W. R. Grace & Co.-Conn. Catalytic compositions
US5079202A (en) * 1991-02-21 1992-01-07 W. R. Grace & Co.-Conn. Catalytic cracking catalysts
US5248642A (en) 1992-05-01 1993-09-28 W. R. Grace & Co.-Conn. Catalytic cracking catalysts and additives
US5646082A (en) 1993-06-24 1997-07-08 Cosmo Research Institute Crystalline aluminosilicate, process for producing the same, and catalyst employing the same for catalytic cracking of hydrocarbon oil
CN1121903A (zh) 1994-08-18 1996-05-08 金钟泰 混凝土强力防水剂
CN1162327A (zh) 1994-09-02 1997-10-15 戴尼奥恩有限公司 可熔融加工的氟塑料
CN1059133C (zh) 1997-03-24 2000-12-06 中国石油化工总公司 具有mfi结构的含磷分子筛
JP3707607B2 (ja) * 1998-08-25 2005-10-19 旭化成ケミカルズ株式会社 エチレンおよびプロピレンの製造方法
US6222087B1 (en) * 1999-07-12 2001-04-24 Mobil Oil Corporation Catalytic production of light olefins rich in propylene
CA2445597C (en) 2001-04-28 2011-01-04 China Petroleum And Chemical Corporation A rare earth zeolite y and the preparation process thereof
CN1230496C (zh) 2002-10-28 2005-12-07 中国石油化工股份有限公司 一种含稀土y型沸石的石油烃裂化催化剂及其制备方法
US7125817B2 (en) * 2003-02-20 2006-10-24 Exxonmobil Chemical Patents Inc. Combined cracking and selective hydrogen combustion for catalytic cracking
CN1261216C (zh) * 2003-05-30 2006-06-28 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
TWI259106B (en) * 2003-06-30 2006-08-01 China Petrochemical Technology Catalyst conversion process for increasing yield of light olefins
US20050227853A1 (en) * 2004-04-02 2005-10-13 Ranjit Kumar Catalyst compositions comprising metal phosphate bound zeolite and methods of using same to catalytically crack hydrocarbons

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758403A (en) 1970-10-06 1973-09-11 Mobil Oil Olites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze
US4472518A (en) * 1981-11-04 1984-09-18 Mobil Oil Corporation Shape selective reactions with zeolite catalysts modified with iron and/or cobalt
US5236880A (en) 1989-12-11 1993-08-17 W. R. Grace & Co.-Conn. Catalyst for cracking of paraffinic feedstocks
CN1037327C (zh) * 1990-06-20 1998-02-11 中国石油化工总公司石油化工科学研究院 含高硅沸石的裂解催化剂
CN1057408A (zh) 1990-06-20 1992-01-01 中国石油化工总公司石油化工科学研究院 含高硅沸石的裂解催化剂
US5110776A (en) 1991-03-12 1992-05-05 Mobil Oil Corp. Cracking catalysts containing phosphate treated zeolites, and method of preparing the same
US5171921A (en) 1991-04-26 1992-12-15 Arco Chemical Technology, L.P. Production of olefins
US5997728A (en) 1992-05-04 1999-12-07 Mobil Oil Corporation Catalyst system for maximizing light olefin yields in FCC
US5318696A (en) 1992-12-11 1994-06-07 Mobil Oil Corporation Catalytic conversion with improved catalyst catalytic cracking with a catalyst comprising a large-pore molecular sieve component and a ZSM-5 component
CN1034223C (zh) 1993-03-29 1997-03-12 中国石油化工总公司 制取低碳烯烃的裂解催化剂
US5472594A (en) 1994-07-18 1995-12-05 Texaco Inc. FCC process for producing enhanced yields of C4 /C5 olefins
CN1049406C (zh) 1995-10-06 2000-02-16 中国石油化工总公司 具有mfi结构含磷和稀土的分子筛
US6080303A (en) 1998-03-11 2000-06-27 Exxon Chemical Patents, Inc. Zeolite catalyst activity enhancement by aluminum phosphate and phosphorus
US20020003103A1 (en) 1998-12-30 2002-01-10 B. Erik Henry Fluid cat cracking with high olefins prouduction
US20020049133A1 (en) 1999-03-02 2002-04-25 Michael S. Ziebarth High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith
US6566293B1 (en) 1999-11-22 2003-05-20 Akzo Nobel N.V. Catalyst composition with high efficiency for the production of light olefins
CN1465527A (zh) 2002-06-27 2004-01-07 中国石油化工股份有限公司 一种含磷和过渡金属的mfi结构分子筛
RU2235590C1 (ru) * 2003-02-03 2004-09-10 Общество с ограниченной ответственностью "Томскнефтехим" Катализатор для превращения алифатических углеводородов c2-c12, способ его получения и способ превращения алифатических углеводородов c2-c12 в высокооктановый бензин и/или ароматические углеводороды

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The processing technique of residuum", 2002, LI CHUNNIAN, SINOPEC, pages: 282 - 338
See also references of EP1867388A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259711B2 (en) 2008-05-20 2016-02-16 China Petroleum & Chemical Corporation Catalyst for upgrading inferior acid-containing crude oil, process for manufacturing the same, and application thereof

Also Published As

Publication number Publication date
JP5053098B2 (ja) 2012-10-17
US20080308455A1 (en) 2008-12-18
US20100311569A1 (en) 2010-12-09
EP1867388A4 (en) 2008-12-03
KR101229756B1 (ko) 2013-02-06
RU2397811C2 (ru) 2010-08-27
RU2007129273A (ru) 2009-02-10
AU2005321726A1 (en) 2006-07-06
US20120292230A1 (en) 2012-11-22
SG158176A1 (en) 2010-01-29
JP2008525185A (ja) 2008-07-17
AU2005321726B2 (en) 2011-03-03
EP1867388A1 (en) 2007-12-19
US8658024B2 (en) 2014-02-25
KR20070110010A (ko) 2007-11-15

Similar Documents

Publication Publication Date Title
WO2006069535A1 (fr) Catalyseur et procede de craquage d’une huile hydrocarbure
CN107971010B (zh) 一种生产低碳烯烃和轻芳烃的催化裂解方法
CN100389174C (zh) 一种提高丙烯浓度的裂化助剂
WO2008028343A1 (en) A process for catalytic converting hydrocarbons
CN107974286B (zh) 一种生产低碳烯烃和轻芳烃的催化裂解方法
WO2020078434A1 (zh) 一种富含介孔的mfi结构分子筛、制备方法和含该分子筛的催化剂及其应用
JPS62275191A (ja) 窒素含有原料油の接触分解方法
CN100537030C (zh) 一种提高液化气丙烯浓度的催化裂化助剂
CN105396615B (zh) 一种用于甲醇制备低碳烯烃的催化剂
CN109675616B (zh) 一种多产丁烯的催化转化催化剂以及制备方法和多产丁烯的催化转化方法
CN100497530C (zh) 一种烃油裂化方法
EP4275789A1 (en) Catalytic cracking agent containing phosphorus modified molecular sieve, and preparation method therefor, preparation system thereof and use thereof
CN100351345C (zh) 一种石油烃催化裂化方法
CN100389176C (zh) 一种增产丙烯的裂化助剂
CN114762836B (zh) 一种含磷改性mfi结构分子筛的催化裂解催化剂的制备方法和制备系统
CN107974281B (zh) 一种生产低碳烯烃和轻芳烃的催化裂解方法
CN107974285B (zh) 一种生产低碳烯烃和轻芳烃的催化裂解方法
CN100389175C (zh) 一种提高催化裂化液化气中丙烯浓度的催化助剂
CN107971012B (zh) 一种生产低碳烯烃和轻芳烃的催化裂解方法
TW202200266A (zh) 一種催化裂解助劑及其製備方法和應用
CN110833852B (zh) 催化裂化催化剂及其制备方法和应用
TWI400125B (zh) Catalyst and its hydrocarbon cracking method
CN107974284B (zh) 一种生产低碳烯烃和轻芳烃的催化裂解方法
CN114425431B (zh) 一种含磷改性mfi结构分子筛的催化裂解催化剂
CN114505092B (zh) 一种催化裂解助剂、制备方法及烃油催化裂解的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007548676

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005824020

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1122/MUMNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005321726

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007129273

Country of ref document: RU

Ref document number: 1020077017616

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005321726

Country of ref document: AU

Date of ref document: 20051228

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005321726

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11813056

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005824020

Country of ref document: EP