WO2006068048A1 - パターン形成材料、並びにパターン形成装置及びパターン形成方法 - Google Patents

パターン形成材料、並びにパターン形成装置及びパターン形成方法 Download PDF

Info

Publication number
WO2006068048A1
WO2006068048A1 PCT/JP2005/023146 JP2005023146W WO2006068048A1 WO 2006068048 A1 WO2006068048 A1 WO 2006068048A1 JP 2005023146 W JP2005023146 W JP 2005023146W WO 2006068048 A1 WO2006068048 A1 WO 2006068048A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern forming
forming material
compound
pattern
Prior art date
Application number
PCT/JP2005/023146
Other languages
English (en)
French (fr)
Inventor
Masanobu Takashima
Kimi Ikeda
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to CN2005800439319A priority Critical patent/CN101084470B/zh
Publication of WO2006068048A1 publication Critical patent/WO2006068048A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers

Definitions

  • the present invention relates to a pattern forming material suitable for forming a permanent pattern such as a protective film, an interlayer insulating film, and a solder resist, a pattern forming apparatus provided with the pattern forming material, and a permanent using the pattern forming material
  • the present invention relates to a pattern forming method.
  • a pattern forming material is used in which a photosensitive resin composition is applied to a support and dried to form a photosensitive layer.
  • a laminate is formed by laminating the pattern forming material on a substrate such as a copper clad laminate on which the permanent pattern is formed, and the photosensitive layer in the laminate is formed. After the exposure, the photosensitive layer is developed to form a pattern, and then an etching process or the like is performed to form the permanent pattern.
  • the binder is composed of (meth) acrylic acid, (meth) acrylic acid alkyl ester, and the like, mainly for the purpose of improving sensitivity, resolution, adhesion and the like.
  • a pattern forming material containing a copolymer obtained by copolymerizing a polymerizable vinyl monomer (see Patent Document 1), and a photosensitive layer each of a predetermined amount of (a) a carboxyl group-containing polymer, (b) ethylenic An unsaturated compound, (c) an oral fin dimer, (d) a photopolymerization initiator, (e) a pattern-forming material containing an oral dye (see Patent Document 2), (a) a carboxyl group-containing binder, (B) a photopolymerizable compound having at least one polymerizable ethylenically unsaturated group in the molecule, (c) a pattern forming material containing a photopolymerization initiator (see Patent Document 3
  • the thickness is 10 m or more and 25 m or less
  • the polycondensation metal catalyst residue is less than 150 ppm
  • antimony metal is 15 mmol with respect to the total acid component.
  • a support of less than or equal to% has been proposed (see Patent Document 5).
  • a pattern forming material that uses a highly transparent substance as a support and can be improved with high sensitivity by light irradiated through the support, and the pattern A pattern forming apparatus provided with a forming material and a permanent pattern forming method using the pattern forming material have not been provided yet, and further improvement and development are desired at present.
  • Patent Document 1 Japanese Patent No. 3452597
  • Patent Document 2 Japanese Patent No. 3100040
  • Patent Document 3 International Publication No. 00Z79344 Pamphlet
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-13681
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2002-60598
  • Patent Document 6 Japanese Patent No. 3295012
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2002-256063
  • the present invention has been made in view of the current situation, and it is an object of the present invention to achieve the following objects. That is, the present invention aims to form a permanent pattern such as a solder resist. In addition, a highly transparent substance is used as a support, and a hetero-fused compound is included, thereby forming a high-definition pattern with excellent exposure sensitivity and good resist surface shape. It is an object of the present invention to provide a possible pattern forming material, a pattern forming apparatus including the pattern forming material, and a permanent pattern forming method using the pattern forming material.
  • a pattern forming material comprising at least an initiator, a thermal crosslinking agent, and a hetero-fused ring compound.
  • ⁇ 4> The pattern forming material according to ⁇ 3>, wherein the hetero-fused ring system compound contains at least one selected from a nitrogen atom and a sulfur atom in the ring.
  • ⁇ 5> Hetero-Condensed Ring Compound Strength
  • the pattern forming material according to ⁇ 4> which is at least one selected from an attaridone compound and a thixanthone compound.
  • ⁇ 6> The pattern forming material according to any one of ⁇ 1> to ⁇ 5>, wherein the support has a total light transmittance of 86% or more.
  • ⁇ 7> The pattern forming material according to any one of ⁇ 1> to ⁇ 6>, wherein the haze value of the support and the total light transmittance of the support are 405 nm.
  • Binder strength At least one selected from the group consisting of an epoxy acrylate relay compound and an acrylic resin having at least one group capable of polymerizing with an acidic group.
  • the binder is a copolymer obtained by reacting 0.1 to 1.2 equivalents of a primary amine compound with respect to the anhydride group of the maleic anhydride copolymer.
  • the pattern forming material described in any one of the above.
  • the binder is (a) maleic anhydride, (b) an aromatic bull monomer, and (c) a bile monomer, the glass transition temperature of the homopolymer of the bull monomer ( Tg) ⁇ 1> obtained by reacting a vinyl monomer having a force of less than 3 ⁇ 4o ° c with 0.1 to 1.0 equivalent of a primary amine compound to the anhydride group of the powerful copolymer.
  • Tg glass transition temperature of the homopolymer of the bull monomer
  • the thermal crosslinking agent is selected from epoxy resin compounds, oxetane compounds, polyisocyanate compounds, compounds obtained by reacting polyisocyanate compounds with blocking agents, and melamine derivatives.
  • Photoinitiator power Halogenated hydrocarbon derivatives, phosphine oxides, hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, ketone compounds, acyl phosphine oxidoxide compounds,
  • the photosensitive layer modulates the light from the light irradiating means by the light modulating means having n picture elements for receiving and emitting the light from the light irradiating means, the light is emitted from the light emitting means.
  • the light irradiation unit includes the light modification unit.
  • Light is irradiated toward the adjusting means.
  • the n number of pixel portions in the light irradiating means modulates the light received from the light irradiating means by receiving and emitting light from the light irradiating means.
  • the light modulated by the light modulation means passes through the aspheric surface in the microlens array, so that the aberration due to the distortion of the exit surface in the pixel portion is corrected, and the distortion of the image formed on the photosensitive layer. Is suppressed.
  • the exposure to the photosensitive layer is performed with high definition. Thereafter, when the photosensitive layer is developed, a high-definition permanent pattern is formed.
  • ⁇ 16> The pattern forming material according to any one of ⁇ 1> to ⁇ 15>, wherein the support contains a synthetic resin and is transparent.
  • ⁇ 18> The pattern forming material according to any one of ⁇ 1> to ⁇ 17>, which is long and wound in a roll shape.
  • ⁇ 20> The pattern forming material according to any one of ⁇ 1> to ⁇ 19>, wherein the photosensitive layer has a thickness of 3 to 100111.
  • Pattern formation characterized by comprising at least light irradiation means capable of irradiating light and light modulation means for modulating light from the light irradiation means and exposing the photosensitive layer in the pattern forming material.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit generates light emitted from the light irradiation unit.
  • the light modulation unit includes the pattern signal generation unit, the light irradiated from the light irradiation unit Modulation is performed according to the control signal generated by the signal generating means.
  • the light modulation means has n pixel parts, and forms any less than n pixel parts continuously arranged from the n pixel parts.
  • the pattern forming apparatus according to any one of the above items 21> Karaku 22> which can be controlled according to pattern information.
  • the light of the light irradiation means force is modulated at high speed by controlling any less than n pixel parts arranged continuously from among the pixel parts in accordance with the pattern information.
  • ⁇ 25> The pattern forming apparatus according to ⁇ 24>, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
  • DMD digital 'micromirror' device
  • ⁇ 26> The pattern forming apparatus according to any one of the above ⁇ 23>, ⁇ 25>, wherein the pixel part is a micromirror.
  • the pattern forming apparatus since the light irradiation unit can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the pattern forming material is exposed with extremely high definition. For example, when the photosensitive layer is developed thereafter, an extremely fine pattern is formed.
  • the light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses and couples the laser beams irradiated with the plurality of laser forces, respectively, to the multimode optical fiber.
  • the pattern forming apparatus according to any one of ⁇ 21> to ⁇ 27>, which has the following.
  • the light irradiation unit can condense the laser light irradiated from each of the plurality of lasers by the collective optical system and be coupled to the multimode optical fiber.
  • exposure is performed with exposure light having a deep focal depth.
  • the pattern forming material is exposed with extremely high precision. Is called. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
  • ⁇ 29> A method for forming a permanent pattern, comprising at least exposing the photosensitive layer of the pattern forming material according to any one of ⁇ 1> to 20>!
  • ⁇ 30> The permanent film according to ⁇ 29>, wherein the pattern forming material according to any one of ⁇ 1> and ⁇ 20> is laminated and exposed on at least one of heating and pressurization on a substrate. This is a pattern forming method.
  • the exposure is performed using light that generates a control signal based on pattern information to be formed and modulated in accordance with the control signal.
  • This is a permanent pattern forming method described in any one of the above.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on pattern information to be formed, and the pattern signal generation unit generates light emitted from the light irradiation unit.
  • the light modulation means has n pixel parts, and forms any less than n of the pixel parts continuously arranged from the n pixel parts.
  • the permanent pattern forming method according to any one of 34, 35, 35, which can be controlled according to pattern information.
  • any less than n pixel parts continuously arranged from n pixel parts in the light modulation means are used as pattern information.
  • the light from the light irradiation means is modulated at high speed.
  • ⁇ 38> The method for forming a permanent pattern according to the above item 37>, wherein the spatial light modulation element is a digital 'micromirror' device (DMD).
  • DMD digital 'micromirror' device
  • the light modulation means After the light is modulated by the light modulation means in the exposure, the light modulation means passes through a microlens array in which microlenses having aspheric surfaces capable of correcting aberrations due to distortion of the exit surface of the picture element portion are arranged.
  • the permanent pattern forming method according to any one of the above-mentioned 36> force 39>!
  • the aspherical surface is a toric surface
  • the aberration due to the distortion of the radiation surface in the pixel portion is efficiently corrected, and an image is formed on the photosensitive layer.
  • Image distortion is efficiently suppressed.
  • the photosensitive layer is exposed with high definition. Thereafter, the photosensitive layer is developed to form a high-definition permanent pattern.
  • ⁇ 42> The method for forming a permanent pattern according to any one of the above ⁇ 29> and ⁇ 41>, wherein the exposure is performed through an aperture array.
  • the extinction ratio is improved by performing exposure through the aperture array. As a result, the exposure is performed with extremely high precision. Thereafter, the photosensitive layer is developed to form an extremely fine permanent pattern.
  • ⁇ 43> The method for forming a permanent pattern according to any one of ⁇ 29>, ⁇ 42>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive layer.
  • exposure is performed at a high speed by performing exposure while relatively moving the modulated light and the photosensitive layer.
  • ⁇ 44> The method for forming a permanent pattern according to any one of ⁇ 29>, ⁇ 43>, wherein the exposure is performed on a partial region of the photosensitive layer.
  • the light irradiation unit can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. Thereafter, the photosensitive layer is developed to form a very fine permanent pattern.
  • the light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber.
  • the permanent pattern forming method according to any one of the above items 34> Karaku 45>.
  • the light irradiation unit collects the laser beams emitted from the plurality of lasers by the collective optical system and couples them to the multimode optical fiber.
  • exposure is performed with exposure light having a deep focal depth.
  • the exposure of the photosensitive layer is performed with extremely high definition.
  • the photosensitive layer is developed to form a very fine permanent pattern.
  • ⁇ 47> The method for forming a permanent pattern according to any one of ⁇ 29> to ⁇ 46>, wherein the exposure is performed using a laser beam having a wavelength of 395 to 415 nm.
  • ⁇ 49> The method for forming a permanent pattern according to any one of ⁇ 29> to ⁇ 48>, wherein the photosensitive layer is subjected to a curing treatment after development.
  • the permanent pattern forming method according to 49> which is at least one of the following.
  • curing of the resin in the pattern forming material is promoted in the entire surface exposure process. Further, the film strength of the cured film is increased in the entire surface heat treatment performed under the temperature condition.
  • ⁇ 51> The method for forming a permanent pattern according to any one of the above ⁇ 29> and ⁇ 50>, wherein at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed.
  • the wiring is externally provided depending on the insulation and heat resistance of the film. Protected against impacts and bending.
  • ⁇ 52> A permanent pattern formed by the permanent pattern forming method according to any one of ⁇ 29> and ⁇ 51>.
  • the permanent pattern according to ⁇ 52> is formed by the permanent pattern forming method, it has excellent chemical resistance, surface hardness, heat resistance, and the like, and is high-definition, multilayer wiring of semiconductors and parts This is useful for high-density mounting on boards and build-up wiring boards.
  • the permanent pattern according to ⁇ 52> which is at least one of a protective film, an interlayer insulating film, and a solder resist pattern.
  • the permanent pattern described in 53> is at least one of a protective film and an interlayer insulating film, the wiring is protected from external shock and bending by the insulation and heat resistance of the film. Is done.
  • a highly transparent substance is used as a support and a hetero-fused ring compound is contained.
  • a pattern forming material having excellent exposure sensitivity, a good resist surface shape, and capable of forming a higher definition pattern, a pattern forming apparatus including the pattern forming material, and a permanent pattern using the pattern forming material can be provided.
  • FIG. 1 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD).
  • DMD digital micromirror device
  • FIG. 2A is an example of an explanatory diagram for explaining the operation of the DMD.
  • FIG. 2B is an example of an explanatory diagram for explaining the operation of the DMD.
  • FIG. 3A is an example of a plan view showing the arrangement of the exposure beam and the scanning line in a case where the DMD is not inclined and in a case where the DMD is inclined.
  • FIG. 3B is an example of a plan view showing the arrangement of the exposure beam and the scanning line in a case where the DMD is not inclined and in a case where the DMD is inclined.
  • FIG. 4A is an example of a diagram illustrating an example of a DMD usage area.
  • FIG. 4B is an example of a diagram illustrating an example of a DMD usage area.
  • FIG. 5 is an example of a plan view for explaining an exposure method for exposing a photosensitive layer by one scanning by a scanner.
  • FIG. 6A is an example of a plan view for explaining an exposure method for exposing a photosensitive layer by a plurality of scans by a scanner.
  • FIG. 6B is an example of a plan view for explaining an exposure method for exposing a photosensitive layer by a plurality of scans by a scanner.
  • FIG. 7 is an example of a schematic perspective view showing an appearance of an example of a pattern forming apparatus.
  • FIG. 8 is an example of a schematic perspective view showing the configuration of the scanner of the pattern forming apparatus.
  • FIG. 9A is an example of a plan view showing an exposed region formed in the photosensitive layer.
  • FIG. 9B is an example of a diagram showing an arrangement of exposure areas by each exposure head.
  • FIG. 10 is an example of a perspective view showing a schematic configuration of an exposure head including light modulation means.
  • FIG. 11 is an example of a sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG.
  • FIG. 12 shows an example of a controller that controls DMD based on pattern information.
  • FIG. 13A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system.
  • FIG. 13B is an example of a plan view showing an optical image projected onto the exposure surface when a microlens array or the like is not used.
  • FIG. 13C is an example of a plan view showing an optical image projected onto an exposed surface when a microlens array or the like is used.
  • FIG. 14 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines.
  • FIG. 15A is an example of a graph showing distortion of the reflecting surface of the micromirror in two diagonal directions of the mirror.
  • FIG. 15B is an example of a graph showing distortion of the reflecting surface of the micromirror similar to that in FIG. 15A in two diagonal directions of the mirror.
  • FIG. 16A is an example of a front view of a microlens array used in the pattern forming apparatus.
  • FIG. 16B is an example of a side view of the microlens array used in the pattern forming apparatus.
  • FIG. 17A is an example of a front view of a microlens constituting a microlens array.
  • FIG. 17B is an example of a side view of a microlens constituting the microlens array.
  • FIG. 18A is an example of a schematic diagram showing a condensing state by a microlens in one cross section.
  • FIG. 18B is an example of a schematic diagram showing a condensing state by a microlens in one cross section.
  • FIG. 19A is an example of a diagram showing the result of simulating the beam diameter in the vicinity of the condensing position of the microlens of the present invention.
  • FIG. 19B is an example of a diagram showing the same simulation results as in FIG. 19A but at different positions.
  • FIG. 19C is an example of a diagram showing a simulation result similar to FIG. 19A at another position.
  • FIG. 19D is an example of a diagram showing a simulation result similar to FIG. 19A at another position.
  • FIG. 20A is an example of a diagram showing a result of simulating the beam diameter in the vicinity of the condensing position of the microlens in the conventional pattern forming method.
  • FIG. 20B is an example of a diagram showing the same simulation results as in FIG. 20A but at different positions.
  • FIG. 20C is an example of a diagram illustrating the simulation result similar to FIG. 20A at another position.
  • FIG. 20D is an example of a diagram showing a simulation result similar to FIG. 20A at another position.
  • FIG. 21 is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 22A is an example of a front view of a microlens constituting a microlens array.
  • FIG. 22B is an example of a side view of a microlens constituting a microlens array.
  • FIG. 23A is an example of a schematic view showing a condensing state by the microlens of FIG. 22A and FIG. 22B in one cross section.
  • FIG. 23B is an example of a schematic diagram showing another cross section of the example of FIG. 23A.
  • FIG. 24A is an example of an explanatory diagram of the concept of correction by the light quantity distribution correcting optical system.
  • FIG. 24B is an example of an explanatory diagram of the concept of correction by the light quantity distribution correcting optical system.
  • FIG. 24C is an example of an explanatory diagram of the concept of correction by the light quantity distribution correction optical system.
  • FIG. 25 is an example of a graph showing the light amount distribution when the light irradiation means is a Gaussian distribution and the light amount distribution is not corrected.
  • FIG. 26 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system.
  • FIG. 27A is a perspective view showing the configuration of the fiber array light source
  • FIG. 27A (B) is an example of a partially enlarged view of FIG. 27A (C)
  • FIG. (D) is an example of a plan view showing an array of light emitting points in the laser emitting section.
  • FIG. 27B is an example of a front view showing an array of light emitting points in a laser emitting section of a fiber array light source.
  • FIG. 28 is an example of a diagram showing a configuration of a multimode optical fiber.
  • FIG. 29 is an example of a plan view showing a configuration of a combined laser light source.
  • FIG. 30 is an example of a plan view showing a configuration of a laser module.
  • FIG. 31 is an example of a side view showing the configuration of the laser module shown in FIG. 30.
  • FIG. 32 is a partial side view showing the configuration of the laser module shown in FIG. 30.
  • FIG. 33 is an example of a perspective view showing a configuration of a laser array.
  • FIG. 34A is an example of a perspective view showing a configuration of a multi-cavity laser.
  • FIG. 34B is an example of a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. 34A are arranged in an array.
  • FIG. 35 is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 36A is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 36B is an example of a cross-sectional view along the optical axis of FIG. 36A.
  • FIG. 37A shows the depth of focus in the conventional exposure apparatus and the pattern forming method of the present invention.
  • FIG. 3 is an example of a cross-sectional view along an optical axis showing a difference from a depth of focus by a (pattern forming device).
  • FIG. 37B is an example of a cross-sectional view along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention.
  • the pattern forming material of the present invention has at least a photosensitive layer on a support, the haze value of the support is 5.0% or less, and the photosensitive layer is composed of a binder, a polymerizable compound, and a photopolymer. It includes at least an initiator, a thermal crosslinking agent, and a hetero-fused ring-type compound.
  • the pattern forming material is used in a pattern forming method described later, and the pattern forming method is performed by laminating a photosensitive layer of the pattern forming material on a substrate.
  • the minimum energy of light used for the exposure is 0.1 to 0.1% without changing the thickness of the exposed portion of the photosensitive layer after the exposure and development. : L00 (mj / cm 2 ) is preferable.
  • the minimum energy of light is 0.1 as the thickness of the exposed portion of the photosensitive layer is not changed before and after the exposure and development.
  • As long as it is L00 (miZcm 2 ), it can be appropriately selected according to the purpose for which there is no particular restriction. For example, 0.5-70 (mj / cm 2 ) is preferred l-50 (mj / cm 2 ) is more preferred 1.5 to 30 (miZcm 2 ) is particularly preferred.
  • capri may occur in the processing step, and if it exceeds 100 (mjZcm 2 ), the time required for exposure becomes longer and the processing speed is increased. May be slow.
  • the minimum energy of light used for the exposure that does not change the thickness of the exposed portion of the photosensitive layer after the exposure and development is so-called development sensitivity, for example, when the photosensitive layer is exposed. It can be obtained from a graph (sensitivity curve) showing the relationship between the amount of light energy (exposure amount) used in the exposure and the thickness of the cured layer generated by the development process following the exposure.
  • the thickness of the cured layer increases as the exposure amount increases, and then becomes substantially the same and substantially constant as the thickness of the photosensitive layer before the exposure.
  • the development sensitivity is a value obtained by reading the minimum exposure when the thickness of the cured layer becomes substantially constant.
  • a method for measuring the thickness of the cured layer and the photosensitive layer before exposure is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a film thickness measuring device for example, Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)) It is.
  • the support can be appropriately selected depending on the purpose without particular limitation if the haze value is 5.0% or less, but the photosensitive layer can be peeled off and has good light transmittance. Some are preferred and the surface smoothness is more favorable.
  • the haze value of the support is required to be 5.0% or less with respect to light of 405 nm, and preferably 3.0% or less, more preferably 1.0% or less. Preferred. When the haze value exceeds 5.0%, the amount of light scattering in the photosensitive layer increases, and the resolution when obtaining fine pitch may be lowered.
  • the total light transmittance of the support with respect to 405 nm light is preferably 86% or more, more preferably 87% or more.
  • the method for measuring the haze value and the total light transmittance can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include the methods described below.
  • the total light transmittance is measured.
  • the method for measuring the total light transmittance can be appropriately selected according to the purpose for which there is no particular limitation.
  • the parallel light transmittance is measured in the same manner as the measurement method of the total light transmittance except that the integrating sphere is not used.
  • the diffuse light transmittance obtained from the total light transmittance—the parallel light transmittance is calculated, and (4) the following calculation formula, the diffuse light transmittance Z, the total light:
  • the haze value can also be obtained for the line transmittance X 100 and force.
  • the thickness of the measurement sample for obtaining the total light transmittance and the haze value is 1 ⁇ m &).
  • the support may have at least one surface coated with inert fine particles.
  • the inactive fine particles are preferably applied on the surface opposite to the surface on which the photosensitive layer is formed.
  • Examples of the inert fine particles include crosslinked polymer particles and inorganic particles (for example, carbonic acid Calcium, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfate, etc.), organic particles (eg, hexamethylenebisbehenamide, hexane) Methylene bisstearylamide, N, N'-distearyl terephthalamide, silicone, calcium oxalate, etc.), and precipitated particles formed during polyester polymerization.
  • silica, calcium carbonate, hexamethylene bis Henamide is preferred.
  • precipitated particles refers to particles precipitated in a reaction system by polymerizing a system using an alkali metal or alkaline earth metal compound as a transesterification catalyst by a conventional method. It may be the one precipitated by adding terephthalic acid during the polycondensation reaction.
  • phosphoric acid trimethyl phosphate, triethyl phosphate, tributyl phosphate, acidic ethyl phosphate, phosphorous acid, trimethyl phosphite, triethyl phosphite, tributyl phosphite, etc.
  • One or more of the phosphorus compounds may be present.
  • the average particle diameter of the inert fine particles is preferably 0.01-2.0 ⁇ m, more preferably 0.02-1.5 m force S, 0.03: L 0 m force S More preferably, 0.04 to 0.5 m force S is particularly preferable.
  • the pattern forming material may have poor transportability.
  • the inert fine particles are contained in a large amount. By doing so, the haze value of the support may increase. Further, when the average particle diameter of the inert fine particles exceeds 2.0 m, the resolution force S may be reduced due to scattering of exposure light.
  • the method for applying the inert fine particles is not particularly limited and can be appropriately selected depending on the purpose.
  • a method of applying a coating solution containing the inert fine particles by a known method after the production of the synthetic resin film as the support is mentioned.
  • the synthetic resin containing the inert fine particles may be melted and discharged from a die cutter to be molded on a synthetic resin film to be the support. Further, it may be formed by the method described in JP-A-2000-221688.
  • the thickness of the coating layer containing the inert fine particles in the support is from 0.02 to 3. 0 111 months, preferably 0.03-2, more preferred, 0.04: L 0 m force ⁇ especially preferred! / ⁇
  • the synthetic resin film used as the support is preferably a transparent film, for example, a biaxially stretched polyester film is particularly preferable.
  • polyester resin examples include polyethylene terephthalate, polyethylene naphthalate, poly (meth) acrylic acid ester copolymer, poly (meth) acrylic acid alkyl ester, polyethylene 2,6 naphthalate, polytetramethylene terephthalate, poly Examples include tetramethylene 1, 2, 6 naphthalate. These may be used alone or in combination of two or more.
  • Examples of the resin other than the polyester resin include polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, polychlorinated bulle, polybulal alcohol, polycarbonate, polystyrene, cellophane, and polysalt vinylidene copolymer.
  • Examples include coalescides, polyamides, polyimides, butyl chloride butyl acetate copolymers, polytetrafluoroethylene, polytrifluoroethylene, cellulosic resin, and nylon resin. These may be used alone or in combination of two or more.
  • the synthetic resin film may be composed of one layer, or may be composed of two or more layers. In the case of comprising two or more layers, it is preferred that the inert fine particles are contained in a layer located farthest from the photosensitive layer.
  • the synthetic resin film is preferably a biaxially stretched polyester film from the viewpoint of mechanical strength characteristics and optical characteristics.
  • the biaxial orientation method of the biaxially stretched polyester film can be appropriately selected depending on the purpose without any particular limitation.
  • the polyester resin is melt-extruded into a sheet shape, rapidly cooled to form an unstretched film, and when the unstretched film is biaxially stretched, the stretching temperature is 85 to 145 ° C., stretching in the machine and transverse directions. It can be prepared by setting the magnification to 2.6 to 4.0 times and heat-fixing the film after biaxial stretching as necessary at 150 to 210 ° C.
  • an unstretched film is stretched in the longitudinal direction or the transverse direction to produce a uniaxially stretched film. And then stretching the unstretched film in the longitudinal and transverse directions simultaneously, which may be a sequential biaxial stretching method by stretching the -axially stretched film in the transverse or longitudinal direction. It may be.
  • the biaxially stretched film can be further stretched in at least one of the longitudinal direction and the transverse direction as necessary.
  • the thickness of the support is not particularly limited, and can be appropriately selected according to the purpose.
  • F row; t is 2-150 ⁇ m force S girlish, 5-: LOO ⁇ m force SJ-like girls, 8-50 ⁇ m force S Particularly preferred.
  • the shape of the support is not particularly limited and may be appropriately selected according to the purpose, but is preferably long.
  • the length of the long support is not particularly limited, and examples thereof include a length of 10 m to 20000 m.
  • the photosensitive layer contains a binder, a polymerizable compound, a photopolymerization initiator, a thermal crosslinking agent, and a heterocyclic condensed compound, and may contain other components appropriately selected as necessary.
  • the binder is more preferably soluble in an alkaline aqueous solution, preferably swellable in an alkaline aqueous solution.
  • binder exhibiting swellability or solubility with respect to the alkaline aqueous solution for example, those having an acidic group are preferably exemplified.
  • the noinder is not particularly limited and can be appropriately selected depending on the purpose.
  • JP-A-51-131706, JP-A-52-94388, JP-A-64H5 examples thereof include an epoxy atelar toy compound having an acidic group described in JP-A-2-97513, JP-A-3-289656, JP-A-61-243869, JP-A-2002-296776, and the like.
  • phenol novolac type epoxy acrylate, tarezol novolak epoxy acrylate, bisphenol A type epoxy acrylate, etc. for example, epoxy resin is mixed with polyfunctional epoxy compound (meth) acrylic acid.
  • Carboxyl group-containing monomers such as phthalic anhydride, tetrahydrophthalic anhydride, anhydrous A dibasic acid anhydride such as succinic acid is added.
  • the molecular weight of the epoxy vacancy compound is preferably 1,000 to 200,000 force S, more preferably 2,000 to 100,000.
  • the molecular weight is less than 1,000, the tackiness of the surface of the photosensitive layer may become strong, and the film quality becomes brittle or the surface hardness deteriorates after curing of the photosensitive layer described later. Yes, if it exceeds 200,000, developability may deteriorate.
  • an acrylic resin having at least one polymerizable group such as an acidic group and a double bond described in JP-A-6-295060 can be used.
  • at least one polymerizable double bond in the molecule for example, an acrylic group such as a (meth) acrylate group or a (meth) acrylamido group, a carboxylic acid bull ester, a bull ether, a valyl group.
  • Various polymerizable double bonds such as tellurium can be used.
  • glycidyl esters of unsaturated fatty acids such as glycidyl acrylate, glycidyl methacrylate, cinnamic acid, and epoxies such as cyclohexenoxide in the same molecule are added to acrylic resin containing a carboxyl group as an acidic group.
  • examples thereof include compounds obtained by adding an epoxy group-containing polymerizable compound such as a compound having a group and a (meth) attalyloyl group.
  • an acrylic resin containing an acid group and a hydroxyl group is added to an isocyanate group-containing polymerizable compound such as isocyanatoethyl (meth) acrylate, and an acrylic resin containing an anhydride group.
  • compounds obtained by adding a polymerizable compound containing a hydroxyl group such as hydroxyalkyl (meth) acrylate include “Kaneka Resin AX, manufactured by Kaneka Chemical Co., Ltd.”, “Cyclomer (CYCLO MER) A-200; manufactured by Daicel Chemical Industries, Ltd.”, “CYCLOMER” M-200; manufactured by Daicel Chemical Industries, Ltd. "can be used.
  • reaction product of hydroxyalkyl attalylate or hydroxyalkyl metatalylate described in JP-A-50-59315 with any one of polycarboxylic acid anhydride and epihalohydrin can be used.
  • a compound obtained by adding an acid anhydride to an epoxy atrelate having a fluorene skeleton described in JP-A-5-70528, and a polyamide (imide) resin described in JP-A-11-288087 JP-A-2-097502 discloses JP-A-11-282155 A polyimide precursor or the like can be used. These may be used alone or as a mixture of two or more.
  • a copolymer obtained by reacting one or more primary amine compounds with an anhydride group of a maleic anhydride copolymer can also be used.
  • the copolymer is a maleamic acid system comprising at least a maleamic acid unit B having a maleic acid-formamide structure represented by the following structural formula (1) and a unit A not having the maleic acid-sulfamide structure.
  • it is a copolymer.
  • the unit A may be one type or two or more types.
  • the maleamic acid-based copolymer means a binary copolymer
  • the unit When A is two kinds, the maleamic acid copolymer means a terpolymer.
  • the unit A includes an aryl group which may have a substituent and a butyl monomer which will be described later, and the glass transition temperature (Tg) of the butyl monomer homopolymer is less than 80 ° C.
  • Tg glass transition temperature
  • a combination with a certain vinyl monomer (c) is preferred.
  • R 3 and R 4 represent either a hydrogen atom or a lower alkyl group.
  • X and y represent mole fractions of the repeating units, for example, when the unit A is one, X is 85-50 mol 0/0, y is 15 to 50 mole 0/0.
  • R 1 for example, (—COOR LC> ), (—CONRUR 12 ), an aryl group which may have a substituent, (—OCOR 13 ), (—OR 14 ), (— COR 15 )
  • R 1G to R 15 represent any one of a hydrogen atom (1H), an alkyl group which may have a substituent, an aryl group, and an aralkyl group.
  • the alkyl group, aryl group and aralkyl group may have a cyclic structure or a branched structure.
  • R 1C> to R 15 include, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butynole, sec butyl, t-butinole, pentinole, arinole, n-hexyl, and cyclohexyl. , 2-ethylhexyl, dodecyl, methoxyethyl, phenyl, methylphenyl, methoxyphenyl, benzyl, phenethyl, naphthyl, black-and-white phenyl, and the like.
  • R 1 examples include benzene derivatives such as, for example, a file, a-methyl file, 2-methyl file, 3 methyl file, 4 methyl file, 2,4 dimethyl file, etc .; n —Propyloxycarbonyl, n-Butyloxycarbonyl, Pentyloxycarbonyl, Hexyloxycarbonyl, n-Butyloxycarbonyl, n-Hexyloxycarbonyl, 2-Ethylhexyloxycarbonyl, Methyloxy Bonyl and the like can be mentioned.
  • R 2 examples include a substituent! /, But may include an alkyl group, an aryl group, an aralkyl group, and the like. These may have a cyclic structure or a branched structure. Specific examples of R 2 include, for example, benzyl, phenethyl, 3-phenol 1-propyl, 4-phenol 1-butinole, 5 phenol-1-pentinole, 6-phenol 1- Hexinole, a Methylbenzyl, 2 Methylbenzyl, 3 Methylbenzyl, 4 Methylbenzyl, 2 Mono (P-tolyl) ethyl, j8-Methylphenethyl, 1-Methyl-3-phenylpropyl, 2 —Black Benzynole, 3 Black Mouth Benzinore, 4-black mouth Benzore, 2 Fluoro Benzinore, 3— Fluoro Benzinore, 4 Fluoro Benzinole, 4 Brom
  • the binder is, in particular, (a) maleic anhydride, (b) an aromatic vinyl monomer, and (c) a vinyl monomer, which is a homopolymer of the bull monomer.
  • a copolymer obtained by reacting a primary amine compound with a vinyl monomer having a glass transition temperature (Tg) of less than 80 ° C and an anhydride group of a powerful copolymer is a copolymer. preferable.
  • a copolymer comprising the component (a) and the component (b) can obtain a high surface hardness of the photosensitive layer described later, but it may be difficult to ensure laminating properties.
  • the copolymer comprising the component (a) and the component (c) although the laminating property can be ensured, it may be difficult to ensure the surface hardness.
  • the aromatic vinyl monomer is not particularly limited and can be appropriately selected according to the purpose.
  • the surface hardness of the photosensitive layer formed using the pattern forming material of the present invention can be increased.
  • a compound having a glass transition temperature (Tg) of the homopolymer of 80 ° C or higher is preferred, and a compound having a temperature of 100 ° C or higher is more preferable.
  • Preferable examples include styrene derivatives such as C). These may be used alone or in combination of two or more.
  • the vinyl monomer needs to have a glass transition temperature (Tg) of a homopolymer of the vinyl monomer of less than 80 ° C, preferably 40 ° C or less, more preferably 0 ° C or less. .
  • Tg glass transition temperature
  • Examples of the primary amine compound include benzylamine, phenethylamine, 3-phenol-1-propylamine, 4-phenol-l-butylamine, 5-ferro-l-pentylamine, and 6-phenylamine. Hexylamine, ⁇ -methylbenzylamine, 2-methylbenzylamine, 3-methylbenzylamine, 4-methylbenzylamine, 2 ( ⁇ -tolyl) ethylamine, ⁇ -methylphenethylamine, 1-methyl-3 phenol -Rupropylamine, 2-Chlorobenzylamine, 3-Chlorobenzylamine, 4-Chlorobenzylamine, 2-Fluorobenzylamine, 3-Fluorobenzylamine, 4-Fluorobenzylamine, 4-Bromophenethylamine, 2 — (2 black mouth) ethylamine, 2— (3 black mouth) ethylamine, 2— (4 black mouth) ethylamine , 2— (2 Fluoroph
  • the primary amine compounds may be used alone or in combination of two or more.
  • the reaction amount of the primary amine compound is 0.1 to 1.2 equivalents relative to the anhydride group. And 0.1 to 1.0 equivalent is preferable. When the reaction amount exceeds 1.2 equivalents, the solubility may be remarkably deteriorated when one or more primary amine compounds are reacted.
  • the content of (a) maleic anhydride in the binder is preferably 15 to 50 mol%, more preferably 20 to 45 mol%, and particularly preferably 20 to 40 mol%. If the content is less than 15 mol%, alkali developability cannot be imparted, and if it exceeds 50 mol%, alkali resistance deteriorates, and the copolymer becomes difficult to synthesize. Permanent pattern formation may not be possible.
  • the content of the (b) aromatic bule monomer and (c) the bulle monomer having a glass transition temperature (Tg) of the homopolymer of less than 80 ° C in the binder is respectively 20-60 mol% and 15-40 mol% are preferred. When the content satisfies the numerical range, both surface hardness and laminating properties can be achieved.
  • the molecular weight of the binder such as 3,000-500,000 force S, is more preferable than 5,000-100,000 force! / ,. If the molecular weight force is less than 3,000, the tackiness of the surface of the photosensitive layer may become strong, and the film quality may become brittle or the surface hardness may deteriorate after curing of the photosensitive layer described below. If it exceeds 000, the developability may be inferior.
  • the solid content in the pattern forming material solid content of the noinder is preferably 5 to 80% by mass, more preferably 10 to 70% by mass.
  • the film strength of the photosensitive layer may be weakened or the tackiness of the surface of the photosensitive layer may be deteriorated. Sensitivity may decrease.
  • the polymerizable compound is not particularly limited and can be appropriately selected depending on the purpose, but has at least one addition-polymerizable group in the molecule and has a boiling point of 100 ° C. or higher at normal pressure.
  • at least one selected from monomers having a (meth) acryl group is preferable.
  • the monomer having a (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose.
  • the monofunctional acrylate or monofunctional methacrylate eg, polyethylene glycol mono (meth)
  • (Meth) atrelate toys after the addition reaction of ethylene oxide or propylene oxide to polyfunctional alcohols eg acrylate, polypropylene glycol mono (meth) acrylate, phenoxychetyl (meth) acrylate, etc.
  • polyfunctional alcohols eg acrylate, polypropylene glycol mono (meth) acrylate, phenoxychetyl (meth) acrylate, etc.
  • the solid content of the polymerizable compound in the solid content of the pattern forming material is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as deterioration of developability and reduction in exposure sensitivity may occur, and if it exceeds 50% by mass, the adhesiveness of the photosensitive layer may become too strong. Yes, not preferred.
  • the photopolymerization initiator is limited as long as it has the ability to initiate polymerization of the polymerizable compound.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited. For example, those having photosensitivity to visible light in the ultraviolet region force are preferably photoexcited heterocondensation. It may be an activator that generates some kind of action with a ring compound or a sensitizer to generate an active radical, and may be an initiator that initiates cationic polymerization according to the type of monomer.
  • the photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton), phosphine oxide, Examples include imidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and ketoximate.
  • halogenated hydrocarbon derivatives for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton
  • phosphine oxide examples include imidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and ketoximate.
  • Examples of the halogenated hydrocarbon compound having a triazine skeleton include, for example, a compound described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), British Patent 1388 492 Compounds described in JP-A-53-133428, compounds described in German Patent No. 3337024, J. Org. Chem. By FC Schaefer et al .; 29, 1527 (1964), Compounds described in JP-A-62-58241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, compounds described in US Pat. No. 4212976 , Etc.
  • Examples of the compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include, for example, 2 phenol-4, 6 bis (trichloromethyl) -1, 3, 5 Triazine, 2 — (4 Chlorphenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4 Tolyl) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2— (4-Methoxyphenyl) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2,4 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2, 4, 6 Tris (trichloromethyl) -1,3,5 Triazine, 2-Methyl-4,6 Bis (trichloromethyl) -1,3,5 Triazine, 2-N-nor 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine
  • Examples of the compound described in British Patent 1388492 include 2-styryl 4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (4-methylstyryl) -4, 6 — Bis (trichloromethyl) -1,3,5 triazine, 2- (4-methoxystyryl) — 4, 6-bis (trichloromethyl) -1,3,5 triazine, 2 -— (4-methoxystyryl) — 4 Amino — 6 Trichloromethyl-1, 3, 5 Triazine.
  • Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (4-Ethoxy-naphtho-1-yl) -4,6 bis ( ⁇ lichloromethyl) -1,3,5 ⁇ riadine, 2- [4- (2-ethoxyethyl) -naphtho-1-yl] -4 , 6 bis (trichloromethyl) 1, 3, 5 triazine, 2- (4, 7 dimethoxy mononaphtho 1-yl) 4, 6 bis (trichloromethyl) — 1, 3, 5 ⁇ lyazine, and 2— (acenaphth ⁇ -5-yl) -4,6 bis (trichloromethyl) -1,3,5 triazine.
  • Examples of the compounds described in the specification of the above-mentioned German Patent 3337024 include, for example, 2— (4-stilinorefuenore) 4, 6 bis (trichloromethinore) -1,3,5 triazine, 2- (4— (4-methoxystyryl) phenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (1-naphthyl vinylenephenol) 1,4 bis (trichloromethyl) 1,3 , 5 Triazine, 2 Chlorostyryl 1,4,6 Bis (trichloromethyl) 1, 3,5 Triazine, 2— (4 Thiophene-1,2 Bilenphenol) 1,4,6 Bis (trichloromethyl) 1, 3, 5— Triazine, 2— (4-thiophene, 3-bi-phenylene) 1, 4, 6-bis (trichloromethyl) 1, 3, 5, Triazine, 2— (4 Furan, 2-bi-phenylene -L) 1,6,6 bis
  • Examples of the compounds described in J. Org. Chem .; 29, 1527 (1964) by FC Schaefer et al. include 2-methyl-4,6 bis (tribromomethyl) -1,3,5 Triazine, 2, 4, 6 Tris (tribromomethyl) 1, 3, 5 Triazine, 2, 4, 6 Tris (dibromomethyl) 1, 3, 5 Triazine, 2 Amamino-4-methyl-6 Tri (Bromomethyl) — 1, 3, 5 Triazine and 2-Methoxy-4-methyl 6-Trichloromethyl 1, 3, 5 Tria Examples include gin.
  • Examples of the compounds described in JP-A-62-58241 include 2- (4-phenylethyl-sulfur) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (4-Naphthyl 1-etulfur-loop 4, 6 bis (trichloromethyl) 1, 3, 5 triazine, 2— (4— (4 trityl) phenol) — 4, 6 bis (trichloromethyl) —1 , 3, 5 — Triazine, 2- (4— (4-Methoxyphenyl) ether furol) 4, 6—Bis (Trimethylromethyl) 1, 3, 5 Triazine, 2— (4— (4-Isopropylphenol) -Luture) Hue) 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 ethyl fuse-rucheur) Grav) 1, 4, 6 Bis (trichloromethyl) 1, 3 , 5 Triazines.
  • Examples of the compounds described in JP-A-5-281728 include 2- (4 trifluoromethylphenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6—Difluorophenol) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2, 6 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine 2- (2, 6 dibromophenol) 1,6,6 bis (trichloromethyl) 1, 3, 5 triazine and the like.
  • Examples of the compounds described in JP-A-5-34920 include 2,4 bis (trichloromethyl) -6- [4- (N, N-diethoxycarbomethylmethylamino) -3-bromophenol. ] — 1, 3, 5 triazine, trihalomethyl-s triazine compounds described in US Pat. No. 4,239,850, and 2, 4, 6 tris (trichloromethyl) —s triazine, 2- (4-chloro) (Fuel) 4, 6-bis (tribromomethyl) s triazine.
  • Examples of the compounds described in the above-mentioned US Pat. No. 4,212,976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl 1,3,4-oxadiazole, 2 trichloromethyl).
  • Examples of the oxime derivative suitably used in the present invention include, for example, 3 benzoyloxy minobutane 2 on, 3 acetoxy minobutane 2 on, 3 propionyloxy iminobutane 2 on, 2 acetoximinopentane 3 on, 2-acetoximino — 1-phenolpropane 1-one, 2-benzoyloximino 1-phenolpropane — 1-one, 3-— (4-toluenesulfo-loxy) iminobutane-2-one, and 2 eth Xylcarboloxymino 1-phenolpropane-1-one.
  • isylphosphine oxides are used, for example, bis (2, 4, 6 trimethylbenzoyl) -phenylphosphine oxide, bis (2, 6 dimethoxy). (Benzyl) -2, 4, 4 Trimethyl-pentylphenylphosphine oxide, LucirinTPO, etc.
  • polyhalogen compounds such as N-fellglycine (for example, carbon tetrabromide, felt rib mouth methylsulfone, phenyltrichloromethyl ketone, etc.), amines (E.g., ethyl 4-dimethylaminobenzoate, n-butyl 4-dimethylaminobenzoate, phenethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid 2-phthalimidoethyl, 4 dimethylaminobenzoic acid 2-methacryloyloxyethyl, pentamethylenebis ( 4-dimethylaminobenzoate), 3-dimethylaminobenzoic acid phenethyl, pentamethylene ester, 4-dimethylaminobenzaldehyde, 2 chloro 4 dimethylaminobenzaldehyde, 4 dimethylaminobenz
  • Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-clobenzobenzoneone.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the photopolymerization initiator include halogenated hydrocarbons having the phosphine oxides, the ⁇ -aminoalkyl ketones, and the triazine skeleton, which are compatible with laser light having a wavelength of 405 nm in the later-described exposure.
  • Compounds and later Examples thereof include a composite photoinitiator combined with an amine compound as a sensitizer, a hexaarylbiimidazole compound, or titanocene.
  • the content of the photopolymerization initiator in the pattern forming material is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and more preferably 0.5 to 15% by mass. Especially preferred
  • the hetero-fused compound for the purpose of adjusting the exposure sensitivity and the photosensitive wavelength in exposure to the photosensitive layer described later, or when exposing and developing the photosensitive layer, the exposed portion of the photosensitive layer A viewpoint power for improving the minimum energy (sensitivity) of the light that does not change the thickness before and after the development is added.
  • the sensitivity of the photosensitive layer can be adjusted very easily from 0.1 to L00 (miZcm 2 ).
  • hetero-fused compound it is preferable to select an appropriate one corresponding to visible light, ultraviolet laser, visible light laser, or the like as a light irradiation means described later.
  • the hetero-fused compound is excited by active energy rays and interacts with other substances (for example, radical generators, acid generators, etc.) (for example, energy transfer, electron transfer, etc.) to generate radicals. It is possible to generate useful groups such as acid and acid.
  • substances for example, radical generators, acid generators, etc.
  • energy transfer, electron transfer, etc. for example, energy transfer, electron transfer, etc.
  • the hetero-fused compound also has a function as a photopolymerization initiator that initiates the polymerization of the monomer by photoexcitation just by improving the sensitivity of the photosensitive layer.
  • the hetero-fused ring compound means a polycyclic compound having a hetero atom in a ring, and at least selected from a nitrogen atom, an oxygen atom, and a sulfur atom in the ring. It is particularly preferable to include at least one selected from a nitrogen atom that preferably includes one species and a sulfur atom.
  • the hetero-fused ring compound preferably includes at least one selected from, for example, a hetero-fused ring ketone compound, a quinoline compound, and an atrazine compound.
  • hetero-fused ketone ketone compound examples include attaridone compounds such as attaridone, chloroacridone, N-methyl attaridone, N-butyl attaridone, N-butyl-chloro attaridone, and the like.
  • quinoline compound examples include quinoline, 9-hydroxy 1,2-dihydroquinolin-2-one, 9 ethoxy 1,2-dihydroquinolin-2-one, 9-dibutylamino-1,2-dihydroquinoline. -2one, 8 hydroxyquinoline, 8 mercaptoquinoline, quinoline 2—strong rubonic acid.
  • Atalidine complex examples include 9 phenyllacridin, 1,7 bis (9,9 'aterigidyl) heptane, and the like.
  • hetero-fused ring-based compounds those containing a nitrogen atom, an oxygen atom, or a sulfur atom in the ring are more preferable.
  • Preferred examples of the compound containing a nitrogen atom in the ring include the ataridin compound and the attaridon compound, and the compound containing an oxygen atom in the ring is preferably a coumarin compound.
  • Preferred examples of the compound containing a sulfur atom in the ring include thixanthone compounds. Among these, attaridone compounds and thixanthone compounds are particularly preferable.
  • Examples of the combination of the photopolymerization initiator and the hetero-fused ring compound include, for example, an electron transfer-type initiator system described in JP-A-2 001-305734 [(1) an electron-donating initiator and Sensitizing dye, (2) electron accepting initiator and sensitizing dye, (3) electron donating initiator, sensitizing dye And electron-accepting initiator (ternary initiator system)].
  • an electron transfer-type initiator system described in JP-A-2 001-305734 [(1) an electron-donating initiator and Sensitizing dye, (2) electron accepting initiator and sensitizing dye, (3) electron donating initiator, sensitizing dye And electron-accepting initiator (ternary initiator system)].
  • the content of the hetero-fused ring compound is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass with respect to all components in the pattern forming material. 0.2 to 10% by mass is particularly preferred. If the content is less than 0.05% by mass, the sensitivity to active energy rays may be reduced, the exposure process may take a long time, and productivity may be reduced.
  • the hetero-fused ring compound may precipitate from the photosensitive layer.
  • hetero-fused compound In addition to the hetero-fused compound, other sensitizers may be added as necessary.
  • the thermal crosslinking agent is not particularly limited and may be appropriately selected depending on the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the pattern forming material, developability, etc.
  • an epoxy resin compound having at least two oxsilane groups in one molecule and an oxetane compound having at least two oxetal groups in one molecule can be used.
  • epoxy resin compound examples include bixylenol type or biphenol type epoxy resin (manufactured by ⁇ 4000 Japan Epoxy Resin Co., Ltd.) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; Nissan”).
  • TEPIC isocyanurate skeleton
  • Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1, 4-bis [(3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methyl acrylate , (3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methylate Rume Tatari rate or oligomers thereof or copolymers
  • novolac resin poly (p-hydroxystyl)
  • the solid content of the epoxy resin compound or oxetane compound in the solid content of the pattern forming material is preferably 1 to 50% by mass, and more preferably 3 to 30% by mass. If the solid content is less than 1% by mass, the hygroscopicity of the cured film increases, resulting in deterioration of insulation, or solder heat resistance, electroless resistance to plating, etc. may be reduced. On the other hand, if it exceeds 50 mass%, poor developability may result in a decrease in exposure sensitivity, which is not preferable.
  • an amine compound for example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N Dimethylbenzylamine, 4-methoxy-N, N dimethylbenzilamine, 4-methylN, N dimethylbenzylamine, etc.
  • quaternary ammonium chloride compounds eg, triethylbenzylammochloride
  • Block isocyanate compounds such as dimethylamine
  • imidazole derivative bicyclic amidine compounds and salts thereof such as imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ester
  • a compound capable of promoting thermal curing other than the above is not particularly limited as long as it is a curing catalyst for the epoxy resin compound or oxetane compound, or can promote the reaction of these with a carboxyl group. It may be used.
  • the solid content in the pattern forming material solid content of the epoxy resin, the oxetane compound, and a compound capable of accelerating the thermal curing of these with carboxylic acid is usually 0.01 to 15% by mass. .
  • a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is composed of at least two isocyanate groups. It may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing Specifically, bifunctional isocyanates (eg, mixtures of 1,3 and 1,4-phenolic diisocyanates, 2,4 and 2,6 toluene diisocyanates, 1,3 and 1,4 xylates) Range isocyanate, bis (4-isocyanate monophenyl) methane, bis (4-isocyanatecyclohexyl) methane, isophorone di-socyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate Polyfunctional alcohols of the bifunctional isocyanates and trimethylolpropane, pentalysitol, dariserine, etc .; al
  • isocyanate blocker examples include alcohols (for example, isopropanol, tert-butanol, etc.), ratatas (for example, ⁇ -strength prolatatum, etc.), phenols (for example, phenol, crezo-monore, p-tert-butinolephenol) Nore, p-sec butinolevenore, p-sec amylphenol, p-octylphenol, p-norphenol, etc.), heterocyclic hydroxyl compounds (eg, 3-hydroxypyridine, 8-hydroxyquinoline) Etc.), active methylene compounds (for example, dialkyl malonate, methyl ethyl ketoxime, acetyl acetone, alkyl acetoacetoxime, acetooxime, cyclohexanone oxime, etc.). In addition to these, compounds having at least one polymerizable double bond and at least one block isocyanate group in the
  • a melamine derivative can be used as the thermal crosslinking agent.
  • the melamine derivative include methylol melamine, alkylated methylol melamine (a compound obtained by etherifying a methylol group with methyl, ethyl, butyl, etc.). These may be used alone or in combination of two or more.
  • hexamethylated methylol melamine is particularly preferred because alkylated methylol melamine is preferred because it has good storage stability and the surface hardness of the photosensitive layer is effective in improving the film strength itself of the cured film. preferable.
  • the solid content of the thermal crosslinking agent in the solid content of the pattern forming material is preferably 1 to 40% by mass, more preferably 3 to 20% by mass.
  • the solid content is less than 1% by mass, improvement in the film strength of the cured film is not observed, and when it exceeds 40% by mass, developability and exposure sensitivity may be deteriorated.
  • the other components include thermal polymerization inhibitors, plasticizers, colorants (colored pigments or dyes), extender pigments, and the like, and further adhesion promoters to the substrate surface and other assistants.
  • Agents for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, exfoliation promoters Accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc.
  • the properties such as stability, photographic properties and film properties of the target pattern forming material can be adjusted.
  • the thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound.
  • thermal polymerization inhibitor examples include 4-methoxyphenol, hydroquinone, alkyl or aryl substituted nanoquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6 di-tert-butyl-4 cresol, 2,2, -methylenebis (4-methyl-6-tert-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, copper and organic chelating agent reactants, methyl salicylate, and phenothiazine, nitrosoy compounds, -tosoy compounds and chelates of A1.
  • the content of the thermal polymerization inhibitor is preferably 0.001 to 5% by mass, more preferably 0.005 to 2% by mass with respect to the polymerizable compound. Mass% is particularly preferred. If the content is less than 0.001% by mass, the stability during storage may be reduced, and if it exceeds 5% by mass, the sensitivity to active energy rays may be reduced.
  • the color pigment can be appropriately selected according to the purpose without any particular limitation.
  • phthalocyanine green Victoria 'Pure One Blue BO (CI 42595), olamine (CI 41000), Fat. Black HB ( CI 26150), Monolite Yellow GT (C.I.Pigment 'Yellow 12), Permanent' Yellow GR (CI Pigment 'Yellow 17), Non-Minute' Yellow HR '(CI Pigment' Yellow 83), Permanent 'Carmine FBB (CI Pigment 'Red 146), Hoster Balm Red ESB (CI Pigment' Violet 19 '), Permanent' Ruby FBH (CI Pigment 'Red 11) Fustel' Pink B Supra (CI Pigment 'Red 81) Monastral' First 'Blue (CI Pigment 'Blue 1 5), Monolite' First 'Black B (CI Pigment' Black 1), Carbon, CI CI Pigment Red 97, CI Pigment Red 122, CI Pigment Red 149, CI Pigment 'Red
  • the solid content of the color pigment in the solid content of the pattern forming material can be determined in consideration of the exposure sensitivity, resolution, etc. of the photosensitive layer during the formation of a permanent pattern. Different forces depending on the kind of pigment Generally 0.05 to: LO mass% is preferred 0.1 to 5 mass% is more preferred.
  • Inorganic pigments and organic fine particles can be added.
  • the inorganic pigment can be appropriately selected from known ones that are not particularly limited, and examples thereof include kaolin, barium sulfate, barium titanate, potassium oxide powder, finely divided oxide silica, and vapor phase method silica.
  • the average particle diameter of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. If the average particle size is 10 m or more, the resolution may deteriorate due to light scattering.
  • the organic fine particles are not particularly limited and can be appropriately selected according to the purpose. Examples thereof include melamine resin, benzoguanamine resin, and cross-linked polystyrene resin. Further, silica having an average particle diameter of 1 to 5 / ⁇ , an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
  • the amount of the extender pigment added is preferably 5 to 60% by mass. When the added amount is less than 5% by mass In some cases, the linear expansion coefficient may not be sufficiently reduced. When the amount exceeds 60% by mass, when a cured film is formed on the surface of the photosensitive layer, the film quality of the cured film becomes fragile, and the permanent pattern is reduced. When the wiring is formed by using the!, The function as a protective film of the wiring may be impaired.
  • a known adhesion promoter may be used for each layer.
  • adhesion promoter examples include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638.
  • the content of the adhesion promoter is preferably 0.001% by mass to 20% by mass with respect to all components in the pattern forming material, and more preferably 0.01 to 10% by mass. 1% by mass to 5% by mass is particularly preferable.
  • the method for producing the pattern forming material can be appropriately selected according to the purpose without any particular restrictions.
  • the pattern forming material can be formed on the support such as the above-described photosensitive layer such as a binder, a polymerizable compound, and a photopolymerization initiator. It is preferable to form a photosensitive layer by applying and drying the contained material (hereinafter simply referred to as a photosensitive composition).
  • the coating and drying method can be appropriately selected according to the purpose without any particular limitation.
  • the photosensitive composition is dissolved or emulsified in water or a solvent on the surface of the support.
  • preparing a photosensitive composition by dispersing, applying the solution, and drying The method is preferred.
  • the solvent of the photosensitive composition solution is not particularly limited and may be appropriately selected depending on the intended purpose.
  • methanol, ethanol, n-propanol, isopropanol, n-butanol, sec butanol, n Alcohols such as hexanol; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; Ethyl acetate, butyl acetate, n-amyl acetate, methyl acetate, ethyl acetate propionate, phthalic acid Esters such as dimethyl, ethyl benzoate, and methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; carbon tetrachloride, trichloroethylene, chloro
  • Halogenated hydrocarbons such as tetrahydrofuran, jetyl etherenole, ethyleneglycololemonomethinoleethenole, ethyleneglycololemonoethinoletel, 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane Etc. These may be used alone or in combination of two or more. Also, add a known surfactant.
  • the coating method is not particularly limited and can be appropriately selected depending on the purpose.
  • coating is mentioned.
  • the drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
  • the thickness of the photosensitive layer is not particularly limited and may be appropriately selected according to the purpose. For example, 3 to: LOO m force is preferable, and 5 to 70 m is more preferable.
  • the pattern forming material may form a protective film on the photosensitive layer.
  • the protective film examples include those used for the support, silicone paper, polyethylene, paper laminated with polypropylene, polyolefin or polytetrafluoroethylene sheet, and among them, polyethylene film, polypropylene, and the like.
  • a film is preferred.
  • the thickness of the protective film is not particularly limited, and can be appropriately selected according to the purpose. For example, 5 to 100 ⁇ m is preferable, and 8 to 30 ⁇ m is more preferable.
  • the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B.
  • Examples of the combination of the support and the protective film include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc.
  • the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer.
  • a primer layer for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • ultraviolet irradiation treatment for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
  • the coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / !.
  • the pattern forming material is preferably stored, for example, by winding it around a cylindrical core and winding it into a long roll.
  • the length of the long pattern forming material is not particularly limited, and can be appropriately selected, for example, a range force of 10 m to 20, OOOm.
  • slitting may be performed so that it is easy for the user to use, and a long body in the range of 100 m to l, OOOm may be rolled.
  • the support is wound so that the outermost side is the outermost side.
  • the roll-shaped pattern forming material may be slit into a sheet shape.
  • the protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer.
  • an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed on the surface of the protective film.
  • the undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (particularly 50 to 120 ° C) for 1 to 30 minutes. Can do.
  • a cushion layer In addition to the photosensitive layer, the support, and the protective film, a cushion layer, an oxygen blocking layer (PC layer), a release layer, an adhesive layer, a light absorption layer, a surface protective layer, and the like may be included.
  • the cushion layer is a layer that melts and flows when laminated under vacuum heating conditions that have no tackiness at room temperature.
  • the PC layer is usually a coating of about 0.5 to 5 / ⁇ ⁇ , which is formed mainly of polybulal alcohol.
  • a laminate is formed by laminating a photosensitive layer of the pattern forming material on a substrate.
  • the substrate can be appropriately selected from known materials that are not particularly limited, and those having a high surface smoothness and a force having an uneven surface, but a plate-like substrate (substrate) Specifically, a known printed wiring board forming substrate (eg, copper-clad laminate), glass plate (eg, soda glass plate), synthetic resin film, paper, metal plate, etc. Can be mentioned.
  • a known printed wiring board forming substrate eg, copper-clad laminate
  • glass plate eg, soda glass plate
  • synthetic resin film paper, metal plate, etc.
  • the layer structure in the laminate can be appropriately selected depending on the purpose without any particular limitation.
  • a layer structure having the base, the photosensitive layer, and the support in this order. preferable.
  • the protective film is preferably peeled off and laminated so that the photosensitive layer overlaps the substrate.
  • the method for forming the laminate can be appropriately selected without any particular limitation, but at least heating and pressurization of the pattern forming material on the base material! It is preferable to stack the layers while performing any deviation.
  • the heating temperature is not particularly limited, and can be appropriately selected depending on the purpose. For example, 70 to 130 ° C is preferable, and 80 to 110 ° C is more preferable.
  • the pressure of the pressurization is not particularly limited.
  • ⁇ column, t is preferably 0.01-: L OMPa force, 0.05-: L OMPa force ⁇ More preferred! / ⁇ .
  • the apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose, and for example, a heat press, a heat roll laminator (for example, Taisei Laminate Earthen, VP — 11), vacuum laminator (for example,
  • MVLP500 MVLP500
  • the like are preferable.
  • the pattern forming material of the present invention is smaller because it can suppress a decrease in sensitivity of the photosensitive layer.
  • V and energy can be used for light exposure, which is advantageous in that the processing speed increases because the exposure speed increases.
  • the pattern forming material of the present invention provides a high-sensitivity photosensitive layer, is excellent in developability, has a good resist surface shape obtained after development, and can form a higher definition pattern.
  • the permanent pattern forming method of the present invention can be widely used for forming permanent patterns such as plates, color filters, columns, ribs, spacers, partition members, etc., holograms, micromachines, proofs, etc. Can be suitably used.
  • the pattern forming apparatus of the present invention includes the pattern forming material of the present invention, and has at least light irradiation means and light modulation means.
  • the permanent pattern forming method of the present invention preferably includes at least an exposure step, and further includes a development step and a curing treatment step.
  • the said pattern formation apparatus of this invention is clarified through description of the said permanent pattern formation method of this invention.
  • the said exposure process is a process of exposing with respect to the photosensitive layer in the pattern formation material of this invention.
  • the pattern forming material and the base material of the present invention are as described above.
  • a force that can be appropriately selected according to the purpose without any particular limitation for example, as described above, the pattern forming material on the substrate It is preferable that this is performed on a laminate formed by laminating while performing at least one of heating and pressurization.
  • the exposure can be appropriately selected according to the purpose without any particular limitation, and powers such as digital exposure, analog exposure, etc. Among these, digital exposure is preferable.
  • the digital exposure can be appropriately selected according to the purpose for which there is no particular limitation.
  • a control signal is generated based on pattern formation information to be formed, and is modulated according to the control signal. Preferred to do with light.
  • the digital exposure means can be appropriately selected according to the purpose without any particular limitation.
  • Examples thereof include a light modulation unit that modulates the irradiated light.
  • the light modulating means can be appropriately selected according to the purpose without any limitation as long as light can be modulated.
  • the light modulating means preferably has n pixel portions.
  • the light modulation means having the n picture elements can be appropriately selected according to the purpose without any particular limitation, and for example, a spatial light modulation element is preferable.
  • Examples of the spatial light modulator include a digital micromirror device (DMD).
  • DMD digital micromirror device
  • Examples include LM (Special Light Modulator), optical elements (PLZT elements) that modulate transmitted light using electro-optic effects, and liquid crystal light shatters (FLC).
  • LM General Light Modulator
  • PZT elements optical elements
  • FLC liquid crystal light shatters
  • DMD is preferred.
  • the light modulation means preferably includes pattern signal generation means for generating a control signal based on pattern information to be formed.
  • the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
  • control signal can be appropriately selected according to the purpose for which there is no particular limitation.
  • a digital signal is preferably used.
  • the DMD 50 has an SRAM cell (memory cell) 60, and a large number of micro-mirrors (micro mirrors) 62 (for example, 1,024 x 768) each comprising pixels.
  • SRAM cell memory cell
  • micro-mirrors micro mirrors
  • a micromirror 62 supported by a support column is provided at the top, and a highly reflective material such as aluminum is deposited on the surface of the micromirror 62.
  • the reflectance of the micromirror 62 is 90% or more, and the arrangement pitch thereof is 13. as an example in both the vertical and horizontal directions.
  • a silicon gate CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke. The entire structure is monolithically configured. ing.
  • the microphone mirror 62 supported by the support column is ⁇ degrees (eg ⁇ 12 °) from the substrate side on which the DMD50 is placed with the diagonal line as the center. ) Tilted within the range.
  • FIG. 2A shows a state tilted to + ⁇ degrees when the micromirror 62 is in the on state
  • FIG. 2B shows a state tilted to ⁇ degrees when the micromirror 62 is in the off state. Therefore, by controlling the inclination of the micromirror 62 in each pixel of the DMD 50 as shown in FIG. 1 according to the pattern information, the laser light incident on the DMD 50 is inclined in the direction of the inclination of each micromirror 62. Reflected to.
  • FIG. 1 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + ⁇ degrees or ⁇ degrees.
  • a controller 302 (see FIG. 12) connected to the DMD 50.
  • a light absorber (not shown) is disposed in the direction in which the laser beam reflected by the micromirror 62 in the off state travels.
  • the DMD 50 is arranged with a slight inclination so that the short side thereof forms a predetermined angle ⁇ (for example, 0.1 ° to 5 °) with the sub-scanning direction.
  • Fig. 3 (b) shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted
  • Fig. 3 (b) shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
  • the DMD50 has a micromirror array force in which a large number (for example, 1,024) of micromirrors are arranged in the longitudinal direction.
  • the exposure beam from each micromirror 53 Scanning trajectory (scanning line) pitch P force Scanning line pitch when DMD50 is not tilted
  • the scanning width w in this case is substantially the same.
  • high-speed modulation a method for increasing the modulation speed in the optical modulation means (hereinafter referred to as “high-speed modulation”) will be described.
  • the light modulation means can control any less than n pixel elements arranged continuously from the n pixel elements according to pattern information.
  • the modulation speed per line is determined in proportion to the number of pixels to be used. Using only this increases the modulation rate per line.
  • the laser beam reflected when the DMD50 microphone mirror is on is imaged on the pattern forming material 150 by the lens systems 54 and 58. .
  • the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in approximately the same number of pixel units (exposure area 168) as the number of pixels used in the DMD 50.
  • the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in a direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposure is performed for each exposure head 166. Region 170 is formed.
  • the DMD 50 has 768 sets of micro mirror rows each having 1,024 microphone aperture mirrors arranged in the main scanning direction, arranged in the sub scanning direction.
  • the controller 302 (see FIG. 12) performs control so that only a part of the micromirror rows (eg, 1024 ⁇ 256 rows) are driven.
  • the micromirror array disposed at the end of DMD50 may be used as shown in FIG. 4B. May be used.
  • a defect occurs in some micromirrors, use a micromirror array that does not have a defect, such as using a micromirror array that is suitable for the situation. It may be changed at any time.
  • the data processing speed of the DMD50 is limited, and the modulation speed per line is determined in proportion to the number of pixels to be used. The modulation speed per hit is increased. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.
  • stage 152 is moved along the guide 158 by the stage driving device 304. Returning to the origin on the uppermost stream side of the gate 160, it is moved again along the guide 158 from the upstream side to the downstream side of the gate 160 at a constant speed.
  • modulation can be performed twice as fast per line as compared to using all 768 sets. Also, when only 256 pairs are used in the 768 micromirror array, modulation can be performed three times faster per line than when all 768 pairs are used.
  • the micromirror array force in which 1024 micromirrors are arranged in the main scanning direction includes the DMD arranged in 768 threads in the subscanning direction.
  • the force described in the example of partially driving the micromirror of the DMD has a length in the direction corresponding to the predetermined direction is longer than the length in the direction intersecting the predetermined direction. Even if a long and narrow DMD in which a number of micromirrors that can change the angle of the reflecting surface are arranged in two dimensions is used, the number of micromirrors that control the angle of the reflecting surface is reduced. Can be fast.
  • the exposure method is performed while relatively moving the exposure light and the photosensitive layer.
  • the exposure method is preferably used in combination with the high-speed modulation. Thereby, high-speed exposure can be performed in a short time.
  • the entire surface of the pattern forming material 150 may be exposed by one scan in the X direction by the scanner 162, as shown in FIGS. 6A and 6B.
  • the scanner 162 is moved one step in the Y direction, and scanning is performed in the X direction.
  • the entire surface may be exposed.
  • the scanner 162 includes 18 exposure heads 166.
  • the exposure head has at least the light irradiation means and the light modulation means.
  • the exposure is performed on a part of the photosensitive layer to cure the part of the area.
  • the uncured area other than the part of the cured area is cured.
  • the area is removed and a pattern is formed.
  • the pattern forming apparatus including the light modulating means includes a flat plate stage 152 for adsorbing and holding a sheet-like pattern forming material 150 on the surface.
  • Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-like installation table 156 supported by the four legs 154.
  • the stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 158 so as to be reciprocally movable.
  • the pattern forming apparatus includes a driving device (not shown) for driving the stage 152 along the guide 158.
  • a U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each end of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156.
  • a scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the front and rear ends of the pattern forming material 150 are provided on the other side. Yes.
  • the scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152.
  • the scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.
  • the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (eg, 3 rows and 5 columns). I have. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the pattern forming material 150. did. When individual exposure heads arranged in the m-th row and the n-th column are shown, they are expressed as an exposure head 166.
  • An exposure area 168 by the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction.
  • a strip-shaped exposed region 170 is formed in the pattern forming material 150 for each exposure head 166. If the exposure area by each exposure head arranged in the m-th row and the n-th column is shown, the exposure area 168
  • each of the exposure heads in each row arranged in a line so that the strip-shaped exposed region 170 is arranged without a gap in the direction perpendicular to the sub-scanning direction is In the arrangement direction, they are shifted by a predetermined interval (a natural number times the long side of the exposure area, twice in this example). Therefore, exposure between the exposure area 168 and the exposure area 168 in the first row is not possible.
  • Unexposed areas are exposed using the exposure area 168 in the second row and the exposure area 168 in the third row.
  • a light modulation means spatial light modulation element that modulates each pixel in accordance with pattern information
  • a digital 'micromirror' device manufactured by Texas Instruments Inc., USA
  • the DMD 50 is connected to the controller 302 (see FIG. 12) having a data processing unit and a mirror drive control unit.
  • the data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The areas to be controlled will be described later.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. The control of the angle of the reflecting surface will be described later.
  • a fiber array light source having a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 for correcting the laser light emitted from the fiber array light source 66 and collecting it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order.
  • the lens system 67 is schematically shown. As shown in detail in FIG.
  • the lens system 67 has a condensing lens 71 that condenses laser light B as illumination light emitted from the fiber array light source 66, and an optical path of light that has passed through the condensing lens 71.
  • An inserted rod-shaped optical integrator (hereinafter referred to as a rod integrator) 72, and an imaging lens 74 force arranged in front of the rod integrator 72, that is, on the mirror 69 side, are also configured.
  • the condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform intensity in the beam cross section.
  • the shape and action of the rod integrator 72 will be described in detail later.
  • the laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70.
  • the TIR prism 70 is omitted.
  • an imaging optical system 51 that images the laser beam B reflected by the DMD 50 onto the pattern forming material 150 is disposed on the light reflection side of the DMD 50.
  • This imaging optical system 51 is schematically shown in FIG. 10, but as shown in detail in FIG. 11, the first imaging optical system consisting of lens systems 52 and 54 and lens systems 57 and 58 are used.
  • the second imaging optical system, the microlens array 55 inserted between these imaging optical systems, and the aperture array 59 are also configured.
  • the microlens array 55 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to the respective pixels of the DMD 50.
  • the arrangement pitch of the micro lenses 55a is 41 ⁇ m in both the vertical and horizontal directions.
  • the micro lens 55a has a focal length of 0.19 mm, an NA (numerical aperture) of 0.11, and is formed from the optical glass BK7.
  • the shape of the microlens 55a will be described in detail later.
  • the beam diameter of the laser beam B at the position of each microlens 55a is 41 ⁇ m.
  • the aperture array 59 is formed by forming a large number of apertures (openings) 59a corresponding to the respective microlenses 55a of the microlens array 55.
  • Aperture 59a The diameter is, for example, 10 / zm.
  • the first imaging optical system forms an image on the microlens array 55 by enlarging the image by the DMD 50 three times. Then, the second imaging optical system forms an image on the pattern forming material 150 and projects it by enlarging the image that has passed through the microlens array 55 by 1.6 times. Therefore, as a whole, the image formed by the DMD 50 is magnified by 4.8 times and is formed and projected on the pattern forming material 150.
  • a prism pair 73 is disposed between the second imaging optical system and the pattern forming material 150, and the prism pair 73 is moved in the vertical direction in FIG. You can adjust the focus of the image above.
  • the pattern forming material 150 is sub-scan fed in the direction of arrow F.
  • the picture element portion can be appropriately selected depending on the purpose without any limitation as long as it can receive and emit light from the light irradiation means.
  • the pattern portion of the present invention can be selected.
  • the pattern formed by the forming method is an image pattern, it is a pixel, and when the light modulation means includes a DMD, it is a micromirror.
  • the number of picture element portions (n mentioned above) of the light modulation element can be appropriately selected according to the purpose without particular limitation.
  • the arrangement of the picture element portions in the light modulation element can be appropriately selected according to the purpose for which there is no particular limitation.
  • a two-dimensional arrangement is preferably arranged in a lattice shape. More preferred to be.
  • the light irradiation means can be appropriately selected according to the purpose without any particular limitation.
  • a known light source such as a semiconductor laser or means capable of combining and irradiating two or more lights can be mentioned. Among these, means capable of combining and irradiating two or more lights are preferable.
  • the light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • a laser that combines two or more light beams that are preferred by laser light (hereinafter sometimes referred to as “combined laser”) is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
  • the wavelength of the ultraviolet power and visible light for example, 300-1 and 500 nm are preferable.
  • the wavelength of the laser light is preferably 200 to 1,500 nm force S, more preferably 300 to 800 nm force, more preferably 330 to 500 nm force, and particularly preferably 400 to 450 nm force ⁇ /.
  • means capable of irradiating the combined laser for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • Means having a collective optical system to be used is preferable.
  • the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of the multimode optical fiber 30 is coupled to each laser module 64. ing.
  • the other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30.
  • the end portion of the multimode optical fiber 31 opposite to the optical fiber 30 is arranged along the main scanning direction orthogonal to the sub-scanning direction, and is arranged in two rows.
  • a laser emitting unit 68 is configured.
  • the laser emitting portion 68 constituted by the end portion of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. Further, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection.
  • the light exit end face of the multimode optical fiber 31 is easy to collect dust and easily deteriorate due to its high light density, but the protective plate as described above prevents the dust from adhering to the end face and prevents deterioration. Can be delayed.
  • the multimode optical fiber 30 adjacent to each other with a large cladding diameter is multimode.
  • Stack optical fiber 30 and stack multi-mode optical fiber 30 The output ends of the combined optical fibers 31 are arranged so as to be sandwiched between the two output ends of the optical fibers 31 connected to the two adjacent multimode optical fibers 30 in the portion where the cladding diameter is large. .
  • such an optical fiber is a light with a small cladding diameter of 1 to 30 cm in length at the tip of the multimode optical fiber 30 with a large cladding diameter on the laser light emission side. It can be obtained by coupling the fibers 31 coaxially.
  • the two optical fibers are fused and bonded to the incident end face force of the optical fiber 31 and the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide.
  • the diameter of the core 31a of the optical fiber 31 is the same as the diameter of the core 30a of the multimode optical fiber 30.
  • the tip portion can be easily replaced when the diameter of the clad or the optical fiber is broken, and the cost required for exposure head maintenance can be reduced.
  • the optical fiber 31 may be referred to as an emission end portion of the multimode optical fiber 30.
  • the multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber.
  • a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used.
  • the cladding thickness ⁇ (cladding diameter, one core diameter) Z2 ⁇ is set to the 800 nm wavelength band. About 1Z2 when propagating infrared light, 1.
  • the cladding diameter can be reduced to 60 / zm.
  • the clad diameter of the optical fiber 31 is not limited to 60 ⁇ m.
  • Conventional fiber array The optical fiber used in the light source has a cladding diameter of 125 m.
  • m is preferably 40 m or less.
  • the cladding diameter of the optical fiber 31 is preferably 10 ⁇ m or more.
  • the laser module 64 is configured by a combined laser light source (fiber array light source) shown in FIG.
  • This combined laser light source is composed of a plurality of (for example, 7) chip-shaped lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6 arranged and fixed on the heat block 10.
  • LD1, LD2, LD3, LD4, LD5, LD6 arranged and fixed on the heat block 10.
  • And LD7, and GaN-based semiconductor laser L D1 ⁇ Collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of LD7, one condenser lens 20, and 1 And a multimode optical fiber 30.
  • the number of semiconductor lasers is not limited to seven.
  • the GaN semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also common (for example, 100 mW for the multimode laser and 30 mW for the single mode laser).
  • As the GaN-based semiconductor lasers LD1 to LD7 lasers having an oscillation wavelength other than the above-mentioned 405 nm in a wavelength range of 350 to 450 nm may be used.
  • the combined laser light source is housed in a box-shaped package 40 having an upper opening, together with other optical elements.
  • the package 40 is provided with a package lid 41 created so as to close the opening thereof. After the degassing process, a sealing gas is introduced, and the opening of the knocker 40 is closed by the package lid 41, whereby the package 40 and the package 40 are packaged.
  • the combined laser light source is hermetically sealed in a closed space (sealed space) formed by the die lid 41.
  • a base plate 42 is fixed to the bottom surface of the package 40. On the top surface of the base plate 42, the heat block 10, the condensing lens holder 45 that holds the condensing lens 20, and the multimode light.
  • a fiber holder 46 that holds the incident end of the fiber 30 is attached. The exit end of the multimode optical fiber 30 is drawn out of the package through an opening formed in the wall surface of the knock 40.
  • a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held.
  • An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
  • FIG. 32 shows the front shape of the mounting part of the collimator lenses 11-17.
  • Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into an elongated shape with a parallel plane.
  • This elongated collimator lens can be formed, for example, by molding a resin or optical glass.
  • the collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD 7 (left and right direction in FIG. 32). Yes.
  • the GaN-based semiconductor lasers LD1 to LD7 have an active layer with an emission width of 2 ⁇ m, and the divergence angles in the direction parallel to and perpendicular to the active layer are, for example, 10 ° and 30 °, respectively.
  • the lasers that emit laser beams B1 to B7 are used.
  • These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
  • each collimator lens 11-17 has a width of 1. lmm and a length of 4.6m.
  • the horizontal and vertical beam diameters of the laser beams B1 to B7 incident on them are 0.9 mm and 2.6 mm, respectively.
  • Each of the collimator lenses 11 to 17 has a focal length f
  • the condensing lens 20 is obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into a thin plane in a parallel plane and perpendicular to the arrangement direction of the collimator lenses 11 to 17, that is, in the horizontal direction. It is formed in a shape that is short in the direction.
  • the condensing lens 20 is also formed, for example, by molding a resin or optical glass.
  • the light emitting means for illuminating the DMD uses a high-luminance fiber array light source in which the emission ends of the optical fibers of the combined laser light source are arranged in an array, a high output and deep focus A pattern forming apparatus having a depth can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced.
  • the cladding diameter of the output end of the optical fiber is smaller than the cladding diameter of the incident end, the diameter of the light emitting section is further reduced, and the brightness of the fiber array light source can be increased.
  • a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 ⁇ m or less and a resolution of 0.1 ⁇ m or less, a deep focal depth can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.
  • TFT thin film transistor
  • the light irradiation means is not limited to a fiber array light source including a plurality of the combined laser light sources.
  • laser light incident from a single semiconductor laser having one light emitting point is used.
  • a fiber array light source in which a fiber light source including one optical fiber emitting light is arrayed can be used.
  • a light irradiation means having a plurality of light emitting points for example, as shown in FIG. 33, a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 on a heat block 100: LD7 Can be used.
  • a chip-shaped multi-cavity laser 110 shown in FIG. 34A in which a plurality of (for example, five) light emitting points 110a are arranged in a predetermined direction is known.
  • Multi-Cavity Laser 110 is an array of chip-shaped semiconductor lasers Compared to the case, since the light emitting points can be arranged with high positional accuracy, it is easy to multiplex the laser light emitted from each light emitting point force. However, as the number of light emitting points increases, it becomes easy for the multi-cavity laser 110 to stagnate during laser manufacturing. Therefore, the number of light emitting points 110a is preferably 5 or less.
  • a plurality of multi-cavity lasers 110 are arranged on the heat block 100 as shown in FIG. 34B.
  • a multi-cavity laser array arranged in the same direction can be used as a laser light source.
  • the combined laser light source is not limited to one that combines laser beams emitted from a plurality of chip-shaped semiconductor lasers.
  • a combined laser light source including a chip-shaped multi-cavity laser 110 having a plurality of (for example, three) emission points 110a can be used.
  • the combined laser light source includes a multi-cavity laser 110, a single multimode optical fiber 130, and a condenser lens 120.
  • the multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.
  • each of the laser beams B emitted from each of the plurality of light emitting points 110a of the multi-cavity laser 110 is collected by the condenser lens 120 and incident on the core 130a of the multimode optical fiber 130. To do.
  • the laser light incident on the core 130a is propagated in the optical fiber, combined into one, and emitted.
  • a plurality of light emitting points 110a of the multi-cavity laser 110 are arranged in parallel within a width substantially equal to the core diameter of the multi-mode optical fiber 130, and the condensing lens 120 includes a multi-mode optical fiber 130.
  • the convex lens with a focal length approximately equal to the core diameter or a rod lens that collimates the outgoing beam from the multi-cavity laser 110 only in a plane perpendicular to its active layer the multimode of laser light B The coupling efficiency to the optical fiber 130 can be increased.
  • a multi-cavity laser 110 having a plurality of (for example, three) emission points is used, and a plurality of (for example, nine) multi-carriers are mounted on the heat block 111.
  • a combined laser light source having a laser array 140 in which the Viti lasers 110 are arranged at equal intervals is used. Can be.
  • the plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.
  • This combined laser light source is arranged between the laser array 140, the plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and the laser array 140 and the plurality of lens arrays 114. Further, it is configured to include one rod lens 113, one multimode optical fiber 130, and a condensing lens 120.
  • the lens array 114 includes a plurality of microlenses corresponding to the emission points of the multi-cavity laser 110.
  • each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multi-cavity lasers 110 is condensed in a predetermined direction by the rod lens 113, and then the lens array 114.
  • the light is collimated by each microlens.
  • the collimated laser beam L is collected by the condenser lens 120 and enters the core 130 a of the multimode optical fiber 130.
  • the laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
  • this combined laser light source includes a heat block 182 having an L-shaped cross section in the optical axis direction mounted on a substantially rectangular heat block 180, and two heat sources. A storage space is formed between the blocks.
  • a plurality of (for example, two) multi-cavity lasers in which a plurality of light-emitting points (for example, five) are arranged in an array form 110 power light-emitting points for each chip 110a It is fixed and arranged at equal intervals in the same direction as the direction of arrangement.
  • the substantially rectangular heat block 180 has a recess, and a plurality of light emitting points (for example, five) are arranged on the space-side upper surface of the heat block 180 (for example, five).
  • the two multi-cavity lasers 110 are arranged so that their emission points are located on the same vertical plane as the emission points of the laser chips arranged on the upper surface of the heat block 182.
  • a collimating lens array 184 in which collimating lenses are arranged corresponding to the light emitting points 110a of the respective chips is arranged.
  • the length direction of each collimating lens and the divergence angle of the laser beam are large V and the direction (fast axis direction) coincides, and the width direction of each collimating lens is divergence is small! /, Direction It is arranged so as to coincide with (slow axis direction).
  • collimating lenses are arrayed As a result, the space utilization efficiency of the laser beam can be improved, the output of the combined laser light source can be increased, and the number of components can be reduced and the cost can be reduced.
  • the collimating lens array 184 there is a single multimode optical fiber 130 and a condensing unit for condensing and coupling the laser beam to the incident end of the multimode optical fiber 130.
  • An optical lens 120 is disposed.
  • each of the laser beams B emitted from the respective light-emitting points 110a of the plurality of multi-cavity lasers 110 arranged on the laser blocks 180 and 182 is collimated by the collimating lens array 184. And condensed by the condenser lens 120 and incident on the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
  • the combined laser light source can achieve particularly high output by the multistage arrangement of multi-cavity lasers and the array of collimate lenses.
  • a higher-intensity fiber array light source or bundle fiber light source can be formed, which is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.
  • a laser module in which each of the combined laser light sources is housed in a casing and the emission end portion of the multimode optical fiber 130 is pulled out from the casing can be configured.
  • a fiber array is formed by coupling another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber to the output end of the multimode optical fiber of the combined laser light source.
  • Another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber to the output end of the multimode optical fiber of the combined laser light source.
  • a multimode optical fiber with a cladding diameter of 125 m, 80 m, 60 ⁇ m, etc. can be used without connecting another optical fiber to the output end. Also good.
  • each exposure head 166 of the scanner 162 laser light Bl, B2, B3, B4, GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66 is emitted in the state of divergent light.
  • Each of B5, B6, and B7 is collimated by the corresponding collimator lenses 11-17.
  • the collimated laser beams B1 to B7 And converged on the incident end face of the core 30a of the multimode optical fiber 30.
  • the collimator lenses 11 to 17 and the condensing lens 20 constitute a condensing optical system
  • the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beams B1 to B7 condensed as described above by the condenser lens 20 are incident on the core 30a of the multimode optical fiber 30 and propagate through the optical fiber. The light is output from the optical fiber 31 combined and coupled to the output end of the multimode optical fiber 30.
  • the laser emitting section 68 of the fiber array light source 66 light emission points with high luminance are arranged in a line along the main scanning direction as described above.
  • a conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has low output, so if the multiple rows are not arranged, the desired force cannot be obtained. Since the wave laser light source has high output, a desired output can be obtained even with a small number of columns, for example, one column.
  • a laser with an output of about 30 mW (milliwatt) is usually used as a semiconductor laser, and a core diameter as an optical fiber.
  • Multimode optical fiber with 50 m, clad diameter 125 m, NA (numerical aperture) 0.2 is used, so if you want to obtain an output of about 1 W (watt), 48 multimode optical fibers ( 8 X 6)
  • the luminous area is 0.62 mm 2 (0.675 mm X O. 925 mm)
  • the brightness at the laser emitting section 68 is 1.6 X 10 6 (W / m 2)
  • brightness per optical fiber is 3.2 X 10 6 (WZm 2 ).
  • the light irradiation means is a means capable of irradiating a combined laser
  • an output of about 1 W can be obtained with six multimode optical finos, and the laser emitting section 68 emits light. Since the area of the optical region is 0.0081 mm 2 (0.325 mmX 0.025 mm), laser emission
  • the brightness at section 68 is 123 ⁇ 10 6 (WZm 2 ), which is about 80 times higher than before.
  • the luminance per optical fiber is 90 X 10 6 (WZm 2 ), which is about 28 times higher than before.
  • the diameter of the light emission area of the bundled fiber light source of the conventional exposure head is 0.675 mm, and the diameter of the light emission area of the fiber array light source of the exposure head is 0.025 mm.
  • the light emitting means (bundle fiber light source) 1 has a large light emitting area, so the angle of the light beam incident on the DMD 3 increases, and as a result, the light beam enters the scanning surface 5. The angle of the light beam increases. For this reason, the beam diameter tends to increase with respect to the condensing direction (shift in the focus direction).
  • the diameter of the light emitting region of the fiber array light source 66 in the sub-scanning direction is reduced.
  • the angle of the light beam incident on the scanning surface 56 is decreased. That is, the depth of focus becomes deep.
  • the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot.
  • the effect on the depth of focus becomes more significant and effective as the required light quantity of the exposure head increases.
  • the size of one pixel projected on the exposure surface is 10 m x 10 m.
  • the DMD is a reflective spatial light modulator, but FIGS. 37A and 37B are developed views for explaining the optical relationship.
  • Pattern information power corresponding to the exposure pattern is input to a controller (not shown) connected to the DMD 50 and stored in a frame memory in the controller.
  • This pattern information is data that represents the density of each pixel constituting the image as binary values (whether or not dots are recorded).
  • the stage 152 having the pattern forming material 150 adsorbed on its surface is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown).
  • a detection sensor attached to the gate 160 is used.
  • the pattern information stored in the frame memory is sequentially read out for each of a plurality of lines, and each exposure head 166 is read based on the pattern information read out by the data processing unit.
  • a control signal is generated every time. Then, each of the micromirrors of the DMD 50 is controlled on and off for each exposure head 166 based on the generated control signal by the mirror drive control unit.
  • the DMD 50 When the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the microphone mouth mirror of the DMD 50 is turned on is exposed to the surface of the pattern forming material 150 by the lens systems 54 and 58. Imaged on 56. In this way, the laser light emitted from the fiber array light source 66 is turned on and off for each pixel, and the no-turn forming material 150 is exposed in approximately the same number of pixel units (exposure area 168) as the number of pixels used in DM D50.
  • the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposure is performed for each exposure head 166. Region 170 is formed.
  • the exposure is preferably performed using the modulated light through a microlens array, and may be performed through an aperture array, an imaging optical system, or the like.
  • the microlens array has a force that can be appropriately selected according to the purpose without any particular limitation.
  • a microlens having an aspherical surface capable of correcting aberration due to distortion of the exit surface in the pixel part Preferred are those arranged.
  • the aspherical surface can be appropriately selected according to the purpose without any particular limitation, and for example, a toric surface is preferable.
  • FIG. 13A shows DMD50, light irradiation means 144 for irradiating DMD50 with laser light, and a lens system (imaging optical system) 454, 458, DM D50 for enlarging and imaging the laser light reflected by DMD50.
  • the laser light that has passed through the exposed surface 5 6 represents an exposure head composed of a lens system (imaging optical system) 480 and 482 that forms an image.
  • FIG. 14 shows the result of measuring the flatness of the reflection surface of the micromirror 62 constituting the DMD 50.
  • the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm.
  • the X direction and the y direction shown in the figure are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above.
  • 15A and 15B show the height position displacement of the reflection surface of the micromirror 62 along the X direction and the y direction, respectively.
  • the reflection surface of the micromirror 62 is distorted, and if one focuses on the center of the mirror, one diagonal direction (y direction) ) Distortion 1S The distortion is larger than the distortion in another diagonal direction (X direction). For this reason, the problem that the shape in the condensing position of the laser beam B condensed by the microlens 55a of the microlens array 55 may be distorted.
  • the microlens 55a of the microlens array 55 has a special shape different from the conventional one. This will be described in detail below.
  • FIG. 16A and FIG. 16B respectively show the front and side shapes of the entire microlens array 55 in detail. These figures also show the dimensions of each part of the microlens array 55, and their units are mm.
  • the 1024 ⁇ 256 micromirrors 62 of the DMD 50 are driven.
  • 1024 microlenses 55a arranged in the horizontal direction are arranged in parallel in 256 rows in the vertical direction.
  • the arrangement order of the micro lens array 55 is indicated by j in the horizontal direction and k in the vertical direction.
  • FIGS. 17A and 17B show the front shape and side shape of one microphone opening lens 55a in the microlens array 55, respectively.
  • FIG. 17A also shows the contour lines of the micro lens 55a.
  • the end surface of each microlens 55a on the light emission side has an aspherical shape that corrects aberration due to distortion of the reflection surface of the micromirror 62. More specifically, the microlens 55a is a toric lens, and light is emitted in the X direction.
  • the condensing state of the laser beam B in the cross section parallel to the X direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively.
  • the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. ing.
  • FIGS. 19A to 19D show simulation results of the beam diameter in the vicinity of the condensing position (focus position) of the microlens 55a when the microlens 55a has the above-described shape.
  • X is the lens optical axis in the X direction. This means the distance of O force
  • Y means the distance of the lens optical axis O force in the y direction.
  • the microlens 55a is parallel to the focal length force direction in the cross section parallel to the y direction.
  • a toric lens smaller than the focal length in the cross section, distortion of the beam shape in the vicinity of the condensing position is suppressed. If so, the pattern forming material 150 can be exposed to a higher definition image without distortion.
  • the present embodiment shown in FIG. 19A to FIG. 19D is divided into the fact that the region where the beam diameter is small is wider, that is, the depth of focus is larger.
  • the strain force of the central portion of the micromirror 62 in the X and y directions If the micro lens is composed of a toric lens whose focal length in the cross section parallel to the x direction is smaller than the focal length in the cross section parallel to the y direction, It is possible to expose the pattern forming material 150 with a higher-definition image that does not exist.
  • the aperture array 59 arranged in the vicinity of the condensing position of the microlens array 55 is arranged so that only light that has passed through the corresponding microlens 55a is incident on each aperture 59a. . That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to enhance the extinction ratio.
  • the microlens 55a may have a secondary aspherical shape or a higher order (4th, 6th, aspherical shape). By adopting the higher-order aspherical shape, the beam shape can be further refined.
  • the end surface of the light exit side of the micro lens 55a is aspheric.
  • a microlens array is configured with one of the two light-passing end surfaces being a spherical surface and the other being a cylindrical surface, the same effect as in the above embodiment can be obtained. It can also be obtained.
  • the microlens 55a of the microlens array 55 has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62.
  • the same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution that corrects aberration due to distortion of the reflection surface of the micromirror 62 instead of adopting the spherical shape. .
  • FIGS. 22A and 22B An example of such a microlens 155a is shown in FIGS. 22A and 22B.
  • 22A and 22B show the front shape and side shape of the microlens 155a, respectively.
  • the outer shape of the micro lens 155a is a parallel plate.
  • the x and y directions in the figure are as described above.
  • FIG. 23A and FIG. 23B schematically show the condensing state of the laser light B in the cross section parallel to the x direction and the y direction by the microlens 155a.
  • the microlens 155a has a refractive index distribution in which the optical axis O force gradually increases outward, and the broken line shown in the microlens 155a in FIG. The positions changed at equal pitches are shown.
  • the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is larger. It is getting shorter. Even when a microlens array composed of such a gradient index lens is used, the same effect as when the microlens array 55 is used can be obtained.
  • a microlens having an aspherical surface shape such as the microlens 55a previously shown in Figs. 17A, 17B, 18A, and 18B, and the refractive index as described above. It is possible to give a distribution and correct aberration due to distortion of the reflecting surface of the micromirror 62 by both the surface shape and the refractive index distribution.
  • the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected.
  • the pattern forming method of the present invention using a spatial light modulation element other than the DMD.
  • the present invention can be applied to correct the aberration due to the distortion and prevent the beam shape from being distorted.
  • the cross-sectional area of the beam line reflected in the ON direction by the DMD 50 is several times (for example, twice) by the lens systems 454 and 458. Enlarged.
  • the expanded laser light is condensed by each microlens of the microlens array 472 so as to correspond to each pixel part of the DMD 50, and passes through the corresponding aperture of the aperture array 476.
  • the laser beam that has passed through the aperture is imaged on the exposed surface 56 by the lens systems 480 and 482.
  • the laser light reflected by the DMD 50 is transmitted through the magnifying lenses 454, 45. Since the image is magnified several times by 8 and projected onto the exposed surface 56, the entire image area becomes wider. At this time, if the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 13B, one pixel size (spot size) of each beam spot BS projected onto the exposed surface 56 is the exposure area.
  • MTF Modulation Transfer Function
  • the laser light reflected by the DMD50 corresponds to each pixel part of the DMD50 by each microlens of the microlens array 472. Focused.
  • the spot size of each beam spot BS can be reduced to a desired size (for example, lO ⁇ mX lO ⁇ m). It is possible to perform high-definition exposure by preventing deterioration of characteristics.
  • the exposure area 468 is tilted because the DMD 50 is tilted in order to eliminate gaps between pixels.
  • the aperture array can shape the beam so that the spot size on the exposed surface 56 is constant. At the same time, by passing through an aperture array provided corresponding to each pixel, crosstalk between adjacent pixels can be prevented.
  • the angle of the light beam incident on each microlens of the microlens array 472 from the lens 458 becomes small. It is possible to prevent a part of the light beam from entering. That is, a high extinction ratio can be realized.
  • the pattern forming method of the present invention may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light quantity distribution correcting optical system composed of a pair of combination lenses.
  • the light quantity distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width in the peripheral portion to the light flux width in the central portion close to the optical axis is smaller on the exit side than on the entrance side.
  • the light quantity distribution correcting optical system expands the light flux width hO of the incident light flux at the central portion with respect to the light having the same light flux width hO, hi on the incident side.
  • it acts to reduce the luminous flux width hi. That is, the width hlO of the outgoing light beam in the central portion and the width hl l of the outgoing light beam in the peripheral portion are set to satisfy hl l ⁇ hlO.
  • the central luminous flux which normally has a large light quantity distribution, can be utilized in the peripheral part where the quantity of light is insufficient, and the light utilization as a whole is improved.
  • the light amount distribution on the irradiated surface is made substantially uniform without reducing the use efficiency.
  • the degree of uniformity is, for example, such that the unevenness in the amount of light within the effective area is within 30%, preferably within 20%.
  • Fig. 24B shows the case where the entire luminous flux width H0 on the incident side is “reduced” to the width H2 before being emitted (H0
  • the light quantity distribution correcting optical system has the same light flux width h0, hi on the incident side, and the light flux width hlO in the central portion is larger than that in the peripheral portion on the outgoing side.
  • the luminous flux width hl l at the periphery is made smaller than at the center. Considering the reduction ratio of the luminous flux, the reduction ratio for the incident light flux in the center is smaller than that in the peripheral area, and the reduction ratio for the incident light flux in the peripheral area is larger than that in the central area.
  • FIG. 24C shows a case where the entire luminous flux width HO on the incident side is “expanded” to the width H3 and emitted (HO and H3).
  • the light quantity distribution correcting optical system has the same light flux width hO, hi on the incident side, and the light flux width hlO in the central portion is larger than that in the peripheral portion on the outgoing side.
  • the light flux width hi 1 at the peripheral part is made smaller than that at the central part.
  • the light quantity distribution correcting optical system changes the light beam width at each emission position, and outputs the ratio of the light beam width in the peripheral part to the light beam width in the central part near the optical axis Z1 as compared with the incident side. Since the emission side is smaller, the light having the same luminous flux width on the incident side has a larger luminous flux width in the central part than in the peripheral part on the outgoing side, and the luminous flux width in the peripheral part is Smaller than the center. As a result, the light beam in the central part can be utilized to the peripheral part, and a light beam cross-section with a substantially uniform light quantity distribution can be formed without reducing the light use efficiency of the entire optical system.
  • lens data is shown in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution, as in the case where the light irradiation means is a laser array light source.
  • the light intensity distribution of the emitted light beam from the optical fino becomes a Gaussian distribution.
  • the pattern forming method of the present invention can be applied to such a case. Also applicable to cases where the core diameter is close to the optical axis by reducing the core diameter of the multimode optical fiber and approaching the configuration of the single mode optical fiber, etc. It is.
  • a pair of combination lenses is composed of two rotationally symmetric aspherical lenses. If the light incident side surface of the first lens arranged on the light incident side is the first surface and the light output side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.
  • the unit of the surface distance di value is millimeter (mm).
  • Refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
  • Table 2 below shows the aspherical data for the first and fourth surfaces.
  • each coefficient is defined as follows.
  • E indicates that the next numerical value is a “power” with a base of 10
  • the numerical force expressed by an exponential function with the base of 10 Number before E " To be multiplied For example, “1. OE—02” indicates “1. 0 X 10 _2 ”.
  • FIG. 26 shows the light quantity distribution of illumination light obtained by the pair of combination lenses shown in Table 1 and Table 2.
  • the horizontal axis indicates coordinates from the optical axis, and the vertical axis indicates the light amount ratio (%).
  • Fig. 25 shows the light intensity distribution (Gaussian distribution) of illumination light when correction is applied.
  • the light amount distribution correction optical system corrects the light amount distribution, which is substantially uniform as compared with the case where the correction is not performed. As a result, it is possible to perform uniform exposure with uniform laser light without reducing the light utilization efficiency.
  • the developing step is a step of exposing the photosensitive layer by the exposing step, curing the exposed region of the photosensitive layer, and then developing by removing the uncured region to form a permanent pattern.
  • the removal method of the uncured region can be appropriately selected depending on the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
  • the developer may be appropriately selected according to the purpose without any particular limitation.
  • alkali metal or alkaline earth metal hydroxide or carbonate, hydrogen carbonate, aqueous ammonia Preferred examples include aqueous solutions of quaternary ammonium salts. Among these, an aqueous sodium carbonate solution is particularly preferable.
  • the developer includes a surfactant, an antifoaming agent, an organic base (for example, benzylamine, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, Triethanolamine, etc.) and organic solvents (for example, alcohols, ketones, esters, ethers, amides, latatones, etc.) may be used in combination to accelerate development.
  • the developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or an organic solvent alone.
  • the curing treatment step is a step of performing a curing treatment on the photosensitive layer having a permanent pattern formed after the developing step.
  • Examples of the entire surface exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the developing step. By this entire surface exposure, curing of the resin in the pattern forming material for forming the photosensitive layer is promoted, and the surface of the permanent pattern is cured.
  • the apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation.
  • a UV exposure machine such as an ultra-high pressure mercury lamp is preferably used.
  • Examples of the method of the entire surface heat treatment include a method of heating the entire surface of the laminate on which the permanent pattern is formed after the developing step. By heating the entire surface, the film strength of the surface of the permanent pattern is increased.
  • the heating temperature for the entire surface heating is 120 to 250, preferably 120 to 200 ° C. If the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. If the heating temperature exceeds 250 ° C, the resin in the pattern forming material is decomposed, resulting in weak and brittle film quality. May be.
  • the heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
  • the apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
  • the base material is a printed wiring board such as a multilayer wiring board
  • the permanent pattern of the present invention is formed on the printed wiring board, and soldering may be performed as follows. it can.
  • the hardened layer which is the permanent pattern is formed by the developing step, and the metal layer is exposed on the surface of the printed wiring board.
  • Gold plating is performed on the portion of the metal layer exposed on the surface of the printed wiring board, and then soldering is performed. Then, semiconductors and parts are mounted on the soldered parts.
  • the permanent pattern by the hardened layer exhibits a function as a protective film or an insulating film (interlayer insulating film). The conduction between the electrodes is prevented.
  • the permanent pattern forming method of the present invention it is preferable to form at least one of a protective film, an interlayer insulating film, and a solder resist pattern.
  • the permanent pattern formed by the permanent pattern forming method is the protective film, the interlayer insulating film, and the solder resist pattern, it is possible to protect the wiring from external impact and bending, especially.
  • the interlayer insulating film for example, it is useful for high-density mounting of semiconductors and components on a multilayer wiring board, a build-up wiring board, and the like.
  • the permanent pattern forming method of the present invention can efficiently form a permanent pattern with high definition by suppressing distortion of an image formed on the photosensitive layer. It can be suitably used for the formation of various patterns that require light, and can be particularly suitably used for the formation of high-definition permanent patterns.
  • a photosensitive composition (solution) was prepared based on the following composition.
  • Ethylene glycol monoethyl ether acrylate solution 81. 70 parts by mass Dipentaerythritol hexatalylate 13. 16 parts by mass
  • Ataridoni compound represented by the following structural formula (2) 0.42 parts by mass
  • the barium sulfate dispersion is composed of 30 parts by weight of barium sulfate (manufactured by KK, B30), 34.29 parts by weight of the above-mentioned PCR-1157H diethylene glycol monomethyl ether acetate 61.2 mass% solution, methyl After mixing 35.71 parts by mass of ethyl ketone with Motor Mill M-200 (manufactured by Eiger), disperse for 3.5 hours at a peripheral speed of 9 mZs using Zirco Your beads with a diameter of 1. Omm. Prepared.
  • the obtained photosensitive composition solution was coated on a 16 m thick PET (polyethylene terephthalate) film (manufactured by Toilene Earth Co., Ltd., 16QS52) as the support and dried to give a 35 m thick photosensitive film. A layer was formed. Next, a 12 m thick polypropylene film was laminated as a protective film on the photosensitive layer to produce the pattern forming material.
  • PET polyethylene terephthalate
  • 16QS52 polypropylene film
  • the substrate was prepared by subjecting the surface of a copper-clad laminate (no through-hole, copper thickness 12 / zm) on which wiring had been formed, to a chemical polishing treatment.
  • a vacuum laminator manufactured by Meiki Seisakusho, MVLP500
  • MVLP500 vacuum laminator
  • a laminate in which the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) were laminated in this order was prepared.
  • the crimping conditions were a crimping temperature of 90 ° C, a crimping pressure of 0.4 MPa, and a laminating speed of lmZ.
  • Holes with different diameters are formed from the polyethylene terephthalate film (support) side to the photosensitive layer in the prepared laminate using laser beam having a wavelength of 405 nm using a pattern forming apparatus described below. Irradiation was performed so that a pattern was obtained, and a portion of the photosensitive layer was cured.
  • the strain on the exit surface was measured.
  • the results are shown in FIG. In FIG. 14, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm.
  • the X direction and the y direction shown in the figure are the two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction.
  • 15A and 15B show the height position displacement of the reflection surface of the micromirror 62 along the X direction and the y direction, respectively.
  • FIGS. 16A and 16B show the front and side shapes of the entire microlens array 55 in detail.
  • the dimensions of each part of the microlens array 55 are also entered. And their units are mm.
  • the DMD50's 1024 x 256 rows of micromirrors 62 are driven. It consists of 256 rows of 024 microlenses 55a arranged side by side in the vertical direction.
  • the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and by k in the vertical direction.
  • FIGS. 17A and 17B show a front shape and a side shape of one microlens 55a in the microlens array 55, respectively.
  • the contour lines of the microlens 55a are also shown.
  • the end surface on the light emission side of each microlens 55a is assumed to be an aspherical shape that corrects aberration due to distortion of the reflection surface of the micromirror 62.
  • the condensing state of the laser beam B in the cross section parallel to the X direction and the y direction is roughly as shown in FIGS. 18A and 18B, respectively.
  • the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section.
  • FIGS. 19-8 to 190 show the simulation results of the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a when the microlens 55a has the above-described shape.
  • the value z represents the evaluation position in the focus direction of the microlens 55a as a distance from the beam exit surface of the microlens 55a.
  • the surface shape of the microlens 55a used in the simulation is calculated by the following calculation formula.
  • X means the distance of the lens optical axis O force in the X direction
  • Y means the distance of the lens optical axis O force in the y direction.
  • the microlens 55a has a focal length in the cross section parallel to the y direction that is greater than the focal length in the cross section parallel to the X direction.
  • a small toric lens distortion of the beam shape near the condensing position is suppressed.
  • a higher-definition pattern without distortion can be exposed on the photosensitive layer 150.
  • the region where the direction beam diameter is small in this embodiment shown in FIGS. 19A to 19D is wider, that is, the depth of focus is larger.
  • the aperture array 59 arranged in the vicinity of the condensing position of the microlens array 55 is arranged so that only light having passed through the corresponding microlens 55a is incident on each aperture 59a. . That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to enhance the extinction ratio.
  • the laminate strength was also peeled off from the polyethylene terephthalate film (support), and a 1% by weight sodium carbonate aqueous solution was added as an alkaline developer to the entire surface of the photosensitive layer on the copper clad laminate. Used and shower developed for 60 seconds at 30 ° C to dissolve and remove uncured areas. Thereafter, it was washed with water and dried to form a permanent pattern.
  • the entire surface of the laminate on which the permanent pattern was formed was heated at 160 ° C. for 30 minutes to cure the surface of the permanent pattern and increase the film strength. When the permanent pattern was visually observed, no bubbles were observed on the surface of the permanent pattern.
  • the printed wiring board on which the permanent pattern had been formed was subjected to gold plating according to a conventional method and then subjected to a water-soluble flux treatment. Next, it was immersed three times in a solder bath set at 260 ° C. for 5 seconds, and the flux was removed by washing with water. And the pencil hardness was measured about the permanent pattern after this flux removal based on JIS K-5400. As a result, the pencil hardness was 5H or more. After the visual observation, the permanent flutter The cured film was peeled, blistered, and discolored.
  • the total light transmittance at 405 nm of the support was measured using an apparatus incorporating an integrating sphere in a spectrophotometer (manufactured by Shimadzu Corporation, UV-2400). The results are shown in Table 3.
  • the parallel light transmittance was measured in the same manner as the total light transmittance measurement method, except that the integrating sphere was not used for the total light transmittance measurement method.
  • diffuse light transmittance the total light transmittance—one parallel light transmittance
  • haze value diffuse light transmittance Z, total light transmittance X 100 , was calculated. The results are shown in Table 3.
  • the thickness of the cured area of the remaining photosensitive layer was measured. Subsequently, a sensitivity curve is obtained by plotting the relationship between the irradiation amount of the laser beam and the thickness of the cured layer. From the sensitivity curve thus obtained, the thickness of the cured region of the photosensitive layer is 15 m, which is the same as the thickness before irradiation with light, and the amount of light energy when the surface of the cured region is a glossy surface is determined to cure the photosensitive layer. The amount of light energy (sensitivity) required to achieve this. The results are shown in Table 3.
  • the laminate was allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes.
  • the pattern forming apparatus is used to form 20 pattern forces that form holes of 70 m width and 300 ⁇ m length at the bottom. And exposed to light to cure a part of the photosensitive layer.
  • the exposure amount at this time is an exposure amount twice that obtained by the sensitivity measurement.
  • Example 1 a pattern forming material and a laminate were produced in the same manner as in Example 1, except that the composition of the photosensitive composition was as follows. The obtained laminate was evaluated in the same manner as in Example 1 for sensitivity, resolution, resist surface shape, and resist pattern width variation. The results are shown in Table 3.
  • Barium sulfate (B30) dispersion 24.75 parts by mass
  • Example 1 except that the hetero-condensed ring-type compound was replaced by 7-methylcoumarin 4-methylcoumarin represented by the following structural formula (4), a pattern forming material, And the laminated body was manufactured.
  • the obtained laminate was evaluated in the same manner as in Example 1 for sensitivity, resolution, resist surface shape, and resist pattern width variation. The results are shown in Table 3.
  • Example 1 except that the support was changed to a 16 ⁇ m PET (polyethylene terephthalate) film (Mitsubishi Polyester, R340G), the pattern forming material and the laminate were obtained in the same manner as in Example 1. Manufactured. For the support, the total light transmittance and haze value were measured in the same manner as in Example 1. In addition, the laminated body obtained above was evaluated in the same manner as in Example 1 for variations in sensitivity, resolution, resist surface shape, and resist pattern width. The results are shown in Table 3.
  • a pattern forming material and a laminate were produced in the same manner as in Example 1, except that the support was replaced with a 16 ⁇ m PET (polyethylene terephthalate) film (Toyobo Co., Ltd., A1517). did. About the said support body, it carried out similarly to Example 1, and measured the total light transmittance and haze value. In addition, the laminated body obtained above was evaluated in the same manner as in Example 1 for variations in sensitivity, resolution, resist surface shape, and resist pattern width. The results are shown in Table 3.
  • Example 1 a pattern forming material and a laminate were produced in the same manner as in Example 1 except that the support was replaced with a 16 ⁇ m PET film (manufactured by Torayen clay, 16FB50). With respect to the support, the total light transmittance and the haze value were measured in the same manner as in Example 1. Further, the laminated body obtained above was evaluated in the same manner as in Example 1 for sensitivity, resolution, resist surface shape, and variations in resist pattern width. The results are shown in Table 3.
  • Example 1 a pattern forming material and a laminate were produced in the same manner as in Example 1, except that the composition of the photosensitive composition was as follows. The obtained laminate was evaluated in the same manner as in Example 1 for sensitivity, resolution, resist surface shape, and resist pattern width variation. The results are shown in Table 3.
  • a photosensitive composition was prepared based on the following composition.
  • Barium sulfate manufactured by Nii Gaku Kogyo Co., Ltd., B30
  • Dispersion 50.00 parts by mass
  • Acrylic resin having at least one acidic group and polymerizable group "101.00 parts by mass Dipentaerythritol hexaatalylate 13. 16 parts by mass
  • * 1 is a copolymer obtained by adding a polymerizable compound (cyclomer A200; manufactured by Daicel Chemical Industries, Ltd.) having an alicyclic epoxy in the molecule to a copolymer of methacrylic acid and methyl methacrylate.
  • a polymerizable compound cyclomer A200; manufactured by Daicel Chemical Industries, Ltd.
  • Example 1 the support was replaced with a 16 m PET film (Teijin DuPont G2).
  • a pattern forming material and a laminate were produced in the same manner as in Example 1 except for the above.
  • About the said support body it carried out similarly to Example 1, and measured the total light transmittance and the haze value.
  • the laminated body obtained above was evaluated in the same manner as in Example 1 for sensitivity, resolution, resist surface shape, and resist pattern width variation. The results are shown in Table 3.
  • Example 1 the support was replaced with a 16 ⁇ m PET (polyethylene terephthalate) film (Teijin DuPont, G2), and the attaridone compound represented by the structural formula (2) was replaced with 4,4′-bisger.
  • a pattern forming material and a laminate were produced in the same manner as in Example 1 except that tyraminobenzophenone was used.
  • the obtained laminate was evaluated in the same manner as in Example 1 for sensitivity, resolution, resist surface shape, and variation in resist pattern width. The results are shown in Table 3.
  • the haze value of the support was 5.0% or less, and the pattern forming material had a strength, a binder, a polymerizable compound, a thermal crosslinking agent, and a hetero-fused compound. It was found that the pattern forming materials of Examples 1 to 7 formed a high-definition permanent pattern with excellent exposure sensitivity, high resolution, and excellent resist surface shape. In particular, in Examples 1, 4, 5 and 6 containing an attaridone compound as a hetero-fused ring compound, the exposure sensitivity is improved and a higher-definition permanent pattern is formed. I understood. On the other hand, it was found that in Comparative Examples 1 and 2 where the haze value of the support exceeded 5.0%, the resist surface shape was inferior and the resist line width variation was large. Industrial applicability
  • the pattern forming material of the present invention is excellent in exposure sensitivity, has a good resist surface shape, and can form a higher-definition pattern, the printed wiring board, color It can be widely used for the formation of permanent patterns such as filters, pillar materials, rib materials, spacers, partition walls, holograms, micromachines, proofs, etc., and is suitably used for the permanent pattern forming method of the present invention. be able to .
  • the permanent pattern forming method of the present invention uses the pattern forming material of the present invention, a printed wiring plate, a color filter, a pillar material, a rib material, a spacer, a partition member such as a partition, a hologram, a micromachine, It can be suitably used for producing a permanent pattern such as a proof, and can be suitably used particularly for forming a high-definition wiring pattern.

Abstract

 本発明は、ソルダーレジストのような永久パターンの形成を目的として、高透明な物質を支持体として使用することにより、得られるレジスト面形状が良好で、かつ、より高精細なパターンを形成可能なパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置及び前記パターン形成材料を用いた永久パターン形成方法の提供。  このため、支持体上に感光層を少なくとも有し、該支持体のヘイズ値が5.0%以下であり、かつ、該感光層が、バインダー、重合性化合物、光重合開始剤、熱架橋剤、及びヘテロ縮環系化合物を少なくとも含むことを特徴とするパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置、及び該パターン形成材料を用いて露光するパターン形成方法を提供する。

Description

明 細 書
パターン形成材料、並びにパターン形成装置及びパターン形成方法 技術分野
[0001] 本発明は、保護膜、層間絶縁膜、ソルダーレジスト等の永久パターンの形成などに 好適なパターン形成材料、並びに該パターン形成材料を備えたパターン形成装置 及び前記パターン形成材料を用いた永久パターン形成方法に関する。
背景技術
[0002] 配線パターンなどの永久パターンを形成するに際して、支持体上に感光性榭脂組 成物を塗布、乾燥することにより感光層を形成させたパターン形成材料が用いられて いる。前記永久パターンの製造方法としては、例えば、前記永久パターンが形成され る銅張積層板等の基材上に、前記パターン形成材料を積層させて積層体を形成し、 該積層体における前記感光層に対して露光を行い、該露光後、前記感光層を現像 してパターンを形成させ、その後エッチング処理等を行うことにより前記永久パターン が形成される。
[0003] 他方で、支持体の透明度を高めるために、ポリエチレンテレフタレート(PET)等の ヘイズ値が 5. 0%以下の高透明な物質を支持体として使用した、フォトレジスト用の パターン形成材料が知られて!/ヽる。
この種のパターン形成材料としては、感度、解像度、密着性等の向上を主な目的と して、例えば、バインダーが、(メタ)アクリル酸と、(メタ)アクリル酸アルキルエステルと 、これらと共重合可能なビニルモノマーと、を共重合させた共重合体を含むパターン 形成材料 (特許文献 1参照)、感光層が、夫々所定量の、(a)カルボキシル基含有ポ リマー、 (b)エチレン性不飽和化合物、(c)口フィン二量体、(d)光重合開始剤、(e)口 ィコ染料を含むパターン形成材料 (特許文献 2参照)、 (a)カルボキシル基含有バイ ンダ一、 (b)分子内に少なくとも 1つの重合可能なエチレン性不飽和基を有する光重 合性化合物、(c)光重合開始剤を含むパターン形成材料 (特許文献 3参照)、感光層 の、波長 365nmの紫外線に対する透過率力 5〜75%であるパターン形成材料 (特 許文献 4参照)が提案されている。また、支持体として、透明性、光線透過率、滑り性 、卷取り性、解像度、リサイクル性を備えることを目的として、厚みが 10 m以上 25 m以下であって、重縮合金属触媒残渣が 150ppm未満であり、かつアンチモン金属 が全酸成分に対して 15mmol%以下等である支持体が提案されている(特許文献 5 参照)。
しかし、これらのパターン形成材料等は、プリント配線用に用いられるレジストであり 、その工程が終わると除去されるものである。
[0004] 一方、ソルダーレジストのような永久パターンの形成材料では、露光感度を向上さ せる目的で、該永久パターンの形成材料に、クマリンィ匕合物などの増感剤を添加し た提案がされて ヽる (特許文献 6〜7参照)。
しかし、これらの場合は、支持体のヘイズ値や紫外線に対する透過率等について は何ら開示がされておらず、該支持体を介して照射される光線により、前記増感剤の 機能が充分に発揮されている力否かを判断することはできな力 た。
よって、ソルダーレジストのような永久パターンの形成を目的として、高透明な物質 を支持体として使用し、かつ、この支持体を通して照射される光線により感度の高い 向上が図れるパターン形成材料、並びに該パターン形成材料を備えたパターン形成 装置及び前記パターン形成材料を用いた永久パターン形成方法は未だ提供されて おらず、更なる改良開発が望まれているのが現状である。
特許文献 1:特許第 3452597号公報
特許文献 2:特許第 3100040号公報
特許文献 3:国際公開第 00Z79344号パンフレット
特許文献 4:特開 2001— 13681号公報
特許文献 5 :特開 2002— 60598号公報
特許文献 6 :特許第 3295012号公報
特許文献 7:特開 2002 - 256063号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、力かる現状に鑑みてなされたものであり、以下の目的を達成することを 課題とする。即ち、本発明は、ソルダーレジストのような永久パターンの形成を目的と して、高透明な物質を支持体として使用するとともに、ヘテロ縮環系化合物を含有さ せることにより、露光感度に優れ、レジスト面形状が良好で、かつ、より高精細なバタ ーンを形成可能なパターン形成材料、並びに該パターン形成材料を備えたパターン 形成装置及び前記パターン形成材料を用いた永久パターン形成方法を提供するこ とを目的とする。
課題を解決するための手段
前記課題を解決するための手段としては、以下の通りである。即ち、
< 1 > 支持体と、該支持体上に感光層とを少なくとも有し、該支持体のヘイズ値が 5. 0%以下であり、かつ、該感光層が、バインダー、重合性化合物、光重合開始剤、 熱架橋剤、及びへテロ縮環系化合物を少なくとも含むことを特徴とするパターン形成 材料である。
< 2> 感光層が、該感光層を露光し現像する場合において、該感光層の露光する 部分の厚みを該露光及び現像後にお 、て変化させな 、前記露光に用いる光の最小 エネルギーが 0. 1〜: LOOiujZcm2である前記く 1 >に記載のパターン形成材料。
< 3 > ヘテロ縮環系化合物力 ヘテロ縮環系ケトンィ匕合物、キノリンィ匕合物、及び アタリジンィ匕合物力 選択される少なくとも 1種を含む前記く 1 >から < 2 >の 、ずれ かに記載のパターン形成材料である。
<4> ヘテロ縮環系化合物が、環内に窒素原子、及び硫黄原子から選択される 少なくとも 1種を含有する前記 < 3 >に記載のパターン形成材料である。
< 5 > ヘテロ縮環系化合物力 アタリドンィ匕合物、及びチォキサントンィ匕合物から 選択される少なくとも 1種である前記く 4 >に記載のパターン形成材料である。
< 6 > 支持体の全光線透過率が、 86%以上である前記 < 1 >から < 5 >のいず れかに記載のパターン形成材料である。
< 7> 支持体のヘイズ値、及び、支持体の全光線透過率を求める場合の光の波 長力 405nmである前記 < 1 >から < 6 >のいずれかに記載のパターン形成材料で ある。
< 8 > バインダーが、アルカリ性水溶液に対して膨潤性及び溶解性のいずれかを 示す前記 < 1 >から < 7 >のいずれかに記載のパターン形成材料である。 < 9 > バインダー力 エポキシアタリレートイ匕合物、及び酸性基と重合可能な基を 少なくとも 1つ有するアクリル榭脂から選択される少なくとも 1種力もなる前記く 1 >か ら < 8 >の!ヽずれかに記載のパターン形成材料である。
< 10> バインダーが無水マレイン酸共重合体の無水物基に対して 0. 1〜1. 2当 量の 1級アミンィ匕合物を反応させて得られる共重合体である前記 < 1 >から < 9 >の V、ずれかに記載のパターン形成材料である。
< 11 > バインダーが(a)無水マレイン酸と、(b)芳香族ビュル単量体と、(c)ビ- ル単量体であって、該ビュル単量体のホモポリマーのガラス転移温度 (Tg)力 ¾o°c 未満であるビニル単量体と、力 なる共重合体の無水物基に対して 0. 1〜1. 0当量 の 1級ァミン化合物を反応させて得られる前記 < 1 >から < 10>のいずれかに記載 のパターン形成材料である。
< 12> 熱架橋剤が、エポキシ榭脂化合物、ォキセタンィ匕合物、ポリイソシァネート 化合物、ポリイソシァネートイ匕合物にブロック剤を反応させて得られる化合物、及びメ ラミン誘導体力 選択される少なくとも 1種である前記 < 1 >からく 11 >のいずれか に記載のパターン形成材料である。
< 13 > メラミン誘導体が、アルキル化メチロールメラミンである前記く 12>に記載 のパターン形成材料である。
< 14> 光重合開始剤力 ハロゲン化炭化水素誘導体、ホスフィンォキシド、へキ サァリールビイミダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトン化合 物、ァシルホスフィンォキシドィ匕合物、芳香族ォ -ゥム塩、及びケトォキシムエーテル 力も選択される少なくとも 1種を含む前記く 1 >からく 13 >のいずれかに記載のパタ ーン形成材料である。
< 15 > 感光層が、光照射手段からの光を受光し出射する描素部を n個有する光 変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出 射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイク 口レンズアレイを通した光で、露光される前記 < 1 >からく 14>のいずれかに記載の パターン形成材料である。
該< 15 >に記載のパターン形成材料においては、前記光照射手段が、前記光変 調手段に向けて光を照射する。該光照射手段における前記 n個の描素部が、前記光 照射手段からの光を受光し、放射することにより、前記光照射手段から受けた光を変 調する。前記光変調手段により変調した光が、前記マイクロレンズアレイにおける前 記非球面を通ることにより、前記描素部における出射面の歪みによる収差が補正され 、前記感光層上に結像させる像の歪みが抑制される。その結果、前記感光層への露 光が高精細に行われる。その後、前記感光層を現像すると、高精細な永久パターン が形成される。
<16> 支持体が、合成樹脂を含み、かつ透明である前記く 1>からく 15>のい ずれかに記載のパターン形成材料である。
<17> 支持体が、長尺状である前記 <1>からく 16>のいずれかに記載のパタ ーン形成材料である。
<18> 長尺状であり、ロール状に巻かれてなる前記 <1>から <17>のいずれ かに記載のパターン形成材料である。
<19> 感光層上に保護フィルムを有してなる前記 < 1>からく 18 >のいずれか に記載のパターン形成材料である。
<20> 感光層の厚みが、 3〜100 111でぁる前記<1>から<19>のぃずれか に記載のパターン形成材料である。
<21> 前記く 1 >からく 20 >のいずれかに記載のパターン形成材料を備えて おり、
光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記パターン形 成材料における感光層に対して露光を行う光変調手段とを少なくとも有することを特 徴とするパターン形成装置である。
<22> 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 21 >に記載のバタ ーン形成装置である。
該< 22 >に記載のパターン形成装置においては、前記光変調手段が前記パター ン信号生成手段を有することにより、前記光照射手段から照射される光が該パターン 信号生成手段により生成した制御信号に応じて変調される。
< 23 > 光変調手段が、 n個の描素部を有してなり、該 n個の描素部の中から連続 的に配置された任意の n個未満の前記描素部を、形成するパターン情報に応じて制 御可能である前記く 21 >からく 22 >の 、ずれかに記載のパターン形成装置である 該< 23 >に記載のパターン形成装置においては、前記光変調手段における n個 の描素部の中から連続的に配置された任意の n個未満の描素部をパターン情報に 応じて制御することにより、前記光照射手段力 の光が高速で変調される。
< 24> 光変調手段が、空間光変調素子である前記く 21 >からく 23 >のいずれ かに記載のパターン形成装置である。
< 25 > 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記 < 24 >に記載のパターン形成装置である。
< 26 > 描素部が、マイクロミラーである前記く 23 >からく 25 >のいずれかに記 載のパターン形成装置である。
< 27> 光照射手段が、 2以上の光を合成して照射可能である前記く 21 >からく 26 >の 、ずれかに記載のパターン形成装置である。
該< 27 >に記載のパターン形成装置においては、前記光照射手段が 2以上の光 を合成して照射可能であることにより、露光が焦点深度の深い露光光によって行われ る。この結果、前記パターン形成材料への露光が極めて高精細に行われる。例えば 、その後、前記感光層を現像すると、極めて高精細なパターンが形成される。
< 28 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザ光を集光して前記マルチモード光ファイバに結 合させる集合光学系とを有する前記 < 21 >から< 27>の 、ずれかに記載のパター ン形成装置である。
該< 28 >に記載のパターン形成装置においては、前記光照射手段が、前記複数 のレーザからそれぞれ照射されたレーザ光が前記集合光学系により集光され、前記 マルチモード光ファーバーに結合可能であることにより、露光が焦点深度の深い露 光光で行われる。この結果、前記パターン形成材料への露光が極めて高精細に行 われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが形成 される。
< 29 > 前記く 1 >からく 20>の!、ずれかに記載のパターン形成材料における 該感光層に対し、露光を行うことを少なくとも含むことを特徴とする永久パターン形成 方法である。
< 30> 基材上に前記 < 1 >からく 20 >のいずれかに記載のパターン形成材料 を、加熱及び加圧の少なくともいずれかを行いながら積層し、露光する前記く 29 > に記載の永久パターン形成方法である。
く 31 > 基材が、配線形成済みのプリント基板である前記く 30>に記載の永久パ ターン形成方法である。
< 32> 露光が、形成するパターン情報に基づいて像様に行われる前記く 29 > からく 31 >の 、ずれかに記載の永久パターン形成方法である。
< 33 > 露光が、形成するパターン情報に基づ!/、て制御信号を生成し、該制御信 号に応じて変調させた光を用いて行われる前記 < 29 >力ら< 32 >の 、ずれかに記 載の永久パターン形成方法である。
< 34> 露光が、光を照射する光照射手段と、形成するパターン情報に基づいて 前記光照射手段から照射される光を変調させる光変調手段とを用いて行われる前記 < 29 >力ら< 33 >の!、ずれかに記載の永久パターン形成方法である。
< 35 > 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、前記光照射手段から照射される光を該パ ターン信号生成手段が生成した制御信号に応じて変調させる前記 < 34>に記載の 永久パターン形成方法である。
< 36 > 光変調手段が、 n個の描素部を有してなり、該 n個の描素部の中から連続 的に配置された任意の n個未満の前記描素部を、形成するパターン情報に応じて制 御可能である前記く 34 >からく 35 >のいずれかに記載の永久パターン形成方法 である。
該< 36 >に記載の永久パターン形成方法においては、前記光変調手段における n個の描素部の中から連続的に配置された任意の n個未満の描素部をパターン情報 に応じて制御することにより、前記光照射手段からの光が高速で変調される。
< 37> 光変調手段が、空間光変調素子である前記く 34>からく 36 >のいずれ かに記載の永久パターン形成方法である。
< 38 > 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記く 37 >に記載の永久パターン形成方法である。
< 39 > 描素部が、マイクロミラーである前記く 36 >からく 38 >のいずれかに記 載の永久パターン形成方法である。
<40> 露光が、光変調手段により光を変調させた後、前記光変調手段における 描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配 列したマイクロレンズアレイを通して行われる前記く 36 >力らく 39 >の!、ずれかに 記載の永久パターン形成方法である。
<41 > 非球面が、トーリック面である前記く 40 >に記載の永久パターン形成方 法である。
該<41 >に記載の永久パターン形成方法においては、前記非球面がトーリック面 であることにより、前記描素部における放射面の歪みによる収差が効率よく補正され 、前記感光層上に結像させる像の歪みが効率よく抑制される。その結果、前記感光 層への露光が高精細に行われる。その後、前記感光層を現像することにより、高精細 な永久パターンが形成される。
<42> 露光が、アパーチャアレイを通して行われる前記く 29 >からく 41 >のい ずれかに記載の永久パターン形成方法である。
該< 42 >に記載の永久パターン形成方法においては、露光が前記アパーチャァ レイを通して行われることにより、消光比が向上する。その結果、露光が極めて高精 細に行われる。その後、前記感光層を現像することにより、極めて高精細な永久バタ ーンが形成される。
<43 > 露光が、露光光と感光層とを相対的に移動させながら行われる前記く 29 >力ら< 42 >の!、ずれかに記載の永久パターン形成方法である。
該< 43 >に記載の永久パターン形成方法においては、前記変調させた光と前記 感光層とを相対的に移動させながら露光することにより、露光が高速に行われる。 <44> 露光が、感光層の一部の領域に対して行われる前記く 29 >からく 43 > のいずれかに記載の永久パターン形成方法である。
<45 > 光照射手段が、 2以上の光を合成して照射可能である前記く 34>からく 44 >の!、ずれかに記載の永久パターン形成方法である。
該< 45 >に記載の永久パターン形成方法においては、前記光照射手段が 2以上 の光を合成して照射可能であることにより、露光が焦点深度の深い露光光で行われ る。その結果、前記感光層への露光が極めて高精細に行われる。その後、前記感光 層を現像することにより、極めて高精細な永久パターンが形成される。
<46 > 光照射手段が、複数のレーザと、マルチモード光ファイバ一と、該複数の レーザ力 それぞれ照射されたレーザ光を集光して前記マルチモード光ファイバ一 に結合させる集合光学系とを有する前記く 34 >からく 45 >の 、ずれかに記載の永 久パターン形成方法である。
該< 46 >に記載の永久パターン形成方法においては、前記光照射手段により、前 記複数のレーザからそれぞれ照射されたレーザ光が前記集合光学系により集光され 、前記マルチモード光ファイバ一に結合可能とすることにより、露光が焦点深度の深 い露光光で行われる。その結果、前記感光層への露光が極めて高精細に行われる。 その後、前記感光層を現像することにより、極めて高精細な永久パターンが形成され る。
<47> 露光が、 395〜415nmの波長のレーザ光を用いて行われる前記く 29 > から < 46 >のいずれかに記載の永久パターン形成方法である。
<48 > 露光が行われた後、感光層の現像を行う前記く 29 >からく 47>のいず れかに記載の永久パターン形成方法である。
<49 > 現像が行われた後、感光層に対して硬化処理を行う前記 < 29 >から <4 8 >の 、ずれかに記載の永久パターン形成方法である。
該< 49 >に記載の永久パターン形成方法においては、現像が行われた後、前記 感光層に対して前記硬化処理が行われる。その結果、前記感光層の硬化領域の膜 強度が高められる。
< 50> 硬化処理が、全面露光処理及び 120〜200°Cで行われる全面加熱処理 の少なくともいずれかである前記く 49 >に記載の永久パターン形成方法である。 該< 50 >に記載の永久パターン形成方法では、前記全面露光処理において、前 記パターン形成材料中の樹脂の硬化が促進される。また、前記温度条件で行われる 全面加熱処理において、硬化膜の膜強度が高められる。
< 51 > 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれ かを形成する前記く 29 >からく 50 >のいずれかに記載の永久パターン形成方法 である。
該く 51 >に記載の永久パターン形成方法では、保護膜、層間絶縁膜及びソルダ 一レジストの少なくともいずれかが形成されるので、該膜の有する絶縁性、耐熱性な どにより、配線が外部からの衝撃や曲げなどカゝら保護される。
< 52> 前記く 29 >からく 51 >のいずれかに記載の永久パターン形成方法によ り形成されることを特徴とする永久パターンである。
該< 52 >に記載の永久パターンは、前記永久パターン形成方法により形成される ので、優れた耐薬品性、表面硬度、耐熱性などを有し、かつ高精細であり、半導体や 部品の多層配線基板やビルドアップ配線基板などへの高密度実装に有用である。
< 53 > 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれ かである前記く 52 >に記載の永久パターンである。
該く 53 >に記載の永久パターンは、保護膜及び層間絶縁膜の少なくともいずれか であるので、該膜の有する絶縁性、耐熱性などにより、配線が外部からの衝撃や曲げ などカゝら保護される。
発明の効果
本発明によると、従来における問題を解決することができ、ソルダーレジストのような 永久パターンの形成を目的として、高透明な物質を支持体として使用するとともに、 ヘテロ縮環系化合物を含有することにより、露光感度に優れ、レジスト面形状が良好 で、かつ、より高精細なパターンを形成可能なパターン形成材料、並びに該パターン 形成材料を備えたパターン形成装置及び前記パターン形成材料を用いた永久バタ ーン形成方法を提供することができる。
図面の簡単な説明 [図 1]図 1は、デジタル ·マイクロミラー ·デバイス(DMD)の構成を示す部分拡大図の 一例である。
[図 2A]図 2Aは、 DMDの動作を説明するための説明図の一例である。
[図 2B]図 2Bは、 DMDの動作を説明するための説明図の一例である。
[図 3A]図 3Aは、 DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビーム の配置及び走査線を比較して示した平面図の一例である。
[図 3B]図 3Bは、 DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビーム の配置及び走査線を比較して示した平面図の一例である。
[図 4A]図 4Aは、 DMDの使用領域の例を示す図の一例である。
[図 4B]図 4Bは、 DMDの使用領域の例を示す図の一例である。
[図 5]図 5は、スキャナによる 1回の走査で感光層を露光する露光方式を説明するた めの平面図の一例である。
[図 6A]図 6Aは、スキャナによる複数回の走査で感光層を露光する露光方式を説明 するための平面図の一例である。
[図 6B]図 6Bは、スキャナによる複数回の走査で感光層を露光する露光方式を説明 するための平面図の一例である。
[図 7]図 7は、パターン形成装置の一例の外観を示す概略斜視図の一例である。
[図 8]図 8は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。
[図 9A]図 9Aは、感光層に形成される露光済み領域を示す平面図の一例である。
[図 9B]図 9Bは、各露光ヘッドによる露光エリアの配列を示す図の一例である。
[図 10]図 10は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例であ る。
[図 11]図 11は、図 10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断 面図の一例である。
[図 12]図 12は、パターン情報に基づいて、 DMDの制御をするコントローラの一例で ある。
[図 13A]図 13Aは、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った 断面図の一例である。 [図 13B]図 13Bは、マイクロレンズアレイ等を使用しな ヽ場合に被露光面に投影され る光像を示す平面図の一例である。
[図 13C]図 13Cは、マイクロレンズアレイ等を使用した場合に被露光面に投影される 光像を示す平面図の一例である。
[図 14]図 14は、 DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図 の一例である。
[図 15A]図 15Aは、前記マイクロミラーの反射面の歪みを、該ミラーの 2つの対角線方 向につ 、て示すグラフの一例である。
[図 15B]図 15Bは、図 15Aと同様の前記マイクロミラーの反射面の歪みを、該ミラーの 2つの対角線方向について示すグラフの一例である。
[図 16A]図 16Aは、パターン形成装置に用いられたマイクロレンズアレイの正面図の 一例である。
[図 16B]図 16Bは、パターン形成装置に用いられたマイクロレンズアレイの側面図の 一例である。
[図 17A]図 17Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例で ある。
[図 17B]図 17Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例で ある。
[図 18A]図 18Aは、マイクロレンズによる集光状態を 1つの断面内について示す概略 図の一例である。
[図 18B]図 18Bは、マイクロレンズによる集光状態を 1つの断面内について示す概略 図の一例である。
[図 19A]図 19Aは、本発明のマイクロレンズの集光位置近傍におけるビーム径をシミ ユレーシヨンした結果を示す図の一例である。
[図 19B]図 19Bは、図 19Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。
[図 19C]図 19Cは、図 19Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。 [図 19D]図 19Dは、図 19Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。
[図 20A]図 20Aは、従来のパターン形成方法において、マイクロレンズの集光位置近 傍におけるビーム径をシミュレーションした結果を示す図の一例である。
[図 20B]図 20Bは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。
[図 20C]図 20Cは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。
[図 20D]図 20Dは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。
[図 21]図 21は、合波レーザ光源の他の構成を示す平面図の一例である。
[図 22A]図 22Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例で ある。
[図 22B]図 22Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例で ある。
[図 23A]図 23Aは、図 22A及び図 22Bのマイクロレンズによる集光状態を 1つの断面 内について示す概略図の一例である。
[図 23B]図 23Bは、図 23Aの一例と別の断面内について示す概略図の一例である。
[図 24A]図 24Aは、光量分布補正光学系による補正の概念についての説明図の一 例である。
[図 24B]図 24Bは、光量分布補正光学系による補正の概念についての説明図の一 例である。
[図 24C]図 24Cは、光量分布補正光学系による補正の概念についての説明図の一 例である。
[図 25]図 25は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の 光量分布を示すグラフの一例である。
[図 26]図 26は、光量分布補正光学系による補正後の光量分布を示すグラフの一例 である。 [図 27A]図 27A(A)は、ファイバアレイ光源の構成を示す斜視図であり、図 27A(B) は、(A)の部分拡大図の一例であり、図 27A(C)及び図 27A(D)は、レーザ出射部 における発光点の配列を示す平面図の一例である。
[図 27B]図 27Bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す 正面図の一例である。
[図 28]図 28は、マルチモード光ファイバの構成を示す図の一例である。
[図 29]図 29は、合波レーザ光源の構成を示す平面図の一例である。
[図 30]図 30は、レーザモジュールの構成を示す平面図の一例である。
[図 31]図 31は、図 30に示すレーザモジュールの構成を示す側面図の一例である。
[図 32]図 32は、図 30に示すレーザモジュールの構成を示す部分側面図である。
[図 33]図 33は、レーザアレイの構成を示す斜視図の一例である。
[図 34A]図 34Aは、マルチキヤビティレーザの構成を示す斜視図の一例である。
[図 34B]図 34Bは、図 34Aに示すマルチキヤビティレーザをアレイ状に配列したマル チキヤビティレーザアレイの斜視図の一例である。
[図 35]図 35は、合波レーザ光源の他の構成を示す平面図の一例である。
[図 36A]図 36Aは、合波レーザ光源の他の構成を示す平面図の一例である。
[図 36B]図 36Bは、図 36Aの光軸に沿った断面図の一例である。
[図 37A]図 37Aは、従来の露光装置における焦点深度と本発明のパターン形成方法
(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例で ある。
[図 37B]図 37Bは、従来の露光装置における焦点深度と本発明のパターン形成方法 (パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例で ある。
発明を実施するための最良の形態
(パターン形成材料)
本発明のパターン形成材料は、支持体上に感光層を少なくとも有し、該支持体の ヘイズ値が 5. 0%以下であり、かつ、該感光層が、バインダー、重合性化合物、光重 合開始剤、熱架橋剤、及びへテロ縮環系化合物を少なくとも含む。 なお、前記パターン形成材料は、後述するパターン形成方法に用いられ、該パタ ーン形成方法は、前記パターン形成材料の感光層を基材上へ積層することにより行 われる。
また、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚 みを該露光及び現像後にお 、て変化させな 、前記露光に用いる光の最小エネルギ 一が 0. 1〜: L00 (mj/cm2)であるのが好ましい。
前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを 該露光及び現像後にお 、ての前後にお 、て変化させな 、光の最小エネルギーとし ては、 0. 1〜: L00 (miZcm2)である限り、特に制限はなぐ目的に応じて適宜選択 することができるが、例えば、 0. 5〜70 (mj/cm2)が好ましぐ l〜50 (mj/cm2)が より好ましぐ 1. 5〜30 (miZcm2)が特に好ましい。
前記最小エネルギー力 0. l (mjZcm2)未満であると、処理工程にてカプリが発 生することがあり、 100 (mjZcm2)を超えると、露光に必要な時間が長くなり、処理ス ピードが遅くなることがある。
ここで、「該感光層の露光する部分の厚みを該露光及び現像後において変化させ ない前記露光に用いる光の最小エネルギー」とは、いわゆる現像感度であり、例えば 、前記感光層を露光したときの前記露光に用いた光のエネルギー量 (露光量)と、前 記露光に続く前記現像処理により生成した前記硬化層の厚みとの関係を示すグラフ (感度曲線)から求めることができる。
前記硬化層の厚みは、前記露光量が増えるに従い増加していき、その後、前記露 光前の前記感光層の厚みと略同一かつ略一定となる。前記現像感度は、前記硬化 層の厚みが略一定となったときの最小露光量を読み取ることにより求められる値であ る。
ここで、前記硬化層の厚みと前記露光前の前記感光層の厚みとの差が ± 1 μ m以 内であるとき、前記硬化層の厚みが露光及び現像により変化していないとみなす。 前記硬化層及び前記露光前の前記感光層の厚みの測定方法としては、特に制限 はなく、目的に応じて適宜選択することができるが、膜厚測定装置、表面粗さ測定機 (例えば、サーフコム 1400D (東京精密社製) )などを用いて測定する方法が挙げら れる。
[0013] <支持体 >
前記支持体としては、ヘイズ値が 5. 0%以下であれば特に制限はなぐ目的に応じ て適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が 良好であるものが好ましぐ更に表面の平滑性が良好であることがより好ましい。
[0014] ヘイズ値
前記支持体のヘイズ値は、 405nmの光に対するヘイズ値が 5. 0%以下であること が必要であり、 3. 0%以下であることが好ましぐ 1. 0%以下であることがより好ましい 。前記ヘイズ値が 5. 0%を超えると、前記感光層内の光散乱量が増加し、ファインピ ツチを求める際の解像性が低下することがある。
[0015] また、前記支持体の 405nmの光に対する全光線透過率が 86%以上であることが 好ましぐ 87%以上であることがより好ましい。
[0016] 前記ヘイズ値及び全光線透過率の測定方法としては、特に制限はなぐ目的に応 じて適宜選択することができるが、例えば、以下に説明する方法が挙げられる。
まず、(1)全光線透過率を測定する。前記全光線透過率の測定方法としては、特 に制限はなぐ目的に応じて適宜選択することができるが、例えば、積分球と、 405η mの光を照射可能な分光光度計 (例えば、島津製作所社製、 UV— 2400)とを用い て測定する方法が挙げられる。(2)前記全光線透過率の測定方法において、前記積 分球を使用しない以外は前記全光線透過率の測定方法と同様にして平行光線透過 率を測定する。次に、(3)次計算式、前記全光線透過率一前記平行光線透過率、か ら求められる拡散光透過率を計算し、(4)次計算式、前記拡散光透過率 Z前記全光 線透過率 X 100、力も前記ヘイズ値を求めることができる。
なお、前記全光線透過率及び前記ヘイズ値を求める際の測定サンプルの厚みは 1 Ό μ mで &)る。
[0017] 前記支持体は、少なくとも片面に不活性微粒子が塗布されていてもよい。前記不活 性微粒子は、前記感光層が形成される面と反対の面に塗布されていることが好まし い。
[0018] 前記不活性微粒子としては、例えば、架橋ポリマー粒子、無機粒子 (例えば、炭酸 カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫 酸バリウム、フッ化カルシウム、フッ化リチウム、ゼォライト、硫ィ匕モリブデン等)、有機 粒子(例えば、へキサメチレンビスべヘンアミド、へキサメチレンビスステアリルアミド、 N, N' —ジステアリルテレフタルアミド、シリコーン、シユウ酸カルシウム等)、ポリエス テル重合時に生成させる析出粒子などが挙げられ、これらの中でもシリカ、炭酸カル シゥム、へキサメチレンビスべヘンアミドが好まし 、。
[0019] 前記析出粒子とは、例えば、エステル交換触媒としてアルカリ金属又はアルカリ土 類金属化合物を用いた系を常法により重合させることにより反応系内に析出するもの を言 ヽ、エステル交換反応又は重縮合反応時にテレフタル酸を添加することにより析 出させたものでもよい。前記エステル交換反応又は重縮合反応においては、リン酸、 リン酸トリメチル、リン酸トリェチル、リン酸トリブチル、酸性リン酸ェチル、亜リン酸、亜 リン酸トリメチル、亜リン酸トリェチル、亜リン酸トリブチル等のリン化合物の 1種以上を 存在させてもよい。
[0020] 前記不活性微粒子の平均粒子径としては、 0. 01-2. 0 μ mが好ましぐ 0. 02〜1 . 5 m力 Sより好ましく、 0. 03〜: L 0 m力 Sさらに好ましく、 0. 04〜0. 5 m力 S特に 好ましい。
前記不活性微粒子の平均粒子径が、 0. 01 μ m未満であると、前記パターン形成 材料の搬送性が悪ィ匕することがあり、搬送性を得るために前記不活性微粒子を多量 に含有させることによって、前記支持体のヘイズ値が上昇することがある。また、前記 不活性微粒子の平均粒子径が 2. 0 mを超えると、露光光の散乱によって解像度 力 S低下することがある。
[0021] 前記不活性微粒子の塗布方法としては、特に制限はなぐ 目的に応じて適宜選択 することができる。例えば、前記支持体となる合成樹脂製フィルム製造後に公知の方 法で前記不活性微粒子を含有する塗布液を塗布する方法が挙げられる。また、前記 不活性微粒子を含有させた合成樹脂を溶融し、ダイカゝら吐出して前記支持体となる 合成樹脂製フィルム上に成形してもよい。さらに、特開 2000— 221688号公報に記 載の方法により形成してもよい。
[0022] 前記支持体における前記不活性微粒子を含有する塗布層の厚みは、 0. 02〜3. 0 111カ^好ましく、 0. 03〜2. 力より好ましく、 0. 04〜: L 0 m力 ^特に好まし!/ヽ
[0023] 前記支持体となる合成樹脂製フィルムは、透明であるものが好ましぐ例えば、ポリ エステル榭脂製フィルムが好ましぐ二軸延伸ポリエステルフィルムであることが特に 好ましい。
[0024] 前記ポリエステル榭脂としては、例えば、ポリエチレンテレフタレート、ポリエチレン ナフタレート、ポリ (メタ)アクリル酸エステル共重合体、ポリ(メタ)アクリル酸アルキル エステル、ポリエチレン 2, 6 ナフタレート、ポリテトラメチレンテレフタレート、ポリ テトラメチレン一 2, 6 ナフタレート等が挙げられる。これらは、 1種単独で使用しても よぐ 2種以上を併用してもよい。
[0025] 前記ポリエステル榭脂以外の榭脂としては、例えば、ポリプロピレン、ポリエチレン、 三酢酸セルロース、二酢酸セルロース、ポリ塩化ビュル、ポリビュルアルコール、ポリ カーボネート、ポリスチレン、セロファン、ポリ塩ィ匕ビユリデン共重合体、ポリアミド、ポリ イミド、塩化ビュル'酢酸ビュル共重合体、ポリテトラフロロエチレン、ポリトリフロロェチ レン、セルロース系榭脂、ナイロン榭脂などが挙げられる。これらは、 1種単独で使用 してもよく、 2種以上を併用してもよい。
[0026] 前記合成樹脂製フィルムは 1層からなるものであってもよぐ 2層以上の層からなるも のであってもよい。 2層以上の層からなる場合、感光層力も最も遠くに位置する層に 前記不活性微粒子を含有させることが好まし 、。
[0027] また、前記合成樹脂製フィルムは、機械的強度特性及び光学的特性の観点から二 軸延伸ポリエステルフィルムであることが好ましい。
前記二軸延伸ポリエステルフィルムの二軸配向方法は、特に制限はなぐ 目的に応 じて適宜選択することができる。例えば、前記ポリエステル榭脂をシート状に溶融押 出し、急冷して未延伸フィルムをつくり、該未延伸フィルムを二軸延伸する際に延伸 温度を 85〜145°C、縦方向及び横方向の延伸倍率を 2. 6〜4. 0倍とし、必要に応 じて二軸延伸した後のフィルムを 150〜210°Cで熱固定することにより調製すること ができる。
前記二軸延伸は、未延伸フィルムを縦方向又は横方向に延伸して一軸延伸フィル ムとし、次いで該ー軸延伸フィルムを横方向又は縦方向に延伸することによる逐次二 軸延伸法であってもよぐ該未延伸フィルムを縦方向及び横方向に同時に延伸する 同時二軸延伸法であってもよい。また、前記二軸延伸フィルムは必要に応じて縦方 向及び横方向の少なくともいずれかの方向に更に延伸することができる。
[0028] 前記支持体の厚みとしては、特に制限はなぐ 目的に応じて適宜選択することがで さる力 f列; tは、、 2- 150 μ m力 S女子ましく、 5〜: LOO μ m力 S Jり女子ましく、 8〜50 μ m力 S 特に好ましい。
[0029] 前記支持体の形状としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなぐ 例えば、 10m〜20000mの長さのものが挙げられる。
[0030] <感光層>
前記感光層は、バインダー、重合性化合物、光重合開始剤、熱架橋剤、及びへテ 口縮環系化合物を含み、必要に応じて適宜選択したその他の成分を含んで 、てもよ い。
[0031] バインダ
前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性を示すのが好 ましぐアルカリ性水溶液に対して溶解性を示すのがより好ましい。また、バインダー 中に、重合性基を含有することも好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、 酸性基を有するものが好適に挙げられる。
[0032] 前記ノインダ一としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、特開昭 51— 131706号、特開昭 52— 94388号、特開昭 64 H 5号、 特開平 2— 97513号、特開平 3— 289656号、特開平 61— 243869号、特開 2002 — 296776号などの各公報に記載の酸性基を有するエポキシアタリレートイ匕合物が 挙げられる。具体的には、フエノールノボラック型エポキシアタリレート、あるいは、タレ ゾールノボラックエポキシアタリレート、ビスフエノール A型エポキシアタリレート等であ つて、例えばエポキシ榭脂ゃ多官能エポキシィ匕合物に (メタ)アクリル酸等のカルボキ シル基含有モノマーを反応させ、更に無水フタル酸、テトラヒドロ無水フタル酸、無水 コハク酸等の二塩基酸無水物を付加させたものである。
前記エポキシァクジレー卜ィ匕合物の分子量は、 1, 000〜200, 000力 S好まし <、 2, 0 00-100, 000がより好ましい。該分子量が 1, 000未満であると、感光層表面のタツ ク性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、ある いは、表面硬度が劣化することがあり、 200, 000を超えると、現像性が劣化すること がある。
[0033] また、特開平 6— 295060号公報等に記載の酸性基及び二重結合等の重合可能 な基を少なくとも 1つ有するアクリル榭脂も用いることができる。具体的には、分子内 に少なくとも 1つの重合可能な二重結合、例えば、(メタ)アタリレート基又は (メタ)ァク リルアミド基等のアクリル基、カルボン酸のビュルエステル、ビュルエーテル、ァリルェ 一テル等の各種重合性二重結合を用いることができる。より具体的には、酸性基とし てカルボキシル基を含有するアクリル榭脂に、グリシジルアタリレート、グリシジルメタ タリレート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、同一分子中にシクロ へキセンォキシド等のエポキシ基と (メタ)アタリロイル基を有する化合物等のエポキシ 基含有の重合性ィ匕合物を付加させて得られる化合物などが挙げられる。また、酸性 基及び水酸基を含有するアクリル榭脂に、イソシアナートェチル (メタ)アタリレート等 のイソシァネート基含有の重合性化合物を付加させて得られる化合物、無水物基を 含有するアクリル榭脂に、ヒドロキシアルキル (メタ)アタリレート等の水酸基を含有す る重合性ィ匕合物を付加させて得られる化合物なども挙げられる。これらの市販品とし ては、例えば、「カネカレジン AXE ;鐘淵化学工業 (株)製」、「サイクロマー(CYCLO MER) A— 200 ;ダイセル化学工業 (株)製」、「サイクロマー(CYCLOMER) M - 200;ダイセル化学工業 (株)製」などを用いることができる。
更に、特開昭 50— 59315号公報記載のヒドロキシアルキルアタリレート又はヒドロキ シアルキルメタタリレートとポリカルボン酸無水物及びェピハロヒドリンのいずれ力との 反応物などを用いることができる。
[0034] また、特開平 5— 70528号公報記載のフルオレン骨格を有するエポキシアタリレー トに酸無水物を付加させて得られる化合物、特開平 11— 288087号公報記載のポリ アミド (イミド)榭脂、特開平 2— 097502号公報ゃ特開平 11— 282155号公報記載 のポリイミド前駆体などを用いることができる。これらは 1種単独で使用してもよいし、 2 種以上を混合して使用してもよい。
[0035] 前記バインダーとしては、無水マレイン酸共重合体の無水物基に対して 1級ァミン 化合物を 1種以上反応させて得られる共重合体も利用できる。該共重合体は下記構 造式(1)で表される、マレイン酸ノ、ーフアミド構造を有するマレアミド酸ユニット Bと、 前記マレイン酸ノヽーフアミド構造を有しないユニット Aと、を少なくとも含むマレアミド 酸系共重合体であるのが好まし 、。
前記ユニット Aは 1種であってもよいし、 2種以上であってもよい。例えば、前記ュニ ット Bが 1種であるとすると、前記ユニット Aが 1種である場合には、前記マレアミド酸系 共重合体が 2元共重合体を意味することになり、前記ユニット Aが 2種である場合には 、前記マレアミド酸系共重合体が 3元共重合体を意味することになる。
前記ユニット Aとしては、置換基を有していてもよいァリール基と、後述するビュル単 量体であって、該ビュル単量体のホモポリマーのガラス転移温度 (Tg)が 80°C未満 であるビニル単量体 (c)との組合せが好適に挙げられる。
[0036] [化 1]
構造式 ( 1 )
Figure imgf000023_0001
A B
ただし、前記構造式(1)中、 R3及び R4は水素原子及び低級アルキル基のいずれか を表す。 X及び yは繰り返し単位のモル分率を表し、例えば、前記ユニット Aが 1種の 場合、 Xは 85〜50モル0 /0であり、 yは 15〜50モル0 /0である。
前記構造式(1)中、 R1としては、例えば、(― COORLC>)、(― CONRUR12)、置換 基を有していてもよいァリール基、(― OCOR13)、 ( - OR14) , (— COR15)などの置 換基が挙げられる。ここで、前記 R1G〜R15は、水素原子(一 H)、置換基を有していて もよいアルキル基、ァリール基及びァラルキル基のいずれかを表す。該アルキル基、 ァリール基及びァラルキル基は、環状構造又は分岐構造を有して 、てもよ 、。
前記 R1C>〜R15としては、例えば、メチル、ェチル、 n—プロピル、 i—プロピル、 n—ブ チル、 iーブチノレ、 sec ブチル、 tーブチノレ、ペンチノレ、ァリノレ、 n—へキシル、シクロ へキシル、 2—ェチルへキシル、ドデシル、メトキシェチル、フエニル、メチルフエニル 、メトキシフエ-ル、ベンジル、フエネチル、ナフチル、クロ口フエ-ルなどが挙げられ る。
前記 R1の具体例としては、例えば、フエ-ル、 a—メチルフエ-ル、 2—メチルフエ -ル、 3 メチルフエ-ル、 4 メチルフエ-ル、 2, 4 ジメチルフエ-ル等のベンゼ ン誘導体; n—プロピルォキシカルボ-ル、 n ブチルォキシカルボ-ル、ペンチルォ キシカルボニル、へキシルォキシカルボニル、 n ブチルォキシカルボニル、 n—へ キシルォキシカルボニル、 2—ェチルへキシルォキシカルボニル、メチルォキシカル ボニルなどが挙げられる。
前記 R2としては、置換基を有して!/、てもよ 、アルキル基、ァリール基、ァラルキル基 などが挙げられる。これらは、環状構造又は分岐構造を有していてもよい。前記 R2の 具体例としては、例えば、ベンジル、フエネチル、 3—フエ-ルー 1—プロピル、 4 フ ェ-ノレ一 1—ブチノレ、 5 フエ-ノレ一 1—ペンチノレ、 6 フエ-ノレ一 1—へキシノレ、 a メチルベンジル、 2 メチルベンジル、 3 メチルベンジル、 4 メチルベンジル、 2 一(P—トリル)ェチル、 j8—メチルフエネチル、 1ーメチルー 3—フエ-ルプロピル、 2 —クロ口べンジノレ、 3 クロ口べンジノレ、 4 クロ口べンジノレ、 2 フロロべンジノレ、 3— フロロべンジノレ、 4 フロロべンジノレ、 4 ブロモフエネチノレ、 2— (2 クロ口フエ二ノレ) ェチル、 2- (3 クロ口フエ-ル)ェチル、 2—(4 クロ口フエ-ル)ェチル、 2—(2— フロロフエ-ノレ)ェチノレ、 2— (3—フロロフエ-ノレ)ェチノレ、 2— (4—フロロフエ-ノレ)ェ チル、 4 フロロ一 α , a—ジメチルフエネチル、 2—メトキシベンジル、 3—メトキシべ ンジル、 4—メトキシベンジル、 2 エトキシベンジル、 2—メトキシフエネチル、 3—メト キシフエネチル、 4ーメトキシフエネチル、メチル、ェチル、プロピル、 1 プロピル、ブ チル、 tーブチノレ、 sec ブチル、ペンチノレ、へキシル、シクロへキシル、ヘプチル、ォ クチル、ラウリル、フエ-ル、 1 ナフチル、メトキシメチル、 2—メトキシェチル、 2—ェ トキシェチル、 3—メトキシプロピル、 2 ブトキシェチル、 2 シクロへキシルォキシェ チル、 3—エトキシプロピル、 3—プロポキシプロピル、 3—イソプロポキシプロピルアミ ンなどが挙げられる。
[0039] 前記バインダーは、特に、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビ -ル単量体であって、該ビュル単量体のホモポリマーのガラス転移温度 (Tg)が 80 °C未満であるビニル単量体と、力 なる共重合体の無水物基に対して 1級アミンィ匕合 物を反応させて得られる共重合体であるのが好ましい。該 (a)成分と、該 (b)成分と、 からなる共重合体では、後述する感光層の高い表面硬度を得ることはできるものの、 ラミネート性の確保が困難になることがある。また、該 (a)成分と、該 (c)成分と、から なる共重合体では、ラミネート性は確保することができるものの、前記表面硬度の確 保が困難になることがある。
[0040] - - (b)芳香族ビニル単量体
前記芳香族ビニル単量体としては、特に制限はなぐ 目的に応じて適宜選択するこ とができるが、本発明のパターン形成材料を用 ヽて形成される感光層の表面硬度を 高くすることができる点で、ホモポリマーのガラス転移温度 (Tg)が 80°C以上である化 合物が好ましぐ 100°C以上である化合物がより好ましい。
前記芳香族ビュル単量体の具体例としては、例えば、スチレン (ホモポリマーの Tg = 100°C)、 α—メチルスチレン(ホモポリマーの Tg= 168°C)、 2—メチルスチレン( ホモポリマーの Tg= 136°C)、 3—メチルスチレン(ホモポリマーの Tg = 97°C)、 4— メチルスチレン(ホモポリマーの Tg = 93°C)、 2, 4 ジメチルスチレン(ホモポリマー の Tg = 112°C)などのスチレン誘導体が好適に挙げられる。これらは 1種単独で使用 してもよいし、 2種以上を併用してもよい。
[0041] c)ビニル単量体
前記ビニル単量体は、該ビニル単量体のホモポリマーのガラス転移温度 (Tg)が 80 °C未満であることが必要であり、 40°C以下が好ましぐ 0°C以下がより好ましい。
前記ビュル単量体としては、例えば、 n—プロピルアタリレート(ホモポリマーの Tg = — 37°C)、 n—ブチルアタリレート(ホモポリマーの Tg=— 54°C)、ペンチルァクリレー ト、あるいはへキシルアタリレート(ホモポリマーの Tg=— 57°C)、 n—ブチノレメタクリレ ート(ホモポリマーの Tg =— 24°C)、 n—へキシノレメタタリレート(ホモポリマーの Tg= — 5°C)などが挙げられる。これらは 1種単独で使用してもよいし、 2種以上を併用して ちょい。
[0042] 1級ァミン化合物
前記 1級アミンィ匕合物としては、例えば、ベンジルァミン、フエネチルァミン、 3 フエ -ル— 1—プロピルァミン、 4—フエ-ルー 1—ブチルァミン、 5—フエ-ルー 1—ペン チルァミン、 6 フエ二ルー 1一へキシルァミン、 α メチルベンジルァミン、 2—メチ ルベンジルァミン、 3—メチルベンジルァミン、 4—メチルベンジルァミン、 2 (ρ トリ ル)ェチルァミン、 β—メチルフエネチルァミン、 1—メチル—3 フエ-ルプロピルァ ミン、 2 クロ口ベンジルァミン、 3 クロ口ベンジルァミン、 4 クロ口ベンジルァミン、 2 —フロロベンジルァミン、 3—フロロベンジルァミン、 4—フロロベンジルァミン、 4—ブ ロモフエネチルァミン、 2— (2 クロ口フエ-ル)ェチルァミン、 2— (3 クロ口フエ-ル )ェチルァミン、 2— (4 クロ口フエ-ル)ェチルァミン、 2— (2 フロロフエ-ル)ェチ ルァミン、 2 - (3—フロロフエ-ル)ェチルァミン、 2— (4—フロロフエ-ル)ェチルアミ ン、 4 フロロ一 α , a—ジメチルフエネチルァミン、 2—メトキシベンジルァミン、 3— メトキシベンジルァミン、 4ーメトキシベンジルァミン、 2 エトキシベンジルァミン、 2— メトキシフエネチルァミン、 3—メトキシフエネチルァミン、 4ーメトキシフエネチルァミン 、メチルァミン、ェチルァミン、プロピルァミン、 1—プロピルァミン、ブチルァミン、 t— ブチルァミン、 sec ブチルァミン、ペンチルァミン、へキシルァミン、シクロへキシル ァミン、ヘプチルァミン、ォクチルァミン、ラウリルァミン、ァ-リン、ォクチルァ-リン、 ァニシジン、 4 クロルァニリン、 1 ナフチルァミン、メトキシメチルァミン、 2—メトキ シェチルァミン、 2 エトキシェチルァミン、 3—メトキシプロピルァミン、 2 ブトキシェ チルァミン、 2 シクロへキシルォキシェチルァミン、 3 エトキシプロピルァミン、 3— プロポキシプロピルァミン、 3—イソプロポキシプロピルァミンなどが挙げられる。これら の中でも、ベンジルァミン、フエネチルァミンが特に好ましい。
前記 1級アミンィ匕合物は、 1種単独で使用してもよいし、 2種以上を併用してもよい。
[0043] 前記 1級ァミン化合物の反応量としては、前記無水物基に対して 0. 1〜1. 2当量 であることが必要であり、 0. 1〜1. 0当量が好ましい。該反応量が 1. 2当量を超える と、前記 1級ァミン化合物を 1種以上反応させた場合に、溶解性が著しく悪ィ匕すること がある。
[0044] 前記(a)無水マレイン酸の前記バインダーにおける含有量は、 15〜50mol%が好 ましぐ 20〜45mol%がより好ましぐ 20〜40mol%が特に好ましい。該含有量が 15 mol%未満であると、アルカリ現像性の付与ができず、 50mol%を超えると、耐アル カリ性が劣化し、また、前記共重合体の合成が困難になり、正常な永久パターンの形 成を行うことができないことがある。また、この場合における、前記 (b)芳香族ビュル単 量体、及び (c)ホモポリマーのガラス転移温度 (Tg)が 80°C未満であるビュル単量体 の前記バインダーにおける含有量は、それぞれ 20〜60mol%、 15〜40mol%が好 ましい。該含有量が該数値範囲を満たす場合には、表面硬度及びラミネート性の両 立を図ることができる。
[0045] 前記アクリル榭脂、フルオレン骨格を有するエポキシアタリレート、ポリアミド (イミド) 、前記無水マレイン酸共重合体の無水物基に 1級アミンィ匕合物を反応させた化合物 、あるいは、ポリイミド前駆体などのバインダーの分子量は、 3, 000〜500, 000力 S好 ましく、 5, 000-100, 000力より好まし!/、。該分子量力 3, 000未満であると、感光 層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が 脆くなる、あるいは、表面硬度が劣化することがあり、 500, 000を超えると、現像性が 劣ィ匕することがある。
[0046] 前記ノインダ一の前記パターン形成材料固形分中の固形分含有量は、 5〜80質 量%が好ましぐ 10〜70質量%がより好ましい。該固形分含有量が、 5質量%未満 であると、感光層の膜強度が弱くなりやすぐ該感光層の表面のタック性が悪ィ匕する ことがあり、 50質量%を超えると、露光感度が低下することがある。
[0047] 一重合性化合物
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、分子中に少なくとも 1個の付加重合可能な基を有し、沸点が常圧で 100°C以 上である化合物が好ましぐ例えば、(メタ)アクリル基を有するモノマーから選択され る少なくとも 1種が好適に挙げられる。 [0048] 前記 (メタ)アクリル基を有するモノマーとしては、特に制限はなぐ 目的に応じて適 宜選択することができ、例えば、単官能アタリレートや単官能メタタリレート(例えば、 ポリエチレングリコールモノ(メタ)アタリレート、ポリプロピレングリコールモノ(メタ)ァク リレート、フエノキシェチル (メタ)アタリレート等)、多官能アルコールに、エチレンォキ サイドやプロピレンオキサイドを付加反応した後で (メタ)アタリレートイ匕したもの(例え ば、ポリエチレングリコールジ (メタ)アタリレート、ポリプロピレングリコールジ (メタ)ァク リレート、トリメチロールェタントリアタリレート、トリメチロールプロパントリアタリレート、ト リメチロールプロパンジアタリレート、ネオペンチルグリコールジ(メタ)アタリレート、ぺ ンタエリスリトールテトラ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、 ジペンタエリスリトールへキサ(メタ)アタリレート、ジペンタエリスリトールペンタ(メタ)ァ タリレート、へキサンジオールジ (メタ)アタリレート、トリメチロールプロパントリ(アタリ口 ィルォキシプロピル)エーテル、トリ(アタリロイルォキシェチル)イソシァヌレート、トリ( アタリロイルォキシェチル)シァヌレート、グリセリントリ(メタ)アタリレート、トリメチロー ルプロパンやグリセリン、ビスフエノール等)、ウレタンアタリレート類 (例えば、特公昭 4 8— 41708号、特公昭 50— 6034号、特開昭 51— 37193号等の各公報に記載され ているもの)、ポリエステルアタリレート類 (例えば、特開昭 48— 64183号、特公昭 49 —43191号、特公昭 52— 30490号等の各公報に記載されているもの)、多官能ァク リレートやメタタリレート(例えば、エポキシ榭脂と (メタ)アクリル酸の反応生成物である エポキシアタリレート類等)などが挙げられる。これらの中でも、トリメチロールプロパン トリ(メタ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリスリト ールへキサ (メタ)アタリレート、ジペンタエリスリトールペンタ(メタ)アタリレートが特に 好ましい。
[0049] 前記重合性化合物の前記パターン形成材料固形分中の固形分含有量は、 5〜50 質量%が好ましぐ 10〜40質量%がより好ましい。該固形分含有量が 5質量%未満 であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、 50質量% を超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。
[0050] 一光重合開始剤
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができるが、例 えば、紫外線領域力 可視の光線に対して感光性を有するものが好ましぐ光励起さ れたヘテロ縮環系化合物或いは増感剤と何らかの作用を生じ、活性ラジカルを生成 する活性剤であってもよぐモノマーの種類に応じてカチオン重合を開始させるような 開始剤であってもよい。
また、前記光重合開始剤は、約 300〜800nm (より好ましくは 330〜500nm)の範 囲内に少なくとも約 50の分子吸光係数を有する成分を少なくとも 1種含有して ヽるこ とが好ましい。
[0051] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの、ォキサジァゾール骨格を 有するもの等)、ホスフィンオキサイド、へキサァリールビイミダゾール、ォキシム誘導 体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォ -ゥム塩、ケトォキシムェ 一テルなどが挙げられる。
[0052] 前記トリァジン骨格を有するハロゲンィ匕炭化水素化合物としては、例えば、若林ら 著、 Bull. Chem. Soc. Japan, 42、 2924 (1969)記載のィ匕合物、英国特許 1388 492号明細書記載の化合物、特開昭 53— 133428号公報記載の化合物、独国特 許 3337024号明細書記載の化合物、 F. C. Schaefer等による J. Org. Chem. ; 2 9、 1527 (1964)記載の化合物、特開昭 62— 58241号公報記載の化合物、特開平 5— 281728号公報記載の化合物、特開平 5— 34920号公報記載ィ匕合物、米国特 許第 4212976号明細書に記載されている化合物、などが挙げられる。
[0053] 前記若林ら著、 Bull. Chem. Soc. Japan, 42、 2924 (1969)記載の化合物とし ては、例えば、 2 フエ-ル— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2 — (4 クロルフエ-ル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- ( 4 トリル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシフ ェ-ル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (2, 4 ジクロル フエ-ル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2, 4, 6 トリス(トリ クロルメチル)—1, 3, 5 トリアジン、 2—メチル—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— n—ノ-ル 4, 6 ビス(トリクロルメチル)一1, 3, 5 トリアジ ン、及び 2— , α, β—トリクロルェチル) -4, 6 ビス(トリクロルメチル)—1, 3, 5—トリァジンなどが挙げられる。
[0054] 前記英国特許 1388492号明細書記載の化合物としては、例えば、 2—スチリルー 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メチルスチリル)— 4, 6 —ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシスチリル)— 4, 6- ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシスチリル)— 4 ァミノ — 6 トリクロルメチル—1, 3, 5 トリァジンなどが挙げられる。
前記特開昭 53— 133428号公報記載の化合物としては、例えば、 2— (4—メトキシ —ナフト— 1—ィル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (4- エトキシ—ナフ卜— 1—ィル)—4, 6 ビス(卜リクロルメチル)—1, 3, 5 卜リアジン、 2 -〔4— (2—エトキシェチル)—ナフトー 1—ィル〕—4, 6 ビス(トリクロルメチル) 1 , 3, 5 トリァジン、 2- (4, 7 ジメトキシ一ナフトー 1—ィル) 4, 6 ビス(トリクロ ルメチル)— 1, 3, 5 卜リアジン、及び 2— (ァセナフ卜— 5—ィル)—4, 6 ビス(トリ クロルメチル)—1, 3, 5 トリァジンなどが挙げられる。
[0055] 前記独国特許 3337024号明細書記載の化合物としては、例えば、 2—(4ースチリ ノレフエ二ノレ) 4、 6 ビス(トリクロロメチノレ)一 1, 3, 5 トリァジン、 2- (4— (4—メト キシスチリル)フエ-ル)—4、 6 ビス(トリクロロメチル)—1, 3, 5 トリァジン、 2- (1 —ナフチルビ-レンフエ-ル)一 4、 6 ビス(トリクロロメチル) 1, 3, 5 トリァジン、 2 クロロスチリルフエ-ル一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4 チォフェン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5— トリアジン、 2— (4—チォフェン一 3—ビ-レンフエ-ル)一 4, 6—ビス(トリクロロメチ ル)一 1, 3, 5 トリアジン、 2— (4 フラン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリ クロロメチノレ)一 1, 3, 5 トリァジン、などが挙げられる。
[0056] 前記 F. C. Schaefer等による J. Org. Chem. ;29、 1527 (1964)記載のィ匕合物 としては、例えば、 2—メチルー 4, 6 ビス(トリブロモメチル)一1, 3, 5 トリァジン、 2, 4, 6 トリス(トリブロモメチル)一1, 3, 5 トリアジン、 2, 4, 6 トリス(ジブロモメ チル) 1, 3, 5 トリアジン、 2 ァミノ— 4—メチル—6 トリ(ブロモメチル)— 1, 3, 5 トリァジン、及び 2—メトキシ一 4—メチル 6 トリクロロメチル一 1, 3, 5 トリア ジンなどが挙げられる。
[0057] 前記特開昭 62— 58241号公報記載の化合物としては、例えば、 2— (4—フエニル ェチ -ルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (4- ナフチルー 1ーェチュルフエ-ルー 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジ ン、 2— (4— (4 トリルェチュル)フエ-ル)— 4, 6 ビス(トリクロロメチル)—1 , 3, 5 —トリァジン、 2- (4— (4—メトキシフエ-ル)ェチュルフエ-ル) 4, 6—ビス(トリク 口ロメチル) 1, 3, 5 トリァジン、 2— (4— (4—イソプロピルフエ-ルェチュル)フエ -ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4— (4 ェチルフ ェ -ルェチュル)フエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなど が挙げられる。
[0058] 前記特開平 5— 281728号公報記載の化合物としては、例えば、 2—(4 トリフル ォロメチルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2, 6 —ジフルオロフェ-ル)—4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジクロロフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジブロモフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが 挙げられる。
[0059] 前記特開平 5— 34920号公報記載化合物としては、例えば、 2, 4 ビス(トリクロ口 メチル)— 6— [4— (N, N—ジエトキシカルボ-ルメチルァミノ)—3—ブロモフエ-ル ]— 1, 3, 5 トリァジン、米国特許第 4239850号明細書に記載されているトリハロメ チル— s トリァジン化合物、更に 2, 4, 6 トリス(トリクロロメチル)—s トリァジン、 2 - (4—クロ口フエ-ル) 4, 6—ビス(トリブロモメチル) s トリァジンなどが挙げら れる。
[0060] 前記米国特許第 4212976号明細書に記載されている化合物としては、例えば、ォ キサジァゾール骨格を有する化合物(例えば、 2 トリクロロメチル— 5 フエ二ルー 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4 クロ口フエ二ル)一 1, 3, 4 —ォキサジァゾール、 2 トリクロロメチル一 5— (1—ナフチル) 1, 3, 4—ォキサジ ァゾール、 2 トリクロロメチル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール、 2 トリブ口モメチルー 5—フエ二ルー 1, 3, 4 ォキサジァゾール、 2 トリブ口モメチ ル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール; 2 トリクロロメチル— 5—ス チリル— 1, 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (4 クロルスチリル) - 1, 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4—メトキシスチリル)一 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (1—ナフチル)—1, 3, 4—ォ キサジァゾール、 2 トリクロロメチル— 5— (4— n—ブトキシスチリル)— 1, 3, 4—ォ キサジァゾール、 2 トリプロメメチルー 5—スチリルー 1, 3, 4 ォキサジァゾール等 )などが挙げられる。
[0061] 本発明で好適に用いられるォキシム誘導体としては、例えば、 3 べンゾイロキシィ ミノブタン 2 オン、 3 ァセトキシィミノブタン 2 オン、 3 プロピオニルォキシ イミノブタン 2 オン、 2 ァセトキシィミノペンタン 3 オン、 2 ァセトキシィミノ —1—フエ-ルプロパン一 1—オン、 2—ベンゾイロキシィミノ一 1—フエ-ルプロパン — 1—オン、 3— (4—トルエンスルホ -ルォキシ)イミノブタン一 2—オン、及び 2 エト キシカルボ-ルォキシィミノ一 1—フエ-ルプロパン一 1—オンなどが挙げられる。
[0062] また、上記以外の光重合開始剤として、ァシルホスフィンオキサイド類が用いられ、 例えば、ビス(2, 4, 6 トリメチルベンゾィル)—フエ-ルホスフィンオキサイド、ビス( 2, 6 ジメトキシベンゾィル)ー 2, 4, 4 トリメチルーペンチルフエニルホスフィンォ キサイド、 LucirinTPOなどが挙げられる。
[0063] さらに、上記以外の光重合開始剤として、 N フエ-ルグリシンなど、ポリハロゲンィ匕 合物(例えば、四臭化炭素、フエ-ルトリブ口モメチルスルホン、フエ-ルトリクロロメチ ルケトンなど)、アミン類 (例えば、 4—ジメチルァミノ安息香酸ェチル、 4—ジメチルァ ミノ安息香酸 n—ブチル、 4ージメチルァミノ安息香酸フエネチル、 4ージメチルァミノ 安息香酸 2 フタルイミドエチル、 4 ジメチルァミノ安息香酸 2—メタクリロイルォキシ ェチル、ペンタメチレンビス(4ージメチルァミノべンゾエート)、 3—ジメチルァミノ安息 香酸のフエネチル、ペンタメチレンエステル、 4ージメチルァミノべンズアルデヒド、 2 クロル 4 ジメチルァミノべンズアルデヒド、 4 ジメチルァミノべンジルアルコ一 ル、ェチル(4ージメチルァミノべンゾィル)アセテート、 4ーピベリジノアセトフエノン、 4 —ジメチルァミノべンゾイン、 N, N ジメチルー 4—トルイジン、 N, N—ジェチルー 3 —フエネチジン、トリベンジルァミン、ジベンジルフエ-ルァミン、 N—メチル N フ ェニルベンジルァミン、 4—ブロム一 Ν,Ν ジメチルァニリン、トリドデシルァミン、タリ スタルバイオレツトラクトン、ロイコクリスタルバイオレットなど)、メタ口セン類(例えば、 ビス(7? 5—2, 4 シクロペンタジェン一 1—ィル)一ビス(2, 6 ジフロロ一 3— (1H —ピロール一 1—ィル)一フエ-ル)チタニウム、 5 シクロペンタジェ -ル一 6 ク メ-ル一アイアン(1 + )—へキサフロロホスフェート(1 )など)、特開昭 53— 13342 8号公報、特公昭 57— 1819号公報、同 57— 6096号公報、及び米国特許第 3615 455号明細書に記載されたィ匕合物などが挙げられる。
[0064] 前記ケトン化合物としては、例えば、ベンゾフエノン、 2 メチルベンゾフエノン、 3— メチルベンゾフエノン、 4 メチルベンゾフエノン、 4ーメトキシベンゾフエノン、 2 クロ 口べンゾフエノン、 4 クロ口べンゾフエノン、 4 ブロモベンゾフエノン、 2—カノレボキ シベンゾフエノン、 2—エトキシカルボニルベンゾルフェノン、ベンゾフエノンテトラカル ボン酸又はそのテトラメチルエステル、 4, 4,一ビス(ジアルキルァミノ)ベンゾフエノン 類(例えば、 4, 4,一ビス(ジメチルァミノ)ベンゾフエノン、 4, 4,一ビスジシクロへキシ ルァミノ)ベンゾフエノン、 4, 4,一ビス(ジェチルァミノ)ベンゾフエノン、 4, 4,一ビス( ジヒドロキシェチルァミノ)ベンゾフエノン、 4—メトキシ一 4'—ジメチルァミノべンゾフエ ノン、 4, 4'—ジメトキシベンゾフエノン、 4—ジメチルァミノべンゾフエノン、 4—ジメチ ルアミノアセトフエノン、ベンジル、アントラキノン、 2—t—ブチルアントラキノン、 2—メ チルアントラキノン、フエナントラキノン、フルォレノン、 2—ベンジル一ジメチルァミノ 1 (4 モルホリノフエ-ル) 1ーブタノン、 2—メチルー 1一〔4 (メチルチオ)フ ェニル〕 2 モルホリノ一 1—プロパノン、 2 ヒドロキシー 2—メチルー〔4— (1—メ チルビ-ル)フエ-ル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類( 例えば、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインプロピル エーテノレ、ベンゾインイソプロピノレエーテノレ、ベンゾインフエ-ノレエーテノレ、ベンジノレ ジメチルケタール)、などが挙げられる。
[0065] 前記光重合開始剤は、 1種単独で使用してもよぐ 2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が 40 5nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記 α アミノア ルキルケトン類、前記トリァジン骨格を有するハロゲンィ匕炭化水素化合物と後述する 増感剤としてのアミンィ匕合物とを組合せた複合光開始剤、へキサァリールビイミダゾ ール化合物、あるいは、チタノセンなどが挙げられる。
[0066] 前記光重合開始剤の前記パターン形成材料における含有量としては、 0. 1〜30 質量%が好ましぐ 0. 5〜20質量%がより好ましぐ 0. 5〜15質量%が特に好ましい
[0067] 一へテロ縮環系化合物
前記へテロ縮環系化合物としては、後述する感光層への露光における露光感度や 感光波長を調整する目的で、或いは、前記感光層を露光し現像する場合において、 該感光層の露光する部分の厚みを該現像の前後において変化させない前記光の最 小エネルギー (感度)を向上させる観点力 添加される。前記へテロ縮環系化合物を 併用することにより、例えば、前記感光層の感度を 0. 1〜: L00 (miZcm2)に極めて 容易に調整することもできる。
前記へテロ縮環系化合物は、後述する光照射手段としての可視光線や紫外光レー ザ及び可視光レーザなどに対応した適宜のものを選択するのが好ましい。
前記へテロ縮環系化合物は、活性エネルギー線により励起状態となり、他の物質( 例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子 移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
尚、ヘテロ縮環系化合物は、感光層の感度の向上を図るだけでなぐ光励起により モノマーの重合を開始させるような光重合開始剤としての機能をも有している。
[0068] 前記へテロ縮環系化合物とは、環の中にへテロ原子を有する多環式化合物を意味 し、前記環の中に、窒素原子、酸素原子、及び硫黄原子から選択される少なくとも 1 種を含むのが好ましぐ窒素原子、及び硫黄原子から選択される少なくとも 1種を含 むのが特に好ましい。
前記へテロ縮環系化合物としては、例えば、ヘテロ縮環系ケトンィ匕合物、キノリンィ匕 合物、及びアタリジンィ匕合物力 選択される少なくとも 1種を含むのが好ま 、。
[0069] 前記へテロ縮環系ケトンィ匕合物としては、具体的には、例えば、アタリドン、クロロア クリドン、 N—メチルアタリドン、 N ブチルアタリドン、 N ブチルークロロアタリドン、 などのアタリドン化合物; 3—(2 べンゾフロイル) 7 ジェチルァミノクマリン、 3— ( 2 ベンゾフロイル)—7— (1—ピロリジ -ル)クマリン、 3 ベンゾィル—7 ジェチル アミノクマリン、 3— (2—メトキシベンゾィル) 7 ジェチルァミノクマリン、 3- (4 ジ メチルァミノベンゾィル) 7—ジェチルァミノクマリン、 3, 3,一カルボ-ルビス(5, 7 —ジ一 n—プロポキシクマリン)、 3, 3,一カルボ-ルビス(7—ジェチルァミノクマリン) 、 3—ベンゾィル 7—メトキシクマリン、 3— (2—フロイル) 7—ジェチルァミノタマリ ン、 3—(4ージェチルァミノシンナモイル) 7—ジェチルァミノクマリン、 7—メトキシ —3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィル 5, 7—ジプロポキシタマリ ン、 7 ベンゾトリアゾール 2—イルクマリン、 7 ジェチルァミノ一 4—メチルタマリ ン、また、特開平 5— 19475号、特開平 7— 271028号、特開 2002— 363206号、 特開 2002— 363207号、特開 2002— 363208号、特開 2002— 363209号公報等 に記載のクマリンィ匕合物、などのクマリン類;チォキサントン、イソプロピルチォキサン トン、 2, 4 ジェチルチオキサントン、 2, 4 ジクロ口チォキサントン、 1 クロロー 4 プロピルォキシチォキサントン、などのチォキサントンィ匕合物;などが挙げられる。
[0070] 前記キノリン化合物としては、具体的には、例えば、キノリン、 9ーヒドロキシ 1, 2 ージヒドロキノリンー2 オン、 9 エトキシ 1, 2 ジヒドロキノリンー2 オン、 9ージ ブチルアミノー 1, 2 ジヒドロキノリンー2 オン、 8 ヒドロキシキノリン、 8 メルカプ トキノリン、キノリン 2—力ルボン酸、などが挙げられる。
[0071] 前記アタリジンィ匕合物としては、具体的には、例えば、 9 フエ二ルァクリジン、 1, 7 ビス(9, 9' アタリジ-ル)ヘプタン、などが挙げられる。
[0072] 前記へテロ縮環系化合物の中でも、環の中に窒素原子、酸素原子、硫黄原子を含 有するものがより好ましい。前記環内に窒素原子を含有するものとしては、前記アタリ ジンィ匕合物、アタリドンィ匕合物が好適に挙げられ、前記環内に酸素原子を含有するも のとしては、クマリンィ匕合物が好適に挙げられ、前記環内に硫黄原子を含有するもの としては、チォキサントンィ匕合物が好適に挙げられる。これらの中でも、アタリドンィ匕合 物、チォキサントンィ匕合物が特に好適に挙げられる。
[0073] 前記光重合開始剤、前記へテロ縮環系化合物との組合せとしては、例えば、特開 2 001— 305734号公報に記載の電子移動型開始系 [ (1)電子供与型開始剤及び増 感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素 及び電子受容型開始剤 (三元開始系)]などの組合せが挙げられる。
[0074] 前記へテロ縮環系化合物の含有量としては、前記パターン形成材料中の全成分に 対し、 0. 05〜30質量%が好ましぐ 0. 1〜20質量%がより好ましぐ 0. 2〜10質量 %が特に好ましい。該含有量が、 0. 05質量%未満であると、活性エネルギー線への 感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、 30質量 %を超えると、保存時に前記感光層から前記へテロ縮環系化合物が析出することが ある。
前記へテロ縮環系化合物に加えて、必要に応じて他の増感剤を添加してもよい。
[0075] 熱架橋剤
前記熱架橋剤としては、特に制限はなぐ 目的に応じて適宜選択することができ、 前記パターン形成材料を用いて形成される感光層の硬化後の膜強度を改良するた めに、現像性等に悪影響を与えない範囲で、例えば、 1分子内に少なくとも 2つのォ キシラン基を有するエポキシ榭脂化合物、 1分子内に少なくとも 2つのォキセタ-ル基 を有するォキセタンィ匕合物を用いることができる。
前記エポキシ榭脂化合物としては、例えば、ビキシレノール型もしくはビフエノール 型エポキシ榭脂 ( ΓΥΧ4000ジャパンエポキシレジン社製」等)又はこれらの混合物、 イソシァヌレート骨格等を有する複素環式エポキシ榭脂(「TEPIC;日産化学工業社 製」、「ァラルダイト PT810 ;チノく'スペシャルティ'ケミカルズ社製」等)、ビスフエノー ル A型エポキシ榭脂、ノボラック型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、 水添ビスフエノール A型エポキシ榭脂、グリシジノレアミン型エポキシ榭脂、ヒダントイン 型エポキシ榭脂、脂環式エポキシ榭脂、トリヒドロキシフエ-ルメタン型エポキシ榭脂、 ビスフエノール S型エポキシ榭脂、ビスフエノール Aノボラック型エポキシ榭脂、テトラ フエ-ロールエタン型エポキシ榭脂、グリシジルフタレート榭脂、テトラグリシジルキシ レノィルエタン榭脂、ナフタレン基含有エポキシ榭脂(「ESN— 190, ESN— 360 ;新 曰鉄ィ匕学ネ土製」、「HP— 4032, EXA-4750,: EXA— 4700 ;大日本インキイ匕学工 業社製」等)、ジシクロペンタジェン骨格を有するエポキシ榭脂(「HP— 7200, HP— 7200H;大日本インキ化学工業社製」等)、グリシジルメタアタリレート共重合系ェポ キシ榭脂(「CP— 50S, CP- 50M ;日本油脂社製」等)、シクロへキシルマレイミドと グリシジルメタアタリレートとの共重合エポキシ榭脂などが挙げられる力 これらに限ら れるものではない。これらのエポキシ榭脂は、 1種単独で使用してもよいし、 2種以上 を併用してもよい。
[0076] 前記ォキセタンィ匕合物としては、例えば、ビス [ (3—メチルー 3—ォキセタニルメトキ シ)メチル]エーテル、ビス [ ( 3—ェチル— 3—ォキセタ -ルメトキシ)メチル]エーテル 、 1, 4 ビス [ (3—メチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 1, 4 ビス [ ( 3 -ェチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、( 3 -メチル 3—ォキセ タ -ル)メチルアタリレート、(3ーェチルー 3ーォキセタ -ル)メチルアタリレート、 (3- メチル 3—ォキセタ -ル)メチルメタタリレート、 ( 3 ェチル 3—ォキセタ -ル)メチ ルメタタリレート又はこれらのオリゴマーあるいは共重合体等の多官能ォキセタン類の 他、ォキセタン基と、ノボラック榭脂、ポリ(p ヒドロキシスチレン)、カルド型ビスフエノ 一ノレ類、カリックスァレーン類、カリックスレゾノレシンアレーン類、シノレセスキォキサン 等の水酸基を有する榭脂など、とのエーテルィ匕合物が挙げられ、この他、ォキセタン 環を有する不飽和モノマーとアルキル (メタ)アタリレートとの共重合体なども挙げられ る。
[0077] 前記エポキシ榭脂化合物又はォキセタン化合物の前記パターン形成材料固形分 中の固形分含有量は、 1〜50質量%が好ましぐ 3〜30質量%がより好ましい。該固 形分含有量が 1質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化を 生ずる、あるいは、半田耐熱性ゃ耐無電解メツキ性等などが低下することがあり、 50 質量%を超えると、現像性の悪ィ匕ゃ露光感度の低下が生ずることがあり、好ましくな い。
[0078] また、前記エポキシ榭脂化合物や前記ォキセタンィ匕合物の熱硬化を促進するため 、例えば、アミンィ匕合物(例えば、ジシアンジアミド、ベンジルジメチルァミン、 4— (ジ メチルァミノ)— N, N ジメチルベンジルァミン、 4—メトキシ— N, N ジメチルベン ジルァミン、 4—メチル N, N ジメチルベンジルァミン等)、 4級アンモ-ゥム塩化 合物(例えば、トリェチルベンジルアンモ -ゥムクロリド等)、ブロックイソシァネートイ匕 合物(例えば、ジメチルァミン等)、イミダゾール誘導体二環式アミジンィ匕合物及びそ の塩(例えば、イミダゾール、 2—メチルイミダゾール、 2—ェチルイミダゾール、 2—ェ チルー 4ーメチルイミダゾール、 2 フエ-ルイミダゾール、 4 フエ-ルイミダゾール、 1—シァノエチル— 2—フエ-ルイミダゾール、 1— (2—シァノエチル)—2—ェチル —4—メチルイミダゾール等)、リンィ匕合物(例えば、トリフエ-ルホスフィン等)、グアナ ミンィ匕合物(例えば、メラミン、グアナミン、ァセトグアナミン、ベンゾグアナミン等)、 S —トリァジン誘導体 (例えば、 2, 4 ジァミノ一 6—メタクリロイルォキシェチルー S ト リアジン、 2 ビュル一 2, 4 ジァミノ一 S トリァジン、 2 ビュル一 4, 6 ジァミノ一 S トリアジン'イソシァヌル酸付カ卩物、 2, 4 ジァミノ一 6—メタクリロイルォキシェチ ル一 S トリァジン'イソシァヌル酸付加物等)などを用いることができる。これらは 1種 単独で使用してもよぐ 2種以上を併用してもよい。なお、前記エポキシ榭脂化合物 や前記ォキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促 進することができるものであれば、特に制限はなぐ上記以外の熱硬化を促進可能な 化合物を用いてもよい。
前記エポキシ榭脂、前記ォキセタンィ匕合物、及びこれらとカルボン酸との熱硬化を 促進可能な化合物の前記パターン形成材料固形分中の固形分含有量は、通常 0. 01〜 15質量%である。
また、前記熱架橋剤としては、特開平 5— 9407号公報記載のポリイソシァネートイ匕 合物を用いることができ、該ポリイソシァネートイ匕合物は、少なくとも 2つのイソシァネ 一ト基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されて いてもよい。具体的には、 2官能イソシァネート(例えば、 1, 3 フエ-レンジイソシァ ネートと 1, 4 フエ-レンジイソシァネートとの混合物、 2, 4 及び 2, 6 トルエンジ イソシァネート、 1, 3 及び 1, 4 キシリレンジイソシァネート、ビス(4 イソシァネー ト一フエ-ル)メタン、ビス(4—イソシァネートシクロへキシル)メタン、イソフォロンジィ ソシァネート、へキサメチレンジイソシァネート、トリメチルへキサメチレンジイソシァネ ート等)、該 2官能イソシァネートと、トリメチロールプロパン、ペンタリスルトール、ダリ セリン等との多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体 と、前記 2官能イソシァネートとの付加体;へキサメチレンジイソシァネート、へキサメ チレン 1, 6 ジイソシァネート及びその誘導体等の環式三量体;などが挙げられる [0080] 更に、本発明のパターン形成材料の保存性を向上させることを目的として、前記ポ リイソシァネート及びその誘導体のイソシァネート基にブロック剤を反応させて得られ る化合物を用いてもよい。
前記イソシァネート基ブロック剤としては、アルコール類 (例えば、イソプロパノール 、tert ブタノール等)、ラタタム類 (例えば、 ε一力プロラタタム等)、フエノール類( 例えば、フエノーノレ、クレゾ一ノレ、 p— tert ブチノレフエノーノレ、 p— sec ブチノレフエ ノーノレ、 p— sec ァミルフエノール、 p—ォクチルフエノール、 p ノ-ルフエノール等 )、複素環式ヒドロキシルイ匕合物(例えば、 3—ヒドロキシピリジン、 8—ヒドロキシキノリ ン等)、活性メチレン化合物(例えば、ジアルキルマロネート、メチルェチルケトキシム 、ァセチルアセトン、アルキルァセトアセテートォキシム、ァセトォキシム、シクロへキ サノンォキシム等)などが挙げられる。これらの他、特開平 6— 295060号公報記載の 分子内に少なくとも 1つの重合可能な二重結合及び少なくとも 1つのブロックイソシァ ネート基の 、ずれかを有する化合物などを用いることができる。
[0081] また、前記熱架橋剤として、メラミン誘導体を用いることができる。該メラミン誘導体と しては、例えば、メチロールメラミン、アルキル化メチロールメラミン (メチロール基を、 メチル、ェチル、ブチルなどでエーテルィ匕した化合物)などが挙げられる。これらは 1 種単独で使用してもよいし、 2種以上を併用してもよい。これらの中でも、保存安定性 が良好で、感光層の表面硬度あるヽは硬化膜の膜強度自体の向上に有効である点 で、アルキル化メチロールメラミンが好ましぐへキサメチル化メチロールメラミンが特 に好ましい。
[0082] 前記熱架橋剤の前記パターン形成材料固形分中の固形分含有量は、 1〜40質量 %が好ましぐ 3〜20質量%がより好ましい。該固形分含有量が 1質量%未満である と、硬化膜の膜強度の向上が認められず、 40質量%を超えると、現像性の低下や露 光感度の低下を生ずることがある。
[0083] その他の成分
前記その他の成分としては、例えば、熱重合禁止剤、可塑剤、着色剤 (着色顔料あ るいは染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤及びその 他の助剤類 (例えば、導電性粒子、充填剤、消泡剤、難燃剤、レべリング剤、剥離促 進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。こ れらの成分を適宜含有させることにより、目的とするパターン形成材料の安定性、写 真性、膜物性などの性質を調整することができる。
[0084] 熱重合禁止剤
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止 するために添カ卩してもよい。
前記熱重合禁止剤としては、例えば、 4—メトキシフエノール、ハイドロキノン、アル キルまたはァリール置換ノヽイドロキノン、 tーブチルカテコール、ピロガロール、 2—ヒド ロキシベンゾフエノン、 4—メトキシ一 2 ヒドロキシベンゾフエノン、塩化第一銅、フエ ノチアジン、クロラニル、ナフチルァミン、 13 ナフトール、 2, 6 ジ tーブチルー 4 クレゾール、 2, 2,ーメチレンビス(4ーメチルー 6 t—ブチルフエノール)、ピリジン 、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、 4ートルイジン、メチレンブルー、銅と 有機キレート剤反応物、サリチル酸メチル、及びフエノチアジン、ニトロソィ匕合物、 -ト 口ソィ匕合物と A1とのキレート等が挙げられる。
[0085] 前記熱重合禁止剤の含有量としては、前記重合性化合物に対して 0. 001〜5質 量%が好ましぐ 0. 005〜2質量%がより好ましぐ 0. 01〜1質量%が特に好ましい 。該含有量が、 0. 001質量%未満であると、保存時の安定性が低下することがあり、 5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
[0086] 着色顔料
前記着色顔料としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、フタロシアニングリーン、ビクトリア 'ピュア一ブルー BO (C. I. 42595)、ォー ラミン(C. I. 41000)、ファット.ブラック HB (C. I. 26150)、モノライト.エロー GT(C . I.ピグメント'エロー 12)、パーマネント 'エロー GR(C. I.ピグメント'エロー 17)、 ノ 一マネント 'エロー HR(C. I.ピグメント 'エロー 83)、パーマネント 'カーミン FBB (C. I.ビグメント 'レッド 146)、ホスターバームレッド ESB (C. I.ビグメント 'バイオレット 19 )、パーマネント 'ルビー FBH (C. I.ビグメント 'レッド 11)フアステル 'ピンク Bスプラ( C. I.ビグメント 'レッド 81)モナストラル'ファースト 'ブルー(C. I.ビグメント 'ブルー 1 5)、モノライト'ファースト 'ブラック B (C. I.ビグメント 'ブラック 1)、カーボン、 C. I.ピ グメント.レッド 97、 C. I.ピグメント.レッド 122、 C. I.ピグメント.レッド 149、 C. I.ピ グメント 'レッド 168、 C. I.ビグメント 'レッド 177、 C. I.ビグメント 'レッド 180、 C. I.ピ グメント.レッド 192、 C. I.ピグメント.レッド 215、 C. I.ピグメント.グリーン 7、 C. I.ピ グメント.グリーン 36、 C. I.ピグメント.ブルー 15 : 1、 C. I.ピグメント.ブルー 15 :4、 C. I.ピグメント.ブルー 15 : 6、 C. I.ピグメント.ブルー 22、 C. I.ピグメント.ブルー 6 0、 C. I.ビグメント 'ブルー 64などが挙げられる。これらは 1種単独で用いてもよいし、 2種以上を併用してもよい。また、必要に応じて、公知の染料の中から、適宜選択した 染料を使用することができる。
[0087] 前記着色顔料の前記パターン形成材料固形分中の固形分含有量は、永久パター ン形成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着 色顔料の種類により異なる力 一般的には 0. 05〜: LO質量%が好ましぐ 0. 1〜5質 量%がより好ましい。
[0088] 体質顔料
前記パターン形成材料には、必要に応じて、永久パターンの表面硬度の向上、あ るいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を 低く抑えることを目的として、無機顔料や有機微粒子を添加することができる。
前記無機顔料としては、特に制限はなぐ公知のものの中から適宜選択することが でき、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケィ素粉、微粉状酸ィ匕 ケィ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、 クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、 マイ力などが挙げられる。
前記無機顔料の平均粒径は、 10 m未満が好ましぐ 3 m以下がより好ましい。 該平均粒径が 10 m以上であると、光錯乱により解像度が劣化することがある。 前記有機微粒子としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、メラミン榭脂、ベンゾグアナミン榭脂、架橋ポリスチレン榭脂などが挙げられ る。また、平均粒径 1〜5 /ζ πι、吸油量 100〜200m2Zg程度のシリカ、架橋樹脂から なる球状多孔質微粒子などを用いることができる。
[0089] 前記体質顔料の添加量は、 5〜60質量%が好ましい。該添加量が 5質量%未満で あると、十分に線膨張係数を低下させることができないことがあり、 60質量%を超える と、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久バタ ーンを用いて配線を形成する場合にお!、て、配線の保護膜としての機能が損なわれ ることがある。
[0090] 密着促進剤
各層間の密着性、又は感光層と基材との密着性を向上させるために、各層に公知 の 、わゆる密着促進剤を用いることができる。
[0091] 前記密着促進剤としては、例えば、特開平 5— 11439号公報、特開平 5— 34153 2号公報、及び特開平 6—43638号公報などに記載の密着促進剤が好適挙げられ る。具体的には、ベンズイミダゾール、ベンズォキサゾール、ベンズチアゾール、 2— メルカプトべンズイミダゾール、 2—メルカプトべンズォキサゾール、 2—メルカプトベン ズチアゾール、 3 モルホリノメチルー 1 フエ二ルートリアゾールー 2 チオン、 3— モルホリノメチル 5 フエニル ォキサジァゾール 2 チオン、 5 アミノー 3 モ ルホリノメチル チアジアゾール - 2-チオン、及び 2 メルカプト 5—メチルチオ ーチアジアゾール、トリァゾール、テトラゾール、ベンゾトリァゾール、カルボキシベン ゾトリァゾール、アミノ基含有べンゾトリァゾール、シランカップリング剤などが挙げられ る。
[0092] 前記密着促進剤の含有量としては、前記パターン形成材料中の全成分に対して 0 . 001質量%〜20質量%が好ましぐ 0. 01〜10質量%がより好ましぐ 0. 1質量% 〜5質量%が特に好ましい。
[0093] <パターン形成材料の製造方法 >
前記パターン形成材料の製造方法としては、特に制限はなぐ目的に応じて適宜 選択することができ、例えば、支持体上に、上述した、バインダー、重合性化合物、 光重合開始剤等の感光層に含まれる材料 (以下、単に感光性組成物という。)を塗布 及び乾燥して感光層を形成することが好ま 、。
前記塗布及び乾燥の方法としても、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記支持体の表面に、前記感光性組成物を、水又は溶剤に、溶 解、乳化、又は分散させて感光性組成物を調製し、該溶液を塗布し、乾燥させる方 法が好ましい。
[0094] 前記感光性組成物溶液の溶剤としては、特に制限はなく、 目的に応じて適宜選択 することができ、例えば、メタノール、エタノール、 n—プロパノール、イソプロパノール 、 n—ブタノール、 sec ブタノール、 n—へキサノール等のアルコール類;アセトン、メ チルェチルケトン、メチルイソブチルケトン、シクロへキサノン、ジイソプチルケトンなど のケトン類;酢酸ェチル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピオン酸 ェチル、フタル酸ジメチル、安息香酸ェチル、及びメトキシプロピルアセテートなどの エステル類;トルエン、キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水素類 ;四塩化炭素、トリクロロエチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩化メチ レン、モノクロ口ベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジェチル エーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノエチノレエ 一テル、 1ーメトキシー 2—プロパノールなどのエーテル類;ジメチルホルムアミド、ジメ チルァセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよぐ 2種以上を併用してもよい。また、公知の界面活性剤を添 カロしてちょい。
[0095] 前記塗布の方法としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイ =1一ター、力 一テンコーターなどを用いて、塗布する方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、 通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。
[0096] 前記感光層の厚みとしては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、 3〜: LOO m力好ましく、 5〜70 mがより好ましい。
[0097] く保護フィルム〉
前記パターン形成材料は、前記感光層上に保護フィルムを形成してもよ 、。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、 ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフイン又はポリテトラフルォ ルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピ レンフィルムが好ましい。 前記保護フィルムの厚みとしては、特に制限はなぐ 目的に応じて適宜選択するこ とができる力 例えば、 5-100 μ mが好ましぐ 8〜30 μ mがより好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力 Aと、前記 感光層及び保護フィルムの接着力 Bとが、接着力 A>接着力 Bの関係であることが好 ましい。
前記支持体と保護フィルムとの組合せ (支持体 Z保護フィルム)としては、例えば、 ポリエチレンテレフタレート zポリプロピレン、ポリエチレンテレフタレート zポリエチレ ン、ポリ塩化ビュル Zセロファン、ポリイミド Zポリプロピレン、ポリエチレンテレフタレ ート zポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルム の少なくとも 、ずれかを表面処理することにより、上述のような接着力の関係を満たす ことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施 されてもよぐ例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理 、高周波照射処理、グロ一放電照射処理、活性プラズマ照射処理、レーザ光線照射 処理などを挙げることができる。
[0098] また、前記支持体と前記保護フィルムとの静摩擦係数としては、 0. 3〜1. 4が好ま しく、 0. 5〜1. 2力より好まし!/ヽ。
前記静摩擦係数が、 0. 3未満であると、滑り過ぎるため、ロール状にした場合に卷 ズレが発生することがあり、 1. 4を超えると、良好なロール状に巻くことが困難となるこ とがある。
[0099] 前記パターン形成材料は、例えば、円筒状の卷芯に巻き取って、長尺状でロール 状に巻かれて保管されるのが好ましい。前記長尺状のパターン形成材料の長さとし ては、特に制限はなぐ例えば、 10m〜20, OOOmの範囲力 適宜選択することがで きる。また、ユーザーが使いやすいようにスリット加工し、 100m〜l, OOOmの範囲の 長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になる ように巻き取られるのが好ましい。また、前記ロール状のパターン形成材料をシート状 にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から 、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好 ましぐまた梱包も透湿性の低 、素材を用いるのが好ま 、。 [0100] 前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために 表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオ ルガノシロキサン、フッ素化ポリオレフイン、ポリフルォロエチレン、ポリビュルアルコー ル等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗 布液を前記保護フィルムの表面に塗布した後、 30〜150°C (特に 50〜120°C)で 1 〜30分間乾燥させることにより形成させることができる。
また、前記感光層、前記支持体、前記保護フィルムの他に、クッション層、酸素遮断 層 (PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。 前記クッション層は、常温ではタック性が無ぐ真空'加熱条件で積層した場合に溶 融し、流動する層である。
前記 PC層は、通常ポリビュルアルコールを主成分として形成された 0. 5〜5 /ζ πι程 度の被膜である。
[0101] く積層体の形成 >
本発明のパターン形成材料を用いてパターン形成を行う際には、該パターン形成 材料の感光層を基材上へ積層して積層体を形成する。
[0102] 前記基材としては、特に制限はなぐ公知の材料の中力も表面平滑性の高いもの 力 凸凹のある表面を有するものまで適宜選択することができるが、板状の基材 (基 板)が好ましぐ具体的には、公知のプリント配線板形成用基板 (例えば、銅張積層板 )、ガラス板 (例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが 挙げられる。
[0103] 前記積層体における層構成としては、特に制限はなぐ目的に応じて適宜選択する ことができるが、例えば、前記基材と前記感光層と前記支持体とをこの順有する層構 成が好ましい。なお、前記パターン形成材料が前述する保護フィルムを有する場合 には、該保護フィルムを剥離し、前記基材に感光層が重なるようにして積層するのが 好ましい。
[0104] 該積層体の形成方法としては、特に制限はなぐ適宜選択することができるが、前 記基材上に前記パターン形成材料を加熱及び加圧の少なくとも!/ヽずれかを行!ヽなが ら積層することが好ましい。 前記加熱温度としては、特に制限はなぐ 目的に応じて適宜選択することができる 力 例えば、 70〜130°Cが好ましぐ 80〜110°Cがより好ましい。
前記加圧の圧力としては、特に制限はなぐ 目的に応じて適宜選択することができ る力 ί列; tは、、 0. 01〜: L OMPa力好ましく、 0. 05〜: L OMPa力 ^より好まし!/ヽ。
[0105] 前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなぐ 目 的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター( 例えば、大成ラミネータネ土製、 VP— 11)、真空ラミネーター (例えば、名機製作所製、
MVLP500)などが好適に挙げられる。
[0106] 本発明のパターン形成材料は、前記感光層の感度低下を抑制できるため、より小さ
V、エネルギー量の光で露光することができ、露光スピードが上がるため処理スピード が上がる点で有利である。
[0107] <用途 >
本発明のパターン形成材料は、高感度の感光層が得られ、現像性に優れ、現像後 に得られるレジスト面形状が良好で、かつ、より高精細なパターンを形成可能である ため、プリント配線版、カラーフィルタや柱材、リブ材、スぺーサ一、隔壁などのディス プレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用とし て広く用いることができ、本発明の永久パターン形成方法に好適に用いることができ る。
[0108] (パターン形成装置及び永久パターン形成方法)
本発明のパターン形成装置は、本発明の前記パターン形成材料を備えており、光 照射手段と光変調手段とを少なくとも有する。
[0109] 本発明の永久パターン形成方法は、露光工程を少なくとも含み、更に、現像工程、 硬化処理工程を含むことが好ましい。なお、本発明の前記パターン形成装置は、本 発明の前記永久パターン形成方法の説明を通じて明らかにする。
[0110] <露光工程 >
前記露光工程は、本発明のパターン形成材料における感光層に対し、露光を行う 工程である。本発明の前記パターン形成材料、及び基材の材料については上述の 通りである。 [0111] 前記露光の対象としては、前記パターン形成材料における感光層である限り、特に 制限はなぐ目的に応じて適宜選択することができる力 例えば、上述のように、基材 上にパターン形成材料を加熱及び加圧の少なくとも ヽずれかを行 ヽながら積層して 形成した積層体に対して行われることが好まし 、。
[0112] 前記露光としては、特に制限はなぐ目的に応じて適宜選択することができ、デジタ ル露光、アナログ露光等が挙げられる力 これらの中でもデジタル露光が好ましい。
[0113] 前記デジタル露光としては、特に制限はなぐ目的に応じて適宜選択することがで きるが、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御 信号に応じて変調させた光を用いて行うことが好ま 、。
[0114] 前記デジタル露光の手段としては、特に制限はなぐ目的に応じて適宜選択するこ とができるが、例えば、光を照射する光照射手段、形成するパターン情報に基づいて 該光照射手段から照射される光を変調させる光変調手段などが挙げられる。
[0115] 一光変調手段
前記光変調手段としては、光を変調することができる限り、特に制限はなぐ目的に 応じて適宜選択することができ、例えば、 n個の描素部を有することが好ましい。 前記 n個の描素部を有する光変調手段としては、特に制限はなぐ目的に応じて適 宜選択することができるが、例えば、空間光変調素子が好ましい。
[0116] 前記空間光変調素子としては、例えば、デジタル ·マイクロミラー ·デバイス (DMD)
、 MEMS (Micro Electro Mechanical Systems)タイプの空間光変調素子(S
LM ; Special Light Modulator)、電気光学効果により透過光を変調する光学素 子(PLZT素子)、液晶光シャツタ(FLC)などが挙げられ、これらの中でも DMDが好 適に挙げられる。
[0117] また、前記光変調手段は、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記 パターン信号生成手段が生成した制御信号に応じて光を変調させる。
前記制御信号としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、デジタル信号が好適に挙げられる。
[0118] 以下、前記光変調手段の一例について図面を参照しながら説明する。 DMD50は図 1に示すように、 SRAMセル (メモリセル) 60上〖こ、各々描素(ピクセ ル)を構成する多数 (例えば、 1, 024個 X 768個)の微小ミラー(マイクロミラー) 62が 格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支 柱に支えられたマイクロミラー 62が設けられており、マイクロミラー 62の表面にはアル ミニゥム等の反射率の高い材料が蒸着されている。なお、マイクロミラー 62の反射率 は 90%以上であり、その配列ピッチは縦方向、横方向とも一例として 13. であ る。また、マイクロミラー 62の直下には、ヒンジおよびヨークを含む支柱を介して通常 の半導体メモリの製造ラインで製造されるシリコンゲートの CMOSの SRAMセル 60 が配置されており、全体はモノリシックに構成されている。
[0119] DMD50の SRAMセル 60にデジタル信号が書き込まれると、支柱に支えられたマ イク口ミラー 62が、対角線を中心として DMD50が配置された基板側に対して ±ひ度 (例えば ± 12度)の範囲で傾けられる。図 2Aは、マイクロミラー 62がオン状態である + α度に傾いた状態を示し、図 2Βは、マイクロミラー 62がオフ状態である α度に 傾いた状態を示す。したがって、パターン情報に応じて、 DMD50の各ピクセルにお けるマイクロミラー 62の傾きを、図 1に示すように制御することによって、 DMD50に入 射したレーザ光 Βはそれぞれのマイクロミラー 62の傾き方向へ反射される。
[0120] なお、図 1には、 DMD50の一部を拡大し、マイクロミラー 62が + α度又は α度 に制御されて ヽる状態の一例を示す。それぞれのマイクロミラー 62のオンオフ制御は 、 DMD50に接続されたコントローラ 302 (図 12参照)によって行われる。また、オフ 状態のマイクロミラー 62で反射したレーザ光 Βが進行する方向には、光吸収体(図示 せず)が配置されている。
[0121] また、 DMD50は、その短辺が副走査方向と所定角度 Θ (例えば、 0. 1° 〜5° ) を成すように僅かに傾斜させて配置するのが好まし 、。図 3Αは DMD50を傾斜させ ない場合の各マイクロミラーによる反射光像 (露光ビーム) 53の走査軌跡を示し、図 3 Βは DMD50を傾斜させた場合の露光ビーム 53の走査軌跡を示している。
[0122] DMD50には、長手方向にマイクロミラーが多数個(例えば、 1, 024個)配列され たマイクロミラー列力 短手方向に多数組 (例えば、 756組)配列されている力 図 3Β に示すように、 DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム 53 の走査軌跡(走査線)のピッチ P力 DMD50を傾斜させない場合の走査線のピッチ
2
Pより狭くなり、解像度を大幅に向上させることができる。一方、 DMD50の傾斜角は 微小であるので、 DMD50を傾斜させた場合の走査幅 Wと、 DMD50を傾斜させな
2
い場合の走査幅 wとは略同一である。
[0123] 次に、前記光変調手段における変調速度を速くさせる方法 (以下「高速変調」と称 する)について説明する。
前記光変調手段は、前記 n個の描素の中から連続的に配置された任意の n個未満 の前記描素部をパターン情報に応じて制御可能であることが好まし 、。前記光変調 手段のデータ処理速度には限界があり、使用する描素数に比例して 1ライン当りの変 調速度が決定されるので、連続的に配列された任意の n個未満の描素部だけを使用 することで 1ライン当りの変調速度が速くなる。
[0124] 以下、前記高速変調について図面を参照しながら更に説明する。
ファイバアレイ光源 66から DMD50にレーザ光 Bが照射されると、 DMD50のマイク 口ミラーがオン状態のときに反射されたレーザ光は、レンズ系 54、 58によりパターン 形成材料 150上に結像される。このようにして、ファイバアレイ光源 66から出射された レーザ光が描素毎にオンオフされて、パターン形成材料 150が DMD50の使用描素 数と略同数の描素単位 (露光エリア 168)で露光される。また、パターン形成材料 15 0がステージ 152と共に一定速度で移動されることにより、パターン形成材料 150がス キヤナ 162によりステージ移動方向と反対の方向に副走査され、露光ヘッド 166毎に 帯状の露光済み領域 170が形成される。
[0125] なお本例では、図 4A及び図 4Bに示すように、 DMD50には、主走査方向にマイク 口ミラーが 1, 024個配列されたマイクロミラー列が副走査方向に 768組配列されてい る力 本例では、前記コントローラ 302 (図 12参照)により一部のマイクロミラー列(例 えば、 1, 024個 X 256列)だけが駆動するように制御がなされる。
[0126] この場合、図 4Aに示すように DMD50の中央部に配置されたマイクロミラー列を使 用してもよぐ図 4Bに示すように、 DMD50の端部に配置されたマイクロミラー列を使 用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生して いないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適 宜変更してもよい。
[0127] DMD50のデータ処理速度には限界があり、使用する描素数に比例して 1ライン当 りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで 1ライ ン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動 させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。
[0128] スキャナ 162によるパターン形成材料 150の副走査が終了し、センサ 164でパター ン形成材料 150の後端が検出されると、ステージ 152は、ステージ駆動装置 304によ り、ガイド 158に沿ってゲート 160の最上流側にある原点に復帰し、再度、ガイド 158 に沿ってゲート 160の上流側から下流側に一定速度で移動される。
[0129] 例えば、 768組のマイクロミラー列の内、 384組だけ使用する場合には、 768組全 部使用する場合と比較すると 1ライン当り 2倍速く変調することができる。また、 768組 のマイクロミラー列の内、 256組だけ使用する場合には、 768組全部使用する場合と 比較すると 1ライン当り 3倍速く変調することができる。
[0130] 以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミ ラーが 1, 024個配列されたマイクロミラー列力 副走査方向に 768糸且配列された D MDを備えている力 コントローラにより一部のマイクロミラー列だけが駆動されるよう に制御することにより、全部のマイクロミラー列を駆動する場合に比べて、 1ライン当り の変調速度が速くなる。
[0131] また、 DMDのマイクロミラーを部分的に駆動する例について説明した力 所定方向 に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各 々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが 2次元状に 配列された細長い DMDを用いても、反射面の角度を制御するマイクロミラーの個数 が少なくなるので、同様に変調速度を速くすることができる。
[0132] また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行う ことが好ましぐこの場合、前記高速変調と併用することが好ましい。これにより、短時 間で高速の露光を行うことができる。
[0133] その他、図 5に示すように、スキャナ 162による X方向への 1回の走査でパターン形 成材料 150の全面を露光してもよぐ図 6A及び図 6Bに示すように、スキャナ 162に よりパターン形成材料 150を X方向へ走査した後、スキャナ 162を Y方向に 1ステップ 移動し、 X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査で パターン形成材料 150の全面を露光するようにしてもよい。なお、この例では、スキヤ ナ 162は 18個の露光ヘッド 166を備えている。なお、露光ヘッドは、前記光照射手 段と前記光変調手段とを少なくとも有する。
[0134] 前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が 硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領 域が除去され、パターンが形成される。
[0135] 次に、前記光変調手段を含むパターン形成装置の一例について図面を参照しな がら説明する。
前記光変調手段を含むパターン形成装置は、図 7に示すように、シート状のパター ン形成材料 150を表面に吸着して保持する平板状のステージ 152を備えている。
4本の脚部 154に支持された厚い板状の設置台 156の上面には、ステージ移動方 向に沿って延びた 2本のガイド 158が設置されている。ステージ 152は、その長手方 向がステージ移動方向を向くように配置されると共に、ガイド 158によって往復移動 可能に支持されている。なお、前記パターン形成装置には、ステージ 152をガイド 15 8に沿って駆動するための図示しな 、駆動装置を有して 、る。
[0136] 設置台 156の中央部には、ステージ 152の移動経路を跨ぐようにコ字状のゲート 1 60が設けられている。コ字状のゲート 160の端部の各々は、設置台 156の両側面に 固定されている。このゲート 160を挟んで一方の側にはスキャナ 162が設けられ、他 方の側にはパターン形成材料 150の先端及び後端を検知する複数 (例えば、 2個) の検知センサ 164が設けられている。スキャナ 162及び検知センサ 164は、ゲート 16 0に各々取り付けられて、ステージ 152の移動経路の上方に固定配置されている。な お、スキャナ 162及び検知センサ 164は、これらを制御する図示しないコントローラに 接続されている。
[0137] スキャナ 162は、図 8及び図 9Bに示すように、 m行 n列(例えば、 3行 5列)の略マトリ ックス状に配列された複数 (例えば、 14個)の露光ヘッド 166を備えている。この例で は、パターン形成材料 150の幅との関係で、 3行目には 4個の露光ヘッド 166を配置 した。なお、 m行目の n列目に配列された個々の露光ヘッドを示す場合は、露光へッ ド 166 と表記する。
mn
[0138] 露光ヘッド 166による露光エリア 168は、副走査方向を短辺とする矩形状である。
従って、ステージ 152の移動に伴い、パターン形成材料 150には露光ヘッド 166毎 に帯状の露光済み領域 170が形成される。なお、 m行目の n列目に配列された個々 の露光ヘッドによる露光エリアを示す場合は、露光エリア 168
mnと表記する。
[0139] また、図 9A及び図 9Bに示すように、帯状の露光済み領域 170が副走査方向と直 交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は 、配列方向に所定間隔 (露光エリアの長辺の自然数倍、本例では 2倍)ずらして配置 されている。このため、 1行目の露光エリア 168 と露光エリア 168 との間の露光でき
11 12
ない部分は、 2行目の露光エリア 168 と 3行目の露光エリア 168 とにより露光する
21 31
ことができる。
[0140] 露光ヘッド 166 〜166 各々は、図 10及び図 11に示すように、入射された光ビ
11 mn
ームをパターン情報に応じて前記光変調手段 (各描素毎に変調する空間光変調素 子)として、米国テキサス 'インスツルメンッ社製のデジタル 'マイクロミラ一'デバイス(
DMD) 50を備えている。 DMD50は、データ処理部とミラー駆動制御部とを備えた 前記コントローラ 302 (図 12参照)に接続されている。このコントローラ 302のデータ 処理部では、入力されたパターン情報に基づいて、露光ヘッド 166毎に DMD50の 制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制 御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処 理部で生成した制御信号に基づいて、露光ヘッド 166毎に DMD50の各マイクロミラ 一の反射面の角度を制御する。なお、反射面の角度の制御に付いては後述する。
[0141] DMD50の光入射側には、光ファイバの出射端部 (発光点)が露光エリア 168の長 辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバァ レイ光源 66、ファイバアレイ光源 66から出射されたレーザ光を補正して DMD上に集 光させるレンズ系 67、レンズ系 67を透過したレーザ光を DMD50に向けて反射する ミラー 69がこの順に配置されている。なお、図 10では、レンズ系 67を概略的に示し てある。 [0142] レンズ系 67は、図 11に詳しく示すように、ファイバアレイ光源 66から出射した照明 光としてのレーザ光 Bを集光する集光レンズ 71、集光レンズ 71を通過した光の光路 に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータと 、う) 72、及びロッドインテグレータ 72の前方つまりミラー 69側に配置された結像レンズ 74 力も構成されている。集光レンズ 71、ロッドインテグレータ 72及び結像レンズ 74は、 ファイバアレイ光源 66から出射したレーザ光を、平行光に近くかつビーム断面内強 度が均一化された光束として DMD50に入射させる。このロッドインテグレータ 72の 形状や作用については、後に詳しく説明する。
[0143] レンズ系 67から出射したレーザ光 Bはミラー 69で反射し、 TIR (全反射)プリズム 70 を介して DMD50に照射される。なお、図 10では、この TIRプリズム 70は省略してあ る。
[0144] また、 DMD50の光反射側には、 DMD50で反射されたレーザ光 Bを、パターン形 成材料 150上に結像する結像光学系 51が配置されて 、る。この結像光学系 51は、 図 10では概略的に示してあるが、図 11に詳細を示すように、レンズ系 52, 54からな る第 1結像光学系と、レンズ系 57, 58からなる第 2結像光学系と、これらの結像光学 系の間に挿入されたマイクロレンズアレイ 55と、アパーチャアレイ 59と力も構成されて いる。
[0145] マイクロレンズアレイ 55は、 DMD50の各描素に対応する多数のマイクロレンズ 55 aが 2次元状に配列されてなるものである。本例では、後述するように DMD50の 1, 0 24個 X 768列のマイクロミラーのうち 1, 024個 X 256列だけが駆動されるので、それ に対応させてマイクロレンズ 55aは 1, 024個 X 256列配置されている。またマイクロ レンズ 55aの配置ピッチは縦方向、横方向とも 41 μ mである。このマイクロレンズ 55a は、一例として焦点距離が 0. 19mm、NA (開口数)が 0. 11で、光学ガラス BK7か ら形成されている。なおマイクロレンズ 55aの形状については、後に詳しく説明する。 そして、各マイクロレンズ 55aの位置におけるレーザ光 Bのビーム径は、 41 μ mであ る。
[0146] また、アパーチャアレイ 59は、マイクロレンズアレイ 55の各マイクロレンズ 55aに対 応する多数のアパーチャ(開口) 59aが形成されてなるものである。アパーチャ 59aの 径は、例えば、 10 /z mである。
[0147] 前記第 1結像光学系は、 DMD50による像を 3倍に拡大してマイクロレンズアレイ 5 5上に結像する。そして、前記第 2結像光学系は、マイクロレンズアレイ 55を経た像を 1. 6倍に拡大してパターン形成材料 150上に結像、投影する。したがって全体では 、 DMD50による像が 4. 8倍に拡大してパターン形成材料 150上に結像、投影され ることになる。
[0148] なお、前記第 2結像光学系とパターン形成材料 150との間にプリズムペア 73が配 設され、このプリズムペア 73を図 11中で上下方向に移動させることにより、パターン 形成材料 150上における像のピントを調節可能となって 、る。なお同図中にお 、て、 パターン形成材料 150は矢印 F方向に副走査送りされる。
[0149] 前記描素部としては、前記光照射手段からの光を受光し出射することができる限り 、特に制限はなぐ目的に応じて適宜選択することができるが、例えば、本発明のパ ターン形成方法により形成されるパターンが画像パターンである場合には、画素であ り、前記光変調手段が DMDを含む場合にはマイクロミラーである。
前記光変調素子が有する描素部の数 (前記 n)としては、特に制限はなぐ目的に 応じて適宜選択することができる。
前記光変調素子における描素部の配列としては、特に制限はなぐ目的に応じて 適宜選択することができるが、例えば、 2次元状に配列していることが好ましぐ格子 状に配列して 、ることがより好ま 、。
[0150] 一光照射手段
前記光照射手段としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機 用などの蛍光管、 LED,半導体レーザ等の公知光源、又は 2以上の光を合成して照 射可能な手段が挙げられ、これらの中でも 2以上の光を合成して照射可能な手段が 好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う 場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化す る電磁波、紫外から可視光線、電子線、 X線、レーザ光などが挙げられ、これらの中 でもレーザ光が好ましぐ 2以上の光を合成したレーザ (以下、「合波レーザ」と称する ことがある)がより好ましい。また支持体を剥離して力も光照射を行う場合でも、同様の 光を用いることができる。
[0151] 前記紫外力 可視光線の波長としては、例えば、 300-1, 500nmが好ましぐ 32
0〜800mn力より好ましく、 330〜650mn力 ^特に好まし!/、。
前記レーザ光の波長としては、 ί列えば、、 200〜1, 500nm力 S好ましく、 300〜800n m力より好ましく、 330〜500mn力更に好ましく、 400〜450nm力 ^特に好まし!/、。
[0152] 前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモー ド光ファイバと、該複数のレーザ力 それぞれ照射したレーザ光を集光して前記マル チモード光ファイバに結合させる集合光学系とを有する手段が好ましい。
[0153] 以下、前記合波レーザを照射可能な手段 (ファイバアレイ光源)につ 、て図を参照 しながら説明する。
[0154] ファイバアレイ光源 66は図 27Aに示すように、複数(例えば、 14個)のレーザモジュ ール 64を備えており、各レーザモジュール 64には、マルチモード光ファイバ 30の一 端が結合されている。マルチモード光ファイバ 30の他端には、コア径がマルチモード 光ファイバ 30と同一で且つクラッド径がマルチモード光ファイバ 30より小さい光フアイ バ 31が結合されている。図 27Bに詳しく示すように、マルチモード光ファイバ 31の光 ファイバ 30と反対側の端部は副走査方向と直交する主走査方向に沿って 7個並べら れ、それが 2列に配列されてレーザ出射部 68が構成されている。
[0155] マルチモード光ファイバ 31の端部で構成されるレーザ出射部 68は、図 27Bに示す ように、表面が平坦な 2枚の支持板 65に挟み込まれて固定されている。また、マルチ モード光ファイバ 31の光出射端面には、その保護のために、ガラス等の透明な保護 板が配置されるのが望ましい。マルチモード光ファイバ 31の光出射端面は、光密度 が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面 への塵埃の付着を防止し、また劣化を遅らせることができる。
[0156] この例では、クラッド径が小さい光ファイバ 31の出射端を隙間無く 1列に配列するた めに、クラッド径が大きい部分で隣接する 2本のマルチモード光ファイバ 30の間にマ ルチモード光ファイバ 30を積み重ね、積み重ねられたマルチモード光ファイバ 30に 結合された光ファイバ 31の出射端が、クラッド径が大きい部分で隣接する 2本のマル チモード光ファイバ 30に結合された光ファイバ 31の 2つの出射端の間に挟まれるよう に配列されている。
[0157] このような光ファイバは、例えば、図 28に示すように、クラッド径が大きいマルチモー ド光ファイバ 30のレーザ光出射側の先端部分に、長さ l〜30cmのクラッド径が小さ い光ファイバ 31を同軸的に結合することにより得ることができる。 2本の光ファイバは、 光ファイバ 31の入射端面力 マルチモード光ファイバ 30の出射端面に、両光フアイ バの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ 3 1のコア 31aの径は、マルチモード光ファイバ 30のコア 30aの径と同じ大きさである。
[0158] また、長さが短くクラッド径が大きい光ファイバにクラッド径カ 、さい光ファイバを融 着させた短尺光ファイバを、フェルールゃ光コネクタ等を介してマルチモード光フアイ バ 30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、ク ラッド径カ 、さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光 ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ 31を、 マルチモード光ファイバ 30の出射端部と称する場合がある。
[0159] マルチモード光ファイバ 30及び光ファイバ 31としては、ステップインデックス型光フ アイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい 。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いること ができる。本実施の形態では、マルチモード光ファイバ 30及び光ファイバ 31は、ステ ップインデックス型光ファイバであり、マルチモード光ファイバ 30は、クラッド径 = 125
Figure imgf000056_0001
πι, NA=0. 2、入射端面コートの透過率 = 99. 5%以上であり 、光ファイバ 31は、クラッド径 =60 μ m、コア径 = 50 μ m、 NA=0. 2である。
[0160] 一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失 が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されて いる。し力しながら、波長が短いほど伝搬損失は少なくなり、 GaN系半導体レーザか ら出射された波長 405nmのレーザ光では、クラッドの厚み { (クラッド径一コア径) Z2 }を 800nmの波長帯域の赤外光を伝搬させる場合の 1Z2程度、通信用の 1.
の波長帯域の赤外光を伝搬させる場合の約 1Z4にしても、伝搬損失は殆ど増加し ない。従って、クラッド径を 60 /z mと小さくすることができる。
[0161] 但し、光ファイバ 31のクラッド径は 60 μ mには限定されない。従来のファイバアレイ 光源に使用されている光ファイバのクラッド径は 125 mである力 クラッド径が小さく なるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は 80 m 以下が好ましぐ 60 m以下がより好ましぐ 40 m以下が更に好ましい。一方、コア 径は少なくとも 3〜4 μ m必要であることから、光ファイバ 31のクラッド径は 10 μ m以 上が好ましい。
[0162] レーザモジュール 64は、図 29に示す合波レーザ光源(ファイバアレイ光源)によつ て構成されている。この合波レーザ光源は、ヒートブロック 10上に配列固定された複 数(例えば、 7個)のチップ状の横マルチモード又はシングルモードの GaN系半導体 レーザ LD1, LD2, LD3, LD4, LD5, LD6,及び LD7と、 GaN系半導体レーザ L D1〜: LD7の各々に対応して設けられたコリメータレンズ 11, 12, 13, 14, 15, 16, 及び 17と、 1つの集光レンズ 20と、 1本のマルチモード光ファイバ 30と、から構成され ている。なお、半導体レーザの個数は 7個には限定されない。例えば、クラッド径 =6 O ^ m,コア径 = 50 πι、 NA=0. 2のマルチモード光ファイバには、 20個もの半導 体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光 ファイバ本数をより減らすことができる。
[0163] GaN系半導体レーザ LD1〜LD7は、発振波長が総て共通(例えば、 405nm)で あり、最大出力も総て共通(例えば、マルチモードレーザでは 100mW、シングルモ 一ドレーザでは 30mW)である。なお、 GaN系半導体レーザ LD1〜LD7としては、 3 50〜450nmの波長範囲で、上記の 405nm以外の発振波長を備えるレーザを用い てもよい。
[0164] 前記合波レーザ光源は、図 30及び図 31に示すように、他の光学要素と共に、上方 が開口した箱状のパッケージ 40内に収納されている。パッケージ 40は、その開口を 閉じるように作成されたパッケージ蓋 41を備えており、脱気処理後に封止ガスを導入 し、ノッケージ 40の開口をパッケージ蓋 41で閉じることにより、パッケージ 40とパッケ ージ蓋 41とにより形成される閉空間 (封止空間)内に上記合波レーザ光源が気密封 止されている。 [0165] パッケージ 40の底面にはベース板 42が固定されており、このベース板 42の上面に は、前記ヒートブロック 10と、集光レンズ 20を保持する集光レンズホルダー 45と、マ ルチモード光ファイバ 30の入射端部を保持するファイバホルダー 46とが取り付けら れている。マルチモード光ファイバ 30の出射端部は、ノ ッケージ 40の壁面に形成さ れた開口からパッケージ外に引き出されている。
[0166] また、ヒートブロック 10の側面にはコリメータレンズホルダー 44が取り付けられており 、コリメータレンズ 11〜17が保持されている。パッケージ 40の横壁面には開口が形 成され、この開口を通して GaN系半導体レーザ LD1〜LD7に駆動電流を供給する 配線 47がパッケージ外に引き出されている。
[0167] なお、図 31においては、図の煩雑化を避けるために、複数の GaN系半導体レーザ のうち GaN系半導体レーザ LD7にのみ番号を付し、複数のコリメータレンズのうちコ リメータレンズ 17にのみ番号を付している。
[0168] 図 32は、前記コリメータレンズ 11〜17の取り付け部分の正面形状を示すものであ る。コリメータレンズ 11〜17の各々は、非球面を備えた円形レンズの光軸を含む領 域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメ一 タレンズは、例えば、榭脂又は光学ガラスをモールド成形することによって形成するこ とができる。コリメータレンズ 11〜17は、長さ方向が GaN系半導体レーザ LD1〜LD 7の発光点の配列方向(図 32の左右方向)と直交するように、上記発光点の配列方 向に密接配置されている。
[0169] 一方、 GaN系半導体レーザ LD1〜LD7としては、発光幅が 2 μ mの活性層を備え 、活性層と平行な方向、直角な方向の拡がり角が各々例えば 10° 、30° の状態で 各々レーザ光 B1〜B7を発するレーザが用いられている。これら GaN系半導体レー ザ LD1〜LD7は、活性層と平行な方向に発光点が 1列に並ぶように配設されている
[0170] したがって、各発光点から発せられたレーザ光 B1〜B7は、上述のように細長形状 の各コリメータレンズ 11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し 、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入 射することになる。つまり、各コリメータレンズ 11〜17の幅が 1. lmm、長さが 4. 6m mであり、それらに入射するレーザ光 B1〜B7の水平方向、垂直方向のビーム径は 各々 0. 9mm、 2. 6mmである。また、コリメータレンズ 11〜17の各々は、焦点距離 f
1
= 3mm、 NA=0. 6、レンズ配置ピッチ = 1. 25mmである。
[0171] 集光レンズ 20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細 長く切り取って、コリメータレンズ 11〜17の配列方向、つまり水平方向に長ぐそれと 直角な方向に短い形状に形成されている。この集光レンズ 20は、焦点距離 f = 23m
2 m、 NA=0. 2である。この集光レンズ 20も、例えば、榭脂又は光学ガラスをモールド 成形することにより形成される。
[0172] また、 DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部を アレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深 い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバァ レイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光 源数が少なくなり、パターン形成装置の低コストィ匕が図られる。
[0173] また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので 、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、 より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビー ム径 1 μ m以下、解像度 0. 1 μ m以下の超高解像度露光の場合にも、深い焦点深 度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が 必要とされる薄膜トランジスタ (TFT)の露光工程に好適である。
[0174] また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ 光源に限定されず、例えば、 1個の発光点を有する単一の半導体レーザから入射さ れたレーザ光を出射する 1本の光ファイバを備えたファイバ光源をアレイ化したフアイ バアレイ光源を用いることができる。
[0175] また、複数の発光点を備えた光照射手段としては、例えば、図 33に示すように、ヒ ートブロック 100上に、複数(例えば、 7個)のチップ状の半導体レーザ LD1〜: LD7を 配列したレーザアレイを用いることができる。また、図 34Aに示す、複数 (例えば、 5個 )の発光点 110aが所定方向に配列されたチップ状のマルチキヤビティレーザ 110が 知られている。マルチキヤビティレーザ 110は、チップ状の半導体レーザを配列する 場合と比べ、発光点を位置精度良く配列できるので、各発光点力 出射されるレー ザ光を合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキヤビティレー ザ 110に橈みが発生し易くなるため、発光点 110aの個数は 5個以下とするのが好ま しい。
[0176] 前記光照射手段としては、このマルチキヤビティレーザ 110や、図 34Bに示すように 、ヒートブロック 100上に、複数のマルチキヤビティレーザ 110が各チップの発光点 11 Oaの配列方向と同じ方向に配列されたマルチキヤビティレーザアレイを、レーザ光源 として用いることができる。
[0177] また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光 を合波するものには限定されない。例えば、図 21に示すように、複数 (例えば、 3個) の発光点 110aを有するチップ状のマルチキヤビティレーザ 110を備えた合波レーザ 光源を用いることができる。この合波レーザ光源は、マルチキヤビティレーザ 110と、 1 本のマルチモード光ファイバ 130と、集光レンズ 120と、を備えて構成されている。マ ルチキヤビティレーザ 110は、例えば、発振波長が 405nmの GaN系レーザダイォー ドで構成することができる。
[0178] 前記構成では、マルチキヤビティレーザ 110の複数の発光点 110aの各々力 出射 したレーザ光 Bの各々は、集光レンズ 120によって集光され、マルチモード光フアイ バ 130のコア 130aに入射する。コア 130aに入射したレーザ光は、光ファイバ内を伝 搬し、 1本に合波されて出射する。
[0179] マルチキヤビティレーザ 110の複数の発光点 110aを、上記マルチモード光フアイ ノ 130のコア径と略等しい幅内に並設すると共に、集光レンズ 120として、マルチモ ード光ファイバ 130のコア径と略等しい焦点距離の凸レンズや、マルチキヤビティレ 一ザ 110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレ ンズを用 、ることにより、レーザ光 Bのマルチモード光ファイバ 130への結合効率を上 げることができる。
[0180] また、図 35に示すように、複数 (例えば、 3個)の発光点を備えたマルチキヤビティレ 一ザ 110を用い、ヒートブロック 111上に複数(例えば、 9個)のマルチキヤビティレー ザ 110が互いに等間隔で配列されたレーザアレイ 140を備えた合波レーザ光源を用 いることができる。複数のマルチキヤビティレーザ 110は、各チップの発光点 110aの 配列方向と同じ方向に配列されて固定されている。
[0181] この合波レーザ光源は、レーザアレイ 140と、各マルチキヤビティレーザ 110に対応 させて配置した複数のレンズアレイ 114と、レーザアレイ 140と複数のレンズアレイ 11 4との間に配置された 1本のロッドレンズ 113と、 1本のマルチモード光ファイバ 130と 、集光レンズ 120と、を備えて構成されている。レンズアレイ 114は、マルチキヤビティ レーザ 110の発光点に対応した複数のマイクロレンズを備えて 、る。
[0182] 上記の構成では、複数のマルチキヤビティレーザ 110の複数の発光点 110aの各 々力も出射したレーザ光 Bの各々は、ロッドレンズ 113により所定方向に集光された 後、レンズアレイ 114の各マイクロレンズにより平行光化される。平行光化されたレー ザ光 Lは、集光レンズ 120によって集光され、マルチモード光ファイバ 130のコア 130 aに入射する。コア 130aに入射したレーザ光は、光ファイバ内を伝搬し、 1本に合波 されて出射する。
[0183] 更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図 36 (A)及び (B) に示すように、略矩形状のヒートブロック 180上に光軸方向の断面が L字状のヒートブ ロック 182が搭載され、 2つのヒートブロック間に収納空間が形成されている。 L字状 のヒートブロック 182の上面には、複数の発光点(例えば、 5個)がアレイ状に配列さ れた複数(例えば、 2個)のマルチキヤビティレーザ 110力 各チップの発光点 110a の配列方向と同じ方向に等間隔で配列されて固定されて 、る。
[0184] 略矩形状のヒートブロック 180には凹部が形成されており、ヒートブロック 180の空 間側上面には、複数の発光点 (例えば、 5個)がアレイ状に配列された複数 (例えば、 2個)のマルチキヤビティレーザ 110が、その発光点がヒートブロック 182の上面に配 置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
[0185] マルチキヤビティレーザ 110のレーザ光出射側には、各チップの発光点 110aに対 応してコリメートレンズが配列されたコリメートレンズアレイ 184が配置されている。コリ メートレンズアレイ 184は、各コリメートレンズの長さ方向とレーザ光の拡がり角が大き V、方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さ!/、方向( 遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化し て一体ィヒすることで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力 化が図られると共に、部品点数が減少し低コストィ匕することができる。
[0186] また、コリメートレンズアレイ 184のレーザ光出射側には、 1本のマルチモード光ファ ィバ 130と、このマルチモード光ファイバ 130の入射端にレーザ光を集光して結合す る集光レンズ 120と、が配置されている。
[0187] 前記構成では、レーザブロック 180、 182上に配置された複数のマルチキヤビティ レーザ 110の複数の発光点 110aの各々力も出射したレーザ光 Bの各々は、コリメ一 トレンズアレイ 184により平行光化され、集光レンズ 120によって集光されて、マルチ モード光ファイバ 130のコア 130aに入射する。コア 130aに入射したレーザ光は、光 ファイバ内を伝搬し、 1本に合波されて出射する。
[0188] 前記合波レーザ光源は、上記の通り、マルチキヤビティレーザの多段配置とコリメ一 トレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を 用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成する ことができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源 として特に好適である。
[0189] なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ 13 0の出射端部をそのケーシングから引き出したレーザモジュールを構成することがで きる。
[0190] また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモー ド光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光フアイ バを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、 クラッド径が 125 m、 80 m、 60 μ m等のマルチモード光ファイバを、出射端に他 の光ファイバを結合せずに使用してもよい。
[0191] ここで、本発明の前記パターン形成方法について更に説明する。
スキャナ 162の各露光ヘッド 166において、ファイバアレイ光源 66の合波レーザ光 源を構成する GaN系半導体レーザ LD1〜LD7の各々力 発散光状態で出射したレ 一ザ光 Bl, B2, B3, B4, B5, B6,及び B7の各々は、対応するコリメータレンズ 11 〜17によって平行光化される。平行光化されたレーザ光 B1〜B7は、集光レンズ 20 によって集光され、マルチモード光ファイバ 30のコア 30aの入射端面に収束する。
[0192] 本例では、コリメータレンズ 11〜17及び集光レンズ 20によって集光光学系が構成 され、その集光光学系とマルチモード光ファイバ 30とによって合波光学系が構成さ れている。即ち、集光レンズ 20によって上述のように集光されたレーザ光 B1〜B7が 、このマルチモード光ファイノく 30のコア 30aに入射して光ファイバ内を伝搬し、 1本の レーザ光 Bに合波されてマルチモード光ファイバ 30の出射端部に結合された光ファ ィバ 31から出射する。
[0193] 各レーザモジュールにおいて、レーザ光 B1〜: B7のマルチモード光ファイバ 30へ の結合効率が 0. 85で、 GaN系半導体レーザ LD1〜LD7の各出力が 30mWの場 合には、アレイ状に配列された光ファイバ 31の各々について、出力 180mW( = 30 mWX O. 85 X 7)の合波レーザ光 Bを得ることができる。従って、 6本の光ファイバ 31 がアレイ状に配列されたレーザ出射部 68での出力は約 1W ( = 180mW X 6)である
[0194] ファイバアレイ光源 66のレーザ出射部 68には、この通り高輝度の発光点が主走査 方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を 1本の 光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなけ れば所望の出力を得ることができな力つた力 前記合波レーザ光源は高出力である ため、少数列、例えば 1列でも所望の出力を得ることができる。
[0195] 例えば、半導体レーザと光ファイバを 1対 1で結合させた従来のファイバ光源では、 通常、半導体レーザとしては出力 30mW (ミリワット)程度のレーザが使用され、光ファ ィバとしてはコア径 50 m、クラッド径 125 m、 NA (開口数) 0. 2のマルチモード光 ファイバが使用されているので、約 1W (ワット)の出力を得ようとすれば、マルチモー ド光ファイバを 48本(8 X 6)束ねなければならず、発光領域の面積は 0. 62mm2 (0. 675mm X O. 925mm)である力ら、レーザ出射部 68での輝度は 1. 6 X 106 (W/m 2)、光ファイバ 1本当りの輝度は 3. 2 X 106 (WZm2)である。
[0196] これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マ ルチモード光ファイノ 6本で約 1Wの出力を得ることができ、レーザ出射部 68での発 光領域の面積は 0. 0081mm2 (0. 325mmX 0. 025mm)であるから、レーザ出射 部 68での輝度は 123 X 106(WZm2)となり、従来に比べ約 80倍の高輝度化を図る ことができる。また、光ファイバ 1本当りの輝度は 90 X 106(WZm2)であり、従来に比 ベ約 28倍の高輝度化を図ることができる。
[0197] ここで、図 37A及び図 37Bを参照して、従来の露光ヘッドと本実施の形態の露光 ヘッドとの焦点深度の違いにっ 、て説明する。従来の露光ヘッドのバンドル状フアイ バ光源の発光領域の副走査方向の径は 0. 675mmであり、露光ヘッドのファイバァ レイ光源の発光領域の副走査方向の径は 0. 025mmである。図 37Aに示すように、 従来の露光ヘッドでは、光照射手段 (バンドル状ファイバ光源) 1の発光領域が大き いので、 DMD3へ入射する光束の角度が大きくなり、結果として走査面 5へ入射する 光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径 が太りやすい。
[0198] 一方、図 37Bに示すように、本発明のパターン形成装置における露光ヘッドでは、 ファイバアレイ光源 66の発光領域の副走査方向の径カ 、さいので、レンズ系 67を通 過して DMD50へ入射する光束の角度が小さくなり、結果として走査面 56へ入射す る光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副 走査方向の径は従来の約 30倍になっており、略回折限界に相当する焦点深度を得 ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は 、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面 に投影された 1描素サイズは 10 m X 10 mである。なお、 DMDは反射型の空間 光変調素子であるが、図 37A及び図 37Bは、光学的な関係を説明するために展開 図とした。
[0199] 露光パターンに応じたパターン情報力 DMD50に接続された図示しないコント口 ーラに入力され、コントローラ内のフレームメモリにー且記憶される。このパターン情 報は、画像を構成する各描素の濃度を 2値 (ドットの記録の有無)で表したデータであ る。
[0200] パターン形成材料 150を表面に吸着したステージ 152は、図示しない駆動装置に より、ガイド 158に沿ってゲート 160の上流側から下流側に一定速度で移動される。 ステージ 152がゲート 160下を通過する際に、ゲート 160に取り付けられた検知セン サ 164によりパターン形成材料 150の先端が検出されると、フレームメモリに記憶され たパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出された パターン情報に基づいて各露光ヘッド 166毎に制御信号が生成される。そして、ミラ 一駆動制御部により、生成された制御信号に基づいて露光ヘッド 166毎に DMD50 のマイクロミラーの各々がオンオフ制御される。
[0201] ファイバアレイ光源 66から DMD50にレーザ光が照射されると、 DMD50のマイク 口ミラーがオン状態のときに反射されたレーザ光は、レンズ系 54、 58によりパターン 形成材料 150の被露光面 56上に結像される。このようにして、ファイバアレイ光源 66 力も出射されたレーザ光が描素毎にオンオフされて、ノターン形成材料 150が DM D50の使用描素数と略同数の描素単位 (露光エリア 168)で露光される。また、バタ ーン形成材料 150がステージ 152と共に一定速度で移動されることにより、パターン 形成材料 150がスキャナ 162によりステージ移動方向と反対の方向に副走査され、 露光ヘッド 166毎に帯状の露光済み領域 170が形成される。
[0202] —マイクロレンズアレイ一
前記露光は、前記変調させた光を、マイクロレンズアレイを通して行うことが好ましく 、更にアパーチャアレイ、結像光学系等などを通して行ってもよい。
[0203] 前記マイクロレンズアレイとしては、特に制限はなぐ目的に応じて適宜選択するこ とができる力 例えば、前記描素部における出射面の歪みによる収差を補正可能な 非球面を有するマイクロレンズを配列したものが好適に挙げられる。
[0204] 前記非球面としては、特に制限はなぐ目的に応じて適宜選択することができるが、 例えば、トーリック面が好ましい。
[0205] 以下、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系等 について図面を参照しながら説明する。
[0206] 図 13Aは、 DMD50、 DMD50にレーザ光を照射する光照射手段 144、 DMD50 で反射されたレーザ光を拡大して結像するレンズ系(結像光学系) 454、 458、 DM D50の各描素部に対応して多数のマイクロレンズ 474が配置されたマイクロレンズァ レイ 472、マイクロレンズアレイ 472の各マイクロレンズに対応して多数のアパーチャ 4 78が設けられたアパーチャアレイ 476、アパーチャを通過したレーザ光を被露光面 5 6に結像するレンズ系(結像光学系) 480、 482で構成される露光ヘッドを表す。 ここで図 14に、 DMD50を構成するマイクロミラー 62の反射面の平面度を測定した 結果を示す。同図においては、反射面の同じ高さ位置を等高線で結んで示してあり 、等高線のピッチは 5nmである。なお同図に示す X方向及び y方向は、マイクロミラー 62の 2つ対角線方向であり、マイクロミラー 62は y方向に延びる回転軸を中心として 前述のように回転する。また、図 15A及び図 15Bにはそれぞれ、上記 X方向、 y方向 に沿ったマイクロミラー 62の反射面の高さ位置変位を示す。
[0207] 図 14、図 15A、及び図 15Bに示した通り、マイクロミラー 62の反射面には歪みが存 在し、そして特にミラー中央部に注目してみると、 1つの対角線方向(y方向)の歪み 1S 別の対角線方向(X方向)の歪みよりも大きくなつている。このため、マイクロレンズ アレイ 55のマイクロレンズ 55aで集光されたレーザ光 Bの集光位置における形状が歪 むという問題が発生し得る。
[0208] 本発明のパターン形成方法においては前記問題を防止するために、マイクロレン ズアレイ 55のマイクロレンズ 55aが、従来とは異なる特殊な形状とされている。以下、 その点について詳しく説明する。
[0209] 図 16A及び図 16Bはそれぞれ、マイクロレンズアレイ 55全体の正面形状及び側面 形状を詳しく示すものである。これらの図にはマイクロレンズアレイ 55の各部の寸法も 記入してあり、それらの単位は mmである。本発明のパターン形成方法では、先に図 4を参照して説明したように DMD50の 1, 024個 X 256列のマイクロミラー 62が駆動 されるものであり、それに対応させてマイクロレンズアレイ 55は、横方向に 1, 024個 並んだマイクロレンズ 55aの列を縦方向に 256列並設して構成されている。なお、同 図 16Aでは、マイクロレンズアレイ 55の並び順を横方向については jで、縦方向につ いては kで示している。
[0210] また、図 17A及び図 17Bはそれぞれ、マイクロレンズアレイ 55における 1つのマイク 口レンズ 55aの正面形状及び側面形状を示すものである。なお図 17Aには、マイクロ レンズ 55aの等高線を併せて示してある。各マイクロレンズ 55aの光出射側の端面は 、マイクロミラー 62の反射面の歪みによる収差を補正する非球面形状とされて 、る。 より具体的には、マイクロレンズ 55aはトーリックレンズとされており、上記 X方向に光 学的に対応する方向の曲率半径 Rx=—0. 125mm,上記 y方向に対応する方向の 曲率半径 Ry=— 0. 1mmである。
[0211] したがって、上記 X方向及び y方向に平行な断面内におけるレーザ光 Bの集光状態 は、概略、それぞれ図 18A及び図 18Bに示す通りとなる。つまり、 X方向に平行な断 面内と y方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ 55 aの曲率半径がより小であって、焦点距離がより短くなつている。
[0212] マイクロレンズ 55aを前記形状とした場合の、該マイクロレンズ 55aの集光位置(焦 点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図 19A 〜図 19Dに示す。また比較のために、マイクロレンズ 55aが曲率半径 Rx=Ry=— 0 . 1mmの球面形状である場合について、同様のシミュレーションを行った結果を図 2 OA〜Dに示す。なお、各図における zの値は、マイクロレンズ 55aのピント方向の評価 位置を、マイクロレンズ 55aのビーム出射面からの距離で示している。
[0213] また、前記シミュレーションに用いたマイクロレンズ 55aの面形状は、下記計算式で 計算される。
[数 1]
一 C 2 X 2 + C y 2 Y 2
― 1 +S Q R T ( 1 - C 2 X 2 - C 2 Y 2 )
[0214] 但し、前記計算式において、 Cxは、 X方向の曲率( = lZRx)を意味し、 Cyは、 y方 向の曲率( = lZRy)を意味し、 Xは、 X方向に関するレンズ光軸 O力もの距離を意味 し、 Yは、 y方向に関するレンズ光軸 O力 の距離を意味する。
[0215] 図 19A〜Dと図 20A〜図 20Dとを比較すると明らかなように、本発明のパターン形 成方法ではマイクロレンズ 55aを、 y方向に平行な断面内の焦点距離力 方向に平行 な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍 におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、より高精細な 画像をパターン形成材料 150に露光可能となる。また、図 19A〜図 19Dに示す本実 施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより大である ことが分力ゝる。
[0216] なお、マイクロミラー 62の X方向及び y方向に関する中央部の歪の大小関係力 上 記と逆になつている場合は、 x方向に平行な断面内の焦点距離が y方向に平行な断 面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様 に、歪みの無い、より高精細な画像をパターン形成材料 150に露光可能となる。
[0217] また、マイクロレンズアレイ 55の集光位置近傍に配置されたアパーチャアレイ 59は 、その各アパーチャ 59aに、それと対応するマイクロレンズ 55aを経た光のみが入射 するように配置されたものである。すなわち、このアパーチャアレイ 59が設けられてい ることにより、各アパーチャ 59aに、それと対応しない隣接のマイクロレンズ 55aからの 光が入射することが防止され、消光比が高められる。
[0218] 本来、上記目的で設置されるアパーチャアレイ 59のアパーチャ 59aの径をある程 度小さくすれば、マイクロレンズ 55aの集光位置におけるビーム形状の歪みを抑制す る効果も得られる。しカゝしそのようにした場合は、アパーチャアレイ 59で遮断される光 量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ 55a を非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれ る。
[0219] また、本発明のパターン形成方法において、マイクロレンズ 55aは、 2次の非球面形 状であってもよぐより高次 (4次、 6次 · · の非球面形状であってもよい。前記高次の 非球面形状を採用することにより、ビーム形状をさらに高精細にすることができる。
[0220] また、以上説明した実施形態では、マイクロレンズ 55aの光出射側の端面が非球面
(トーリック面)とされているが、 2つの光通過端面の一方を球面とし、他方をシリンドリ カル面としたマイクロレンズカゝらマイクロレンズアレイを構成して、上記実施形態と同 様の効果を得ることもできる。
[0221] さらに、以上説明した実施形態においては、マイクロレンズアレイ 55のマイクロレン ズ 55aが、マイクロミラー 62の反射面の歪みによる収差を補正する非球面形状とされ ているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成す る各マイクロレンズに、マイクロミラー 62の反射面の歪みによる収差を補正する屈折 率分布を持たせても、同様の効果を得ることができる。
[0222] そのようなマイクロレンズ 155aの一例を図 22A及び図 22Bに示す。図 22A及び図 22Bはそれぞれ、このマイクロレンズ 155aの正面形状及び側面形状を示すものであ り、図示の通りこのマイクロレンズ 155aの外形形状は平行平板状である。なお、同図 における x、 y方向は、既述した通りである。
[0223] また、図 23A及び図 23Bは、このマイクロレンズ 155aによる上記 x方向及び y方向 に平行な断面内におけるレーザ光 Bの集光状態を概略的に示している。このマイクロ レンズ 155aは、光軸 O力も外方に向かって次第に増大する屈折率分布を有するもの であり、同図においてマイクロレンズ 155a内に示す破線は、その屈折率が光軸 Oか ら所定の等ピッチで変化した位置を示している。図示の通り、 X方向に平行な断面内 と y方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ 155aの 屈折率変化の割合がより大であって、焦点距離がより短くなつている。このような屈折 率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズ アレイ 55を用いる場合と同様の効果を得ることが可能である。
[0224] なお、先に図 17A、図 17B、図 18A、及び図 18Bに示したマイクロレンズ 55aのよう に面形状を非球面としたマイクロレンズにぉ 、て、併せて上述のような屈折率分布を 与え、面形状と屈折率分布の双方によって、マイクロミラー 62の反射面の歪みによる 収差を補正するようにしてもょ ヽ。
[0225] また、上記の実施形態では、 DMD50を構成するマイクロミラー 62の反射面の歪み による収差を補正しているが、 DMD以外の空間光変調素子を用いる本発明のバタ ーン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場 合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じるこ とを防止可能である。
[0226] 次に、前記結像光学系について更に説明する。
前記露光ヘッドでは、光照射手段 144からレーザ光が照射されると、 DMD50によ りオン方向に反射される光束線の断面積が、レンズ系 454、 458により数倍 (例えば、 2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ 472の各マイクロレ ンズにより DMD50の各描素部に対応して集光され、アパーチャアレイ 476の対応す るアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系 480、 482に より被露光面 56上に結像される。
[0227] この結像光学系では、 DMD50により反射されたレーザ光は、拡大レンズ 454、 45 8により数倍に拡大されて被露光面 56に投影されるので、全体の画像領域が広くな る。このとき、マイクロレンズアレイ 472及びアパーチャアレイ 476が配置されていなけ れば、図 13Bに示すように、被露光面 56に投影される各ビームスポット BSの 1描素 サイズ (スポットサイズ)が露光エリア 468のサイズに応じて大きなものとなり、露光エリ ァ 468の鮮鋭度を表す MTF (Modulation Transfer Function)特性が低下する
[0228] 一方、マイクロレンズアレイ 472及びアパーチャアレイ 476を配置した場合には、 D MD50により反射されたレーザ光は、マイクロレンズアレイ 472の各マイクロレンズに より DMD50の各描素部に対応して集光される。これにより、図 13Cに示すように、露 光エリアが拡大された場合でも、各ビームスポット BSのスポットサイズを所望の大きさ (例えば、 lO ^ mX lO ^ m)に縮小することができ、 MTF特性の低下を防止して高 精細な露光を行うことができる。なお、露光エリア 468が傾いているのは、描素間の隙 間を無くす為に DMD50を傾けて配置しているからである。
[0229] また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによつ て被露光面 56上でのスポットサイズが一定の大きさになるようにビームを整形するこ とができると共に、各描素に対応して設けられたアパーチャアレイを通過させることに より、隣接する描素間でのクロストークを防止することができる。
[0230] 更に、光照射手段 144に後述する高輝度光源を使用することにより、レンズ 458か らマイクロレンズアレイ 472の各マイクロレンズに入射する光束の角度が小さくなるの で、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光 比を実現することができる。
[0231] その他の光学系
本発明のパターン形成方法では、公知の光学系の中から適宜選択したその他の光 学系と併用してもよぐ例えば、 1対の組合せレンズからなる光量分布補正光学系な どが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束 幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅 を変化させて、光照射手段からの平行光束を DMDに照射するときに、被照射面で の光量分布が略均一になるように補正する。以下、前記光量分布補正光学系につい て図面を参照しながら説明する。
[0232] まず、図 24Aに示したように、入射光束と出射光束とで、その全体の光束幅 (全光 束幅) HO、 HIが同じである場合について説明する。なお、図 24Aにおいて、符号 5 1、 52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮 想的に示したものである。
[0233] 前記光量分布補正光学系において、光軸 Z1に近い中心部に入射した光束と、周 辺部に入射した光束とのそれぞれの光束幅 hO、 hi力 同一であるものとする(hO = hl)。前記光量分布補正光学系は、入射側において同一の光束幅 hO, hiであった 光に対し、中心部の入射光束については、その光束幅 hOを拡大し、逆に、周辺部の 入射光束に対してはその光束幅 hiを縮小するような作用を施す。すなわち、中心部 の出射光束の幅 hlOと、周辺部の出射光束の幅 hl lとについて、 hl l <hlOとなるよ うにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部 の光束幅の比「hllZhlO」力 入射側における比(hlZhO= l)に比べて小さくな つている((hllZhlO)く 1)。
[0234] このように光束幅を変化させることにより、通常では光量分布が大きくなつている中 央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利 用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは 、例えば、有効領域内における光量ムラが 30%以内、好ましくは 20%以内となるよう にする。
[0235] 前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束 幅を変える場合(図 24B及び図 24C)においても同様である。
[0236] 図 24Bは、入射側の全体の光束幅 H0を、幅 H2に"縮小"して出射する場合 (H0
>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射 側において同一の光束幅 h0、 hiであった光を、出射側において、中央部の光束幅 hlOが周辺部に比べて大きくなり、逆に、周辺部の光束幅 hl lが中心部に比べて小 さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を 周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大き くするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光 束幅の比「H11ZH10」が、入射側における比 (hlZhO= l)に比べて小さくなる(( hl lZhlO)く 1)。
[0237] 図 24Cは、入射側の全体の光束幅 HOを、幅 H3に"拡大"して出射する場合 (HO く H3)を示している。このような場合においても、前記光量分布補正光学系は、入射 側において同一の光束幅 hO、 hiであった光を、出射側において、中央部の光束幅 hlOが周辺部に比べて大きくなり、逆に、周辺部の光束幅 hi 1が中心部に比べて小 さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を 周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さ くするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光 束幅の比「hl lZhlO」力 入射側における比 (hlZhO= l)に比べて小さくなる((h l lZhlO) < l)。
[0238] このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、 光軸 Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出 射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、 出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅 は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことが でき、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された 光束断面を形成することができる。
[0239] 次に、前記光量分布補正光学系として使用する 1対の組合せレンズの具体的なレ ンズデータの 1例を示す。この例では、前記光照射手段がレーザアレイ光源である場 合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータ を示す。なお、シングルモード光ファイバの入射端に 1個の半導体レーザを接続した 場合には、光ファイノからの射出光束の光量分布がガウス分布になる。本発明のパ ターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファ ィバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に 近 、中心部の光量が周辺部の光量よりも大き!/、場合にも適用可能である。
下記表 1に基本レンズデータを示す。 [0240] [表 1]
Figure imgf000073_0001
[0241] 表 1から分力るように、 1対の組合せレンズは、回転対称の 2つの非球面レンズから 構成されている。光入射側に配置された第 1のレンズの光入射側の面を第 1面、光出 射側の面を第 2面とすると、第 1面は非球面形状である。また、光出射側に配置され た第 2のレンズの光入射側の面を第 3面、光出射側の面を第 4面とすると、第 4面が 非球面形状である。
[0242] 表 1にお!/、て、面番号 Siは i番目(i= 1〜4)の面の番号を示し、曲率半径 riは i番目 の面の曲率半径を示し、面間隔 diは i番目の面と i+ 1番目の面との光軸上の面間隔 を示す。面間隔 di値の単位はミリメートル (mm)である。屈折率 Niは i番目の面を備え た光学要素の波長 405nmに対する屈折率の値を示す。
下記表 2に、第 1面及び第 4面の非球面データを示す。
[0243] [表 2]
非球面データ
第 1面 第 4面
C -1.4098E-02 - 9, 8506E-03
K -4.2192E+00 -3.6253E+01 a 3 -1.0027E-04 -8. 980E-05 a 4 3, 0591E-05 2.3060E-05 a 5 -4* 5115E-07 2, 2860E 06 a 6 - 8, 2819E-09 8.7661E- 08 a 7 4.1020E-12 4, 4028E-10 a 8 L 2231E-13 1.3624E-12 a 9 5.3753E-16 3.3965E- 15
1 0 1, 6315E-18 7.4823E-18
[0244] 上記の非球面データは、非球面形状を表す下記式 (A)における係数で表される。
[0245] [数 2]
Γ. n2 10
Z= l L Ρ 2 +∑ ·^ (A)
\- K '(C ' p) =3
[0246] 上記式 (A)にお 、て各係数を以下の通り定義する。
Z:光軸から高さ pの位置にある非球面上の点から、非球面の頂点の接平面 (光軸に 垂直な平面)に下ろした垂線の長さ(mm)
P:光軸からの距離 (mm)
K:円錐係数
じ:近軸曲率(17 r:近軸曲率半径)
ai:第 i次 (i= 3〜: LO)の非球面係数
表 2に示した数値において、記号" E"は、その次に続く数値が 10を底とした「べき指 数」であることを示し、その 10を底とした指数関数で表される数値力 E"の前の数値 に乗算されることを示す。例えば、「1. OE— 02」であれば、「1. 0 X 10_2」であること を示す。
[0247] 図 26は、前記表 1及び表 2に示す 1対の組合せレンズによって得られる照明光の光 量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。な お、比較のために、図 25に、補正を行わな力つた場合の照明光の光量分布 (ガウス 分布)を示す。図 25及び図 26から分力ゝるように、光量分布補正光学系で補正を行う ことにより、補正を行わな力つた場合と比べて、略均一化された光量分布が得られて いる。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行う ことができる。
[0248] く現像工程 >
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した 領域を硬化させた後、未硬化領域を除去することにより現像し、永久パターンを形成 する工程である。
[0249] 前記未硬化領域の除去方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、現像液を用いて除去する方法などが挙げられる。
[0250] 前記現像液としては、特に制限はなぐ目的に応じて適宜選択することができるが、 例えば、アルカリ金属又はアルカリ土類金属の水酸ィ匕物若しくは炭酸塩、炭酸水素 塩、アンモニア水、 4級アンモニゥム塩の水溶液などが好適に挙げられる。これらの中 でも、炭酸ナトリウム水溶液が特に好ましい。
[0251] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、ベンジルァミン、ェチレ ンジァミン、エタノールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレント リアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進さ せるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミ ド類、ラタトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶 液と有機溶剤を混合した水系現像液であってもよぐ有機溶剤単独であってもよい。
[0252] <硬化処理工程 >
前記硬化処理工程は、前記現像工程が行われた後、形成された永久パターン〖こ おける感光層に対して硬化処理を行う工程である。 [0253] 前記硬化処理としては、特に制限はなぐ目的に応じて適宜選択することができる 力 例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
[0254] 前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久バタ ーンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光 により、前記感光層を形成するパターン形成材料中の榭脂の硬化が促進され、前記 永久パターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなぐ目的に応じて適宜選択するこ とができるが、例えば、超高圧水銀灯などの UV露光機が好適に挙げられる。
[0255] 前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形 成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前 記永久パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、 120〜250でカ 子ましく、 120〜200°C 力 り好ましい。該加熱温度が 120°C未満であると、加熱処理による膜強度の向上が 得られないことがあり、 250°Cを超えると、前記パターン形成材料中の樹脂の分解が 生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、 10〜120分が好ましぐ 15〜60分がよ り好ましい。
前記全面加熱を行う装置としては、特に制限はなぐ公知の装置の中から、目的に 応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、 IRヒーター などが挙げられる。
[0256] なお、前記基材が多層配線基板などのプリント配線板である場合には、該プリント 配線板上に本発明の永久パターンを形成し、更に、以下のように半田付けを行うこと ができる。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリ ント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属 層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った 部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが 、保護膜あるいは絶縁膜 (層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣 同士の電極の導通が防止される。
[0257] 本発明の永久パターン形成方法においては、保護膜、層間絶縁膜、及びソルダー レジストパターンの少なくともいずれかを形成するのが好ましい。前記永久パターン 形成方法により形成される永久パターンが、前記保護膜、前記層間絶縁膜、及びソ ルダーレジストパターンであると、配線を外部からの衝撃や曲げカゝら保護することが でき、特に、前記層間絶縁膜である場合には、例えば、多層配線基板やビルドアップ 配線基板などへの半導体や部品の高密度実装に有用である。
[0258] 本発明の永久パターン形成方法は、感光層上に結像させる像の歪みを抑制するこ とにより、永久パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露 光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細 な永久パターンの形成に好適に使用することができる。
実施例
[0259] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。
[0260] (実施例 1)
感光性組成物の組成
下記組成に基づ 、て、感光性組成物 (溶液)を調製した。
硫酸バリウム (堺ィ匕学工業社製、 B30)分散液 50. 00質量部
PCR- 1157H
(日本化薬社製、エポキシアタリレート 61. 8質量0 /0
エチレングリコールモノェチルエーテルアタリレート溶液) 81. 70質量部 ジペンタエリスリトールへキサアタリレート 13. 16質量部
YX4000 (ジャパンエポキシレジン社製、エポキシ榭脂) 20. 00質量部
RE306 (日本化薬社製、エポキシ榭脂) 5. 00質量部
ジシアンジアミド 0. 13質量部
下記構造式(2)で表されるアタリドンィ匕合物 0. 42質量部
2, 2 ビス(ο クロ口フエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルビイミダゾール ハイドロキノンモノメチルエーテル 0. 024質量部 フタロシアニングリーン 0. 42質量部
メチルェチルケ卜ン 60. 00質量部
なお、上記硫酸バリウム分散液は、硫酸バリウム (堺ィ匕学社製、 B30) 30質量部と、 上記 PCR— 1157Hのジエチレングリコールモノメチルエーテルアセテート 61. 2質 量%溶液 34. 29質量部と、メチルェチルケトン 35. 71質量部と、を予め混合した後 、モーターミル M— 200 (アイガー社製)で、直径 1. Ommのジルコユアビーズを用い 、周速 9mZsにて 3. 5時間分散して調製した。
[0261] [化 2]
Figure imgf000078_0001
[0262] パターン形成材料の調製
得られた感光性組成物溶液を、前記支持体としての厚み 16 mの PET (ポリェチ レンテレフタレート)フィルム (東レネ土製、 16QS52)上に、塗布し、乾燥させて、膜厚 3 5 mの感光層を形成した。次いで、該感光層の上に、前記保護フィルムとして 12 m厚のポリプロピレンフィルムをラミネートで積層し、前記パターン形成材料を製造し た。
[0263] 永久パターンの形成
積層体の調製
次に、前記基材として、配線形成済みの銅張積層板 (スルーホールなし、銅厚み 1 2 /z m)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記パター ン形成材料の感光層が前記銅張積層板に接するようにして前記感光性フィルムにお ける保護フィルムを剥がしながら、真空ラミネーター (名機製作所製、 MVLP500)を 用いて積層させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレート フィルム (支持体)とがこの順に積層された積層体を調製した。 圧着条件は、圧着温度 90°C、圧着圧力 0. 4MPa、ラミネート速度 lmZ分とした。
[0264] 露光工程
前記調製した積層体における感光層に対し、ポリエチレンテレフタレートフィルム( 支持体)側から、以下に説明するパターン形成装置を用いて、波長が 405nmのレー ザ光を、直径の異なる穴部が形成されるパターンが得られるように照射して露光し、 前記感光層の一部の領域を硬化させた。
[0265] [パターン形成装置]
前記光照射手段として図 27〜32に示す合波レーザ光源と、前記光変調手段とし て図 4に示す主走査方向にマイクロミラーが 1, 024個配列されたマイクロミラー列が 、副走査方向に 768組配列された内、 1, 024個 X 256列のみを駆動するように制御 した DMD50と、図 13に示した一方の面がトーリック面であるマイクロレンズ 474をァ 前記感光層に結像する光学系 480、 482とを有するパターン形成装置を用いた。
[0266] また、前記マイクロレンズにおけるトーリック面は以下に説明するものを用いた。
まず、 DMD50の前記描素部としてのマイクロレンズ 474の出射面における歪みを 補正するため、該出射面の歪みを測定した。結果を図 14に示した。図 14においては 、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは 5nmである 。なお、同図に示す X方向及び y方向は、マイクロミラー 62の 2つ対角線方向であり、 マイクロミラー 62は y方向に延びる回転軸を中心として回転する。また、図 15A及び 図 15Bにはそれぞれ、上記 X方向、 y方向に沿ったマイクロミラー 62の反射面の高さ 位置変位を示した。
[0267] 図 14及び図 15に示した通り、マイクロミラー 62の反射面には歪みが存在し、そして 特にミラー中央部に注目してみると、 1つの対角線方向(y方向)の歪み力 別の対角 線方向(X方向)の歪みよりも大きくなつていることが判る。このため、このままではマイ クロレンズアレイ 55のマイクロレンズ 55aで集光されたレーザ光 Bの集光位置におけ る形状が歪んでしまうことが判る。
[0268] 図 16A及び図 16Bには、マイクロレンズアレイ 55全体の正面形状及び側面形状を それぞれ詳しく示した。これらの図には、マイクロレンズアレイ 55の各部の寸法も記入 してあり、それらの単位は mmである。先に図 4を参照して説明したように DMD50の 1, 024個 X 256列のマイクロミラー 62が駆動されるものであり、それに対応させてマ イク口レンズアレイ 55は、横方向に 1, 024個並んだマイクロレンズ 55aの列を縦方向 に 256列並設して構成されている。なお、同図 16Aでは、マイクロレンズアレイ 55の 並び順を横方向にっ 、ては jで、縦方向にっ ヽては kで示して 、る。
[0269] また、図 17A及び図 17Bには、マイクロレンズアレイ 55における 1つのマイクロレン ズ 55aの正面形状及び側面形状をそれぞれ示した。なお、同図 17Aには、マイクロレ ンズ 55aの等高線を併せて示してある。各マイクロレンズ 55aの光出射側の端面は、 マイクロミラー 62の反射面の歪みによる収差を補正する非球面形状とされて ヽる。よ り具体的には、マイクロレンズ 55aはトーリックレンズとされており、前記 X方向に光学 的に対応する方向の曲率半径 Rx=—0. 125mm,前記 y方向に対応する方向の曲 率半径 Ry=— 0. 1mmである。
[0270] したがって、前記 X方向及び y方向に平行な断面内におけるレーザ光 Bの集光状態 は、概略、それぞれ図 18A及び図 18Bに示す通りとなる。つまり、 X方向に平行な断 面内と y方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ 55 aの曲率半径がより小であって、焦点距離がより短くなつていることが判る。
[0271] なお、マイクロレンズ 55aを前記形状とした場合の、該マイクロレンズ 55aの集光位 置 (焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図 19八〜図190に示す。また比較のために、マイクロレンズ 55&が曲率半径1¾=1^= 0. 1mmの球面形状である場合について、同様のシミュレーションを行った結果を 図 20A〜図 20Dに示す。なお、各図における zの値は、マイクロレンズ 55aのピント方 向の評価位置を、マイクロレンズ 55aのビーム出射面からの距離で示している。
[0272] また、前記シミュレーションに用いたマイクロレンズ 55aの面形状は、下記計算式で 計算される。
[数 3]
C 2 X 2 + C 2 Y 2
~ 1 +S Q R T ( 1 - C 2 X 2 - C 2 Y 2 )
[0273] ただし、前記計算式において、 Cxは、 X方向の曲率( = lZRx)を意味し、 Cyは、 y 方向の曲率( = lZRy)を意味し、 Xは、 X方向に関するレンズ光軸 O力もの距離を意 味し、 Yは、 y方向に関するレンズ光軸 O力 の距離を意味する。
[0274] 図 19A〜Dと図 20A〜Dとを比較すると明らかなように、マイクロレンズ 55aを、 y方 向に平行な断面内の焦点距離が X方向に平行な断面内の焦点距離よりも小さいトー リックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制さ れる。この結果、歪みの無い、より高精細なパターンを感光層 150に露光可能となる 。また、図 19A〜Dに示す本実施形態の方力 ビーム径の小さい領域がより広い、す なわち焦点深度がより大であることが判る。
[0275] また、マイクロレンズアレイ 55の集光位置近傍に配置されたアパーチャアレイ 59は 、その各アパーチャ 59aに、それと対応するマイクロレンズ 55aを経た光のみが入射 するように配置されたものである。すなわち、このアパーチャアレイ 59が設けられてい ることにより、各アパーチャ 59aに、それと対応しない隣接のマイクロレンズ 55aからの 光が入射することが防止され、消光比が高められる。
[0276] ——現像工程——
室温にて 10分間静置した後、前記積層体力もポリエチレンテレフタレートフィルム( 支持体)を剥がし取り、銅張積層板上の感光層の全面に、アルカリ現像液として、 1質 量%炭酸ソーダ水溶液を用い、 30°Cにて 60秒間シャワー現像し、未硬化の領域を 溶解除去した。その後、水洗し、乾燥させ、永久パターンを形成した。
[0277] 硬化処理工程
前記永久パターンが形成された積層体の全面に対して、 160°Cで 30分間、加熱処 理を施し、永久パターンの表面を硬化し、膜強度を高めた。該永久パターンを目視 で観察したところ、永久パターンの表面に気泡は認められな力つた。
また、前記永久パターン形成済みのプリント配線基板に対して、常法に従い金メッ キを行った後、水溶性フラックス処理を行った。次いで、 260°Cに設定された半田槽 に 5秒間にわたって、 3回浸漬し、フラックスを水洗で除去した。そして、該フラックス 除去後の永久パターンについて、 JIS K— 5400に基づいて、鉛筆硬度を測定した その結果、鉛筆硬度は 5H以上であった。 目視観察を行ったところ、前記永久バタ ーンにおける硬化膜の剥がれ、ふくれ、変色は認められな力つた。
[0278] 前記支持体について、全光線透過率及びヘイズ値を測定した。
また、前記積層体について、感度、解像度、レジスト面形状、及びレジストパターン の幅のばらつきの評価を行った。結果を表 3に示す。
[0279] <全光線透過率 >
分光光度計 (島津製作所社製、 UV- 2400)に積分球を組み込んだ装置を用いて 、前記支持体の 405nmでの全光線透過率を測定した。結果を表 3に示す。
[0280] <ヘイズ値 >
前記全光線透過率の測定方法にぉ 、て、前記積分球を使用しな 、以外は前記全 光線透過率の測定方法と同様にして平行線透過率を測定した。次に、次計算式、拡 散光透過率 =前記全光線透過率一前記平行光線透過率、を計算し、更に、次計算 式、ヘイズ値 =前記拡散光透過率 Z前記全光線透過率 X 100、を計算することによ り求めた。結果を表 3に示す。
[0281] <感度 >
得られた前記永久パターンにお 、て、残った前記感光層の硬化領域の厚みを測定 した。次いで、レーザ光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を 得る。こうして得た感度曲線から、前記感光層の硬化領域の厚みが、光を照射する前 の厚みと同じ 15 mとなり、硬化領域の表面が光沢面である時の光エネルギー量を 、感光層を硬化させるために必要な光エネルギー量 (感度)とした。結果を表 3に示 す。
[0282] <解像度 >
得られた前記永久パターン形成済みのプリント配線基板の表面を光学顕微鏡で観 察し、硬化層パターンの穴部に残膜が無い、最小の穴径を測定し、これを解像度とし た。該解像度は数値が小さいほど良好である。結果を表 3に示す。
[0283] <レジスト表面形状 >
前記解像度の測定にぉ 、て形成したパターン面(50 m X 50 m)につ 、て走査 型電子顕微鏡 (SEM)により撮影し、形成したレジスト表面の形状について、以下の 評価基準に従って評価を行った。結果を表 3に示す。 評価基準
A 欠陥が全くないか、又は 1〜5個の欠陥があり、形成したパターンの形状に 影響が無いもの。
B 6〜: LO個の欠陥がある力 形成したパターンの形状に影響が無いもの。
C 11〜20個の欠陥があり、該欠陥がパターンの端面において形状異常を生 じさせるもの。
D 21個以上の欠陥があり、該欠陥がパターンの端面において形状異常を生 じさせるもの。
[0284] <レジストパターンの幅のばらつき >
前記積層体を室温(23°C、 55%RH)にて 10分間静置した。得られた積層体のポリ エチレンテレフタレート(支持体)上から、前記パターン形成装置を用いて、底部に幅 70 m X長さ 300 μ mの穴部が形成されるパターン力 20個形成されるように照射 して露光し、前記感光層の一部の領域を硬化させた。この際の露光量は、前記感度 の測定で得られた露光量の 2倍の露光量とする。
これを前述の様に現像処理を行い、未硬化の領域を溶解除去した。得られたバタ ーンを光学顕微鏡で観察し、形成されたパターン底部の幅を測定し、この幅の最大 値と最小値の差を求め、これをレジストパターンの幅のばらつきとした。幅のばらつき の値が小さいほど、幅の再現性が良好であり好ましい。結果を表 3に示す。
[0285] (実施例 2)
実施例 1において、感光性組成物の組成を以下の組成としたこと以外は、実施例 1 と同様にして、パターン形成材料、及び積層体を製造した。得られた積層体について 、実施例 1と同様にして、感度、解像度、レジスト面形状、及びレジストパターンの幅 のばらつきの評価を行った。結果を表 3に示す。
感光性組成物の組成
硫酸バリウム (堺ィ匕学工業社製、 B30)分散液 24. 75質量部
スチレン Z無水マレイン酸 Zブチルアタリレート共重合体
(モノ ktt40Z32Z28)とベンジルァミン
(該共重合体の無水物基に対して 1. 0当量)との付加反応物の 35質量0 /0メチルェチルケトン溶液 13. 36質量咅
R712 (日本ィ匕薬社製、 2官能アクリルモノマー) 3. 06質量部
ジペンタエリスリトールへキサアタリレート 4. 59質量部
MW30HM
(三和ケミカル社製、へキサメトキシメチロールメラミン) 5. 00質量部 下記構造式(3)で表される 9 フエ二ルァクリジン 1. 26質量部
F780F (大日本インキ社製)の
30質量0 /0メチルェチルケトン溶液 0. 066質量咅
ノヽイドロキノンモノメチノレエーテノレ 0. 024質量咅
メチルェチルケトン 8. 60質量部
[0286] [化 3]
構造式 (3 )
Figure imgf000084_0001
[0287] (実施例 3)
実施例 1において、ヘテロ縮環系化合物を、下記構造式 (4)で表される 7 ジェチ ルァミノ一 4—メチルクマリンに代えたこと以外は、実施例 1と同様にして、パターン形 成材料、及び積層体を製造した。得られた積層体について、実施例 1と同様にして、 感度、解像度、レジスト面形状、及びレジストパターンの幅のばらつきの評価を行った 。結果を表 3に示す。
[0288] [化 4]
構造式 (4 )
Figure imgf000084_0002
[0289] (実施例 4)
実施例 1において、支持体を 16 μ mの PET (ポリエチレンテレフタレート)フィルム( 三菱ポリエステル社製、 R340G)に代えたこと以外は、実施例 1と同様にして、パター ン形成材料、及び積層体を製造した。前記支持体について、実施例 1と同様にして、 全光線透過率及びヘイズ値を測定した。また、前記で得られた積層体について、実 施例 1と同様にして、感度、解像度、レジスト面形状、及びレジストパターンの幅のば らつきの評価を行った。結果を表 3に示す。
[0290] (実施例 5)
実施例 1において、支持体を 16 μ mの PET (ポリエチレンテレフタレート)フィルム( 東洋紡社製、 A1517)に代えたこと以外は、実施例 1と同様にして、パターン形成材 料、及び積層体を製造した。前記支持体について、実施例 1と同様にして、全光線透 過率及びヘイズ値を測定した。また、前記で得られた積層体について、実施例 1と同 様にして、感度、解像度、レジスト面形状、及びレジストパターンの幅のばらつきの評 価を行った。結果を表 3に示す。
[0291] (実施例 6)
実施例 1において、支持体を 16 μ mの PETフィルム(東レネ土製、 16FB50)に代え たこと以外は、実施例 1と同様にして、パターン形成材料、及び積層体を製造した。 前記支持体について、実施例 1と同様にして、全光線透過率及びヘイズ値を測定し た。また、前記で得られた積層体について、実施例 1と同様にして、感度、解像度、レ ジスト面形状、及びレジストパターンの幅のばらつきの評価を行った。結果を表 3に示 す。
[0292] (実施例 7)
実施例 1において、感光性組成物の組成を以下の組成としたこと以外は、実施例 1 と同様にして、パターン形成材料、及び積層体を製造した。得られた積層体について 、実施例 1と同様にして、感度、解像度、レジスト面形状、及びレジストパターンの幅 のばらつきの評価を行った。結果を表 3に示す。
感光性組成物の組成
下記組成に基づ 、て、感光性組成物 (溶液)を調製した。 硫酸バリウム (堺ィ匕学工業社製、 B30)分散液 50. 00質量部 酸性基と重合可能な基を少なくとも 1つ有するアクリル榭脂 " 101. 00質量部 ジペンタエリスリトールへキサアタリレート 13. 16質量部
YX4000 (ジャパンエポキシレジン社製、エポキシ榭脂) 15. 00質量部
RE306 (日本化薬社製、エポキシ榭脂) 5. 00質量部
ジシアンジアミド 0. 13質量部
下記構造式 (5)で表されるチォキサントンィ匕合物 0. 42質量部
Darocur 1173
(チバ 'スペシャルティ ·ケミカルズ社製、光重合開始剤) 4. 35質量部
Irgacure 651
(チバ ·スペシャルティ ·ケミカルズ社製、光重合開始剤) 5. 40質量部 ェチルー 4ージェチルァミノべンゾエート(水素供与体) 0. 50質量部 ハイドロキノンモノメチルエーテル 0. 024質量部
フタロシアニングリーン 0. 42質量部
メチルェチルケ卜ン 60. 00質量部
* 1は、メタクリル酸とメタクリル酸メチルの共重合体に対し、脂環式エポキシを分子 内に有する重合性化合物(サイクロマー A200;ダイセル化学工業 (株)製)を付加し た共重合体であり、重量平均分子量 19. 000、数平均分子量 11, 000、酸価 104m gKOH/g, C = C当量 2. 22モル ZKgのメトキシプロパノール 50質量0 /0溶液である
[0293] [化 5]
構造式(5)
Figure imgf000086_0001
[0294] (比較例 1)
実施例 1において、支持体を 16 mの PETフィルム(帝人デュポン社製、 G2)に代 えたこと以外は、実施例 1と同様にして、パターン形成材料、及び積層体を製造した 。前記支持体について、実施例 1と同様にして、全光線透過率及びヘイズ値を測定 した。また、前記で得られた積層体について、実施例 1と同様にして、感度、解像度、 レジスト面形状、及びレジストパターンの幅のばらつきの評価を行った。結果を表 3に 示す。
[0295] (比較例 2)
実施例 1において、支持体を 16 μ mの PET (ポリエチレンテレフタレート)フィルム( 帝人デュポン社製、 G2)に代え、かつ前記構造式 (2)で表されるアタリドン化合物を 4, 4'—ビスジェチルァミノべンゾフエノンに代えたこと以外は、実施例 1と同様にして 、パターン形成材料、及び積層体を製造した。得られた積層体について、実施例 1と 同様にして、感度、解像度、レジスト面形状、及びレジストパターンの幅のばらつきの 評価を行った。結果を表 3に示す。
[0296] [表 3]
Figure imgf000087_0001
[0297] 表 3の結果より、支持体のヘイズ値が 5. 0%以下であり、かつ、パターン形成材料 力 バインダー、重合性化合物、熱架橋剤、及びへテロ縮環系化合物を含有する実 施例 1〜7のパターン形成材料は、露光感度に優れ、解像度が高ぐレジスト面形状 に優れた、高精細な永久パターンが形成されることが判った。特に、ヘテロ縮環系化 合物としてアタリドンィ匕合物を含有させた実施例 1、 4、 5及び 6では、露光感度の高 い向上が図られ、より高精細な永久パターンが形成されることが判った。一方、支持 体のヘイズ値が 5. 0%を超える比較例 1、 2では、レジスト面形状に劣り、レジスト線 幅のばらつきも大きいことが判った。 産業上の利用可能性
本発明のパターン形成材料は、本発明のパターン形成材料は、露光感度に優れ、 得られるレジスト面形状が良好で、かつ、より高精細なパターンを形成可能であるた め、プリント配線版、カラーフィルタや柱材、リブ材、スぺーサ一、隔壁などのディスプ レイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として 広く用いることができ、本発明の永久パターン形成方法に好適に用いることができる 。本発明の永久パターン形成方法は、本発明の前記パターン形成材料を用いるため 、プリント配線版、カラーフィルタや柱材、リブ材、スぺーサ一、隔壁などのディスプレ ィ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターンの製造などに好 適に用いることができ、特に高精細な配線パターンの形成に好適に使用することがで きる。

Claims

請求の範囲
[1] 支持体と、該支持体上に感光層とを少なくとも有し、該支持体のヘイズ値が 5. 0% 以下であり、かつ、該感光層が、バインダー、重合性化合物、光重合開始剤、熱架橋 剤、及びへテロ縮環系化合物を少なくとも含むことを特徴とするパターン形成材料。
[2] 感光層が、該感光層を露光し現像する場合において、該感光層の露光する部分の 厚みを該露光及び現像後にお 、て変化させな 、前記露光に用いる光の最小エネル ギ一が 0. 1〜: LOOmjZcm2である請求項 1に記載のパターン形成材料。
[3] ヘテロ縮環系化合物が、ヘテロ縮環系ケトンィ匕合物、キノリンィ匕合物、及びアタリジ ン化合物力 選択される少なくとも 1種を含む請求項 1から 2のいずれかに記載のパ ターン形成材料。
[4] 支持体の全光線透過率が、 86%以上である請求項 1から 3のいずれかに記載のパ ターン形成材料。
[5] 支持体のヘイズ値、及び、支持体の全光線透過率を求める場合の光の波長が、 40
5nmである請求項 1から 4のいずれかに記載のパターン形成材料。
[6] バインダーが、アルカリ性水溶液に対して膨潤性及び溶解性のいずれかを示す請 求項 1から 5のいずれかに記載のパターン形成材料。
[7] ノ インダ一が、エポキシアタリレートイ匕合物、及び酸性基と重合可能な基を少なくと も 1つ有するアクリル榭脂から選択される少なくとも 1種力 なる請求項 1から 6のいず れかに記載のパターン形成材料。
[8] バインダーが無水マレイン酸共重合体の無水物基に対して 0. 1〜1. 2当量の 1級 ァミン化合物を反応させて得られる共重合体である請求項 1から 7のいずれかに記載 のパターン形成材料。
[9] バインダーが(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体 であって、該ビュル単量体のホモポリマーのガラス転移温度 (Tg)が 80°C未満である ビュル単量体と、力 なる共重合体の無水物基に対して 0. 1〜1. 0当量の 1級ァミン 化合物を反応させて得られる請求項 1から 8のいずれかに記載のパターン形成材料
[10] 熱架橋剤が、エポキシ榭脂化合物、ォキセタンィ匕合物、ポリイソシァネートイ匕合物、 ポリイソシァネートイ匕合物にブロック剤を反応させて得られる化合物、及びメラミン誘 導体力 選択される少なくとも 1種である請求項 1から 9のいずれかに記載のパターン 形成材料。
[11] メラミン誘導体が、アルキル化メチロールメラミンである請求項 10に記載のパターン 形成材料。
[12] 光重合開始剤が、ハロゲン化炭化水素誘導体、ホスフィンォキシド、へキサァリー ルビイミダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、ァシ ルホスフィンォキシドィ匕合物、芳香族ォ -ゥム塩、及びケトォキシムエーテル力 選択 される少なくとも 1種を含む請求項 1から 11のいずれかに記載のパターン形成材料。
[13] 請求項 1から 12のいずれかに記載のパターン形成材料を備えており、
光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記パターン形 成材料における感光層に対して露光を行う光変調手段とを少なくとも有することを特 徴とするパターン形成装置。
[14] 請求項 1から 12のいずれかに記載のパターン形成材料における該感光層に対し、 露光を行うことを少なくとも含むことを特徴とする永久パターン形成方法。
[15] 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信号に応じ て変調させた光を用いて行われる請求項 14に記載の永久パターン形成方法。
[16] 露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の 出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイ クロレンズアレイを通して行われる請求項 14から 15いずれかに記載の永久パターン 形成方法。
[17] 非球面が、トーリック面である請求項 16に記載の永久パターン形成方法。
[18] 露光が、 395〜415nmの波長のレーザ光を用いて行われる請求項 14から 17のい ずれかに記載の永久パターン形成方法。
[19] 露光が行われた後、感光層の現像を行う請求項 14から 18のいずれかに記載の永 久パターン形成方法。
[20] 現像が行われた後、感光層に対して硬化処理を行う請求項 14から 19のいずれか に記載の永久パターン形成方法。 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかを形成 する請求項 14から 20のいずれかに記載の永久パターン形成方法。
PCT/JP2005/023146 2004-12-24 2005-12-16 パターン形成材料、並びにパターン形成装置及びパターン形成方法 WO2006068048A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800439319A CN101084470B (zh) 2004-12-24 2005-12-16 图案形成材料以及图案形成装置及图案形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-374931 2004-12-24
JP2004374931A JP4583916B2 (ja) 2004-12-24 2004-12-24 パターン形成材料、並びにパターン形成装置及び永久パターン形成方法

Publications (1)

Publication Number Publication Date
WO2006068048A1 true WO2006068048A1 (ja) 2006-06-29

Family

ID=36601648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023146 WO2006068048A1 (ja) 2004-12-24 2005-12-16 パターン形成材料、並びにパターン形成装置及びパターン形成方法

Country Status (5)

Country Link
JP (1) JP4583916B2 (ja)
KR (1) KR20070085581A (ja)
CN (1) CN101084470B (ja)
TW (1) TW200628991A (ja)
WO (1) WO2006068048A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108172A1 (ja) * 2006-03-16 2007-09-27 Fujifilm Corporation 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110030B1 (ko) * 2009-11-30 2012-02-29 전남대학교산학협력단 이동통신 단말기에서 컨텍스트를 이용한 추천검색어 제공 시스템 및 방법
KR101374373B1 (ko) * 2011-05-12 2014-03-17 한국생산기술연구원 복합시트 및 이를 이용한 디스플레이 기판
KR101374372B1 (ko) * 2011-05-12 2014-03-17 한국생산기술연구원 복합시트 및 이를 이용한 디스플레이 기판
CN108398748A (zh) * 2011-12-29 2018-08-14 长泰品原电子科技有限公司 光纤耦合器及其公端与母端
CN103275627B (zh) * 2013-05-23 2014-11-12 安徽溢彩玻璃器皿有限公司 一种金属壳体用热转印胶及其制备方法
JP2016191813A (ja) * 2015-03-31 2016-11-10 東京応化工業株式会社 ドライエッチング用感光性樹脂組成物、及びドライエッチング用レジストパターンの製造方法
JP6499568B2 (ja) * 2015-11-30 2019-04-10 富士フイルム株式会社 感光性組成物、硬化膜の製造方法、硬化膜、タッチパネル、及び、表示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505234A (ja) * 1992-02-24 1995-06-08 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー プリント回路のための柔軟性の水性処理可能な光画像形成性永久被膜
JPH10104831A (ja) * 1996-10-02 1998-04-24 Mitsui Petrochem Ind Ltd 感光性樹脂組成物
JPH11240109A (ja) * 1998-02-25 1999-09-07 Hitachi Chem Co Ltd 永久保護膜形成用積層フィルム及びこれを用いた永久保護膜の製造法
JP2000003039A (ja) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd 感光性樹脂組成物、感光性エレメント、絶縁樹脂材料及びそれを用いた多層配線基板の製造方法
JP2000047381A (ja) * 1998-07-02 2000-02-18 Morton Internatl Inc ソルダ―マスクを形成するための1パ―ト型光画像形成性組成物
JP2001092123A (ja) * 1999-09-24 2001-04-06 Hitachi Chem Co Ltd 感光性エレメント、これを用いたレジストパターンの製造法及びプリント配線板の製造法
JP2004006440A (ja) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd レーザ装置、露光ヘッド、及び露光装置
JP2004062155A (ja) * 2002-06-07 2004-02-26 Fuji Photo Film Co Ltd 露光ヘッド及び露光装置
JP2004264834A (ja) * 2003-02-12 2004-09-24 Mitsubishi Chemicals Corp 感光性組成物、並びにそれを用いた画像形成材料、画像形成材、及び画像形成方法
JP2004341478A (ja) * 2003-04-25 2004-12-02 Hitachi Chem Co Ltd 感光性エレメント、これを用いたレジストパターンの形成方法、プリント配線板の製造方法及び感光性樹脂組成物
JP2004348114A (ja) * 2003-04-28 2004-12-09 Hitachi Chem Co Ltd 感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184650A (ja) * 1997-09-03 1999-03-26 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性エレメント及びそれを用いたプリント配線板の製造法
WO2003085457A1 (fr) * 2002-04-10 2003-10-16 Fuji Photo Film Co., Ltd. Tete d'exposition, dispositif d'exposition et utilisation
JP2004335639A (ja) * 2003-05-06 2004-11-25 Fuji Photo Film Co Ltd 投影露光装置
JP2006113402A (ja) * 2004-10-15 2006-04-27 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性エレメント、永久保護膜の形成方法及びプリント配線板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505234A (ja) * 1992-02-24 1995-06-08 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー プリント回路のための柔軟性の水性処理可能な光画像形成性永久被膜
JPH10104831A (ja) * 1996-10-02 1998-04-24 Mitsui Petrochem Ind Ltd 感光性樹脂組成物
JPH11240109A (ja) * 1998-02-25 1999-09-07 Hitachi Chem Co Ltd 永久保護膜形成用積層フィルム及びこれを用いた永久保護膜の製造法
JP2000003039A (ja) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd 感光性樹脂組成物、感光性エレメント、絶縁樹脂材料及びそれを用いた多層配線基板の製造方法
JP2000047381A (ja) * 1998-07-02 2000-02-18 Morton Internatl Inc ソルダ―マスクを形成するための1パ―ト型光画像形成性組成物
JP2001092123A (ja) * 1999-09-24 2001-04-06 Hitachi Chem Co Ltd 感光性エレメント、これを用いたレジストパターンの製造法及びプリント配線板の製造法
JP2004006440A (ja) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd レーザ装置、露光ヘッド、及び露光装置
JP2004062155A (ja) * 2002-06-07 2004-02-26 Fuji Photo Film Co Ltd 露光ヘッド及び露光装置
JP2004264834A (ja) * 2003-02-12 2004-09-24 Mitsubishi Chemicals Corp 感光性組成物、並びにそれを用いた画像形成材料、画像形成材、及び画像形成方法
JP2004341478A (ja) * 2003-04-25 2004-12-02 Hitachi Chem Co Ltd 感光性エレメント、これを用いたレジストパターンの形成方法、プリント配線板の製造方法及び感光性樹脂組成物
JP2004348114A (ja) * 2003-04-28 2004-12-09 Hitachi Chem Co Ltd 感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108172A1 (ja) * 2006-03-16 2007-09-27 Fujifilm Corporation 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板

Also Published As

Publication number Publication date
CN101084470B (zh) 2012-03-21
CN101084470A (zh) 2007-12-05
JP2006184326A (ja) 2006-07-13
JP4583916B2 (ja) 2010-11-17
TW200628991A (en) 2006-08-16
KR20070085581A (ko) 2007-08-27

Similar Documents

Publication Publication Date Title
WO2006006671A1 (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
WO2006019089A1 (ja) 感光性転写材料並びにパターン形成方法及びパターン
JP2006208607A (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
WO2006068048A1 (ja) パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP2006285108A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006243543A (ja) 永久パターン形成方法
WO2006075633A1 (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP2006235101A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007133333A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007023254A (ja) 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP4651534B2 (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP4546368B2 (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP4494243B2 (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2005309247A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006243552A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007025176A (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP4546349B2 (ja) パターン形成材料、並びにパターン形成方法及びパターン
JP2006065000A (ja) サンドブラストレジスト用感光性組成物、及びこれを用いたサンドブラストレジストフィルム、並びにサンドブラストレジストパターン形成方法
JP4468087B2 (ja) ソルダーレジスト用感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2005300623A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006084873A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007033685A (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP2005352064A (ja) 感光性フィルム、永久パターン及びその形成方法
JP2005316431A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006160854A (ja) スチレン誘導体、ポリマー及びその製造方法、パターン形成材料、並びに、永久パターン及びその形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077012230

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580043931.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP