JP2005352064A - 感光性フィルム、永久パターン及びその形成方法 - Google Patents

感光性フィルム、永久パターン及びその形成方法 Download PDF

Info

Publication number
JP2005352064A
JP2005352064A JP2004171467A JP2004171467A JP2005352064A JP 2005352064 A JP2005352064 A JP 2005352064A JP 2004171467 A JP2004171467 A JP 2004171467A JP 2004171467 A JP2004171467 A JP 2004171467A JP 2005352064 A JP2005352064 A JP 2005352064A
Authority
JP
Japan
Prior art keywords
light
exposure
photosensitive
permanent pattern
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004171467A
Other languages
English (en)
Inventor
Masayuki Iwasaki
政幸 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004171467A priority Critical patent/JP2005352064A/ja
Publication of JP2005352064A publication Critical patent/JP2005352064A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

【課題】 レーザ光を用いて、高精細パターンを高解像度、かつ高感度に形成可能であり、更に、保存安定性の良好な感光性組成物、高精細な永久パターン、及び高感度な感光性組成物を使用可能として、露光時間の短縮を図ることにより、パターン形成における生産性を向上することが可能であり、かつ、高精細パターンを高解像度で形成することが可能なパターン形成方法の提供。
【解決手段】 支持体と、酸素遮断層と、無水マレイン酸共重合体の無水物基に対して0.1〜1.2当量の1級アミン化合物を反応させて得られる共重合体、重合性化合物、及び光重合開始剤を少なくとも含有する感光層とをこの順に有する感光性フィルムである。
【選択図】 図1

Description

本発明は、露光によりパターニング可能なフォトソルダレジスト等の感光性フィルム、該感光性フィルムを用いて形成される高精細な永久パターン及びその形成方法に関する。
一般に、半導体、コンデンサ、抵抗などの電子部品が半田付けされるプリント配線板は、該電子部品が半田付される場所以外の部分が、絶縁膜や保護膜を形成するソルダレジストで覆われて、隣同士の電極が導通しないように構成されている。前記ソルダレジストは、フォトリソグラフィー法により、露光、現像されて所定のパターンが形成される。
近年、携帯電話やデジタルカメラ等の携帯電子機器などでは、ビルドアップ配線板等の高密度プリント配線板が用いられるようになっており、前記ソルダレジストの微細化が進められている。
従来から、前記フォトリソグラフィー法を行う露光装置として、フォトマスクを用いた露光装置が知られているが、前記ソルダレジストの微細化に伴って、前記フォトリソグラフィープロセス中での基板の伸縮や、フォトマスクフィルムの温・湿度変化に基づく伸縮に起因する微細パターンやスルーホールランドパターンの位置ずれの問題が顕在化している。前記位置ずれの問題に対しては、変形の少ない基板を使用したり、高価なガラスマスクが使用されていた。
近年、これらの位置ずれの問題を解決するために、フォトマスクを用いることなく、半導体レーザ、ガスレーザ等のレーザ光を、配線パターン等のデジタルデータに基づいて、感光性組成物上に直接スキャンして、パターニングを行うレーザダイレクトイメージングシステム(以下「LDI」という。)による露光装置が研究されている(例えば、非特許文献1及び特許文献1参照)。該露光装置によれば、フォトマスクの影響を受けることがなく、また、デジタルデータの高速処理による補正が可能であり、基板の変形に対応した露光パターンを容易に形成することができるので、例えば、フィルム基板等の使用が可能となり、プリント配線板の更なる高密度化が可能となる。
一方、従来から、ソルダレジストとしては、作業環境、地球環境保全の観点からアルカリ現像型のフォトソルダレジストが主流となってきている。アルカリ現像型のフォトソルダレジストとしては、主成分としてエポキシ化合物にエチレン性不飽和二重結合及びアルカリ現像性を付与するための酸基を導入した化合物(エポキシアクリレート)と、エチレン性不飽和二重結合を有する付加重合性化合物(モノマー)と、を含む組成物が一般に知られている(特許文献2参照)。
しかしながら、この場合、室温下で数日−20℃以下の保存環境でも2,3ヶ月しか保存出来ず、保存安定性の問題があった。また、レーザ光に対する感度が悪いという問題があった。
また、従来から、300nm〜700nmの紫外光又は可視光レーザ光源を用いた露光装置による露光時の露光時間を短縮して生産性を高めるべく、高感度な感光性組成物として、光ラジカル重合系の感光性組成物が知られている(特許文献3及び4参照)。
しかしながら、この場合、露光時に酸素の影響により、重合反応が阻害され、感光性組成物の感度が低下するという問題がある。
更に、従来より、露光時の酸素の影響を防止するために、感光性フィルムの支持体により感光層を被覆した状態で前記感光層を露光し、露光終了後に前記支持体を剥離可能とした技術が知られている(特許文献5参照)。
しかしながら、この場合、前記支持体による光の散乱や屈折の等影響により、感光層上に結像させる像にボケ像が生じ、高解像度が得られないという問題がある。
特開2004−1244号公報 特開昭61−243869号公報 米国特許第2850445号公報 特公昭44−20189号公報 米国特許第3060026号公報 石川明人"マスクレス露光による開発短縮と量産適用化"、「エレクロトニクス実装技術」、株式会社技術調査会、Vol.18、No.6、2002年、p.74-79
本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、レーザ光を用いて、高精細パターンを高解像度、かつ高感度に形成可能であり、更に、保存安定性の良好な感光性組成物、高精細な永久パターン、及び高感度な感光性組成物を使用可能として、露光時間の短縮を図ることにより、パターン形成における生産性を向上することが可能であり、かつ、高精細パターンを高解像度で形成することが可能なパターン形成方法を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 少なくとも、支持体と、酸素遮断層と、(A)無水マレイン酸共重合体の無水物基に対して0.1〜1.2当量の1級アミン化合物を反応させて得られる共重合体、(B)重合性化合物、及び(C)光重合開始剤を含有する感光性組成物からなる感光層をこの順に有することを特徴とする感光性フィルムである。
<2> 酸素遮断層の厚みが、支持体の厚みの1/2以下である前記<1>に記載の感光性フィルムである。
<3> 酸素遮断層の酸素透過率が、5×10−12cc・cm/cm・sec・cmHg以下である前記<1>から<2>のいずれかに記載のパターン形成方法である。
<4> 酸素遮断層が、水溶液に可溶である前記<1>から<3>のいずれかに記載の感光性フィルムである。
<5> 共重合体(A)が、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られる前記<1>から<4>のいずれかに記載の感光性フィルムである。
<6> 感光性組成物が、熱架橋剤を含む前記<1>から<5>のいずれかに記載の感光性フィルムである。
<7> 熱架橋剤が、アルキル化メチロールメラミンである前記<6>に記載の感光性フィルムである。
<8> 重合性化合物(B)が、(メタ)アクリル基を有するモノマーから選択される少なくとも1種を含む前記<1>から<7>のいずれかに記載の感光性フィルムである。
<9> 光重合開始剤(C)が、ハロゲン化炭化水素誘導体、ホスフィンオキシド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びケトオキシムエーテルから選択される少なくとも1種を含む前記<1>から<8>のいずれかに記載の感光性フィルムである。
<10> 前記<1>から<9>のいずれかに記載の感光性フィルムを、加熱及び加圧の少なくともいずれかにより感光層が基材の表面側となるように積層する積層工程と、
該積層工程後に支持体を剥離し、次いで、感光層を露光する露光工程と、
該露光工程により露光された感光層を現像する現像工程とを含むことを特徴とする永久パターン形成方法である。
<11> 保護膜及び層間絶縁膜の少なくともいずれかを形成する前記<10>に記載の永久パターン形成方法である。
<12> 現像工程後に、感光層に対して硬化処理を行う前記<10>から<11>のいずれかに記載の永久パターン形成方法である。
<13> 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである前記<12>に記載の永久パターン形成方法である。
<14> 露光工程が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後に、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロレンズアレイを通過させた光によって行われる前記<10>から<13>のいずれかに記載の永久パターン形成方法である。
<15> 非球面が、トーリック面である前記<14>に記載の永久パターン形成方法である。
<16> 光変調手段が、n個の描素部の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能である前記<14>から<15>のいずれかに記載の永久パターン形成方法である。
<17> 光変調手段が、空間光変調素子である前記<14>から<16>のいずれかに記載の永久パターン形成方法である。
<18> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<17>に記載の永久パターン形成方法である。
<19> 露光が、アパーチャアレイを通して行われる前記<14>から<18>のいずれかに記載の永久パターン形成方法である。
<20> 露光が、露光光と感光層とを相対的に移動させながら行われる前記<10>から<19>のいずれかに記載の永久パターン形成方法である。
<21> 光照射手段が、2以上の光を合成して照射可能である前記<11>から<20>のいずれかに記載の永久パターン形成方法である。
<22> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを集光して前記マルチモード光ファイバに結合させる集合光学系とを有する前記<11>から<21>のいずれかに記載の永久パターン形成方法である。
<23> レーザ光の波長が395〜415nmである前記<22>に記載の永久パターン形成方法である。
<24> 前記<11>から<23>のいずれかに記載のパターン形成方法により形成されてなることを特徴とする永久パターンである。
<25> 保護膜及び層間絶縁膜の少なくともいずれかである前記<24>に記載の永久パターンである。
本発明によると、従来における問題を解決することができ、レーザ光を用いて、高精細パターンを高解像度、かつ高感度に形成可能であり、更に、保存安定性の良好な感光性組成物、高精細な永久パターン、及び高感度な感光性組成物を使用可能として、露光時間の短縮を図ることにより、パターン形成における生産性を向上することが可能であり、かつ、高精細パターンを高解像度で形成することが可能なパターン形成方法を提供することができる。
(感光性フィルム)
本発明の感光性フィルムは、支持体と、酸素遮断層と、感光層とをこの順に有してなり、更に必要に応じてその他の層を有してなる。
前記感光性フィルムの形態としては、支持体と、酸素遮断層と、感光層とをこの順に備えたものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、支持体上に、酸素遮断層、感光層、保護フィルムをこの順に有してなる形態、支持体上に、クッション層、酸素遮断層、感光層、保護フィルムをこの順に有してなる形態などが挙げられる。なお、前記感光層は、単層であってもよいし、複数層であってもよい。
[支持体]
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記酸素遮断層との間で剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
前記支持体は、合成樹脂製で、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、4〜300μmが好ましく、5〜175μmがより好ましく、10〜100μmが特に好ましい。
前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。
<酸素遮断層>
前記感光層形成工程で形成される酸素遮断層としては、露光時に酸素の影響により、感光層の重合反応が阻害されることがなく、感光性組成物の感度を高く保つことができれば、その材料、形状、構造など、特に制限はなく、目的に応じて適宜選択することができるが、酸素の透過性が低く、かつ露光に用いられる光の透過は実質的に阻害しないことが好ましい。
前記酸素遮断層の酸素透過率は、5×10−12cc・cm/cm・sec・cmHg以下が好ましく、1×10−12cc・cm/cm・sec・cmHg以下がより好ましい。
前記酸素透過率が5×10−12cc・cm/cm・sec・cmHgを超えると、酸素の遮断が不十分であるため感度が低下することがある。
ここで、前記酸素透過率は、例えば、ASTM standards D−1434−82(1986)に記載の方法に準拠して測定できる。
また、前記酸素遮断層としては、前記支持体よりも前記感光層に対してより強く接着又は密着していることが好ましい。
また、前記酸素遮断層としては、取扱性、ゴミ付着による欠陥防止の観点から、表面のタック性が小さいことが好ましい。
前記酸素遮断層形成材料としては、特に制限はなく、目的に応じて適宜選択することができるが、水溶液に可溶であることが好ましく、現像液である弱アルカリ水溶液に可溶であることがより好ましい。
前記水溶液に可溶なものの具体例としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシエチルセルロース、カルボキシプロピルセルロース、カルボキシエチルセルロース、カルボキシアルキルセルロースの水溶性塩等のセルロース類、酸性セルロース類、カルボキシアルキル澱粉の水溶性塩、ポリアクリルアミド類、水溶性ポリアミド、ポリアクリル酸の水溶性塩、ポリビニルエーテル/無水マレイン酸重合体、エチレンオキサイド重合体、スチレン/マレイン酸の共重合体、マレイネート樹脂、ゼラチン、アラビアゴムが挙げられ、これらの中でも、酸素遮断性、現像除去性の観点から、ポリビニルアルコールが好適に挙げられ、感光層との密着性を向上させる観点から、ポリビニルアルコールとポリビニルピロリドンとの併用が好適に挙げられる。
また、前記酸素遮断層としては、これらの中から1種又は2種以上の併用とすることが可能である。
前記ポリビニルアルコールとしては、重量平均分子量が300〜2400であることが好ましく、また、71〜100モル%加水分解されるものが好ましい。
前記ポリビニルアルコールとしては、具体的には、PVA−105、PVA−110、PVA−117、PVA−117H、PVA−120、PVA−124、PVA−124H、PVA−CS、PVA−CST、PVA−HC、PVA−203、PVA−204、PVA−205、PVA−210、PVA−220、PVA−224、PVA−217EE、PVA−217E、PVA−220E、PVA−224E、PVA−405、PVA−420、PVA−613、L−8、PVA−R−1130、PVA−R−2105、PVA−R−2130(以上、全て商品名、株式会社クラレ製)などが挙げられる。
前記酸素遮断層形成材料における前記ポリビニルアルコールの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、50〜99質量%が好ましく、55〜90質量%がより好ましく、60〜80質量%が特に好ましい。
前記酸素遮断層形成材料における前記ポリビニルピロリドンの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1〜50質量%が好ましく、10〜45質量%がより好ましく、20〜40質量%が特に好ましい。
前記ポリビニルアルコールに対する前記ポリビニルピロリドンの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、5〜50質量%であることが好ましい。
前記含有量が5質量%未満であると、感光層との密着性が不十分となることがあり、前記含有量が50質量%を超えると酸素遮断能力が劣化することがある。
前記酸素遮断層としては、取扱性向上の観点から、500nm以下の光を吸収する水溶性染料等の着色剤を含有することも可能である。
更に、前記酸素遮断層形成材料には、酸素遮断層の塗布性改良、感光層と酸素遮断層との密着性改善等を目的として、界面活性剤を添加することができる。
前記界面活性剤を添加する場合における該界面活性剤の含有量としては、酸素遮断層固形分の1〜20質量%が好ましく、1〜10質量%がより好ましく、1〜5質量%が特に好ましい。
前記界面活性剤としては、例えば、特開昭61−285444号公報に記載のアルキルカルボキシベタイン、パーフロロアルキルベタインなどの両性界面活性剤を用いることも可能である。
前記酸素遮断層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記酸素遮断層形成材料の1種又は2種以上を、水、又は水と混和性の溶剤の混合液中に溶解し、前記感光層上に塗布、乾燥して形成することができる。
前記水混和性溶剤としては、例えば、メタノール、エタノール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。
前記水混和性溶剤の溶媒合計量中の含有量としては、1〜80質量%が好ましく、2〜70質量%がより好ましく、5〜60質量%が特に好ましい。
前記水混和性溶剤の含有量が1質量%以下では、添加の効果が得られないことがあり、80質量%を超えると、下層である前記感光層を溶解して、感光層の性能が劣化することがある。
前記水及び溶剤の混合比としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、水:溶剤が100:0〜80:20が好ましく、70:30がより好ましく、60:40が特に好ましい。
前記酸素遮断層を前記酸素遮断層形成材料が含有された塗布液により形成する場合には、前記酸素遮断層形成材料の塗布液における固形分濃度としては、1〜30質量%が好ましく、2〜20質量%がより好ましく、3〜10質量%が特に好ましい。
前記固形分濃度が1質量%未満又は、30質量%を超えると、乾燥後に前記酸素遮断層の厚みが所定の厚みとならないことがある。
前記酸素遮断層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記支持体の厚みの1/2以下であることが好ましく、具体的には、0.1〜10μmが好ましく、0.5〜5μmがより好ましく、1〜3μmが特に好ましい。前記酸素遮断層の厚みが、0.1μm未満であると、酸素の透過性が高すぎ、酸素遮断能力が低下することがあり、10μmを超えると、酸素遮断層による光の散乱や屈折の等影響により、感光層上に結像させる像にボケ像が生じ、高解像度が得られないことがあり、更に、現像、感光層除去に時間がかかることがある。
[感光層]
前記感光層としては、(A)無水マレイン酸共重合体の無水物基に対して、1級アミン化合物を反応させて得られる共重合体(以下、「バインダー」と称することもある)、(B)重合性化合物、及び(C)光重合開始剤を少なくとも含有し、更に、必要に応じて適宜選択されるその他の成分を含有する感光性組成物からなる。
−(A)バインダー−
前記バインダーは、無水マレイン酸共重合体の無水物基に対して、0.1〜1.2当量の1級アミン化合物を1種以上反応させて得られる共重合体である。
該共重合体としては、特に制限はなく、目的に応じて適宜選択することができるが、下記構造式(1)で表されるユニットA及びユニットBを少なくとも含むマレアミド酸系共重合体であるのが好ましい。
前記ユニットAは、1種であってもよいし、2種以上であってもよい。例えば、前記ユニットBが1種であるとすると、前記ユニットAが1種である場合には、前記マレアミド酸系共重合体が2元共重合体を意味することになり、前記ユニットAが2種である場合には、前記マレアミド酸系共重合体が3元共重合体を意味することになる。
前記ユニットAとしては、置換基を有していてもよいアリール基と、後述するビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体(c)との組合せが好適に挙げられる。
ただし、前記構造式(1)中、R及びRは水素原子及び低級アルキル基のいずれかを表す。x及びyは繰り返し単位のモル分率を表し、例えば、前記ユニットAが1種の場合、xは85〜50モル%であり、yは15〜50モル%である。
前記構造式(1)中、Rとしては、例えば、(−COOR10)、(−CONR1112)、置換基を有していてもよいアリール基、(−OCOR13)、(−OR14)、(−COR15)などの置換基が挙げられる。ここで、前記R10〜R15は、水素原子(−H)、置換基を有していてもよいアルキル基、アリール基及びアラルキル基のいずれかを表す。該アルキル基、アリール基及びアラルキル基は、環状構造又は分岐構造を有していてもよい。
前記R10〜R15としては、例えば、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、t−ブチル、ペンチル、アリル、n−ヘキシル、シクロへキシル、2−エチルヘキシル、ドデシル、メトキシエチル、フェニル、メチルフェニル、メトキシフェニル、ベンジル、フェネチル、ナフチル、クロロフェニルなどが挙げられる。
前記Rの具体例としては、例えば、フェニル、α−メチルフェニル、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2,4−ジメチルフェニル等のベンゼン誘導体;n−プロピルオキシカルボニル、n−ブチルオキシカルボニル、ペンチルオキシカルボニル、2−エチルヘキシルオキシカルボニル、n−ブチルオキシカルボニル、n−2−エチルヘキシルオキシカルボニル、2−エチル2−エチルヘキシルオキシカルボニル、メチルオキシカルボニルなどが挙げられる。
前記Rとしては、置換基を有していてもよいアルキル基、アリール基、アラルキル基などが挙げられる。これらは、環状構造又は分岐構造を有していてもよい。前記Rの具体例としては、例えば、ベンジル、フェネチル、3−フェニル−1−プロピル、4−フェニル−1−ブチル、5−フェニル−1−ペンチル、6−フェニル−1−ヘキシル、α−メチルベンジル、2−メチルベンジル、3−メチルベンジル、4−メチルベンジル、2−(p−トリル)エチル、β―メチルフェネチル、1−メチル−3−フェニルプロピル、2−クロロベンジル、3−クロロベンジル、4−クロロベンジル、2−フロロベンジル、3−フロロベンジル、4−フロロベンジル、4−ブロモフェネチル、2−(2−クロロフェニル)エチル、2−(3−クロロフェニル)エチル、2−(4−クロロフェニル)エチル、2−(2−フロロフェニル)エチル、2−(3−フロロフェニル)エチル、2−(4−フロロフェニル)エチル、4−フロロ−α,α−ジメチルフェネチル、2−メトキシベンジル、3−メトキシベンジル、4−メトキシベンジル、2−エトキシベンジル、2−メトキシフェネチル、3−メトキシフェネチル、4−メトキシフェネチル、メチル、エチル、プロピル、1−プロピル、ブチル、t−ブチル、sec−ブチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ラウリル、フェニル、1−ナフチル、メトキシメチル、2−メトキシエチル、2−エトキシエチル、3−メトキシプロピル、2−ブトキシエチル、2−シクロへキシルオキシエチル、3−エトキシプロピル、3−プロポキシプロピル、3−イソプロポキシプロピルアミンなどが挙げられる。
前記バインダーとしては、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られる共重合体であるのが好ましい。
前記バインダーが、(a)無水マレイン酸及び(b)芳香族ビニル単量体からのみなる共重合体では、感光層の高い表面硬度を得ることはできるものの、ラミネート性の確保が困難になることがある。また、(a)無水マレイン酸及び(c)ビニル単量体からのみなる共重合体では、ラミネート性は確保することができるものの、前記表面硬度の確保が困難になることがある。
前記(b)芳香族ビニル単量体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層の表面硬度を高くすることができる点で、ホモポリマーのガラス転移温度(Tg)が80℃以上である化合物が好ましく、100℃以上である化合物がより好ましい。
前記芳香族ビニル単量体の具体例としては、例えば、スチレン(ホモポリマーのTg=100℃)、α−メチルスチレン(ホモポリマーのTg=168℃)、2−メチルスチレン(ホモポリマーのTg=136℃)、3−メチルスチレン(ホモポリマーのTg=97℃)、4−メチルスチレン(ホモポリマーのTg=93℃)、2,4−ジメチルスチレン(ホモポリマーのTg=112℃)などのスチレン誘導体が好適に挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
前記(c)ビニル単量体は、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であることが必要であり、40℃以下が好ましく、0℃以下がより好ましい。
前記ビニル単量体としては、例えば、n−プロピルアクリレート(ホモポリマーのTg=−37℃)、n−ブチルアクリレート(ホモポリマーのTg=−54℃)、ペンチルアクリレート、あるいはヘキシルアクリレート(ホモポリマーのTg=−57℃)、n−ブチルメタクリレート(ホモポリマーのTg=−24℃)、n−ヘキシルメタクリレート(ホモポリマーのTg=−5℃)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
前記1級アミン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンジルアミン、フェネチルアミン、3−フェニル−1−プロピルアミン、4−フェニル−1−ブチルアミン、5−フェニル−1−ペンチルアミン、6−フェニル−1−ヘキシルアミン、α−メチルベンジルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−メチルベンジルアミン、2−(p−トリル)エチルアミン、β−メチルフェネチルアミン、1−メチル−3−フェニルプロピルアミン、2−クロロベンジルアミン、3−クロロベンジルアミン、4−クロロベンジルアミン、2−フロロベンジルアミン、3−フロロベンジルアミン、4−フロロベンジルアミン、4−ブロモフェネチルアミン、2−(2−クロロフェニル)エチルアミン、2−(3−クロロフェニル)エチルアミン、2−(4−クロロフェニル)エチルアミン、2−(2−フロロフェニル)エチルアミン、2−(3−フロロフェニル)エチルアミン、2−(4−フロロフェニル)エチルアミン、4−フロロ−α,α−ジメチルフェネチルアミン、2−メトキシベンジルアミン、3−メトキシベンジルアミン、4−メトキシベンジルアミン、2−エトキシベンジルアミン、2−メトキシフェネチルアミン、3−メトキシフェネチルアミン、4−メトキシフェネチルアミン、メチルアミン、エチルアミン、プロピルアミン、1−プロピルアミン、ブチルアミン、t−ブチルアミン、sec−ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ラウリルアミン、アニリン、オクチルアニリン、アニシジン、4−クロルアニリン、1−ナフチルアミン、メトキシメチルアミン、2−メトキシエチルアミン、2−エトキシエチルアミン、3−メトキシプロピルアミン、2−ブトキシエチルアミン、2−シクロヘキシルオキシエチルアミン、3−エトキシプロピルアミン、3−プロポキシプロピルアミン、3−イソプロポキシプロピルアミンなどが挙げられる。これらの中でも、ベンジルアミン、フェネチルアミンが特に好ましい。
前記1級アミン化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記1級アミン化合物の反応量としては、前記無水物基に対して0.1〜1.2当量であることが必要であり、0.1〜1.0当量が好ましい。該反応量が1.2当量を超えると、前記1級アミン化合物を1種以上反応させた場合に、溶解性が著しく悪化することがある。
前記(a)無水マレイン酸の前記バインダーにおける含有量は、15〜50mol%が好ましく、20〜45mol%がより好ましく、20〜40mol%が特に好ましい。該含有量が15mol%未満であると、アルカリ現像性の付与ができず、50mol%を超えると、耐アルカリ性が劣化し、また、前記共重合体の合成が困難になり、正常な永久パターンの形成を行うことができないことがある。また、この場合における、前記(b)芳香族ビニル単量体、及び(c)ホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体の前記バインダーにおける含有量は、それぞれ20〜60mol%、15〜40mol%が好ましい。該含有量が該数値範囲を満たす場合には、表面硬度及びラミネート性の両立を図ることができる。
前記バインダーの分子量は、1,000〜1,000,000が好ましく、8,000〜150,000がより好ましい。該分子量が1,000未満であると、後述する感光層の硬化後において、膜質が脆くなり、表面硬度が劣化することがあり、1,000,000を超えると、前記感光性組成物の加熱積層時の流動性が低くなり、適切なラミネート性の確保が困難になることがあり、また、現像性が悪化することがある。
前記バインダーの前記感光性組成物固形分中の固形分含有量は、5〜80質量%が好ましく、10〜70質量%がより好ましく、15〜50質量%が特に好ましくい。該固形分含有量が、5質量%未満であると、後述する感光層の膜強度が弱くなりやすく、該感光層の表面のタック性が悪化することがあり、80質量%を超えると、露光感度が低下することがある。
−(B)重合性化合物−
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、(メタ)アクリル基を有するモノマーから選択される少なくとも1種がより好ましい。
前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが特に好ましい。
前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、2〜50質量%が好ましく、4〜40質量%がより好ましく、5〜30質量%が特に好ましくい。該固形分含有量が2質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、50質量%を超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。
−(C)光重合開始剤−
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができ、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよいが、紫外線領域から可視の光線に対して感光性を有するものが好ましく、波長395〜415nmのレーザ光による露光に対して高い感度をもつものがより好ましく、ハロゲン化炭化水素誘導体、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びケトオキシムエーテルから選択される少なくとも1種を含むことが特に好ましい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの、オキサジアゾール骨格を有するもの等)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテルなどが挙げられる。
前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物、などが挙げられる。
前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。
前記米国特許第4212976号明細書に記載の化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリプロメメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。
本発明で好適に用いられるオキシム誘導体としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。
また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキサイド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキサイド、LucirinTPOなど)、メタロセン類(例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)等)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。
前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。
前記光重合開始剤の前記感光性組成物固形分中の固形分含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましくい。該固形分含有量が0.1質量%未満であると、感度が不足し、硬化後の膜硬度が低くなりやすくなることがあり、30質量%を超えると、感光層からの析出が起こり易くなることがある。
また、前記感光層への露光における露光感度や感光波長を調整する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光・可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン等があげられ、他に特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号等の各公報に記載のクマリン化合物など)が挙げられる。
前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。
前記増感剤の含有量としては、前記感光性組成物中の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に前記感光層から前記増感剤が析出することがある。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
前記光重合開始剤の前記感光性組成物における含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
−その他の成分−
前記その他の成分としては、熱架橋剤、熱重合禁止剤、可塑剤、着色剤(着色顔料又は染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤、熱硬化促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させることにより、目的とする感光性組成物あるいは感光性フィルムの安定性、写真性、膜物性などの性質を調整することができる。
−熱架橋剤−
前記感光性組成物は、熱架橋剤を含むことが好ましい。
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができるが、アルキル化メチロールメラミンであることが好ましい。
また、前記熱架橋剤としては、前記感光性組成物を用いて形成される感光層表面の硬化膜の強度を改良するために、現像性等などに悪影響を与えない範囲で、例えば、エポキシ樹脂、メラミン樹脂などのアルカリ水溶液に不溶性のポリマーを添加することができる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、保存安定性が良好で、感光層の表面硬度あるいは硬化膜の膜強度自体の向上に有効である点で、アルキル化メチロールメラミンが好ましく、ヘキサメチル化メチロールメラミンが特に好ましい。
前記熱架橋剤の前記感光性組成物固形分中の固形分含有量は、1〜40質量%が好ましく、3〜30質量%がより好ましく、5〜25質量%が特に好ましい。該固形分含有量が1質量%未満であると、硬化膜の膜強度の向上が認められず、40質量%を超えると、現像性の低下や露光感度の低下を生ずることがある。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキル又はアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレート等が挙げられる。
前記熱重合禁止剤の含有量としては、前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。該含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
前記感光性組成物が、前記熱重合禁止剤を含有することにより、前記(B)重合性化合物の熱的な重合又は経時的な重合を防止することが可能となる。
前記着色顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメント・エロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボン、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64などが挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
前記着色顔料の前記感光性組成物固形分中の固形分含有量は、永久パターン形成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着色顔料の種類により異なるが、一般的には、0.05〜10質量%が好ましく、0.075〜8質量%がより好ましく、0.1〜5質量%が特に好ましい。
前記体質顔料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどの有機又は無機の微粒子が挙げられる。
前記体質顔料の平均粒径は、10μm未満が好ましく、3μm以下がより好ましい。該平均粒径が10μm以上であると、光錯乱により解像度が劣化することがある。
前記有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径1〜5μm、吸油量100〜200m/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
前記体質顔料の添加量は、5〜60質量%が好ましく、10〜50質量%がより好ましく、15〜45質量%が特に好ましい。該添加量が5質量%未満であると、十分に線膨張係数を低下させることができないことがあり、60質量%を超えると、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久パターンを用いて配線を形成する場合において、配線の保護膜としての機能が損なわれることがある。
前記感光性組成物が、前記体質顔料を含有することにより、永久パターンの表面硬度の向上、あるいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く抑えることが可能となる。
前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報などに記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。
前記密着促進剤の含有量としては、前記感光性組成物中の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。
前記感光性組成物が、前記密着促進剤を含有することにより、各層間の密着性、又は感光層と基材との密着性を向上されることが可能となる。
更に、前記感光性組成物が熱硬化促進剤を含有することも可能である。
前記熱硬化促進剤の含有量としては、前記感光性組成物中の全成分に対して0.005質量%〜20質量%が好ましく、0.01〜15質量%がより好ましく、0.025質量%〜12質量%が特に好ましい。
前記感光性フィルムにおける前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、3〜100μmが好ましく、5〜70μmがより好ましく、10〜50μmが特に好ましい。
[その他の層]
前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クッション層、剥離層、光吸収層、表面保護層などが挙げられる。
前記その他の層の前記感光性フィルムにおける配置、厚み等は、特に制限はなく、目的に応じて適宜選択することができる。
前記クッション層としては、常温ではタック性が無く、真空・加熱条件で積層した場合に溶融し、流動する層であることが好ましい。
前記感光性フィルムの作製方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体上に、前記酸素遮断層を構成する組成物を、水又は溶剤に溶解、乳化又は分散させて溶液を調整し、該溶液を前記支持体上に直接塗布し、乾燥させることにより、前記酸素遮断層を形成し、次いで、前記感光性組成の溶液を前記酸素遮断層における場合と同様に調整し、該感光性組成物溶液を前記酸素遮断層上に、塗布し、乾燥させることにより積層する方法、前記感光性組成物溶液を別の仮支持体上に塗布し、乾燥させることにより形成し、前記支持体上に形成された前記酸素遮断層上に転写する方法などが挙げられる。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記基材に直接塗布する方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
前記感光性フィルムは、基板への積層前には、例えば、前記感光層が保護フィルムで被覆されていることが好ましい。前記保護フィルムは、輸送時などは、前記感光層側に貼り付けられて、前記感光層の汚れ、損傷を防止して保護するとともに、前記感光性フィルムを基板上に積層するときには剥離される。
前記保護フィルムとしては、例えば、前記支持体と同様のもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜50μmがより好ましく、10〜40μmが特に好ましい。
前記保護フィルムを用いる場合、前記酸素遮断層と前記支持体の接着力Aと、前記酸素遮断層と前記感光層の接着力Bと、及び前記感光層と前記保護フィルムの接着力Cとが、次式、接着力B>接着力A>接着力Cの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。
前記感光性フィルムは、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状の感光性フィルムの長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。
本発明の感光性フィルムは、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に優れ、現像後に優れた耐薬品性、表面硬度、耐熱性等を発現する感光性組成物が積層された感光層を有してなる。このため、プリント配線板、柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができ、本発明の永久パターン及びその形成方法に好適に用いることができる。
特に、本発明の感光性フィルムは、該フィルムの厚みが均一であるため、永久パターンの形成に際し、基材への積層がより精細に行われる。
(永久パターン)
本発明の永久パターンは、本発明の永久パターン形成方法により、本発明の感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、露光し、現像することにより得られる。
本発明の永久パターンとしては、保護膜、絶縁膜(層間絶縁膜)であることが好ましい。前記永久パターンは、ハンダ耐熱性に優れ、配線を外部からの衝撃や曲げから保護することができ、また、多層配線基板、ビルドアップ配線基板などの絶縁膜として好適である。
(パターン形成方法)
本発明の永久パターン形成方法は、少なくとも積層工程と、露光工程と、現像工程とを含み、更に、適宜選択されたその他の工程を含む。
前記永久パターン形成方法としては、例えば、感光層を基材上に積層して、該基材の表面をフォトソルダレジストで覆う積層工程と、前記感光層を露光する露光工程と、前記感光層を現像する現像工程とを有し、前記感光層を基板上に所定のパターンで残して、該基板上に所定の永久パターンを形成する永久パターン形成方法が好適に挙げられる。
本発明の永久パターン形成方法としては、現像工程後に形成される永久パターンが、保護膜及び層間絶縁膜の少なくともいずれかを形成する方法であることが好ましい。
[積層工程]
前記積層工程は、感光性フィルムを基材の表面に、加熱及び加圧の少なくともいずれかにより感光層が基材の表面側となるように積層する工程である。
なお、前記感光性フィルムが、後述する保護フィルムを有する場合には、該保護フィルムを剥離し、前記基材に前記感光層が重なるようにして積層するのが好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.01〜1.0MPaであることが好ましく、0.05〜1.0MPaであることがより好ましい。
前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター(例えば、大成ラミネータ社製、VP−II)、真空ラミネーター(例えば、名機製作所製、MVLP500)などが好適に挙げられる。
<基材>
前記感光層形成工程で用いられる前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができるが、板状の基材(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
[露光工程]
前記露光工程は、前記積層工程後に前記支持体を剥離し、次いで、前記感光層を露光する工程である。
前記支持体を剥離することにより、支持体による光の散乱や屈折の等影響により、感光性組成物層上に結像させる像にボケ像が生じることが防止され、所定のパターンが高解像度で得られる。
前記露光工程としては、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後に、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロレンズアレイを通過させた光によって、前記積層工程により前記基板上に積層された感光層を、前記酸素遮断層を介して、露光する工程を有することが好ましい。
前記露光工程において、前記光照射手段から照射される光としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、光重合開始剤や増感剤を活性化する電磁波、紫外から可視光、電子線、X線、レーザ光などが挙げら、これらの中でも、光のオンオフ制御が短時間で行え、光の干渉制御が容易なレーザ光が好適に挙げられる。
前記紫外から可視光の光の波長としては、特に制限はなく、目的に応じて適宜選択することができるが、感光性組成物の露光時間の短縮を図る目的から、330〜650nmが好ましく、395〜415nmがより好ましく、405nmであることが特に好ましい。
前記光照射手段による光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用冷陰極管、LED、半導体レーザなどの公知の光源によって照射する方法が挙げられる。また、これらの光源からの光を2以上合成して照射することが好適であり、2以上の光を合成したレーザ光(以下、「合波レーザ光」ということがある。)を照射することが特に好適に挙げられる。
前記合波レーザ光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができるが、複数のレーザ光源と、マルチモード光ファイバと、該複数のレーザ光源から照射されるレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とにより合波レーザ光を構成して照射する方法が挙げられる。
前記露光工程において、光を変調する方法としては、前記光照射手段からの光を受光し出射する描素部をn個有する光変調手段により変調する方法であれば、特に制限はなく、目的に応じて適宜選択することができるが、n個の描素部の中から連続的に配置された任意のn個未満の描素部をパターン情報に応じて制御する方法が好適に挙げられる。
前記描素部の数(n)としては、特に制限はなく、目的に応じて適宜選択することができる。
前記光変調手段における描素部の配列としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2次元的に配列されることが好ましく、格子状に配列されることがより好ましい。
また、前記光の変調方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記光変調手段が、空間光変調素子による方法が好適に挙げられる。
前記空間光変調素子としては、特に制限はなく、目的に応じて適宜選択することができるが、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが好適に挙げられ、これらの中でもDMDが特に好適に挙げられる。
前記露光工程において、前記変調手段により変調された光は、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロレンズアレイを通過させられる。
前記マイクロレンズアレイに配置されるマイクロレンズとしては、非球面を有するものであれば、特に制限はなく、目的に応じて適宜選択することができるが、前記非球面がトーリック面であるマイクロレンズであることが好ましい。
更に、前記露光工程において、前記変調手段により変調された光は、アパーチャーアレイ、結合光学系、適宜選択されるその他の光学系などを通過させられることが好ましい。
前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル露光、アナログ露光などが挙げられるが、デジタル露光が好適である。
前記デジタル露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定のパターン情報に基づいて生成される制御信号に応じて変調されたレーザ光を用いて行われることが好適である。
更に、前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、短時間、かつ高速露光を可能とする観点から、露光光と感光層とを相対的に移動させながら行うことが好ましく、前記デジタル・マイクロミラー・デバイス(DMD)と併用されることが特に好ましい。
以下本発明のパターン形成方法に好適に用いられるパターン形成装置を図面を参照しながら説明する。
図7は本発明のパターン形成方法に好適に用いられるパターン形成装置の外観を示す概略斜視図である。
前記光変調手段を含むパターン形成装置は、図7に示すように4本の脚部154に支持された厚い板状の設置台156の上面に、シート状のパターン形成材料150を表面に吸着して保持する平板状のステージ152を備えている。
ステージ152は、その長手方向がステージ移動方向を向くように配置されると共に、前記設置台156の上面に形成されたガイド158によって往復移動可能に支持されている。なお、前記パターン形成装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動装置を有している。
設置台156の中央部には、ステージ152の移動経路を跨ぐように下向きC字状のゲート160が設けられている。ゲート160の各々の端部は、設置台156の長手方向中央部における両側面に固定されている。このゲート160の一方の側面側には、スキャナ162が設けられ、他方の側面側には、パターン形成材料150の先端及び後端を検知する複数(例えば、2個)の検知センサ164が設けられている。スキャナ162及び検知センサ164は、ゲート160に各々取り付けられて、ステージ152の移動経路の上方に固定配置されている。なお、スキャナ162及び検知センサ164は、これらを制御する図示しないコントローラに接続されている。
図8は、スキャナの構成を示す概略斜視図である。また、図9(A)は、感光層に形成される露光済み領域を示す平面図であり、図9(B)は、露光ヘッドによる露光エリアの配列を示す図である。
スキャナ162は、図8及び図9(B)に示すように、m行n列(例えば、3行5列)の略マトリックス状に配列された複数(例えば、14個)の露光ヘッド166を備えている。この例では、パターン形成材料150の幅との関係で、3行目には4個の露光ヘッド166を配置した。なお、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド166mnと表記する。
露光ヘッド166による露光エリア168は、副走査方向を短辺とする矩形状である。従って、ステージ152の移動に伴い、パターン形成材料150には露光ヘッド166毎に帯状の露光済み領域170が形成される。なお、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア168mnと表記する。
また、図9(A)及び(B)に示すように、帯状の露光済み領域170が副走査方向と直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、配列方向に所定間隔(露光エリアの長辺の自然数倍、本例では2倍)ずらして配置されている。このため、1行目の露光エリア16811と露光エリア16812との間の露光できない部分は、2行目の露光エリア16821と3行目の露光エリア16831とにより露光することができる。
図10は露光ヘッドの概略構成を示す斜視図である。
露光ヘッド16611〜166mn各々は、図10に示すように、光ビームをパターン情報に応じて光変調する前記光変調手段(各描素毎に変調する空間光変調素子)としての、米国テキサス・インスツルメンツ社製のデジタル・マイクロミラー・デバイス(以下「DMD」ということがある。)50と、DMD50の光入射側に配置され、光ファイバの出射端部(発光点)が露光エリア168の長辺方向と対応する方向に沿って一列に配列されるレーザ出射部68を備えた光照射手段66としてのファイバアレイ光源66と、ファイバアレイ光源66から出射されたレーザ光を補正してDMD上に集光させるレンズ系67と、レンズ系67を透過したレーザ光をDMD50に向けて反射するミラー69と、DMD50で反射されたレーザ光Bを、パターン形成材料150上に結像する結像光学系51とを備えている。なお、図10では、レンズ系67を概略的に示してある。
図12は、パターン情報に基づいて、DMDの制御を行うコントローラである。
DMD50は、図12に示すように、データ処理部、ミラー駆動制御部などを有するコントローラ302に接続されている。このコントローラ302のデータ処理部では、入力されたパターン情報に基づいて、露光ヘッド166毎にDMD50の制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処理部で生成した制御信号に基づいて、露光ヘッド166毎にDMD50の各マイクロミラーの反射面の角度を制御する。
図1は、前記光変調手段としてのデジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図である。
図1に示すように、DMD50は、SRAMセル(メモリセル)60上に、各々描素(ピクセル)を構成する多数(例えば、1024個×768個)の微小ミラー(マイクロミラー)62が格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支柱に支えられたマイクロミラー62が設けられており、マイクロミラー62の表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロミラー62の反射率は90%以上であり、その配列ピッチは縦方向、横方向とも一例として13.7μmである。また、マイクロミラー62の直下には、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル60が配置されており、全体はモノリシックに構成されている。
図2(A)及び(B)は、DMDの動作を説明する図である。
DMD50のSRAMセル60にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー62が、対角線を中心としてDMD50が配置された基板側に対して±α度(例えば±12度)の範囲で傾けられる。図2(A)は、マイクロミラー62がオン状態である+α度に傾いた状態を示し、図2(B)は、マイクロミラー62がオフ状態である−α度に傾いた状態を示す。
従って、パターン情報に応じて、DMD50の各ピクセルにおけるマイクロミラー62の傾きを制御することによって、DMD50に入射したレーザ光は、それぞれのマイクロミラー62の傾き方向へ反射される。
なお、図1では、マイクロミラー62が、+α度又は−α度に制御されている状態の一例を示す。それぞれのマイクロミラー62のオンオフ制御は、DMD50に接続された前記コントローラ302によって行われる。また、オフ状態のマイクロミラー62で反射したレーザ光Bが進行する方向には、図示しない光吸収体が配置されている。
DMD50は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。
図3(A)はDMD50を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図3(B)はDMD50を傾斜させた場合の露光ビーム53の走査軌跡を示している。
図3(B)に示すように、DMD50には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD50を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD50の傾斜角は微小であるので、DMD50を傾斜させた場合の走査幅Wと、DMD50を傾斜させない場合の走査幅Wとは略同一である。
次に、前記光変調手段における変調速度を速くさせる方法(以下「高速変調」と称する)について説明する。
ファイバアレイ光源66からDMD50にレーザ光Bが照射されると、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
ここで、DMD50全体のデータ処理速度には、限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。
DMD50は、主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に768組配列されているが、コントローラ302により一部のマイクロミラー列(例えば、1024個×256列)だけが駆動するように制御される。
図4(A)及び(B)は、DMDの使用領域を示す図である。
図4(A)に示すように、DMDの使用領域としては、DMD50の中央部に配置されたマイクロミラー列を使用してもよく、図4(B)に示すように、DMD50の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。
例えば、768組のマイクロミラー列の内、384組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り2倍速く変調することができる。また、768組のマイクロミラー列の内、256組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り3倍速く変調することができる。
以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミラーが1,024個配列されたマイクロミラー列が、副走査方向に768組配列されたDMDを備えているが、コントローラにより一部のマイクロミラー列だけが駆動されるように制御することにより、全部のマイクロミラー列を駆動する場合に比べて、1ライン当りの変調速度が速くなる。
また、DMDのマイクロミラーを部分的に駆動する例について説明したが、所定方向に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが2次元状に配列された細長いDMDを用いても、反射面の角度を制御するマイクロミラーの個数が少なくなるので、同様に変調速度を速くすることができる。
前記露光の方法としては、図5に示すように、スキャナ162によるX方向への1回の走査でパターン形成材料150の全面を露光してもよい。
また、前記露光の方法としては、図6(A)及び(B)に示すように、スキャナ162によりパターン形成材料150をX方向へ走査した後、スキャナ162をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査でパターン形成材料150の全面を露光するようにしてもよい。
前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領域が除去され、パターンが形成される。
次に、レンズ系67及び結像光学系51を説明する。
図11は、図10における露光ヘッドの構成の詳細を示す光軸に沿った複走査方向の断面図である。
図11に示すように、レンズ系67は、ファイバアレイ光源66から出射した照明光としてのレーザ光Bを集光する集光レンズ71、集光レンズ71を通過した光の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという)72、及びロッドインテグレータ72の前方つまりミラー69側に配置された結像レンズ74を備えている。
集光レンズ71、ロッドインテグレータ72及び結像レンズ74は、ファイバアレイ光源66から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光束としてDMD50に入射させる。
レンズ系67から出射したレーザ光Bは、ミラー69で反射し、TIR(全反射)プリズム70を介してDMD50に照射される。なお、図10では、このTIRプリズム70は省略してある。
図11に示すように、結像光学系51は、レンズ系52,54からなる第1結像光学系と、レンズ系57,58からなる第2結像光学系と、これらの結像光学系の間に挿入されたマイクロレンズアレイ55と、アパーチャアレイ59とを備えている。
マイクロレンズアレイ55は、DMD50の各描素に対応する多数のマイクロレンズ55aが2次元状に配列されてなるものである。本例では、後述するようにDMD50の1024個×768列のマイクロミラーのうち1024個×256列だけが駆動されるので、それに対応させてマイクロレンズ55aは1024個×256列配置されている。
マイクロレンズ55aの配置ピッチは、縦方向、横方向とも41μmである。マイクロレンズ55aの焦点距離は、0.19mm、NA(開口数)は0.11である。
また、マイクロレンズ55aは、光学ガラスBK7から形成されている。
各マイクロレンズ55aの位置におけるレーザ光Bのビーム径としては、41μmである。
アパーチャアレイ59は、マイクロレンズアレイ55の各マイクロレンズ55aに対応する多数のアパーチャ(開口)59aが形成されている。各アパーチャ59aの径は、10μmである。
第1結像光学系は、DMD50による像を3倍に拡大してマイクロレンズアレイ55上に結像する。
第2結像光学系は、マイクロレンズアレイ55を経た像を1.6倍に拡大してパターン形成材料150上に結像、投影する。
従って、光学系全体では、DMD50による像が、4.8倍に拡大されてパターン形成材料150上に結像、投影される。
なお、前記第2結像光学系とパターン形成材料150との間にプリズムペア73が配設され、該プリズムペア73を図11において、上下方向に移動させることにより、パターン形成材料150上における像のピントを調節可能となっている。なお同図中において、パターン形成材料150は矢印F方向に副走査送りされる。
次に、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系等について図面を参照しながら説明する。
図13(A)は前記露光ヘッドの構成を示す光軸に沿った断面図である。
図13(A)に示すように、前記露光ヘッドは、DMD50にレーザ光を照射する光照射手段144、DMD50で反射されたレーザ光を拡大して結像するレンズ系(結像光学系)454、458、DMD50の各描素部に対応して多数のマイクロレンズ474が配置されたマイクロレンズアレイ472、マイクロレンズアレイ472の各マイクロレンズに対応して多数のアパーチャ478が設けられたアパーチャアレイ476、アパーチャを通過したレーザ光を被露光面56に結像するレンズ系(結像光学系)480、482で構成される。
図14は、DMD50を構成するマイクロミラー62の反射面の平面度を測定した結果を示す図である。
図14において、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。図中x方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として前述のように回転する。
図15(A)及び(B)は、それぞれ、図14におけるx方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示す。
図14及び図15に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっている。このため、マイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪むという問題が発生し得る。
図16(A)及び(B)は、それぞれ、マイクロレンズアレイ55全体の正面形状及び側面形状を示す図である。
図16(A)に示すように、マイクロレンズアレイ55は、DMD50のマイクロミラー62に対応して、マイクロレンズ55aを横方向に1024列、縦方向に256列並設して構成される。
マイクロレンズアレイ55の長辺の寸法は、50mmであり、短辺の寸法は20mmである。
なお、同図(A)では、マイクロレンズ55aの並び順を、横方向についてはjで、縦方向についてはkで示す。
図17(A)及び(B)は、マイクロレンズアレイ構成するマイクロレンズの正面形状及び側面形状を示す図である。なお、図17(A)には、マイクロレンズ55aの等高線を併せて示す。
図17(A)及び(B)に示すように、マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされる。
非球面形状のマイクロレンズ55aは、具体的には、x方向における曲率半径Rxが−0.125mmであり、y方向における曲率半径Ryが−0.1mmとされるトーリックレンズである。
図18は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図である。
図18に示すように、マイクロレンズアレイ構成するマイクロレンズ55aとして、光出射側の端面が非球面形状であるトーリックレンズが用いられているため、x方向及びy方向に平行断面内におけるレーザ光Bの集光状態は、x方向に平行断面内とy方向に平行断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなる。
マイクロレンズ55aの形状としては、2次の非球面形状であってもよく、より高次(4次、6次・・・)の非球面形状であってもよい。前記高次の非球面形状を採用することにより、ビーム形状をさらに高精細にすることができる。
また、マイクロレンズ55aの光出射側の端面形状をトーリック面とすることの他、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成することも可能である。
図19a、b、c、及びdは、マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を示す図である。
また、比較のために、マイクロレンズが、曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を、図20a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。
また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
但し、前記計算式において、Cxは、x方向の曲率(=1/Rx)、Cyは、y方向の曲率(=1/Ry)、Xは、x方向に関するレンズ光軸Oからの距離、Yは、y方向に関するレンズ光軸Oからの距離、をそれぞれ示す。
図19a〜dと図20a〜dとを比較すると明らかなように、本発明のパターン形成方法ではマイクロレンズ55aを、y方向に平行断面内の焦点距離がx方向に平行断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。このため、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。
なお、マイクロミラー62のx方向及びy方向に関する中央部の歪の大小関係が、上記と逆になっている場合は、x方向に平行断面内の焦点距離がy方向に平行断面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。
アパーチャアレイ59は、マイクロレンズアレイ55の集光位置近傍に配置される。アパーチャアレイ59に備えられた各アパーチャ59aには、対応するマイクロレンズ55aを経た光のみが入射する。従って、1のマイクロレンズ55aに対応する1のアパーチャ59aには、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比を高めることが可能となる。
アパーチャ59aの径をある程度小さくすれば、マイクロレンズ55aの集光位置におけるビーム形状の歪みを抑制する効果が得られが、アパーチャアレイ59で遮断される光量がより多くなり、光利用効率が低下する。この場合に、マイクロレンズ55aを前記非球面形状とすることにより、光の遮断が防止され、光利用効率が高く保たれる。
また、前記マイクロレンズアレイ55及びアパーチャアレイ59により、DMD50を構成するマイクロミラー62の反射面の歪みによる収差を補正しているが、DMD以外の空間光変調素子を用いる本発明のパターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じることを防止可能である。
図13(A)に示すように、前記結像光学系は、レンズ480、482を備え、アパーチャアレイ59を通過した光は、該結像光学系により被露光面56上に結像される。
以上説明したとおり、前記パターン形成装置は、DMD50により反射されたレーザ光が、レンズ系の拡大レンズ454、458により数倍に拡大されて被露光面56に投影されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ472及びアパーチャアレイ476が配置されていなければ、図13(B)に示すように、被露光面56に投影される各ビームスポットBSの1描素サイズ(スポットサイズ)が露光エリア468のサイズに応じて大きなものとなり、露光エリア468の鮮鋭度を表すMTF(Modulation Transfer Function)特性が低下する。
一方、前記パターン形成装置では、マイクロレンズアレイ472及びアパーチャアレイ476を備えているので、DMD50により反射されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光される。これにより、図13(C)に示すように、露光エリアが拡大された場合でも、各ビームスポットBSのスポットサイズを所望の大きさ(例えば、10μm×10μm)に縮小することが可能となり、MTF特性の低下を防止して、高精細な露光を行うことができる。
なお、露光エリア468が傾いているのは、描素間の隙間を無くす為に、DMD50を傾けて配置しているからである。
また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによって被露光面56上でのスポットサイズが一定の大きさになるようにビームを整形することができると共に、各描素に対応して設けられたアパーチャアレイを通過させることにより、隣接する描素間でのクロストークを防止することができる。
更に、光照射手段144に高輝度光源を使用することにより、レンズ458からマイクロレンズアレイ472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実現することができる。
図22(A)及び(B)は、他のマイクロレンズアレイの正面形状及び側面形状を示す図である。
図22に示すとおり、他のマイクロレンズアレイとしては、各マイクロレンズに、マイクロミラー62の反射面の歪みによる収差を補正する屈折率分布を持たせたものである。
図示の通り、他のマイクロレンズ155aの外形形状は平行平板状である。なお、同図におけるx、y方向は、既述した通りである。
図23は、図22のマイクロレンズ155aによる上記x方向及びy方向に平行断面内におけるレーザ光Bの集光状態を示す概略図である。
図23に示すように、マイクロレンズ155aは、光軸Oから外方に向かって次第に増大する屈折率分布を有するものであり、同図においてマイクロレンズ155a内に示す破線は、その屈折率が光軸Oから所定の等ピッチで変化した位置を示している。図示の通り、x方向に平行断面内とy方向に平行断面内とを比較すると、後者の断面内の方がマイクロレンズ155aの屈折率変化の割合がより大であって、焦点距離がより短くなっている。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズアレイ55を用いる場合と同様の効果を得ることが可能である。
なお、図17及び図18に示したマイクロレンズ55aにおいて、併せて、前記屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラー62の反射面の歪みによる収差を補正することも可能である。
本発明のパターン形成方法では、公知の光学系の中から適宜選択したその他の光学系と併用してもよく、例えば、1対の組合せレンズからなる光量分布補正光学系などが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅を変化させて、光照射手段からの平行光束をDMDに照射するときに、被照射面での光量分布が略均一になるように補正する。以下、前記光量分布補正光学系について図面を参照しながら説明する。
図24は、光量分布補正光学系による補正の概念を示す説明図である。
図24(A)に示すように、入射光束と出射光束とで、その全体の光束幅(全光束幅)H0、H1が同じである場合について説明する。なお、図24(A)において、符号51、52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示したものである。
前記光量分布補正光学系において、光軸Z1に近い中心部に入射した光束と、周辺部に入射した光束とのそれぞれの光束幅h0、h1が、同一であるものとする(h0=hl)。前記光量分布補正光学系は、入射側において同一の光束幅h0,h1であった光に対し、中心部の入射光束については、その光束幅h0を拡大し、逆に、周辺部の入射光束に対してはその光束幅h1を縮小するような作用を施す。即ち、中心部の出射光束の幅h10と、周辺部の出射光束の幅h11とについて、h11<h10となるようにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなっている((h11/h10)<1)。
このように光束幅を変化させることにより、通常では光量分布が大きくなっている中央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは、例えば、有効領域内における光量ムラが30%以内、好ましくは20%以内となるようにする。
前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束幅を変える場合(図24(B),(C))においても同様である。
図24(B)は、入射側の全体の光束幅H0を、幅H2に“縮小”して出射する場合(H0>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大きくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「H11/H10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。
図24(C)は、入射側の全体の光束幅H0を、幅Η3に“拡大”して出射する場合(H0<H3)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。
このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、光軸Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことができ、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された光束断面を形成することができる。
次に、前記光量分布補正光学系として使用する1対の組合せレンズの具体的なレンズデータの1例を示す。この例では、前記光照射手段がレーザアレイ光源である場合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータを示す。なお、シングルモード光ファイバの入射端に1個の半導体レーザを接続した場合には、光ファイバからの射出光束の光量分布がガウス分布になる。本発明のパターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。
下記表1に基本レンズデータを示す。
表1から分かるように、1対の組合せレンズは、回転対称の2つの非球面レンズから構成されている。光入射側に配置された第1のレンズの光入射側の面を第1面、光出射側の面を第2面とすると、第1面は非球面形状である。また、光出射側に配置された第2のレンズの光入射側の面を第3面、光出射側の面を第4面とすると、第4面が非球面形状である。
表1において、面番号Siはi番目(i=1〜4)の面の番号を示し、曲率半径riはi番目の面の曲率半径を示し、面間隔diはi番目の面とi+1番目の面との光軸上の面間隔を示す。面間隔di値の単位はミリメートル(mm)である。屈折率Niはi番目の面を備えた光学要素の波長405nmに対する屈折率の値を示す。
下記表2に、第1面及び第4面の非球面データを示す。
上記の非球面データは、非球面形状を表す下記式(A)における係数で表される。
上記式(A)において各係数を以下の通り定義する。
Z:光軸から高さρの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
ρ:光軸からの距離(mm)
K:円錐係数
C:近軸曲率(1/r、r:近軸曲率半径)
ai:第i次(i=3〜10)の非球面係数
表2に示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数″であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
図26は、前記表1及び表2に示す1対の組合せレンズによって得られる照明光の光量分布を示す。ここで、横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。なお、比較のために、図25に、補正を行わなかった場合の照明光の光量分布(ガウス分布)を示す。
図25及び図26に示すように、光量分布補正光学系で補正を行うことにより、補正を行わなかった場合と比べて、略均一化された光量分布が得られている。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。
次に、光照射手段としてのファイバアレイ光源66を説明する。
図27a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図27a(B)は、(A)の部分拡大図であり、図27a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図である。また、図27bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図である。
図27aに示すように、ファイバアレイ光源66は、複数(例えば、14個)のレーザモジュール64を備えており、各レーザモジュール64には、マルチモード光ファイバ30の一端が結合されている。マルチモード光ファイバ30の他端には、コア径がマルチモード光ファイバ30と同一でかつクラッド径がマルチモード光ファイバ30より小さい光ファイバ31が結合されている。図27bに詳しく示すように、マルチモード光ファイバ31の光ファイバ30と反対側の端部は副走査方向と直交する主走査方向に沿って7個並べられ、それが2列に配列されてレーザ出射部68が構成されている。
図27bに示すように、レーザ出射部68は、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、マルチモード光ファイバ31の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。マルチモード光ファイバ31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。
また、クラッド径が小さい光ファイバ31の出射端を隙間無く1列に配列するために、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30の間にマルチモード光ファイバ30を積み重ね、積み重ねられたマルチモード光ファイバ30に結合された光ファイバ31の出射端が、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30に結合された光ファイバ31の2つの出射端の間に挟まれるように配列されている。
このような光ファイバは、図28に示すように、クラッド径が大きいマルチモード光ファイバ30のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ31を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ31の入射端面が、マルチモード光ファイバ30の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ31のコア31aの径は、マルチモード光ファイバ30のコア30aの径と同じ大きさである。
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ31を、マルチモード光ファイバ30の出射端部と称する場合がある。
マルチモード光ファイバ30及び光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ30及び光ファイバ31は、ステップインデックス型光ファイバであり、マルチモード光ファイバ30は、クラッド径=125μm、コア径=25μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=25μm、NA=0.2である。
一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。
但し、光ファイバ31のクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ31のクラッド径は10μm以上が好ましい。
レーザモジュール64は、図29に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック10上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,及び17と、1つの集光レンズ20と、1本のマルチモード光ファイバ30と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、かつ光ファイバ本数をより減らすことができる。
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。
前記合波レーザ光源は、図30及び図31に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ40内に収納されている。パッケージ40は、その開口を閉じるように作成されたパッケージ蓋41を備えており、脱気処理後に封止ガスを導入し、パッケージ40の開口をパッケージ蓋41で閉じることにより、パッケージ40とパッケージ蓋41とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
パッケージ40の底面にはベース板42が固定されており、このベース板42の上面には、前記ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の出射端部は、パッケージ40の壁面に形成された開口からパッケージ外に引き出されている。
また、ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。パッケージ40の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。
なお、図31においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ17にのみ番号を付している。
図32は、前記コリメータレンズ11〜17の取り付け部分の正面形状を示すものである。コリメータレンズ11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域を平行平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズ11〜17は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図32の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。
一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行方向に発光点が1列に並ぶように配設されている。
各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズ11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ11〜17の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズ11〜17の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
集光レンズ20は、非球面を備えた円形レンズの光軸を含む領域を平行平面で細長く切り取って、コリメータレンズ11〜17の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
前記ファイバアレイ光源は、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力でかつ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速かつ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。
複数の発光点を備えた光照射手段としては、例えば、図33に示すように、ヒートブロック100上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図34(A)に示す、複数(例えば、5個)の発光点110aが所定方向に配列されたチップ状のマルチキャビティレーザ110を用いることも可能である。マルチキャビティレーザ110は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザビームを合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ110に撓みが発生し易くなるため、発光点110aの個数は5個以下とするのが好ましい。
前記光照射手段としては、このマルチキャビティレーザ110や、図34(B)に示すように、ヒートブロック100上に、複数のマルチキヤビティレーザ110が各チップの発光点110aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。
また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。
例えば、図21に示すように、複数(例えば、3個)の発光点110aを有するチップ状のマルチキャビティレーザ110を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ110と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。マルチキャビティレーザ110は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
前記構成では、マルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザビームBの各々は、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
マルチキャビティレーザ110の複数の発光点110aを、上記マルチモード光ファイバ130のコア径と略等しい幅内に並設すると共に、集光レンズ120として、マルチモード光ファイバ130のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザビームBのマルチモード光ファイバ130への結合効率を上げることができる。
また、図35に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ110を用い、ヒートブロック111上に複数(例えば、9個)のマルチキャビティレーザ110が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキヤビティレーザ110は、各チップの発光点110aの配列方向と同じ方向に配列されて固定されている。
この合波レーザ光源は、レーザアレイ140と、各マルチキヤピティレーザ110に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキヤピティレーザ110の発光点に対応した複数のマイクロレンズを備えている。
上記の構成では、複数のマルチキヤビティレーザ110の複数の発光点10aの各々から出射したレーザビームBの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザビームLは、集光レンズ120によって集光され、マルチモード光フアイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
更に、他の合波レーザ光源としては、図36(A)及び(B)に示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、各チップの発光点110aの配列方向と同じ方向に等間隔で配列されて固定されている。
略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
マルチキャビティレーザ110のレーザ光出射側には、各チップの発光点110aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。
また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ130と、このマルチモード光ファイバ130の入射端にレーザビームを集光して結合する集光レンズ120と、が配置されている。
前記構成では、レーザブロック180、182上に配置された複数のマルチキヤビティレーザ110の複数の発光点10aの各々から出射したレーザビームBの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ120によって集光されて、マルチモード光フアイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。
なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ130の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。
また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一でかつクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。
スキャナ162の各露光ヘッド166において、ファイバアレイ光源66の合波レーザ光源を構成するGaN系半導体レーザLD1〜LD7の各々から発散光状態で出射したレーザビームB1,B2,B3,B4,B5,B6,及びB7の各々は、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザビームB1〜B7は、集光レンズ20によって集光され、マルチモード光ファイバ30のコア30aの入射端面に収束する。
集光光学系は、コリメータレンズ11〜17及び集光レンズ20によって構成される。また、集光光学系とマルチモード光ファイバ30とによって合波光学系が構成される。
集光レンズ20によって上述のように集光されたレーザビームB1〜B7が、マルチモード光ファイバ30のコア30aに入射して光ファイバ内を伝搬し、1本のレーザビームBに合波されてマルチモード光ファイバ30の出射端部に結合された光ファイバ31から出射する。
各レーザモジュールにおいて、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ31の各々について、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができる。従って、6本の光ファイバ31がアレイ状に配列されたレーザ出射部68での出力は約1W(=180mW×6)である。
ファイバアレイ光源66のレーザ出射部68には、高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。
例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部68での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。
これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部68での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。
ここで、図37(A)及び(B)を参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図37(A)に示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)1の発光領域が大きいので、DMD3へ入射する光束の角度が大きくなり、結果として走査面5へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。
一方、図37(B)に示すように、本発明のパターン形成装置における露光ヘッドでは、ファイバアレイ光源66の発光領域の副走査方向の径が小さいので、レンズ系67を通過してDMD50へ入射する光束の角度が小さくなり、結果として走査面56へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図37(A)及び(B)は、光学的な関係を説明するために展開図とした。
次に、前記パターン形成装置を用いた本発明のパターン形成方法について説明する。
まず、露光パターンに応じたパターン情報が、DMD50に接続された図示しないコントローラに入力され、コントローラ内のフレームメモリに一旦記憶される。このパターン情報は、画像を構成する各描素の濃度を2値(ドットの記録の有無)で表したデータである。
次に、パターン形成材料150を表面に吸着したステージ152は、図示しない駆動装置により、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。ステージ152がゲート160下を通過する際に、ゲート160に取り付けられた検知センサ164によりパターン形成材料150の先端が検出されると、フレームメモリに記憶されたパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出されたパターン情報に基づいて各露光ヘッド166毎に制御信号が生成される。そして、ミラー駆動制御部により、生成された制御信号に基づいて露光ヘッド166毎にDMD50のマイクロミラーの各々がオンオフ制御される。
次に、ファイバアレイ光源66からDMD50にレーザ光が照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光が、レンズ系54、58によりパターン形成材料150の被露光面56上に結像される。
このようにして、ファイバアレイ光源66から出射されたレーザ光が、描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。
また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
[現像工程]
前記現像工程としては、前記露光工程により露光された前記感光層の、未硬化領域を除去することにより現像する工程が挙げられる。
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。
前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができるが、例えば、約25℃〜40℃が好ましい。
前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。
[その他の工程]
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、硬化処理工程、エッチング工程、メッキ工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
−硬化処理工程−
前記本発明のパターン形成方法が、保護膜、層間絶縁膜等の永久パターンの形成を行うパターン形成方法である場合には、前記現像工程後に、感光層に対して硬化処理を行う硬化処理工程を備えることが好ましい。
前記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、前記永久パターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永久パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
−エッチング工程−
前記エッチング工程としては、公知のエッチング処理方法の中から適宜選択した方法により行うことができる。
前記エッチング処理に用いられるエッチング液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記金属層が銅で形成されている場合には、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液、過酸化水素系エッチング液などが挙げられ、これらの中でも、エッチングファクターの点から塩化第二鉄溶液が好ましい。
前記エッチング工程によりエッチング処理した後に前記パターンを除去することにより、前記基体の表面に永久パターンを形成することができる。
前記永久パターンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、配線パターンなどが好適に挙げられる。
−メッキ工程−
前記メッキ工程としては、公知のメッキ処理の中から適宜選択した適宜選択した方法により行うことができる。
前記メッキ処理としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイスローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなど処理が挙げられる。
前記メッキ工程によりメッキ処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をエッチング処理等で除去することにより、前記基体の表面に永久パターンを形成することができる。
本発明の永久パターン形成方法は、パターン形成材料上に結像させる像の歪みを抑制することにより、永久パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な配線パターンの形成に好適に使用することができる。
−保護膜及び層間絶縁膜形成方法−
本発明の永久パターン形成方法が、いわゆるソルダレジストを用いて保護膜及び層間絶縁膜の少なくともいずれかを形成するパターン形成方法である場合には、プリント配線板上に本発明のパターン形成方法により、永久パターンを形成し、更に、以下のように半田付けを行うことができる。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜あるいは絶縁膜(層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
[感光性フィルムの作製]
以下の組成からなる酸素遮断層組成物の溶液を、支持体として20μm厚のポリエチレンテレフタレート(PET)フィルム上に、1.5μmの膜厚となるように塗布し、乾燥して、前記支持体上に酸素遮断層を形成した。この酸素遮断層の酸素透過率は3×10−13cc・cm/cm・sec・cmHgであった。
次いで、以下の組成からなる感光性組成物を、前記支持体上に形成された酸素遮断層上に、35μmの膜厚となるように塗布し、乾燥して、前記酸素遮断層上に感光層を形成し実施例1の感光性フィルムを作製した。
更に、得られた感光性フィルム上に、保護膜として、厚さ12μmのポリプロピレンフィルムをラミネートで貼り付けた。
−酸素遮断層組成物溶液の組成−
ポリビニルアルコール(製品名:PVA205、クラレ(株)社製)・・・13質量部
ポリビニルピロリドン・・・・・・・・・・・・・・・・・・・・・・・・・6質量部
水・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・200質量部
メタノール・・・・・・・・・・・・・・・・・・・・・・・・・・・・180質量部
−感光性組成物−
下記組成に基づいて、感光性組成物の溶液を調製した。
硫酸バリウム分散液・・・・・・・・・・・・・・・・・・・・・24.75質量部
スチレン/無水マレイン酸/ブチルアクリレート共重合体(モル比40/32/28)とベンジルアミン(該共重合体の無水物基に対して1.0当量)との付加反応物の35質量%メチルエチルケトン溶液・・・・・・・・・・・・・・・・・・・13.36質量部
R712(日本化薬社製、2官能アクリルモノマー)・・・・・・・3.06質量部
ジペンタエリスリトールヘキサアクリレート・・・・・・・・・・・4.59質量部
IRGACURE819(チバ・スペシャルティー・ケミカルズ製)・1.98質量部
F780F(大日本インキ社製)の30質量%メチルエチルケトン溶液・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・0.066質量部
ハイドロキノンモノメチルエーテル・・・・・・・・・・・・・・・0.024質量部 メチルエチルケトン・・・・・・・・・・・・・・・・・・・・・・8.60質量部
なお、上記硫酸バリウム分散液は、硫酸バリウム(堺化学社製、B30)30質量部と、上記スチレン/無水マレイン酸/ブチルアクリレート共重合体の35質量%メチルエチルケトン溶液34.29質量部と、1−メトキシ−2−プロピルアセテート35.71質量部と、を予め混合した後、モーターミルM−200(アイガー社製)で、直径1.0mmのジルコニアビーズを用い、周速9m/sにて3.5時間分散して調製した。
<積層工程>
銅厚12μmの配線形成済み積層基板の表面を化学研磨処理し、該積層基板上に、前記感光性フィルムを、前記保護膜を剥離した後に、重ね合わせて、真空ラミネータ(MVLP500、名機製作所製)を用いて、0.4MPa、90℃の条件下で加圧・加熱して、前記積層基板上にソルダレジスト皮膜を形成した。
前記保護膜を剥離した時点では、前記感光層表面のタック性は無く、剥離もスムーズに行えた。
<露光工程>
次いで、前記支持体を剥離して、以下に説明するパターン形成装置を用いて、波長が405nmのレーザ光を、15段ステップウエッジパターン(ΔlogE=0.15)、及び直径の異なる多数の穴部が形成されるパターンが得られるように照射して露光し、前記感光層の一部の領域を硬化させた。
<<パターン形成装置>>
前記光照射手段として図27〜32に示す合波レーザ光源と、前記光変調手段として図4に示す主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に768組配列された前記光変調手段の内、1024個×256列のみを駆動するように制御されたDMD50と、図13に示した一方の面がトーリック面であるマイクロレンズをアレイ状に配列したマイクロレンズアレイ472及び該マイクロレンズアレイを通した光を前記感光層に結像する光学系480、482とを有するパターン形成装置を用いた。
前記マイクロレンズとしては、図17及び図18に示すように、トーリックレンズ55aが用いられており、前記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、前記y方向に対応する方向の曲率半径Ry=−0.1mmである。
また、マイクロレンズアレイ55の集光位置近傍に配置されるアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されている。
<現像工程>
露光が終了した前記感光層を室温にて10分間静置した後、感光層の全面に、アルカリ現像液として、1質量%炭酸ソーダ水溶液を用い、30℃にて60秒間シャワー現像し、未硬化の領域を溶解除去した。その後、水洗し、乾燥させ、基板上に所定のパターンを形成し、パターン形成済みプリント配線基板を作製した。
[評価]
以下の条件で、露光感度、解像度、鉛筆硬度、保存安定性の評価を行った。結果を表3に示す。
<露光感度>
現像後に基板上に得られたパターンにおいて、前記15段ステップウエッジの7段をクリアするのに必要な光エネルギー量を測定した。
実際には、基板上に残った前記感光層の硬化領域の厚みを測定し、次いで、レーザ光の照射量と、硬化領域の厚さとの関係をプロットして得られた感度曲線から配線上の硬化領域の厚さが15μmとなり、硬化領域の表面が光沢面である時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量として露光感度を評価した。
その結果、前記感光層を硬化させるために必要な光エネルギー量は、30mJ/cmであった。
<解像度>
得られた前記パターン形成済みプリント配線基板の表面を光学顕微鏡で観察し、パターンの穴部に残膜が無い、最小の穴径を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。その結果、解像度は、50μmφであった。
<鉛筆硬度>
得られた、前記パターン形成済みプリント配線基板を160℃、30分の条件下で加熱処理を行い、永久パターンを作製した。目視観察を行ったところ気泡の発生は認められなかった。
次いで、前記永久パターン形成済みプリント配線基板を酸洗いした後に、水溶性フラックス処理を行った後に、260℃のはんだ槽に5秒間ずつ、3回侵漬した。次いで、前記水溶性フラックスを水洗いして除去し、JIS5400に準拠して、前記永久パターンの鉛筆硬度を測定したところ、鉛筆硬度は3H〜4Hであった。
更に、目視観察では、ソルダレジスト皮膜の剥がれ、ふくれ、変色等は認められなかった。
<保存安定性>
実施例1の感光性フィルム上に、保護膜として、前記ポリプロピレンフィルムをラミネートで貼り付けた状態で、23℃、65%RHの環境下で6ヶ月間放置後に、前記露光感度及び解像度を同様の方法により測定したところ、露光感度及び解像度の低下は認められなかった。
(実施例2)
[感光性フィルムの作製]
実施例1において、感光性組成物として、下記組成の感光性組成物の溶液としたこと以外は、実施例1と同様にして、実施例2の感光性フィルムを作製した。
−感光性組成物−
下記組成に基づいて、感光性組成物の溶液を調製した。
硫酸バリウム分散液・・・・・・・・・・・・・・・・・・・・・24.75質量部
スチレン/無水マレイン酸/ブチルアクリレート共重合体(モル比40/32/28)とベンジルアミン(該共重合体の無水物基に対して1.0当量)との付加反応物の35質量%メチルエチルケトン溶液・・・・・・・・・・・・・・・・・・・13.36質量部
R712(日本化薬社製、2官能アクリルモノマー)・・・・・・・3.06質量部
ジペンタエリスリトールヘキサアクリレート・・・・・・・・・・・4.59質量部
IRGACURE819(チバ・スペシャルティー・ケミカルズ製)・1.98質量部
MW30HM(三和ケミカル社製、ヘキサメトキシメチルメラミン)・5.00質量部
F780F(大日本インキ社製フッ素系界面活性剤)の30質量%メチルエチルケトン溶液・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・0.066質量部
ハイドロキノンモノメチルエーテル・・・・・・・・・・・・・・・0.024質量部 メチルエチルケトン・・・・・・・・・・・・・・・・・・・・・・8.60質量部
なお、上記硫酸バリウム分散液は、実施例1と同様の方法により調製した。
[評価]
得られた実施例2の感光性フィルムについて、実施例1と同様に評価を行った。
露光感度は、30mJ/cm、解像度は50μmφ、鉛筆硬度は5H以上であり、6ヶ月間放置後の露光感度及び解像度の低下は認められなかった。結果を表3に示す。
(比較例1)
[感光性フィルムの作製]
実施例1において、支持体上に酸素遮断層を形成せずに、直接感光層を形成したこと以外は、実施例1と同様にして、比較例1の感光性フィルムを作製した。
[評価]
得られた、比較例1の感光性フィルムについて、支持体を剥離しないで、露光を行い、パターン形成済みプリント配線基板を作製した。
得られたパターン形成済みプリント配線基板について、実施例1と同様に評価を行った。
露光感度は、30mJ/cm、解像度は60μmφ、鉛筆硬度は3H〜4Hであり、6ヶ月間放置後の露光感度及び解像度の低下は認められなかった。
この結果から、支持体を介して露光を行った場合には、解像度が劣化することが認められた。結果を表3に示す。
(比較例2)
[感光性フィルムの作製]
実施例1において、支持体上に酸素遮断層を形成せずに、直接感光層を形成したこと以外は、実施例1と同様にして、比較例2の感光性フィルムを作製した。
[評価]
得られた比較例2の感光性フィルムについて、実施例1と同様に、支持体を剥離して、露光を行い、パターン形成済みプリント配線基板を作製した。
得られたパターン形成済みプリント配線基板について、実施例1と同様に評価を行った。
露光感度は、300mJ/cm、解像度は50μmφ、鉛筆硬度は5H以上であり、6ヶ月間放置後の露光感度及び解像度の低下は認められなかった。結果を表3に示す。
(実施例3)
[配線パターンの形成]
両面に厚さ18μmの銅層を有する両面銅張り積層板に、幅100μm及び間隙120μmの配線パターン(第一の配線パターン)を、公知のサブトラクティブ法により作製し、公知の方法で銅表面に黒化処理を行った。この配線上に、実施例1の感光性フィルムから保護フィルムを剥離後、感光層を基板両面にラミネートし、感光層間絶縁層を形成した。次に、前記実施例1と同様のパターン形成装置を用いて、バイアホール(層間接続用孔部)形成用パターンを有するレーザー光を該感光層間絶縁層に、露光量30mJ/cm、露光速度2mm/secで照射して、1質量%の炭酸ソーダ水溶液を用いて30℃にて60秒間シャワー現像を行った。その結果、層間絶縁層に直径約50μmのバイアホールが形成された。次に、拡散露光機を用いて、層間絶縁層全面に1900mJ/cmの条件で露光した。次いで、160℃にて60分間加熱して、後硬化処理を行った。上記層間絶縁層を有する基板を、大気圧オゾン表面処理機(CDO−201、k−tech社製)で、温度180℃で表面処理し、現像スカムを除去した。2.5質量%希硫酸水溶液に24℃にて2分間浸漬させた後、下記の処理剤を用いて下記の(I)〜(V)の工程により、無電解メッキ膜を形成した。
(I)前処理剤(PC206、メルテックス社製)に、上記基板を25℃にて2分間浸漬させた後、2分間純水で洗浄した。
(II)触媒付与剤(アクティベータ444,メルテックス社製)に、上記基板を25℃にて6分間浸漬させた後、2分間純水で洗浄した。
(III)活性化処理剤(PA491、メルテックス社製)に、上記基板を25℃にて10分間浸漬させた後、2分間純水で洗浄した。
(IV)無電解メッキ液(CU390、メルテックス社製)に、上記基板を25℃、pH12.8の条件で20分間浸漬させた後、5分間純水で洗浄した。
(V)100℃にて15分間乾燥した。
その結果、絶縁層上に、膜厚0.3μmの無電解銅メッキ層が形成された。
引き続き、上記基板をメルテックス社製の脱脂処理液(PC455)中に、25℃にて30秒間浸漬させた後、2分間水洗し、電解銅メッキを行った。硫酸銅75g/L、硫酸190g/L、塩素イオン約50ppm、及びメルテックス社製カパーグリームPCM 5mL/Lからなる組成の電解銅メッキ液を用いて、25℃、2.4A/100cm、40分間の条件でメッキを行った。その結果、厚さ約20μmの銅が析出した。次に、得られたメッキ層を有する基板をオーブンに入れ、170℃にて60分間放置してアニール処理を行った。
次に、ドライフィルムフォトレジストを用い、画像様露光した後、現像を行った。次いで、露出したメッキ層(銅)のエッチングを行い、第二の配線パターン及び層間接続部領域を形成した。
<評価>
得られた絶縁層上に配線パターン及び層間接続部領域が形成された基板について、260℃にて20秒間の半田耐熱試験を行ったところ、配線等の剥がれ、膨れなどは発生しなかった。また、JIS K5400による5mm間隔の碁盤目テストでも10点の評価であり、配線パターンと絶縁樹脂層間の接着は良好であった。また、基板を100mm幅に裁断し、テンシロン引張試験機を用いて90度剥離試験を行って、剥離強度を測定したところ、0.6kg/cm以上であった。
更に、基板上に、再度、前記感光性組成物塗布液を塗布し、乾燥して、前記と同様にして第3層目の配線パターンを形成したが、半田耐熱試験で問題は生じなかった。また、JIS K5400による5mm間隔の碁盤目テストでも10点の評価であり、配線パターンと絶縁樹脂層間の接着は良好であった。
(比較例3)
[配線パターンの形成及び評価]
実施例3において、感光性フィルムとして酸素遮断層を設けないで支持体フィルム上に直接感光層を形成した以外は、実施例3と同様にして、比較例3の配線パターンを形成した。得られた配線パターンについて、実施例3と同様の評価を行った。その結果、必要な露光量は300mJ/cmであり、解像度は60μmφ、露光速度は2mm/secであった。結果を表3に示す。
(比較例4)
[配線パターンの形成及び評価]
実施例1において、酸素遮断層として、下記組成の酸素遮断層塗布液から形成した酸素遮断層(酸素透過率8.4×10−11cc・cm/cm・sec・cmHg)を用いた以外は、実施例1と同様にして、永久パターンを形成した。
−酸素遮断層塗布液の組成−
メチルセルロース・・・75質量部
ポリ酢酸ビニルエマルジョン(固形分40質量%)・・・62.5質量部
水・・・800質量部
得られた永久パターンについて、実施例1と同様にして、評価を行ったところ、感光感度は150mJ/cm、解像度は60μmφ、鉛筆硬度は3H〜4Hであり、6ヶ月放置後の露光感度及び解像度が低下することは認められなかった。
但し、表3中で、6ヶ月放置後に露光感度及び解像度の低下が認められないものを○、低下したものを×とした。
表3の結果から、比較例1〜4の永久パターンと比較して、実施例1〜3の永久パターンは露光感度及び解像度が高いことが認められた。
本発明の永久パターン形成方法は、感光層上に結像させる像の歪みを抑制することにより、パッケージ基板を含むプリント配線基板分野における永久パターン(層間絶縁膜、ソルダーレジストパターン等の保護膜)を高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な永久パターンの形成に好適に使用することができる。
図1は、デジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図の一例である。 図2(A)及び(B)は、DMDの動作を説明するための説明図の一例である。 図3(A)及び(B)は、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。 図4(A)及び(B)は、DMDの使用領域の例を示す図の一例である。 図5は、スキャナによる1回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。 図6(A)及び(B)は、スキャナによる複数回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。 図7は、パターン形成装置の一例の外観を示す概略斜視図の一例である。 図8は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。 図9(A)は、パターン形成材料に形成される露光済み領域を示す平面図の一例であり、図9(B)は、各露光ヘッドによる露光エリアの配列を示す図の一例である。 図10は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例である。 図11は、図10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断面図の一例である。 図12は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。 図13(A)は、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った断面図の一例であり、図13(B)は、マイクロレンズアレイ等を使用しない場合に被露光面に投影される光像を示す平面図の一例であり、図13(C)は、マイクロレンズアレイ等を使用した場合に被露光面に投影される光像を示す平面図の一例である。 図14は、DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図の一例である。 図15は、前記マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。 図16は、パターン形成装置に用いられたマイクロレンズアレイの正面図(A)と側面図(B)の一例である。 図17は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)と側面図(B)の一例である。 図18は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図の一例である。 図19aは、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。 図19bは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図19cは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図19dは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図20aは、従来のパターン形成方法において、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。 図20bは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図20cは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図20dは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図21は、合波レーザ光源の他の構成を示す平面図の一例である。 図22は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)の一例と側面図(B)の一例である。 図23は、図22のマイクロレンズによる集光状態を1つの断面内(A)の一例と別の断面内(B)について示す概略図の一例である。 図24は、光量分布補正光学系による補正の概念についての説明図の一例である。 図25は、光照射手段がガウス分布でかつ光量分布の補正を行わない場合の光量分布を示すグラフの一例である。 図26は、光量分布補正光学系による補正後の光量分布を示すグラフの一例である。 図27a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図27a(B)は、(A)の部分拡大図の一例であり、図27a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図の一例である。 図27bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図の一例である。 図28は、マルチモード光ファイバの構成を示す図の一例である。 図29は、合波レーザ光源の構成を示す平面図の一例である。 図30は、レーザモジュールの構成を示す平面図の一例である。 図31は、図30に示すレーザモジュールの構成を示す側面図の一例である。 図32は、図30に示すレーザモジュールの構成を示す部分側面図である。 図33は、レーザアレイの構成を示す斜視図の一例である。 図34(A)は、マルチキャビティレーザの構成を示す斜視図の一例であり、図34(B)は、(A)に示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。 図35は、合波レーザ光源の他の構成を示す平面図の一例である。 図36(A)は、合波レーザ光源の他の構成を示す平面図の一例であり、図36(B)は、(A)の光軸に沿った断面図の一例である。 図37(A)及び(B)は、従来の露光装置における焦点深度と本発明のパターン形成方法(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。
符号の説明
LD1〜LD7 GaN系半導体レーザ
10 ヒートブロック
11〜17 コリメータレンズ
20 集光レンズ
30〜31 マルチモード光ファイバ
44 コリメータレンズホルダー
45 集光レンズホルダー
46 ファイバホルダー
50 デジタル・マイクロミラー・デバイス(DMD)
52 レンズ系
53 反射光像(露光ビーム)
54 第2結像光学系のレンズ
55 マイクロレンズアレイ
55a マイクロレンズ
56 被露光面(走査面)
57 第2結像光学系のレンズ
58 第2結像光学系のレンズ
59 アパーチャアレイ
64 レーザモジュール
66 ファイバアレイ光源
67 レンズ系
68 レーザ出射部
69 ミラー
70 プリズム
71 集光レンズ
72 ロッドインテグレータ
73 組合せレンズ
74 結像レンズ
100 ヒートブロック
110 マルチキャビティレーザ
111 ヒートブロック
113 ロッドレンズ
120 集光レンズ
130 マルチモード光ファイバ
130a コア
140 レーザアレイ
144 光照射手段
150 パターン形成材料
152 ステージ
155a マイクロレンズ
156 設置台
158 ガイド
160 ゲート
162 スキャナ
164 センサ
166 露光ヘッド
168 露光エリア
170 露光済み領域
180 ヒートブロック
184 コリメートレンズアレイ
302 コントローラ
304 ステージ駆動装置
454 レンズ系
468 露光エリア
472 マイクロレンズアレイ
474 マイクロレンズ
476 アパーチャアレイ
478 アパーチャ
480 レンズ系

Claims (24)

  1. 少なくとも、支持体と、酸素遮断層と、(A)無水マレイン酸共重合体の無水物基に対して0.1〜1.2当量の1級アミン化合物を反応させて得られる共重合体、(B)重合性化合物、及び(C)光重合開始剤を含有する感光性組成物からなる感光層をこの順に有することを特徴とする感光性フィルム。
  2. 酸素遮断層の厚みが、支持体の厚みの1/2以下である請求項1に記載の感光性フィルム。
  3. 酸素遮断層の酸素透過率が、5×10−12cc・cm/cm・sec・cmHg以下である請求項1から2のいずれかに記載のパターン形成方法。
  4. 酸素遮断層が、水溶液に可溶である請求項1から3のいずれかに記載の感光性フィルム。
  5. 共重合体(A)が、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られる請求項1から4のいずれかに記載の感光性フィルム。
  6. 感光性組成物が、熱架橋剤を含む請求項1から5のいずれかに記載の感光性フィルム。
  7. 熱架橋剤が、アルキル化メチロールメラミンである請求項6に記載の感光性フィルム。
  8. 重合性化合物(B)が、(メタ)アクリル基を有するモノマーから選択される少なくとも1種を含む請求項1から7のいずれかに記載の感光性フィルム。
  9. 光重合開始剤(C)が、ハロゲン化炭化水素誘導体、ホスフィンオキシド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びケトオキシムエーテルから選択される少なくとも1種を含む請求項1から8のいずれかに記載の感光性フィルム。
  10. 請求項1から9のいずれかに記載の感光性フィルムを、加熱及び加圧の少なくともいずれかにより感光層が基材の表面側となるように積層する積層工程と、
    該積層工程後に支持体を剥離し、次いで、感光層を露光する露光工程と、
    該露光工程により露光された感光層を現像する現像工程とを含むことを特徴とする永久パターン形成方法。
  11. 保護膜及び層間絶縁膜の少なくともいずれかを形成する請求項10に記載の永久パターン形成方法。
  12. 現像工程後に、感光層に対して硬化処理を行う請求項10から11のいずれかに記載の永久パターン形成方法。
  13. 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである請求項12に記載の永久パターン形成方法。
  14. 露光工程が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後に、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロレンズアレイを通過させた光によって行われる請求項10から13のいずれかに記載の永久パターン形成方法。
  15. 非球面が、トーリック面である請求項14に記載の永久パターン形成方法。
  16. 光変調手段が、n個の描素部の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能である請求項14から15のいずれかに記載の永久パターン形成方法。
  17. 光変調手段が、空間光変調素子である請求項14から16のいずれかに記載の永久パターン形成方法。
  18. 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である請求項17に記載の永久パターン形成方法。
  19. 露光が、アパーチャアレイを通して行われる請求項14から18のいずれかに記載の永久パターン形成方法。
  20. 露光が、露光光と感光層とを相対的に移動させながら行われる請求項10から19のいずれかに記載の永久パターン形成方法。
  21. 光照射手段が、2以上の光を合成して照射可能である請求項11から20のいずれかに記載の永久パターン形成方法。
  22. 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを集光して前記マルチモード光ファイバに結合させる集合光学系とを有する請求項11から21のいずれかに記載の永久パターン形成方法。
  23. レーザ光の波長が395〜415nmである請求項22に記載の永久パターン形成方法。
  24. 請求項11から23のいずれかに記載のパターン形成方法により形成されてなることを特徴とする永久パターン。
JP2004171467A 2004-06-09 2004-06-09 感光性フィルム、永久パターン及びその形成方法 Pending JP2005352064A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171467A JP2005352064A (ja) 2004-06-09 2004-06-09 感光性フィルム、永久パターン及びその形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171467A JP2005352064A (ja) 2004-06-09 2004-06-09 感光性フィルム、永久パターン及びその形成方法

Publications (1)

Publication Number Publication Date
JP2005352064A true JP2005352064A (ja) 2005-12-22

Family

ID=35586615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171467A Pending JP2005352064A (ja) 2004-06-09 2004-06-09 感光性フィルム、永久パターン及びその形成方法

Country Status (1)

Country Link
JP (1) JP2005352064A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125992A1 (ja) * 2006-04-28 2007-11-08 Asahi Kasei Emd Corporation 感光性樹脂積層体
EP2225611A1 (en) * 2008-01-28 2010-09-08 Macdermid Incorporated Method of creating an image in a photoresist laminate
WO2019102771A1 (ja) * 2017-11-27 2019-05-31 富士フイルム株式会社 感光性転写材料、樹脂パターン製造方法、及び、配線製造方法
WO2023127755A1 (ja) * 2021-12-27 2023-07-06 富士フイルム株式会社 レジストパターンの製造方法、積層体の製造方法、及び、ダイレクトイメージング露光用感光性転写材料

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125992A1 (ja) * 2006-04-28 2007-11-08 Asahi Kasei Emd Corporation 感光性樹脂積層体
JP5155853B2 (ja) * 2006-04-28 2013-03-06 旭化成イーマテリアルズ株式会社 感光性樹脂積層体
EP2225611A1 (en) * 2008-01-28 2010-09-08 Macdermid Incorporated Method of creating an image in a photoresist laminate
EP2225611A4 (en) * 2008-01-28 2011-03-02 Macdermid Inc PROCESS FOR PRODUCING AN IMAGE IN A PHOTO-LACQUER COATING
JP2011511963A (ja) * 2008-01-28 2011-04-14 マクダーミッド インコーポレーテッド フォトレジスト積層体の画像形成方法
WO2019102771A1 (ja) * 2017-11-27 2019-05-31 富士フイルム株式会社 感光性転写材料、樹脂パターン製造方法、及び、配線製造方法
JPWO2019102771A1 (ja) * 2017-11-27 2020-11-19 富士フイルム株式会社 感光性転写材料、樹脂パターン製造方法、及び、配線製造方法
JP6999693B2 (ja) 2017-11-27 2022-01-19 富士フイルム株式会社 感光性転写材料、樹脂パターン製造方法、及び、配線製造方法
WO2023127755A1 (ja) * 2021-12-27 2023-07-06 富士フイルム株式会社 レジストパターンの製造方法、積層体の製造方法、及び、ダイレクトイメージング露光用感光性転写材料

Similar Documents

Publication Publication Date Title
KR20070051335A (ko) 감광성 전자재료, 패턴형성방법 및 패턴
JP2006208607A (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP2006285108A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006235101A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007023254A (ja) 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007133333A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP4583916B2 (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP4494243B2 (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JPWO2006075633A1 (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP4651534B2 (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP2005309247A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007286480A (ja) パターン形成方法
JP2006048031A (ja) 感光性フィルム及びその製造方法、並びに永久パターンの形成方法
JP2007171246A (ja) 感光性組成物及びパターン形成材料、並びに、パターン形成装置及びパターン形成方法
JP2005352064A (ja) 感光性フィルム、永久パターン及びその形成方法
JP2007025176A (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP4546349B2 (ja) パターン形成材料、並びにパターン形成方法及びパターン
JP2006243552A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006065000A (ja) サンドブラストレジスト用感光性組成物、及びこれを用いたサンドブラストレジストフィルム、並びにサンドブラストレジストパターン形成方法
JP4468087B2 (ja) ソルダーレジスト用感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006023405A (ja) 永久パターン形成用感光性フィルム、その製造方法、及び永久パターンの形成方法
JP2006023406A (ja) 永久パターン形成用感光性フィルム、その製造方法、及び永久パターンの形成方法
JP2005300623A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2005316431A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006084873A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205