JP2004335639A - 投影露光装置 - Google Patents

投影露光装置 Download PDF

Info

Publication number
JP2004335639A
JP2004335639A JP2003127892A JP2003127892A JP2004335639A JP 2004335639 A JP2004335639 A JP 2004335639A JP 2003127892 A JP2003127892 A JP 2003127892A JP 2003127892 A JP2003127892 A JP 2003127892A JP 2004335639 A JP2004335639 A JP 2004335639A
Authority
JP
Japan
Prior art keywords
lens
light
optical system
pupil
photosensitive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003127892A
Other languages
English (en)
Inventor
Hiromi Ishikawa
弘美 石川
Yoshihiro Nishihata
純弘 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003127892A priority Critical patent/JP2004335639A/ja
Priority to US10/835,421 priority patent/US20040246454A1/en
Priority to TW093112598A priority patent/TW200508810A/zh
Priority to KR1020040031867A priority patent/KR20040095186A/ko
Priority to CNA2004100433771A priority patent/CN1550876A/zh
Publication of JP2004335639A publication Critical patent/JP2004335639A/ja
Priority to US11/447,062 priority patent/US20060238738A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/64Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle
    • A01D34/66Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle with two or more cutters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/77Driving mechanisms for the cutters actuated by advance of the machine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/82Other details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】投影露光装置において、変調された光の2次元パターンを投影する際に、ディストーションを抑制してMTF性能を向上させるとともに、光源から発せられた光の利用効率を高める。
【解決手段】像側テレセントリックな第1結像光学系51および第2結像光学系52のいずれかにおいて、入射瞳位置を間に挟んで隣り合う2つの瞳隣接レンズのうちの少なくとも一方のレンズのレンズ面のうちの少なくとも一方を非球面にした結像光学系50を用意し、光源ユニット60から発せられた光束をDMD80で空間光変調し、このDMD80で空間光変調された2次元パターンを上記結像光学系50を通して感光材料150上に結像させる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、投影露光装置に関し、詳しくは、光源から発せられた光を変調して得られた光の2次元パターンの像をテレセントリックな結像光学系を通して感光材料上に投影し露光する投影露光装置に関するものである。
【0002】
【従来の技術】
従来より、入射した光を露光マスクによって変調した光の2次元パターン、あるいは入射した光を空間光変調手段で空間光変調した光の2次元パターンを感光材料上に投影してこの感光材料を露光する投影露光装置が知られている。また、上記空間光変調手段として、傾斜角度変更可能なマイクロミラーを2次元状に多数配列(例えば1024×756)したデジタル・マイクロミラー・デバイス(以後、DMDという)を用いた投影露光装置も知られている(例えば特許文献1)。なお、上記デジタル・マイクロミラー・デバイス(DMD)としては、例えば、米国TI社(Texas Instruments社)が開発したものが知られており、このDMDを用いた動画用プロジェクタ等が製品化されている。
【0003】
上記DMDを用いた投影露光装置は、DMDの各マイクロミラーの像を感光材料上に結像させるための結像レンズを備え、露光用の光の照射を受けた各マイクロミラー中の所定角度に傾斜したマイクロミラーで反射され、上記結像レンズに向けて伝播された光のみをこの結像レンズを通して結像し、これにより、上記マイクロミラーで形成された2次元パターンを感光材料上に投影してこの感光材料を露光するものである。すなわち、この投影露光装置は、上記2次元パターンの像を形成する各画素が各マイクロミラーに対応するようにして露光を行なうものである。
【0004】
また、上記投影露光装置を用いて基板上のフォトレジスト(感光材料)に回路パターンを露光する試みも行なわれており、基板上に回路パターンの像を正確な倍率で、すなわち回路パターンの像の大きさが変化したりこの像が歪んだりすることなく結像できるように、この投影露光装置の結像光学系として像側にテレセントリックな結像光学系を用いる方式も検討されている。
【0005】
【特許文献1】
特開2001−305663号公報
【0006】
【発明が解決しようとする課題】
ところで、上記回路パターンの露光に関し、基板上に露光される回路パターンの像を形成する各画素の等ピッチ性のさらなる向上が望まれている。そのため、結像レンズのディスーションを1μm以下となるようにしたいという要請とともに、MTF(Modulation Transfer Function)性能を向上させたいという要請がある。すなわち、ディスーションを抑制しMTF性能を向上させたいという要請がある。
【0007】
また、回路パターンのような細い線の露光には波長の短い光、例えば波長450nm以下の光を光源に用いることが望ましいが、このような短波長の光は上記結像レンズを構成するガラスや樹脂等に対する透過率が低いため結像レンズを構成するレンズ枚数を少なくして光の利用効率を高めたいという要請もある。すなわち、例えば、露光光源として複数のレーザ光束を合波させるレーザ光合波光源を使用する場合には、光の利用効率を高めることにより、合波させるレーザ光束の数を少なくしても露光に必要な所定のレーザ光束の強度を得ることができるようになり、これにより、露光光源のコストを低減でき、さらに光源の故障頻度を少なくすることもできる。
【0008】
また、結像レンズを構成するレンズ枚数を多くすると、各レンズの製造上の誤差の積み重ねによってディスーションや像面湾曲が大きくなってしまうという問題があるため、所定の性能の結像レンズを得るための加工・組立・調整の負担が大きくなるという問題も生じる。
【0009】
これに対して、一般に、像側テレセントリックな結像レンズの像側へ、ディストーション補正用の非球面レンズを配置してこの結像レンズのディストーションを小さくするとともに、レンズ枚数を減らすことが考えられる。
【0010】
しかしながら、像側テレセントリックな結像レンズの像側の開口径が大きいので、上記像側に配置する非球面レンズの径も上記開口径に応じて大きくすることになり、このように大きな径の非球面レンズの製作、例えば、ガラス成形での製作が難しいという問題がある。
【0011】
なお、上記ディスーションを抑制しつつMTF性能を向上させる要請、光の利用効率を高めたいという要請、および非球面レンズの製作が困難であるという問題等は、入射した光を露光マスクによって変調した光の2次元パターンを感光材料上に投影しこの感光材料を露光する場合に使用する投影露光装置の結像光学系にも共通するものである。
【0012】
本発明は、上記事情に鑑みてなされたものであり、2次元パターンを投影する際にディスーションを抑制しMTF性能を向上させるとともに、光源から発せられた光の利用効率を高めることができる投影露光装置を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
本発明の第1の投影露光装置は、光源から発せられた光を空間光変調する空間光変調手段と、この空間光変調手段により空間光変調された光の2次元パターンを感光材料上に結像させるための像側テレセントリックな結像光学系とを備え、この結像光学系を通して前記2次元パターンを感光材料上に投影し、この2次元パターンを感光材料に露光する投影露光装置であって、結像光学系の入射瞳位置を間に挟んで隣り合う2つの瞳隣接レンズのうちの少なくとも一方のレンズが、該レンズのレンズ面のうちの少なくとも一方を非球面にしたものであることを特徴とするものである。
【0014】
本発明の第2の投影露光装置は、光源から発せられた光を変調する露光マスクと、この露光マスクにより変調された光の2次元パターンを感光材料上に結像させるための像側テレレセントリックな結像光学系とを備え、結像光学系を通して前記2次元パターンを感光材料上に投影し、この2次元パターンを前記感光材料に露光する投影露光装置であって、結像光学系の入射瞳位置を間に挟んで隣り合う2つの瞳隣接レンズのうちの少なくとも一方のレンズが、該レンズのレンズ面のうちの少なくとも一方を非球面にしたものであることを特徴とするものである。
【0015】
前記2つの瞳隣接レンズは、それぞれのレンズ面のうちの入射瞳位置の側とは反対側のレンズ面を非球面にしたものとすることができる。
【0016】
前記2つの瞳隣接レンズは、それぞれのレンズ面の両面を非球面にしたものとすることができる。
【0017】
前記結像光学系は、2つの瞳隣接レンズのうちの、感光材料側とは反対側に配置された第1の瞳隣接レンズの入射側レンズ面の形状のコーニック成分を示す係数の絶対値が、この第1の瞳隣接レンズの射出側レンズ面の形状のコーニック成分を示す係数の絶対値より大きくなるように構成したり、あるいは、前記2つの瞳隣接レンズのうちの、感光材料側に配置された第2の瞳隣接レンズの入射側レンズ面の形状のコーニック成分を示す係数の絶対値が、この第2の瞳隣接レンズの射出側レンズ面の形状のコーニック成分を示す係数の絶対値より小さくなるように構成したりすることが好ましい。
【0018】
前記結像光学系は、第1の瞳隣接レンズの入射側レンズ面のコーニック成分を示す係数の絶対値の値δ1と、この第1の瞳隣接レンズの射出側レンズ面のコーニック成分を示す係数の絶対値の値δ2との比δo=δ1/δ2が、1≦δo≦70となるようにすることが好ましい。
【0019】
前記結像光学系は、第2の瞳隣接レンズの射出側レンズ面のコーニック成分を示す係数の絶対値の値γ1と、この第2の瞳隣接レンズの入射側レンズ面のコーニック成分を示す係数の絶対値の値γ2との比γo=γ1/γ2が、1≦γo≦70となるようにすることが好ましい。
【0020】
前記結像光学系を通る光の波長は、350nm以上、450nm以下とすることができる。
【0021】
前記空間光変調手段はDMDとすることができる。
【0022】
前記露光マスクは、入射される光を反射したり、吸収したり、あるいは透過させたりする各領域を有し、各領域における光の変調特性の違いに基づいて光の2次元パターンを作成するものである。例えば、光を透過させるガラス板上に光を吸収する2次元パターンを形成したり、光を反射するガラス板上に光を吸収する2次元パターンを形成したりする等のことにより上記露光マスクを作成することができる。
【0023】
【発明の効果】
本発明者は上記課題に対して、像側にテレセントリックな結像光学系の中の径を小さくできるレンズ、すなわち、非球面レンズの加工が比較的容易なレンズに注目し、ディストーションを抑制しMTF性能を向上させることができる結像光学系の実現について種々検討した結果、光学性能に敏感に効く入射瞳位置近傍のレンズを非球面化し、この非球面化したレンズを含む入射瞳位置近傍の数枚のレンズに対して特に高精度な加工・組立・調整を施すことにより、ディストーションを抑制してMTF性能を向上させた所望の性能の結像光学系を実現できるとの知見を得、かかる知見に基づいて本発明に至ったものである。
【0024】
本発明の投影露光装置は、空間光変調手段によって空間光変調された光の2次元パターンを感光材料上に結像させるための像側テレレセントリックな結像光学系の入射瞳位置を間に挟んで隣り合う2つの瞳隣接レンズのうちの少なくとも一方のレンズのレンズ面のうちの少なくとも一方を非球面にしたり、露光マスクによって変調された光の2次元パターンを感光材料上に結像させるための像側テレレセントリックな結像光学系の入射瞳位置を間に挟んで隣り合う2つの瞳隣接レンズのうちの少なくとも一方のレンズのレンズ面のうちの少なくとも一方を非球面にしたので、すなわち、例えば、2つの瞳隣接レンズを、それぞれのレンズ面のうちの入射瞳位置の側とは反対側のレンズ面を非球面にしたり、あるいは2つの瞳隣接レンズを、それぞれのレンズ面の両面を非球面にしたので、非球面レンズの径を、製造が比較的容易となる程度に小さくすることができ、この非球面レンズの採用により、上記結像光学系のディスーションを小さく(例えば1μm以下に)しMTF性能を向上させるとともに、この結像光学系を構成するレンズ枚数を少なくすることができる。これにより、光源から発せられた光の利用効率を高めることができるとともに、この結像光学系のディスーションを抑制してMTF性能を向上させることができる。
【0025】
また、上記結像光学系を通る光の波長を350nm以上、450nm以下とすれば、一般に、上記波長領域の光に対するレンズ部材の透過率が低いので、上記結像光学系を構成するレンズ枚数を少なくして光の利用効率を高める顕著な効果を奏することができる。
【0026】
また、2つの瞳隣接レンズのうちの、感光材料側とは反対側に配置された第1の瞳隣接レンズの入射側レンズ面の形状のコーニック成分を示す係数の絶対値を、該第1の瞳隣接レンズの射出側レンズ面の形状のコーニック成分を示す係数の絶対値より大きくしたり、あるいは、2つの瞳隣接レンズのうちの、感光材料側に配置された第2の瞳隣接レンズの入射側レンズ面の形状のコーニック成分を示す係数の絶対値を、該第2の瞳隣接レンズの射出側レンズ面の形状のコーニック成分を示す係数の絶対値より小さくすれば、上記結像光学系のディストーションを確実に小さくするとともに、この結像光学系を構成するレンズ枚数を確実に少なくすることができる。これにより、光源から発せられた光の利用効率を高め、かつ、光の2次元パターンを投影する際のディストーションをより小さくすることができる。
【0027】
また、第1の瞳隣接レンズの入射側レンズ面のコーニック成分を示す係数の絶対値の値δ1と、この第1の瞳隣接レンズの射出側レンズ面のコーニック成分を示す係数の絶対値の値δ2との比δo=δ1/δ2を、1≦δo≦70としたり、第2の瞳隣接レンズの射出側レンズ面のコーニック成分を示す係数の絶対値の値γ1と、前記第の瞳隣接レンズの入射側レンズ面のコーニック成分を示す係数の絶対値の値γ2との比γo=γ1/γ2を、1≦γo≦70とすれば、上記結像光学系のディストーションを確実に小さくしMTF性能を向上させることができるとともに、この結像光学系を構成するレンズ枚数をより確実に少なくすることができる。これにより、光源から発せられた光の利用効率を高め、かつ、光の2次元パターンを投影する際のディストーションを抑制しMTF性能を向上させることができる。
【0028】
【発明の実施の形態】
以下、本発明の投影露光装置の実施の形態について、図面を用いて説明する。図1は投影露光装置に搭載される露光ヘッドの概略構成を展開して示す概念図、図2は上記露光ヘッド内を伝播する光束の光路に沿ってこの露光ヘッドを構成する光学要素を示す側面図、図3はDMDの概略構成を示す斜視図である。
【0029】
本発明の実施の形態による投影露光装置は、光源である光源ユニット60から発せられた光を空間光変調する空間光変調手段であるDMD80と、このDMD80により空間光変調された光の2次元パターンを感光材料150上に結像させるための像側テレセントリックな結像光学系である第1結像光学系51および第2結像光学系52を有する結像光学系50とを備えている。この投影露光装置は、第1結像光学系51および第2結像光学系52を通して上記2次元パターンを感光材料150上に投影し、この2次元パターンを感光材料150に露光するものである。なお、上記光源ユニット60、DMD80、結像光学系50等は後述する露光ヘッド166を構成する光学要素となるものである。上記2次元パターンは、表示用の画像、あるいは電気配線の回路パターン等を表す画像パターンとすることができ、感光材料150は、回路パターンが形成されるプリント基板作成用の基板に積層された感光材料としたり、あるいは液晶表示用の基板やプラズマディスプレイ用基板作成用の基板に積層された感光材料とすることができる。
【0030】
以下、上記結像光学系50について説明する。
【0031】
<結像光学系50>
上記図1および図2に示すように、露光ヘッド166を構成する光学要素である結像光学系50は、上記第1結像光学系51および第2結像光学系52と、第1結像光学系51と第2結像光学系52との間の光路中に配置されたマイクロレンズアレイ55と、アパーチャアレイ59とから構成されている。上記のマイクロレンズアレイ55は、DMD80で反射された各光束それぞれを個別に通すようにDMD80の各マイクロミラー81(図3参照)に対応して配置された多数のマイクロレンズ55aからなるものである。またアパーチャアレイ59は、上記各マイクロレンズ55aを通った各光束それぞれを個別に通すように各マイクロレンズ55aに対応して配置された多数のアパーチャ59aを有するものである。
【0032】
上記構成において、DMD80の各マイクロミラー81で反射した光によるこのマイクロミラー81の像は、第1結像光学系51により3倍に拡大されて結像される。ここで、各マイクロミラー81で反射され第1結像光学系51を通った上記各マイクロミラー81に対応するテレセントリックな各光束Laは、第1結像光学系51による結像位置の近傍に配されたマイクロレンズアレイ55の各マイクロレンズ55aによって個別に集光され、この個別に集光された光束がアパーチャ59aを通過す。マイクロレンズアレイ55およびアパーチャ59を通っ光束は、第2結像光学系52によりさらに1.67倍に拡大された上で、感光材料150の感光面151に結像される。
【0033】
ここで、2次元パターンの像を形成する各画素、すなわち各マイクロミラー81で反射されて各マイクロレンズ55aを通った光束Laに上記光学要素の収差等による太りがあっても、アパーチャ59aによって感光面151でのスポットサイズが一定の大きさになるようにこの光束Laを整形することができる。また、各マイクロミラー81で反射された光束Laを各マイクロミラー81に対応して設けられたアパーチャ59aを通過させることにより、各マイクロミラー(各画素)間でのクロストークを防止することができ、露光を行なう際の各マイクロミラーによるオン・オフの消光比を改善することができる。
【0034】
なお、マイクロミラーを上記所定角度に傾斜させてこのマイクロミラーで反射した光を結像光学系50に向けて伝播させる状態がマイクロミラーのオン状態であり、マイクロミラーを上記所定角度とは異なる角度に傾斜させてこのマイクロミラーで反射した光を結像光学系50に向かう光路から外して伝播させる状態がマイクロミラーのオフ状態であり、上記オン状態のマイクロミラーで反射された光が感光面151に結像され感光材料150を露光する。すなわち、各マイクロミラーは、マイクロミラーの傾斜角度を変更することにより入射された光を変調し、DMDは、所定の制御信号に応じて各マイクロミラーの傾斜角度を変更することにより入射された光を空間光変調する。
【0035】
以下、上記像側テレセントリックな第1結像光学系51について図4から図12を参照して詳しく説明する。
【0036】
図4は、像側テレセントリックな第1結像光学系51の構成を示す図である。なお、DMD80と第1結像光学系51との間には、ミラー75で反射された光をDMD80に向けて全反射させるとともに、DMD80で反射した光を通過させる、2つの三角プリズムが組み合わされた平行平板状のTIRプリズム(全反射プリズム)であるプリズム76(図1または図2参照)が配置されている。
【0037】
第1結像光学系51は、第1レンズ51A、第2レンズ51B、第3レンズ51C、第4レンズ51Dが入射側からこの順に配置された瞳前側レンズ群FFと、上記第4レンズ51Dにつづく、第5レンズ51F、第6レンズ51G、第7レンズ51H、第8レンズ51Iが入射側からこの順に配置された瞳後側レンズ群EEとを有している。上記瞳前側レンズ群FFと瞳後側レンズ群EEとの間に入射瞳位置51Eが位置する。
【0038】
上記第4レンズ51Dと第5レンズ51Fが上記入射瞳位置51Eを挟んで隣り合う2つの瞳隣接レンズであり、感光材料150側に配置された第5レンズ51Fが第2の瞳隣接レンズであり、感光材料150側とは反対側に配置された第4レンズ51Dが第2の瞳隣接レンズとなる。
【0039】
DMD80中のオン状態となっているマイクロミラーで反射されプリズム76を通過した光は結像光学系50に入射し、この光は上記瞳前側レンズ群FF、入射瞳位置51E、および瞳後側レンズ群EEをこの順に通って像面ZZへ伝播される。DMD80と像面ZZとは1:3(3倍)の倍率の結像関係にあり、マイクロレンズ55はこの像面ZZに配置される。
【0040】
また、第2結像光学系52は、上記マイクロレンズ55で集光された光束を感光材料150上に結像する。
【0041】
以下、第1結像光学系51の具体的な6つの実施例と1つの比較例について、MTF性能と上記コーニック成分を示す係数(以後、コーニック係数という)の絶対値の比δoおよびγo(以後、コーニック係数比δoおよびコーニック係数比γoという)との関係等について、図4および図5を参照して説明する。図5(a)は第1の瞳隣接レンズを非球面化した実施例と比較例の仕様と性能を示し、図5(b)は第2の瞳隣接レンズを非球面化した実施例と比較例の仕様と性能を示す。
【0042】
ここで、6つの実施例と1つの比較例は、全て、入射瞳位置の入射側に4枚の瞳前側レンズ群、入射瞳位置の射出側に4枚の瞳後側レンズ群が位置しているので、上記実施例と比較例を説明するにあたり、図4、および図4に示す記号を共通に使用して説明する。
【0043】
なお、上記6つの実施例と1つの比較例は、全てディストーションが所定値以下、すなわち1μm以下となるように設計されたものであり、これらの具体的な設計値は後述する。
【0044】
また、以下の説明においては、下記のように定めた第1条件から第5条件を引用して各実施例、比較例を説明する。
【0045】
第1条件:入射瞳位置を間に挟んで隣り合う2つの瞳隣接レンズのうちの少なくとも一方のレンズが、上記レンズのレンズ面のうちの少なくとも一方を非球面にしたものである。
【0046】
第2条件:2つの瞳隣接レンズが、それぞれのレンズ面のうちの入射瞳位置の側とは反対側のレンズ面を非球面にしたものである。
【0047】
第3条件:2つの瞳隣接レンズが、それぞれのレンズ面の両面を非球面にしたものである。
【0048】
第4条件:第1の瞳隣接レンズの入射側レンズ面のコーニック係数の絶対値が、この第1の瞳隣接レンズの射出側レンズ面のコーニック係数の絶対値より大きいか、または、第2の瞳隣接レンズの入射側レンズ面のコーニック係数の絶対値が、この第2の瞳隣接レンズの射出側レンズ面のコーニック係数の絶対値より小さい。
【0049】
第5条件:第1の瞳隣接レンズのコーニック係数比δoが、1≦δo≦70であるか、または、第2の瞳隣接レンズのコーニック係数比γoが、1≦γo≦70である。
【0050】
<比較例1>
比較例1の結像レンズは、球面レンズのみで設計した光学系であり、上記第1条件から第5条件のいずれをも満たしていない。図5(a)、および図5(b)に示すように、MTF(25)の値が2.0、MTF(50)の値が11.0でMTF性能が低く、所定のMTF性能を満たしておらず、性能判定は×で示されている。なお、MTF(25)の値は、25cycle/mmにおけるMTF性能を示し、MTF(50)の値は、50cycle/mmにおけるMTF性能を示す。
【0051】
<実施例1>
実施例1の結像レンズは、第1の瞳隣接レンズである第4レンズ51Dの両面を非球面にしたもので、コーニック係数比δoは0.90であり、上記第1条件から第3条件までを満たしている。図5(a)に示すように、MTF(25)の値が11.7、MTF(50)の値が32.0で所定のMTF性能を満たしており、性能判定は○で示されている。
【0052】
<実施例2>
実施例2の結像レンズは、第1の瞳隣接レンズである第4レンズ51Dの両面を非球面にしたもので, コーニック係数比δoは89.4であり、上記第1条件から第4条件までを満たしている。図5(a)に示すように、MTF(25)の値が12.9、MTF(50)の値が31.0で所定のMTF性能を満たしており、性能判定は○で示されている。
【0053】
<実施例3>
実施例3の結像レンズは、第1の瞳隣接レンズである第4レンズ51Dの両面を非球面にしたもので, コーニック係数比δoは70.0であり、上記第1条件から第5条件のすべてを満たしている。図5(a)に示すように、MTF(25)の値が19.6、MTF(50)の値が37.8で所定のMTF性能を大きく上回っており、性能判定は◎で示されている。
【0054】
<実施例4>
実施例4の結像レンズは、第1の瞳隣接レンズである第4レンズ51Dの両面を非球面にしたもので, コーニック係数比δoは14.8であり、上記第1条件から第5条件のすべてを満たしている。図5(a)に示すように、MTF(25)の値が39.4、MTF(50)の値が66.8で所定のMTF性能を大きく上回っており、性能判定は◎で示されている。
【0055】
<実施例5>
実施例5の結像レンズは、第2の瞳隣接レンズである第5レンズ51Fの両面を非球面にしたもので, コーニック係数比γoは0.1であり、上記第1条件から第3条件までを満たしている。図5(b)に示すように、MTF(25)の値が9.6、MTF(50)の値が31.3で所定のMTF性能を満たしており、性能判定は○で示されている。
【0056】
<実施例6>
実施例6の結像レンズは、第2の瞳隣接レンズである第5レンズ51Fの両面を非球面にしたもので, コーニック係数比γoは9.6であり、上記第1条件から第5条件までを満たしている。図5(b)に示すように、MTF(25)の値が21.4、MTF(50)の値が37.9で所定のMTF性能を大きく上回っており、性能判定は◎で示されている。
【0057】
上記比較例1、および実施例1から実施例6の具体的な設計値を図6から図12に示す。図6(a)は比較例1の設計値を示す図であり、図6(b)は比較例1のレンズ構成と光路を示す図である。図7(a)は実施例1の設計値を示す図であり、図7(b)は実施例1のレンズ構成と光路を示す図である。図8(a)は実施例2の設計値を示す図であり、図8(b)は実施例2のレンズ構成と光路を示す図である。図9(a)は実施例3の設計値を示す図であり、図9(b)は実施例3のレンズ構成と光路を示す図である。図10(a)は実施例4の設計値を示す図であり、図10(b)は実施例4のレンズ構成と光路を示す図である。図11(a)は実施例5の設計値を示す図であり、図11(b)は実施例5のレンズ構成と光路を示す図である。図12(a)は実施例6の設計値を示す図であり、図12(b)は実施例6のレンズ構成と光路を示す図である。
【0058】
なお、上記図6から図12の各図中にOBJからIMGまでの各設計値で示される光学素子は、OBJ、1、…、から…、21、IMGに向かう順に、プリズム76、第1レンズ51A、第2レンズ51B、第3レンズ51C、第4レンズ51D、第5レンズ51F、第6レンズ51G、第7レンズ51H、第8レンズ51Iが対応している。また、上記図6から図12中に示されるASPは対応するレンズ面が非球面であることを示し、この非球面式は、
非球面式:Z=cY/[1+SQRT{1−(1+K)c}]+AY+BY+CY+DY10
で示される。ここで、Kはコーニック係数、cは曲率(すなわち、c=1/曲率半径)を示す。
【0059】
上記のように、瞳隣接レンズを非球面化することにより、レンズ枚数を増加させることなく、上記結像光学系のディスーションを抑制しMTF性能を向上させることができる。なお、上記比較例1、および実施例1から実施例6を、空間光変調素子であるDMD80の位置に露光マスク80Rが配置された光学系としても上記と同様の結果が得られる。この場合には、露光マスクは、透過型の露光マスクではなく反射型の露光マスクが使用される。
【0060】
以下、上記像側テレセントリックな結像光学系を有する結像光学系50を使用した露光ヘッド166を搭載した投影露光装置について詳しく説明する。
【0061】
≪投影露光装置の全体構成の説明≫
図13は、本発明の投影露光装置の外観を示す斜視図、図14は上記投影露光装置による露光の様子を示す斜視図、図15(A)は感光材料上に形成される露光済領域を示す平面図、図15(B)は各露光ヘッドによる露光エリアの配列を示す図である。
【0062】
図13に示すように、本発明の投影露光装置は、スキャナユニット162と、このスキャナユニット162を支持する本体部とからなる。上記本体部は、感光材料150を表面に吸着して保持する平板状のステージ152を備え、このステージ152を副走査方向に移動可能に支持する上記副走査方向に沿って延びた2本のガイド158を設置台156上に有している。ステージ152は、ガイド158によって副走査方向に往復移動可能に支持され、このステージ152の長手方向が副走査方向を向くように配置されている。なお、この投影露光装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動部が備えられている。
【0063】
設置台156の中央部には、ステージ152の移動経路を跨いで上記スキャナユニット162を支持する門型のスキャナ支持部160が設けられている。スキャナ支持部160には、このスキャナ支持部160を挟んだ副走査方向の一方の側にはスキャナユニット162が設けられ、他方の側には感光材料150の先端および後端を検知する2つの検知センサ164が設けられている。スキャナユニット162および検知センサ164は、スキャナ支持部160に各々取り付けられ、ステージ152の移動経路の上方に配置されている。なお、スキャナユニット162および検知センサ164は、これらを制御する図示しないコントローラに接続されている。
【0064】
スキャナユニット162は、図14および図15に示すように、m行n列(例えば、3行5列)の略マトリックス状に配列された感光材料150に露光用の光を照射する複数(例えば、14個)の露光ヘッド166を備えている。
【0065】
本実施の形態では、感光材料150の幅との関係で、1行目および2行目には5個の露光ヘッド166を、3行目には4個の露光ヘッド166を配置した。なお、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド166mnと表記する。
【0066】
露光ヘッド166によって露光される各露光ヘッド166mnに対応する露光エリア168mnは、図15(B)に示すように、概略、副走査方向を短辺とする矩形状であり、ステージ152の移動に伴い、感光材料150には各露光ヘッド166mnに対応した図15(A)に示すような帯状の露光済領域170mnが形成される。
【0067】
上記露光ヘッドの各々は、上記副走査方向と直交する主走査方向に所定間隔ずらして配置されており、帯状の露光済領域170が上記主走査方向に隙間無く形成されるように、1行目に配置されている露光エリア16811と露光エリア16812との間の露光できない部分は、2行目に配置されている露光エリア16821と3行目に配置されている露光エリア16831とにより露光される。
【0068】
上記露光ヘッド166は、上記光源ユニット60、DMD80、および結像光学系50と、光源ユニット60から射出された露光用の光を入射してDMD80に照射するDMD照射光学系70とから構成され、DMD80で空間光変調された光を感光材料150上に導いてこの感光材料150を露光する。
【0069】
≪露光ヘッド166を構成する各要素の説明≫
以下、露光ヘッド166を構成する各要素について説明する。なお、既に説明済の結像光学系50については、ここでの説明を省略する。
【0070】
<光源ユニット60>
光源ユニット60は、複数(例えば、6個)のレーザ光合波光源40と、上記複数の各レーザ光合波光源40の構成要素である各マルチモード光ファイバ30に接続される複数の光ファイバ31を統合するレーザ射出部61とからなる。
【0071】
[レーザ光合波光源40の説明]
図16はレーザ光合波光源の構成を示す平面図、図17はレーザ光合波光源の構成を示す側面図、図18はレーザ光合波光源の構成を示す正面図、図19はレーザ光合波光源を構成する光学要素を示す拡大平面図である。
【0072】
○レーザ光合波光源40の構成
レーザ光合波光源40は、複数の半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,およびLD7と、1本の光ファイバ30と、上記複数の半導体レーザLD1〜LD7から射出された各光束からなる全体光束を収束させて光ファイバ30のコア部に入射させる光束収束手段であるコリメータレンズ11〜17および1つの集光レンズ20とを備え、上記光ファイバ30中に上記全体光束を合波させ、この合波された光束を光ファイバ30を通して射出する。
【0073】
より具体的には、このレーザ光合波光源40は、銅等の熱伝導率の高い材料からなるヒートブロック10上の1方向に並べられて固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,およびLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,および17と、コリメータレンズ11〜17から射出された各光束の全体を1点に収束させる1つの集光レンズ20と、集光レンズ20で収束された上記全体光束を入射して合波する1本のマルチモード光ファイバ30等とから構成されている。
【0074】
なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバに、20個の半導体レーザから射出されたそれぞれの光束を入射することも可能である。
【0075】
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲において上記405nm以外の発振波長を備えるレーザを用いてもよい。
【0076】
なお、図16、図17および図18に示すように、このレーザ光合波光源40は、上方が開口した箱状のパッケージ41内に上記光学要素を収納したものである。パッケージ41は、その開口を閉じるように作成されたパッケージ蓋49を備えており、箱状のパッケージ41を脱気処理した後、封止ガスを導入してパッケージ41の開口をパッケージ蓋49で閉じることにより、パッケージ41とケージ蓋49とで囲まれた閉空間(封止空間)が気密封止されている。
【0077】
パッケージ41の底面上にはベース板42が固定されており、このベース板42の上面には、上記ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の射出端部は、パッケージ41の壁面に形成された開口からパッケージ外に引き出されている。
【0078】
上記ベース板42は、流体を媒体とした温調手段あるいはペルチェ素子等(図示は省略)により温調されており、投影露光装置の稼動中は常に一定の温度に保たれる。
【0079】
ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。また、パッケージ41の壁面に形成された開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。
【0080】
なお、図16および図17においては、煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD1およびLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ1および17にのみ番号を付している。
【0081】
図18は、上記コリメータレンズ11〜17の取り付け部分を正面から見た図である。コリメータレンズ11〜17の各々は、非球面レンズであり、上記非球面レンズの光軸を含む領域をこの光軸に平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂成形又はガラス成形によって形成することができる。コリメータレンズ11〜17は、長手方向がGaN系半導体レーザLD1〜LD7の発光点が並ぶ方向(図18の左右方向)と直交する向きとなるようにして、上記並び方向(図18の左右方向)に密接配置されている。
【0082】
GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層の表面に対して平行な方向の拡がり角が各々例えば10°、活性層の表面に対して直角な方向の拡がり角が各々例えば30°の状態で各々レーザビームB1〜B7を発するものが用いられている。
【0083】
これらのGaN系半導体レーザLD1〜LD7は、活性層の表面が上記発光点が1列に並ぶ方向と平行になるように配設されている。すなわち、各発光点から発せられたレーザビームB1〜B7の拡がり角度が大きい方向が、上記細長形状の各コリメータレンズ11〜17の長手方向と一致し、拡がり角度が小さい方向が上記各コリメータレンズ11〜17の短手方向と一致する。
【0084】
なお、各コリメータレンズ11〜17の長手方向の幅は4.6mm、短手方向の幅が1.1mmであり、それらに対応して入射するレーザビームB1〜B7の楕円状のビーム径の長径は2.6mm、短径が0.9mmである。また、コリメータレンズ11〜17の各々は、焦点距離f=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
【0085】
集光レンズ20は、非球面レンズの光軸を含む領域をこの光軸に平行な平面で細長く切り取った形状を有し、コリメータレンズ11〜17が並ぶ方向にこの集光レンズ20の長手方向が一致し、それと直角な方向に集光レンズ20の短手方向が一致するように配置されている。
【0086】
なお、この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂成形又はガラス成形により形成することができる。
【0087】
○レーザ光合波光源40の動作
上記レーザ光合波光源40を構成するGaN系半導体レーザLD1〜LD7の各々から射出されたレーザビームB1,B2,B3,B4,B5,B6,およびB7の各々は、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザビームB1〜B7は、集光レンズ20によって収束され、マルチモード光ファイバ30のコア部30aの入射端面に入射する。
【0088】
集光レンズ20によって上述のように収束されたレーザビームB1〜B7が、このマルチモード光ファイバ30のコア部30aに入射し1本のレーザビームBに合波されて、このマルチモード光ファイバ30内を伝搬してマルチモード光ファイバ30の射出端から射出される。マルチモード光ファイバ30の射出端から射出された上記合波されたレーザビームBは、このマルチモード光ファイバ30に接続された後述する光ファイバ31に入射する。
【0089】
例えば、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができ、この出力が光ファイバ31に伝播される。従って、各マルチモード光ファイバ30にそれぞれ接続された6本の光ファイバ31が統合された後述するレーザ射出部61での出力は約1W(=180mW×6)である。
【0090】
[レーザ射出部61]
レーザ射出部61について、図20および図21を参照して説明する。図20(A)はレーザ光合波光源のマルチモード光ファイバと、レーザ射出部の光ファイバとの接続状態を示す斜視図、図20(B)はレーザ射出部の部分拡大図、図20(C)および図20(D)はレーザ射出部における光ファイバの配列を示す正面図、図21はレーザ光合波光源のマルチモード光ファイバと、レーザ射出部の光ファイバとの接続状態の詳細を示す断面図である。
【0091】
図20の(A)から(D)に示すように上記レーザ射出部61は、光ファイバ31、支持板65、および保護板63からなり、以下のように構成されている。
【0092】
図20(A)に示すように、上記レーザ光合波光源40の各マルチモード光ファイバ30の射出端には、コア径がマルチモード光ファイバ30のコア径と同一で、クラッド径がマルチモード光ファイバ30のクラッド径より小さい光ファイバ31の入射端がそれぞれ接続されている。また、上記各光ファイバ31の射出端は、図20(C)に示すように、1列に配列された射出端部68を構成している。なお、図20(D)に示すように、射出端部68は1列に配列される場合に限らず2段重ねて俵積み状に配列するようにしてもよい。
【0093】
光ファイバ31の射出側の部分は、図20(B)に示すように、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、この光ファイバ31の射出側の端面には、この端面を保護するためのガラス等からなる透明な保護板63が配置されている。保護板63は、光ファイバ31の端面に密着させて配置してもよいし、あるいは密着しないように配置してもよい。
【0094】
上記光ファイバ31とマルチモード光ファイバ30との接続は、図21に示すように、クラッド径が大きいマルチモード光ファイバ30の端面中の小径部分30cに、クラッド径が小さい光ファイバ31の端面を同軸的に結合するものであり、この結合は例えば融着により実施することができる。
【0095】
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺の光ファイバを別途作成して、この短尺光ファイバをフェルールや光コネクタ等を介してマルチモード光ファイバ30の射出端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。
【0096】
マルチモード光ファイバ30および光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、および複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本例では、マルチモード光ファイバ30および光ファイバ31は、ステップインデックス型光ファイバである。
【0097】
なお、マルチモード光ファイバ30は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=50μm、NA=0.2である。
【0098】
<DMD80>
つづいて、DMD80について説明する。図22(A)および図22(B)は、DMDを斜めに配置しない場合と斜めに配置する場合とにおける感光材料への露光状態の違いを比較して示す平面図である。
【0099】
露光ヘッド16611〜166mnの各々は、上記説明済みの図1、図2に示すように、入射された光ビームを所定の制御信号に応じて変調する空間光変調手段として、デジタル・マイクロミラー・デバイス:DMD80を備えている(図3参照)。このDMD80は、データ処理部とミラー駆動制御部とを備えた図示しないコントローラに接続されている。このコントローラのデータ処理部では、入力された画像データに基づいて、各露光ヘッド166毎に、DMD80に配されている各マイクロミラー81の駆動を制御する制御信号を生成する。また、ミラー駆動制御部では、データ処理部で生成した制御信号に基づいて、各露光ヘッド166毎に、DMD80の各マイクロミラー81の反射面の角度を制御する。
【0100】
上記DMD80は、長手方向にマイクロミラー81が多数個(例えば1024個)行方向に配列されたマイクロミラーが、短手方向に複数列(例えば756列)配置されている。図22に示すように、各マイクロミラー81で反射された個別の光束によるの副走査方向の走査軌跡(副走査線)のピッチは、DMD80を斜めに配置させることにより、DMD80を斜めに配置させないときのピッチP1(図22(A)参照)より小さいピッチP2(図22(B)参照)に設定することができ、この傾きの設定により、この露光ヘッド166による露光の解像度を大幅に向上させることができる。
【0101】
また、互いに異なるマイクロミラー81により感光材料150の上記副走査線上の同じ領域が重ねて露光(多重露光)されることで、露光位置の微少量をコントロールすることができ、高精細な露光を実現することができる。また、主走査方向に隣り合って並ぶ露光ヘッド間の各光束により露光される2次元パターンのつなぎ目が目立たないようにすることもできる。
【0102】
<DMD照射光学系70>
上記DMD照射光学系70は、図2に示すように、光源ユニット60のレーザ射出部61から射出された複数の光束を、全体的に概略平行光化するコリメーターレンズ71、このコリメーターレンズ71を通過した光の光路に配設されたマイクロフライアイレンズ72、このマイクロフライアイレンズ72と向かい合う状態に配設された別のマイクロフライアイレンズ73、およびこのマイクロフライアイレンズ73の射出側つまり後述するミラー75側に配置されたフィールドレンズ74、および後述するプリズム76から構成されている。
【0103】
マイクロフライアイレンズ72および73は、微小レンズセルが縦横に多数配置されてなるものであり、それらの微小レンズセルの各々を通過した光がミラー75およびプリズム76を介してDMD80に互いに重なる状態で入射するので、このDMD80を照射する光の光量分布が均一化される。
【0104】
なお、ミラー75は、フィールドレンズ74を通った光を反射させ、プリズム76は、TIRプリズム(全反射プリズム)であり、ミラー75で反射された光をDMD80に向けて全反射させる。上記のことによりDMD照射光学系70が、DMD80に対して概略均一な強度分布の光を照射する。
【0105】
≪投影露光装置の動作の説明≫
次に、上記投影露光装置の動作について説明する。
【0106】
投影露光装置が稼動され各部が稼動状態となる。この状態においてレーザ光合波光源40は温調されるがGaN系半導体レーザLD1〜LD7は点灯されない。
【0107】
2次元パターンに応じた画像データが、DMD80に接続された図示しないコントローラに入力され、コントローラ内のフレームメモリに一旦記憶される。この画像データは、画像を構成する各画素の濃度を表したデータである。このデータは、例えば、各画素の濃度を2値(ドットの記録の有無)で表すものとすることができる。
【0108】
感光材料150を表面に吸着したステージ152は、図示しない駆動部により、ガイド158に沿ってスキャナ支持部160を上流側から下流側に一定速度で移動する。ステージ152がスキャナ支持部160下を通過する際に、スキャナ支持部160に取り付けられた検知センサ164により感光材料150の先端が検出されると、フレームメモリに記憶された画像データが複数ライン分ずつ順次読み出され、データ処理部で読み出された画像データに基づいて各露光ヘッド166毎の制御信号が生成される。
【0109】
そして、感光材料150への露光準備が整ったときにGaN系半導体レーザLD1〜LD7が点灯され、上記生成された制御信号に基づいて、ミラー駆動制御部により各露光ヘッド166におけるDMD80のマイクロミラー81の各々が制御され感光材料150が露光される。
【0110】
各レーザ光合波光源40で発生されレーザ射出部61から射出された光束がDMD照射光学系70を通してDMD80に照射されると、DMD80のマイクロミラー81がオン状態のときに反射された光束は、結像光学系50を通して感光材料150の感光面151上に結像される。一方、DMD80のマイクロミラー81がオフ状態のときに反射された光束は、感光面151上に結像されないので感光材料150を露光しない。
【0111】
このようにして、光源ユニット60から射出された光束が各マイクロミラー81毎(画素毎)にオン・オフされて、各露光ヘッド166に対応する感光材料150上の各露光エリア168が露光される(図14および図15参照)。また、感光材料150がステージ152と共に副走査方向に移動され、各露光ヘッド166毎に副走査方向に延びる帯状の露光済領域170が形成される。
【0112】
[DMD80の部分使用について]
なお本実施の形態では、図23(A)および(B)に示すように、DMD80には、露光する際の主走査方向すなわち、行方向に1024個(画素)配置されたマイクロミラーが、露光する際の副走査方向すなわち列方向に756列(画素列)配列されているが、本例では、コントローラにより一部のマイクロミラーの行(例えば、1024個×300行)だけを駆動するように制御がなされる。
【0113】
例えば、図23(A)に示すように、DMD80の列方向の中央部に配置されたマイクロミラーの行列領域80Cのみを制御してもよく、図23(B)に示すように、DMD80の端部に配置されたマイクロミラーの行列領域80Tのみを制御してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラーの行列領域を使用するなど、状況に応じて使用するマイクロミラー中の領域を適宜変更してもよい。
【0114】
すなわち、DMD80のデータ処理速度には限界があり、制御するマイクロミラーの数(画素数)に比例して1ライン当りの変調速度が決定されるので、マイクロミラー中の一部分だけを使用することで1ライン当りの変調速度を速くすることができる。
【0115】
DMD80に接続されたコントローラ内のフレームメモリに記憶された画像データに基づく露光が終了すると、GaN系半導体レーザLD1〜LD7が消灯されレーザ光合波光源からの光束の射出が停止される。その後、スキャナユニット162による感光材料150の副走査が終了し、検知センサ164で感光材料150の後端が検出されると、ステージ152は、図示しない駆動部により、ガイド158に沿ってスキャナ支持部160を最上流側にある原点に復帰させ、再度、ガイド158に沿ってスキャナ支持部160の上流側から下流側に移動させて次の露光を行なう。
【0116】
なお、本発明の投影露光装置は、空間光変調手段としてDMD80を用いる場合に限らず、2次元パターンがガラス上に描かれた露光マスク80R等をDMD80の代わりに用いた装置として構成するようにしても上記と同様に光の2次元パターンを投影する際のディストーションを小さくしMTF性能を向上させるとともに、光源から発せられた光の利用効率を高める効果を得ることができる。
【0117】
また、本発明の投影露光装置は、露光する際の光の波長が限定されるのものでなく、どのような波長の光による露光に対しても対応可能なものであり、空間光変調手段に光を照射する方式、およびその光源等はどのようなものであってもよい。
【図面の簡単な説明】
【図1】投影露光装置に搭載される露光ヘッドの概略構成を展開して示す概念図
【図2】露光ヘッド内を伝播する光束の光路に沿って露光ヘッドの構成を示す側面図
【図3】DMDの概略構成を示す斜視図
【図4】瞳隣接レンズに非球面を有する像側テレセントリックな結像光学系の構成を示す側面図
【図5】実施例と比較例の仕様と性能を示す図
【図6】比較例1の設計値、レンズ構成、および光路を示す図
【図7】実施例1の設計値、レンズ構成、および光路を示す図
【図8】実施例2の設計値、レンズ構成、および光路を示す図
【図9】実施例3の設計値、レンズ構成、および光路を示す図
【図10】実施例4の設計値、レンズ構成、および光路を示す図
【図11】実施例5の設計値、レンズ構成、および光路を示す図
【図12】実施例6の設計値、レンズ構成、および光路を示す図
【図13】本発明の投影露光装置の外観を示す斜視図
【図14】図13の投影露光装置による露光の様子を示す斜視図
【図15】(A)は感光材料上に形成される露光済領域を示す平面図、(B)は各露光ヘッドによる露光エリアの配列を示す図
【図16】レーザ光合波光源の構成を示す平面図
【図17】レーザ光合波光源の構成を示す側面図
【図18】レーザ光合波光源の構成を示す正面図
【図19】レーザ光合波光源の光学要素を示す拡大平面図
【図20】(A)は光源ユニットの構成を示す斜視図、(B)はレーザ射出部の部分拡大図、(C)および(D)はレーザ射出部における光ファイバの配列を示す正面図
【図21】レーザ光合波光源のマルチモード光ファイバと、レーザ射出部の光ファイバとの接続状態を示す図
【図22】(A)および(B)は、DMDを斜めに配置しない場合と斜めに配置する場合とにおける感光材料への露光状態の違いを比較して示す平面図
【図23】(A)および(B)は、DMD中の使用領域の例を示す図
【符号の説明】
40 レーザ光合波光源
50 結像光学系
51 第1結像光学系
52 第2結像光学系
60 光源ユニット
61 レーザ射出部
70 DMD照射光学系
80 デジタル・マイクロミラー・デバイス(DMD)
150 感光材料
152 ステージ
162 スキャナ
166 露光ヘッド
168 露光エリア
170 露光済領域

Claims (10)

  1. 光源から発せられた光を空間光変調する空間光変調手段と、該空間光変調手段により空間光変調された光の2次元パターンを感光材料上に結像させるための像側テレレセントリックな結像光学系とを備え、前記結像光学系を通して前記2次元パターンを前記感光材料上に投影し、該2次元パターンを前記感光材料に露光する投影露光装置であって、
    前記結像光学系の入射瞳位置を間に挟んで隣り合う2つの瞳隣接レンズのうちの少なくとも一方のレンズが、該レンズのレンズ面のうちの少なくとも一方を非球面にしたものであることを特徴とする投影露光装置。
  2. 光源から発せられた光を変調する露光マスクと、該露光マスクにより変調された光の2次元パターンを感光材料上に結像させるための像側テレレセントリックな結像光学系とを備え、前記結像光学系を通して前記2次元パターンを前記感光材料上に投影し、該2次元パターンを前記感光材料に露光する投影露光装置であって、
    前記結像光学系の入射瞳位置を間に挟んで隣り合う2つの瞳隣接レンズのうちの少なくとも一方のレンズが、該レンズのレンズ面のうちの少なくとも一方を非球面にしたものであることを特徴とする投影露光装置。
  3. 前記2つの瞳隣接レンズが、それぞれのレンズ面のうちの前記入射瞳位置の側とは反対側のレンズ面を非球面にしたものであることを特徴とする請求項1または2記載の投影露光装置。
  4. 前記2つの瞳隣接レンズが、それぞれのレンズ面の両面を非球面にしたものであることを特徴とする請求項1または2記載の投影露光装置。
  5. 前記2つの瞳隣接レンズのうちの、前記感光材料側とは反対側に配置された第1の瞳隣接レンズの入射側レンズ面の形状のコーニック成分を示す係数の絶対値が、該第1の瞳隣接レンズの射出側レンズ面の形状のコーニック成分を示す係数の絶対値より大きいことを特徴とする請求項4記載の投影露光装置。
  6. 前記2つの瞳隣接レンズのうちの、前記感光材料側に配置された第2の瞳隣接レンズの入射側レンズ面の形状のコーニック成分を示す係数の絶対値が、該第2の瞳隣接レンズの射出側レンズ面の形状のコーニック成分を示す係数の絶対値より小さいことを特徴とする請求項4記載の投影露光装置。
  7. 前記第1の瞳隣接レンズの入射側レンズ面のコーニック成分を示す係数の絶対値の値δ1と、前記第1の瞳隣接レンズの射出側レンズ面のコーニック成分を示す係数の絶対値の値δ2との比δo=δ1/δ2が、1≦δo≦70であることを特徴とする請求項5記載の投影露光装置。
  8. 前記第2の瞳隣接レンズの射出側レンズ面のコーニック成分を示す係数の絶対値の値γ1と、前記第2の瞳隣接レンズの入射側レンズ面のコーニック成分を示す係数の絶対値の値γ2との比γo=γ1/γ2が、1≦γo≦70であることを特徴とする請求項6記載の投影露光装置。
  9. 前記結像光学系を通る光の波長が350nm以上、450nm以下であることを特徴とする請求項1から8のいずれか1項記載の投影露光装置。
  10. 前記空間光変調手段がDMDであることを特徴とする請求項1、または請求項2から請求項9のいずれか1項記載の投影露光装置。
JP2003127892A 2003-05-06 2003-05-06 投影露光装置 Pending JP2004335639A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003127892A JP2004335639A (ja) 2003-05-06 2003-05-06 投影露光装置
US10/835,421 US20040246454A1 (en) 2003-05-06 2004-04-30 Projecting exposure apparatus
TW093112598A TW200508810A (en) 2003-05-06 2004-05-05 Projective exposing device
KR1020040031867A KR20040095186A (ko) 2003-05-06 2004-05-06 투영 노광장치
CNA2004100433771A CN1550876A (zh) 2003-05-06 2004-05-08 投影曝光装置
US11/447,062 US20060238738A1 (en) 2003-05-06 2006-06-06 Projecting exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127892A JP2004335639A (ja) 2003-05-06 2003-05-06 投影露光装置

Publications (1)

Publication Number Publication Date
JP2004335639A true JP2004335639A (ja) 2004-11-25

Family

ID=33487067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127892A Pending JP2004335639A (ja) 2003-05-06 2003-05-06 投影露光装置

Country Status (5)

Country Link
US (2) US20040246454A1 (ja)
JP (1) JP2004335639A (ja)
KR (1) KR20040095186A (ja)
CN (1) CN1550876A (ja)
TW (1) TW200508810A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059532A1 (ja) * 2004-11-30 2006-06-08 Fujifilm Corporation パターン形成材料、並びにパターン形成装置及びパターン形成方法
WO2006059534A1 (ja) * 2004-12-01 2006-06-08 Fujifilm Corporation パターン形成材料及びパターン形成方法
JP2006184326A (ja) * 2004-12-24 2006-07-13 Fuji Photo Film Co Ltd パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP2006227221A (ja) * 2005-02-16 2006-08-31 Fuji Photo Film Co Ltd パターン形成材料、及びパターン形成装置並びにパターン形成方法
JP2006243559A (ja) * 2005-03-04 2006-09-14 Fuji Photo Film Co Ltd パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP2006337614A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 描画方法および装置
WO2007013351A1 (ja) * 2005-07-25 2007-02-01 Fujifilm Corporation 画像記録装置及び方法
WO2007032195A1 (ja) * 2005-09-14 2007-03-22 Fujifilm Corporation パターン形成材料、並びにパターン形成装置及びパターン形成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090101845A1 (en) * 2005-04-02 2009-04-23 Punch Graphix Prepress Germany Gmbh Exposure Device for Printing Plates
TWI305107B (en) 2005-09-29 2009-01-01 Young Optics Inc Optical projection apparatus
JP2009109550A (ja) * 2007-10-26 2009-05-21 Adtec Engineeng Co Ltd 直描露光装置
JP5951451B2 (ja) 2012-11-12 2016-07-13 浜松ホトニクス株式会社 光照射装置、顕微鏡装置及びレーザ加工装置
JP5926340B2 (ja) * 2014-09-12 2016-05-25 株式会社フジクラ Ldモジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610569B2 (ja) * 1999-03-23 2005-01-12 株式会社高岳製作所 能動共焦点撮像装置とそれを用いた三次元計測方法
JP2003504861A (ja) * 1999-07-01 2003-02-04 エイエスエムエル ネザランドズ ベスローテン フエンノートシャップ 空間濾波による画像向上装置および方法
TWI283798B (en) * 2000-01-20 2007-07-11 Asml Netherlands Bv A microlithography projection apparatus
JP4126853B2 (ja) * 2000-06-20 2008-07-30 コニカミノルタオプト株式会社 投影システム
US20020159044A1 (en) * 2001-04-30 2002-10-31 Ball Semiconductor, Inc. High resolution maskless lithography field lens for telecentric system
JP4020714B2 (ja) * 2001-08-09 2007-12-12 オリンパス株式会社 顕微鏡
EP1573366B1 (en) * 2002-08-24 2016-11-09 Chime Ball Technology Co., Ltd. Continuous direct-write optical lithography
US6765731B1 (en) * 2003-03-28 2004-07-20 3M Innovative Properties Company Low element count projection lenses for use with pixelized panels

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154556A (ja) * 2004-11-30 2006-06-15 Fuji Photo Film Co Ltd パターン形成材料、並びにパターン形成装置及びパターン形成方法
KR101516613B1 (ko) 2004-11-30 2015-05-04 아사히 가세이 이-매터리얼즈 가부시키가이샤 패턴 형성 재료, 및 패턴 형성 장치 및 패턴 형성 방법
TWI460541B (zh) * 2004-11-30 2014-11-11 Asahi Kasei E Materials Corp 圖案形成材料、及圖案形成裝置以及圖案形成方法
KR101338091B1 (ko) 2004-11-30 2013-12-06 아사히 가세이 이-매터리얼즈 가부시키가이샤 패턴 형성 재료, 및 패턴 형성 장치 및 패턴 형성 방법
WO2006059532A1 (ja) * 2004-11-30 2006-06-08 Fujifilm Corporation パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP4500657B2 (ja) * 2004-11-30 2010-07-14 旭化成イーマテリアルズ株式会社 パターン形成材料、並びにパターン形成装置及びパターン形成方法
WO2006059534A1 (ja) * 2004-12-01 2006-06-08 Fujifilm Corporation パターン形成材料及びパターン形成方法
JP2006184326A (ja) * 2004-12-24 2006-07-13 Fuji Photo Film Co Ltd パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP4583916B2 (ja) * 2004-12-24 2010-11-17 富士フイルム株式会社 パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP4520879B2 (ja) * 2005-02-16 2010-08-11 富士フイルム株式会社 パターン形成材料、及びパターン形成装置並びにパターン形成方法
JP2006227221A (ja) * 2005-02-16 2006-08-31 Fuji Photo Film Co Ltd パターン形成材料、及びパターン形成装置並びにパターン形成方法
JP4549891B2 (ja) * 2005-03-04 2010-09-22 富士フイルム株式会社 パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP2006243559A (ja) * 2005-03-04 2006-09-14 Fuji Photo Film Co Ltd パターン形成材料、並びにパターン形成装置及びパターン形成方法
JP2006337614A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 描画方法および装置
WO2007013351A1 (ja) * 2005-07-25 2007-02-01 Fujifilm Corporation 画像記録装置及び方法
JP2007079128A (ja) * 2005-09-14 2007-03-29 Fujifilm Corp パターン形成材料、並びにパターン形成装置及びパターン形成方法
WO2007032195A1 (ja) * 2005-09-14 2007-03-22 Fujifilm Corporation パターン形成材料、並びにパターン形成装置及びパターン形成方法

Also Published As

Publication number Publication date
KR20040095186A (ko) 2004-11-12
US20040246454A1 (en) 2004-12-09
CN1550876A (zh) 2004-12-01
TW200508810A (en) 2005-03-01
US20060238738A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4244156B2 (ja) 投影露光装置
JP4731787B2 (ja) 露光ヘッド及び露光装置
JP2004006440A (ja) レーザ装置、露光ヘッド、及び露光装置
JP2004062156A (ja) 露光ヘッド及び露光装置
US20060238738A1 (en) Projecting exposure apparatus
JP2005309380A (ja) 画像露光装置
JP4279053B2 (ja) 露光ヘッド及び露光装置
JP2004335640A (ja) 投影露光装置
JP2003345030A (ja) 露光装置
KR20070085985A (ko) 화상 노광 방법 및 장치
JP2007003829A (ja) 画像露光装置
TW200532360A (en) A method for an image exposure and a device thereof
JP2005032909A (ja) 照明光学系およびそれを用いた露光装置
JP2006337528A (ja) 画像露光装置
WO2007040165A1 (ja) 画像露光装置
JP2006195166A (ja) 画像露光装置およびマイクロレンズアレイユニット
JP4524213B2 (ja) 露光装置及び方法
JP2005275325A (ja) 画像露光装置
JP2004126034A (ja) 画像形成装置
JP4708785B2 (ja) 画像露光方法および装置
JP2007004075A (ja) 画像露光装置
KR20030091056A (ko) 레이저장치, 노광헤드, 노광장치 및 광섬유의 접속방법
JP4208141B2 (ja) 画像露光方法および装置
JP2006171426A (ja) 照明光学系及びそれを用いた露光装置
JP4014990B2 (ja) 光ファイバの接続方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303