WO2006064876A1 - 光学ユニット及びその製造方法 - Google Patents

光学ユニット及びその製造方法 Download PDF

Info

Publication number
WO2006064876A1
WO2006064876A1 PCT/JP2005/023050 JP2005023050W WO2006064876A1 WO 2006064876 A1 WO2006064876 A1 WO 2006064876A1 JP 2005023050 W JP2005023050 W JP 2005023050W WO 2006064876 A1 WO2006064876 A1 WO 2006064876A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
support member
laser
optical unit
Prior art date
Application number
PCT/JP2005/023050
Other languages
English (en)
French (fr)
Inventor
Yoshiro Kitamura
Seiji Kumazawa
Koji Funami
Kazumasa Takata
Yasuo Nishihara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006548903A priority Critical patent/JP4594328B2/ja
Priority to US11/793,234 priority patent/US7561350B2/en
Priority to CN2005800431590A priority patent/CN101389993B/zh
Publication of WO2006064876A1 publication Critical patent/WO2006064876A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/1483Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1632Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • B29C65/1638Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding focusing the laser beam on the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4845Radiation curing adhesives, e.g. UV light curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1406Ultraviolet [UV] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • B29C65/1416Near-infrared radiation [NIR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1609Visible light radiation, e.g. by visible light lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91631Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0039Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to an optical unit, an optical unit including a support member that supports the optical member, and a manufacturing method thereof.
  • Patent Document 1 proposes a technique for adjusting the tilt of the objective lens by adjusting the thickness of the adhesive interposed between the objective lens and the holder that holds the objective lens.
  • the variation in the thickness of the adhesive causes a new tilt of the objective lens.
  • Patent Document 2 a bimetal or a deformable member is provided between the objective lens and a holder that holds the objective lens, and the deformable member is deformed by applying thermal energy to the deformable member, thereby tilting the objective lens.
  • a technique for adjusting the above has been proposed.
  • Patent Documents 3 and 4 a support member made of a shape memory alloy and a heat-sensitive material is provided between the objective lens and the holder that holds the objective lens, respectively, and a part of the support member is irradiated with a laser. A technique for adjusting the tilt of the objective lens by recovering the shape of the part has been proposed.
  • Patent Documents 2 to 4 require a large amount of time to adjust the tilt of the objective lens because the external force acts on the holder during the adjustment and deforms.
  • a support member must be disposed between the lens and the holder, and the structure is complicated by the addition of the support member.
  • Patent Document 1 JP-A-4113521
  • Patent Document 2 JP-A-8-161755
  • Patent Document 3 JP-A-8-180422
  • Patent Document 4 JP-A-9 161755
  • an object of the present invention is to provide an optical unit manufacturing method capable of manufacturing the attitude of an optical member with a simple configuration and high reliability, and an optical unit manufactured by these methods. To do.
  • an optical unit manufacturing method includes an optical unit and a support member that supports the optical member.
  • the optical member and the support member are fixed after deforming at least one of the surfaces facing the member.
  • the optical unit according to the present invention at least one of the opposing support member and the optical member protrudes, and there is a gap between the optical member and the support member due to the protrusion. It is fixed.
  • FIG. 1 is a plan view showing an example of an optical unit whose posture is adjusted by the adjusting device according to the present invention.
  • FIG. 2 is a cross-sectional view of the optical unit shown in FIG.
  • FIG. 3 is a front view showing a configuration of an attitude adjustment device including the optical unit shown in FIGS.
  • FIG. 4 is a cross-sectional view illustrating a method for adjusting the attitude of the optical unit using the attitude adjustment apparatus shown in FIG.
  • FIG. 5 is a cross-sectional view for explaining a method of adjusting the attitude of the optical unit using the attitude adjustment apparatus shown in FIG.
  • FIG. 6 is a cross-sectional view for explaining a method for adjusting the attitude of the optical unit using the attitude adjustment apparatus shown in FIG.
  • FIG. 7 is a diagram for explaining an optical unit attitude adjustment method using the attitude adjustment apparatus shown in FIG. Minute plan view.
  • FIG. 8 is a graph showing the relationship between laser irradiation time and lens tilt amount.
  • FIG. 9 is a cross-sectional view showing a method for fixing a lens to a holder.
  • FIG. 10 is a view showing a groove formed in the lens holder for placing an ultraviolet curable resin.
  • FIG. 11 is a sectional view taken along line XI—XI in FIG.
  • FIG. 12 is a plan view showing another form of groove arrangement.
  • FIG. 13 is a plan view showing another form of groove arrangement.
  • FIG. 14 is a cross-sectional view showing a state where molten lens material is regulated by a groove.
  • FIG. 15 is a flowchart showing a process of a lens attitude adjustment method.
  • FIG. 16A is a diagram for explaining a lens attitude adjustment method.
  • FIG. 16B is a diagram for explaining a lens attitude adjustment method.
  • FIG. 17 is a plan view of an optical unit including another form of holder.
  • FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG.
  • FIG. 19 is a cross-sectional view showing a part of an optical unit including a lens provided with a posture adjustment projection and a method for adjusting the posture.
  • FIG. 20 is a sectional view showing a part of an optical unit including a lens whose posture is adjusted by the method of FIG.
  • FIG. 21 is a cross-sectional view for explaining a method for adjusting the posture of the lens by melting a part of the holder / lens.
  • FIG. 22 is a cross-sectional view illustrating a method for adjusting the posture of the lens by melting a part of the holder / lens together with FIG.
  • FIG. 23 is a cross-sectional view showing a method of irradiating a laser beam from below with respect to a melting position.
  • FIG. 24 is a view showing an apparatus for fixing a lens to a holder.
  • FIG. 25 is a cross-sectional view illustrating another embodiment of a method for fixing a lens to a holder.
  • FIG. 26 is a cross-sectional view for explaining another embodiment of the lens fixing method with respect to the holder together with FIG. Explanation of symbols
  • Adjustment device 12: Holder, 14: Optical part, 16: Frame, 18: Frame part, 20: Support part, 22: Lens, 24: Spherical part, 26: Outer ring part (edge), 28: Posture adjustment Equipment, 30: Evaluation section , 32: Adjustment unit, 34: Control unit, 36: Optical axis, 38: Light source, 40: Optical unit, 42: Diffraction grating, 4: Moving device, 46: Optical unit, 48: Lens, 50: Lens, 52 : Image receiving unit, 54: heating device, 56: laser source, 58: optical unit, 60: laser, 62: support part, 64: lens part, 66: boundary surface, 68: heating center part, 70: annular convex part, 72: UV curable resin, 74: UV illuminator, 76: UV light, 78: Groove, 80: Groove, 82: Lens center axis, 84: Maximum tilt angle direction, 86: Holder, 88: Upper inner periphery, 90
  • an optical unit whose posture is adjusted by the posture adjusting device of the present invention includes a holder 12 of a support member fixedly supported by a base or a support portion (not shown), and a holder 12
  • the optical component 14 is an optical member supported by the optical member 14.
  • the holder 12 has a frame 16.
  • the frame 16 includes two frame portions 18 extending in the X direction and two frame portions 18 extending in the Y direction perpendicular to the X direction.
  • a circular opening is formed inside the four frame portions 18. ing.
  • Each of the four frame portions 18 has a support portion 20 that protrudes inward at the center in the longitudinal direction of the inner surface.
  • the upper surface of each support portion 20 is preferably provided at a position lower than the upper surface of the frame 16.
  • the optical component 14 is, for example, a lens 22.
  • the lens 22 is a plano-convex lens.
  • a spherical portion 24 having an upper surface formed of a flat surface and a lower surface formed of a spherical surface, and an outer ring portion (edge) 26 having a constant thickness surrounding the spherical portion 24.
  • the outer diameter ⁇ 1 of the outer ring portion 26 is smaller than the distance L1 between the frame portions 18 facing each other in the X direction and the Y direction.
  • the outer diameter ⁇ 2 of the spherical surface portion 24 is smaller than the distance L2 between the support portions 20 facing each other in the X direction and the Y direction.
  • Honoreda 12 and lens 22 are made of a material that melts when heat is applied.
  • Honoreda 12 is preferably formed of a material that absorbs about 80% or more of light in the visible region and near infrared region, for example, light having a wavelength of about 400 to about 100 nm.
  • the lens 22 is preferably formed of a material that transmits about 80% or more of light in the visible region and near infrared region, for example, light having a wavelength of about 400 to about 100 nm.
  • a material having a glass transition temperature of about 150 ° C. for example, an amorphous polyolefin resin
  • materials that melt easily and have a glass transition temperature of about 135 ° C for example, liquid crystal polymers
  • the holder 12 and the lens 22 having such a configuration are arranged by the four support portions 20 of the holder 12 in a state where the center of the lens 22 coincides with or substantially coincides with the center of the holder 12.
  • the outer ring portion 26 of the lens 22 is supported. Then, as will be described later, the posture of the lens 22 with respect to the holder 12 is detected and evaluated, and the posture of the lens 22 with respect to the holder 12 is adjusted based on the evaluation result.
  • FIG. 3 shows the posture adjustment device 28.
  • the posture adjustment device 28 controls the evaluation unit 30 that evaluates the posture of the lens 22, the adjustment unit 32 that adjusts the posture of the lens 22 based on the evaluation result of the evaluation unit 30, and the evaluation unit 30 and the adjustment unit 32.
  • a control unit 34 controls the evaluation unit 30 that evaluates the posture of the lens 22, the adjustment unit 32 that adjusts the posture of the lens 22 based on the evaluation result of the evaluation unit 30, and the evaluation unit 30 and the adjustment unit 32.
  • the evaluation unit 30 has a plurality of parts arranged on both sides (upper and lower in the drawing) of the lens 22 supported by the holder 12.
  • the evaluation unit 30 includes an illumination unit or a light source 38 that emits light along the optical axis 36 of the adjustment device 28.
  • a laser device that emits laser light can be suitably used.
  • the laser light is preferably coherent, for example, helium-neon laser light.
  • An optical unit 40 is disposed between the light source 38 and the lens 22 so that the light emitted from the light source 38 enters the lens 22 in the form of parallel light.
  • the optical unit 40 has one or a plurality of lenses. If necessary, the optical unit 40 includes a mirror. Other optical members such as one are arranged.
  • a transmissive diffraction grating 42 is disposed at or near the condensing position of the light transmitted through the lens 22.
  • the diffraction grating 42 is made of a light-transmitting plate disposed on a surface orthogonal to the optical axis 36, and extends in a direction orthogonal to the optical axis 36 on the main surface facing the lens 22 or on the opposite main surface.
  • a plurality of grooves are formed at equal intervals.
  • the diffraction grating 42 is connected to a moving device 44, and is moved in a direction perpendicular to the grating groove on a plane perpendicular to the optical axis 36 based on the driving of the moving device 44.
  • a piezoelectric element can be preferably used as the moving device 44.
  • the optical unit 46 into which the light transmitted through the diffraction grating 42 is incident has a lens 48 into which the light (diffracted light) emitted from the diffraction grating 42 is incident.
  • the grating grooves of the diffraction grating 42 are arranged so that the 0-order diffracted light and the + first-order diffracted light or the 0-order diffracted light and the first-order diffracted light or the first-order diffracted light or the sharing interference image from the diffraction grating 42 are incident on the lens 48. Conditions such as size and pitch are determined.
  • the optical unit 46 also has a lens 50 that collects light transmitted through the lens 48.
  • the optical unit 46 can include optical members other than these lenses 48 and 50, for example, mirrors.
  • the evaluation unit 30 includes an image sensor or image receiving unit 52 serving as a detection unit that receives light emitted from the emission optical unit 46.
  • the image receiving unit 52 is preferably composed of a charge coupled device (CCD), and receives a sharing interference image incident on the lens 48.
  • CCD charge coupled device
  • the control unit 34 is electrically connected to the light source 38, the moving device 44, and the image receiving unit 52, and activates the light source 38 when the posture of the lens 22 is evaluated.
  • the light emitted from the light source 38 is adjusted to parallel light or almost parallel light by the incident optical unit 40, and is irradiated to the diffraction grating 42 through the lens 22.
  • the 0th-order diffracted light and the + first-order diffracted light or the 0th-order diffracted light and the _first-order diffracted light formed by the diffraction grating 42 overlap each other on the pupil plane of the lens 48 and share interference.
  • the sharing interference light is returned to parallel light or substantially parallel light by the lens 48 and irradiated to the image receiving unit 52 by the lens 50.
  • the image receiving unit 52 outputs a signal corresponding to the shearing interference image irradiated on the image receiving surface to the control unit 34.
  • the control unit 34 drives the moving device 44 to move the diffraction grating 42 in a direction orthogonal to the optical axis 36.
  • the lens 22 is tilted with respect to the optical axis 36.
  • any aberration spherical aberration, coma aberration, astigmatism, curvature of field, distortion (distortion), chromatic aberration
  • the received light intensity at each point in the sharing interference image changes. Using this change in light intensity, the controller 34 evaluates the posture of the lens 22.
  • the lens attitude adjustment unit 32 includes heating devices 54 respectively disposed above the four frame support units 20.
  • the heating device 54 includes a laser source 56 that can emit a heat ray laser, and an optical unit 58 that condenses the laser emitted from the laser source 56, and the laser emitted from the laser source 56.
  • 60 is arranged by the optical unit 58 so as to be condensed at or near the boundary surface 66 between the upper surface support portion 62 of the support portion 20 and the lens portion 64 in contact with the upper surface support portion 62.
  • the wavelength of the laser 60 emitted from the laser source 56 is 810 nm.
  • the heating device 54 is adjusted so that the output on the upper surface of the lens 22 is 0.5 W and the laser spot diameter on the boundary surface 66 is 0.1 mm.
  • the control unit 34 activates one or a plurality of heating devices 54 selected by a method described later, and emits a laser 60 from the laser source 56.
  • the emitted laser beam 60 is collected at or near the boundary surface 66 via the optical unit 58, and a support portion 62 adjacent to the boundary surface 66 and a lens opposed thereto. Heat part 64.
  • the laser irradiation position of the support portion 62 that has been irradiated with the laser 60 is heated.
  • the heat concentrated on the support portion 62 is transmitted to the lens portion 64, and the lens portion 64 is heated.
  • the portion in the vicinity of the spot of the lens portion 64 is thermally expanded. Further heating by laser irradiation thereafter causes the heating center 68 of the lens portion 64 to heat shrink and dent upward as shown in FIGS. 6 and 7, and the lens material in the heating center 68 becomes vapor. The lens 22 is lifted by the vapor pressure, and the heating center 6 It is considered that the lens material around 8 flows out to form an annular convex portion 70 around the heating center portion 68 and lifts the lens portion 64 relative to the support portion 62.
  • the outer diameter ⁇ 1 of the lens outer ring portion is 2 to 8mm, preferably 3.8mm
  • the outer diameter ⁇ 2 of the lens spherical portion is 1.4 to 7.4mm, preferably 3.2mm
  • the distance between the facing frame parts L1 Is 2.2 to 8.2 mm preferably 4 mm.
  • the laser wavelength was 810 nm
  • the laser output at the upper surface of the lens outer ring portion was 0.5 W
  • the laser spot diameter at the boundary surface was 0.1 mm.
  • the amount of tilt of the lens is defined by Equation 1 below, and was measured by irradiating only one of a pair of opposing support portions with a laser.
  • the laser irradiation time was 1 second, 1.5 seconds, 2 seconds, 2.5 seconds, and 3 seconds.
  • the results of the experiment are shown in the graph of FIG.
  • the amount of lens tilt is proportional to the laser irradiation time, and it is clear that the lens tilt can be adjusted accurately by controlling the laser irradiation time.
  • the laser source 56 may be arranged on the lower surface side of the lens, the outer ring side, etc.
  • the state in which the laser irradiation portion of the lens was deformed was observed.
  • the lens portion at the laser irradiation position melted and started to expand.
  • the laser irradiation position of the lens part melted with the lapse of the laser irradiation time.
  • the laser was irradiated for 1.5 seconds or more, a depression was generated in the lens melting region, and the size of the depression gradually expanded toward the outside in the radial direction with the laser irradiation position as the center.
  • the thickness (height) of the molten lens material that has flowed radially outward is the passage of time.
  • the lens 22 that has been tilt-adjusted as described above is fixed to the holder 12.
  • an ultraviolet curable resin for example, as shown in FIG. 9, the support portion 62 of the holder 12 and the lens portion 64 of the lens 22 and the support of the holder 12 are supported.
  • the ultraviolet irradiator 74 irradiates the ultraviolet ray curable resin 72 disposed between the holder inner peripheral surface portion and the lens outer peripheral surface portion facing each other on the holding portion 20 with ultraviolet rays 76 from the ultraviolet irradiator 74, Harden.
  • the ultraviolet curable resin 72 is exposed to the laser at the time of tilt adjustment, but its properties are not changed and cured by subsequent ultraviolet irradiation without any problem.
  • the ultraviolet curable resin 72 may be applied on the support portion 62 before the lens 22 is placed on the holder 12, or the support portion 62 faces the support portion 62 with the lens 22 placed on the holder 12. It can also be poured between the lens portions 64.
  • the UV curable resin 72 is disposed prior to the tilt adjustment. However, before the UV 76 is irradiated, the UV curable resin 72 is disposed after the lens tilt adjustment. Also good.
  • the groove 78 extending in the X direction is formed by the support portion 62 and the lens portion along the groove 78 when the UV curable resin 72 is poured from between the vertically opposed surfaces after the lens 22 is placed on the holder 12. Since resin flows in between 64, it is effective. Further, it is not always necessary to provide the two types of grooves 78 and 80. As shown in FIGS. 12 and 13, only one of the X direction groove 78 and the Y direction groove 80 may be provided. . By providing such a groove, the support part 62 and the lens part 64 As shown in Fig.
  • the lens 22 is placed on the holder 12, and the tilt amount of the lens 12 is measured (step 1).
  • the tilt amount is measured by using the adjustment unit 32 and the control unit 34 of the posture adjustment device 28 shown in FIG. 3, and the control unit 34 obtains the lens tilt amount.
  • the control unit 36 determines the tilt angle adjustment amount (step 2). For example, as shown in FIGS. 2 and 3, in the state where the lens 22 is supported by the four support portions 20, as shown in FIGS.
  • the central axis 82 of the lens 22 It is assumed that it is inclined with respect to axis 36 by an angle ⁇ and the maximum inclination angle direction is in the direction indicated by arrow 84. In this case, the control unit 34 determines the maximum inclination angle direction 84.
  • the lens portion 64 (1) that requires the maximum height adjustment amount is identified.
  • the height adjustment amount ⁇ 1 of the lens portion 64 (1) and the height adjustment amounts ⁇ 2, ⁇ of the lens portions 64 (2) and 64 (3) on both sides of the lens portion 64 (1) 3 is calculated.
  • the height of the lens portions 64 (1), 64 (2), and 64 (3) is stored based on a table that stores the relationship between the “laser irradiation time and height adjustment amount” stored in the control unit 34.
  • Determine the laser irradiation time corresponding to the adjustment amount (step 3).
  • the graph of FIG. 8 shows the relationship between “laser irradiation time and tilt amount”, but “laser irradiation time and height adjustment amount” also has a similar linear relationship, and this relationship is a table of the control unit 34.
  • the control unit 34 activates the laser source 56 disposed above the lens portions 64 (1), 64 (2), and 64 (3) (step 4), and each irradiation obtained from the table is performed.
  • the center of the lens outer ring is desirable for the laser irradiation.
  • the heated lens parts 64 (1), 64 (2), 64 (3) are melted and their fused lenses Material flows out between the lens parts 64 (1), 64 (2), 64 (3) and the support part 62 facing them, and the lens parts 64 (1), 64 (2), 64 (3) rise. To do.
  • the control unit 34 measures the inclination of the lens 22 again (step 5), and based on the measurement result, the target value (height adjustment amount ⁇ 1, ⁇ 2, S3) and the measured value (actual ⁇ 1 ', ⁇ 2 ⁇ 3') and the absolute value (
  • ) is acceptable Determine if it is within the value ⁇ .
  • the allowable value ⁇ is preferably obtained from simulation results and a plurality of experimental results.
  • the ultraviolet curable resin 72 disposed between the support portion 62 and the lens portion 64 is irradiated with the ultraviolet rays 76 from the ultraviolet light source 74 and the ultraviolet curable resin. 72 is cured and the lens 22 is fixed to the holder 12.
  • the tilt adjustment amount and the laser irradiation time are again determined based on the results of the tilt measurement performed after laser irradiation. The height of the correct lens part is adjusted.
  • the heights of the lens portion in the vicinity of the maximum tilt direction and the three lens portions on both sides thereof are adjusted, but the two lens portions on both sides of the maximum tilt direction are adjusted.
  • the height may be adjusted only for 64 (1) and 64 (2).
  • an annular or rectangular holder 86 includes an upper inner peripheral portion 88 having an inner diameter larger than the outer diameter ⁇ 1 of the lens outer ring portion 26 and an outer diameter ⁇ 1 of the lens outer ring portion 26.
  • a lower inner peripheral portion 90 having an inner diameter larger than the outer diameter ⁇ 2 of the lens spherical surface portion 24, and an annular step portion 92 positioned between the upper outer peripheral portion 88 and the lower outer peripheral portion 90.
  • the outer ring portion 26 of the lens 22 can be supported by the annular step portion 92.
  • the maximum inclination direction 84 of the lens 22 with respect to the holder 86 is obtained.
  • the three adjustment laser sources 56 are activated to adjust the height of the lens portions 64 (1), 64 (2), 64 (3), or two adjustment laser sources Activate laser source 56 and lens part 6 4 Adjust the position of the lens 12 with respect to the holder 86 by adjusting the heights of (1) and 64 (2). In this case, the position that can be adjusted does not depend on the support point, so finer adjustment is possible.
  • the lens portion facing the lens support portion of the holder is a flat surface similar to the support portion, but a projection portion may be provided on the lens portion.
  • the lens portion 64 facing the support portion 62 of the holder 12 is provided with a projection portion 94 that protrudes toward the support portion 62, and this projection portion 94 is heated and melted.
  • the posture of the lens portion 64 relative to the support portion 62 may be adjusted by reducing the height of the projection 94 from H to H ′ by fusing. According to experiments conducted by the present inventors, a certain relationship was observed between the laser irradiation time and the height reduction amount ( ⁇ _ ⁇ ′) of the protrusion.
  • the relationship between the laser irradiation time and the height reduction amount is stored in the storage unit of the control unit, and the laser irradiation time corresponding to the necessary adjustment amount is determined based on the relationship.
  • the cross-sectional shape of the protrusion 94 may be circular, elliptical, rectangular, or any other shape.
  • the number of protrusions 94 corresponding to one support portion 62 is not limited to one, and may be plural. In this case, since the present invention can be realized using a conventional lens holder, it is not necessary to newly design the lens holder.
  • the force S can be adjusted by adjusting the position of the lens with respect to the holder by heat deformation.
  • a material having a glass transition temperature lower than that of the holder material is selected as the lens material, and thus only the lens is melted and deformed.
  • the lens posture with respect to the holder may be adjusted by using a material having a low glass transition temperature and thereby melting and deforming a part of the holder.
  • the support portion 62 of the holder 12 is heated and expanded with a laser, so that the height of the lens portion 64 opposed to the support portion 62 can be raised and the posture of the lens 22 can be adjusted.
  • a protrusion is formed on the support portion 62 of the holder 12, and the height of the lens portion 64 facing the protrusion is lowered by heat-deforming the protrusion.
  • the posture of the lens 22 can be adjusted.
  • the outer peripheral surface 96 of the lens 22 or the holder inner peripheral surface 98 opposed to the lens 22 or both of them are irradiated with a heat ray laser and melted. Then, the inclination angle of the lens 22 with respect to the holder 12 is changed by the shrinkage strain generated when the molten material 100 is cured, and the posture of the lens 22 can be adjusted.
  • the direction in which the adjustment laser is irradiated on the interface between the holder and the lens is not limited.
  • an adjustment laser source 56 may be arranged below the holder, and the boundary surface 66 may be irradiated with the laser 60 from below.
  • the holder 1212 is formed of a material that transmits about 80% or more of light in the visible range and near-infrared range, for example, light having a wavelength of about 400 to about 100 nm, and the lens 22 is formed in the visible range. And a material that absorbs about 80% or more of light in the near infrared region, for example, light having a wavelength of about 400 to about 110 Onm.
  • the laser source 56 may be disposed obliquely above, obliquely below or beside the boundary surface 60, and the laser 60 may be irradiated obliquely with respect to the boundary surface 66.
  • minute irregularities are formed on the surface portion irradiated with the laser, that is, the support portion of the holder, the lens portion of the lens, or both surfaces thereof. )) Is preferably formed.
  • the laser incident on the surface portion having the unevenness greatly loses energy, and heating of the surface portion is promoted.
  • the method of fixing the lens after adjustment to the holder is not limited to adhesion using an ultraviolet curable resin.
  • a part of the holder is heated and melted, and the molten holder material is fixed to the outer peripheral surface of the lens, so that the holder is fixed.
  • the embodiment shown in FIGS. 24 to 26 has a holder rotating mechanism 120.
  • the holder rotating mechanism 120 includes a fixed base 104 and a rotating member 106 that is rotatably supported by the base 104 around the optical axis 36, and the holder 12 is supported by the rotating member 106.
  • the rotating member 106 is drivingly connected to the motor 108, and the motor 108 is connected to the control unit 34.
  • a heating source 110 is disposed above the heating source 110, and the heating source 110 is connected to the control unit 34.
  • the heating source 110 a laser source that emits heat rays can be used.
  • the laser may be irradiated obliquely at an arbitrary angle with respect to the holder 12 from the laser source.
  • the control unit 34 drives the motor 108 to rotate the rotating member 106 and the holder 12 supported by the motor 108, and activates the heating source 110.
  • the holder portion 112 facing the lens outer peripheral surface is heated and melted.
  • the heating source 110 While the rotating member 106 is rotating, the heating source 110 is always driven to continuously heat the holder portion 112, and the heating source 110 is intermittently stopped to intermittently heat the holder portion 112. Good.
  • the melted holder material 114 fills the gap between the lens outer peripheral surface 116 and the holder 12, adheres to the lens outer peripheral surface 116, and adheres to the lens outer peripheral surface 116 after cooling. And hold the lens 12.
  • the mechanism for rotating the holder and the lens described in the seventh embodiment is equally applicable to the first to seventh embodiments described above. For example, as shown in FIG. 3, if the same rotating mechanism 120 is applied to the first embodiment, only one adjustment laser 56 is required. In addition, if the rotation mechanism 120 is applied to the second embodiment shown in FIG. 17, an arbitrary portion of the annular step portion 92 can be heated.
  • the heat ray laser is mainly used as a means for heating the holder or the lens, but a resistance heater or a heater using an electron beam can be used instead.
  • the heating means is preferably a non-contact heating means in order to prevent the lens from moving relative to the holder.
  • any heat-melting material can be used for the lens material and the holder material.
  • hot-melt resins such as polycarbonate and methacrylic resin can be used as the lens material.
  • the holder material in addition to the liquid crystal polymer, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, and polyphenyl sulfonate can be used.
  • a plano-convex lens is shown as an example of a lens.
  • the present invention is not limited to other lenses (biconvex lens, meniscus convex lens, biconcave lens, plano-concave lens, meniscus concave lens). It is equally applicable to attitude adjustment of lenses, aspherical lenses, and cylindrical lenses.
  • the example in which the present invention is applied to the lens attitude adjustment has been introduced.
  • the present invention can adjust the attitude of other optical members or optical components (for example, diffraction gratings, mirrors, filters, aperture plates). Is equally applicable.
  • the present invention can also be applied to a method for adjusting the posture of another member (second member) relative to one member (first member) that can be obtained only by adjusting the posture of the optical member included in the optical unit.
  • second member a part of the first member facing the second member, a part of the second member facing the first member, or both of them are heated and deformed as described above. Adjust the posture of the first member relative to the second member.

Landscapes

  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optical Head (AREA)
  • Lens Barrels (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lenses (AREA)
  • Laser Beam Processing (AREA)

Abstract

 光学部材(22)と光学部材を支持する支持部材(12)とを有する光学ユニット(10)の製造方法である。この方法では、光学部材(22)と支持部材(12)の少なくとも一方の面を変形させた後、これら光学部材(22)と支持部材(12)とを固定する。

Description

明 細 書
光学ユニット及びその製造方法
技術分野
[0001] 本発明は、光学部材とこの光学部材を支持する支持部材を備えた光学ユニット、お よびその製造方法に関する。
背景技術
[0002] 大容量の情報を記憶する媒体として光ディスクが用いられており、この光ディスクに 高密度で情報を記憶させると共に記憶された情報を正確に読み出すためには光ピッ クアップ装置を構成する複数の光学部品のそれぞれに高い精度が必要である。その ため、特許文献 1に、対物レンズと該対物レンズを保持するホルダの間に介在する接 着剤の厚みを調整して対物レンズの傾きを調整する技術が提案されてレ、る。しかし、 この技術は、接着剤の厚みの場所的なばらつきが新たな対物レンズの傾きを生じる。 また、特許文献 2に、対物レンズと該対物レンズを保持するホルダとの間にバイメタル や変形部材を設け、この変形部材に熱エネルギを与えることによって該変形部材を 変形させて、対物レンズの傾きを調整する技術が提案されている。同様に、特許文献 3、 4に、対物レンズと該対物レンズを保持するホルダの間に形状記憶合金、感熱材 料力 なる支持部材をそれぞれ設け、該支持部材の一部にレーザを照射して該一部 を形状回復させて対物レンズの傾きを調整する技術が提案されている。しかし、これ ら特許文献 2〜4に開示された技術は、調整時にホルダに外力が作用して変形する こと力 、対物レンズの傾き調整に多くの時間を要する。また、レンズとホルダとの間 に支持部材を配置しなければならず、その支持部材が追加されることによって構造が 複雑になる。
特許文献 1 :特開平 4一 113521号公報
特許文献 2 :特開平 8— 161755号公報
特許文献 3 :特開平 8— 180422号公報
特許文献 4 :特開平 9 161755号公報
発明の開示 発明が解決しょうとする課題
[0003] そこで、本発明は、簡単な構成で、しかも高い信頼性をもって、光学部材の姿勢を 製造できる光学ユニットの製造方法と、それらの方法によって製造された光学ユニット を提供することを目的とする。
課題を解決するための手段
[0004] この目的を達成するため、本発明に係る光学ユニットの製造方法は、光学部材と前 記光学部材を支持する支持部材を有する光学ユニットにおレ、て、前記光学部材と前 記支持部材とが相対向する面の少なくとも一方の面を変形させた後、前記光学部材 と前記支持部材とを固定するものである。
[0005] また、本発明に係る光学ユニットは、相対向する支持部材と光学部材との少なくとも 一方が突出しており、前記突出によって前記光学部材と前記支持部材との間に隙間 を有した状態で固定されているものである。
発明の効果
[0006] 本発明によれば、光学部材の姿勢を高精度に且つ高信頼性をもって調整された光 学ユニットを製造できる。
図面の簡単な説明
[0007] [図 1]本発明に係る調整装置によって姿勢調整される光学ユニットの一例を示す平面 図。
[図 2]図 1に示す光学ユニットの Π_Π線に沿った断面図。
[図 3]図 1 , 2に示す光学ユニットを含む姿勢調整装置の構成を示す正面図。
[図 4]図 3に示す姿勢調整装置を用いた光学ユニットの姿勢調整方法を説明する断 面図。
[図 5]図 3に示す姿勢調整装置を用いた光学ユニットの姿勢調整方法を説明する断 面図。
[図 6]図 3に示す姿勢調整装置を用いた光学ユニットの姿勢調整方法を説明する断 面図。
[図 7]図 3に示す姿勢調整装置を用いた光学ユニットの姿勢調整方法を説明する部 分平面図。
[図 8]レーザ照射時間とレンズ傾斜量の関係を示すグラフを示す図。
[図 9]ホルダに対するレンズの固定方法を示す断面図。
[図 10]レンズホルダに形成された、紫外線硬化樹脂を配置するための溝を示す図。
[図 11]図 10の XI— XI線に沿った断面図。
[図 12]溝配置の他の形態を示す平面図。
[図 13]溝配置の他の形態を示す平面図。
[図 14]溶融したレンズ材料が溝で規制された状態を示す断面図。
[図 15]レンズ姿勢調整方法のプロセスを示すフローチャート。
[図 16A]レンズ姿勢調整方法を説明するための図。
[図 16B]レンズ姿勢調整方法を説明するための図。
[図 17]他の形態のホルダを含む光学ユニットの平面図。
[図 18]図 17の XVIII - XVIII線に沿つた断面図。
[図 19]姿勢調整用突起部を備えたレンズを含む光学ユニットの一部及びその姿勢調 整方法を示す断面図。
[図 20]図 19の方法で姿勢調整されたレンズを含む光学ユニットの一部を示す断面図
[図 21]ホルダ/レンズの一部を溶融してレンズの姿勢を調整する方法を説明する断 面図。
[図 22]図 21と共にホルダ/レンズの一部を溶融してレンズの姿勢を調整する方法を 説明する断面図。
[図 23]溶融位置に対して下方からレーザを照射する方法を示す断面図。
[図 24]ホルダに対してレンズを固定する装置を示す図。
[図 25]ホルダに対するレンズの固定方法の他の形態を説明する断面図。
[図 26]図 25と共にホルダに対するレンズの固定方法の他の形態を説明する断面図。 符号の説明
10 :調整装置、 12 :ホルダ、 14 :光学部品、 16 :フレーム、 18 :フレーム部分、 20 :支 持部、 22 :レンズ、 24 :球面部、 26 :外輪部(コバ)、 28 :姿勢調整装置、 30 :評価部 、 32:調整部、 34:制御部、 36:光軸、 38:光源、 40:光学ユニット、 42:回折格子、 4 4:移動装置、 46:光学ユニット、 48:レンズ、 50:レンズ、 52:受像部、 54:加熱装置 、 56:レーザ源、 58:光学ユニット、 60:レーザ、 62:サポート部分、 64:レンズ部分、 66:境界面、 68:加熱中心部、 70:環状凸部、 72:紫外線硬化樹脂、 74:紫外線照 射器、 76:紫外線、 78:溝、 80:溝、 82:レンズ中心軸、 84:最大傾斜角方向、 86:ホ ルダ、 88:上部内周部、 90:下部内周部、 92:環状段部、 94:突起部、 96:レンズ外 周面、 98:ホルダ内周面、 100:溶融材料、 102:凹凸、 104:基台、 106:回転部材、 108:モータ、 110:カロ熱原、 112:ホノレダ部分、 114:溶融したホノレダ材料、 116:レ ンズ外周面。
発明を実施するための最良の形態
[0009] 図面を参照して、本発明に係る複数の実施形態を説明する。なお、以下の説明で は、同一の符号は同一の部材又は部分を示す。また、以下の説明では、特定の方向 を示す用語 (例えば、「上」、「下」又はそれらの用語を含む別の用語)を使用するが、 それらの使用は本発明の理解を容易にするためであって、特許請求の範囲に記載さ れた発明の範囲を限定するために用いられるべきではない。さらに、本件特許出願 において、光学部材の「姿勢」とは、該光学部材を含む光学ユニットの光軸に対する 傾斜を意味するものである。
[0010] (実施形態 1)
図 1と図 2を参照すると、本発明の姿勢調整装置によって姿勢調整される光学ュニ ットは、図示しない基台又は支持部に固定的に支持された支持部材のホルダ 12と、 ホルダ 12に支持された光学部材の光学部品 14を有する。実施形態において、ホル ダ 12はフレーム 16を有する。フレーム 16は、 X方向に伸びる 2つのフレーム部分 18 と、 X方向と直交する Y方向に伸びる 2つのフレーム部分 18を備えており、これら 4つ のフレーム部分 18の内側に円形の開口が形成されている。 4つのフレーム部分 18は それぞれ、内面の長手方向中央部に、内方に向けて突出する支持部 20を有する。 図示するように、各支持部 20の上面は、フレーム 16の上面よりも低い位置に設けるこ とが好ましい。
[0011] 光学部品 14は、例えばレンズ 22である。実施形態では、レンズ 22は、平凸レンズ であり、上面が平面で形成されるとともに下面が球面で形成された球面部 24と、球面 部 24の周囲を囲む一定の厚みの外輪部(コバ)26を有する。図示するように、外輪 部 26の外径 φ 1は、 X方向と Y方向にそれぞれ対向するフレーム部分 18の距離 L1 よりも小さい。また、球面部 24の外径 φ 2は、 X方向と Y方向にそれぞれ対向する支 持部 20の距離 L2よりも小さい。
[0012] ホノレダ 12とレンズ 22は、熱を加えたときに溶融する材料で作られている。ホノレダ 12 は、可視域と近赤外域の光、例えば波長が約 400〜約 l lOOnmの光を約 80%以上 吸収する材料で形成することが好ましい。レンズ 22は、可視域と近赤外域の光、例え ば波長が約 400〜約 l lOOnmの光を約 80%以上透過する材料で形成することが好 ましい。種々の熱溶融性材料のうち、実施形態では、ホルダ 12に、ガラス転移温度が 約 150°Cの材料 (例えば、非晶質ポリオレフイン類樹脂)が使用されており、レンズ 22 に、ホルダ 12よりも溶融し易い材料で、ガラス転移温度が約 135°Cの材料 (例えば、 液晶ポリマー)が使用されている。
[0013] このような構成を備えたホルダ 12とレンズ 22は、図示するように、ホルダ 12の中心 にレンズ 22の中心を一致又はほぼ一致させた状態で、ホルダ 12の 4つの支持部 20 によってレンズ 22の外輪部 26が支持される。そして、後述するように、ホルダ 12に対 するレンズ 22の姿勢が検出されて評価され、その評価結果に基づいて、ホルダ 12に 対するレンズ 22の姿勢が調整される。
[0014] 図 3は、姿勢調整装置 28を示す。姿勢調整装置 28は、レンズ 22の姿勢を評価す る評価部 30と、評価部 30の評価結果に基づいてレンズ 22の姿勢を調整する調整部 32と、これら評価部 30と調整部 32を制御する制御部 34を有する。
[0015] 評価部 30は、ホルダ 12に支持されるレンズ 22の両側(図面では上と下)に配置さ れた複数の部品を有する。実施形態では、評価部 30は、調整装置 28の光軸 36に 沿って光を発する照明部又は光源 38を有する。光源 38にはレーザ光を発射するレ 一ザ装置が好適に利用できる。レーザ光は、可干渉性を有する、例えばヘリウムネオ ンレーザ光であることが好ましい。光源 38とレンズ 22の間には、光源 38から出射され た光を平行光の形でレンズ 22に入射する光学ユニット 40が配置される。光学ュニッ ト 40は、一つ又は複数のレンズを有する。必要であれば、光学ユニット 40には、ミラ 一などの他の光学部材が配置される。
[0016] レンズ 22を透過した光の集光位置又はその近傍には、透過型の回折格子 42が配 置されている。回折格子 42は、光軸 36と直交する面上に配置された透光性の板から なり、レンズ 22に対向する主面又は反対側の主面に、光軸 36と直交する方向に伸 びる複数の溝が等間隔に形成されている。回折格子 42は、移動装置 44に連結され ており、この移動装置 44の駆動に基づいて、光軸 36と直交する面上を格子溝と直交 する方向に移動されるようにしてある。移動装置 44は、ピエゾ素子が好適に利用でき る。
[0017] 回折格子 42を透過した光が入射される光学ユニット 46は、回折格子 42から出射す る光(回折光)が入射されるレンズ 48を有する。実施形態では、回折格子 42からの 0 次回折光と + 1次回折光又は 0次回折光と一 1次回折光又のシェアリング干渉像がレ ンズ 48に入射されるように、回折格子 42の格子溝の大きさ、ピッチなどの条件が決 められている。光学ユニット 46はまた、レンズ 48を透過した光を集光するレンズ 50を 有する。図示しないが、光学ユニット 46には、これらのレンズ 48, 50以外の光学部材 、例えばミラーを含ませることができる。
[0018] 評価部 30は、出射光学ユニット 46から出射された光を受ける検出部の撮像素子又 は受像部 52を有する。受像部 52は、電荷結合素子(CCD)で構成することが好まし く、レンズ 48に入射されたシェアリング干渉像を受像するようにしてある。
[0019] 制御部 34は、光源 38、移動装置 44、及び受像部 52と電気的に接続されており、 レンズ 22の姿勢評価時、光源 38を起動する。光源 38から出射された光は、入射光 学ユニット 40で平行光又はほぼ平行光に調整され、レンズ 22を介して回折格子 42 に照射される。回折格子 42で形成された 0次回折光と + 1次回折光又は 0次回折光 と _ 1次回折光はレンズ 48の瞳面で重なり合レ、、シェアリング干渉する。シェアリング 干渉光は、レンズ 48で平行光又は略平行光に戻され、レンズ 50で受像部 52に照射 される。受像部 52は、受像面に照射されたシェアリング干渉像に対応する信号を制 御部 34に出力する。
[0020] 制御部 34は、光源 38を起動している間、移動装置 44を駆動して、回折格子 42を 光軸 36と直交する方向に移動させる。その結果、レンズ 22が光軸 36に対して傾いて いる場合また任意の収差 (球面収差、コマ収差、非点収差、像面湾曲、歪曲収差 (デ イストーシヨン)、色収差)を含む場合、シェアリング干渉像内の各点の受光強度が変 化する。この光強度の変化を利用して、制御部 34はレンズ 22の姿勢を評価する。
[0021] 上述したレンズ 22の姿勢を評価する方法及び装置は一例であって、公知の種々の 評価方法及び装置が利用できる。例えば、本発明に利用できる好適な方法及び構 成力 特開 2000— 329648号公報及びそれに対応する米国特許第 6, 809, 829 号に詳細に記載されており、その内容はこの引用により本件特許出願に組み込まれ ているものとする。
[0022] 図 3〜図 5を参照すると、レンズの姿勢調整部 32は、 4つのフレーム支持部 20の上 方にそれぞれ配置された加熱装置 54を有する。実施形態では、加熱装置 54は、熱 線レーザを出射することができるレーザ源 56と、レーザ源 56から出射されたレーザを 集光する光学ユニット 58を有し、レーザ源 56から出射されたレーザ 60を、光学ュニ ット 58によって、支持部 20の上面サポート部分 62とこれに対向して接触しているレン ズ部分 64との境界面 66又はその近傍に集光するように配置されている。実施形態で は、レーザ源 56から出射されるレーザ 60の波長は 810nmである。また、加熱装置 54 は、レンズ 22の上面での出力が 0· 5Wになり、境界面 66におけるレーザスポット径 が 0· 1mmになるように調整されている。
[0023] 姿勢調整時、制御部 34は、後述する方法によって選択された一つ又は複数の加 熱装置 54を起動し、レーザ源 56からレーザ 60を出射する。図 4及び図 5に示すよう に、出射されたレーザ 60は、光学ユニット 58を介して、境界面 66又はその近傍に集 光し、境界面 66に隣接するサポート部分 62とこれに対向するレンズ部分 64を加熱 する。このとき、レーザ 60の照射を受けたサポート部分 62のレーザ照射位置が加熱 される。次に、サポート部分 62に集中した熱がレンズ部分 64に伝わり、このレンズ部 分 64が加熱される。その結果、上述のようにレンズ部分 64のガラス転移温度がサボ ート部分 62のそれよりも低いことから、レンズ部分 64のスポット近傍にある部分が熱 膨張する。その後のレーザ照射による更なる加熱により、図 6及び図 7に示すように、 レンズ部分 64の加熱中心部 68が熱収縮して上方に窪むとともに、加熱中心部 68に あったレンズ材料が蒸気となり、その蒸気圧でレンズ 22が持ち上がり、加熱中心部 6 8の周囲のレンズ材料が周囲に流れ出て加熱中心部 68の周囲に環状の凸部 70を 形成し、レンズ部分 64をサポート部分 62に対して相対的に持ち上げる、ものと考えら れる。
[0024] レーザの照射時間とレンズの傾斜量との関係を調べる実験を行った。実験に用い たホルダとレンズの形状及び材料は上述のとおりである。レンズ外輪部の外径 φ 1は 2〜8mm、好ましくは 3. 8mm、レンズ球面部の外径 φ 2は 1. 4〜7. 4mm、好ましく は 3. 2mm、対向するフレーム部分間の距離 L1は 2. 2〜8. 2mm、好ましくは 4mm である。レーザの波長は 810nm、レンズ外輪部上面でのレーザ出力は 0. 5W、境界 面におけるレーザスポット径は 0. 1mmであった。レンズの傾斜量ひは、以下の数式 1で定義し、対向する一対のサポート部分のうちの一方だけにレーザを照射して測定 した。レーザの照射時間は、 1秒、 1. 5秒、 2秒、 2. 5秒、 3秒とした。
[数 1]
α = 0 / φ 1
α :傾き量 〔ラジアン (r a d i an ) 〕
6 : ホルダに対する レンズの上昇量
φ 1 : レンズ外輪部の外径
なお、 式中の傾き量の単位はラジアンで表 しているが、 図 8 に表されている 値は 「度 (d e gr e e ) 」 に変換したものである。
[0025] 実験の結果を図 8のグラフに示す。このグラフから明らかなように、レンズ傾斜量は、 レーザ照射時間と比例関係にあり、レーザの照射時間を制御することによってレンズ 傾斜量を正確に調整できることが明らかになった。なお、レーザを照射する説明では 、レンズの上面側にレーザ源 56を配置した力 支持部 20の上面サポート部分 62とこ れに対向して接触しているレンズ部分 64との境界面 66又はその近傍に集光させるこ とができれば、レンズの下面側、外輪部側などにレーザ源 56を配置しても良い。
[0026] 実験中、レンズのレーザ照射部分が変形する状況を観察した。その結果、レーザ照 射を開始してから 1秒後、レーザ照射位置にあるレンズ部分が溶融して膨張を開始し た。その後、レーザの照射時間の経過とともにレンズ部分のレーザ照射位置が溶融 した。レーザを 1. 5秒以上照射すると、レンズ溶融領域に窪みが発生し、その窪みの 大きさは時間の経過とともにレーザ照射位置を中心に次第に径方向外側に向かって 拡大した。また、径方向外側に流れ出た溶融レンズ材料の厚み(高さ)は時間の経過 と共に大きくなつた。レーザ停止後、周囲に流れ出たレンズ材料は硬化した。硬化後 、ホルダからレンズを分離して両者のレーザ照射位置を目視で観察した結果、レンズ には環状の突起が形成されていた。一方、ホルダの支持部には焼け跡は見られたが 、形状の変形が見られなかった。
[0027] (レンズの固定)以上のようにして傾斜調整されたレンズ 22はホルダ 12に固定される 。この固定には、紫外線硬化樹脂を用いることが好ましい。このプロセスでは、上述し たレンズの傾斜調整に先立ってホルダ 12とレンズ 22の対向領域、例えば図 9に示す ように、ホルダ 12のサポート部分 62とレンズ 22のレンズ部分 64、またホルダ 12の支 持部 20上で対向するホルダ内周面部分とレンズ外周面部分との間に配置された紫 外線硬化樹脂 72に対して紫外線照射器 74から紫外線 76を照射し、この紫外線硬 化樹脂 72を硬化させる。この場合、傾斜調整時、紫外線硬化樹脂 72の一部はレー ザに晒されるが、その性状が変質することはなぐその後の紫外線照射によって問題 無く硬化する。また、紫外線硬化樹脂 72は、ホルダ 12にレンズ 22を載せる前にサボ ート部分 62上に塗布してもよいし、ホルダ 12にレンズ 22を載せた状態でサポート部 分 62とこれに対向するレンズ部分 64の間に流し込むこともできる。なお、以上のレン ズの固定に関する説明では、傾斜調整に先立って紫外線硬化樹脂 72を配置したが 、紫外線 76を照射する前であれば、レンズの傾斜調整の後に紫外線硬化樹脂 72を 配置してもよい。
[0028] ホルダ 12のサポート部分 62とレンズ 22のレンズ部分 64の間に予め決められた適 正量の紫外線硬化樹脂を配置するために、図 10及び図 11に示すように、ホルダ 12 のサポート部分 62に、加熱中心部 68の両側に対称に、 X方向に平行に伸びる一対 の溝 78と、 Y方向に平行に伸びる一対の溝 80を形成し、これらの溝 78, 80に紫外 線硬化樹脂 72を配置することが好ましい。特に、 X方向に伸びる溝 78は、ホルダ 12 にレンズ 22を載せた後にそれらの垂直対向面の間から紫外線硬化樹脂 72を流し込 む場合、それらの溝 78に沿ってサポート部分 62とレンズ部分 64の間に樹脂が流れ 込むので、有効である。また、 2種類の溝 78, 80を設けることは必ずしも必要ではなく 、図 12及び図 13に示すように、 X方向の溝 78又は Y方向の溝 80のいずれか一方だ けを設けてもよい。このような溝を設けることにより、サポート部分 62とレンズ部分 64 の間に一定量の紫外線硬化樹脂 72が配置されるという利点だけでなぐ図 14に示 すように、これらの溝 78, 80の存在によって溶融したレンズ材料の拡大を一定範囲 に制限できるとともに、その範囲内で凸部 70の高さを効率良く大きくすることができる
(プロセス) 傾斜調整のプロセスを説明する。図 15に示すように、まず、ホルダ 12に レンズ 22を載せ、レンズ 12の傾斜量を測定する(ステップ 1)。傾斜量の測定は、図 3 に示す姿勢調整装置 28の調整部 32と制御部 34を利用して行われ、制御部 34がレ ンズの傾斜量を求める。具体的には、光源 38から出射した光をレンズ 22に透過させ た後、受像部 52で受像したスポットの位置の理想状態からのずれからレンズの傾斜 量を求める。次に、制御部 36は、傾斜角調整量を決定する(ステップ 2)。例えば、図 2, 3に示すように、レンズ 22が 4つの支持部 20で支持されている状態で、図 16 (A) 、 16 (B)に示すように、レンズ 22の中心軸 82が光軸 36に対して角度 Θだけ傾斜し ており、最大傾斜角方向が矢印 84で示す方向にあるものとする。この場合、制御部 3 4では、最大傾斜角方向 84が決定される。次に、最大の高さ調整量を必要とするレン ズ部分 64 (1)が特定される。次に、レンズ部分 64 (1)の高さ調整量 δ 1と、このレン ズ部分 64 (1)の両側にあるレンズ部分 64 (2)、 64 (3)の高さ調整量 δ 2、 δ 3が計算 される。次に、制御部 34に記憶されている、「レーザ照射時間と高さ調整量」の関係 を表したテーブルに基づき、レンズ部分 64 (1)、 64 (2)、 64 (3)の高さ調整量に対応 するレーザ照射時間を決定する(ステップ 3)。なお、図 8のグラフは「レーザ照射時間 と傾斜量」の関係を示すが、「レーザ照射時間と高さ調整量」も同様の直線的関係を 有し、その関係がテーブルとして制御部 34のメモリ(ROM)に記憶されている。次に 、制御部 34は、レンズ部分 64 (1)、 64 (2)、 64 (3)の上方に配置されているレーザ 源 56を起動し (ステップ 4)、テーブルから得られたそれぞれの照射時間だけ、レンズ 部分 64 (1)、 64 (2)、 64 (3)を加熱する。レーザを照射する場所は、レンズ外輪部の 中央が望ましい。レンズ有効面に近い内周側部分にレーザを照射するとレンズ有効 面へ悪影響を及ぼすことが懸念され、レンズ有効面から離れた外周側部分にレーザ を照射すると外輪部の外側に溶融レンズ材料がはみ出てしまうからである。上述のよ うに、加熱されたレンズ部分 64 (1)、 64 (2)、 64 (3)は溶融し、それらの溶融レンズ 材料がレンズ部分 64(1)、 64(2)、 64 (3)とそれらに対向するサポート部分 62の間 に流れ出て、レンズ部分 64(1)、 64(2)、 64 (3)が上昇する。レーザ照射が終了する と、制御部 34は、再びレンズ 22の傾きを測定し (ステップ 5)、その測定結果に基づい て目標値 (高さ調整量 δ 1、 δ2、 S3)と測定値 (実際の上昇量 δ 1'、 δ2 δ3')と の差を計算し、それらの差の絶対値(|δ 1_ δ 1'|、 |δ2_ δ2'|、 |δ3_ δ3'|)が許 容値 ε内にあるか否か判断する。許容値 εは、シミュレーションの結果や複数の実 験結果より求めることが好ましい。判断の結果、絶対値差が許容値の範囲に有れば、 サポート部分 62とレンズ部分 64の間に配置されている紫外線硬化樹脂 72に紫外線 源 74から紫外線 76を照射して該紫外線硬化樹脂 72を硬化して、ホルダ 12に対して レンズ 22を固定する。しかし、 目標値と測定値の絶対値差が許容値を超えている場 合、レーザ照射後に行われた傾斜測定の結果をもとに、再び傾斜調整量、レーザ照 射時間が決定されて必要なレンズ部分の高さが調整される。
[0030] なお、以上の傾斜調整の説明では、最大傾斜方向の近傍にあるレンズ部分とその 両側にある 3つのレンズ部分の高さを調整したが、最大傾斜方向の両側にある 2つの レンズ部分 64 (1)、 64 (2)についてのみ高さを調整してもよい。
[0031] 上述した実施形態 1は本発明の範囲から逸脱することなぐ例えば、以下に示す他 の実施形態のように、種々改変可能である。
[0032] (実施形態 2)
上述の実施形態 1では、ホルダに対してレンズを 4点で支持する構成を採用したが 、支持点の数は限定的ではなぐホルダがレンズを安定して支持する構成を備えてい ればよい。例えば、図 17に示すように、環状又は矩形のホルダ 86に、レンズ外輪部 2 6の外径 φ 1よりも大きな内径を有する上部内周部 88と、レンズ外輪部 26の外径 φ 1 よりも小さく且つレンズ球面部 24の外径 φ 2よりも大きな内径を有する下部内周部 90 と、これら上部外周部 88と下部外周部 90の間に位置する環状段部 92を形成し、こ の環状段部 92にレンズ 22の外輪部 26を支持させることもできる。この場合、実施形 態 1と同様に、ホルダ 86に対するレンズ 22の最大傾斜方向 84を求める。そして、実 施形態 1と同様に、 3つの調整用レーザ源 56を起動してレンズ部分 64(1)、 64(2)、 64 (3)の高さを調整するか、または 2つの調整用レーザ源 56を起動してレンズ部分 6 4 (1)、 64 (2)の高さを調整して、ホルダ 86に対するレンズ 12の姿勢を調整する。こ の場合調整できる箇所が支持点に依存しないので、より細かい調整が可能である。
[0033] (実施形態 3)
実施形態 1では、ホルダのレンズサポート部分に対向するレンズ部分はサポート部 分と同様の平坦な面としたが、レンズ部分に突起部を設けてもよい。この場合、例え ば図 19及び図 20に示すように、ホルダ 12のサポート部分 62に対向するレンズ部分 64に、サポート部分 62に向けて突出する突起部 94を設け、この突起部 94を加熱溶 融することによって該突起部 94の高さを Hから H'減少させることで、サポート部分 62 に対するレンズ部分 64の姿勢を調整してもよい。本発明者らが行った実験によれば 、レーザ照射時間と突起部の高さ減少量 (Η_Η' )の間には一定の関係が認められ た。したがって、この実施形態の場合も、レーザ照射時間と高さ減少量の関係を制御 部の記憶部に記憶しておき、その関係をもとに必要な調整量に対応するレーザ照射 時間を決定する。なお、突起部 94の横断面形状は、円形、楕円形、矩形、その他の 任意の形状が考えられる。また、一つのサポート部分 62に対応する突起部 94の数は 一つに限らず、複数であってもよい。この場合、従来のレンズホルダを用いて本発明 を実現できるため、レンズホルダを新しく設計しなくてもよい。
[0034] (実施形態 4)
実施形態:!〜 3では、レンズの一部を溶融変形させて、ホルダに対するレンズの姿 勢を調整した力 ホルダに対向するレンズの一部又はレンズに対向するホルダの一 部若しくはそれらの両方を加熱変形させて、ホルダに対するレンズの姿勢を調整する こと力 Sできる。例えば、実施形態:!〜 3では、レンズ材料にはホルダ材料よりもガラス転 移温度が低い材料を選択し、これによりレンズだけを溶融変形させたが、逆に、ホル ダ材料としてレンズ材料よりもガラス転移温度の低レ、材料を使用し、これによりホルダ の一部を溶融変形させることにより、ホルダに対するレンズの姿勢を調整してもよい。 例えば、実施形態 1の場合、ホルダ 12のサポート部分 62をレーザで加熱膨張させる ことにより、これに対向するレンズ部分 64の高さを上昇させてレンズ 22の姿勢を調整 できる。また、実施形態 3の場合、ホルダ 12のサポート部分 62に突起部を形成し、こ の突起部を加熱変形させることによって、これに対向するレンズ部分 64の高さを下げ てレンズ 22の姿勢を調整できる。さらに、実施形態 2の場合、図 21及び図 22に示す ように、レンズ 22の外周面 96又はこれに対向するホルダ内周面 98若しくはそれらの 両方に熱線レーザを照射して溶融する。そして、溶融した材料 100が硬化する際に 生じる収縮歪によって、ホルダ 12に対するレンズ 22の傾斜角が変化し、レンズ 22の 姿勢が調整できる。
[0035] (実施形態 5)
ホルダとレンズの境界面に調整用レーザを照射する方向は限定的ではない。例え ば、図 23に示すようにホルダの下方に調整用レーザ源 56を配置し、下方から境界面 66にレーザ 60を照射してもよレ、。ただし、本実施形態の場合、ホルダ 1212は、可視 域と近赤外域の光、例えば波長が約 400〜約 l lOOnmの光を約 80%以上透過する 材料で形成し、レンズ 22は、可視域と近赤外域の光、例えば波長が約 400〜約 110 Onmの光を約 80%以上吸収する材料で形成することが好ましい。また、境界面 60の 斜め上又は斜め下若しくは横にレーザ源 56を配置し、境界面 66に対して斜めにレ 一ザ 60を照射してもよい。
[0036] (実施形態 6)
以上の実施形態において、レーザが照射される表面部分、すなわち、ホルダのサ ポート部分又はレンズのレンズ部分若しくはそれらの両方の表面に微小な凹凸(図 4 及び図 19に符号 102で示されている))を形成することが好ましい。この場合、凹凸を 有する表面部分に入射したレーザはそこで大きくエネルギを損失し、その表面部分 の加熱が促進される。
[0037] (実施形態 7)
調整後のレンズをホルダに固定する方法は、紫外線硬化樹脂を用いた接着に限る ものでなぐホルダの一部を加熱溶融し、その溶融したホルダ材料をレンズ外周面に 固着させることにより、ホルダにレンズを固定してもよレ、。例えば、図 24〜図 26に示 す実施形態では、ホルダ回転機構 120を有する。ホルダ回転機構 120は、固定基台 104と、光軸 36を中心として基台 104に回転可能に支持された回転部材 106を有し 、この回転部材 106にホルダ 12が支持されている。また、回転部材 106はモータ 10 8に駆動連結され、さらにモータ 108が制御部 34に接続されている。また、ホルダ 12 の上方には加熱源 110が配置されており、加熱源 110が制御部 34に接続されてい る。加熱源 110には、熱線を出射するレーザ源が利用できる。この場合、レーザ源か らホルダ 12に対して任意の角度をもって斜めにレーザを照射してもよい。このような 構成において、上述したレンズの姿勢調整が終了すると、制御部 34はモータ 108を 駆動して回転部材 106及びこれに支持されたホルダ 12を回転するとともに、加熱源 1 10を起動して、レンズ外周面に対向するホルダ部分 112を加熱して溶融する。回転 部材 106の回転中、加熱源 110を常時駆動してホルダ部分 112を連続的に加熱しも ょレ、し、加熱源 110を間欠的停止してホルダ部分 112を間欠的に加熱してもよい。そ の結果、図 26に示すように、溶融したホルダ材料 114は、レンズ外周面 116とホルダ 12の間の隙間を埋めてレンズ外周面 116に付着し、冷却後レンズ外周面 116に固 着して、レンズ 12を保持する。
[0038] (実施形態 8)
実施形態 7で説明した、ホルダ及びレンズを回転させる機構は、上述した実施形態 1〜7に等しく適用できる。例えば、図 3に示すように、同様の回転機構 120を実施形 態 1に適用すれば、調整用レーザ 56は一つで済む。また、図 17に示す実施形態 2 に回転機構 120を適用すれば、環状段部 92の任意の部分を加熱できる。
[0039] (その他)
上述した実施形態では、ホルダ又はレンズを加熱する手段として主に熱線レーザを 使用したが、これに代えて抵抗加熱器又は電子ビームを用いた加熱器を使用するこ とができる。また、加熱手段は、ホルダに対するレンズの移動を防止するために、非 接触式の加熱手段であることが好ましレ、。
[0040] また、レンズ材料とホルダ材料には任意の熱溶融材料が使用できる。例えば、レン ズ材料には、非晶質ポリオレフイン類樹脂以外に、ポリカーボネート、メタクリル樹脂 などの熱溶融性樹脂が利用できる。ホルダ材料には、液晶ポリマー以外に、ポリカー ボート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフエニルスルフォ ンが利用できる。
[0041] さらに、以上の説明では、レンズの一例として平凸レンズを示したが、本発明はその 他のレンズ(両凸レンズ、メニスカス凸レンズ、両凹レンズ、平凹レンズ、メニスカス凹 レンズ、非球面レンズ、シリンドリカルレンズ)の姿勢調整にも等しく適用できる。また、 以上の説明では本発明をレンズの姿勢調整に適用した例を紹介したが、本発明は 他の光学部材又は光学部品(例えば、回折格子、ミラー、フィルタ、アパーチャプレ ート)の姿勢調整にも等しく適用できる。そして、本発明は光学ユニットに含まれる光 学部材の姿勢調整だけでなぐ一つの部材 (第 1の部材)に対する別の部材 (第 2の 部材)の姿勢を調整する方法にも適用可能である。この場合、第 2の部材に対向する 第 1の部材の一部、または第 1の部材に対向する第 2の部材の一部、若しくはそれら の両方を上述のように加熱して変形し、第 2の部材に対する第 1の部材の姿勢を調整 する。
(関連出願の表示)
本件特許出願は、 日本特許出願第 2004— 365673号(出願日: 2004年 12月 17 日、発明の名称:「光学装置及びその調整方法」)に基づく優先権を主張するもので あり、そこでの開示内容はすべてこの引用により本明細書に含まれるものとする。

Claims

請求の範囲
[1] 光学部材と前記光学部材を支持する支持部材を有する光学ユニットの製造方法であ つて、前記光学部材と前記支持部材とが相対向する面の少なくとも一方の面を変形 させた後、前記光学部材と前記支持部材とを固定することを特徴とする光学ユニット の製造方法。
[2] 前記光学部材と前記支持部材が対向する面の少なくとも一方の面にレーザを照射し て変形させることを特徴とする請求項 1の光学ユニットの製造方法。
[3] 前記光学部材を透過させたレーザを前記支持部材に照射することで前記支持部材 を変形させることを特徴とする請求項 2の光学ユニットの製造方法。
[4] 前記支持部材を透過させたレーザを前記光学部材に照射することで前記光学部材 を変形させることを特徴とする請求項 2の光学ユニットの製造方法。
[5] 予めレーザ出力とレーザ照射時間と光学部品の変形量とのテーブルを備え、前記光 学部材の前記支持部材に対する傾きと前記テーブルに基づいてレーザを調整する ことを特徴とする請求項 2の光学ユニットの製造方法。
[6] 前記光学部材と前記支持部材との間に紫外線硬化樹脂を配置し、前記光学部材と 前記支持部材との少なくとも一方を変形させた後、前記紫外線硬化樹脂に紫外線を 照射することを特徴とする請求項 2の光学ユニットの製造方法。
[7] 前記光学部材が非晶質ポリオレフイン樹脂で形成され、前記支持部材が液晶ポリマ 一で形成されていることを特徴とする請求項 2の光学ユニットの製造方法。
[8] 前記光学部材又は前記支持部材の一方が、レーザ光源から出射されたレーザの波 長と同じ波長の光を 80%以上透過する材料で形成されており、前記支持部材又は 前記光学部材の他方が、レーザ光源から出射されたレーザの波長と同じ波長の光を 80%以上吸収する材料で形成されていることを特徴とする請求項 2の光学ユニットの 製造方法。
[9] レーザ光源から出射されたレーザの波長が 81 Onmであることを特徴とする請求項 8 の光学ユニットの製造方法。
[10] 前記支持部材に対する前記光学部材の傾きを測定し、測定結果より前記光学部材と 前記支持部材とが相対向する面の少なくとも一方の面の目標変形量を決定して少な くとも一方の面を変形させた後、前記支持部材に対する前記光学部材の傾きを再度 測定し、測定結果が目標値に満たない場合は少なくとも一方の面を再度変形させる ことを特徴とする請求項 2の光学ユニットの製造方法。
[11] 相対向する支持部材と光学部材との少なくとも一方が突出しており、前記突出によつ て前記光学部材と前記支持部材との間に隙間を有した状態で固定されていることを 特徴とする光学ユニット。
[12] 前記光学部材の一部と前記支持部材の一部との少なくとも一方の突出の周囲に隙 間を設けて配置された紫外線硬化樹脂によって前記光学部材と前記支持部材が固 定されていることを特徴とする請求項 11の光学ユニット。
[13] 波長 801nmの光を 80%以上透過する材料で形成されたレンズと、波長 810nmの 光を 80%以上吸収する材料で形成されたレンズホルダとが固定されていることを特 徴とする請求項 11の光学ユニット。
PCT/JP2005/023050 2004-12-17 2005-12-15 光学ユニット及びその製造方法 WO2006064876A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006548903A JP4594328B2 (ja) 2004-12-17 2005-12-15 光学ユニット及びその製造方法
US11/793,234 US7561350B2 (en) 2004-12-17 2005-12-15 Optical unit and its manufacturing method
CN2005800431590A CN101389993B (zh) 2004-12-17 2005-12-15 光学单元及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004365673 2004-12-17
JP2004-365673 2004-12-17

Publications (1)

Publication Number Publication Date
WO2006064876A1 true WO2006064876A1 (ja) 2006-06-22

Family

ID=36587930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023050 WO2006064876A1 (ja) 2004-12-17 2005-12-15 光学ユニット及びその製造方法

Country Status (5)

Country Link
US (1) US7561350B2 (ja)
JP (1) JP4594328B2 (ja)
CN (1) CN101389993B (ja)
TW (1) TW200629258A (ja)
WO (1) WO2006064876A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673564A (zh) * 2008-09-12 2010-03-17 三洋电机株式会社 光拾取装置
JP2011059526A (ja) * 2009-09-11 2011-03-24 Ricoh Co Ltd レンズ鏡胴および撮像装置
WO2019230241A1 (ja) * 2018-05-30 2019-12-05 オムロン株式会社 樹脂体接合品の製造方法及び樹脂体接合品
JP2021015874A (ja) * 2019-07-11 2021-02-12 住友電気工業株式会社 光モジュール

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990632B2 (en) * 2009-02-20 2011-08-02 Raytheon Company Optical element and stress athermalized hard contact mount
DE102010002141A1 (de) * 2010-02-19 2011-08-25 Momentive Performance Materials GmbH, 51373 Integrale Bestrahlungseinheit
CN102213812B (zh) * 2010-04-06 2015-09-09 鸿富锦精密工业(深圳)有限公司 镜头模组加工方法及由此方法获得的镜头模组
JP5756912B2 (ja) * 2010-12-08 2015-07-29 パナソニックIpマネジメント株式会社 反射型光電センサおよびその製造方法
WO2013039241A1 (ja) * 2011-09-16 2013-03-21 コニカミノルタアドバンストレイヤー株式会社 光学素子及びその製造方法
WO2013186185A1 (de) 2012-06-11 2013-12-19 Momentive Performance Materials Gmbh Verfahren zur herstellung von kunststoff-verbundformkörpern
US9787345B2 (en) * 2014-03-31 2017-10-10 Apple Inc. Laser welding of transparent and opaque materials
US10200516B2 (en) 2014-08-28 2019-02-05 Apple Inc. Interlocking ceramic and optical members
US11424374B2 (en) * 2019-04-19 2022-08-23 Tdk Taiwan Corp. Camera module optical system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320114U (ja) * 1986-07-21 1988-02-09
JPH0935317A (ja) * 1995-07-17 1997-02-07 Sharp Corp 対物レンズ調整機構
JP2005292441A (ja) * 2004-03-31 2005-10-20 Konica Minolta Opto Inc 組み合わせレンズとその製造方法
JP2005316044A (ja) * 2004-04-28 2005-11-10 Canon Inc レンズ固定方法、及びレンズユニット
JP2006017795A (ja) * 2004-06-30 2006-01-19 Konica Minolta Opto Inc 組み合わせレンズとその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214931A (ja) * 1984-04-10 1985-10-28 Toyota Motor Corp 異種合成樹脂材料の接合方法
JPH069699B2 (ja) 1986-07-14 1994-02-09 石川島播磨重工業株式会社 蛇行制御装置
JPH043409U (ja) * 1990-04-20 1992-01-13
JP2924485B2 (ja) * 1992-09-01 1999-07-26 日本電気株式会社 重ね合わせ精度測定機
JPH08180422A (ja) * 1994-12-27 1996-07-12 Sharp Corp 対物レンズの位置調整方法
JPH1027361A (ja) * 1996-07-09 1998-01-27 Matsushita Electric Ind Co Ltd 対物レンズ駆動装置
KR20030051421A (ko) * 2000-03-31 2003-06-25 가부시키가이샤 니콘 광학 부재의 유지 방법 및 장치, 광학 장치, 노광 장치 및디바이스 제조 방법
JP3650605B2 (ja) * 2002-01-28 2005-05-25 ペンタックス株式会社 レンズ保持装置
JP2004046053A (ja) * 2002-05-21 2004-02-12 Matsushita Electric Ind Co Ltd 対物レンズ及び光ヘッド装置
JP2004020867A (ja) * 2002-06-14 2004-01-22 Fuji Photo Film Co Ltd レンズ付きフイルムユニット及びその製造方法
US6873478B2 (en) * 2002-06-21 2005-03-29 Nikon Corporation Kinematic lens mount with reduced clamping force
JP4381719B2 (ja) * 2003-05-16 2009-12-09 パナソニック株式会社 レーザ接合による光学部品固定方法および光学部品固定装置ならびに光学モジュール
JP2006178382A (ja) * 2004-11-29 2006-07-06 Konica Minolta Holdings Inc 光学素子、光学素子保持構造、光学素子鏡筒及び光通信モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320114U (ja) * 1986-07-21 1988-02-09
JPH0935317A (ja) * 1995-07-17 1997-02-07 Sharp Corp 対物レンズ調整機構
JP2005292441A (ja) * 2004-03-31 2005-10-20 Konica Minolta Opto Inc 組み合わせレンズとその製造方法
JP2005316044A (ja) * 2004-04-28 2005-11-10 Canon Inc レンズ固定方法、及びレンズユニット
JP2006017795A (ja) * 2004-06-30 2006-01-19 Konica Minolta Opto Inc 組み合わせレンズとその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673564A (zh) * 2008-09-12 2010-03-17 三洋电机株式会社 光拾取装置
JP2011059526A (ja) * 2009-09-11 2011-03-24 Ricoh Co Ltd レンズ鏡胴および撮像装置
WO2019230241A1 (ja) * 2018-05-30 2019-12-05 オムロン株式会社 樹脂体接合品の製造方法及び樹脂体接合品
JP2021015874A (ja) * 2019-07-11 2021-02-12 住友電気工業株式会社 光モジュール
JP7172890B2 (ja) 2019-07-11 2022-11-16 住友電気工業株式会社 光モジュール

Also Published As

Publication number Publication date
CN101389993B (zh) 2011-03-23
TW200629258A (en) 2006-08-16
US7561350B2 (en) 2009-07-14
US20080144196A1 (en) 2008-06-19
TWI378445B (ja) 2012-12-01
CN101389993A (zh) 2009-03-18
JP4594328B2 (ja) 2010-12-08
JPWO2006064876A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4594328B2 (ja) 光学ユニット及びその製造方法
EP1815467B1 (en) Optical pick-up and optical information processing apparatus using the same
US20050174643A1 (en) Hybrid lens array and method of fabricating the same
JP3972484B2 (ja) 固浸レンズ
EP1662292A2 (en) Beam shaping optical device, optical head, and optical information medium drive device
EP1588362B1 (en) Method of manufacturing an optical data storage medium, optical data storage medium and apparatus for performing said method
JP2010511262A (ja) 走査デバイス用のレンズシステム
JP5308997B2 (ja) 光学部品のレーザ溶着構造及び光ピックアップの製造方法
JP2008170905A (ja) レンズ固定方法およびレンズユニット
US20030107824A1 (en) Cemented objective lens and manufacturing method thereof
JP6375695B2 (ja) 光源ユニット、プロジェクタ及び光源ユニットの製造方法
JP4381719B2 (ja) レーザ接合による光学部品固定方法および光学部品固定装置ならびに光学モジュール
JP4366142B2 (ja) 位置制御型接着接合方法
US20080316903A1 (en) Optical pickup apparatus
US7079456B2 (en) Optical recording head capable of correcting spherical aberration
JP5119080B2 (ja) 光学記録読み取り用ピックアップ用光学素子
JP2006162947A (ja) 光学装置および光学部材固定方法
JP2001350074A (ja) 光ピックアップのレンズ取付構造
JP2007264160A (ja) 光学部品の傾き調整方法及び光学ユニットの製造方法
JP2007333859A (ja) 複合光学素子及びその製造方法
JP2003114382A (ja) 光ピックアップ装置用光学系、カップリングレンズ及び光情報記録・再生装置
JP2001243650A (ja) 発散角変換レンズ及び光ピックアップ装置
JP2004524644A (ja) 高い開口数のプラスチック対物レンズを含むスキャン装置
JP2010139722A (ja) 光学部品とその製造方法及び光学装置とその製造方法
JP4458009B2 (ja) 光学ユニットの製造方法および光学ユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580043159.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548903

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11793234

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05816660

Country of ref document: EP

Kind code of ref document: A1