WO2006064729A1 - 多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム - Google Patents

多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム Download PDF

Info

Publication number
WO2006064729A1
WO2006064729A1 PCT/JP2005/022649 JP2005022649W WO2006064729A1 WO 2006064729 A1 WO2006064729 A1 WO 2006064729A1 JP 2005022649 W JP2005022649 W JP 2005022649W WO 2006064729 A1 WO2006064729 A1 WO 2006064729A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
filler
porous
acid
surfactant
Prior art date
Application number
PCT/JP2005/022649
Other languages
English (en)
French (fr)
Inventor
Seiya Shimizu
Makoto Nagamatsu
Hiroshi Shibata
Shoji Ehara
Original Assignee
Maruo Calcium Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004365544A external-priority patent/JP5027385B2/ja
Priority claimed from JP2005089057A external-priority patent/JP5100972B2/ja
Application filed by Maruo Calcium Company Limited filed Critical Maruo Calcium Company Limited
Priority to CN2005800434368A priority Critical patent/CN101080453B/zh
Priority to US11/792,523 priority patent/US20080182933A1/en
Publication of WO2006064729A1 publication Critical patent/WO2006064729A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a filler for a porous film that can be easily mixed with a resin, has good dispersibility in the resin, has few impurities and coarse particles, and has a surface-treated inorganic particle force, and the filler. Relates to a porous film formed by combining
  • the present invention has good workability at the time of premixing with, for example, rosin and other additives, and there is almost no breakage (molecular deterioration) of the molecular chain of the resin during melt-kneading. Since it has dischargeability and hardly contains impurities and coarse particles that are difficult to cause re-aggregation between particles, other additives, and resin, for example, a porous film that does not easily deteriorate in strength is obtained. In addition, since it is possible to manipulate the particle size and to disperse it in the film very uniformly, a porous film having a uniformly controlled pore size distribution width can be obtained.
  • the present invention relates to a filler that imparts excellent performance to a porous finolem formed by blending the filler.
  • Porous films made of synthetic resin are used in a wide variety of applications such as synthetic paper, sanitary materials, medical materials, building materials, air permeable sheets for agriculture, light reflectors for liquid crystal displays, and separators for various batteries. It is being used, and further improvements and developments are sought in every application.
  • transmissive liquid crystal displays are used as monitors for personal computers and display devices for flat-screen TVs.
  • a planar lighting device called a backlight is usually installed on the back of the liquid crystal element. Has been.
  • lithium secondary batteries used in mobile devices such as mobile phones and laptop computers have a higher energy density with respect to volume and weight than other batteries. Since it was put into practical use, it has shown high growth in production and usage.
  • lithium as the main power source
  • Secondary batteries are also required to improve performance.
  • separators are also required to improve performance.
  • the knock light has a function of converting a linear light source such as a cold cathode discharge tube into a planar light source.
  • the knock light has a light source installed immediately below the back surface of the liquid crystal element.
  • a method side light type in which a linear light source is passed through a translucent light guide such as an acrylic plate from the side surface to convert the light into a planar shape to obtain a surface light source.
  • the sidelight type that can structurally make the backlight unit thinner is preferred as a display device, and is used in liquid crystal display devices such as portable personal computers. Is heavily used.
  • the typical configuration of the sidelight type knocklight unit is a light guide plate that has the same strength as an acrylic plate, a light reflector made of foamed polyester, polyolefin film, metallized film, etc., on the opposite side of the light reflector.
  • the installed light diffusion plate and cold cathode discharge tube installed on the side of the light guide plate.
  • Reflective paint is halftone printed on the surface of the light guide plate facing the light reflector side, and linear light introduced from the side of the light guide plate emits light at the dot print portion and is reflected by the light reflector plate. It becomes a uniform surface with a diffuser plate together with the light.
  • the functions required of the light reflector include efficient use of light from the built-in light source, long life such as little change in light reflectance and color tone, and consumer It is a display that meets the needs of
  • a color liquid crystal cell which is the main device of a liquid crystal display, has a low light transmittance, so that a sufficient luminance is required for the light source. In addition, it is necessary to have sufficient power and sufficient brightness and color tones.
  • a white polyester film complies with the physical properties required for the above light reflector.
  • a porous polyolefin film has been proposed for the purpose of improving the color change of a white polyester film (see, for example, Patent Documents 2 and 3).
  • a lithium secondary battery is a porous film separator, a lithium ion, having positive and negative electrodes, lead wires thereof, and a through-hole capable of passing back and forth lithium ions during charge / discharge while preventing a short circuit between the two electrodes.
  • both electrodes In order to obtain a high-capacity battery, it is preferable that the area of both electrodes is large and the movement of ions in both electrodes is smooth.
  • a typical lithium battery secures a wide effective electrode area by stacking a thin film positive electrode 'separator' negative electrode.
  • porous films used as sanitary items such as diapers and bed covers and clothing materials such as gloves have been used as separators for lithium secondary batteries.
  • a porous film suitable for the required requirements is underway.
  • a polypropylene composition containing polypropylene particles with an average particle size of 0.01 to 10 ⁇ m and 13 nucleating agents blended with polypropylene has been proposed.
  • a primary film is prepared by blending a specific amount of inorganic particles with an average particle size of 1 ⁇ m or less into a synthetic resin.
  • Patent Document 1 JP 04-239540 A
  • Patent Document 2 JP 2002-31704 A
  • Patent Document 3 JP 2004-157409 A
  • Patent Document 4 Japanese Patent Laid-Open No. 9-176352
  • Patent Document 5 JP 2002-201298 A
  • the white polyester film of Patent Document 1 has a change in color tone due to deterioration or discoloration of the resin near the light source due to heat emitted from the light source or light having a wavelength in the vicinity of ultraviolet light. There was a decline.
  • the light source itself is powerful and the distance from the light source is shortened, so that the deterioration of the resin has become remarkable, and stability over time has been demanded.
  • Patent Documents 2 and 3 a polyolefin-based resin having less deterioration with time than that of polyester resin is used, and further, heavy carbonate is used as particles that generate fine pores in the resin.
  • inorganic particles such as calcium and barium sulfate, there is little decrease in brightness, it is more stable over time, the resin itself is flexible, and the light guide plate is not damaged. Get a film.
  • a lithium battery using the obtained porous film as a separator has a high internal resistance of the battery, although the reason is not clear, and can be obtained by improving both positive and negative electrodes. As a result, the output was wasted and the separator film was not satisfactory.
  • the current method for producing a film having pores is broadly divided into a method in which inorganic particles are blended and stretched uniaxially or biaxially to generate voids called voids between the particles and the resin, and an acid. 'A method of dissolving the particles themselves with alkali or the like.
  • any method it is necessary to make a porous film in which the size of the voids or pores formed in the film is less varied and the distribution of the voids in the film plane is uniform.
  • uniform dispersion of inorganic particles in the resin composition for film is required, and the particles themselves have few impurities and are not coarse particles that induce a short circuit between both electrodes! ⁇ ⁇ ⁇ ⁇ Sharp particle size distribution is required.
  • the present invention has been made in view of the above-described situation, and is easily mixed with the resin used as the porous film substrate, has good dispersibility in the resin, and has few impurities and coarse particles.
  • a porous film filler comprising a surface-treated inorganic particle and a porous film formed by blending the filler is provided.
  • the present invention for example, has good workability during premixing with rosin and other additives, has almost no molecular chain breakage (molecular deterioration) during melt-kneading, and has good discharge characteristics.
  • inorganic particles having a very small particle size distribution with very few impurities and coarse particles are chelated with respect to a surfactant and an alkaline earth metal.
  • a compound having a function as a surface treatment agent it is possible to obtain surface-treated inorganic particles having extremely excellent dispersibility with respect to greaves, and the incorporation of the obtained surface-treated inorganic particles into greaves. It is easy to disperse well without causing re-aggregation and the like, and the resin composition for porous film containing the surface-treated inorganic particles is used for, for example, a uniaxially or biaxially stretched film.
  • a good void is produced, which is useful as a film for a light reflector of a backlight device such as a liquid crystal display, for example, useful as a separator for a lithium secondary battery, etc.
  • a backlight device such as a liquid crystal display
  • a separator for a lithium secondary battery etc.
  • claim 1 of the present invention is characterized by comprising inorganic particles surface-treated with a surfactant (A) and a compound (B) having a chelating ability with respect to an alkaline earth metal. It is a filler for porous film.
  • Claim 2 of the present invention is the filler for porous films according to claim 1, wherein the inorganic particles are calcium carbonate or barium sulfate.
  • Claim 3 of the present invention is the porous film filler according to claim 1, wherein the surfactant (A) is a fatty acid salt.
  • Claim 4 of the present invention is that the surfactant (A) comprises 50 to 98% by weight of a linear fatty acid salt having 16 or more C atoms and 1.5 to 50 linear fatty acid salts having 10 to 14 carbon atoms. 4.
  • Claim 5 of the present invention is characterized in that the condensed phosphoric acid of the compound (B) having chelating ability with respect to an alkaline earth metal is cyclic condensed phosphoric acid or metaphosphoric acid. 4.
  • Claim 6 of the present invention is that the surfactant (A) is 0.1 to 20% by weight and the compound (B) having chelating ability to the alkaline earth metal is 0.05 to 7% by weight with respect to the inorganic particles.
  • the filler for a porous film according to any one of claims 1 to 5, wherein the filler is for a porous film.
  • Claim 7 of the present invention satisfies the following particle size characteristics (1) to (4):
  • Claim 8 of the present invention is a porous film characterized by comprising the filler for porous film according to any one of claims 1 to 7.
  • Claim 9 of the present invention is the porous film according to claim 8, wherein the resin of the porous film is a polyolefin resin.
  • Claim 10 of the present invention is that the porous film is for light reflection.
  • the eleventh aspect of the present invention is the porous film according to any one of the eighth to tenth aspects, wherein the porous film is used for a light reflecting plate of a liquid crystal display device or a lighting device.
  • a twelfth aspect of the present invention is the porous film according to the eighth or ninth aspect, which is used for a diaphragm between electrodes of a battery.
  • the battery is a lithium secondary battery. It is a porous film of description.
  • the filler for a porous film of the present invention can be easily mixed with a resin and has a good dispersibility in the resin.
  • a resin for example, a light reflecting plate of a backlight device of a liquid crystal display, a battery, and the like.
  • a porous film useful as a separator between the electrodes can be provided.
  • the filler for porous film of the present invention can be mixed with the resin quickly, and for example, there is little adhesion to the inner wall surface of the mixer or the blades for stirring and mixing, and adhesion inside the mixer.
  • FIG. 1 is a schematic view of a direct type backlight unit used for evaluation of luminance unevenness.
  • the surfactant (A) used in the present invention includes saturated fatty acids, unsaturated fatty acids, alicyclic carboxylic acids, succinic acids, salts thereof, esters thereof, alcohol surfactants, sorbitan Fatty acid esters, amide surfactants, amine amine surfactants, polyoxyalkylene alkyl ethers, polyoxyethylene norphenyl ether, sodium alpha olefin sulfonate, long chain alkyl amino acid, amine oxide, alkylamine And quaternary ammonium salts, etc., which are used alone or in combination of two or more as required.
  • saturated fatty acids include strength purine acid 'lauric acid', myristic acid ', palmitic acid', stearic acid, etc.
  • unsaturated fatty acids include oleic acid'linoleic acid'linolenic acid, etc.
  • carboxylic acids there is a force at the end of the cyclopentane ring or cyclohexane ring.
  • examples thereof include naphthenic acid having a lupoxyl group
  • examples of succinic acid include abietic acid 'pimaric acid' and neoabietic acid.
  • Examples of the alcohol-based surfactant include sodium alkyl sulfate ester and sodium alkyl ether sulfate, and examples of sorbitan fatty acid esters include sorbitan monolaurate and polyoxyethylene sorbitan monostearate.
  • examples of amide-based amine surfactants include fatty acid alcohol amides and alkylamine oxides, and examples of polyoxyalkylene alkyl ethers include polyoxyethylene alkyl ethers and polyoxyethylene lauryl ethers.
  • Examples of long-chain alkyl amino acids include lauryl betaine and stearyl betaine.
  • Examples of the amine oxide include polyoxyethylene fatty acid amides and alkylamine oxides, examples of the alkylamine include stearylamine acetate, and examples of the quaternary ammonium salt include stearyltrimethyl. Ammo-um chloride and quaternary ammo-sulfate are listed.
  • Examples of the salts of various acids include alkali metal salts such as potassium and sodium. Specifically, potassium laurate, potassium myristate, potassium palmitate, sodium palmitate, potassium stearate. , Saturated fatty acid salts such as sodium stearate, unsaturated fatty acid salts such as potassium oleate and sodium oleate, alicyclic carboxylates such as lead naphthenate and cyclohexylbutyrate, potassium abietic acid and sodium It is done.
  • alkali metal salts such as potassium and sodium.
  • Saturated fatty acid salts such as sodium stearate
  • unsaturated fatty acid salts such as potassium oleate and sodium oleate
  • alicyclic carboxylates such as lead naphthenate and cyclohexylbutyrate
  • potassium abietic acid and sodium It is done.
  • esters of the above-mentioned various acids include, for example, force ethyl propyl ester, force vinyl acetate, diisopropyl adipate, ethyl caprylate, allylic caprate, ethyl caprate, butyric acid purate, jetyl sebacate, Diisopropyl sebacate, cetyl isooctanoate, octyldodecyl dimethyloctanoate, methyl laurate, butyrate laurate, lauryl laurate, methyl myristate, isopropyl myristate, cetyl myristate, myristyl myristate, isocetyl myristate, Otatildodecyl myristate, isotridecyl myristate, methyl palmitate, isopropyl palmitate, octyl palmitate, cetyl palmitate, isostearyl palmitate
  • the above surfactants may be used alone or in combination of two or more as required.
  • the inorganic particles surface-treated with saturated fatty acid, unsaturated fatty acid, alicyclic carboxylic acid, and oxalic acid salt are insulative properties of the resin when blended with rosin.
  • a mixture of an alkali metal salt of a fatty acid is more preferred, especially dispersibility is good without impairing heat resistance.
  • the composition is an alkali metal salt of C having 16 or more straight chain fatty acids such as palmitic acid 'stearic' Arakijin acid behenate 50-98 by weight 0/0, It is preferable that the alkali metal salt of a linear fatty acid having a C number of 10-14, such as force purine 'lauric acid' myristic acid, is present in a proportion of 1.5-50% by weight.
  • an alkali metal salt of a linear fatty acid having 18 or more carbon atoms such as stearic acid oleic acid, particularly a potassium salt is preferable.
  • a sodium salt of lauric acid having 12 carbon atoms or a potassium salt of myristic acid having 14 carbon atoms is preferable from the viewpoint of dispersibility.
  • the content of the straight chain fatty acid having 16 or more carbon atoms in the composition of the alkali metal salt of the straight chain fatty acid is less than 50% by weight, the reason is not clear compared with the case of 50% by weight or more.
  • the dispersibility in the resin is slightly worse, and if it exceeds 98% by weight, the voids generated between the resin and the particles tend to be too small compared to 98% by weight or less. Absent . If the air gap is too small, for example when used in a light reflecting film, the current technology For example, when the resin is used in a separator film, it is not preferable because it is difficult to ensure good ion passage properties.
  • the surfactant (A) When the above-described alkali metal salt of a linear fatty acid is used as the surfactant (A), it is preferable to select and mix the fatty acids of each composition, but this does not hinder the efficacy of the present invention.
  • a commercially available sarcophagus having an equivalent composition for example, “Nonsar SK-1” (registered trademark of NOF Corporation) may be used.
  • the amount of the surfactant (A) used varies depending on the specific surface area of the inorganic particles. In general, the larger the specific surface area, the larger the amount used.
  • the amount of the surfactant (A) used in the present invention is proportional to the specific surface area Swx of the inorganic particles to be surface-treated, and is within a range of ⁇ 20% around the amount represented by the following formula (1). When used, it has been found that the effect of the present invention is better.
  • Examples of the compound (B) having chelating ability with respect to alkaline earth metals used in the present invention include ethylenediamine tetraacetic acid, -trimethyltriacetic acid, hydroxyethylethylenediamine triacetic acid, diethylenetriamine penta Aminocarboxylic acid chelating agents represented by acetic acid, triethylenetetraamine hexaacetic acid, hydroxyethylidene diphosphite, nitrilotrismethy Phosphonic acid-based chelating agents such as lenphosphonic acid, water treatment agents composed of aluminum compounds such as polysalt-aluminum, polycarboxylic acids such as polyacrylic acid and succinic acid and their salts, and maleic acid such as polyacrylic acid. Examples thereof include salts of itaconic acid copolymers, or phosphoric acids such as polyphosphoric acid and condensed phosphoric acid, and salts thereof.
  • polycarboxylic acid salts include sodium polyacrylate and ammonium polyacrylate
  • copolymer salts include acrylic acid and maleic acid copolymer (polymerization ratio 100: 80, etc.).
  • Ammonium salt of acrylic acid and methacrylic acid copolymer (polymerization ratio 100: 80, etc.)
  • phosphoric acid salts such as sodium hexametaphosphate, sodium polyphosphate, sodium pyrophosphate, etc. These may be used alone or in combination of two or more as required.
  • the compound (B) having a chelating ability with respect to these alkaline earth metals requires a high degree of insulation such as a lithium secondary battery, polyphosphoric acid, condensed phosphoric acid, and polyvalent Among the preferred carboxylic acids or salts thereof, cyclic condensed phosphoric acid or metaphosphoric acid of condensed phosphoric acid is preferred.
  • the amount of the compound (B) having a chelating ability with respect to the alkaline earth metal is determined by the surfactant.
  • the amount of the compound (B) having a chelating ability with respect to the alkaline earth metal is proportional to the specific surface area Swx of the inorganic particles to be surface-treated, and is mainly based on the amount represented by the following formula (2). It has been found that if it is used within a range of 20% or less, the effect of the present invention is better.
  • the inorganic particles used in the present invention are not particularly limited as long as they are generally water-insoluble.
  • barium sulfate, calcium carbonate, basic magnesium carbonate, magnesium hydroxide, hydroxysite, hydroxyapatite, talc, clay There are main and sub-components like Alternatively, those containing an alkaline earth metal as an impurity are preferable, and calcium carbonate, basic magnesium carbonate, magnesium hydroxide, hydroxytalcite, and hydroxyapatite are particularly preferable.
  • calcium sulfate and calcium carbonate are particularly preferred because they are safe and inexpensive to obtain, and the particle size operation is relatively easy, and the impurities contained in the particles are small and easy to remove.
  • the production process is more secure, and the raw material itself is more preferable because it produces abundant high-quality limestone in Japan.
  • Calcium carbonate generally reacts heavy calcium carbonate obtained by mechanically pulverizing limestone, classifying the pulverized material to prepare various grades, quick lime obtained by firing limestone at high temperature, and water.
  • the lime milk is prepared, and the carbon dioxide compounding method in which the carbon dioxide gas generated during limestone baking is conducted to the lime milk to synthesize calcium carbonate, the lime sodium carbonate method in which sodium carbonate reacts with the lime milk, the carbonated calcium carbonate Salt that reacts with soda Calcium is roughly divided into two types: precipitated calcium carbonate (synthetic calcium carbonate) prepared by chemical methods such as sodium carbonate method.
  • the surface-treated calcium carbonate satisfies the conditions of the present invention, there is no difference in physical properties depending on the production method, but heavy calcium carbonate has various limestone as a raw material other than calcium carbonate because of its production method. For example, it is not preferable for battery separator applications that require high-purity calcium carbonate that dislikes such impurities. Furthermore, calcium carbonate having a broad particle size distribution and fineness above a certain level is not preferable because it cannot be produced by the current grinding and classification technology.
  • the lime sodium carbonate method in which sodium carbonate is reacted with lime milk, the soda method in which sodium carbonate is reacted with salt calcium, etc. have a sharp particle size of the resulting precipitated calcium carbonate and can be easily manipulated. Since it contains very few impurities, it is advantageous for battery separator applications.
  • Precipitated calcium carbonate obtained by reacting lime milk obtained by calcining limestone and dissolving the obtained quick lime in water and carbon dioxide gas obtained at the time of firing has fine particles and is primary. It is possible to adjust the particle size and remove coarse particles according to the reaction conditions and the post-reaction process with a uniform particle size 'shape and a small amount of impurities, and it is economical and environmentally friendly to the physical properties of the resulting particles. It is also excellent in terms of load, and is suitable for use in, for example, a battery separator film. When used for battery separator applications, it is preferable to select limestone as a raw material while paying attention to impurities.
  • the fuel used for firing is generally the power used by Kortas or light oil. Viewpoint power The firing is more preferably performed with light oil.
  • the calcium carbonate particles obtained by the reaction are classified using gravity, centrifugal force, buoyancy beneficiation, etc., such as decantation, for the purpose of removing impurities and coarse particles when they are in the form of water slurry.
  • the surface treatment method using the surfactant (A) described above for the obtained calcium carbonate particles and the compound (B) having a chelating ability for an alkaline earth metal includes, for example, a super mixer and a Henschel mixer.
  • the surface treatment agent is directly mixed with the powder using a mixer called, and the surface treatment is performed by heating as necessary, generally in a method called dry treatment, and for example, the surfactant (A) and alkaline earth metal
  • the compound (B) having chelating ability is dissolved in water or hot water, added to a stirring water slurry of calcium carbonate, and after surface treatment, dehydration and drying are generally performed by a method called wet treatment. Both However, the wet method alone is preferably used mainly from the economical point of view and the degree of treatment on the surface of the calcium carbonate particles.
  • the surface-treated inorganic particles in the present invention preferably satisfy the following (1) force and (4) particle size characteristics.
  • the surface-treated inorganic particles in the present invention are preferably in the range of average particle diameter D force ⁇ D ⁇ 1.5 [/ ⁇ ⁇ ] measured with a micro track FRA manufactured by Leeds & Northrup.
  • some of the particles are present as secondary particles in the reinforced resin, and for example, voids exceeding the desired size in the porous film for light reflecting layers and the film for battery separators.
  • voids exceeding the desired size in the porous film for light reflecting layers and the film for battery separators For example, when used in a light reflecting film, unevenness of reflected light is likely to occur. Therefore, when used in, for example, a separator film, the ion permeability is not preferable.
  • the particle diameter Dx measured from the electron microscope field of the surface-treated inorganic particles in the present invention is preferably 0.02 ⁇ Dx ⁇ 0.6 [ ⁇ m]. 0.02 ⁇ 0.4 [ ⁇ m] Better Good.
  • the particle size Dx exceeds 0.6 m, for example, when it is blended in a porous film for light reflectors or a separator film for batteries, it creates large pores that are larger than intended, so it is preferably less than 0.02 ⁇ m.
  • the voids formed between the particles and the particles tend to be too small, and it is not preferable.
  • a porous film for a light reflector is not preferable because it creates a larger pore than intended.
  • the surface-treated inorganic particles in the present invention preferably have a maximum particle size Da as measured by the above Microtrack FRA within a range of Da ⁇ 20 [m] Da ⁇ 5 [m] It is more preferable that it is within the range of Da ⁇ 3 [ ⁇ m], particularly when used for a battery separator film.
  • the maximum particle size Da exceeds 20 m, for example, when incorporated in a porous film for a light reflector or a separator film for a battery, a larger hole than intended is created, which is not preferable.
  • the medium used for the measurement with Microtrack FRA is appropriately selected depending on the surface treatment agent used for the surface treatment of the particles. Usually, the medium treated with a surface treatment agent exhibiting hydrophilicity is used. For the surface treated with a hydrophobic surface treating agent, methanol or ethanol is preferably used.
  • the measurement was performed after irradiating at 300 A for 60 seconds using an ultrasonic disperser Ultra Sonic Generator US-300T manufactured by Nippon Seiki Seisakusho as pre-dispersion in water or methanol / ethanol slurry used for measurement.
  • the surface-treated inorganic particles in the present invention preferably have a BET specific surface area Sw force S3 ⁇ Sw ⁇ 60 [mVg] by nitrogen adsorption method, more preferably 5 ⁇ Sw ⁇ 20 [mVg] or less.
  • the BET specific surface area Sw is 60 m 2 Zg exceeds the above ⁇ tool than void in terms of dispersibility since becomes smaller tend Rutotomoni particles tend to be agglomerated preferably Nag 3m 2 Zg, the size of primary particles
  • porous films for light reflectors and separator films for batteries When mixed with film, it creates larger pores than intended, so it is not suitable as a particle for use in knocklight devices or lithium secondary batteries.
  • the filler for a porous film having surface-treated inorganic particle force obtained as described above is blended with various types of resin, particularly olefin-based resin, and is used for various purposes, particularly for light reflecting plates, Used in the production of porous films such as battery separators.
  • the resin used in the present invention is not particularly limited.
  • polyethylene When used as a battery separator film, polyethylene is more preferable among the above-mentioned shutdown mechanisms, handling at the time of battery production, and cost-effective polyethylene resin such as polyethylene and polypropylene.
  • the blending ratio of the filler for porous film and these rosins is not particularly limited, and varies greatly depending on the type and use of rosin, desired physical properties and costs, and may be appropriately determined according to them.
  • the amount is 60 to 150 parts by weight, preferably about 80 to 120 parts by weight, based on 100 parts by weight of the resin.
  • lubricants such as fatty acids, fatty acid amides, ethylenebisstearic acid amides, sorbitan fatty acid esters and the like for the purpose of improving the film properties within the range without inhibiting the effectiveness of the filler for porous films of the present invention
  • Plasticizers and stabilizers, acid / antioxidant, etc. may be added, and additives generally used in film resin compositions, such as lubricants, antioxidants, heat stabilizers, light stabilizers, You may mix
  • the filler for a porous film of the present invention and the above-mentioned various additives are blended with a resin, it is usually kneaded with a single- or twin-screw extruder, an adder, a Banbury mixer, etc., and a T-die or the like. Porous film having fine pores by stretching uniaxially or biaxially after forming the sheet It is regarded as a product.
  • a known molding machine such as ⁇ die extrusion or inflation molding is used to form a film, which is acid-treated to dissolve the filler for the porous film of the present invention to have fine pores.
  • a porous film product As a porous film product.
  • pellets and powders adjusted to an arbitrary particle size as the shape of the resin, and powder dispersion is used to disperse the particles.
  • the filler for porous film of the present invention when used with pellet-shaped resin, it exhibits good physical properties such as dispersibility in resin compared to particles other than the present invention. It is particularly good when mixed with rosin.
  • a Henschel mixer for example, in addition to the merit that mixing can be performed quickly, there is less adhesion to the inner wall of the mixer and the blades for stirring and mixing.
  • Features such as reduced generation of agglomerated agglomerates that induce adhesion inside the mixer, less work of mixing and less clogging of the strainer in the kneading extruder in the subsequent process, etc.
  • the raw material charging method is not limited to the dispersion of particles in the resin, but also the influence on the Ml value of the resin itself and the cost.
  • the filler for porous film of the present invention is added to the resin, it is selected in consideration of them, but a mixture mixed with a resin powder having an appropriate particle size range with a Henschel mixer or the like is used.
  • a method of quantitatively charging it into a hopper of a kneader such as a shaft kneader is preferable.
  • a pellet containing various additives such as a filler for the porous film of the present invention, which is called a master batch, was once prepared, and then the additive-free calorie was added.
  • the film may be melted and filmed together with the koji resin.
  • a plurality of T-die extruders in the above process may be stacked, or a process of laminating at the time of stretching may be introduced to form a multilayer film, or for the purpose of imparting printability to the above film. It is also possible to coat the ink receiving layer by subjecting the film surface to surface treatment such as plasma discharge.
  • % means “% by weight” unless otherwise specified.
  • a mixed processing agent A1 separately prepared with the composition shown below is dissolved in 3.3% of calcium carbonate solids in hot water at 80 ° C to obtain an aqueous solution of the surfactant (A).
  • sodium hexametaphosphate (reagent grade 1) as a compound having chelating ability to alkaline earth metal (hereinafter referred to as chelate compound) (B) is 0.9% based on the solid content of calcium carbonate.
  • An aqueous solution of the chelate compound (B) was prepared by dissolving in 40 ° C water.
  • the previously obtained precipitated calcium carbonate slurry was adjusted to 60 ° C while stirring, and the above-mentioned chelate compound (B) and surfactant (A) were added thereto in this order, followed by stirring for 4 hours for surface treatment. A calcium carbonate slurry was obtained.
  • the surface-treated calcium carbonate slurry was removed with a high-speed decanter manufactured by Tanabe Wiltech Co., Ltd. and a 350-mesh sieve to remove foreign substances and coarse particles, dehydrated and dried, and pulverized. Classification was performed with a classifier to obtain a surface-treated calcium carbonate powder.
  • the resulting surface-treated calcium carbonate powder has a D force of ⁇ m, Dx of 0.15 ⁇ m, and Da of
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the surfactant (A) was changed to potassium stearate. Obtained surface treated calcium carbonate powder Table 1 shows various physical properties of the body.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the surfactant (A) was changed to sodium laurate.
  • Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the surfactant (A) was changed to sodium oleate.
  • Table 1 shows various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the surfactant (A) was changed to sodium abietic acid.
  • Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the surfactant (A) was changed to lauric acid.
  • Table 1 shows various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the chelate compound (B) was changed to polysalt-aluminum. Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the chelate compound (B) was changed to sodium polyacrylate.
  • Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the chelate compound (B) was changed to -trimethyltriacetic acid.
  • the surface-treated calcium carbonate powder obtained Various physical properties are shown in Table 1.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the chelate compound (B) was changed to hydroxyethylidene diphosphorous acid.
  • Table 1 shows the various physical properties of the obtained surface-treated carbonated lucium powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the chelate compound (B) was changed to polyacrylic acid and maleic acid copolymer (polymerization ratio 100: 80). Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the amount of surfactant (A) added to calcium carbonate was changed to 5%.
  • Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the amount of the chelate compound (B) added to calcium carbonate was changed to 2%.
  • Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • Example 1 except that grain growth by aging was stopped at a BET specific surface area of Swxm 2 Zg, and the addition amounts of surfactant (A) and chelate compound (B) were changed to the values shown in Table 2, respectively.
  • a water slurry containing 10% precipitated calcium carbonate was obtained by the same method as in Example 1, and the same operation as in Example 1 was performed to obtain a surface-treated calcium carbonate powder.
  • Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • Example 20 The same operation as in Example 1 was conducted except that the surfactant (A) was changed to a commercially available stone wall (registered trademark NONSAR SK-1 manufactured by NOF Corporation) and the chelate compound (B) was changed to sodium hexametaphosphate for industrial use. And surface-treated calcium carbonate powder was obtained. Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • the calcium carbonate slurry surface-treated with sodium hexametaphosphate was dehydrated and diluted repeatedly with a high-speed decanter etc. to remove counterions and foreign substances, adjusted to 60 ° C, and 2.9% of the calcium carbonate solid content.
  • the mixed treatment agent A1 was dissolved in 80 ° C hot water and then added to the calcium carbonate slurry, and stirred for 4 hours to obtain a surface-treated calcium carbonate slurry.
  • the obtained surface-treated calcium carbonate slurry was dried and crushed.
  • the obtained dry powder was classified with an air classifier to obtain a surface-treated calcium carbonate powder.
  • Obtained surface-treated charcoal Table 1 shows the various physical properties of calcium oxide powder.
  • Example 1 Using the coatas as the heat source, the same procedure as in Example 1 was performed except that the gray dense limestone was baked in the shaft kiln and the foreign matter removal process was not performed. . Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • the slurry was wet pulverized with a dyno mill KB-20B, a wet pulverizer, to obtain an aqueous slurry of calcium carbonate having a BET specific surface area of 0.9 m 2 Zg. .
  • the calcium carbonate slurry obtained above was adjusted to 60 ° C while stirring, and the above-mentioned chelate compound (B) and surfactant (A) were added in this order, and the mixture was stirred for 4 hours to surface-treat carbonic acid. Lucium slurry was obtained.
  • the surface-treated calcium carbonate slurry was removed with a high-speed decanter manufactured by Tanabe Wiltech Co., Ltd. and a 350-mesh sieve to remove foreign substances and coarse particles, dehydrated and dried, and pulverized. Classification was performed with a classifier to obtain a surface-treated calcium carbonate powder. Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • the barium sulfate slurry obtained previously was adjusted to 60 ° C. while stirring, and the above-described chelate compound (B) and surfactant (A) were added to the slurry in this order. A calcium slurry was obtained.
  • the obtained surface-treated barium sulfate slurry is removed with a 350 mesh sieve to remove foreign matter and coarse particles, dehydrated and dried, and then the resulting dry powder is classified with an air classifier. Got the body.
  • Table 1 shows the various physical properties of the obtained surface-treated barium sulfate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the chelate compound (B) was not used as a treating agent.
  • Table 1 shows the various physical properties of the obtained surface-treated calcium carbonate powder.
  • a surface-treated calcium carbonate powder was obtained in the same manner as in Example 1 except that the surfactant (A) was not used as a treating agent! Table 1 shows various physical properties of the obtained surface-treated calcium carbonate powder.
  • Example 1 i Example 2 Example 3 Example 4 Example 5! Example 6 Example 7 Example 8 Surfactant (A) Surfactant A1! Stearic acid Lauric acid Aileic acid Abietic acid! Lauric Acid Surfactant A 1 Surfactant A1 Potassium Nad "um sodium sodium
  • Example 1 7 Example 1 8 Example 19 Example 20 Example 21 Example 22 Example 23 Example 24 Surfactant (A) Surfactant A1 Surfactant A1 Surfactant A1 SK-1 Surfactant A1 Surfactant A1 Surfactant A1 Addition (%) 7 5 20 3.3 2.9 3.3 0.3 1.2 Chelating agent (B) Hexametaphosphate Hexametaphosphate Hexametaphosphate Hexametaphosphate Hexametasuccinate Oxametaphosphate Hexametaphosphate Hexametaphosphate Na Jum Natrium Natrium Sodium (Industrial) Sodium Sodium Natrium Sodium Addition ( ⁇ 1 ⁇ 2) 1.9 1.5 7 0.9 0.8 0.9 0.1 0.38 BET Swx 21 21 of inorganic particles 58 10 3.2 10 0.9 3.4 Average particle size D 50 0.74 0.94 0.98 0.482 0.61 0.524 0.98 0.783 Average diameter in electron microscope field Dx 0.03 0.03 0.02 0.15 0.62 0.15 0.94 0.54
  • the obtained mixture was processed into a pellet form by a vent type twin screw extruder.
  • An unstretched sheet was obtained from the pellets using an extruder equipped with a T die.
  • the obtained unstretched sheet was stretched about 7 times in a tenter oven at a temperature of 140 ° C. to obtain a 180 m porous stretched film.
  • a polyester hot melt adhesive was applied to the obtained porous stretched film with a gravure coater to a thickness of 7 m.
  • a 200 ⁇ m thick aluminum film as a plate-like support was laminated at a temperature of 75 ° C. on the porous stretched film coated with this adhesive to obtain a light reflector.
  • the adhesive strength was 100 gZcm 2 .
  • the light reflecting plate thus obtained was measured and evaluated for total light reflectance, luminance unevenness, and color change (yellowing) during continuous lighting. The results are shown in Table 2.
  • the total light reflectance was obtained by calculating the average value of the reflectance of each wavelength measured in the wavelength range of 40 nm to 700 nm in accordance with JIS-Z-8701.
  • the light reflector was left for 24 hours in an environment of 83 ° C and 50% relative humidity.
  • the uneven brightness was evaluated using a 24-inch type direct surface light source display device.
  • the light reflection plate obtained in Examples 25 to 48 and Comparative Examples 3 to 4 was molded as the light reflection plate 4 of the surface light source display device, and the cold cathode lamp 2 and the front surface inside the housing 1 were used. LCD cell 3 was installed.
  • Example 25 Example 26 Example 27 Example 28 Example 29 Example 30
  • Example 31 Example 32 Used filler Example 1 Example 2 Example 3 Example 4
  • Example 5 Example 6
  • Example 6 Total light reflectance Before durability test [%] 95.5 94.8 93.4 92.4 90.5 93.4 92 94.6 After durability test [%] 95.3 92.6 91.1 90.5 89.9 89.8 91.3 94 Rate of change [%] 0.21 2.32 2.46 2.06 0.66 3.85 0.76 0.63 -] OO 0 OOOOO Color change lEH [-] 0.24 0.47 0.44 0.96 0.45 0.57 0.53 0.54 Rating ⁇ OOO 0 OOO Overall rating 5 3 3 2 2 3 3 4
  • Example 33 Example 34 Example 35 Example 36 Example 37 Example 38 Example 39 Example 40 Used filler Example 9
  • Example 10 Example 1 1 Example 1 2 Example 1 3
  • Example 14 Example 1 5
  • Example 1 6 Total light reflectance Before durability test [%] 91.6 92.2 92.6 95.2 94.8 94.4 92.4 93.2 After durability test [%] 89.8 91.2 91.4 93.9 94 93.4 91.9 92.8 Rate of change [%] 1.97 1.08 1.30 1.37 0.84 1.06 0.54 0.43 Luminance unevenness [-] OOOOOOOO Color change lEH [-] 0.88 0.56 0.58 0.43 0.47 0.43 0.51 0.42 Evaluation OOOOO 0 O ⁇ Overall evaluation 2 3 3 4 4 4 3 4
  • Example 41 Example 42
  • Example 43 Example 44
  • Example 45 Example 46
  • Example 47 Example 48 Particles Used Example 1 7
  • Example 1 8 Example 1 9
  • Example 20 Example 21
  • Example 22 Example 23
  • Example 24 Total light reflectance Before endurance test [] 95.2 93.1 92.9 95.3 90.4 92.9 89.6 89.4
  • Example: A mixed polyethylene resin was prepared by mixing polyethylene resin (Mitsui Chemicals Noisetta Million 340M) and polyethylene wax (Mitsui Chemicals high wax 110 P) in a ratio of 7: 3. Charged to Henschel mixer at a volume ratio of 3: 7 for the porous film filler consisting of the surface-treated calcium carbonate powder obtained in 1 to 24 and Comparative Examples 1 and 2, and mixed for 5 minutes As a result, a porous film filler-resin mixture was obtained.
  • polyethylene resin Mitsubishi Chemicals Noisetta Million 340M
  • polyethylene wax Mitsubishi Chemicals high wax 110 P
  • the obtained mixture was melt-kneaded and film-formed with a Toyo Seiki twin-screw kneader 2 D25W equipped with a T die to obtain a film with a thickness of 80 m.
  • the obtained film was stretched about 5 times in the length direction at a temperature of 110 ° C. in a tenter oven to obtain a porous film.
  • Ion permeability was evaluated by measuring the electrical conductivity of Li ions moving through the solution.
  • the measuring method is that a porous film (47 mm in advance) obtained in the present invention is used instead of filter paper or a filter between a filter holder used in a filtration test or the like and a 250 ml funnel. After cutting into a 1L suction bottle filled with a mixed solution of ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate in a volume ratio of 30:35:35, add another mixture.
  • the Gurley value of the porous film was measured with a B type densometer manufactured by Toyo Seiki.
  • the average pore diameter was measured by the bubble point method with a Perm-Porometer (PMI).
  • a small film thickness is advantageous for ion permeability, but since insulation between both electrodes and piercing strength are weakened, a film having a large film thickness while maintaining good ion permeability is preferable.
  • Example 4 Example 5
  • Example 7 Example 7 8 Ion permeability [/ S / cm] 820 670 660 480 510 450 640 720 Gurley permeability [sec lOOcc] 70 90 110 150 180 160 90 90 Average pore diameter [/ m] 0.087 0.094 0.092 0.104 0.11 0.14 0.098 0.096 Membrane Thickness [/ m] 45 44 45 44 46 45 45 45 Overall rating 5 3 3 2 2 3 3 4
  • Example 57 Example 58
  • Example 59 Example 60
  • Example 61 Example 62
  • Example 63 Example 64 Particles used
  • Example 10 Example 11
  • Example 12 Example 13
  • Example 15 Example 15 16 Ion permeability [// S / cm] 520 630 590 700 740 720 620 710 Gas permeability [sec lOOcc] 160 140 150 90 100 80 120 90 Average pore diameter [jum] 0.121 0.114 0.102 0.095 0.094 0.095 0.111 0.099 Film thickness [jUm] 44 46 47 46 43 44 45 46 Overall evaluation 2 3 3 4 4 4 3 4
  • the filler for a porous film of the present invention can be easily mixed with a resin and has good dispersibility in a resin, and is useful, for example, as a light reflecting plate of a liquid crystal display device or a lighting device.
  • a porous film useful as a separator between battery electrodes can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

  樹脂との混合が容易で、樹脂中での分散性が良好で、例えば、液晶表示装置や照明装置の光反射板として有用な多孔質フィルムや、アルカリ電池などの電極間の隔膜(セパレータ)として有用な多孔質フィルムを与える多孔質フィルム用填剤を提供する。  界面活性剤(A)と、アルカリ土類金属に対してキレート能を有する化合物(B)とで表面処理された無機粒子からなることを特徴とする多孔質フィルム用填剤である。

Description

多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム 技術分野
[0001] 本発明は、榭脂との混合が容易で榭脂中での分散性も良好、かつ不純物や粗大 粒子が少な 、表面処理無機粒子力 なる多孔質フィルム用填剤、及び該填剤を配 合してなる多孔質フィルムに関する。
本発明は、更に詳しくは、例えば榭脂ゃ他の添加剤との予備混合時の作業性が良 好で、溶融混練時の樹脂の分子鎖の切断 (分子劣化)が殆どない上に良好な吐出性 を有し、かつ粒子同士や他の添加剤、榭脂との再凝集を起こしにくぐ更に不純物や 粗大粒子を殆ど有しな 、ことから、例えば強度劣化を起こしにくい多孔質フィルムが 得られ、また粒径操作が可能であることとフィルム中に極めて均一に分散させることが 可能であることから、空隙径の分布幅を均一に制御した多孔質フィルムが得られるな ど、多孔質フィルムに優れた性能を付与する填剤及び該填剤を配合してなる多孔質 フイノレムに関する。
背景技術
[0002] 合成樹脂からなる多孔質フィルムは、合成紙、衛生材料、医療用材料、建築用材 料、農業用透気性シート、液晶ディスプレイの光反射板、各種電池のセパレータ等の 多種多様な用途で使用されており、いずれの用途においても更なる改良と発展が求 められている。
例えば、パーソナルコンピュータのモニターや薄型 TVの表示装置として透過型の 液晶ディスプレイが使用されており、この様な液晶ディスプレイには、通常、液晶素子 の背面にバックライトと呼ばれる面状の照明装置が設置されている。
また、例えば、携帯電話やノートパソコン等のモパイル機器に使用されているリチウ ムニ次電池は、他の電池よりも容積や重量に対して高エネルギー密度を有して 、る ことから、 1990年代初頭に実用化されて以来、高い生産量と使用量の伸び率を示し ている。
そして、各種モパイル機器の更なる性能向上に伴い、それらの主電源たるリチウム 二次電池にも更なる性能向上が求められ、正負の両電極と同様、セパレータにも性 能向上が求められている。
[0003] ノ ックライトは、冷陰極放電管等の線状光源を面状の光源に変換する機能を有して おり、代表的な構造として、液晶素子の背面直下に光源を設置するものと、側面から 線状光源をアクリル板等の透光性の導光体に通して面状に光を変換して面光源を得 る方式(サイドライト式)がある。
近年のディスプレイに対する消費者の軽量化、薄型化への要望に対して、構造的 にバックライトユニットを薄くできるサイドライト式が表示装置として好まれており、携帯 用パーソナルコンピュータ等の液晶ディスプレイ装置には多用されている。
[0004] サイドライト式のノ ックライトユニットの典型的な構成は、アクリル板等力もなる導光 板、発泡ポリエステルやポリオレフインフィルム、金属蒸着フィルム等からなる光反射 板、光反射板の反対面に設置される光拡散板、及び導光板の側面に設置された冷 陰極放電管等力 なる。
光反射板側に面した導光板の表面には、反射塗料が網点印刷されており、導光板 の側面から導入された線状光は網点印刷部分で発光し、光反射板で反射された光と 共に拡散板で均一面状になる。
[0005] このノ ックライトユニットにおいて光反射板に要求される機能は、内蔵光源から光を 効率よく利用することと、光の反射率や色調の変化が少ないといった長寿命性、なら びに消費者のニーズにあった表示である。
つまり、導光板から光反射板側に裏抜けする光を、無駄なく面方向に輝度のムラな く均一に反射することが要求されており、液晶のカラー表示が当然になった現在、各 種液晶ディスプレイの主たるデバイスであるカラー液晶セルは、その光線透過率が低 いために光源には充分な輝度が要求されている。加えて当然のことである力 充分な 輝度や色調が変化しな 、ことが要求されて 、る。
また、一般にギラギラとした鏡面反射は消費者に嫌われるため、散乱反射によって 出射面方向に比較的均一な輝度を実現し、ディスプレイからの光を自然に感じさせ る必要がある。
[0006] 以上の光反射板に要求される物性に対して、例えば白色ポリエステルフィルムが従 来力 使用されており(例えば、特許文献 1参照)、また、白色ポリエステルフィルムの 色調変化の改善目的で多孔質ポリオレフインフィルムが提案されている(例えば、特 許文献 2、 3参照)。
[0007] 他方、リチウム二次電池は、正負の両極とそのリード線、両極間で短絡を防止しつ っ充放電時にリチウムイオンの行き来が可能な貫通孔を有する多孔質フィルムセパ レータ、リチウムイオンの移動媒体としてセパレータに含浸させた有機溶媒 (電解液) 、及び電解液の漏出防止目的でパッケージした金属容器カゝらなる。
高容量の電池を得るには、両極の面積が広ぐかつ両極中のイオンの移動がしゃ すいものほど好ましい。通常のリチウム電池は薄膜状の正極'セパレータ '負極を積 層捲回することにより、広い有効電極面積を確保している。
[0008] セパレータはその本来の目的である両極の絶縁性にカ卩えて、イオンが透過しやす いほど内部抵抗が低下し電池としての性能が向上する点から、より薄ぐ高空孔率、 高通気性を有することが望まれる。
しかし、セパレータの機能である絶縁性と内部抵抗の低減は相反するものであり、 単純に薄くすれば良いものでなぐ更に寸法安定性、電解液に対する耐腐食性、捲 回時の作業性、価格等にも考慮すべきである。力!]えて昨今のセパレータには、その 安全性確保の目的から、誤接続等により異常電流が発生すると電池内の温度が上 昇し、榭脂が溶融して孔を塞 、で電池反応を停止させるシャットダウン機能が必要で ある。
以上の要求に対して、選択可能な榭脂ゃフィルムの膜厚等は、用途毎に制限され ているのが実情である。
[0009] これまで、リチウム二次電池用セパレータとして、おむつやベッドカバー等の衛生用 品や手袋等の衣料の素材として使用されている多孔性フィルムが使用されている。 しかし、要請される要求により適した多孔質フィルムの研究開発が進められており、 例えば平均粒径 0.01〜10 μ mの榭脂粒子と 13核剤をポリプロピレンに配合してポリ プロピレン組成物をフィルムに加工し、これをロール延伸して多孔性フィルムを得る方 法が提案されて ヽる (特許文献 4参照)。
[0010] 更に、電池の内部抵抗について多孔性フィルムの空孔の大きさに着目し、熱可塑 性榭脂に平均粒径が 1 μ m以下の無機粒子を特定量配合して一次フィルムを作成し
、次 、で該一次フィルムを特定条件で延伸することによって多孔質フィルムの空孔の 大きさを制御し、低い内部抵抗を具備したセパレータ用フィルムの提案がなされて ヽ る (特許文献 5参照)。
特許文献 1 :特開平 04-239540号公報
特許文献 2:特開 2002-31704号公報
特許文献 3 :特開 2004-157409号公報
特許文献 4:特開平 9— 176352号公報
特許文献 5 :特開 2002— 201298号公報
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、近年の IT技術の著しい進展により、ディスプレイ装置自体の面方向 への大型化や軽量化、厚み方向への薄型化のみならず、ディスプレイの画素の精密 化が要求されており、ノ ックライトの光源力 発せられる光の輝度はより高ぐかつ経 時的にも安定したものが求められている。
[0012] しかるに、特許文献 1の白色ポリエステルフィルムは、光源から発せられる熱や紫外 光付近の波長の光線により、光源近傍の榭脂が劣化変色することによって液晶ディ スプレイ力もの色調に変化や経時的な低下を来たすことがあった。
特に、より高輝度化への要求によって、光源自体も強力かつ光源との距離も短くな つていることから、榭脂の劣化が顕著になり、経時的な安定性が求められていた。
[0013] また特許文献 2, 3では、ポリエステル榭脂よりも経時の劣化が少ないとされるポリオ レフイン系榭脂を使用し、更に榭脂中に微細な孔を生じさせる粒子として、重質炭酸 カルシウムや硫酸バリウムをはじめとする無機粒子を使用することによって、輝度の低 下が少なく経時的にもより安定で、榭脂自体に柔軟性があり、更に導光板に傷をつ けにく 、フィルムを得て 、る。
しかし、現在の液晶ディスプレイ装置に対するより高輝度への要求は、上述の方法 では十分に満たされず、更なる改良が望まれて 、た。
[0014] 他方、セパレータフイルムつ 、ては、従来の多孔質フィルムでは、ますます進展す る大容量,高出力化のみならず、今後、期待される大型電池や自動車用バッテリー 用途には能力不足であり、更なる改良が求められている。
例えば、先に挙げた特許文献 4の方法では、得られた多孔質フィルムをセパレータ として使用したリチウム電池は、理由は定かでないが電池の内部抵抗が高くなり、正- 負両極の改良によって得られた出力が浪費されてしまい、セパレータフイルムとして 満足できるものではな力つた。
また、特許文献 5の方法で多孔質フィルムを製造すると、使用する粒子の粒度の不 均一が原因と思われる絶縁不良を示す部位が多ぐそれらの検査や除去、ならびに 回収率の点力もコストアップを招き、更に得られた電池の内部抵抗も高く好ましくない
[0015] 空孔を有するフィルムを作成する現在の方法は、大別すると無機粒子を配合し一 軸ないし二軸に延伸して粒子と榭脂間にボイドと呼ばれる空隙を生成させる方法と、 酸'アルカリ等によって粒子自体を溶解する方法が挙げられる。いずれの方法におい てもフィルム中に形成される空隙ないし空孔の大きさにバラツキが少なぐかつ、空隙 のフィルム面内における分布が一様な多孔質フィルムとする必要がある。このために は、フィルム用榭脂組成物中での無機粒子の均一な分散が求められ、更に粒子自 体にも不純物が少なく、両電極間の短絡を誘発するような粗大粒子のな!ヽ粒度分布 のシャープなものが求められる。
[0016] また、現在のリチウムイオン電池は既述の如ぐシャットダウン機能が必要であること から、融点の低いポリオレフイン系榭脂が使用されており、それらへの配合が安価か つ容易に可能で良好であることが求められる。
[0017] 本発明は上述の状況に鑑みてなされたもので、多孔質フィルム基材となる榭脂との 混合が容易で、該榭脂中での分散性が良好で不純物や粗大粒子が少ない表面処 理無機粒子カゝらなる多孔質フィルム用填剤と該填剤を配合してなる多孔質フィルムを 提供するものである。本発明は、例えば榭脂ゃ他の添加剤との予備混合時の作業性 が良好で、溶融混練時の樹脂の分子鎖の切断 (分子劣化)が殆どない上に良好な吐 出性を有し、かつ粒子同士や他の添加剤等との再凝集を起こしにくぐ更に不純物 や粗大粒子が殆どないことから、例えば強度劣化を起こしにくい多孔質フィルムが得 られ、また粒径操作が可能であることとフィルム中に極めて均一に分散させることが可 能であることから、空隙径の分布幅を均一に制御した多孔質フィルムが得られるなど 、多孔質フィルムに優れた性能を付与する填剤及び該填剤を配合してなる多孔質フ イルムを提供することを目的とする。
課題を解決するための手段
[0018] 本発明者らは、上記課題の解決のため鋭意検討した結果、不純物や粗大粒子が 極めて少なぐ粒度分布がシャープな無機粒子に、界面活性剤と、アルカリ土類金属 に対してキレート能を有する化合物とを表面処理剤として併用することにより、榭脂に 対して極めて分散性の優れた表面処理無機粒子が得られること、及び得られた表面 処理無機粒子の榭脂への配合が容易で、かつ再凝集などを起こさず良好に分散で きること、更に該表面処理無機粒子を配合した多孔質フィルム用榭脂組成物が、例 えば一軸な 、し二軸に延伸したフィルムに使用された場合に良好なボイドを生成し、 例えば液晶ディスプレイ等のバックライト装置の光反射板用フィルムとして有用であり 、例えばリチウム二次電池のセパレータとして有用である等、上記課題が解決される ことを見いだし、本発明を完成するに至った。
[0019] 即ち、本発明の請求項 1は、界面活性剤 (A)と、アルカリ土類金属に対してキレート 能を有する化合物 (B)とで表面処理された無機粒子からなることを特徴とする多孔質 フィルム用填剤である。
[0020] 本発明の請求項 2は、無機粒子が炭酸カルシウム又は硫酸バリウムであることを特 徴とする請求項 1記載の多孔質フィルム用填剤である。
[0021] 本発明の請求項 3は、界面活性剤 (A)が脂肪酸塩であることを特徴とする請求項 1 記載の多孔質フィルム用填剤である。
[0022] 本発明の請求項 4は、界面活性剤 (A)が、 C数 16以上の直鎖脂肪酸塩を 50〜98重 量%、 C数 10〜14の直鎖脂肪酸塩を 1.5〜50重量%含む組成を有することを特徴と する請求項 1〜3のいずれ力 1項に記載の多孔質フィルム用填剤である。
[0023] 本発明の請求項 5は、アルカリ土類金属に対してキレート能を有する化合物(B)の 縮合リン酸が、環状縮合リン酸又はメタリン酸であることを特徴とする請求項 1〜4の いずれか 1項に記載の多孔質フィルム用填剤である。 [0024] 本発明の請求項 6は、無機粒子に対し、界面活性剤 (A)が 0.1〜20重量%、アル カリ土類金属に対してキレート能を有する化合物(B)が 0.05〜7重量%であることを 特徴とする請求項 1〜5のいずれ力 1項に記載の多孔質フィルム用填剤である。
[0025] 本発明の請求項 7は、下記の(1)から (4)の粒度特性を満足することを特徴とする 請求項 1〜6のいずれか 1項に記載の多孔質フィルム用填剤である。
(1) 0.3≤D ≤1.5 [^ m]
50
(2) 0.02≤Dx≤0.6 [ ^ m]
(3) Da≤20 [ ^ m]
Figure imgf000008_0001
ただし
D : Leeds & Northrup社製 Microtrac (マイクロトラック) FRAで測定した篩上積算
50
平均粒子径 [/z m]
Dx : 走査型電子顕微鏡を用い倍率 20,000倍の観測を行い、任意に 100個の粒子 を選択し、最大と最小のものから各々 20個除いた残りの平均粒子径 [ m]
Da : Leeds & Northrup社製 Microtrac (マイクロトラック) FRAで測定した時に示す 最大粒子径 [/z m]
Sw : 窒素吸着法による BET式比表面積 [m2 Zg]
[0026] 本発明の請求項 8は、請求項 1〜7のいずれか 1項記載の多孔質フィルム用填剤を 含有してなることを特徴とする多孔質フィルムである。
[0027] 本発明の請求項 9は、多孔質フィルムの榭脂が、ポリオレフイン系榭脂であることを 特徴とする請求項 8記載の多孔質フィルムである。
[0028] 本発明の請求項 10は、多孔質フィルムが、光反射用であることを特徴とする請求項
8又は 9記載の多孔質フィルムである。
[0029] 本発明の請求項 11は、液晶表示装置又は照明装置の光反射板に用いることを特徴 とする請求項 8〜 10のいずれ力 1項に記載の多孔質フィルムである。
[0030] 本発明の請求項 12は、電池の電極間の隔膜用であることを特徴とする請求項 8又 は 9記載の多孔質フィルムである。
[0031] 本発明の請求項 13は、電池がリチウム二次電池であることを特徴とする請求項 12 記載の多孔質フィルムである。
発明の効果
[0032] 本発明の多孔質フィルム用填剤は、榭脂との混合が容易で、且つ榭脂中での分散 性が良好であり、例えば液晶ディスプレイのバックライト装置の光反射板や、電池の 電極間のセパレータとして有用な多孔質フィルムを提供することができる。また、本発 明の多孔質フィルム用填剤は、榭脂との混合が速やかに行える他に、例えばミキサ 一の内壁面や攪拌 ·混合用の羽根への付着が少なく、ミキサー内部での付着が誘引 する変質榭脂ゃ凝集物の発生も少なくなり、混合の作業性及び後工程での混練押 出機でのストレーナ一の目詰まり等の発生も少な 、等の特徴を有する。
図面の簡単な説明
[0033] [図 1]輝度ムラの評価に用いた直下方式バックライトユニットの概略図である。
符号の説明
[0034] 1 ハウジング
2 冷陰極ランプ
3 LCDセル
4 光反射板
発明を実施するための最良の形態
[0035] 本発明に用いられる界面活性剤 (A)としては、飽和脂肪酸、不飽和脂肪酸、脂環 族カルボン酸、榭脂酸、それらの塩、それらのエステルや、アルコール系界面活性剤 、ソルビタン脂肪酸エステル類、アミド系界面活性剤ゃァミン系界面活性剤、ポリオキ シアルキレンアルキルエーテル類、ポリオキシエチレンノ-ルフエ-ルエーテル、アル ファオレフインスルフォン酸ナトリウム、長鎖アルキルアミノ酸、ァミンオキサイド、アル キルァミン、第四級アンモ-ゥム塩等が例示され、これらは単独で又は必要に応じ 2 種以上組み合わせて用いられる。
[0036] 飽和脂肪酸としては、力プリン酸'ラウリン酸'ミリスチン酸'パルミチン酸'ステアリン 酸等が挙げられ、不飽和脂肪酸としては、ォレイン酸'リノール酸 'リノレン酸等が挙 げられ、脂環族カルボン酸としては、シクロペンタン環ゃシクロへキサン環の末端に力 ルポキシル基を持つナフテン酸等が挙げられ、榭脂酸としてアビェチン酸'ピマル酸 'ネオアビエチン酸等が挙げられる。
[0037] アルコール系界面活性剤としては、アルキル硫酸エステルナトリウム 'アルキルエー テル硫酸エステルナトリウム等が挙げられ、ソルビタン脂肪酸エステル類としては、ソ ルビタンモノラウレートやポリオキシエチレンソルビタンモノステアレート等が挙げられ 、アミド系ゃァミン系界面活性剤としては、脂肪酸アル力ノールアミド、アルキルアミン ォキシド等が挙げられ、ポリオキシアルキレンアルキルエーテル類としては、ポリオキ シエチレンアルキルエーテル、ポリオキシエチレンラウリルエーテル等が挙げられ、長 鎖アルキルアミノ酸としては、ラウリルべタイン、ステアリルべタイン等が挙げられる。
[0038] ァミンオキサイドとしては、ポリオキシエチレン脂肪酸アミド、アルキルアミンォキサイ ド等が挙げられ、アルキルァミンとしては、ステアリルアミンアセテート等が挙げられ、 第四級アンモ-ゥム塩としては、ステアリルトリメチルアンモ -ゥムクロライドや第四級 アンモ-ゥムサルフェート等が挙げられる。
[0039] 上記の各種酸の塩としては、例えば、カリウム、ナトリウム等のアルカリ金属塩が挙 げられ、具体的にはラウリン酸カリウム、ミリスチン酸カリウム、パルミチン酸カリウム、 パルミチン酸ナトリウム、ステアリン酸カリウム、ステアリン酸ナトリウム等の飽和脂肪酸 塩、ォレイン酸カリウム、ォレイン酸ナトリウム等の不飽和脂肪酸塩、ナフテン酸鉛、シ クロへキシル酪酸鈴等の脂環族カルボン酸塩、ァビエチン酸カリウムやナトリウムが 挙げられる。
また、上記の各種酸のエステルとしては、例えば、力プロン酸ェチル、力プロン酸ビ ニル、アジピン酸ジイソプロピル、カプリル酸ェチル、カプリン酸ァリル、カプリン酸ェ チル、力プリン酸ビュル、セバシン酸ジェチル、セバシン酸ジイソプロピル、イソォクタ ン酸セチル、ジメチルオクタン酸オタチルドデシル、ラウリン酸メチル、ラウリン酸ブチ ル、ラウリン酸ラウリル、ミリスチン酸メチル、ミリスチン酸イソプロピル、ミリスチン酸セ チル、ミリスチン酸ミリスチル、ミリスチン酸イソセチル、ミリスチン酸オタチルドデシル、 ミリスチン酸イソトリデシル、パルミチン酸メチル、パルミチン酸イソプロピル、パルミチ ン酸ォクチル、パルミチン酸セチル、パルミチン酸イソステアリル、ステアリン酸メチル 、ステアリン酸プチル、ステアリン酸オタチル、ステアリン酸ステアリル、ステアリン酸コ レステリル、イソステアリン酸イソセチル、ベへ-ン酸メチル、ベへ-ン酸ベへ-ル等 の飽和脂肪酸エステル、ォレイン酸メチル、リノール酸ェチル、リノール酸イソプロピ ル、オリーブォレイン酸ェチル、エル力酸メチル等の不飽和脂肪酸エステルが挙げら れ、他に長鎖脂肪酸高級アルコールエステル、ネオペンチルポリオ一ル(長鎖'中鎖 を含む)脂肪酸系エステルおよび部分エステル化合物、ジペンタエリスリトール長鎖 脂肪酸エステル、コンプレックス中鎖脂肪酸エステル、 12-ステアロイルステアリン酸 イソセチル、 12-ステアロイルステアリン酸イソステアリル、 12-ステアロイルステアリン 酸ステアリル、牛脂脂肪酸ォクチルエステル、多価アルコール脂肪酸アルキルグリセ リルエーテルの脂肪酸エステル等の耐熱性特殊脂肪酸エステル、安息香酸エステル 系に代表される芳香族エステルが挙げられる。
上記界面活性剤は単独で又は必要に応じ 2種以上組み合わせて用いられる。
[0040] 上述の界面活性剤の中でも飽和脂肪酸、不飽和脂肪酸、脂環族カルボン酸、榭脂 酸の各塩で表面処理された無機粒子は、榭脂に配合された際に樹脂の絶縁性ゃ耐 熱性等を阻害することなく分散性も良好で好ましぐとりわけ脂肪酸のアルカリ金属塩 の混合物が更に好ましい。
[0041] 飽和脂肪酸のアルカリ金属塩については、その組成がパルミチン酸'ステアリン酸' ァラキジン酸 ·ベヘン酸等の C数 16以上の直鎖脂肪酸のアルカリ金属塩が 50〜98重 量0 /0、力プリン酸'ラウリン酸'ミリスチン酸等の C数 10〜14の直鎖脂肪酸のアルカリ金 属塩が 1.5〜50重量%の割合で存在することが好まし 、。
C数 16以上の直鎖脂肪酸のアルカリ金属塩については、ステアリン酸 'ォレイン酸 等の C数 18以上の直鎖脂肪酸のアルカリ金属塩、特にカリウム塩が好ましい。 C数 10 〜14の直鎖脂肪酸のアルカリ金属塩については、分散性の点で C数 12のラウリン酸 のナトリウム塩や C数 14のミリスチン酸のカリウム塩が好ましい。
[0042] 直鎖脂肪酸のアルカリ金属塩の組成中の C数 16以上の直鎖脂肪酸の含有量が 50 重量%未満では、 50重量%以上のものに比べて、理由は定かでないが無機粒子の 榭脂中での分散性が若干悪くなり、 98重量%を越えると、 98重量%以下のものに比 ベて、榭脂と粒子の間で生成する空隙 (ボイド)が小さすぎる傾向があり好ましくない 。空隙が小さすぎると、例えば光反射フィルムに使用された場合に、現行の技術では フィルム中での榭脂が薄くなりすぎて例えば劣化しやすくなるため好ましくなぐ例え ばセパレータフイルムに使用された場合に良好なイオン通過性が確保できず好ましく ない。
また、脂肪酸組成中の C数 10〜14の直鎖脂肪酸の含有量が 1.5重量%未満では、 1.5重量%以上のものに比べて添加効果が不十分で C数 18以上の直鎖脂肪酸が 98 %を超えることに等しくなり、空隙が小さくなるために好ましくなぐ反対に 50重量%を 越えると 50重量%以下のものよりも榭脂との親和性が損なわれ、白化現象や成形後 の榭脂表面へのブリード等の問題を起こしやすくなる傾向があるので好ましくない。
[0043] 上述の直鎖脂肪酸のアルカリ金属塩を界面活性剤 (A)として用いる場合、各々の 組成の脂肪酸を選択'混合して調整することが好ましいが、本発明の効能を阻害しな い範囲で、同等の組成の市販の石鹼、例えば「ノンサール SK— 1」(日本油脂製登 録商標)等を使用してもよい。
[0044] 界面活性剤 (A)の使用量は無機粒子の比表面積に応じて変わり、一般的に比表 面積が大なものほど使用量は大きくなる。
しかし、多孔質フィルムの基材となる榭脂の Ml値等の諸物性や、コンパウンド時に 添加する活剤をはじめとする諸条件によって変動するので一概には規定しにくいが、 通常、無機粒子に対して 0.1重量%以上 20重量%である。使用量が 0.1重量%未満 では充分な分散効果が得られず、一方、 20重量%を越えると、多孔質フィルム表面 へのブリード、多孔質フィルムの強度の低下等が問題となってくる。
なお、本発明における界面活性剤 (A)の使用量は、表面処理される無機粒子の比 表面積 Swxに比例し、下記式(1)で表される量を中心に ±20%以内の範囲で使用 すれば、本発明の効果を発現する上でより良好であることが判明している。
〔界面活性剤 (A)の無機粒子に対する使用量 (%)〕
= 1/3 X〔表面処理前の無機粒子の BET比表面積 Swx〕 (1)
[0045] 本発明に用いられる、アルカリ土類金属に対してキレート能を有する化合物(B)とし ては、例えばエチレンジァミン四酢酸や-トリ口三酢酸、ヒドロキシェチルエチレンジ アミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸等に代表さ れるァミノカルボン酸系キレート剤、ヒドロキシェチリデンニ亜リン酸、二トリロトリスメチ レンホスホン酸等のホスホン酸系キレート剤や、ポリ塩ィ匕アルミ等のアルミニウム化合 物からなる水処理剤、ポリアクリル酸、クェン酸等の多価カルボン酸やその塩、ポリア クリル酸のマレイン酸ゃィタコン酸の共重合物の塩、あるいは、ポリリン酸、縮合リン酸 に代表されるリン酸類やその塩類が例示される。
多価カルボン酸の塩としては、ポリアクリル酸ナトリウム、ポリアクリル酸アンモ-ゥム 等、共重合物の塩としてはアクリル酸 'マレイン酸の共重合物(重合比 100 : 80等)の アンモ-ゥム塩、アクリル酸 'メタクリル酸の共重合物(重合比 100 : 80等)のアンモ- ゥム塩等、リン酸類の塩としてはへキサメタリン酸ナトリウム、ポリリン酸ナトリウム、ピロ リン酸ナトリウム等が挙げられ、これらは単独、又は必要に応じ 2種以上組み合わせて 用いられる。
本発明においては、これらアルカリ土類金属に対してキレート能を有する化合物(B )において、リチウム二次電池の如き高度な絶縁性が要求される場合、ポリリン酸、縮 合リン酸、及び多価カルボン酸、またはこれらの塩が好ましぐ中でも縮合リン酸の環 状縮合リン酸又はメタリン酸が好まし 、。
[0046] アルカリ土類金属に対してキレート能を有する化合物(B)の使用量は、界面活性剤
(A)で述べた如く無機粒子の比表面積や用いる榭脂、コンパゥンド条件等に応じて 変わるので一概には規定しにくいが、通常、無機粒子に対して 0.05重量%以上 7重 量%以下が好ましい。使用量が 0.05重量%未満では充分な分散効果が得られず、 一方、 7重量%を越えて添加しても効果の更なる向上が認められず好ましくない。 なお、アルカリ土類金属に対してキレート能を有する化合物(B)の使用量は、表面 処理される無機粒子の比表面積 Swxに比例し、下記式(2)で表される量を中心に士 20%以内の範囲で使用すれば、本発明の効果を発現する上でより良好であることが 判明している。
〔化合物 (B)の無機粒子に対する使用量 (%)〕
= 1/9 X〔表面処理前の無機粒子の BET比表面積 Swx〕 (2)
[0047] 本発明に用いられる無機粒子は、一般に水不溶性のものなら特に制限はないが、 硫酸バリウム、炭酸カルシウム、塩基性炭酸マグネシウム、水酸化マグネシウム、ヒド ロキシタルサイト、ヒドロキシアパタイト、タルク、クレー等のように主成分、副成分ある いは不純物としてアルカリ土類金属を含有するものが好適で、特に、炭酸カルシウム 、塩基性炭酸マグネシウム、水酸化マグネシウム、ヒドロキシタルサイト、ヒドロキシァ パタイトが好適である。
中でも硫酸バリゥムと炭酸カルシウムが安全かつ安価に入手しやすく、さらに粒径 操作が比較的に容易であり、粒子中に含まれる不純物も少ない上に除去も容易であ るため好ましぐ特に炭酸カルシウムは製造においても工程全体が安全で、原料自 体も国内で良質な石灰石を豊富に産出するのでより好ましい。
[0048] 炭酸カルシウムは、一般に石灰石を機械的に粉砕し、該粉砕物を分級して各種グ レードに調整する重質炭酸カルシウムと、石灰石を高温で焼成して得られる生石灰と 水を反応させて石灰乳を調整し、その石灰乳に石灰石焼成時に発生する炭酸ガス を導通させて炭酸カルシウムを合成する炭酸ガス化合法、石灰乳に炭酸ソーダを反 応させる石灰 炭酸ソーダ法、塩ィヒカルシウムに炭酸ソーダを反応させる塩ィヒカル シゥム 炭酸ソーダ法等の化学的方法によって調整する沈降製炭酸カルシウム (合 成炭酸カルシウム)の 2種に大別される。
本発明の条件を満たす表面処理炭酸カルシウムであれば、その製造方法による物 性の差はないが、重質炭酸カルシウムは、その製法上の理由から、原料である石灰 石が炭酸カルシウム以外の様々な元素力 なる不純物を含有している為、例えば、 その様な不純物を嫌う純度の高い炭酸カルシウムが必要とされる電池用セパレータ 用途には好ましくない。更に粒度分布が総体的にブロードであり、一定以上の微細 度を有する炭酸カルシウムは現在の粉砕'分級技術では製造できない点からも好ま しくない。
[0049] 石灰乳に炭酸ソーダを反応させる石灰 炭酸ソーダ法、塩ィヒカルシウムに炭酸ソ ーダを反応させるソーダ法等は、得られる沈降性炭酸カルシウムの粒度がシャープ で粒径操作が容易であること、含有する不純物が極めて少ないことから、電池用セパ レータ用途に有利である。
しかし、重質炭酸カルシウムや炭酸ガス化合法で作成する沈降製炭酸カルシウム の原料が石灰石および焼成に用いるコークス'軽油等だけであるのに対して、炭酸ソ ーダを用いる方法は、通常、原料である炭酸ソーダや塩ィ匕カルシウムを得るために 石灰石と塩等を出発材料原料として工業的に生産しており、それを再び炭酸カルシ ゥムに戻すことは、原料の入手においてコスト的に有利な条件が整った場合におい ても、昨今、注目されている環境への負荷の点で好ましくない。
また、本発明の如く粒子の良好な分散性が必要な場合、対イオンの除去が必要と なるため、反応後の粒子の洗浄に大量の水を要する点でもコストと環境への負荷の 点で好ましくない。
[0050] 石灰石を焼成し、得られた生石灰を水に溶かして得られる石灰乳と、焼成時に得ら れた炭酸ガスを反応させて得られる沈降製炭酸カルシウムは、得られる粒子が微細 で一次粒子の粒径'形状も均一で含有する不純物も少なぐ反応時の条件や反応後 の工程によって粒度調整、粗大粒子除去も可能であり、得られる粒子の物性に対す る経済性や環境への負荷の点でも優れており、例えば、電池セパレータ用途フィル ムに用いる場合に好適である。なお、電池セパレータ用途に用いる場合、原料である 石灰石は不純物に留意して選択することが好ましぐ焼成時の燃料は一般にコータス や軽油が使用されている力 コスト的に許される限り、不純物の観点力 焼成は軽油 で行うことがより好ましい。
[0051] また、反応で得られた炭酸カルシウム粒子は、それが水スラリー形態の時点で不純 物および粗大粒子除去の目的から、デカンテーシヨンといった重力や遠心力、浮力 選鉱等を利用した分級、ならびに篩'フィルタ一等での除去を施すことが好ましい。 また、乾燥 ·解砕後に得られた炭酸カルシウムまたは表面処理炭酸カルシウム粉体 に対しても、空気分級等の分級操作を行い、乾燥によって生じた凝集体を除去する ことが好ましい。
[0052] 得られた炭酸カルシウム粒子に対する既述の界面活性剤 (A)およびアルカリ土類 金属に対してキレート能を有する化合物(B)を用いた表面処理方法は、例えばスー パーミキサーやヘンシェルミキサーと言ったミキサーを用い、粉体に直接表面処理剤 を混合し、必要に応じて加熱して表面処理する一般に乾式処理と呼ばれる方法でも 、また例えば界面活性剤 (A)およびアルカリ土類金属に対してキレート能を有する化 合物(B)を水または湯に溶解し、攪拌している炭酸カルシウムの水スラリーに添加し て表面処理後、脱水、乾燥する一般に湿式処理と呼ばれる方法でも、また、その両 者の複合方法でもよ!、が、炭酸カルシウム粒子表面への処理の度合!、と経済的な観 点から、主として湿式法単独が好ましく用いられる。
[0053] 本発明における表面処理無機粒子は、下記の(1)力も (4)の粒度特性を満足する ことが好ましい。
(1) 0.3≤D ≤1.5 [ ^ m]
50
(2) 0.02≤Dx≤0.6 [^ m]
(3) Da≤20 [ ^ m]
Figure imgf000016_0001
ただし
D : Leeds & Northrup社製 Microtrac (マイクロトラック) FRAで測定した篩上積算
50
平均粒子径 [/z m]
Dx : 走査型電子顕微鏡を用い倍率 20,000倍の観測を行い、任意に 100個の粒子 を選択し、最大と最小のものから各々 20個除いた残りの平均粒子径〔 m]
Da : Leeds & Northrup社製 Microtrac (マイクロトラック) FRAで測定した時に示す 最大粒子径 [/z m]
Sw : 窒素吸着法による BET式比表面積 [m2 Zg]
[0054] 本発明における表面処理された無機粒子は、 Leeds & Northrup社製マイクロトラッ ク FRAで測定した平均粒径 D 力 ≤D ≤1.5[ /ζ πι]の範囲内にあることが好まし
50 50
く、 0.3≤D ≤1·0 [; z m]であることがより好ましい。
50
平均粒径 D を 0.3 m未満にすることは技術上可能であるがコストの点で好ましく
50
なぐ D 力 S1.5 mを越えると、一次粒子の凝集体で構成する二次粒子の凝集力が
50
強ぐ榭脂中で一部の粒子が二次粒子のままで存在することが多くなり、それらが例 えば光反射層用多孔質フィルムや電池セパレータ用フィルム中で所望の大きさを超 えるボイドを作成するため、例えば光反射フィルムに使用された場合に、反射光のム ラが生じやすくなるため好ましくなぐ例えばセパレータフイルムに使用された場合に イオンの通過性が不均一になり好ましくない。
[0055] 本発明における表面処理された無機粒子の電子顕微鏡視野から測定される粒子 径 Dxは 0.02≤Dx≤0.6 [ ^ m]であることが好ましぐ 0.02≤ϋχ≤0.4[ ^ m]がより好 ましい。
粒子径 Dxが 0.6 mを越えると、例えば光反射板用多孔質フィルムや電池用セパ レータフイルムに配合された場合に、目的以上の大きな空孔を作成するので好ましく なぐ 0.02 μ m未満だと樹脂と粒子の間で生成する空隙 (ボイド)が小さすぎる傾向が あって好ましくない上に、粒子間の凝集力が強ぐ榭脂との配合時に一部の粒子が 分散せずに粗大粒子と同じ挙動を示すことになり、光反射板用多孔質フィルムゃ電 池用セパレータフイルムに配合された場合に、目的以上の大きな空孔を作成するの で好ましくない。
[0056] 本発明における表面処理された無機粒子は、上記マイクロトラック FRAで測定した 時の最大粒径 Daが Da≤20[ m]の範囲内にあることが好ましぐ Da≤5 [ m]の 範囲内にあることがより好ましぐ特に電池用セパレータフイルムに用いられる場合は Da≤3 [^ m]であることが更に好ましい。
最大粒径 Daが 20 mを越えると、例えば光反射板用多孔質フィルムや電池用セパ レータフイルムに配合された場合に、目的以上の大きな空孔を作成するので好ましく ない。
[0057] なお、マイクロトラック FRAでの測定に用いる媒体は、粒子の表面処理に使用した 表面処理剤によって適宜選択されるが、通常、親水性を示す表面処理剤で表面処 理したものには水力 疎水性を示す表面処理剤で表面処理されたものにはメタノー ルな 、しエタノールが好ましく用いられる。
また、測定に際しては、測定に用いる水またはメタノール 'エタノールスラリーに前分 散として日本精機製作所製超音波分散機 Ultra Sonic Generator US- 300Tを使用し 、 300 Aで 60秒間照射した後に測定した。
[0058] 本発明における表面処理された無機粒子は、窒素吸着法による BET比表面積 Sw 力 S3≤Sw≤60 [mVg]であると好ましぐ 5≤Sw≤20 [mVg]以下がより好ましい
BET式比表面積 Swが 60m2 Zgを越えると上述の如ぐボイドが小さくなる傾向があ るとともに粒子が凝集を起こしやすいので分散性の点で好ましくなぐ 3m2 Zg未満で は、一次粒子が大き過ぎ、例えば光反射板用多孔質フィルムや電池用セパレータフ イルムに配合された場合に目的以上の大きな空孔を作成するので、ノ ックライト装置 やリチウム二次電池に使用される粒子としては適当ではない。
[0059] 以上の如くして得られた表面処理無機粒子力 なる多孔質フィルム用填剤は、各種 榭脂、特にォレフィン系榭脂に配合されて各種用途の多孔質フィルム、特に光反射 板や電池セパレータのごとき多孔質フィルムの製造に使用される。
[0060] 本発明に用いられる榭脂としては特に制限されるものではな 、が、例えばポリエス テル、ポリカーボネート、ポリエチレン、ポリプロピレン、エチレン プロピレン共重合 体、エチレン又はプロピレンと他のモノマーとの共重合体等が挙げられる。
なお、光反射層用多孔質フィルムとして用いる場合は、先述の輝度の低下が少なく 経時的にもより安定で、榭脂自体に柔軟性があり、更に導光板に傷をつけにくいこと 、価格の点でポリエチレン、ポリプロピレン等のポリオレフイン系榭脂が好ましぐなか でもポリプロピレンがより好まし!/、。
また、電池用セパレータフイルムとして用いる場合は、先述のシャットダウン機構の 付与や、電池製作時のハンドリング、価格力 ポリエチレン、ポリプロピレン等のポリオ レフイン系榭脂が好ましぐなかでもポリエチレンがより好ましい。
多孔質フィルム用填剤とこれらの榭脂との配合割合は特に限定されず、榭脂の種 類や用途、所望する物性やコストによって大きく異なり、それらに応じて適宜決定す ればよいが、通常、榭脂 100重量部に対して 60〜150重量部であり、好ましくは 80〜 120重量部程度である。
[0061] また、本発明の多孔質フィルム用填剤の効能を阻害しな 、範囲で、フィルム特性の 向上を目的に脂肪酸、脂肪酸アミド、エチレンビスステアリン酸アミド、ソルビタン脂肪 酸エステル等の滑剤、可塑剤及び安定剤、酸ィ匕防止剤等を添加してもよぐ更に一 般にフィルム用榭脂組成物に用いられる添加物、例えば滑剤、酸化防止剤、熱安定 剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、帯電防止剤 、スリップ剤、着色剤等を配合してもよい。
[0062] 本発明の多孔質フィルム用填剤と上述の各種添加剤を榭脂に配合する場合、通常 、一軸あるいは二軸押出機、エーダー、バンバリ一ミキサー等で加熱混練し、 Tダイ 等でシートを作成後に一軸または二軸で延伸して微細な孔を有する多孔質フィルム 製品とされる。
また、混練後に τダイ押出、あるいはインフレーション成形等の公知の成形機を用 Vヽて製膜し、それらを酸処理して本発明の多孔質フィルム用填剤を溶解して微細な 孔を有する多孔質フィルム製品としてもょ 、。
[0063] 榭脂の形状にはペレット状、及び任意の粒径に調整されたパウダー (グラニュー)状 があり、粒子の分散においてはパウダー状の榭脂を用い、ヘンシェルミキサー、タン ブラー型ミキサー、リボンプレンダ一等の公知のミキサーと称される混合機を用いて 混合することが好ましい。
本発明の多孔質フィルム用填剤は、ペレット状榭脂と用いられた場合でも、本発明 以外の粒子に比べて、榭脂中での分散性等で良好な物性を示すが、パウダー状の 榭脂と混合して使用すると特に良好であり、加えて例えばヘンシェルミキサーで混合 した場合、混合が速やかに行えるメリットの他に、ミキサーの内壁面や攪拌'混合用の 羽根への付着が少なぐミキサー内部での付着が誘引する変質榭脂ゃ凝集物の発 生も少なくなり、混合の作業性及び後工程での混練押出機でのストレーナ一の目詰 まり等の発生も少な 、等の特徴を有して 、る。
[0064] 上記の加熱混練機も様々な機種や設定条件があり、原料の投入方法も、榭脂中で の粒子の分散の他にも榭脂自体の Ml値等への影響やコストを鑑みて適宜決定され る。本発明の多孔質フィルム用填剤を榭脂に配合する場合も、それらを考慮して選 択されるが、ヘンシェルミキサー等で適度な粒度範囲の榭脂パウダーと混合した混 合物を、二軸混練機等の混練機のホッパーに定量的に投入する方法が好ましい。
[0065] 混合機と製膜の間において、一旦、マスターバッチと称される本発明の多孔質フィ ルム用填剤を始めとする各種添加物を含有するペレットを作成し、その後に無添カロ の榭脂と併せて溶融'製膜しても良い。更に必要に応じ、上記工程中の Tダイ押出機 を複数個重ねたり、あるいは延伸時に張り合わせるような工程を導入して多層フィル ムにしてもよぐまた上記フィルムに印刷適性を付与する目的で、フィルム表面にブラ ズマ放電等の表面処理を施しインク受理層をコートすることも可能である。
実施例
[0066] 以下、本発明を更に実施例に基づいて具体的に説明する力 本発明の範囲はこれ ら実施例により何ら制限されるものではない。
尚、以下の記載において、特に断らないかぎり%は重量%を意味する。
[0067] 実施例 1
灯油を熱源に灰色緻密質石灰石を流動槽式キルンで焼成して得られた生石灰を、 篩による異物除去後に水に溶解して消石灰スラリーとし、サイクロン等で更に異物や 粗大粒子除去後に炭酸ガスと反応させ、しかる後にォストワルド熟成と称される炭酸 カルシウムの粒子からの水中への溶出と吸着を繰り返して粒子成長を行わせ、 BET 比表面積が 10m2 /gの沈降製炭酸カルシウムを 10%含有する水スラリーを得た。 次に界面活性剤 (A)として下記に示す組成で別途作成した混合処理剤 A1を炭酸 カルシウム固形分に対して 3.3 %を 80°Cの湯に溶解して界面活性剤 (A)の水溶液を 作成し、更にアルカリ土類金属に対してキレート能を有する化合物(以下、キレート化 合物と記す) (B)としてへキサメタリン酸ナトリウム (試薬 1級)を炭酸カルシウム固形分 に対して 0.9 %を 40°Cの水に溶解してキレートイ匕合物(B)の水溶液を作成した。 先に得られた沈降製炭酸カルシウムスラリーを攪拌しつつ 60°Cに調整し、これに上 述のキレート化合物(B)、界面活性剤 (A)の順に添加し、 4時間攪拌して表面処理 炭酸カルシウムスラリーを得た。
得られた表面処理炭酸カルシウムスラリーをタナベウィルテック (株)製高速デカンタ 一と 350メッシュの篩で異物並びに粗大粒子の除去を行い、脱水 '乾燥'解砕し、更 に得られた乾粉を空気分級機で分級を行 ヽ、表面処理炭酸カルシウム粉体を得た。 得られた表面処理炭酸カルシウム粉体は、 D 力 μ m、 Dxが 0.15 μ m、 Daが
50
1.635 ^ m, Swが 9.3 m2 /gであった。
[0068] 混合処理剤 Al
ステアリン酸カリウム 65%
パルミチン酸ナトリウム 20%
ラウリン酸ナトリウム 15%
[0069] 実施例 2
界面活性剤 (A)をステアリン酸カリウムに変更する以外は、実施例 1と同様に操作 を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム粉 体の各種物性を表 1に示す。
[0070] 実施例 3
界面活性剤 (A)をラウリン酸ナトリウムに変更する以外は、実施例 1と同様に操作を 行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム粉体 の各種物性を表 1に示す。
[0071] 実施例 4
界面活性剤 (A)をォレイン酸ナトリウムに変更する以外は、実施例 1と同様に操作 を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム粉 体の各種物性を表 1に示す。
[0072] 実施例 5
界面活性剤 (A)をァビエチン酸ナトリウムに変更する以外は、実施例 1と同様に操 作を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム 粉体の各種物性を表 1に示す。
[0073] 実施例 6
界面活性剤 (A)をラウリン酸に変更する以外は、実施例 1と同様に操作を行い、表 面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム粉体の各種物 性を表 1に示す。
[0074] 実施例 7
キレート化合物(B)をポリ塩ィ匕アルミニウムに変更する以外は、実施例 1と同様に操 作を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム 粉体の各種物性を表 1に示す。
[0075] 実施例 8
キレート化合物(B)をポリアクリル酸ナトリウムに変更する以外は、実施例 1と同様に 操作を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシゥ ム粉体の各種物性を表 1に示す。
[0076] 実施例 9
キレート化合物(B)を-トリ口三酢酸に変更する以外は、実施例 1と同様に操作を行 い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム粉体の 各種物性を表 1に示す。
[0077] 実施例 10
キレート化合物(B)をヒドロキシェチリデンニ亜燐酸に変更する以外は、実施例 1と 同様に操作を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸力 ルシゥム粉体の各種物性を表 1に示す。
[0078] 実施例 11
キレート化合物(B)をポリアクリル酸とマレイン酸共重合体 (重合比 100: 80)に変更 する以外は、実施例 1と同様に操作を行い、表面処理炭酸カルシウム粉体を得た。 得られた表面処理炭酸カルシウム粉体の各種物性を表 1に示す。
[0079] 実施例 12
炭酸カルシウムに対する界面活性剤 (A)の添加量を 5%に変更する以外は、実施 例 1と同様に操作を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理 炭酸カルシウム粉体の各種物性を表 1に示す。
[0080] 実施例 13
炭酸カルシウムに対するキレート化合物(B)の添加量を、 2%に変更する以外は、 実施例 1と同様に操作を行い、表面処理炭酸カルシウム粉体を得た。得られた表面 処理炭酸カルシウム粉体の各種物性を表 1に示す。
[0081] 実施例 14〜18
熟成による粒子成長を BET比表面積が Swxm2 Zgで停止し、界面活性剤 (A)、キ レートイ匕合物(B)の添加量を各々表 2に示す値に変更する以外は、実施例 1と同じ 方法で沈降製炭酸カルシウムを 10%含有する水スラリーを得、実施例 1と同様に操 作を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム 粉体の各種物性を表 1に示す。
[0082] 実施例 19
反応後の熟成を行わず、界面活性剤 (A)、キレート化合物 (B)の添加量を各々 20 %、 7%に変更する以外は、実施例 1と同様に操作を行い、表面処理炭酸カルシウム 粉体を得た。得られた表面処理炭酸カルシウム粉体の各種物性を表 1に示す。
[0083] 実施例 20 界面活性剤 (A)を市販の石鹼(日本油脂製登録商標ノンサール SK-1)に、キレート 化合物 (B)を工業用へキサメタ燐酸ナトリウムに変更する以外は、実施例 1と同様に 操作を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシゥ ム粉体の各種物性を表 1に示す。
なお、使用した石鹼の代表的な組成を以下に示す。
ノンサール SK-1
パルミチン酸カリウム 27.4%
ステアリン酸カリウム 65.6%
ァラキジン酸カリウム 1.4%
ベへ-ン酸カリウム 1.0%
ミリスチン酸カリウム 2.0%
その他 2.6%
実施例 21
特開平 7—196316号公報に記載の方法に従い、 1.5molZLの炭酸ナトリウム溶液 100 L、 1.35mol/Lの塩化カルシウム溶液 100 L、 0.04mol/Lの水酸化ナトリウム溶液 を調整し、炭酸ナトリウム溶液と水酸ィ匕ナトリウム溶液を混合しその混合液と、塩ィ匕カ ルシゥム溶液を各々 16.0°Cに調整した。
攪拌下の炭酸ナトリウム溶液と水酸ィ匕ナトリウム溶液の混合液 200 Lに、塩化カルシ ゥム溶液 100 Lを 200秒かけて滴下し、滴下終了 180秒後、反応によって理論的に生 成する炭酸カルシウムの 0.8wt %相当量のへキサメタ燐酸ナトリウム (試薬 1級)を添 カロし更に 5分間攪拌した。
へキサメタ燐酸ナトリウムで表面処理された炭酸カルシウムスラリーを、高速デカン ター等で脱水'希釈を繰り返して対イオンと異物を除去した後に 60°Cに調整し、その 炭酸カルシウム固形分に対して 2.9 %の混合処理剤 A1を 80°Cの湯に溶解後に炭酸 カルシウムスラリーに添加し、 4時間攪拌して表面処理炭酸カルシウムスラリーを得た 得られた表面処理炭酸カルシウムスラリーを乾燥'解砕し、更に得られた乾粉を空 気分級機で分級を行い、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭 酸カルシウム粉体の各種物性を表 1に示す。
[0085] 実施例 22
コータスを熱源に使用し、灰色緻密質石灰石をシャフト式キルンで焼成することと、 異物除去の工程を行わない以外は実施例 1と同様に操作を行い、表面処理炭酸力 ルシゥム粉体を得た。得られた表面処理炭酸カルシウム粉体の各種物性を表 1に示 す。
[0086] 実施例 23
白色糖晶質石灰石と混合して 10%のスラリーを作成後、該スラリーを湿式粉砕機ダ イノーミル KB-20Bで湿式粉砕し、 BET比表面積が 0.9 m2 Zgの炭酸カルシウムの水 スラリーを得た。
次に、炭酸カルシウム固形分に対して 0.3 %の混合処理剤 A1を 80°Cの湯に溶解し て界面活性剤 (A)の水溶液を作成し、更に炭酸カルシウム固形分に対して 0.1 %の へキサメタリン酸ナトリウム (試薬 1級)を 40°Cの水に溶解してキレートイ匕合物(B)の水 溶液を得た。
先に得られた炭酸カルシウムスラリーを攪拌しつつ 60°Cに調整し、これに上述のキ レート化合物 (B)、界面活性剤 (A)の順に添加し、 4時間攪拌して表面処理炭酸力 ルシゥムスラリーを得た。
得られた表面処理炭酸カルシウムスラリーをタナベウィルテック (株)製高速デカンタ 一と 350メッシュの篩で異物並びに粗大粒子の除去を行い、脱水 '乾燥'解砕し、更 に得られた乾粉を空気分級機で分級を行 ヽ、表面処理炭酸カルシウム粉体を得た。 得られた表面処理炭酸カルシウム粉体の各種物性を表 1に示す。
[0087] 実施例 24
液温を 15°Cに調整した 0.8mol/Lの硫化バリウム溶液 100Lを攪拌しつつ、 14.4°Cに 調整した 0.8mol/Lの硫酸ナトリウム溶液 100Lを、 400秒で滴下して混合して硫酸バリ ゥムを生成した。
次に、硫酸バリウム固形分に対して 1.2 %の混合処理剤 A1を 80°Cの湯に溶解して 界面活性剤 (A)の水溶液を作成し、更に硫酸バリウム固形分に対して 0.38%のへキ サメタリン酸ナトリウム (試薬 1級)を 40°Cの水に溶解してキレートイ匕合物(B)の水溶液 を得た。
先に得られた硫酸バリウムスラリーを攪拌しつつ 60°Cに調整し、これに上述のキレ ート化合物 (B)、界面活性剤 (A)の順に添加し、 4時間攪拌して表面処理炭酸カル シゥムスラリーを得た。
得られた表面処理硫酸バリウムスラリーを 350メッシュの篩で異物並びに粗大粒子 の除去を行い、脱水 '乾燥'解砕し、更に得られた乾粉を空気分級機で分級を行い、 表面処理硫酸バリウム粉体を得た。
得られた表面処理硫酸バリウム粉体の各種物性を表 1に示す。
[0088] 比較例 1
キレート化合物(B)を処理剤として使用しない以外は実施例 1と同様に操作を行い 、表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム粉体の各 種物性を表 1に示す。
[0089] 比較例 2
界面活性剤 (A)を処理剤として使用しな!、以外は実施例 1と同様に操作を行 ヽ、 表面処理炭酸カルシウム粉体を得た。得られた表面処理炭酸カルシウム粉体の各種 物性を表 1に示す。
[0090] (表 1)
実施例 1 i 実施例 2 実施例 3 実施例 4 実施例 5 ! 実施例 6 実施例 7 実施例 8 界面活性剤 (A) 界面活性剤 A1! ステアリン酸 ラウリン酸 才レイン酸 ァビエチン酸 ! ラウリン酸 界面活性剤 A 1 界面活性剤 A1 カリウム ナド」ゥム ナトリウム ナトリウム
添加量 (%) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 キレート剤 (B) へキサメタ燐酸 へキサメタ燐酸 へキサメタ璘酸 へキサメタ燐酸 へキサメタ燐酸 へキサメタ燐酸 ポリ塩化 ポリアクリル酸 ナ Jゥム ナトリウム ナ卜リウム ナトリウム ナトリウム ナトリウム アルミニウム ナド Jゥム 添加量 (%) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 無機粒子の BET &WX 10 10 10 10 10 10 10 10 平均粒径 D50 0.476 0.544 0.638 0.495 0.868 0.714 0.621 0.481 電顕視野での平均径 Dx 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 粗大粒子 Da 1.635 1.945 1.635 1.945 2.75 2.75 2.313 1.635
BET式比表面積 &) w 9.3 9.2 9.5 9.2 9.2 9.4 9.1 9.4
[1600] l79ZZ0/S00Zdf/X3d 93 6Ζ.^90/900Ζ OAV 実施例 9 実施例 10 実施例 1 1 実施例 1 2 実施例 1 3 実施例 14 実施例 1 5 実施例 1 6 界面活性剤 (A) 界面活性剤 A1 界面活性剤 A1 界面活性剤 A1 界面活性剤 A1 界面活性剤 A1 界面活性剤 A 1 界面活性剤 A1 界面活性剤 A1 添加量(¾>) 3.3 3.3 3.3 5 3.3 5 5 1.9 キレート剤 (B〉 二トリ口 ヒドロキシェチリ ポリアクリル酸とマレ へキサメタ燐酸 へキサメタ燐酸 へキサメタ燐酸 へキサメタ燐酸 へキサメタ燐酸 三齚酸 デンニ亜燐酸 イン酸の共重合物 ナトリウム ナトリウム ナトリウム ナトリウム ナ卜リウム 添加量(%) 0.9 0.9 0.9 0.9 2 1.7 1.2 0.67 無機粒子の BET Swx 10 10 10 10 10 15 15 5.6 平均粒径 D50 0.775 0.544 0.847 0.687 0.467 1.385 1.84 0.97 電顕視野での平均径 Dx 0.15 0.15 0.15 0.15 0.15 0.07 0.07 0.52 粗大粒子 Da 2.313 1.945 2.313 2.313 1.635 2.75 2.75 2.313
BET式比表面穣 Sw 9.2 9.4 9.2 9.3 9.1 14 14 5.1
[0092] (表 1)つづき 2
実施例 1 7 実施例 1 8 実施例 19 実施例 20 実施例 21 実施例 22 実施例 23 実施例 24 界面活性剤 (A) 界面活性剤 A1 界面活性剤 A1 界面活性剤 A1 SK-1 界面活性剤 A1 界面活性剤 A1 界面活性剤 A1 界面活性剤 A1 添加量 (%) 7 5 20 3.3 2.9 3.3 0.3 1.2 キレ一ト剤 (B) へキサメタ燐酸 へキサメタ燐酸 へキサメタ燐酸 へキサメタ燐酸 へキサメタ饿酸 へキサメタ燐酸 へキサメタ燐酸 へキサメタ燐酸 ナ Jゥム ナ卜リウム ナ卜リウム ナトリウム (工業用) ナトリウム ナトリウム ナ卜リウム ナトリウム 添加量 (<½) 1.9 1.5 7 0.9 0.8 0.9 0.1 0.38 無機粒子の BET Swx 21 21 58 10 3.2 10 0.9 3.4 平均粒径 D50 0.74 0.94 0.98 0.482 0.61 0.524 0.98 0.783 電顕視野での平均径 Dx 0.03 0.03 0.02 0.15 0.62 0.15 0.94 0.54 粗大粒子 Da 4.625 18.5 2.313 1.945 2.313 22 9.25 5.5
BET式比表面積 Sw 19.5 19.5 56 9.1 3 9.3 0.9 3.2
[0093] (表 1)つづき 3
Figure imgf000031_0001
[0094] 実施例 25〜48、比較例 3, 4
ポリプロピレン榭脂(住友化学 (株)社製 FS2011DG2、 MI = 2.0 g/10min) 100部 、実施例 1〜24、及び比較例 1, 2で得られた表面処理炭酸カルシウム粉体からなる 光反射多孔質フィルム用填剤 110部、ステアリン酸カルシウム 1部をヘンシェルミキサ 一に仕込み 5分間混合して填剤 榭脂混合物を得た。
得られた混合物をベント型二軸押出機によりペレット状に加工した。このペレットを、 Tダイを装着した押出機を用いて未延伸シートを得た。得られた未延伸シートをテン ターオーブン中で 140 °Cの温度下で約 7倍に延伸し 180 mの多孔質延伸フィルム を得た。
[0095] 得られた多孔質延伸フィルムにポリエステル系ホットメルト型接着剤をグラビアコー ターで 7 mの厚みで塗工した。この接着剤を塗工した多孔質延伸フィルムに板状 支持体である厚さ 200 μ mのアルミニウムフィルムを温度 75°Cでラミネートさせ光反射 板を得た。このとき接着強度は、 100 gZcm2であった。
[0096] このように得られた光反射板にっ 、て、全光線反射率、輝度ムラ、連続点灯時の色 調変化 (黄変)の測定,評価を行った。結果を表 2に示す。 全光線反射率は、 JIS— Z— 8701に従って波長 40nm〜700 nmの範囲で測定した 各波長の反射率の平均値を算出することによって求めた。
更に、この光反射板を用いて下記の高温環境試験 (耐久試験)を行い、全光線反 射率の変化率(%) { [ (耐久試験前の全光線反射率—耐久試験後の全光線反射率) Z耐久試験前の全光線反射率] X 100}を測定した。
高温環境試験 (耐久試験)
光反射板を 83°C、相対湿度 50%の環境下で 24時間放置した。
[0097] 輝度ムラの評価は、図 1の如く 24インチタイプの直下方式の面光源表示装置を用い た。同装置に実施例 25〜48、比較例 3〜4で得られた光反射板を面光源表示装置 の光反射板 4として成形加工したものを用い、ハウジング 1の内部に冷陰極ランプ 2、 正面に LCDセル 3を設置した。
これを点灯、照射して正面方向の輝度ムラが発生しているか否かを目視評価し、以 下の基準で評価した。
〇:均一な輝度で、ムラがな!、。
X:ムラがある。
[0098] 連続点灯時の色調変化 (黄変)評価は、アイ'スーパー UVテスター SUV—W13 ( 岩崎電気 (株)製)を用いて、光反射板のフィルム表面から 10cm離れた位置に設置し たメタルノヽライドランプを照射強度 90mWZcm2で 24時間点灯照射したあとのフィル ムの色調変化を測色計 (S&Mカラーコンピュータ、スガ試験機 (株)社製)を用いて、 試験前後に測定した各指数値から色差 EH値を読みとり CFIS— Z— 8730)、以下の 基準で評価した。
◎:色調に全く変化がなく極めて良好である( EH< 0.3 ) 0
〇:色調に殆ど変化がなく良好である(0.3≤ EHく 1)。
X:色調に変化ありが不良である( EH≥1)。
[0099] 総合評価
以上の評価を総合的に評価した。即ち、最も優れているものを 5とし、下記の 5段階 で評価した。
5 :非常に優れている。 4:優れている。 3:良好である。 2:やや劣っている。 1:劣っている。 (表 2)
実施例 25 実施例 26 実施例 27 実施例 28 実施例 29 実施例 30 実施例 31 実施例 32 使用した填剤 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例フ 実施例 8 全光線反射率 耐久試験前 [%] 95.5 94.8 93.4 92.4 90.5 93.4 92 94.6 耐久試験後 [%] 95.3 92.6 91.1 90.5 89.9 89.8 91.3 94 変化率 [%] 0.21 2.32 2.46 2.06 0.66 3.85 0.76 0.63 輝度ムラ [-] O O 0 O O O O O 色調変化 lEH [-] 0.24 0.47 0.44 0.96 0.45 0.57 0.53 0.54 評価 ◎ O O O 0 O O O 総合評価 5 3 3 2 2 3 3 4
実施例 33 実施例 34 実施例 35 実施例 36 実施例 37 実施例 38 実施例 39 実施例 40 使用した填剤 実施例 9 実施例 10 実施例 1 1 実施例 1 2 実施例 1 3 実施例 14 実施例 1 5 実施例 1 6 全光線反射率 耐久試験前 [%] 91.6 92.2 92.6 95.2 94.8 94.4 92.4 93.2 耐久試験後 [%] 89.8 91.2 91.4 93.9 94 93.4 91.9 92.8 変化率 [%] 1.97 1.08 1.30 1.37 0.84 1.06 0.54 0.43 輝度ムラ [-] O O O O O O O O 色調変化 lEH [-] 0.88 0.56 0.58 0.43 0.47 0.43 0.51 0.42 評価 O O O O O 0 O 〇 総合評価 2 3 3 4 4 4 3 4
実施例 41 実施例 42 実施例 43 実施例 44 実施例 45 実施例 46 実施例 47 実施例 48 使用した粒子 実施例 1 7 実施例 1 8 実施例 1 9 実施例 20 実施例 21 実施例 22 実施例 23 実施例 24 全光線反射率 耐久試験前 [ ] 95.2 93.1 92.9 95.3 90.4 92.9 89.6 89.4
耐久試験後 [%] 94.8 92.5 92.3 95.1 90 91.6 89.4 89 変化率 [%] 0.42 0.64 0.65 0.21 0.44 1.40 0.22 0.45 輝度ムラ [-] Ο Ο Ο Ο Ο Ο 〇 Ο
色調変化 ^ΕΗ [-] 0.42 0.49 0.47 0.26 0.51 0.87 0.43 0.47
評価 Ο Ο Ο ◎ Ο 〇 0 Ο
総合評価 4 3 3 5 2 2 2 2
()^22ύ [0103] (表 2)つづき 3
Figure imgf000037_0001
[0104] 実施例 49〜72、比較例 5、 6
ポリエチレン榭脂(三井ィ匕学製ノヽィゼッタスミリオン 340M)とポリエチレンワックス(三 井ィ匕学製ハイワックス 110 P)を 7: 3の割合で混合した混合ポリエチレン榭脂を作成し 、実施例 1〜24及び比較例 1、 2で得られた表面処理炭酸カルシウム粉体からなる多 孔質フィルム用填剤と混合樹脂の体積比が 3: 7の割合でヘンシェルミキサーに仕込 み、 5分間混合して多孔質フィルム用填剤ー榭脂混合物を得た。
得られた混合物を、 Tダイを装着した東洋精機製二軸混練機2 D25Wで溶融混練 と製膜を行い、膜厚 80 mのフィルムを得た。得られたフィルムを、テンターオーブン 中で 110 °Cの温度下で長さ方向に約 5倍延伸し、多孔質フィルムを得た。
得られた多孔質フィルムにつ 、て下記の方法で各種物性を評価した。結果を表 3 に示す。
[0105] [評価方法]
1)イオン透過性
イオンの透過性は、溶液中を移動する Liイオンを電気伝導度で測定することによつ て評価した。測定方法は、濾過試験等で使用されるフィルターホルダーと 250mlファ ンネル間に濾紙やフィルターの代りに本発明で得られた多孔質フィルム(予め 47mm 径に切り取っておく)を挟んでクランプで固定し、エチレンカーボネート、ェチルメチ ルカーボネート、ジメチルカーボネートを体積比 30: 35: 35の混合溶液で満たした 1L 吸引瓶に差し込んだ後に、更に別の該混合溶液に電解質として LiPF6を lmol /L となる様に溶解した電解液 200mlをファンネルに注ぎ、 30分後に吸引瓶内の電解液 の電気伝導度を測定することによって求めた。電気伝導度の値が大きい程、イオンの 透過性が高くて良好と!/、える。
[0106] 2)ガーレ通気度
JIS-P8117に準じ、多孔質フィルムのガーレ値を東洋精機製 B型デンソメーターで 測定した。ガーレ通気度の値が小さい程、気体やイオンの透過性が高く好ましい。
[0107] 3)平均細孔径
ASTM F316- 86に準拠し、 Perm- Porometer(PMI社製)でバブルポイント法により平 均細孔径を測定した。
[0108] 4)膜厚
膜厚計を用いて測定した。膜厚が小さいとイオンの透過性に有利であるが、両極間 の絶縁性や突き刺し強度が弱くなるため、良好なイオンの透過性を維持しつつ膜厚 も大きいものが好ましい。
[0109] 5)総合評価
以上の評価を総合的に評価した。即ち、最も優れているものを 5とし、下記の 5段階 で評価した。
5 :非常に優れている。
4 :優れている。
3 :良好である。
2 :やや劣っている。
1 :劣っている。
[0110] (表 3) 実施例 49 実施例 50 実施例 51 実施例 52 実施例 53 実施例 54 実施例 55 実施例 56 使用した粒子 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7 実施例 8 イオン透過性 [ /S/cm] 820 670 660 480 510 450 640 720 ガーレ通気度 [secノ lOOcc] 70 90 110 150 180 160 90 90 平均細孔径 [/ m] 0.087 0.094 0.092 0.104 0.11 0.14 0.098 0.096 膜厚 [ /m] 45 44 45 44 46 45 45 45 総合評価 5 3 3 2 2 3 3 4
H (ε挲) [πιο] l79ZZ0/S00Zdf/X3d 68 6Ζ .^90/900Ζ OAV 実施例 57 実施例 58 実施例 59 実施例 60 実施例 61 実施例 62 実施例 63 実施例 64 使用した粒子 実施例 9 実施例 10 実施例 11 実施例 12 実施例 13 実施例 14 実施例 15 実施例 16 イオン透過性 [//S/cm] 520 630 590 700 740 720 620 710 ガ一レ通気度 [secノ lOOcc] 160 140 150 90 100 80 120 90 平均細孔径 [jum] 0.121 0.114 0.102 0.095 0.094 0.095 0.111 0.099 膜厚 [jUm] 44 46 47 46 43 44 45 46 総合評価 2 3 3 4 4 4 3 4
(ε挲) βπο] l79ZZ0/S00Zdf/X3d VP 6Ζ .^90/900Ζ OAV 実施例 65 実施例 66 実施例 67 実施例 68 実施例 69 実施例 70 実施例 71 実施例 72 使用した粒子 実施例 1 7 実施例 18 実施例 19 実施例 20 実施例 21 実施例 22 実施例 23 実施例 24 イオン透過性 [X/ S/cm] 710 630 560 810 540 570 520 430 ガーレ通気度 [secノ 100cc] 90 140 130 70 180 180 190 180 平均細孔径 [/ m] 0.094 0.098 0.095 0.082 0.121 0.141 0.145 0.19 膜!? [ju m] 45 46 45 43 44 46 45 44 総合評価 4 3 3 5 2 2 2 2
(表 3)つづき 3
Figure imgf000044_0001
産業上の利用可能性
叙上のとおり、本発明の多孔質フィルム用填剤は、樹脂との混合が容易で、且つ樹 脂中での分散性が良好であり、例えば液晶表示装置や照明装置の光反射板として 有用な多孔質フィルムや、電池の電極間のセパレータとして有用な多孔質フィルムを 提供することができる。

Claims

請求の範囲
[1] 界面活性剤 (A)と、アルカリ土類金属に対してキレート能を有する化合物 (B)とで 表面処理された無機粒子からなることを特徴とする多孔質フィルム用填剤。
[2] 無機粒子が炭酸カルシウム又は硫酸バリウムであることを特徴とする請求項 1記載 の多孔質フィルム用填剤。
[3] 界面活性剤 (A)が脂肪酸塩であることを特徴とする請求項 1記載の多孔質フィルム 用填剤。
[4] 界面活性剤 (A)が、 C数 16以上の直鎖脂肪酸塩を 50〜98重量%、 C数 10〜14の 直鎖脂肪酸塩を 1.5〜50重量%含む組成を有することを特徴とする請求項 1〜3の
V、ずれか 1項に記載の多孔質フィルム用填剤。
[5] アルカリ土類金属に対してキレート能を有する化合物 (B)の縮合リン酸が、環状縮 合リン酸又はメタリン酸であることを特徴とする請求項 1〜4のいずれか 1項に記載の 多孔質フィルム用填剤。
[6] 無機粒子に対し、界面活性剤 (A)が 0.1〜20重量%、アルカリ土類金属に対してキ レート能を有する化合物(B)が 0.05〜7重量%であることを特徴とする請求項 1〜5の
V、ずれか 1項に記載の多孔質フィルム用填剤。
[7] 下記の(1)カゝら (4)の粒度特性を満足することを特徴とする請求項 1〜6の!ヽずれ 力 1項に記載の多孔質フィルム用填剤。
(1) 0.3≤D ≤1.5 [ ^ m]
50
(2) 0.02≤Dx≤0.6 [^ m]
(3) Da≤20 [ ^ m]
Figure imgf000045_0001
ただし
D : Leeds & Northrup社製 Microtrac (マイクロトラック) FRAで測定した篩上積算
50
平均粒子径 [/z m]
Dx : 走査型電子顕微鏡を用い倍率 20,000倍の観測を行い、任意に 100個の粒子 を選択し、最大と最小のものから各々 20個除いた残りの平均粒子径〔 m]
Da : Leeds & Northrup社製 Microtrac (マイクロトラック) FRAで測定した時に示す 最大粒子径 [/z m]
Sw : 窒素吸着法による BET式比表面積 [m2 Zg]
[8] 請求項 1〜7の!ヽずれか 1項記載の多孔質フィルム用填剤を含有してなることを特 徴とする多孔質フィルム。
[9] 多孔質フィルムの榭脂が、ポリオレフイン系榭脂であることを特徴とする請求項 8記 載の多孔質フィルム。
[10] 多孔質フィルムが光反射用であることを特徴とする請求項 8又は 9記載の多孔質フ イノレム。
[11] 液晶表示装置又は照明装置の光反射板に用いることを特徴とする請求項 8〜10の いずれか 1項に記載の多孔質フィルム。
[12] 電池の電極間の隔膜用であることを特徴とする請求項 8又は 9記載の多孔質フィル ム。
[13] 電池がリチウム二次電池であることを特徴とする請求項 12記載の多孔質フィルム。
PCT/JP2005/022649 2004-12-17 2005-12-09 多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム WO2006064729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800434368A CN101080453B (zh) 2004-12-17 2005-12-09 多孔膜用填充剂及配合有该填充剂的多孔膜
US11/792,523 US20080182933A1 (en) 2004-12-17 2005-12-09 Filler for Porous Film and Porous Film Containing the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-365544 2004-12-17
JP2004365544A JP5027385B2 (ja) 2004-12-17 2004-12-17 多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム
JP2005089057A JP5100972B2 (ja) 2005-03-25 2005-03-25 光反射多孔質フィルム用填剤及び該填剤を配合してなる光反射多孔質フィルム
JP2005-089057 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006064729A1 true WO2006064729A1 (ja) 2006-06-22

Family

ID=36587785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022649 WO2006064729A1 (ja) 2004-12-17 2005-12-09 多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム

Country Status (3)

Country Link
US (1) US20080182933A1 (ja)
KR (1) KR101208339B1 (ja)
WO (1) WO2006064729A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985650A1 (en) * 2006-02-01 2008-10-29 Maruo Calcium Company Limited Micropore forming agent for porous resin film and composition for porous resin film containing the agent
KR101070800B1 (ko) * 2007-06-21 2011-10-10 코오롱인더스트리 주식회사 폴리아미드 필름
WO2014058057A2 (ja) * 2012-10-12 2014-04-17 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
JPWO2013168600A1 (ja) * 2012-05-08 2016-01-07 丸尾カルシウム株式会社 表面処理炭酸カルシウム填料、及び該填料を含有する硬化型樹脂組成物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150298B (zh) * 2008-09-12 2014-10-29 日本韦琳株式会社 锂离子二次电池用隔板、其制造方法及锂离子二次电池
CN102712788B (zh) * 2010-01-29 2014-05-28 丸尾钙株式会社 树脂用表面处理碳酸钙填充剂及含有该填充剂的树脂组合物
US8741995B2 (en) 2010-02-15 2014-06-03 Shiraishi Kogyo Kaisha, Ltd. Surface-treated calcium carbonate and paste-like resin composition containing same
PT2410023E (pt) 2010-07-20 2013-01-25 Omya Development Ag Processo para a preparação de material de carbonato de cálcio de superfície tratada e a sua utilização no controlo de material orgânico num meio aquoso
US9683101B2 (en) 2010-09-22 2017-06-20 Daramic, Llc Batteries, separators, components, and compositions with heavy metal removal capability and related methods
PL3517578T3 (pl) * 2010-09-22 2022-06-13 Daramic, Llc Ulepszony separator do akumulatorów kwasowoołowiowych i zastosowanie tego separatora
AR088536A1 (es) 2011-10-25 2014-06-18 Imerys Minerals Ltd Rellenos particulados
DE102012001544A1 (de) * 2012-01-16 2013-07-18 Ewald Dörken Ag Verfahren zur Herstellung einer Mikrofiltrationsmembran und Mikrofiltrationsmembran
EP2861675B1 (en) 2012-06-13 2018-09-05 Amril AG Dispersing agent comprising fillers or pigments
US9819055B2 (en) 2013-03-14 2017-11-14 Bigzet Incorporated Electrolyte and sulfuric acid battery containing same
US9711771B2 (en) 2013-09-18 2017-07-18 Celgard, Llc Porous membranes filled with nano-particles, separators, batteries, and related methods
US20190386276A1 (en) * 2017-03-06 2019-12-19 Council Of Scientific And Industrial Research Porous polybenzimidazole as separator for lithium ion batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072890A (ja) * 1999-09-06 2001-03-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム、及び多孔性フィルム用樹脂組成物、並びに多孔性フィルムの製造方法
JP2002363443A (ja) * 2001-06-01 2002-12-18 Maruo Calcium Co Ltd 表面処理無機フィラー及びこれを配合した樹脂組成物
JP2003034760A (ja) * 2001-05-18 2003-02-07 Maruo Calcium Co Ltd 表面処理重質炭酸カルシウム、その製造方法、及び表面処理重質炭酸カルシウムを配合してなる樹脂組成物
JP2004101600A (ja) * 2002-09-05 2004-04-02 Toray Ind Inc 光反射フィルムおよびその製造方法
JP2004138715A (ja) * 2002-10-16 2004-05-13 Furukawa Electric Co Ltd:The 光反射板およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880824B2 (ja) * 2001-04-12 2012-02-22 住友化学株式会社 多孔性フィルム
WO2004035476A1 (ja) * 2002-10-15 2004-04-29 Maruo Calcium Company Limited 凝集粒子及びそれを配合してなる樹脂組成物
JP3981335B2 (ja) * 2003-03-07 2007-09-26 丸尾カルシウム株式会社 バックライト用光拡散性合成樹脂フィルムに用いられる光拡散剤及び該光拡散剤を用いたバックライト用光拡散性合成樹脂フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072890A (ja) * 1999-09-06 2001-03-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム、及び多孔性フィルム用樹脂組成物、並びに多孔性フィルムの製造方法
JP2003034760A (ja) * 2001-05-18 2003-02-07 Maruo Calcium Co Ltd 表面処理重質炭酸カルシウム、その製造方法、及び表面処理重質炭酸カルシウムを配合してなる樹脂組成物
JP2002363443A (ja) * 2001-06-01 2002-12-18 Maruo Calcium Co Ltd 表面処理無機フィラー及びこれを配合した樹脂組成物
JP2004101600A (ja) * 2002-09-05 2004-04-02 Toray Ind Inc 光反射フィルムおよびその製造方法
JP2004138715A (ja) * 2002-10-16 2004-05-13 Furukawa Electric Co Ltd:The 光反射板およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985650A1 (en) * 2006-02-01 2008-10-29 Maruo Calcium Company Limited Micropore forming agent for porous resin film and composition for porous resin film containing the agent
EP1985650A4 (en) * 2006-02-01 2010-10-27 Maruo Calcium MICROPORENBILDNER FOR POROUS RESIN FOIL AND THE MICROPORENBILDNER CONTAINING COMPOSITION FOR POROUS RESIN FOIL
KR101070800B1 (ko) * 2007-06-21 2011-10-10 코오롱인더스트리 주식회사 폴리아미드 필름
JPWO2013168600A1 (ja) * 2012-05-08 2016-01-07 丸尾カルシウム株式会社 表面処理炭酸カルシウム填料、及び該填料を含有する硬化型樹脂組成物
WO2014058057A2 (ja) * 2012-10-12 2014-04-17 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
WO2014058057A3 (ja) * 2012-10-12 2014-06-19 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
JPWO2014058057A1 (ja) * 2012-10-12 2016-09-05 丸尾カルシウム株式会社 樹脂用炭酸カルシウム填料及び該填料を含む樹脂組成物
US9815953B2 (en) 2012-10-12 2017-11-14 Maruo Calcium Co., Ltd. Calcium carbonate filler for resin, and resin composition containing said filler

Also Published As

Publication number Publication date
KR20070086514A (ko) 2007-08-27
KR101208339B1 (ko) 2012-12-05
US20080182933A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
WO2006064729A1 (ja) 多孔質フィルム用填剤及び該填剤を配合してなる多孔質フィルム
US7977410B2 (en) Fine pore formation agent for porous resin film and composition containing the same for porous resin film
KR101336091B1 (ko) 수지용 표면처리 탄산칼슘 필러 및 이 필러를 함유하여 이루어지는 수지 조성물
CN101080453B (zh) 多孔膜用填充剂及配合有该填充剂的多孔膜
JP5100972B2 (ja) 光反射多孔質フィルム用填剤及び該填剤を配合してなる光反射多孔質フィルム
US8975322B2 (en) Calcium carbonate filler for resin, process for producing the same, and resin composition containing the filler
TWI632113B (zh) Calcium carbonate filler for resin and resin composition containing the same
JP5506228B2 (ja) コロイド炭酸カルシウム填剤及びその製造方法、並びに該填剤を配合してなる樹脂組成物
US9815953B2 (en) Calcium carbonate filler for resin, and resin composition containing said filler
JP2005290054A (ja) 重質炭酸カルシウムからなる合成樹脂添加剤及びこれを含有してなる合成樹脂組成物
JP3981335B2 (ja) バックライト用光拡散性合成樹脂フィルムに用いられる光拡散剤及び該光拡散剤を用いたバックライト用光拡散性合成樹脂フィルム
JP2021006612A (ja) 樹脂組成物、フィルム及び副生炭酸カルシウムの製造方法
TWI394783B (zh) A filler for a porous film, and a porous film having the filler
JPWO2018047841A1 (ja) 微粒子複合金属水酸化物、その焼成物、その製造方法及びその樹脂組成物
WO2019021542A1 (ja) タイチャイト粒子、タイチャイト粒子の製造方法及びタイチャイト粒子の用途
WO2001042139A1 (fr) Production de carbonate de calcium de forme cubique
JP2012193267A (ja) ハイドロタルサイト含有マスターペレット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11792523

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580043436.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077014122

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 05814760

Country of ref document: EP

Kind code of ref document: A1