WO2006059558A1 - 内燃機関のegr制御装置 - Google Patents

内燃機関のegr制御装置 Download PDF

Info

Publication number
WO2006059558A1
WO2006059558A1 PCT/JP2005/021774 JP2005021774W WO2006059558A1 WO 2006059558 A1 WO2006059558 A1 WO 2006059558A1 JP 2005021774 W JP2005021774 W JP 2005021774W WO 2006059558 A1 WO2006059558 A1 WO 2006059558A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
opening
valve
throttle valve
amount
Prior art date
Application number
PCT/JP2005/021774
Other languages
English (en)
French (fr)
Inventor
Seijiro Kotooka
Susumu Kohketsu
Hitoshi Yokomura
Original Assignee
Mitsubishi Fuso Truck And Bus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck And Bus Corporation filed Critical Mitsubishi Fuso Truck And Bus Corporation
Priority to DE112005003095T priority Critical patent/DE112005003095T5/de
Priority to US11/720,575 priority patent/US20080167790A1/en
Publication of WO2006059558A1 publication Critical patent/WO2006059558A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an EGR control device for an internal combustion engine that requires a large amount of exhaust gas recirculation (EGR).
  • EGR exhaust gas recirculation
  • part of the exhaust gas is returned to the intake passage via the EGR passage (EGR passage) and supplied to the combustion chamber.
  • EGR amount the amount of recirculated exhaust gas
  • the EGR valve and the intake throttle valve are used in combination for continuous control of each opening, and in order to obtain a further EGR amount, the opening of the EGR valve After controlling in the fully open direction, fix this opening in the fully open state and throttle the intake throttle valve. In other words, control is switched to the EGR valve force throttle valve, and the throttle valve opening is controlled in the fully closed direction.
  • the inventor of the present application recognizes that there is a dead area between the fully open state and the fully closed state of the intake throttle valve. This dead zone is caused by a small change in the pressure difference between the intake passage and the exhaust passage. More specifically, the EGR amount does not follow the change in the throttle valve opening at a constant rate of change, and hardly changes as the throttle valve opening approaches the fully open state. This change in the EGR amount is still small with respect to the opening of the throttle valve. A slightly increasing area is a dead area.
  • the amount of EGR increases rapidly when, for example, the opening of the throttle valve reaches approximately 20 to 40% of its fully closed state.
  • the region where the change in EGR is large and increases rapidly is the reaction region.
  • the EGR amount linearly follows the change in the opening of the EGR valve compared to the change in the opening of the throttle valve.
  • the present invention has been made to solve such problems, and an object of the present invention is to obtain a desired EGR amount and to simplify the system.
  • the purpose is to provide an EGR control device for internal combustion engines.
  • an intake throttle valve disposed in the intake passage of the internal combustion engine, and an EGR passage connecting the intake passage and the exhaust passage are provided. If the EGR amount is feedback controlled by continuously controlling the opening of the EGR valve and the opening of the intake throttle valve, respectively, and if a large amount of EGR is required, the EGR valve EGR control means that continuously controls the opening of the valve in the fully open direction and further continuously controls the opening of the intake throttle valve in the fully closed direction is provided.
  • the control means limits the EGR amount feedback control by the intake throttle valve, and performs the EGR amount feedback control by the EGR valve to supplement the above limit, so there is a dead zone. Even so, the desired amount of EGR can be obtained.
  • FIG. 1 is an overall configuration diagram showing an EGR control device according to an embodiment of the present invention.
  • FIG. 2 Timing chart for switching between EGR valve and intake throttle valve by EGR control device of Fig. 1,
  • FIG. 3 is a diagram showing the relationship between the opening of the intake throttle valve, the characteristics of the EGR amount, and the control gain by the EGR control device of FIG. 1.
  • FIG. 1 shows an EGR control unit that is embodied for a diesel engine.
  • a supercharger 6 is provided in the intake passage 4 of the engine 2.
  • Intake air taken from an air tailor (not shown) is supercharged by the compressor 8 and then introduced into the combustion chamber 16 via the intercooler 10.
  • an intake throttle valve 12 is disposed at an appropriate position in the passage 4.
  • This throttle valve 12 is provided with a butterfly valve body 14 driven by a brushed motor, and the flow rate of intake air is controlled by opening and closing the valve body 14, and an exhaust gas recirculation amount (EGR amount) is described later. ) Also controls
  • a current is passed through the coil that generates a magnetic field using a brush.
  • the exhaust passage 20 of the engine 2 is provided with a turbine 22 coaxially coupled to the compressor 8, and the compressor 8 and the turbine 22 are rotationally driven by the exhaust gas after combustion.
  • an EGR valve 26 is disposed at an appropriate position of the passage 24.
  • the valve 26 includes a poppet valve body 28 driven by a brushless motor, and the EGR amount is controlled by opening and closing the valve body 28.
  • the EGR valve 26 of the present embodiment passes a current through the coil without using a brush.
  • an ECU 40 equipped with an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.) used for storing control programs, maps, a central processing unit (CPU), a timer counter, etc. Is installed.
  • the ECU 40 performs comprehensive control of the engine 2 including continuous control of the opening degree of the throttle valve 12 and the EGR valve 26.
  • Various sensors such as an air flow sensor 30, an intake pressure sensor 32, an intake air temperature sensor 34, a rotation speed sensor 36, and an accelerator sensor 38 are connected to the input side of the ECU 40.
  • the sensor 30 outputs a voltage corresponding to the intake air amount of the engine 2, the sensor 32 detects the intake air pressure, and the sensor 34 detects the intake air temperature.
  • Sensor 36 detects the rotational speed of engine 2 and sensor 38 detects the accelerator opening by the driver.
  • various devices such as the fuel injection valve 18 are connected to the output side of the ECU 40 in addition to the throttle valve 12 and the EGR valve 26 described above.
  • the ECU 40 includes an injection control unit 42 intended for the fuel injection valve 18 and an EGR control unit (EGR control means) 44 intended for the throttle valve 12 and the EGR valve 26.
  • EGR control unit EGR control means
  • the opening degree of the valve body 14 of the throttle valve 12 and the valve body 28 of the EGR valve 26 are set so as to achieve the target excess air ratio. EGR amount feedback control is performed by continuously controlling the opening of the!
  • the fuel injection amount is set from the rotational speed from the sensor 36 and the accelerator opening from the sensor 38, and based on these set values, the fuel injection valve is set. 1 Drive 8 and drive engine 2.
  • control unit 44 sets the target excess air ratio based on the rotational speed and the fuel injection amount and sets the map force to calculate the target EGR amount.
  • this control unit 44 in addition to the fresh air amount per second from the sensor 30, the actual fuel injection amount per second, the theoretical air-fuel ratio, and the air equivalent amount in the exhaust gas of the passage 24 force are actually used. Calculate the actual EGR amount by calculating the excess air ratio.
  • the air equivalent amount in the exhaust gas from the passage 24 is obtained by, for example, obtaining the total intake amount per second into the combustion chamber 16 based on the intake pressure from the sensor 32 and the intake air temperature from the sensor 34.
  • the control unit 44 switches the control from the EGR valve 26 to the throttle valve 12 after controlling the opening degree of the EGR valve 26 in the fully open direction. ing.
  • the control unit 44 considers that there is a non-sensitive region in the process of directing the throttle valve 12 in the fully-closed direction, specifically, a region where the change in the EGR amount is still small. In the region, the EGR amount control by the throttle valve 12 is limited and open control is performed, while the EGR valve feedback control is performed by the EGR valve 26 that complements this limit.
  • the control unit 44 when the opening degree of the EGR valve 26 reaches the fully open state (100%) in response to this request. Determine whether the EGR amount is still insufficient.
  • the opening of the throttle valve 12 is in a fully open state (100%), which is a dead zone for the throttle valve 12 (see period I). Therefore, the continuous control of the opening degree of the throttle valve 12 is restricted, that is, the opening degree of the throttle valve 12 is instantly reduced to the predetermined opening degree A (see period I).
  • the predetermined opening A corresponds to an opening with little influence of EGR, for example, an opening of about 20 to 40% with respect to the fully closed state (0%) of the throttle valve 12.
  • the throttle valve 12 is immediately shifted to the dead zone force reaction zone (a zone where the change in EGR amount is large with respect to the opening of the throttle valve 12), and the dead zone is avoided.
  • the opening of the throttle valve 12 is fixed at the predetermined opening A (see period II).
  • exhaust gas is easily introduced into the intake passage 4 by narrowing and fixing the opening of the throttle valve 12 from the fully open state (100%) at once.
  • continuous control of the opening degree of the EGR valve 26 is performed. Specifically, the opening degree of the EGR valve 26 is gradually closed from the fully open state (100%) to the predetermined opening degree C (see period ⁇ ). This complements the limit of EGR feedback control by throttle valve 12.
  • this is to suppress the EGR amount that instantaneously increases as the opening of the throttle valve 12 is reduced to the predetermined opening A.
  • the EGR amount when the predetermined opening C is reached is increased at the same rate as when the EGR valve 26 reaches the first fully opened state (100%).
  • the control unit 44 continuously controls the opening degree of the throttle valve 12 while keeping the opening degree of the EGR valve 26 fully open (100%). Is gradually opened toward the fully open state (100%) until the predetermined opening A is reached (see Period IV). As a result, the amount of EGR is reduced. This period IV is the EGR feedback control period for the throttle valve 12.
  • the predetermined opening degree B may be the fully closed state (0%) of the EGR valve 26.
  • the predetermined opening B is not set to an opening equal to or larger than the predetermined opening C in the period II. This is because, if the predetermined opening B is set to be larger than the predetermined opening C, the throttle valve 12 is fully opened (100%) when the EGR valve 26 reaches this opening as described later. This is because control of the throttle valve 12 and the EGR valve 26 is frequently switched.
  • the opening degree of the EGR valve 26 reaches the predetermined opening degree B, the opening degree of the throttle valve 12 is instantaneously opened to the fully open state (100%) (see period V).
  • the opening degree of the throttle valve 12 needs to be set larger than the predetermined opening degree A, but an opening degree larger than the predetermined opening degree A is larger for the throttle valve 12. There is also power in the insensitive area.
  • the opening degree of the EGR valve 26 is gradually opened by the predetermined opening degree B force.
  • the present embodiment reduces the number of operations of the intake throttle valve 12 driven by a brushed motor, while increasing the number of operations of the EGR valve 26 driven by a brushless motor.
  • the main point is that feedback control of the EGR amount is performed.
  • the insensitive region is avoided when the control unit 44 closes or opens the opening of the throttle valve 12 all at once.
  • the EGR amount is increased, if the opening of the throttle valve 12 is closed from the fully opened state to the predetermined opening A at once, the reaction region is reached and the exhaust gas can be easily introduced into the intake passage 4. Therefore, if the EGR amount feedback control is also performed by the EGR valve 26 at this point in time, the operation of the throttle valve 12 without the continuous control of the opening degree can be compensated. Therefore, even if there is a dead zone, a desired EGR amount can be obtained within the period until the opening of the throttle valve 12 reaches the throttle limit value, and a highly accurate and highly responsive system can be constructed.
  • the opening degree of the throttle valve 12 is fixed in the above periods II and V, and only the above periods III and IV become the feedback control period of the EGR amount by the throttle valve 12.
  • the period II and V are shorter. Therefore, the opening / closing operation of the throttle valve 12 is reduced, and the durability of the throttle valve 12 is improved.
  • the wear of the sliding surface is remarkably suppressed and the durability is greatly improved.
  • the opening degree of the throttle valve 12 when the EGR amount is increased, when the opening degree of the throttle valve 12 is changed from the fully open state (100%) to the predetermined opening degree ⁇ , and when the EGR amount is decreased, the opening degree of the throttle valve 12 is increased. Hysteresis is provided when the valve is moved from the predetermined opening A to the fully open state (100%). In other words, when the EGR amount is increased, the time when the EGR valve 26 reaches the first fully opened state (100%) corresponds to the threshold value, whereas when the EGR amount is decreased, the EGR valve 26 has the predetermined opening B The point at which this value is reached corresponds to the threshold, and the control switching threshold for avoiding the dead zone is made different.
  • the throttle valve 12 is fixed at the fully open state (100%), It is possible to avoid frequent switching of control with the fixed opening A (approximately 20 to 40%). As a result, the fluttering of the throttle valve 12 is suppressed, which also contributes to the improvement of the durability of the throttle valve 12.
  • the control gain for the throttle valve 12 is such that the feedback control of the EGR amount by the EGR valve 26 is limited, that is, the reaction positioned to the right of the predetermined opening A. It is only necessary to set the control gain (indicated by the solid line in the figure) targeting only the area, and the control gain (indicated by the dotted line in the figure) need not be set for the insensitive area. Furthermore, a small value is sufficient for the control gain set in this reaction region.
  • the EGR control unit 44 calculates the actual EGR amount from the value of the sensor 30 or the like. Instead of this calculated value, the actual EGR amount detected value is used. EGR amount feedback control may be implemented.
  • the throttle valve 12 and the EGR valve 26 are continuously controlled to perform the feedback control of the EGR amount so that the target excess air ratio is obtained.
  • the present embodiment is not limited to this example. If the value is reflected in EGR control, for example, target intake air O
  • the feedback control of the EGR amount may be performed by continuously controlling the opening degree of the throttle valve 12 and the EGR valve 26 so that the concentration becomes 2.
  • the EGR control device for the diesel engine 2 has been described.
  • an EGR control device for a gasoline engine may be used. This is achievable by considering the air equivalent amount!

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 大量EGRが要求される場合には、EGR弁(26)の開度を全開方向に連続制御し、更に、吸気絞り弁(12)の開度を全閉方向に連続制御するEGR制御手段(44)を具備し、制御手段は、吸気絞り弁の開度に対してEGR量の変化が小さい不感領域では、吸気絞り弁によるEGR量のフィードバック制御を制限する一方、EGR弁によるEGR量のフィードバック制御を実施して制限された吸気絞り弁によるフィードバック制御を補完する。

Description

明 細 書
内燃機関の EGR制御装置
技術分野
[0001] 本発明は、大量の排ガスの再循環 (EGR)が要求される内燃機関の EGR制御装置 に関する。
背景技術
[0002] この種の装置では、排ガスの一部が EGR用の通路 (EGR通路)を介して吸気通路 に戻されて燃焼室に供給される。そして、この排ガスの再循環量 (EGR量)をフィード ノ ック制御することにより、良好な燃焼状態の確保及び排ガス浄化の促進が図られる
[0003] ここで、従前の装置では、 EGR通路内の流量を制御する EGR弁のみの開度調整 が行われていた。しかし、近年の内燃機関では、大量 EGR (高 EGR率)での運転が 要求されることがある。そこで、上記 EGR弁の他、吸気通路内の流量を制御する吸 気絞り弁の開度調整も行われている(日本国特開 2001— 152879号公報参照)。こ れにより、例えば、不完全燃焼による一酸ィ匕炭素の排出を利用した筒内リッチの要求 にも対応可能となる。また、 NOx (窒素酸化物)の抑制や排気浄化触媒の昇温化も 図られる。
[0004] ところで、この従来の技術では、 EGR弁と吸気絞り弁とを併用して各開度の連続制 御が行われており、更なる EGR量を得る場合には、 EGR弁の開度を全開方向に向 けて制御した後にこの開度を全開状態で固定し、吸気絞り弁を絞る。つまり、 EGR弁 力 絞り弁への制御の切り換えが行われ、絞り弁の開度を全閉方向に向けて制御し ている。
[0005] し力しながら、本願発明者は、この吸気絞り弁の全開状態と全閉状態との間には、 不感領域が存在することを認識している。この不感領域は、吸気通路と排気通路との 圧力差の変化が小さいこと等に起因して生ずる。より詳しくは、 EGR量は、絞り弁の 開度の変化に対して変化率一定では追随せず、絞り弁の開度が全開状態に近づく に連れて殆ど変化しなくなる。この EGR量の変化が未だ小さぐ絞り弁の開度に対し て僅かながらに増加する領域が不感領域である。
[0006] なお、 EGR量は、例えば絞り弁の開度がその全閉状態の約 20〜40%に達したと きには急激に増加する。この EGR量の変化が大きぐ急激に増加する領域が反応領 域である。一方、 EGR量は、 EGR弁の開度の変化に対しては絞り弁の開度の変化 に比して線形的に追随する。
[0007] このように、上記大量 EGRでの運転の如く更なる EGR量を得るために、 EGR弁か ら絞り弁への制御の切り換えが行われたとしても、上記不感領域では EGR量の変化 力 S小さいので、絞り弁の開度が仮に略全閉状態に達しても所望の EGR量が得られな いとの問題がある。
[0008] この問題は、絞り弁の操作量、つまり、絞り弁に対する制御ゲインを不感領域では 大きい値に設定すれば解決可能である。しかし、これでは不感領域及び反応領域の 双方の領域に亘る制御ゲインのマッチングが必要となるし、し力も、このマッチング自 体も困難であることから、システムの簡略ィ匕が図れないとの懸念がある。このように、 E GR弁と絞り弁との制御の切り換えに対しては何等かの措置が必要になる力 上記従 来の技術ではこの点にっ ヽては格別な配慮がなされて ヽな 、。
発明の開示
[0009] 本発明は、このような問題点を解決するためになされたもので、その目的とするとこ ろは、所望の EGR量を得ることができ、且つ、システムの簡略ィ匕を図ることができる内 燃機関の EGR制御装置を提供することにある。
[0010] 上記した目的を達成するために、本発明の内燃機関の EGR制御装置では、内燃 機関の吸気通路に配設された吸気絞り弁と、吸気通路と排気通路とを接続する EGR 通路に配設された EGR弁とを含み、 EGR弁の開度及び吸気絞り弁の開度をそれぞ れ連続制御して EGR量をフィードバック制御しており、大量 EGRが要求される場合 には、 EGR弁の開度を全開方向に連続制御し、更に、吸気絞り弁の開度を全閉方 向に連続制御する EGR制御手段を具備し、制御手段は、吸気絞り弁の開度に対し て EGR量の変化の小さな不感領域では、吸気絞り弁による EGR量のフィードバック 制御を制限する一方、 EGR弁による EGR量のフィードバック制御を実施して制限さ れた吸気絞り弁によるフィードバック制御を補完することを特徴とする。 [0011] このように、吸気絞り弁が全開状態と全閉状態との間には不感領域、つまり、 EGR 量の変化が未だ小さく所望の EGR量を得られない領域が存在する。しかし、この場 合には、制御手段が吸気絞り弁による EGR量のフィードバック制御を制限し、 EGR 弁による EGR量のフィードバック制御を実施して上記制限分を補完することから、不 感領域が存在しても所望の EGR量が得られる。
図面の簡単な説明
[0012] [図 1]本発明の一実施形態に係る EGR制御装置を示す全体構成図、
[図 2]図 1の EGR制御装置による EGR弁と吸気絞り弁との切り換えに関するタイミング チャート、
[図 3]図 1の EGR制御装置による吸気絞り弁の開度と EGR量の特性及び制御ゲイン との関係を示す図である。
発明を実施するための最良の形態
[0013] 以下、図面により本発明の実施形態について説明する。
図 1はディーゼルエンジン用に具体化された EGR制御装置である。同図に示され るように、エンジン 2の吸気通路 4には過給機 6が設けられている。図示しないエアタリ ーナから取り入れられた吸入空気は、コンプレッサ 8により過給された後にインターク ーラ 10を経て燃焼室 16に導入される。
[0014] また、通路 4の適宜位置には吸気絞り弁 12が配設されている。この絞り弁 12は、ブ ラシ付きのモータで駆動されるバタフライ弁体 14を備え、この弁体 14の開閉動作に よって吸入空気の流量を制御し、後述の如く排ガスの再循環量 (EGR量)も制御する
。このように、本実施形態の絞り弁 12では、ブラシを用いて磁界を発生させるコイル に電流を流して ヽる。
[0015] エンジン 2の排気通路 20にはコンプレッサ 8と同軸上に結合されたタービン 22が設 けられ、コンプレッサ 8及びタービン 22は燃焼後の排ガスによって回転駆動される。
[0016] また、通路 4と通路 20とは EGR通路 24により連結され、この通路 24の適宜位置に は EGR弁 26が配設されている。この弁 26はブラシレスのモータで駆動されるポぺッ ト弁体 28を備え、この弁体 28の開閉動作によって EGR量を制御する。このように、本 実施形態の EGR弁 26は、ブラシを用いずにコイルに電流を流している。 [0017] 車室内には、図示しない入出力装置、制御プログラムやマップ等の記憶に供される 記憶装置 (ROM, RAM, BURAM等)、中央処理装置(CPU)、タイマカウンタ等を 備えた ECU40が設置されている。この ECU40は、絞り弁 12や EGR弁 26の開度の 連続制御を含めたエンジン 2の総合的な制御を行う。
[0018] ECU40の入力側には、エアフローセンサ 30、吸気圧センサ 32、吸気温センサ 34 、回転速度センサ 36、及びアクセルセンサ 38等の各種センサ類が接続されている。 このセンサ 30ではエンジン 2の吸入空気量に応じた電圧を出力し、センサ 32では吸 気圧を検出し、センサ 34では吸気温を検出する。また、センサ 36ではエンジン 2の回 転速度を検出し、センサ 38では運転者によるアクセル開度を検出する。一方、 ECU 40の出力側には、上述の絞り弁 12や EGR弁 26の他、燃料噴射弁 18等の各種デバ イス類が接続されている。
[0019] ここで、 ECU40は、燃料噴射弁 18を対象とした噴射制御部 42と、絞り弁 12や EG R弁 26を対象とした EGR制御部 (EGR制御手段) 44とを備えている。そして、 ECU4 0では、更なる EGR量、つまり、大量 EGRが要求された場合には、 目標の空気過剰 率となるように絞り弁 12の弁体 14の開度や EGR弁 26の弁体 28の開度を連続制御 して EGR量のフィードバック制御を実施して!/、る。
[0020] 具体的には、制御部 42では、例えばセンサ 36からの回転速度やセンサ 38からの アクセル開度から燃料噴射量等を設定し、これらの設定値に基づ!ヽて燃料噴射弁 1 8を駆動制御してエンジン 2を運転する。
[0021] また、制御部 44では、上記回転速度及び燃料噴射量に基づ!/、て目標の空気過剰 率を上記マップ力 設定し、 目標の EGR量を算出する。一方、この制御部 44では、 センサ 30からの 1秒あたりの新気量の他、 1秒あたりの燃料噴射量、理論空燃比、及 び通路 24力 の排ガス中の空気相当量に基づいて実際の空気過剰率を算出して実 際の EGR量を算出する。なお、この通路 24からの排ガス中の空気相当量は、例えば センサ 32からの吸気圧やセンサ 34からの吸気温に基づいて燃焼室 16への 1秒あた りの全吸入量を求め、この全吸入量力 上記新気量を減算すれば 1秒あたりに供給 される EGR量が求められるので、この EGR量と前回算出された実際の空気過剰率と 力 求めることができる。 [0022] 次 、で、本実施形態では、上記算出された目標の EGR量と実際の EGR量との偏 差をフィードバックする。そして、 PID制御部 46にて設定された制御ゲイン力も指示 値を得て、この指示値により絞り弁 12の弁体 14の回動量や EGR弁 26の弁体 28のリ フト量を連続制御する。この結果、要求した EGR量が得られ、目標の空気過剰率に 近づくことになる。
[0023] ところで、制御部 44では、更なる EGR量が要求された場合には、 EGR弁 26の開度 を全開方向に制御した後に EGR弁 26から絞り弁 12への制御の切り換えが行われて いる。ここで、この制御部 44は、絞り弁 12が全開状態力も全閉方向に向力 過程に は不感領域、具体的には、 EGR量の変化が未だ小さい領域が存在することを鑑み、 この不感領域では絞り弁 12による EGR量の制御を制限してオープン制御を実施す る一方、この制限分を補完すベぐ EGR弁 26による EGR量のフィードバック制御を 実施している。
[0024] より具体的には、更なる EGR量の増量が要求された場合には、制御部 44では、こ の要求に対して EGR弁 26の開度が全開状態(100%)に達すると、 EGR量が未だ 不足している旨を判別する。しかし、図 2に示されるように、この時点では、絞り弁 12 の開度が全開状態(100%)であり、絞り弁 12にとつては不感領域である (期間 I参照 )。そこで、絞り弁 12の開度の連続制御を制限、すなわち、絞り弁 12の開度を瞬時に 所定開度 Aまで絞る (期間 I参照)。この所定開度 Aとは、 EGRの影響が少ない開度、 例えば絞り弁 12の全閉状態 (0%)に対して約 20〜40%程度の開度が相当する。こ れにより、絞り弁 12にとつては不感領域力 反応領域 (絞り弁 12の開度に対して EG R量の変化が大きい領域)に直ちに移行され、不感領域が回避される。
[0025] 続いて、絞り弁 12の開度は上記所定開度 Aのまま固定される (期間 II参照)。このよ うに、絞り弁 12の開度を全開状態(100%)から一気に絞り、且つ、固定することによ つて排ガスは吸気通路 4内により導入され易い状態になる。なぜならば、絞り弁 12の 動作は連続制御時の動作とは異なって不連続になるものの、不感領域が回避される 力もである。この動作と同時に、 EGR弁 26の開度の連続制御が実施される。詳しくは 、 EGR弁 26の開度は全開状態(100%)から所定開度 Cにまで少しずつ閉じられる( 期間 Π参照)。これは、絞り弁 12による EGR量のフィードバック制御の制限分を補完 する、すなわち、絞り弁 12の開度を所定開度 Aまで絞ったことに伴って瞬間的に増 大した EGR量を抑えるためである。この結果、当該所定開度 Cに達する時点の EGR 量は、 EGR弁 26の最初の全開状態(100%)に達した時点と同じ割合で増量される
[0026] その後、 EGR弁 26の開度は再び全開状態(100%)に向けて少しずつ開かれる( 期間 Π参照)。これにより、上記所定開度 Aの固定による EGR量の抑制分も更に補完 され、 EGR量は同じ割合のまま滑らかに増量される。これら期間 I及び Πが EGR弁 26 による EGR量のフィードバック制御期間となる。
[0027] 上記の如く EGR弁 26の開度が再び全開状態(100%)に達すると、 EGR弁 26の 開度の連続制御が制限、つまり、 EGR弁 26の開度を全開状態(100%)まま固定す る (期間 III参照)。この動作と同時に、絞り弁 12の開度の連続制御が実施され、吸気 絞り制限値に達するまで全閉状態 (0%)に向けて徐々に絞られる (期間 III参照)。こ の制限値は失火を防止するため値である。そして、 EGR量は同じ割合のまま更に増 量され、所望の EGR量に達すると EGR増量時の動作が終了する。なお、この期間 II Iが絞り弁 12による EGR量のフィードバック制御期間となる。
[0028] これに対し、 EGR量の減量が要求された場合には、制御部 44では、 EGR弁 26の 開度を全開状態(100%)にしたまま、絞り弁 12の開度の連続制御が実施され、上記 所定開度 Aに達するまで全開状態(100%)に向けて徐々に開く (期間 IV参照)。こ れにより、 EGR量は減量される。なお、この期間 IVが絞り弁 12による EGR量のフィー ドバック制御期間となる。
[0029] そして、この所定開度 Aに再び達すると、絞り弁 12の開度の連続制御が制限、つま り、絞り弁 12の開度を所定開度 Aのまま固定する (期間 V参照)。この動作と同時に、 EGR弁 26の開度の連続制御が実施される。具体的には、 EGR弁 26の開度が全開 状態(100%)から所定開度 B (他の所定開度)に達するまで少しずつ閉じられる (期 間 V参照)。これにより、 EGR量は同じ割合のまま滑らかに減量される。
[0030] なお、この所定開度 Bは EGR弁 26の全閉状態(0%)であっても良い。しかし、図示 のように、所定開度 Bが当該全閉状態よりも大きな開度に設定されていると、燃焼室 1 6へ排ガスを供給することに伴う絞り弁 12の下流側圧力の急激な低下が防止され、ト ルク変動を抑制できる。ただし、この所定開度 Bは、上記期間 IIにおける所定開度 C 以上の開度には設定されない。なぜならば、仮に所定開度 Bが所定開度 Cよりも大き な開度に設定されると、後述の如く EGR弁 26がこの開度に達した時点で絞り弁 12は 全開状態(100%)に戻ることになり、これでは絞り弁 12と EGR弁 26との制御の切り 換えが頻繁になるからである。
[0031] そして、 EGR弁 26の開度が上記所定開度 Bに達したときには、絞り弁 12の開度を 瞬時に全開状態(100%)にまで開ける (期間 V参照)。 EGR量をより一層減少させる には、絞り弁 12の開度を上記所定開度 Aよりも大きく設定する必要があるものの、上 記所定開度 Aよりも大きな開度は絞り弁 12にとつて不感領域だ力もである。
[0032] 続いて、この動作と同時に、 EGR弁 26の開度は所定開度 B力 少しずつ開かれる
(期間 VI参照)。これは、絞り弁 12による EGR量のフィードバック制御の制限分を補 完する、つまり、絞り弁 12の開度を全開状態(100%)まで開いたことに伴って瞬間的 に減少した EGR量を抑えるためである。この結果、当該所定開度 Bに達する時点後 の EGR量も同じ割合で減量される。その後、 EGR弁 26の開度は再び全閉状態 (0% )に向けて少しずつ閉じられる(期間 VI参照)。これにより、 EGR量は同じ割合のまま 滑らかに減量され、所望の EGR量に達すると EGR減量時の動作が終了する。そして 、これら期間 V及び VIが EGR弁 26による EGR量のフィードバック制御期間となる。
[0033] 以上のように、本実施形態は、ブラシ付きのモータで駆動される吸気絞り弁 12の動 作回数を減らす一方、ブラシレスのモータで駆動される EGR弁 26の動作回数を増 やし、且つ、 EGR量のフィードバック制御を行わせる点を主眼としたものである。
[0034] そして、不感領域は、制御部 44が絞り弁 12の開度を一気に閉弁或いは開弁するこ とによって回避される。特に、 EGR量の増量時において、絞り弁 12の開度を全開状 態から一気に所定開度 Aまで閉弁すれば反応領域に到達し、排ガスを吸気通路 4内 により導入し易い状態になる。よって、この時点力も EGR弁 26による EGR量のフィー ドバック制御を実施すれば、開度の連続制御がなされな ヽ絞り弁 12の動作を補うこと ができる。従って、不感領域が存在しても、絞り弁 12の開度が上記絞り制限値に達 するまでの期間内には所望の EGR量が得られ、高精度 ·高応答なシステムが構築で きる。 [0035] また、絞り弁 12の開度は上記期間 II及び Vでは固定され、上記期間 IIIと IVのみが 絞り弁 12による EGR量のフィードバック制御期間となる。すなわち、従来の吸気絞り 弁による EGR量のフィードバック制御期間に比して上記期間 II及び Vの分だけ短期 間となる。従って、絞り弁 12の開閉動作が少なくなり、絞り弁 12の耐久性向上が図ら れる。特に、本実施形態の如くのブラシ付きのモータで駆動される絞り弁 12の場合に は、摺動面の摩耗が顕著に抑制され、耐久性が大幅に向上する。
[0036] 更に、不感領域にて、 EGR量の増量時に絞り弁 12の開度を全開状態(100%)か ら所定開度 Αにする場合と、 EGR量の減量時に絞り弁 12の開度を所定開度 Aから 全開状態(100%)にする場合とでは、ヒステリシスを持たせている。換言すれば、 EG R量の増量時には、 EGR弁 26が最初の全開状態(100%)に達した時点が閾値に 該当するのに対し、 EGR量の減量時には、 EGR弁 26が所定開度 Bに達した時点が 閾値に該当し、不感領域を回避するための制御の切り換えの閾値を異ならしめてい る。これにより、 EGR弁 26の開度が絞り弁 12にとつて不感領域に該当する開度にて 変動し続けた場合にも、絞り弁 12が全開状態(100%)に固定される場合と、所定開 度 A (約 20〜40%)に固定される場合との頻繁な制御の切り換えが回避可能となる。 この結果、絞り弁 12のバタツキが抑制され、この点も絞り弁 12の耐久性向上に寄与 する。
[0037] 更にまた、絞り弁 12の開度を一気に閉弁或いは開弁させて不感領域を回避するの で、この不感領域では絞り弁 12に対する制御ゲインの設定が全く不要になる。この 結果、システムの簡略ィ匕が図られる。
[0038] 詳しくは、図 3に示されるように、絞り弁 12に対する制御ゲインは、 EGR弁 26による EGR量のフィードバック制御が制限される場合、すなわち、所定開度 Aよりも右側に 位置する反応領域だけをターゲットとした制御ゲイン(図中、実線で示す)の設定で 済み、不感領域についての制御ゲイン(図中、点線で示す)の設定が不要になる。更 に、この反応領域にっ 、て設定された制御ゲインは小さな値で足りる。
[0039] し力も、不感領域力 反応領域の全領域に至る制御ゲインのマッチング(図中、矢 印付きの点線で示す)も不要になるので、システムのより一層の簡略ィ匕が図られる。 以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態 に限定されるものではない。
[0040] 例えば、上記実施形態では、 EGR制御部 44にてセンサ 30等の値から実際の EG R量を算出している力 この算出値に代えて、実際の EGR量の検出値を用いた EGR 量のフィードバック制御を実施しても良 、。
[0041] また、上記実施形態では、目標の空気過剰率となるように、絞り弁 12や EGR弁 26 を連続制御して EGR量のフィードバック制御を実施して 、るが、必ずしもこの例に限 定されるものではなぐ EGR制御に反映される値であれば、例えば、目標の吸気 O
2 濃度となるように、絞り弁 12や EGR弁 26の開度を連続制御して EGR量のフィードバ ック制御を実施しても良い。
[0042] 更に、上記実施形態ではディーゼルエンジン 2用の EGR制御装置の説明がなされ ているが、例えばガソリンエンジン用の EGR制御装置であっても良ぐこれは EGR通 路 24からの排ガス中の空気相当量等を考慮しな!、ことで達成可能となる。

Claims

請求の範囲
[1] 内燃機関の EGR制御装置は、
前記内燃機関の吸気通路に配設された吸気絞り弁と、前記吸気通路と排気通路と を接続する EGR通路に配設された EGR弁とを含み、該 EGR弁の開度及び前記吸 気絞り弁の開度をそれぞれ連続制御して EGR量をフィードバック制御しており、 大量 EGRが要求される場合には、前記 EGR弁の開度を全開方向に連続制御し、 更に、前記吸気絞り弁の開度を全閉方向に連続制御する EGR制御手段を具備し、 該制御手段は、前記吸気絞り弁の開度に対して EGR量の変化の小さな不感領域 では、該吸気絞り弁による EGR量のフィードバック制御を制限する一方、前記 EGR 弁による EGR量のフィードバック制御を実施して制限された前記吸気絞り弁による前 記フィードバック制御を補完する。
[2] 請求項 1記載の内燃機関の EGR制御装置において、
前記制御手段は、前記不感領域では、前記吸気絞り弁の開度を全開状態から該 吸気絞り弁の開度に対して EGR量の変化の大きな反応領域へ移行させる所定開度 にまで直ちに絞って固定する一方、前記 EGR弁による EGR量のフィードバック制御 を実施する。
[3] 請求項 2記載の内燃機関の EGR制御装置において、
前記制御手段は、前記吸気絞り弁の開度が前記所定開度に絞られた後、前記 EG R弁の開度が全開状態となった場合には、該 EGR弁の開度を全開状態に固定する 一方、前記吸気絞り弁による EGR量のフィードバック制御を実施する。
[4] 請求項 3記載の内燃機関の EGR制御装置において、
前記制御手段は、前記吸気絞り弁の開度が該吸気絞り弁による前記フィードバック 制御の実施によって前記所定開度に再び達した場合には、該吸気絞り弁の開度を 該所定開度に固定する一方、前記 EGR弁による EGR量のフィードバック制御を実施 する。
[5] 請求項 4記載の内燃機関の EGR制御装置において、
前記制御手段は、前記 EGR弁の開度が該 EGR弁による前記フィードバック制御の 実施によって該 EGR弁の開度の全閉状態よりも大きな他の所定開度に達した場合 には、前記吸気絞り弁の開度を前記所定開度力 全開状態にまで直ちに開いて固 定する一方、該 EGR弁による EGR量のフィードバック制御を更に実施する。
請求項 5記載の内燃機関の EGR制御装置において、
前記制御手段は、前記不感領域にて、前記 EGR量を増加させるベく前記吸気絞り 弁の開度を前記全開状態から前記所定開度にする場合と、前記 EGR量を減少させ るべく前記吸気絞り弁の開度を前記所定開度から前記全開状態にする場合とでは、 ヒステリシスを持たせて前記不感領域を回避するための切り換えの閾値を異ならしめ る。
PCT/JP2005/021774 2004-12-02 2005-11-28 内燃機関のegr制御装置 WO2006059558A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112005003095T DE112005003095T5 (de) 2004-12-02 2005-11-28 EGR-Steuereinrichtung für einen Verbrennungsmotor
US11/720,575 US20080167790A1 (en) 2004-12-02 2005-11-28 EGR Control Device For Internal Combustion Engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-350020 2004-12-02
JP2004350020A JP2006161569A (ja) 2004-12-02 2004-12-02 内燃機関のegr制御装置

Publications (1)

Publication Number Publication Date
WO2006059558A1 true WO2006059558A1 (ja) 2006-06-08

Family

ID=36564991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021774 WO2006059558A1 (ja) 2004-12-02 2005-11-28 内燃機関のegr制御装置

Country Status (6)

Country Link
US (1) US20080167790A1 (ja)
JP (1) JP2006161569A (ja)
KR (1) KR100735600B1 (ja)
CN (1) CN101065564A (ja)
DE (1) DE112005003095T5 (ja)
WO (1) WO2006059558A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156060A (ja) * 2007-12-25 2009-07-16 Toyota Motor Corp 駆動力源制御装置
EP2196655A1 (en) * 2008-05-12 2010-06-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas recirculation controller of diesel engine
US8104457B2 (en) * 2007-02-28 2012-01-31 Mitsubishi Heavy Industries, Ltd. Diesel engine system with exhaust gas recirculation
EP2653704A1 (en) * 2010-12-16 2013-10-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463018A (en) * 2008-08-28 2010-03-03 Gm Global Tech Operations Inc Method for controlling the EGR and Throttle Valves in an IC E ngine
JP5393506B2 (ja) * 2010-01-27 2014-01-22 三菱重工業株式会社 エンジンの吸気系に用いられる制御弁の制御装置及び制御方法
CN101818705B (zh) * 2010-03-11 2011-12-14 哈尔滨安龙迪环保科技有限公司 自适应egr阀控制系统
US9127609B2 (en) * 2012-05-21 2015-09-08 Fca Us Llc Exhaust gas recirculation system and control strategy
US9506420B2 (en) 2013-02-01 2016-11-29 GM Global Technology Operations LLC External EGR rate feedback
US9765712B2 (en) 2014-04-11 2017-09-19 Cummins Inc. System and method for turbocharger compressor surge control
BR102016006973A2 (pt) * 2015-03-31 2016-11-01 Toyota Motor Co Ltd dispositivo de controle para motor de combustão interna
US9926866B2 (en) * 2015-05-07 2018-03-27 Deere & Company System and method for exhaust gas recirculation flow correction using temperature measurements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218946A (ja) * 1995-02-15 1996-08-27 Nissan Motor Co Ltd ディーゼル機関の排気還流制御装置
JP2002227727A (ja) * 2001-02-02 2002-08-14 Toyota Motor Corp 排気還流装置の異常検出装置
JP2005315140A (ja) * 2004-04-28 2005-11-10 Nissan Motor Co Ltd 火花点火式エンジンの制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551940A (en) * 1978-10-09 1980-04-16 Nissan Motor Co Ltd Exhaust gas refluxing controller for compression ignition type internal combustion engine
DE2849508A1 (de) * 1978-11-15 1980-05-29 Bosch Gmbh Robert Einrichtung zur steuerung der abgasrueckfuehrmengen und der einspritzmenge bei selbstzuendenden brennkraftmaschinen
JP3225957B2 (ja) * 1999-02-02 2001-11-05 トヨタ自動車株式会社 内燃機関
JP3555559B2 (ja) * 2000-06-19 2004-08-18 トヨタ自動車株式会社 内燃機関
JP3546829B2 (ja) * 2000-10-04 2004-07-28 トヨタ自動車株式会社 圧縮着火式内燃機関
DE50000400D1 (de) * 2000-11-03 2002-09-26 Ford Global Tech Inc Regelungsanordnung und Verfahren zur Unterbrechung der Regeneration eines Partikelfilters eines Dieselmotors
JP3885569B2 (ja) * 2001-11-29 2007-02-21 いすゞ自動車株式会社 内燃機関のegr制御装置
DE10242233B3 (de) * 2002-09-12 2004-01-22 Daimlerchrysler Ag Verfahren zur Bestimmung einer Luftaufwandsänderung für einen Verbrennungsmotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218946A (ja) * 1995-02-15 1996-08-27 Nissan Motor Co Ltd ディーゼル機関の排気還流制御装置
JP2002227727A (ja) * 2001-02-02 2002-08-14 Toyota Motor Corp 排気還流装置の異常検出装置
JP2005315140A (ja) * 2004-04-28 2005-11-10 Nissan Motor Co Ltd 火花点火式エンジンの制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104457B2 (en) * 2007-02-28 2012-01-31 Mitsubishi Heavy Industries, Ltd. Diesel engine system with exhaust gas recirculation
JP2009156060A (ja) * 2007-12-25 2009-07-16 Toyota Motor Corp 駆動力源制御装置
EP2196655A1 (en) * 2008-05-12 2010-06-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas recirculation controller of diesel engine
EP2196655A4 (en) * 2008-05-12 2013-09-04 Mitsubishi Heavy Ind Ltd EXHAUST GAS RECYCLING CONTROL FOR A DIESEL ENGINE
EP2653704A1 (en) * 2010-12-16 2013-10-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus
EP2653704A4 (en) * 2010-12-16 2014-03-26 Toyota Motor Co Ltd APPARATUS FOR CONTROLLING INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
JP2006161569A (ja) 2006-06-22
US20080167790A1 (en) 2008-07-10
DE112005003095T5 (de) 2007-10-25
CN101065564A (zh) 2007-10-31
KR20060061921A (ko) 2006-06-08
KR100735600B1 (ko) 2007-07-06

Similar Documents

Publication Publication Date Title
WO2006059558A1 (ja) 内燃機関のegr制御装置
US6874467B2 (en) Fuel delivery system for an internal combustion engine
EP1917426B1 (en) Boost pressure control
WO2007055094A1 (ja) 内燃機関の制御装置
JP3945240B2 (ja) ディーゼルエンジンの制御装置
WO1999047800A1 (fr) Moteur a combustion interne, appareil de gestion pour un moteur a combustion interne et son procede de gestion
US6666191B2 (en) Control apparatus for internal combustion engine
JPH1136994A (ja) ターボ過給機付直噴式エンジンの排気還流制御装置
JPH04187845A (ja) 多種燃料内燃エンジンの空燃比フィードバック制御方法
JP2007247445A (ja) 内燃機関の吸気制御装置
JP2001065358A (ja) エンジンの過給圧制御装置
JPH05187295A (ja) 内燃エンジンの空燃比制御装置
JP6158389B2 (ja) 内燃機関の制御装置
JP2001073788A (ja) エンジンの過給圧制御装置
JPH0849587A (ja) 内燃機関の吸入空気量制御装置
JP2000104610A (ja) 内燃機関の燃料噴射制御装置
JP2001073786A (ja) 負圧アクチュエータの制御装置
JP3728930B2 (ja) 内燃機関の排気還流制御装置
JP4061971B2 (ja) 内燃機関のegr制御装置
JPS60198348A (ja) エンジン制御装置
JP2002038982A (ja) 内燃機関の運転制御装置
JP2621033B2 (ja) 内燃機関のアイドル回転数制御方法
JP2006161605A (ja) 内燃機関のegr制御装置
JP3916416B2 (ja) 内燃機関の制御装置
JPS63183247A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580040554.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050030954

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11720575

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112005003095

Country of ref document: DE

Date of ref document: 20071025

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05809623

Country of ref document: EP

Kind code of ref document: A1