JP3555559B2 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP3555559B2
JP3555559B2 JP2000187545A JP2000187545A JP3555559B2 JP 3555559 B2 JP3555559 B2 JP 3555559B2 JP 2000187545 A JP2000187545 A JP 2000187545A JP 2000187545 A JP2000187545 A JP 2000187545A JP 3555559 B2 JP3555559 B2 JP 3555559B2
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
combustion
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000187545A
Other languages
English (en)
Other versions
JP2002004902A (ja
Inventor
静夫 佐々木
康二 吉崎
雅人 後藤
丈和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000187545A priority Critical patent/JP3555559B2/ja
Priority to US09/880,110 priority patent/US6591818B2/en
Priority to DE60108006T priority patent/DE60108006T2/de
Priority to EP01114583A priority patent/EP1167727B1/en
Publication of JP2002004902A publication Critical patent/JP2002004902A/ja
Application granted granted Critical
Publication of JP3555559B2 publication Critical patent/JP3555559B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関に関する。
【0002】
【従来の技術】
従来、燃焼室から排出された排気ガスを機関吸気通路内に再循環させる排気ガス再循環通路を具備し、燃焼室内に供給される再循環排気ガスの量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給される再循環排気ガスの量を更に増大していくと燃焼室内における燃焼時の燃料およびその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる内燃機関であって、機関始動時に、まず、煤の発生量がピークとなる再循環排気ガスの量よりも燃焼室内に供給される再循環排気ガスの量が少ない第2の燃焼を実行し、次いで、煤の発生量がピークとなる再循環排気ガスの量よりも燃焼室内に供給される再循環排気ガスの量が多く煤がほとんど発生しない第1の燃焼を実行する内燃機関が知られている。この種の内燃機関の例としては、例えば特開平11−166435号公報に記載されたものがある。
【0003】
【発明が解決しようとする課題】
ところが、特開平11−166435号公報には、燃焼室から排出された排気ガスを浄化する触媒を活性化させるために機関始動時に第2の燃焼を行って触媒を暖機する旨が記載されているものの、触媒が排気ガス中の炭化水素を浄化できるようになる前に排気ガス中の炭化水素が触媒を通過してしまうのを抑制する方法について開示されていない。従って、特開平11−166435号公報には、触媒が排気ガス中の炭化水素を浄化できるようになる前に排気ガス中の炭化水素が触媒を通過してしまうのを抑制しているときに、触媒が排気ガス中の炭化水素を浄化できるようになった以降の触媒暖機速度を速めるための手段を施すことについても開示されていない。即ち、特開平11−166435号公報には、炭化水素が触媒を通過してしまうのを抑制しつつ触媒暖機速度を速める方法について開示されていない。つまり、特開平11−166435号公報に記載された内燃機関では、炭化水素が触媒を通過してしまうのを抑制しつつ触媒の暖機を早期に完了させ、第2の燃焼から第1の燃焼への切換を早期に行うことができない。
【0004】
前記問題点に鑑み、本発明は炭化水素が触媒を通過してしまうのを抑制しつつ触媒の暖機を早期に完了させ、第2の燃焼から第1の燃焼への切換を早期に行うことができる内燃機関を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明によれば、燃焼室から排出された排気ガスを機関吸気通路内に再循環させる排気ガス再循環通路を具備し、燃焼室内に供給される再循環排気ガスの量を増大していくと煤の発生量が次第に増大してピークに達し、前記燃焼室内に供給される再循環排気ガスの量を更に増大していくと前記燃焼室内における燃焼時の燃料およびその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる内燃機関であって、機関始動時に、まず、煤の発生量がピークとなる再循環排気ガスの量よりも前記燃焼室内に供給される再循環排気ガスの量が少ない第2の燃焼を実行し、次いで、煤の発生量がピークとなる再循環排気ガスの量よりも前記燃焼室内に供給される再循環排気ガスの量が多く煤がほとんど発生しない第1の燃焼を実行する内燃機関において、前記燃焼室から排出された排気ガスを浄化するための排気ガス浄化用触媒を設け、機関始動時に前記第2の燃焼が行われる際に、まず、排気ガス中の炭化水素が増加せずかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を実行することにより前記排気ガス浄化用触媒に供給される炭化水素の量を抑制し、次いで、排気ガス中の炭化水素が増加しかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を実行することにより前記排気ガス浄化用触媒に供給される炭化水素の量を増加させるようにし、前記排気ガス浄化用触媒として再循環排気ガス浄化用触媒を前記排気ガス再循環通路内に配置し、前記排気ガス中の炭化水素が増加せずかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される時に再循環排気ガスの量をゼロにし、前記排気ガス中の炭化水素が増加しかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される時に再循環排気ガスの量を徐々に増加させるようにした内燃機関が提供される。
【0006】
請求項1に記載の内燃機関では、機関始動時に煤の発生量がピークとなる再循環排気ガスの量よりも燃焼室内に供給される再循環排気ガスの量が少ない第2の燃焼が行われる際に、まず、排気ガス中の炭化水素が増加せずかつ燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を実行することにより排気ガス浄化用触媒に供給される炭化水素の量が抑制される。つまり、機関始動時に第2の燃焼が行われる際であって排気ガス浄化用触媒が排気ガス中の炭化水素を浄化できるようになる前に、排気ガス中の炭化水素が増加しないような燃焼を実行することにより排気ガス浄化用触媒に供給される炭化水素の量が抑制される。そのため、排気ガス中の炭化水素が排気ガス浄化用触媒を通過してしまうのを抑制することができる。更に、排気ガス浄化用触媒が排気ガス中の炭化水素を浄化できるようになる前であって排気ガス中の炭化水素が排気ガス浄化用触媒を通過してしまうのを抑制しているときに、燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される。そのため、排気ガス浄化用触媒の温度が高められるか、あるいは、排気ガス浄化用触媒の温度を高めるための準備が行われる。その結果、排気ガス浄化用触媒が排気ガス中の炭化水素を浄化できるようになった以降の触媒暖機速度を速めることができる。
【0007】
その上、請求項1に記載の内燃機関では、機関始動時に第2の燃焼が行われる際に、排気ガス中の炭化水素が増加せずかつ燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を実行することにより排気ガス浄化用触媒に供給される炭化水素の量が抑制されるのに次いで、排気ガス中の炭化水素が増加しかつ燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を実行することにより排気ガス浄化用触媒に供給される炭化水素の量が増加せしめられる。つまり、機関始動時に第2の燃焼が行われる際であって排気ガス浄化用触媒が排気ガス中の炭化水素を浄化できるようになった以降に、排気ガス浄化用触媒に供給される排気ガスの温度が高くされかつそれに含まれる炭化水素が増加される。そのため、排気ガス浄化用触媒が排気ガス中の炭化水素を浄化できるようになってから排気ガス浄化用触媒の暖機が完了するまでの時間を短くすることができる。即ち、請求項1に記載の内燃機関によれば、炭化水素が排気ガス浄化用触媒を通過してしまうのを抑制しつつ排気ガス浄化用触媒の暖機を早期に完了させ、第2の燃焼から第1の燃焼への切換を早期に行うことができる。
【0009】
さらに、請求項に記載の内燃機関では、機関始動時に第2の燃焼が行われる際、排気ガス中の炭化水素が増加せずかつ燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される時に再循環排気ガスの量がゼロにされる。つまり、機関始動時に第2の燃焼が行われる際であって再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できるようになる前に、再循環排気ガスの量がゼロにされる。そのため、再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できないにもかかわらず再循環排気ガスが排気ガス再循環通路内を通されることに伴い排気ガス再循環通路が詰まってしまうのを阻止することができる。更に、再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できるようになる前であって再循環排気ガスの量がゼロにされているときに、燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される。そのため、再循環排気ガス浄化用触媒の温度を高めるための準備を行うことができる。その結果、再循環排気ガス浄化用触媒に再循環排気ガスが通されるようになったときに再循環排気ガス浄化用触媒に高温の再循環排気ガスが通されることとなり、それゆえ、再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できるようになった以降の触媒暖機速度を速めることができる。
【0010】
その上、請求項に記載の内燃機関では、機関始動時に第2の燃焼が行われる際、排気ガス中の炭化水素が増加せずかつ燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される時に再循環排気ガスの量がゼロにされるのに次いで、排気ガス中の炭化水素が増加しかつ燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される時に再循環排気ガスの量が徐々に増加される。つまり、機関始動時に第2の燃焼が行われる際であって再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できるようになった以降に、再循環排気ガス浄化用触媒に供給される再循環排気ガスの温度が高くされかつそれに含まれる炭化水素が増加されると共に、再循環排気ガスの量が徐々に増加される。そのため、再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できるようになってから再循環排気ガス浄化用触媒の暖機が完了するまでの時間を短くすることができる。即ち、請求項に記載の内燃機関によれば、排気ガス再循環通路が詰まってしまうのを阻止しつつ再循環排気ガス浄化用触媒の暖機を早期に完了させ、第2の燃焼から第1の燃焼への切換を早期に行うことができる。
【0011】
請求項に記載の発明によれば、機関始動時の前記第2の燃焼が行われる際に、排気ガス中の炭化水素が増加しかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を行うために、圧縮上死点付近における主噴射に加えて前記主噴射と異なるタイミングで更なる噴射を行うと共に、吸入空気量を減少させるようにした請求項1に記載の内燃機関が提供される。
【0012】
請求項に記載の内燃機関では、機関始動時の前記第2の燃焼が行われる際に、圧縮上死点付近における主噴射に加えて主噴射と異なるタイミングで更なる噴射が行われると共に、吸入空気量が減少される。つまり、圧縮上死点付近における主噴射に加えて主噴射と異なるタイミングで更なる噴射が行われるため、排気ガス中の未燃炭化水素を増加させることができると共に、その未燃炭化水素が後燃えすることにより燃焼室から排出される排気ガス温度を比較的高くすることができる。更に、吸入空気量が減少されるため、そのことによっても燃焼室から排出される排気ガス温度を比較的高くすることができる。
【0013】
請求項に記載の発明によれば、排気ガス温度が前記再循環排気ガス浄化用触媒を暖機させるのに十分な高い温度になったときに、再循環排気ガスの量をゼロから徐々に増加させるようにした請求項1に記載の内燃機関が提供される。
【0014】
請求項に記載の内燃機関では、排気ガス温度が再循環排気ガス浄化用触媒を暖機させるのに十分な高い温度になったときに、再循環排気ガスの量がゼロから徐々に増加される。つまり、まだ排気ガス温度が低く再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できないときには再循環排気ガスの量がゼロにされ、排気ガス温度が高くなり再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できるようになったときに再循環排気ガスの量がゼロから徐々に増加される。そのため、再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できないにもかかわらず再循環排気ガスが排気ガス再循環通路内を通されることに伴い排気ガス再循環通路が詰まってしまうのを確実に阻止することができる。
【0015】
請求項に記載の発明によれば、前記再循環排気ガス浄化用触媒の暖機が完了したときに、前記第2の燃焼から前記第1の燃焼への切り換えを行うようにした請求項1に記載の内燃機関が提供される。
【0016】
請求項に記載の内燃機関では、再循環排気ガス浄化用触媒の暖機が完了したときに第2の燃焼から第1の燃焼への切り換えが行われる。つまり、再循環排気ガス浄化用触媒の暖機が完了し再循環排気ガス浄化用触媒が多量の炭化水素を浄化できるようになったときに、第2の燃焼から第1の燃焼への切り換えが行われ再循環排気ガスの量がステップ状に増加される。そのため、再循環排気ガス浄化用触媒の暖機が完了しておらず再循環排気ガス浄化用触媒が多量の炭化水素を浄化できないにもかかわらず多量の再循環排気ガスが排気ガス再循環通路内を通されることに伴い排気ガス再循環通路が詰まってしまうのを確実に阻止することができる。
【0017】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。
【0018】
図1は本発明を圧縮着火式内燃機関に適用した第一の実施形態を示している。図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は対応する吸気マニホルド11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介して排気ターボチャージャ14のコンプレッサ15に連結される。吸気ダクト13内には、ステップモータ16により駆動されるスロットル弁17が配置される。また、スロットル弁17上流の吸気ダクト13内には、吸入空気の質量流量を検出するための質量流量検出器17aが配置される。更に吸気ダクト13周りには吸気ダクト13内を流れる吸入空気を冷却するためのインタークーラ18が配置される。図1に示される実施形態では機関冷却水がインタークーラ18内に導びかれ、機関冷却水によって吸入空気が冷却される。一方、排気ポート10は排気マニホルド19及び排気管20を介して排気ターボチャージャ14の排気タービン21に連結され、排気タービン21の出口は酸化機能を有する触媒22を内蔵したケーシング23に連結される。排気マニホルド19内には空燃比センサ23aが配置される。
【0019】
排気マニホルド19とサージタンク12とは排気ガス再循環(以下、EGRと称す)通路24を介して互いに連結され、EGR通路24内にはステップモータ25aにより駆動される電気制御式EGR制御弁25が配置される。また、EGR通路24には、EGR通路24を通過するEGRガスを浄化するためのパイプ触媒26aが配置される。更に、EGR通路24周りにはEGR通路24内を流れるEGRガスを冷却するためのEGRクーラ26が配置される。図1に示される実施形態では機関冷却水がEGRクーラ26内に導びかれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁6は燃料供給管6aを介して燃料リザーバ、いわゆるコモンレール27に連結される。このコモンレール27内へは電気制御式の吐出量可変な燃料ポンプ28から燃料が供給され、コモンレール27内に供給された燃料は各燃料供給管6aを介して燃料噴射弁6に供給される。コモンレール27にはコモンレール27内の燃料圧を検出するための燃料圧センサ29が取付けられ、燃料圧センサ29の出力信号に基づいてコモンレール27内の燃料圧が目標燃料圧となるように燃料ポンプ28の吐出量が制御される。
【0020】
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。燃料圧センサ29の出力信号は対応するAD変換器37を介して入力ポート35に入力される。また、質量流量検出器17aの出力信号は対応するAD変換器37を介して入力ポート35に入力される。更に、空燃比センサ23aの出力信号は対応するAD変換器37を介して入力ポート35に入力される。アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁6、スロットル弁駆動用ステップモータ16、EGR制御弁用ステップモータ25a、及び燃料ポンプ28に接続される。
【0021】
図2は機関低負荷運転時にスロットル弁17の開度及びEGR率を変化させることにより空燃比A/F(図2の横軸)を変化させたときの出力トルクの変化、及びスモーク、HC,CO,NOxの排出量の変化を示す実験例を表している。図2からわかるようにこの実験例では空燃比A/Fが小さくなるほどEGR率が大きくなり、理論空燃比(≒14.6)以下のときにはEGR率は65パーセント以上となっている。図2に示されるようにEGR率を増大することにより空燃比A/Fを小さくしていくとEGR率が40パーセント付近となり空燃比A/Fが30程度になったときにスモークの発生量が増大を開始する。次いで、更にEGR率を高め、空燃比A/Fを小さくするとスモークの発生量が急激に増大してピークに達する。次いで更にEGR率を高め、空燃比A/Fを小さくすると今度はスモークが急激に低下し、EGR率を65パーセント以上とし、空燃比A/Fが15.0付近になるとスモークがほぼ零となる。即ち、煤がほとんど発生しなくなる。このとき機関の出力トルクは若干低下し、またNOxの発生量がかなり低くなる。一方、このときHC,COの発生量は増大し始める。
【0022】
図3(A)は空燃比A/Fが21付近でスモークの発生量が最も多いときの燃焼室5内の燃焼圧変化を示しており、図3(B)は空燃比A/Fが18付近でスモークの発生量がほぼ零のときの燃焼室5内の燃焼圧の変化を示している。図3(A)と図3(B)とを比較すればわかるようにスモークの発生量がほぼ零である図3(B)に示す場合はスモークの発生量が多い図3(A)に示す場合に比べて燃焼圧が低いことがわかる。尚、図示しないが図3と同様の実験結果から、煤の発生量がピークとなるEGRガスの量よりも燃焼室5内に供給されるEGRガスの量が多く煤がほとんど発生しない第1の燃焼(低温燃焼)時の燃焼圧の極大値(ピーク)は、煤の発生量がピークとなるEGRガスの量よりも燃焼室5内に供給されるEGRガスの量が少ない第2の燃焼(従来の燃焼方法による燃焼)時の燃焼圧の極大値(ピーク)よりも低いことが判っている。そのことから、第1の燃焼時の爆発に伴う機関回転むらは第2の燃焼時の爆発に伴う機関回転むらよりも小さいと言える。
【0023】
図2及び図3に示される実験結果から次のことが言える。即ち、まず第1に空燃比A/Fが15.0以下でスモークの発生量がほぼ零のときには図2に示されるようにNOxの発生量がかなり低下する。NOxの発生量が低下したということは燃焼室5内の燃焼温度が低下していることを意味しており、従って煤がほとんど発生しないときには燃焼室5内の燃焼温度が低くなっていると言える。同じことが図3からも言える。即ち、煤がほとんど発生していない図3(B)に示す状態では燃焼圧が低くなっており、従ってこのとき燃焼室5内の燃焼温度は低くなっていることになる。第2にスモークの発生量、即ち煤の発生量がほぼ零になると図2に示されるようにHC及びCOの排出量が増大する。このことは炭化水素が煤まで成長せずに排出されることを意味している。即ち、燃料中に含まれる図4に示されるような直鎖状炭化水素や芳香族炭化水素は酸素不足の状態で温度上昇せしめられると熱分解して煤の前駆体が形成され、次いで主に炭素原子が集合した固体からなる煤が生成される。この場合、実際の煤の生成過程は複雑であり、煤の前駆体がどのような形態をとるかは明確ではないがいずれにしても図4に示されるような炭化水素は煤の前駆体を経て煤まで成長することになる。従って、上述したように煤の発生量がほぼ零になると図2に示される如くHC及びCOの排出量が増大するがこのときのHCは煤の前駆体又はその前の状態の炭化水素である。
【0024】
図2及び図3に示される実験結果に基づくこれらの考察をまとめると燃焼室5内の燃焼温度が低いときには煤の発生量がほぼ零になり、このとき煤の前駆体又はその前の状態の炭化水素が燃焼室5から排出されることになる。このことについて更に詳細に実験研究を重ねた結果、燃焼室5内における燃料及びその周囲のガス温度が或る温度以下である場合には煤の成長過程が途中で停止してしまい、即ち煤が全く発生せず、燃焼室5内における燃料及びその周囲の温度が或る温度以上になると煤が生成されることが判明したのである。
【0025】
ところで煤の前駆体の状態で炭化水素の生成過程が停止するときの燃料及びその周囲の温度、即ち上述の或る温度は燃料の種類や空燃比の圧縮比等の種々の要因によって変化するので何度であるかということは言えないがこの或る温度はNOxの発生量と深い関係を有しており、従ってこの或る温度はNOxの発生量から或る程度規定することができる。即ち、EGR率が増大するほど燃焼時の燃料及びその周囲のガス温度は低下し、NOxの発生量が低下する。このときNOxの発生量が10p.p.m 前後又はそれ以下になったときに煤がほとんど発生しなくなる。従って上述の或る温度はNOxの発生量が10p.p.m 前後又はそれ以下になったときの温度にほぼ一致する。一旦、煤が生成されるとこの煤は酸化機能を有する触媒を用いた後処理でもって浄化することはできない。これに対して煤の前駆体又はその前の状態の炭化水素は酸化機能を有する触媒を用いた後処理でもって容易に浄化することができる。このように酸化機能を有する触媒による後処理を考えると炭化水素を煤の前駆体又はその前の状態で燃焼室5から排出させるか、或いは煤の形で燃焼室5から排出させるかについては極めて大きな差がある。本発明において採用されている新たな燃焼システムは燃焼室5内において煤を生成させることなく炭化水素を煤の前駆体又はその前の状態の形でもって燃焼室5から排出させ、この炭化水素を酸化機能を有する触媒により酸化せしめることを核としている。
【0026】
さて、煤が生成される前の状態で炭化水素の成長を停止させるには燃焼室5内における燃焼時の燃料及びその周囲のガス温度を煤が生成される温度よりも低い温度に抑制する必要がある。この場合、燃料及びその周囲のガス温度を抑制するには燃料が燃焼した際の燃料周りのガスの吸熱作用が極めて大きく影響することが判明している。即ち、燃料周りに空気しか存在しないと蒸発した燃料はただちに空気中の酸素と反応して燃焼する。この場合、燃料から離れている空気の温度はさほど上昇せず、燃料周りの温度のみが局所的に極めて高くなる。即ち、このときには燃料から離れている空気は燃料の燃焼熱の吸熱作用をほとんど行わない。この場合には燃焼温度が局所的に極めて高くなるために、この燃焼熱を受けた未燃炭化水素は煤を生成することになる。
【0027】
一方、多量の不活性ガスと少量の空気の混合ガス中に燃料が存在する場合には若干状況が異なる。この場合には蒸発燃料は周囲に拡散して不活性ガス中に混在する酸素と反応し、燃焼することになる。この場合には燃焼熱は周りの不活性ガスに吸収されるために燃焼温度はさほど上昇しなくなる。即ち、燃焼温度を低く抑えることができることになる。即ち、燃焼温度を抑制するには不活性ガスの存在が重要な役割を果しており、不活性ガスの吸熱作用によって燃焼温度を低く抑えることができることになる。この場合、燃料及びその周囲のガス温度を煤が生成される温度よりも低い温度に抑制するにはそうするのに十分な熱量を吸収しうるだけの不活性ガス量が必要となる。従って燃料量が増大すれば必要となる不活性ガス量はそれに伴なって増大することになる。なお、この場合、不活性ガスの比熱が大きいほど吸熱作用が強力となり、従って不活性ガスは比熱の大きなガスが好ましいことになる。この点、COやEGRガスは比較的比熱が大きいので不活性ガスとしてEGRガスを用いることは好ましいと言える。
【0028】
図5は不活性ガスとしてEGRガスを用い、EGRガスの冷却度合を変えたときのEGR率とスモークとの関係を示している。即ち、図5において曲線AはEGRガスを強力に冷却してEGRガス温をほぼ90℃に維持した場合を示しており、曲線Bは小型の冷却装置でEGRガスを冷却した場合を示しており、曲線CはEGRガスを強制的に冷却していない場合を示している。図5の曲線Aで示されるようにEGRガスを強力に冷却した場合にはEGR率が50パーセントよりも少し低いところで煤の発生量がピークとなり、この場合にはEGR率をほぼ55パーセント以上にすれば煤がほとんど発生しなくなる。一方、図5の曲線Bで示されるようにEGRガスを少し冷却した場合にはEGR率が50パーセントよりも少し高いところで煤の発生量がピークとなり、この場合にはEGR率をほぼ65パーセント以上にすれば煤がほとんど発生しなくなる。また、図5の曲線Cで示されるようにEGRガスを強制的に冷却していない場合にはEGR率が55パーセントの付近で煤の発生量がピークとなり、この場合にはEGR率をほぼ70パーセント以上にすれば煤がほとんど発生しなくなる。なお、図5は機関負荷が比較的高いときのスモークの発生量を示しており、機関負荷が小さくなると煤の発生量がピークとなるEGR率は若干低下し、煤がほとんど発生しなくなるEGR率の下限も若干低下する。このように煤がほとんど発生しなくなるEGR率の下限はEGRガスの冷却度合や機関負荷に応じて変化する。
【0029】
図6は不活性ガスとしてEGRガスを用いた場合において燃焼時の燃料及びその周囲のガス温度を煤が生成される温度よりも低い温度にするために必要なEGRガスと空気の混合ガス量、及びこの混合ガス量中の空気の割合、及びこの混合ガス中のEGRガスの割合を示している。なお、図6において縦軸は燃焼室5内に吸入される全吸入ガス量を示しており、鎖線Yは過給が行われないときに燃焼室5内に吸入しうる全吸入ガス量を示している。また、横軸は要求負荷を示している。
【0030】
図6を参照すると空気の割合、即ち混合ガス中の空気量は噴射された燃料を完全に燃焼せしめるのに必要な空気量を示している。即ち、図6に示される場合では空気量と噴射燃料量との比は理論空燃比となっている。一方、図6においてEGRガスの割合、即ち混合ガス中のEGRガス量は噴射燃料が燃焼せしめられたときに燃料及びその周囲のガス温度を煤が形成される温度よりも低い温度にするのに必要最低限のEGRガス量を示している。このEGRガス量はEGR率で表すとほぼ55パーセント以上であり、図6に示す実施形態では70パーセント以上である。即ち、燃焼室5内に吸入された全吸入ガス量を図6において実線Xとし、この全吸入ガス量Xのうちの空気量とEGRガス量との割合を図6に示すような割合にすると燃料及びその周囲のガス温度は煤が生成される温度よりも低い温度となり、斯くして煤が全く発生しなくなる。また、このときのNOx発生量は10p.p.m 前後、又はそれ以下であり、従ってNOxの発生量は極めて少量となる。
【0031】
燃料噴射量が増大すれば燃料が燃焼した際の発熱量が増大するので燃料及びその周囲のガス温度を煤が生成される温度よりも低い温度に維持するためにはEGRガスによる熱の吸収量を増大しなければならない。従って図6に示されるようにEGRガス量は噴射燃料量が増大するにつれて増大せしめなければならない。即ち、EGRガス量は要求負荷が高くなるにつれて増大する必要がある。
【0032】
ところで過給が行われていない場合には燃焼室5内に吸入される全吸入ガス量Xの上限はYであり、従って図6において要求負荷がLo よりも大きい領域では要求負荷が大きくなるにつれてEGRガス割合を低下させない限り空燃比を理論空燃比に維持することができない。云い換えると過給が行われていない場合に要求負荷がLo よりも大きい領域において空燃比を理論空燃比に維持しようとした場合には要求負荷が高くなるにつれてEGR率が低下し、斯くして要求負荷がLo よりも大きい領域では燃料及びその周囲のガス温度を煤が生成される温度よりも低い温度に維持しえなくなる。
【0033】
ところが図示しないが、EGR通路を介して過給機の入口側即ち排気ターボチャージャの空気吸込管内にEGRガスを再循環させると要求負荷がLo よりも大きい領域においてEGR率を55パーセント以上、例えば70パーセントに維持することができ、斯くして燃料及びその周囲のガス温度を煤が生成される温度よりも低い温度に維持することができる。即ち、空気吸込管内におけるEGR率が例えば70パーセントになるようにEGRガスを再循環させれば排気ターボチャージャのコンプレッサにより昇圧された吸入ガスのEGR率も70パーセントとなり、斯くしてコンプレッサにより昇圧しうる限度まで燃料及びその周囲のガス温度を煤が生成される温度よりも低い温度に維持することができる。従って、低温燃焼を生じさせることのできる機関の運転領域を拡大することができることになる。要求負荷がLo よりも大きい領域でEGR率を55パーセント以上にする際にはEGR制御弁が全開せしめられる、スロットル弁が若干閉弁せしめられる。
【0034】
前述したように図6は燃料を理論空燃比のもとで燃焼させる場合を示しているが空気量を図6に示される空気量よりも少なくしても、即ち空燃比をリッチにしても煤の発生を阻止しつつNOxの発生量を10p.p.m 前後又はそれ以下にすることができ、また空気量を図6に示される空気量よりも多くしても、即ち空燃比の平均値を17から18のリーンにしても煤の発生を阻止しつつNOxの発生量を10p.p.m 前後又はそれ以下にすることができる。即ち、空燃比がリッチにされると燃料が過剰となるが燃焼温度が低い温度に抑制されているために過剰な燃料は煤まで成長せず、斯くして煤が生成されることがない。また、このときNOxも極めて少量しか発生しない。一方、平均空燃比がリーンのとき、或いは空燃比が理論空燃比のときでも燃焼温度が高くなれば少量の煤が生成されるが本発明では燃焼温度が低い温度に抑制されているので煤は全く生成されない。更に、NOxも極めて少量しか発生しない。このように、低温燃焼が行われているときには空燃比にかかわらずに、即ち空燃比がリッチであろうと、理論空燃比であろうと、或いは平均空燃比がリーンであろうと煤が発生されず、NOxの発生量が極めて少量となる。従って燃料消費率の向上を考えるとこのとき平均空燃比をリーンにすることが好ましいと言える。
【0035】
ところで燃焼室内における燃焼時の燃料及びその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制しうるのは燃焼による発熱量が比較的少ない機関中低負荷運転時に限られる。従って本発明による実施形態では機関中低負荷運転時には燃焼時の燃料及びその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制して第1の燃焼、即ち低温燃焼を行い得るようにし、機関高負荷運転時には第2の燃焼、即ち従来より普通に行われている燃焼を行うようにしている。但し、機関中低負荷運転時であっても、機関運転状態によっては第2の燃焼が行われる。なお、ここで第1の燃焼、即ち低温燃焼とはこれまでの説明から明らかなように煤の発生量がピークとなる不活性ガス量よりも燃焼室内の不活性ガス量が多く煤がほとんど発生しない燃焼のことを言い、第2の燃焼、即ち従来より普通に行われている燃焼とは煤の発生量がピークとなる不活性ガス量よりも燃焼室内の不活性ガス量が少い燃焼のことを言う。
【0036】
図7は第1の燃焼、即ち低温燃焼が行われ得る第1の運転領域Iと、第2の燃焼、即ち従来の燃焼方法による燃焼が行われる第2の運転領域IIとを示している。なお、図7において縦軸Lはアクセルペダル40の踏込み量、即ち要求負荷を示しており、横軸Nは機関回転数を示している。また、図7においてX(N)は第1の運転領域Iと第2の運転領域IIとの第1の境界を示しており、Y(N)は第1の運転領域Iと第2の運転領域IIとの第2の境界を示している。第1の運転領域Iから第2の運転領域IIへの運転領域の変化判断は第1の境界X(N)に基づいて行われ、第2の運転領域IIから第1の運転領域Iへの運転領域の変化判断は第2の境界Y(N)に基づいて行われる。
【0037】
即ち、機関の運転状態が第1の運転領域Iにあって低温燃焼が行われているときに要求負荷Lが機関回転数Nの関数である第1の境界X(N)を越えると運転領域が第2の運転領域IIに移ったと判断され、従来の燃焼方法による燃焼が行われる。次いで要求負荷Lが機関回転数Nの関数である第2の境界Y(N)よりも低くなると運転領域が第1の運転領域Iに移ったと判断され、再び低温燃焼が行われ得る。
【0038】
このように第1の境界X(N)と第1の境界X(N)よりも低負荷側の第2の境界Y(N)との二つの境界を設けたのは次の二つの理由による。第1の理由は、第2の運転領域IIの高負荷側では比較的燃焼温度が高く、このとき要求負荷Lが第1の境界X(N)より低くなったとしてもただちに低温燃焼を行えないからである。即ち、要求負荷Lがかなり低くなったとき、即ち第2の境界Y(N)よりも低くなったときでなければただちに低温燃焼が開始されないからである。第2の理由は第1の運転領域Iと第2の運転領域II間の運転領域の変化に対してヒステリシスを設けるためである。
【0039】
ところで機関の運転領域が第1の運転領域Iにあって低温燃焼が行われているときには煤はほとんど発生せず、その代り未燃炭化水素が煤の前駆体又はその前の状態の形でもって燃焼室5から排出される。このとき燃焼室5から排出された未燃炭化水素は酸化機能を有する触媒22により良好に酸化せしめられる。触媒22としては酸化触媒を用いることができる。
【0040】
図8は空燃比センサ23aの出力を示している。図8に示されるように空燃比センサ23aの出力電流Iは空燃比A/Fに応じて変化する。従って空燃比センサ23aの出力電流Iから空燃比を知ることができる。
【0041】
次に図9を参照しつつ第1の運転領域I及び第2の運転領域IIにおける運転制御(機関始動時を除く)について概略的に説明する。図9は要求負荷Lに対するスロットル弁17の開度、EGR制御弁25の開度、EGR率、空燃比、噴射時期及び噴射量を示している。図9に示されるように要求負荷Lの低い第1の運転領域Iではスロットル弁17の開度は要求負荷Lが高くなるにつれて全閉近くから2/3開度程度まで徐々に増大せしめられ、EGR制御弁25の開度は要求負荷Lが高くなるにつれて全閉近くから全開まで徐々に増大せしめられる。また、図9に示される例では第1の運転領域IではEGR率がほぼ70パーセントとされており、空燃比はわずかばかりリーンなリーン空燃比とされている。言い換えると第1の運転領域IではEGR率がほぼ70パーセントとなり、空燃比がわずかばかりリーンなリーン空燃比となるようにスロットル弁17の開度及びEGR制御弁25の開度が制御される。また、第1の運転領域Iでは圧縮上死点TDC前に燃料噴射が行われる。この場合、噴射開始時期θSは要求負荷Lが高くなるにつれて遅くなり、噴射完了時期θEも噴射開始時期θSが遅くなるにつれて遅くなる。
【0042】
なお、アイドル運転時にはスロットル弁17は全閉近くまで閉弁され、このときEGR制御弁25も全閉近くまで閉弁せしめられる。スロットル弁17を全閉近くまで閉弁すると圧縮始めの燃焼室5内の圧力が低くなるために圧縮圧力が小さくなる。圧縮圧力が小さくなるとピストン4による圧縮仕事が小さくなるために機関本体1の振動が小さくなる。即ち、圧縮圧力を小さくすることにより機関本体1の振動を小さくするために、アイドル運転時にはスロットル弁17が全閉近くまで閉弁せしめられる。一方、機関低回転時の回転は機関高回転時の回転よりも爆発に伴う回転むらが大きいために回転数を低下させると機関本体1の振動の問題が大きくなるという背景もある。そのため、アイドル運転時の目標回転数は、圧縮圧力に伴う振動と機関回転むらに伴う振動とを考慮して設定されている。
【0043】
一方、機関の運転領域が第1の運転領域Iから第2の運転領域IIに変わるとスロットル弁17の開度が2/3開度程度から全開方向へステップ状に増大せしめられる。このとき図9に示す例ではEGR率がほぼ70パーセントから40パーセント以下までステップ状に減少せしめられ、空燃比がステップ状に大きくされる。即ち、EGR率が多量のスモークを発生するEGR率範囲(図5)を飛び越えるので機関の運転領域が第1の運転領域Iから第2の運転領域IIに変わるときに多量のスモークが発生することがない。
【0044】
第2の運転領域IIでは従来から行われている燃焼が行われる。この第2の運転領域IIではスロットル弁17は一部を除いて全開状態に保持され、EGR制御弁25の開度は要求負荷Lが高くなると次第に小さくされる。また、この運転領域IIではEGR率は要求負荷Lが高くなるほど低くなり、空燃比は要求負荷Lが高くなるほど小さくなる。ただし、空燃比は要求負荷Lが高くなってもリーン空燃比とされる。また、第2の運転領域IIでは噴射開始時期θSは圧縮上死点TDC付近とされる。
【0045】
図10(A)は第1の運転領域Iにおける目標空燃比A/Fを示している。図10(A)において、A/F=15.5,A/F=16,A/F=17,A/F=18で示される各曲線は夫々目標空燃比が15.5,16,17,18であるときを示しており、各曲線間の空燃比は比例配分により定められる。図10(A)に示されるように第1の運転領域Iでは空燃比がリーンとなっており、更に第1の運転領域Iでは要求負荷Lが低くなるほど目標空燃比A/Fがリーンとされる。即ち、要求負荷Lが低くなるほど燃焼による発熱量が少くなる。従って要求負荷Lが低くなるほどEGR率を低下させても低温燃焼を行うことができる。EGR率を低下させると空燃比は大きくなり、従って図10(A)に示されるように要求負荷Lが低くなるにつれて目標空燃比A/Fが大きくされる。目標空燃比A/Fが大きくなるほど燃料消費率は向上し、従ってできる限り空燃比をリーンにするために本発明による実施形態では要求負荷Lが低くなるにつれて目標空燃比A/Fが大きくされる。
【0046】
なお、図10(A)に示される目標空燃比A/Fは図10(B)に示されるように要求負荷L及び機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。また、空燃比を図10(A)に示す目標空燃比A/Fとするのに必要なスロットル弁17の目標開度STが図11(A)に示されるように要求負荷L及び機関回転数Nの関数としてマップの形で予めROM42内に記憶されており、空燃比を図10(A)に示す目標空燃比A/Fとするのに必要なEGR制御弁25の目標開度SEが図11(B)に示されるように要求負荷L及び機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
【0047】
図12(A)は第2の燃焼、即ち従来の燃焼方法による普通の燃焼が行われるときの目標空燃比A/Fを示している。なお、図12(A)においてA/F=24,A/F=35,A/F=45,A/F=60で示される各曲線は夫々目標空燃比24,35,45,60を示している。図12(A)に示される目標空燃比A/Fは図12(B)に示されるように要求負荷L及び機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。また、空燃比を図12(A)に示す目標空燃比A/Fとするのに必要なスロットル弁17の目標開度STが図13(A)に示されるように要求負荷L及び機関回転数Nの関数としてマップの形で予めROM42内に記憶されており、空燃比を図12(A)に示す目標空燃比A/Fとするのに必要なEGR制御弁25の目標開度SEが図13(B)に示されるように要求負荷L及び機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
【0048】
また、第2の燃焼が行われているときには燃料噴射量Qは要求負荷L及び機関回転数Nに基づいて算出される。この燃料噴射量Qは図14に示されるように要求負荷L及び機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
【0049】
次に図15を参照しつつ本実施形態の運転制御(機関始動時を除く)について説明する。図15を参照すると、まず初めにステップ100において機関の運転状態が第1の運転領域Iであることを示すフラグIがセットされているか否かが判別される。フラグIがセットされているとき、即ち機関の運転状態が第1の運転領域Iであるときにはステップ101に進んで要求負荷Lが第1の境界X(N)よりも大きくなったか否かが判別される。L≦X(N)のときにはステップ103に進み、第1の燃焼(低温燃焼)が行われる。一方、ステップ101においてL>X(N)になったと判別されたときにはステップ102に進んでフラグIがリセットされ、次いでステップ110に進み、第2の燃焼(通常燃焼、つまり、従来の燃焼方法による燃焼)が行われる。
【0050】
ステップ100において、フラグIがセットされていないとき、即ち機関の運転状態が第2の運転領域IIにあるときにはステップ108に進んで要求負荷Lが第2の境界Y(N)よりも低くなったか否かが判別される。L≧Y(N)のときにはステップ110に進み、第2の燃焼が行われる。一方、ステップ108においてL<Y(N)になったと判別されたときにはステップ109に進んでフラグIがセットされ、次いでステップ103に進み、第1の燃焼が行われる。
【0051】
ステップ103では図11(A)に示すマップからスロットル弁17の目標開度STが算出され、スロットル弁17の開度がこの目標開度STとされる。次いでステップ104では図11(B)に示すマップからEGR制御弁25の目標開度SEが算出され、EGR制御弁25の開度がこの目標開度SEとされる。次いでステップ105では質量流量検出器17aにより検出された吸入空気の質量流量(以下、単に吸入空気量と称す)Gaが取込まれ、次いでステップ106では図10(B)に示すマップから目標空燃比A/Fが算出される。次いでステップ107では吸入空気量Gaと目標空燃比A/Fに基づいて空燃比を目標空燃比A/Fとするのに必要な燃料噴射量Qが算出される。
【0052】
このように低温燃焼が行われているときには要求負荷L又は機関回転数Nが変化するとスロットル弁17の開度およびEGR制御弁25の開度がただちに要求負荷Lおよび機関回転数Nに応じた目標開度ST,SEに一致せしめられる。従って例えば要求負荷Lが増大せしめられるとただちに燃焼室5内の空気量が増大せしめられ、斯くして機関の発生トルクがただちに増大せしめられる。一方、スロットル弁17の開度又はEGR制御弁25の開度が変化して吸入空気量が変化するとこの吸入空気量Gaの変化が質量流量検出器17aにより検出され、この検出された吸入空気量Gaに基づいて燃料噴射量Qが制御される。即ち、吸入空気量Gaが実際に変化した後に燃料噴射量Qが変化せしめられることになる。
【0053】
一方、ステップ110では図14に示されるマップから目標燃料噴射量Qが算出され、燃料噴射量がこの目標燃料噴射量Qとされる。次いでステップ111では図13(A)に示すマップからスロットル弁17の目標開度STが算出される。次いでステップ112では図13(B)に示すマップからEGR制御弁25の目標開度SEが算出され、EGR制御弁25の開度がこの目標開度SEとされる。次いでステップ113では質量流量検出器17aにより検出された吸入空気量Gaが取込まれる。次いでステップ114では燃料噴射量Qと吸入空気量Gaから実際の空燃比(A/F)が算出される。次いでステップ115では図12(B)に示すマップから目標空燃比A/Fが算出される。次いでステップ116では実際の空燃比(A/F)が目標空燃比A/Fよりも大きいか否かが判別される。(A/F)>A/Fのときにはステップ117に進んでスロットル開度の補正値ΔSTが一定値αだけ減少せしめられ、次いでステップ119へ進む。これに対して(A/F)≦A/Fのときにはステップ118に進んで補正値ΔSTが一定値αだけ増大せしめられ、次いでステップ119に進む。ステップ119ではスロットル弁17の目標開度STに補正値ΔSTを加算することにより最終的な目標開度STが算出され、スロットル弁17の開度がこの最終的な目標開度STとされる。即ち、実際の空燃比(A/F)が目標空燃比A/Fとなるようにスロットル弁17の開度が制御される。
【0054】
このように第2の燃焼が行われているときには要求負荷L又は機関回転数Nが変化すると燃料噴射量がただちに要求負荷Lおよび機関回転数Nに応じた目標燃料噴射量Qに一致せしめられる。例えば要求負荷Lが増大せしめられるとただちに燃料噴射量が増大せしめられ、斯くして機関の発生トルクがただちに増大せしめられる。一方、燃料噴射量Qが増大せしめられて空燃比が目標空燃比A/Fからずれると空燃比が目標空燃比A/Fとなるようにスロットル弁17の開度が制御される。即ち、燃料噴射量Qが変化した後に空燃比が変化せしめられることになる。
【0055】
これまで述べた実施形態では低温燃焼が行われているときに燃料噴射量Qはオープンループ制御され、第2の燃焼が行われているときに空燃比がスロットル弁17の開度を変化させることによって制御される。しかしながら低温燃焼が行われているときに燃料噴射量Qを空燃比センサ23aの出力信号に基づいてフィードバック制御することもできるし、また第2の燃焼が行われているときに空燃比をEGR制御弁25の開度を変化させることによって制御することもできる。
【0056】
図16及び図17は機関始動時における内燃機関の運転制御方法を示した図である。図16及び図17に示すように、機関始動時には、まず、煤の発生量がピークとなるEGRガス量よりも燃焼室5内に供給されるEGRガス量が少ない第2の燃焼が実行され(時間t0〜時間t2)、次いで、煤の発生量がピークとなるEGRガス量よりも燃焼室5内に供給されるEGRガス量が多く煤がほとんど発生しない第1の燃焼が実行される(時間t2以降)。詳細には、まず、トルクがピークTpeakに到達するまでの間(時間t0〜時間t1)、排気ガス中の炭化水素が増加しないように圧縮上死点付近における主噴射のみが行われ、主噴射と異なるタイミングの更なる噴射は行われない。また、燃焼室5から排出される排気ガス温度が比較的高くなるようにかつエンジンの慣性に打ち勝って機関回転数が上昇できるように、スモークリミット付近となる燃料噴射量の多い燃焼が行われる。この間、機関回転数が冷却水温の上昇に応じて上昇せしめられ、EGR制御弁25が全閉されてEGR率がゼロに維持される。また、早期に排気ガス温度を上昇させるためにHC、白煙が発生しない範囲内で噴射時期がリタードされ、吸入空気量を減らして排気ガス温度を上昇させるためにスモークが発生しない範囲内でスロットル弁17が絞られる。
【0057】
機関始動直後には触媒22の温度が排気ガス中の炭化水素を浄化できる温度まで上昇していないものの、時間t0〜時間t1の間に排気ガス中の炭化水素が増加しないような燃焼が行われるため、炭化水素が触媒22を通過して大気中に放出されてしまうことが回避される。また、機関始動直後にはパイプ触媒26aの温度もEGRガス中の炭化水素を浄化できる温度まで上昇していないものの、時間t0〜時間t1の間にEGR率がゼロに維持されEGR通路24内にEGRガスが供給されないため、パイプ触媒26aを通過した炭化水素によってEGRクーラ26内のEGR通路24が詰まってしまうのが回避される。更に、時間t0〜時間t1の間には、パイプ触媒26aにEGRガスが供給されないものの燃焼室5から排出される排気ガス温度が高められているため、パイプ触媒26aにEGRガスが供給されるようになった以降(時間t1以降)のパイプ触媒26aの暖機速度が速められる。また、時間t0〜時間t1の間に燃焼室5から排出される排気ガス温度が高められているため、時間t1に触媒22は排気ガス中の炭化水素を浄化できるようになっている。つまり、時間t0〜時間t1は、排気ガス温度あるいは触媒22の床温がある一定レベルに達し、触媒22がライトオフするまでの時間となる。
【0058】
尚、本実施形態では時間t0〜時間t1の間に排気ガス中の炭化水素が増加しないように圧縮上死点付近における主噴射のみが行われているが、他の実施形態では、排気ガス中の炭化水素が増加しないように、圧縮上死点付近における主噴射に加えて主噴射前に短いインターバルを設けて更なる噴射(いわゆるショートインターバルパイロット噴射)を行うことも可能である。
【0059】
本実施形態の説明に戻り、次いでパイプ触媒26aの暖機が完了するまでの間(時間t1〜時間t2)、排気ガス温度を上昇させるためにEGR制御弁25が開弁され、スロットル弁17が閉じ気味にされて吸入空気量が減少され、EGR率が徐々に増加せしめられる。この間、機関回転数が冷却水温の上昇に応じて上昇せしめられ、トルクが機関アイドル運転時の出力トルクまで低下する。またこの間、排気ガス中の炭化水素が増加するようにかつ燃焼室5から排出される排気ガス温度が比較的高くなるように、圧縮上死点付近における主噴射に加えて排気行程と吸気行程との間で更なる噴射(いわゆるVIGOM噴射)が行われ、噴射時期がリタードされる。
【0060】
時間t1〜時間t2の間に排気ガス中の炭化水素が増加されると共に燃焼室5から排出される排気ガス温度が高められ、その排気ガスがEGRガスとしてパイプ触媒26aに供給されるため、パイプ触媒26aにEGRガスが供給されるようになった以降(時間t1以降)のパイプ触媒26aの暖機速度が速められる。また、ガス温が高められかつそれに含まれる炭化水素が増加された排気ガスが触媒22にも供給されるため、触媒22の活性化が促進される。つまり、噴射時期がリタードされることにより燃費が悪化し、そのために燃料噴射量が増加し、排気ガス温度が更に上昇することになる。また、更なる噴射により排気ガス中の炭化水素が増加し、これが触媒22,26a内で反応し、触媒22,26aの床温が上昇することになる。この間、吸入空気量が減少されているため、エネルギの割に温度上昇が大きくなる。温度をかなり上昇させることにより、触媒22,26a内に吸着していた炭化水素、SOFを燃やすことができる。
【0061】
尚、本実施形態では時間t1〜時間t2の間に圧縮上死点付近における主噴射に加えてVIGOM噴射が行われているが、他の実施形態では、排気ガス中の炭化水素を増加させると共に燃焼室5から排出される排気ガス温度を高めるように、圧縮上死点付近における主噴射に加えて膨張行程中又は排気行程中に更なる噴射(いわゆるポスト噴射)を行うことも可能である。
【0062】
本実施形態の説明に戻り、次いでパイプ触媒26aの暖機が完了すると(時間t2)、第2の燃焼から第1の燃焼への切換を行うためにEGR率がステップ状に増加せしめられると共に、機関回転数が徐々に低下せしめられる。パイプ触媒26aを通過するEGRガス量がパイプ触媒26aの暖機完了後に増加せしめられるため、パイプ触媒26aの暖機完了前にEGRガス量が増加されるのに伴ってEGRガス中の炭化水素がパイプ触媒26aを通過してしまいEGR通路24が詰まってしまうのが回避される。
【0063】
本実施形態によれば、触媒22が排気ガス中の炭化水素を浄化できるようになる前(時間t0〜時間t1)に、排気ガス中の炭化水素が増加しないような燃焼を実行することにより触媒22に供給される炭化水素の量が抑制される。そのため、排気ガス中の炭化水素が触媒22を通過してしまうのを抑制することができる。更に、時間t0〜時間t1の間に燃焼室5から排出される排気ガス温度が比較的高くなるような燃焼が実行されるため、触媒22の温度が高められ、触媒22を活性化させることができる。即ち、炭化水素が触媒22を通過してしまうのを抑制しつつ触媒22の暖機を早期に完了させ、第2の燃焼から第1の燃焼への切換を早期に行うことができる。
【0064】
更に本実施形態によれば、EGRガス温度及びパイプ触媒26a温度が低く、パイプ触媒26aがEGRガス中の炭化水素を浄化できるようになる前(時間t0〜時間t1)に、EGRガス量がゼロにされる。そのため、パイプ触媒26aがEGRガス中の炭化水素を浄化できないにもかかわらずEGRガスがEGR通路24内を通されることに伴いEGR通路24が詰まってしまうのを阻止することができる。更に、時間t0〜時間t1の間に燃焼室5から排出される排気ガス温度が比較的高くなるような燃焼が実行される。そのため、パイプ触媒26aの温度を高めるための準備を行うことができる。その結果、パイプ触媒26aにEGRガスが通されるようになったとき(時間t1以降)にパイプ触媒26aに高温のEGRガスが通されることとなり、それゆえ、時間t1以降のパイプ触媒26aの暖機速度を速めることができる。その上、時間t1〜時間t2の間にパイプ触媒26aに供給されるEGRガスの温度が高くされかつそれに含まれる炭化水素が増加されると共に、EGRガス量が徐々に増加される。そのため、パイプ触媒26aがEGRガス中の炭化水素を浄化できるようになってからパイプ触媒26aの暖機が完了するまでの時間を短くすることができる。即ち、EGR通路24が詰まってしまうのを阻止しつつパイプ触媒26aの暖機を早期に完了させ、第2の燃焼から第1の燃焼への切換を早期に行うことができる。
【0065】
また本実施形態によれば、時間t1〜時間t2の間に、圧縮上死点付近における主噴射に加えて主噴射と異なるタイミングで更なる噴射(VIGOM噴射又はポスト噴射)が行われると共に、吸入空気量が減少される。つまり、圧縮上死点付近における主噴射に加えてVIGOM噴射又はポスト噴射が行われるため、排気ガス中の未燃炭化水素を増加させることができると共に、その未燃炭化水素が後燃えすることにより燃焼室5から排出される排気ガス温度を比較的高くすることができる。更に、吸入空気量が減少されるため、そのことによっても燃焼室5から排出される排気ガス温度を比較的高くすることができる。
【0066】
また本実施形態によれば、排気ガス温度がパイプ触媒26aを暖機させるのに十分な高い温度になったとき(時間t1)に、EGRガス量がゼロから徐々に増加される。つまり、まだ排気ガス温度が低くその排気ガスによってはパイプ触媒26aを昇温させることができずパイプ触媒26aがEGRガス中の炭化水素を浄化できないとき(時間t0〜時間t1)、EGRガス量がゼロにされる。次いで、排気ガス温度が高くなりその排気ガスがパイプ触媒26aに供給されるとパイプ触媒26aが昇温するためにパイプ触媒26aがEGRガス中の炭化水素を浄化できるようになったとき(時間t1〜時間t2)、EGRガス量がゼロから徐々に増加される。そのため、パイプ触媒26aがEGRガス中の炭化水素を浄化できないにもかかわらずEGRガスがEGR通路24内を通されることに伴いEGR通路24が詰まってしまうのを確実に阻止することができる。
【0067】
また本実施形態によれば、パイプ触媒26aの暖機が完了しパイプ触媒26aが多量の炭化水素を浄化できるようになったとき(時間t2)、第2の燃焼から第1の燃焼への切り換えが行われEGRガス量がステップ状に増加される。そのため、パイプ触媒26aの暖機が完了しておらずパイプ触媒26aが多量の炭化水素を浄化できないにもかかわらず多量のEGRガスがEGR通路24内を通されることに伴いEGR通路24が詰まってしまうのを確実に阻止することができる。
【0068】
【発明の効果】
請求項1に記載の発明によれば、炭化水素が排気ガス浄化用触媒を通過してしまうのを抑制しつつ排気ガス浄化用触媒の暖機を早期に完了させ、第2の燃焼から第1の燃焼への切換を早期に行うことができると共に、排気ガス再循環通路が詰まってしまうのを阻止しつつ再循環排気ガス浄化用触媒の暖機を早期に完了させ、第2の燃焼から第1の燃焼への切換を早期に行うことができる。
【0070】
請求項に記載の発明によれば、排気ガス中の未燃炭化水素を増加させると共に、燃焼室から排出される排気ガス温度を比較的高くすることができる。
【0071】
請求項に記載の発明によれば、再循環排気ガス浄化用触媒が再循環排気ガス中の炭化水素を浄化できないにもかかわらず再循環排気ガスが排気ガス再循環通路内を通されることに伴い排気ガス再循環通路が詰まってしまうのを確実に阻止することができる。
【0072】
請求項に記載の発明によれば、再循環排気ガス浄化用触媒の暖機が完了しておらず再循環排気ガス浄化用触媒が多量の炭化水素を浄化できないにもかかわらず多量の再循環排気ガスが排気ガス再循環通路内を通されることに伴い排気ガス再循環通路が詰まってしまうのを確実に阻止することができる。
【図面の簡単な説明】
【図1】第一の実施形態の圧縮着火式内燃機関の全体図である。
【図2】スモークおよびNOxの発生量等を示す図である。
【図3】燃焼圧を示す図である。
【図4】燃料分子を示す図である。
【図5】スモークの発生量とEGR率との関係を示す図である。
【図6】噴射燃料量と混合ガス量との関係を示す図である。
【図7】第1の運転領域Iおよび第2の運転領域IIを示す図である。
【図8】空燃比センサの出力を示す図である。
【図9】スロットル弁の開度等を示す図である。
【図10】第1の運転領域Iにおける空燃比等を示す図である。
【図11】スロットル弁等の目標開度のマップを示す図である。
【図12】第2の燃焼における空燃比等を示す図である。
【図13】スロットル弁等の目標開度のマップを示す図である。
【図14】燃料噴射量のマップを示す図である。
【図15】機関の運転を制御するためのフローチャートである。
【図16】機関始動時における内燃機関の運転制御方法を示した図である。
【図17】機関始動時における内燃機関の運転制御方法を示した図である。
【符号の説明】
5…燃焼室
6…燃料噴射弁
17…スロットル弁
22…触媒
24…EGR通路
25…EGR制御弁
26a…パイプ触媒

Claims (4)

  1. 燃焼室から排出された排気ガスを機関吸気通路内に再循環させる排気ガス再循環通路を具備し、燃焼室内に供給される再循環排気ガスの量を増大していくと煤の発生量が次第に増大してピークに達し、前記燃焼室内に供給される再循環排気ガスの量を更に増大していくと前記燃焼室内における燃焼時の燃料およびその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる内燃機関であって、機関始動時に、まず、煤の発生量がピークとなる再循環排気ガスの量よりも前記燃焼室内に供給される再循環排気ガスの量が少ない第2の燃焼を実行し、次いで、煤の発生量がピークとなる再循環排気ガスの量よりも前記燃焼室内に供給される再循環排気ガスの量が多く煤がほとんど発生しない第1の燃焼を実行する内燃機関において、前記燃焼室から排出された排気ガスを浄化するための排気ガス浄化用触媒を設け、機関始動時に前記第2の燃焼が行われる際に、まず、排気ガス中の炭化水素が増加せずかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を実行することにより前記排気ガス浄化用触媒に供給される炭化水素の量を抑制し、次いで、排気ガス中の炭化水素が増加しかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を実行することにより前記排気ガス浄化用触媒に供給される炭化水素の量を増加させるようにし、前記排気ガス浄化用触媒として再循環排気ガス浄化用触媒を前記排気ガス再循環通路内に配置し、前記排気ガス中の炭化水素が増加せずかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される時に再循環排気ガスの量をゼロにし、前記排気ガス中の炭化水素が増加しかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼が実行される時に再循環排気ガスの量を徐々に増加させるようにした内燃機関
  2. 機関始動時の前記第2の燃焼が行われる際に、排気ガス中の炭化水素が増加しかつ前記燃焼室から排出される排気ガス温度が比較的高くなるような燃焼を行うために、圧縮上死点付近における主噴射に加えて前記主噴射と異なるタイミングで更なる噴射を行うと共に、吸入空気量を減少させるようにした請求項1に記載の内燃機関。
  3. 排気ガス温度が前記再循環排気ガス浄化用触媒を暖機させるのに十分な高い温度になったときに、再循環排気ガスの量をゼロから徐々に増加させるようにした請求項1に記載の内燃機関。
  4. 前記再循環排気ガス浄化用触媒の暖機が完了したときに、前記第2の燃焼から前記第1の燃焼への切り換えを行うようにした請求項1に記載の内燃機関。
JP2000187545A 2000-06-19 2000-06-19 内燃機関 Expired - Fee Related JP3555559B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000187545A JP3555559B2 (ja) 2000-06-19 2000-06-19 内燃機関
US09/880,110 US6591818B2 (en) 2000-06-19 2001-06-14 Internal combustion engine and method for recirculating exhaust gas
DE60108006T DE60108006T2 (de) 2000-06-19 2001-06-18 Brennkraftmaschine und Methode für Abgasrückführung
EP01114583A EP1167727B1 (en) 2000-06-19 2001-06-18 Internal combustion engine and method for recirculating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187545A JP3555559B2 (ja) 2000-06-19 2000-06-19 内燃機関

Publications (2)

Publication Number Publication Date
JP2002004902A JP2002004902A (ja) 2002-01-09
JP3555559B2 true JP3555559B2 (ja) 2004-08-18

Family

ID=18687507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187545A Expired - Fee Related JP3555559B2 (ja) 2000-06-19 2000-06-19 内燃機関

Country Status (4)

Country Link
US (1) US6591818B2 (ja)
EP (1) EP1167727B1 (ja)
JP (1) JP3555559B2 (ja)
DE (1) DE60108006T2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972611B2 (ja) * 2001-07-30 2007-09-05 日産自動車株式会社 内燃機関の排気浄化装置
DE10303085B4 (de) * 2002-01-28 2011-08-11 Toyota Jidosha Kabushiki Kaisha, Aichi-ken Abgassteuerungsvorrichtung und -verfahren eines Verbrennungsmotors
JP4069711B2 (ja) * 2002-03-28 2008-04-02 マツダ株式会社 ディーゼルエンジンの燃焼制御装置
JP4081661B2 (ja) * 2002-07-30 2008-04-30 三菱自動車工業株式会社 内燃機関の吸入空気量制御装置
AU2003260101A1 (en) * 2002-08-21 2004-03-11 Honeywell International Inc. Egr system for turbocharged engines
US6804952B2 (en) * 2003-02-21 2004-10-19 Toyota Jidosha Kabushiki Kaisha Catalyst warm up control for diesel engine
JP2004346787A (ja) * 2003-05-21 2004-12-09 Toyota Motor Corp 内燃機関の燃焼制御装置
JP4292895B2 (ja) * 2003-07-02 2009-07-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
SE524735C2 (sv) * 2003-10-30 2004-09-21 Scania Cv Abp Arrangemang och förfarande för att styra återcirkulation av avgaser hos en förbränningsmotor
US7013879B2 (en) * 2003-11-17 2006-03-21 Honeywell International, Inc. Dual and hybrid EGR systems for use with turbocharged engine
JP2006161569A (ja) * 2004-12-02 2006-06-22 Mitsubishi Fuso Truck & Bus Corp 内燃機関のegr制御装置
DE102005002111A1 (de) * 2005-01-17 2006-07-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102005050269A1 (de) * 2005-06-22 2007-01-04 Robert Bosch Gmbh Verfahren zur Bestimmung der Lambda-Werte mit einer Breitband-Lambda-Sonde
US7210469B1 (en) * 2005-10-24 2007-05-01 International Engine Intellectual Property Company, Llc Oxidation catalyst coating in a heat exchanger
JP2008180185A (ja) * 2007-01-26 2008-08-07 Hitachi Ltd エンジンの排気還流制御装置
JP4910961B2 (ja) * 2007-09-21 2012-04-04 トヨタ自動車株式会社 内燃機関装置およびこれを搭載する車両、内燃機関装置の制御方法
FR2926332B1 (fr) * 2008-01-11 2010-01-01 Peugeot Citroen Automobiles Sa Strategie de chauffage rapide pour compenser le vieillissement d'un catalyseur d'oxydation d'un moteur diesel
JP5325850B2 (ja) * 2009-10-30 2013-10-23 ボッシュ株式会社 還元剤噴射弁の異常検出装置及び異常検出方法、並びに内燃機関の排気浄化装置
US8437943B2 (en) * 2010-01-28 2013-05-07 Deere & Company NOx control during load increases
JP5370243B2 (ja) * 2010-03-31 2013-12-18 マツダ株式会社 ターボ過給機付きディーゼルエンジンの制御装置
CA2702246C (en) 2010-04-20 2012-01-17 Westport Power Inc. Method of controlling a direct-injection gaseous-fuelled internal combustion engine system with a selective catalytic reduction converter
JP5327267B2 (ja) * 2010-06-30 2013-10-30 マツダ株式会社 自動車搭載用ターボ過給機付ディーゼルエンジン及びディーゼルエンジンの制御方法
GB2502276B (en) * 2012-05-21 2015-06-24 Perkins Engines Co Ltd Method and apparatus for controlling the starting of an internal combustion engine
JP6294671B2 (ja) * 2014-01-07 2018-03-14 株式会社Subaru Egr制御装置
US10794336B2 (en) * 2016-04-14 2020-10-06 Ford Global Technologies, Llc Methods and systems for an exhaust gas recirculation cooler
JP7200922B2 (ja) * 2019-12-25 2023-01-10 トヨタ自動車株式会社 車両

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888744B2 (ja) * 1993-10-19 1999-05-10 本田技研工業株式会社 内燃エンジンの制御装置
JP3460338B2 (ja) * 1994-10-31 2003-10-27 株式会社デンソー 内燃機関の排気還流制御装置
JP3079933B2 (ja) * 1995-02-14 2000-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3542404B2 (ja) * 1995-04-26 2004-07-14 本田技研工業株式会社 内燃機関の空燃比制御装置
DE69727417T2 (de) * 1996-04-23 2004-12-16 Toyota Jidosha K.K., Toyota Selbstzündende Brennkraftmaschine
JP3257423B2 (ja) 1996-12-12 2002-02-18 三菱自動車工業株式会社 排気昇温装置
JP3331935B2 (ja) 1997-12-04 2002-10-07 トヨタ自動車株式会社 圧縮着火式内燃機関
JP3424565B2 (ja) 1998-09-24 2003-07-07 トヨタ自動車株式会社 内燃機関
JP3104692B2 (ja) * 1998-11-13 2000-10-30 トヨタ自動車株式会社 内燃機関
JP3557928B2 (ja) * 1998-12-22 2004-08-25 トヨタ自動車株式会社 リーンNOx触媒を有する内燃機関

Also Published As

Publication number Publication date
US20010052341A1 (en) 2001-12-20
DE60108006D1 (de) 2005-02-03
EP1167727A2 (en) 2002-01-02
EP1167727A3 (en) 2003-12-17
EP1167727B1 (en) 2004-12-29
DE60108006T2 (de) 2005-12-29
JP2002004902A (ja) 2002-01-09
US6591818B2 (en) 2003-07-15

Similar Documents

Publication Publication Date Title
JP3555559B2 (ja) 内燃機関
JP3552645B2 (ja) 内燃機関
JP3061019B2 (ja) 内燃機関
JP3539238B2 (ja) 内燃機関
JP3356075B2 (ja) 内燃機関
JP3551794B2 (ja) 内燃機関
JP3405217B2 (ja) 内燃機関
JP3551768B2 (ja) 内燃機関
JP3424571B2 (ja) 内燃機関
JP3344334B2 (ja) 内燃機関
JP3341686B2 (ja) 内燃機関
JP3331974B2 (ja) 内燃機関
JP3331981B2 (ja) 内燃機関
JP3409717B2 (ja) 内燃機関
JP3092597B2 (ja) 内燃機関
JP3551799B2 (ja) 内燃機関
JP3424554B2 (ja) 内燃機関
JP3424570B2 (ja) 内燃機関
JP2001152832A (ja) 内燃機関
JP3578049B2 (ja) 内燃機関
JP3551793B2 (ja) 内燃機関
JP3551791B2 (ja) 内燃機関
JP3424563B2 (ja) 内燃機関
JP3551769B2 (ja) 内燃機関
JP3341683B2 (ja) 内燃機関

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees