WO2006054636A1 - 炭素繊維及び多孔質支持体-炭素繊維複合体及びそれらの製造方法、並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池 - Google Patents

炭素繊維及び多孔質支持体-炭素繊維複合体及びそれらの製造方法、並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池 Download PDF

Info

Publication number
WO2006054636A1
WO2006054636A1 PCT/JP2005/021114 JP2005021114W WO2006054636A1 WO 2006054636 A1 WO2006054636 A1 WO 2006054636A1 JP 2005021114 W JP2005021114 W JP 2005021114W WO 2006054636 A1 WO2006054636 A1 WO 2006054636A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer material
carbon fiber
porous support
carbon
support
Prior art date
Application number
PCT/JP2005/021114
Other languages
English (en)
French (fr)
Inventor
Shinichiro Sugi
Shingo Ohno
Masato Yoshikawa
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US11/719,408 priority Critical patent/US20090142647A1/en
Priority to JP2006545125A priority patent/JPWO2006054636A1/ja
Priority to EP05806980A priority patent/EP1813701A1/en
Publication of WO2006054636A1 publication Critical patent/WO2006054636A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/24999Inorganic

Definitions

  • the present invention relates to a carbon fiber, a porous support and a carbon fiber composite, and a method for producing them.
  • a catalyst structure using a porous support-carbon fiber composite obtained by the method an electrode for a solid polymer fuel cell comprising the catalyst structure, and a solid polymer fuel cell comprising the electrode
  • the present invention relates to a method for producing a high surface area carbon fiber and a porous support-carbon fiber composite.
  • carbon fibers include pitch-based carbon fibers by liquid phase carbonization, polyacrylonitrile-based and rayon-based carbon fibers by solid-phase carbonization, vapor-grown carbon fibers by vapor-phase carbonization, and laser methods, Carbon nanotubes by the arc discharge method are known.
  • the production process of pitch-based carbon fiber, polyacrylonitrile-based carbon fiber, and rayon-based carbon fiber requires a spinning process to obtain a fibrous precursor, which complicates the manufacturing process. At the same time, it is difficult to obtain fibers thinner than lzm.
  • a mass production method is not necessarily established because the production equipment is expensive and the yield is not high.
  • the production facilities of carbon nanotubes are expensive, and efficient mass production techniques are still under investigation, and it is difficult to obtain fibers with a fiber diameter exceeding 0.1 ⁇ m.
  • Japanese Patent Laid-Open No. 5-178603 does not require an infusibilization step, and can control electrical characteristics such as conductivity, has a high residual carbon ratio, and has excellent conductivity.
  • a method for obtaining a carbonaceous powder is described, in this method, since polyaniline powder is used as a raw material, carbon fibers cannot be obtained without passing through a spinning step.
  • Electric energy is extracted from the electrodes by contacting the oxygen-containing gas containing oxygen and using the electrochemical reaction that takes place at this time (Chemical Review No.4 9, Material chemistry of new batteries) ”, Society Press, 2001, p. 180-182 and“ Solid Polymer Fuel Cell 2001 ”, Technical Information Association, 2001, p. 14-15).
  • a catalyst layer is disposed on the electrode in contact with the polymer electrolyte membrane, and an electrochemical reaction occurs at the three-phase interface between the polymer electrolyte membrane, the catalyst layer, and the gas. Therefore, in order to improve the power generation efficiency of the solid polymer fuel cell, it is necessary to expand the reaction field of the electrochemical reaction.
  • a catalyst powder in which a noble metal catalyst such as platinum is supported on granular carbon such as carbon black.
  • a method of applying a paste or slurry containing slag on a conductive porous support such as carbon paper is employed.
  • a polymer electrolyte fuel cell having a catalyst layer formed by this method still has room for improvement in terms of power generation efficiency, and further expands the reaction field of the electrochemical reaction. There is a need to develop a catalyst layer that can be used.
  • an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a novel method for producing carbon fiber having a sufficiently small fiber diameter.
  • Another object of the present invention is to provide a method for producing a porous support-carbon fiber in which the carbon fiber is disposed on the porous support.
  • the other object of the present invention is to provide a catalyst structure using the porous support carbon fiber, a solid polymer type fuel cell electrode using the catalyst structure, and a solid polymer type using the electrode. It is to provide a fuel cell.
  • the present inventors have found that (1) electrospinning By forming a fibrous material of a polymer material from a solution containing a polymer material by a bonding method and firing the fibrous material, nano-order carbon fibers can be obtained. (2) Electrospinning method By forming a carbon black dispersed polymer material fibrous material from the polymer material-containing solution in which carbon black is dispersed, and irradiating the fibrous material with microwaves, nano-order carbon fibers can be obtained in a short time. Further, by forming the carbon fiber on the porous support, a porous support-carbon fiber composite is obtained, and further, a metal is added to the porous support-carbon fiber composite. The present inventors have found that a catalyst structure formed by supporting carbon functions as an electrode of a polymer electrolyte fuel cell, and has completed the present invention.
  • the polymer material-containing solution is jetted toward the support, the drum, or the support disposed on the drum by an electrospinning method. Forming a deposited layer of the fibrous material made of the polymer material on the support, the drum or the support disposed on the drum;
  • the second carbon fiber production method of the present invention is a support in which a polymer material-containing solution in which carbon black is dispersed is arranged on a support, a drum or a drum by an electrospinning method. Spraying toward the body to form a deposited layer of a fibrous material made of a polymer material in which carbon black is dispersed on the support, the drum or the support disposed on the drum;
  • the support is preferably a porous support.
  • the carbon fiber of the present invention is characterized by being manufactured by the method for manufacturing the first or second carbon fiber.
  • the polymer material-containing solution is jetted toward the porous support by an electrospinning method, and the porous support is injected.
  • a polymer material-containing solution in which carbon black is dispersed is jetted toward the porous support by an electrospinning method.
  • porous support carbon fiber composite of the present invention is characterized by being manufactured by the above-mentioned first or second porous support carbon fiber composite manufacturing method.
  • Preferred examples of the first carbon fiber production method and the first porous support carbon fiber composite production method of the present invention include deposition of a fibrous material made of the polymer material.
  • the layer is fired in a non-oxidizing atmosphere.
  • the porous support is preferably a carbon paper.
  • the porous support is carbon paper.
  • the catalyst structure of the present invention bears a metal, preferably a metal containing at least Pt, more preferably a metal containing Pt as a main component, in the carbon fiber of the porous support-carbon fiber composite.
  • a metal preferably a metal containing at least Pt, more preferably a metal containing Pt as a main component, in the carbon fiber of the porous support-carbon fiber composite.
  • the electrode for a solid polymer fuel cell of the present invention comprises the catalyst structure.
  • the polymer electrolyte fuel cell of the present invention is characterized by comprising the electrode for the polymer electrolyte fuel cell.
  • a fibrous material of a polymer material is formed from a polymer material-containing solution by an electrospinning method, and the fibrous material is fired, so that the fiber diameter is sufficiently increased.
  • a small carbon fiber can be produced, and a high surface area porous support-carbon fiber composite can be produced by forming the carbon fiber on the porous support.
  • a fibrous material of a carbon black-dispersed polymer material is formed from a polymer material-containing solution in which carbon black is dispersed by an electrospinning method.
  • a fibrous material By irradiating the fibrous material with microwaves, carbon fibers having a sufficiently small fiber diameter can be produced in a short time, and the carbon fibers can be formed on the porous support.
  • a high surface area porous support-carbon fiber composite can be produced in a short time.
  • a catalyst structure suitable as an electrode for a polymer electrolyte fuel cell comprising a metal supported on the porous support-carbon fiber composite, and the catalyst structure.
  • a polymer electrolyte fuel cell used as an electrode can be provided.
  • FIG. 1 is a schematic view of an example of an electrospinning apparatus used in the present invention.
  • FIG. 2 is a cross-sectional view of an example of a polymer electrolyte fuel cell of the present invention.
  • FIG. 3 is a graph showing the voltage-current characteristics of the fuel cell of Example 1.
  • FIG. 4 is a graph showing voltage-current characteristics of the fuel cell of Example 2.
  • the first carbon fiber production method of the present invention is a method of injecting a polymer material-containing solution toward a support, a drum or a support disposed on the drum by an etatrospinning method.
  • the fibrous material having a high polymer material strength that can be produced by the etatrospinning method has a very small fiber diameter, it is possible to produce carbon fibers having a very small fiber diameter by firing the fibrous material.
  • the second carbon fiber production method of the present invention is a support, drum, or support on which a polymer material-containing solution in which carbon black is dispersed is arranged on a support by a electrospinning method.
  • a fibrous material made of a carbon black-dispersed polymer material that can be produced by the electrospinning method has a very small fiber diameter, and the fibrous material is irradiated with microwaves.
  • carbon black dispersed in the polymer material absorbs microwaves and generates heat, and the polymer material is fired from inside the polymer material to produce carbon fibers with a very small fiber diameter in a short time. Can do.
  • FIG. 1 shows a schematic diagram of an electrospinning apparatus used in the present invention.
  • a DC high voltage is applied from the power source 3 between the nozzle 1 and the drum 2 for supplying the high molecular material-containing solution or the carbon black-dispersed polymer material-containing solution
  • the high molecule is directed toward the drum 2.
  • the material-containing solution or the carbon black-dispersed polymer material-containing solution is jetted, and the polymer material or the carbon black-dispersed polymer material adheres onto the drum 2 by an electric field generated by a high voltage.
  • the polymer material-containing solution and the carbon black-dispersed polymer material-containing solution are ejected as minute droplets by the nozzle force due to the surface tension. Repel each other. When the repulsive force of this charge exceeds the surface tension, the droplet breaks up and becomes a jet 4. At this time, the solvent in the polymer material-containing solution and the carbon black-dispersed polymer material-containing solution is volatilized, the charge repulsion is further increased, and the jet 4 is further divided into fine jets 4.
  • the polymer material in the polymer material-containing solution or the carbon black-dispersed polymer material-containing solution is oriented, and the polymer material or the carbon black-dispersed polymer material becomes a slender fiber, and the drum 2
  • a deposited layer made of a fibrous material of a polymer material or a carbon black dispersed polymer material is formed on the drum 2 by reaching and aggregating.
  • a support is used, or a support is provided on the drum 2, so that a polymer material or a carbon black dispersed polymer is provided on the support or the support provided on the drum.
  • a deposited layer of fibrous material can be formed.
  • an applied voltage, a distance between the nozzle 1 and the drum 2, etc., a nozzle 1 discharge port diameter, a composition containing a polymer material-containing solution or a carbon black-dispersed polymer material-containing solution, etc. are appropriately selected. By doing so, nanofibers of a polymer material having a desired average diameter and average length can be obtained.
  • the applied voltage in the electrospinning method is not particularly limited, A range of 20-30 kV is preferred. If the applied voltage is less than 20 kV, the polymer material may not be sufficiently fiberized, and if it exceeds 30 kV, it is dangerous for the device and the human body.
  • the distance between the nozzle 1 and the drum 2 and the like in the electrospinning method varies depending on the applied voltage, the viscosity of the polymer material-containing solution or the carbon black-dispersed polymer material-containing solution, the conductivity, and the like.
  • the preferred range is 15cm. Even if the distance between the nozzle 1 and the drum 2 etc. is less than 5 cm or more than 15 cm, a good polymer material or carbon black dispersed high molecular weight nanofiber may not be obtained.
  • the discharge port diameter of the nozzle 1 in the electrospinning method is not particularly limited, but is preferably in the range of 300 to 500 / im. Even if the nozzle diameter of NOZONORE 1 is less than 300 / im or more than 500 ⁇ m, a good polymer material or carbon black dispersed polymer material nanofiber may not be obtained.
  • the polymer material-containing solution comprises a polymer material and a solvent.
  • the carbon black-dispersed polymer material-containing solution comprises a polymer material, carbon black, and a solvent.
  • the polymer material a polymer material conventionally used as a raw material for carbon fiber can be used, and specifically, polyacrylonitrile (PAN), cellulose, rayon, polycarbodiimide, polyacetic acid. Examples include vinyl, polybulal alcohol, polystyrene, and polyacrylic acid.
  • the solvent is appropriately selected depending on the type of the polymer material, and examples thereof include alcohols such as ⁇ , ⁇ -dimethylformamide, honremamide, dimethylsulfoxide, dioxane, methanol and ethanol, acetone and methyl ethyl ketone, and the like. Ketones, benzene, toluene, xylene, tetrahydrofuran and the like, and water can be used if the polymer material is soluble. Further, the carbon black may be of various grades, not limited to those specifically limited.
  • the concentration of the polymer material in the polymer material-containing solution and the carbon black-dispersed polymer material-containing solution is not particularly limited, but is preferably in the range of 5 to 10% by mass. If the concentration of the polymer material in the solution is less than mass%, the viscosity of the raw material solution is too low and it is difficult to form a good fiber. If the concentration exceeds 10 mass%, the viscosity of the raw material solution is high. The workability is poor, and it is difficult to form a good fiber. [0030]
  • the concentration of carbon black in the carbon black-dispersed polymer material-containing solution is not particularly limited, but is preferably in the range of 0.01 to 80% by mass. Power in solution If the concentration of bon black is less than 0.01% by mass, sufficient absorption of microwaves cannot be obtained, and it is difficult to play a role as a heating element. Viscosity and fiber formation is difficult (electric spinning is impossible).
  • a fibrous material of a polymer material formed on the drum 2 or the like is fired to obtain a carbon fiber.
  • the non-oxidizing atmosphere that is preferably performed in a non-oxidizing atmosphere include a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere, and in some cases, a hydrogen atmosphere is used. You can also.
  • the non-oxidizing atmosphere may contain a small amount of oxygen as long as the fibrous polymer material is not completely oxidized.
  • the firing conditions are not particularly limited, but it is preferable to fire for 0.5 to 6 hours in a temperature range of 500 to 3000 ° C.
  • the fibrous material of the carbon black-dispersed polymer material formed on the drum 2 or the like is irradiated with microwaves, and the fibrous material The product is fired to obtain carbon fibers.
  • the carbon black is heated by microwaves, and the carbon black heats the polymer material from the inside, so that the polymer material can be heated at a high speed. Therefore, according to the second method for producing carbon fiber of the present invention, the polymer material can be fired in a short time, and the carbon fiber can be produced with high productivity.
  • the microwave wavelength used is preferably in the range of 0.1 to 100 cm, and the preferred frequency is in the range of 300 MHz to 30 GHz.
  • Irradiation conditions are not particularly limited, but it is preferable to irradiate at a high frequency such as 28 GHz for 1 minute to 3 hours in order to suppress the occurrence of arcing.
  • a high frequency such as 28 GHz for 1 minute to 3 hours in order to suppress the occurrence of arcing.
  • the carbon fiber obtained as described above has a small fiber diameter, the carbon fiber has a high surface area and is excellent in conductivity.
  • the carbon fiber is preferably, 100 to 3000 nm in diameter, is the 0.1 to 10 zm in length, a surface resistance 10 6 ⁇ 10- 2 ⁇ , Zansumiritsu is 10-90% It is.
  • a polymer material-containing solution or a carbon black-dispersed polymer material-containing solution is supported on a support, drum or drum by electrospinning.
  • a porous support-carbon fiber composite is produced by spraying a polymer material-containing solution or a carbon black-dispersed polymer material-containing solution onto a porous support. be able to. Further, by appropriately adjusting various conditions in the electrospinning method, it is possible to adjust the porosity of the carbon fiber portion of the composite.
  • the support and the drum are required to be highly conductive.
  • the material of the drum include metals such as iron, stainless steel, and aluminum.
  • the material of the support include metal and graph. Examples thereof include a glass substrate or a film with an eye or a transparent conductive film.
  • a porous support is preferred. Examples of the porous support include carbon paper, carbon nonwoven fabric, carbon cloth, carbon net, and mesh-like carbon. Among these, carbon paper Is preferred.
  • the catalyst structure of the present invention comprises a metal, preferably metal fine particles, supported on the carbon fiber of the porous support carbon fiber composite described above.
  • the catalyst structure can be used as a catalyst for various chemical reactions such as hydrogenation reactions in addition to electrodes for solid polymer fuel cells.
  • Pt which is precious metal, is particularly preferable.
  • Pt may be used alone or as an alloy with another metal such as Ru.
  • the metal supported on the carbon fiber of the composite is in the form of fine particles, the particle size is more preferably in the range of 1 to 50 nm, more preferably in the range of 0.5 to 100 nm.
  • the metal may be in the form of a fiber, a wire, or a thin film.
  • the metal loading is preferably in the range of 0.01 to 1 mg with respect to the projected area lcm 2 of the carbon fiber of the composite.
  • the method for supporting the metal on the carbon fiber is not particularly limited, and examples thereof include an impregnation method, an electro plating method (electrolytic reduction method), an electroless plating method, and a sputtering method. Also, after supporting multiple types of metals on carbon fiber, acid and / or alkali The surface area of the supported metal may be increased by dissolving a part of the metal supported by the above method.
  • An electrode for a polymer electrolyte fuel cell of the present invention comprises a metal supported on the above-described catalyst structure, that is, the above-described composite carbon fiber, and the electrode comprises a gas diffusion layer and a catalyst layer.
  • the porous support of the composite corresponds to the gas diffusion layer
  • the carbon fiber carrying the metal corresponds to the catalyst layer.
  • the electrode for a polymer electrolyte fuel cell of the present invention uses the above-mentioned high surface area porous support / carbon fiber composite, and the metal is supported on the high surface area carbon fiber.
  • the reaction field of the electrochemical reaction at the three-phase interface between the molecular electrolyte membrane, the catalyst layer, and the gas has been greatly expanded, and the catalytic activity of the catalyst layer with high catalyst utilization is high.
  • the catalyst layer is preferably impregnated with a polymer electrolyte.
  • a polymer electrolyte an ion conductive polymer can be used, and as the ion conductive polymer, Examples thereof include polymers having an ion exchange group such as sulfonic acid, carboxylic acid, phosphonic acid, and phosphonous acid, and the polymer may or may not contain fluorine.
  • the ion conductive polymer is preferably a perfluorocarbon sulfonic acid polymer such as Nafion (registered trademark).
  • the amount of impregnation of the polymer electrolyte is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass of the carbon fiber in the catalyst layer.
  • the thickness of the catalyst layer is not particularly limited, but is preferably in the range of 0.1 to 100 zm.
  • the amount of metal supported on the catalyst layer is determined by the loading rate and the thickness of the catalyst layer, and is preferably in the range of 0.001 to 8 mg / m 2 .
  • the gas diffusion layer is a layer for supplying hydrogen gas or an oxidant gas such as oxygen or air to the catalyst layer and transferring the generated electrons, and has a function as a gas diffusion layer. It functions as a current collector.
  • a polymer electrolyte fuel cell of the present invention includes the above-described electrode for a polymer electrolyte fuel cell.
  • the solid polymer fuel cell of the present invention will be described in detail with reference to FIG.
  • the illustrated polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 11 and separators 12 located on both sides thereof.
  • Membrane electrode assembly (MEA) 11 It comprises a solid polymer electrolyte membrane 13 and fuel electrodes 14A and air electrodes 14B located on both sides thereof.
  • the fuel electrode 14A In the fuel electrode 14A, a reaction represented by 2H ⁇ 4H ++ 4e— occurs, and the generated H + passes through the solid polymer electrolyte membrane 13 to the air electrode 14B, and the generated e ⁇ is taken out to the outside. Current. On the other hand, in the air electrode 14B, a reaction represented by O + 4H + + 4e— ⁇ 2H 2 O occurs, and water is generated. At least one of the fuel electrode 14A and the air electrode 14B is the above-described electrode for a solid polymer fuel cell of the present invention.
  • the fuel electrode 14A and the air electrode 14B are each composed of a catalyst layer 15 and a gas diffusion layer 16, and are arranged so that the catalyst layer 15 is in contact with the solid polymer electrolyte membrane 13.
  • the metal is supported on the porous support-carbon fiber composite on at least one of the fuel electrode 14A and the air electrode 14B. Therefore, the reaction field of the electrochemical reaction at the three-phase interface between the solid polymer electrolyte membrane 1 3, the catalyst layer 15, and the gas is very large. The power generation efficiency of molecular fuel cells has been greatly improved.
  • an ion conductive polymer can be used, and the ion conductive polymer can be impregnated in the catalyst layer. What was illustrated as can be used. Further, as the separator 12, a normal separator having a flow path (not shown) such as fuel, air and generated water formed on the surface can be used.
  • a commercially available 35 wt% polyacrylic acid aqueous solution [manufactured by Aldrich] was diluted to prepare a 10 wt% polymer material-containing solution.
  • carbon paper [Toray Industries, Inc.] under the following conditions by the electrospinning method shown in Fig. 1 (electrospinning conditions: applied voltage: 20 kV, distance between capillary tip and substrate: 15 cm)
  • Fig. 1 electrospinning conditions: applied voltage: 20 kV, distance between capillary tip and substrate: 15 cm
  • a stack of nanofibers was formed on top.
  • the obtained film was observed by SEM, it was confirmed that it was obtained in an intertwined state with fibrous polyacrylic acid.
  • This deposited layer together with carbon paper The sample was heated to 900 ° C at a rate of 7 ° C / min in an Ar atmosphere, and then held at 900 ° C for 1 hour for firing treatment.
  • the obtained fired product was observed by SEM, it was confirmed that carbon fibers having a diameter force of ⁇ 2 ⁇ m were obtained in almost the same shape as before firing on the carbon fibers constituting the carbon paper.
  • a carbon paper having the above carbon fiber on its surface was placed in a 3 wt% chloroplatinic acid aqueous solution as a working electrode, a platinum plate was used as a counter electrode, and a constant current of 30 mA m 2 at room temperature. Electric plating was performed for 25 seconds to deposit platinum on the carbon fiber, and a catalyst structure having a platinum loading of 0.4 mg / m 2 was formed on the carbon paper.
  • a 5 wt% naphthion (registered trademark) solution was applied to the catalyst structure formed on the carbon paper, and then dried to form a catalyst layer on the carbon paper. Then, a Na Fuion catalyst layer with carbon paper as the catalyst layer on both sides is in contact of the solid polymer electrolyte membrane comprising (R) (thickness 175 ⁇ ⁇ ) arranged respectively, more membrane electrode hot pressing A joined body was produced.
  • the membrane electrode assembly was assembled in a test cell (EF C25-01SP) manufactured by Electrochem to produce a fuel cell.
  • the voltage-current characteristics of the fuel cell were measured under the conditions of hydrogen 300 cc / min, oxygen 300 cc / min, cell temperature 80 ° C., and humidification temperature 80 ° C. ⁇ ⁇ ⁇
  • the results are shown in Fig. 3 along with the results of the products sold. As a result, despite the small amount of platinum supported, the same level of performance as commercial products was obtained.
  • a commercially available 35 wt% polyacrylic acid aqueous solution [manufactured by Aldrich] was diluted and a commercially available carbon black was dispersed to prepare a polymer material-containing solution containing 10 wt% polyacrylic acid and 20 wt% carbon black.
  • carbon paper [Toray Industries, Inc., under the following conditions, using the electrospinning method shown in Fig. 1 (electrospinning condition: applied voltage: 20 kV, distance between capillary tip and substrate: 15 cm)
  • Fig. 1 electrospinning condition: applied voltage: 20 kV, distance between capillary tip and substrate: 15 cm
  • This deposited layer was baked by irradiating with 28 GHz microwave for 1 hour under reduced pressure conditions together with carbon paper. Observation of the resulting fired product with SEM confirmed that carbon fibers with a diameter of ⁇ 2 ⁇ m were obtained in almost the same shape as before firing on the carbon fibers constituting the carbon paper. did.
  • a carbon paper having the above carbon fiber on the surface thereof was installed as a working electrode in a 3 wt% chloroplatinic acid aqueous solution, a platinum plate was used as a counter electrode, and a constant current of 30 mA m 2 at room temperature. Electric plating was performed for 25 seconds to deposit platinum on the carbon fiber, and a catalyst structure having a platinum loading of 0.4 mg / m 2 was formed on the carbon paper.
  • a 5 wt% naphthion (registered trademark) solution was applied to the catalyst structure formed on the carbon paper, and then dried to form a catalyst layer on the carbon paper.
  • carbon paper with a catalyst layer is placed on both sides of a solid polymer electrolyte membrane (film thickness: 175 ⁇ ) made of naphthion (registered trademark) so that the catalyst layer is in contact with the membrane electrode by hot pressing.
  • a joined body was produced.
  • the membrane electrode assembly was assembled in a test cell (EF C25-01SP) manufactured by Electrochem to produce a fuel cell.
  • the voltage-current characteristics of the fuel cell were measured under the conditions of hydrogen 300 cc / min, oxygen 300 cc / min, cell temperature 80 ° C., and humidification temperature 80 ° C. ⁇ ⁇ ⁇
  • the results are shown in Fig. 4 along with the results of the products sold. As a result, it was confirmed that the same level of performance as a commercial product could be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

 本発明は、繊維径の十分に小さい炭素繊維の製造方法に関し、より詳しくは、(1)エレクトロスピニング法により高分子材料含有溶液を噴射して、該高分子材料からなる繊維状物の堆積層を形成する工程と、前記高分子材料からなる繊維状物の堆積層を焼成して、炭素繊維を生成させる工程とを含む炭素繊維の製造方法と、(2)エレクトロスピニング法によりカーボンブラック分散高分子材料含有溶液を噴射して、該カーボンブラック分散高分子材料からなる繊維状物の堆積層を形成する工程と、前記繊維状物の堆積層にマイクロ波を照射して、炭素繊維を生成させる工程とを含む炭素繊維の製造方法とに関するものである。

Description

明 細 書
炭素繊維及び多孔質支持体一炭素繊維複合体及びそれらの製造方法、 並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電 池
技術分野
[0001] 本発明は、炭素繊維及び多孔質支持体一炭素繊維複合体及びそれらの製造方法
、該方法で得られた多孔質支持体一炭素繊維複合体を用いた触媒構造体、該触媒 構造体からなる固体高分子型燃料電池用電極及び該電極を備える固体高分子型燃 料電池に関し、特に高表面積の炭素繊維及び多孔質支持体一炭素繊維複合体を 製造する方法に関するものである。
背景技術
[0002] 従来、炭素繊維としては、液相炭素化によるピッチ系炭素繊維、固相炭素化による ポリアクリロニトリル系及びレーヨン系炭素繊維、気相炭素化による気相成長炭素繊 維、並びにレーザー法やアーク放電法によるカーボンナノチューブ類等が知られて いる。これらのうち、ピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維及びレーヨン 系炭素繊維の製造工程におレ、ては、繊維状前駆体を得るために紡糸工程が必要で あり、製造工程が複雑となると共に、 l z mより細い繊維を得ることが困難である。また 、気相成長炭素繊維の製造においては、製造設備が高価で且つ収率が高くないな ど量産方法が必ずしも確立されているとはいえないという問題がある。更に、カーボン ナノチューブ類の製造についても製造設備が高価である上、効率的な量産技術は 検討段階にあり、 0.1 μ mを超える繊維径のものを得ることが難しいという問題がある。
[0003] これに対し、特開平 5— 178603号公報には、不融化工程を必要とせず、導電率等 の電気特性を制御することが可能で、残炭率が高く且つ導電性に優れた炭素質粉 末を得る方法が記載されているが、該方法ではポリア二リン粉末を原料とするため、 紡糸工程を経ずに炭素繊維を得ることができない。
[0004] 一方、発電効率が高ぐ環境への負荷が小さい電池として、昨今、燃料電池が注目 を集めており、広く研究開発が行われている。該燃料電池の中でも、出力密度が高く 作動温度が低い固体高分子型燃料電池は、小型化や低コスト化が他のタイプの燃 料電池よりも容易なことから、電気自動車用電源、分散発電システム、家庭用のコー ジェネレーションシステムとして広く普及することが期待されている。一般に、該固体 高分子型燃料電池においては、固体高分子電解質膜を挟んで一対の電極を配置 すると共に、一方の電極の表面に水素等の燃料ガスを接触させ、もう一方の電極の 表面に酸素を含有する酸素含有ガスを接触させ、この時起こる電気化学反応を利用 して、電極間から電気エネルギーを取り出している(日本化学会編, 「化学総説 No.4 9,新型電池の材料化学」,学会出版センター, 2001年, p. 180— 182及び「固体 高分子型燃料電池く 2001年版〉」,技術情報協会, 2001年, p. 14— 15参照)。 また、上記電極の高分子電解質膜に接する側には触媒層が配設されており、高分子 電解質膜と触媒層とガスとの三相界面で電気化学反応が起こる。そのため、固体高 分子型燃料電池の発電効率を向上させるためには、上記電気化学反応の反応場を 拡大する必要がある。
[0005] これに対し、上記電気化学反応の反応場を拡大することが可能な触媒層を形成す るために、一般に、白金等の貴金属触媒をカーボンブラック等の粒状カーボン上に 担持した触媒粉を含有するペースト又はスラリーを、カーボンペーパー等の導電性の 多孔質支持体上に塗布する方法が採られている。し力しながら、この方法で形成され た触媒層を備える固体高分子型燃料電池であっても、依然として発電効率の点で改 善の余地があり、上記電気化学反応の反応場を更に拡大することが可能な触媒層の 開発が求められている。
発明の開示
[0006] このような状況下、本発明の目的は、上記従来技術の問題を解決し、繊維径の十 分に小さい炭素繊維の新規製造方法を提供することにある。また、本発明の他の目 的は、多孔質支持体上にかかる炭素繊維が配設された多孔質支持体—炭素繊維の 製造方法を提供することにある。更に、本発明のその他の目的は、かかる多孔質支 持体 炭素繊維を用いた触媒構造体、該触媒構造体を用いた固体高分子型燃料 電池用電極、該電極を用いた固体高分子型燃料電池を提供することにある。
[0007] 本発明者らは、上記目的を達成するために鋭意検討した結果、(1)エレクトロスピニ ング法により、高分子材料含有溶液から高分子材料の繊維状物を形成し、該繊維状 物を焼成することで、ナノオーダーの炭素繊維が得られ、また、(2)エレクトロスピニン グ法により、カーボンブラックを分散させた高分子材料含有溶液からカーボンブラック 分散高分子材料の繊維状物を形成し、該繊維状物にマイクロ波を照射することで、 短時間でナノオーダーの炭素繊維が得られ、更に、該炭素繊維の形成を多孔質支 持体上で行うことで、多孔質支持体一炭素繊維複合体が得られ、また更に、該多孔 質支持体一炭素繊維複合体に金属を担持してなる触媒構造体が、固体高分子型燃 料電池の電極として機能することを見出し、本発明を完成させるに至った。
[0008] 即ち、本発明の第 1の炭素繊維の製造方法は、エレクトロスピユング法により高分子 材料含有溶液を、支持体、ドラム又はドラム上に配設された支持体に向けて噴射して 、該支持体、ドラム又はドラム上に配設された支持体上に前記高分子材料からなる繊 維状物の堆積層を形成する工程と、
前記高分子材料からなる繊維状物の堆積層を焼成して、炭素繊維を生成させるェ 程とを含むことを特徴とする。
[0009] また、本発明の第 2の炭素繊維の製造方法は、エレクトロスピニング法により、カー ボンブラックを分散させた高分子材料含有溶液を、支持体、ドラム又はドラム上に配 設された支持体に向けて噴射して、該支持体、ドラム又はドラム上に配設された支持 体上にカーボンブラックが分散した高分子材料からなる繊維状物の堆積層を形成す る工程と、
前記カーボンブラックが分散した高分子材料からなる繊維状物の堆積層にマイクロ 波を照射し、該堆積層中の高分子材料を焼成して炭素繊維を生成させる工程とを含 むことを特徴とする。
[0010] 本発明の第 1及び第 2の炭素繊維の製造方法において、前記支持体としては、多 孔質支持体が好ましい。また、本発明の炭素繊維は、上記第 1又は第 2の炭素繊維 の製造方法で製造されたことを特徴とする。
[0011] 本発明の第 1の多孔質支持体一炭素繊維複合体の製造方法は、エレクトロスピニ ング法により高分子材料含有溶液を多孔質支持体に向けて噴射して、該多孔質支 持体上に前記高分子材料からなる繊維状物の堆積層を形成する工程と、 前記高分子材料からなる繊維状物の堆積層を焼成して、前記多孔質支持体上に 炭素繊維を生成させる工程とを含むことを特徴とする。
[0012] また、本発明の第 2の多孔質支持体一炭素繊維複合体の製造方法は、カーボンブ ラックを分散させた高分子材料含有溶液をエレクトロスピユング法により多孔質支持 体に向けて噴射して、該多孔質支持体上にカーボンブラックが分散した高分子材料 からなる繊維状物の堆積層を形成する工程と、
前記カーボンブラックが分散した高分子材料からなる繊維状物の堆積層にマイクロ 波を照射し、該堆積層中の高分子材料を焼成して前記多孔質支持体上に炭素繊維 を生成させる工程とを含むことを特徴とする。
[0013] また、本発明の多孔質支持体 炭素繊維複合体は、上記第 1又は第 2の多孔質支 持体 炭素繊維複合体の製造方法で製造されたことを特徴とする。
[0014] 本発明の第 1の炭素繊維の製造方法及び第 1の多孔質支持体 炭素繊維複合体 の製造方法の好適例にぉレ、ては、前記高分子材料からなる繊維状物の堆積層の焼 成を非酸化性雰囲気中で行う。また、前記多孔質支持体としては、カーボンぺーパ 一が好ましい。
[0015] 本発明の第 2の炭素繊維の製造方法及び第 2の多孔質支持体 炭素繊維複合体 の製造方法の好適例においては、前記多孔質支持体がカーボンペーパーである。
[0016] 本発明の触媒構造体は、上記多孔質支持体一炭素繊維複合体の炭素繊維に金 属、好ましくは、少なくとも Ptを含む金属、より好ましくは、 Ptを主成分とする金属を担 持してなる。また、本発明の固体高分子型燃料電池用電極は、該触媒構造体からな る。更に、本発明の固体高分子型燃料電池は、該固体高分子型燃料電池用電極を 備えることを特徴とする。
[0017] 本発明によれば、(1)エレクトロスピニング法により、高分子材料含有溶液から高分 子材料の繊維状物を形成し、該繊維状物を焼成することで、繊維径の十分に小さい 炭素繊維を製造することができ、また、該炭素繊維の形成を多孔質支持体上で行うこ とで、高表面積の多孔質支持体一炭素繊維複合体を製造することができる。
[0018] また、本発明によれば、(2)エレクトロスピユング法により、カーボンブラックを分散さ せた高分子材料含有溶液からカーボンブラック分散高分子材料の繊維状物を形成 し、該繊維状物にマイクロ波照射することで、繊維径の十分に小さい炭素繊維を短時 間で製造することができ、また、該炭素繊維の形成を多孔質支持体上で行うことで、 高表面積の多孔質支持体-炭素繊維複合体を短時間で製造することができる。
[0019] 更に、本発明によれば、上記多孔質支持体一炭素繊維複合体に金属を担持して なる、固体高分子型燃料電池用電極として好適な触媒構造体、及び該触媒構造体 を電極として用いた固体高分子型燃料電池を提供することができる。
図面の簡単な説明
[0020] [図 1]本発明に用いるエレクトロスピニング装置の一例の概略図である。
[図 2]本発明の固体高分子型燃料電池の一例の断面図である。
[図 3]実施例 1の燃料電池の電圧 電流特性を示すグラフである。
[図 4]実施例 2の燃料電池の電圧一電流特性を示すグラフである。
発明を実施するための最良の形態
[0021] 以下に、本発明を詳細に説明する。本発明の第 1の炭素繊維の製造方法は、エレ タトロスピユング法により高分子材料含有溶液を、支持体、ドラム又はドラム上に配設 された支持体に向けて噴射して、該支持体、ドラム又はドラム上に配設された支持体 上に前記高分子材料からなる繊維状物の堆積層を形成する工程と、前記高分子材 料からなる繊維状物の堆積層を焼成して、炭素繊維を生成させる工程とを含む。エレ タトロスピユング法で製造できる高分子材料力 なる繊維状物は、繊維径が非常に小 さいため、該繊維状物を焼成することで繊維径の非常に小さい炭素繊維を製造する こと力 Sできる。
[0022] また、本発明の第 2の炭素繊維の製造方法は、エレクトロスピニング法により、カー ボンブラックを分散させた高分子材料含有溶液を、支持体、ドラム又はドラム上に配 設された支持体に向けて噴射して、該支持体、ドラム又はドラム上に配設された支持 体上にカーボンブラックが分散した高分子材料からなる繊維状物の堆積層を形成す る工程と、前記カーボンブラックが分散した高分子材料からなる繊維状物の堆積層に マイクロ波を照射し、該堆積層中の高分子材料を焼成して炭素繊維を生成させるェ 程とを含む。上記エレクトロスピユング法で製造できるカーボンブラック分散高分子材 料からなる繊維状物は、繊維径が非常に小さ 該繊維状物にマイクロ波を照射する ことで、高分子材料中に分散したカーボンブラックがマイクロ波を吸収して発熱し、高 分子材料内部から高分子材料が焼成されて、繊維径の非常に小さい炭素繊維を短 時間で製造することができる。
[0023] 本発明の第 1及び第 2の炭素繊維の製造方法で利用するエレクトロスピユング法( エレクトロスプレー法)は、電気の力を使用した繊維化方法として知られている。図 1 に、本発明で利用するエレクトロスピユング装置の概略図を示す。図 1において、高 分子材料含有溶液又はカーボンブラック分散高分子材料含有溶液を供給するノズ ル 1とドラム 2との間に電源 3により直流の高電圧を印加すると、ドラム 2に向けて高分 子材料含有溶液又はカーボンブラック分散高分子材料含有溶液が噴射され、更に 高電圧によって発生した電場によってドラム 2上に高分子材料又はカーボンブラック 分散高分子材料が付着する。この際、高分子材料含有溶液及びカーボンブラック分 散高分子材料含有溶液は、その表面張力によりノズル 1力も微小な液滴として噴射さ れるが、該液滴の表面に電荷が集まり、液適同士が互いに反発する。この電荷の反 発力が表面張力を超えると、液滴は分裂し、ジェット 4となる。この際、高分子材料含 有溶液及びカーボンブラック分散高分子材料含有溶液中の溶媒が揮発し、電荷の 反発力が更に増し、ジェット 4は、更に分裂して細かいジェット 4となる。このジェット 4 中で高分子材料含有溶液又はカーボンブラック分散高分子材料含有溶液中の高分 子材料が配向し、高分子材料又はカーボンブラック分散高分子材料が細長い繊維 状となって、ドラム 2に到達及び凝集して、ドラム 2上に高分子材料又はカーボンブラ ック分散高分子材料の繊維状物からなる堆積層が形成される。なお、ドラム 2に代え て、支持体を用いたり、ドラム 2上に支持体を配設することで、支持体又はドラム上に 配設された支持体上に高分子材料又はカーボンブラック分散高分子材料の繊維状 物からなる堆積層を形成することができる。
[0024] 上記エレクトロスピユング法において、印加電圧、ノズル 1とドラム 2等との距離、ノズ ル 1の吐出口径、高分子材料含有溶液又はカーボンブラック分散高分子材料含有 溶液の組成等を適宜選択することで、所望の平均直径及び平均長さの高分子材料 のナノファイバーが得られる。
[0025] 上記エレクトロスピユング法における印加電圧は、特に限定されるものではなレ、が、 20〜30kVの範囲が好ましい。印加電圧が 20kV未満では、高分子材料を十分に繊 維化できないことがあり、 30kVを超えると、装置や人体に対して危険である。
[0026] 上記エレクトロスピユング法におけるノズル 1とドラム 2等との距離は、上記印加電圧 や高分子材料含有溶液又はカーボンブラック分散高分子材料含有溶液の粘度及び 導電率等によっても異なる力 5〜15cmの範囲が好ましレ、。ノズル 1とドラム 2等との距 離が 5cm未満でも、 15cmを超えても、良好な高分子材料又はカーボンブラック分散高 分子材料のナノファイバーが得られないことがある。
[0027] 上記エレクトロスピユング法におけるノズル 1の吐出口径は、特に限定されるもので はないが、 300〜500 /i mの範囲が好ましい。ノズノレ 1の吐出口径が 300 /i m未満でも、 500 μ mを超えても、良好な高分子材料又はカーボンブラック分散高分子材料のナノ ファイバーが得られなレ、ことがある。
[0028] 上記高分子材料含有溶液は、高分子材料と溶媒とからなる。一方、上記カーボン ブラック分散高分子材料含有溶液は、高分子材料と、カーボンブラックと、溶媒とから なる。ここで、高分子材料としては、従来炭素繊維の原料として用いられている高分 子材料を使用することができ、具体的には、ポリアクリロニトリル (PAN)、セルロース、 レーヨン、ポリカルボジイミド、ポリ酢酸ビニル、ポリビュルアルコール、ポリスチレン、 ポリアクリル酸等が挙げられる。また、上記溶媒は、上記高分子材料の種類に応じて 適宜選択され、例えば、 Ν,Ν-ジメチルホルムアミド、ホノレムアミド、ジメチルスルホキ シド、ジォキサン、メタノール及びエタノール等のアルコール類、アセトン及びメチル ェチルケトン等のケトン類、ベンゼン、トルエン、キシレン、テトラヒドロフラン等が挙げ られ、高分子材料が可溶であれば、水を使用することもできる。更に、上記カーボン ブラックは、特に限定されるものではなぐ各種グレードのものを使用することができる
[0029] 上記高分子材料含有溶液及び上記カーボンブラック分散高分子材料含有溶液中 の高分子材料の濃度は、特に限定されるものではないが、 5〜 10質量%の範囲が好 ましい。溶液中の高分子材料の濃度カ^質量%未満では、原料溶液の粘度が低すぎ て、良好なファイバーの形成が困難であり、 10質量%を超えると、逆に原料溶液の粘 度が高すぎて作業性が悪ぐまた、良好なファイバーの形成が難しい。 [0030] また、上記カーボンブラック分散高分子材料含有溶液中のカーボンブラックの濃度 は、特に限定されるものではなレ、が、 0.01〜80質量%の範囲が好ましレ、。溶液中の力 一ボンブラックの濃度が 0.01質量%未満では、マイクロ波の吸収を充分に得ることが できず、加熱体としての役割を担うことが困難であり、 80質量%を超えると、高粘度と なりファイバー形成が困難 (エレクトルスピユング不可能)である。
[0031] 次に、本発明の第 1の炭素繊維の製造方法では、ドラム 2等の上に形成された高分 子材料の繊維状物を焼成して炭素繊維を得る。ここで、焼成は、非酸化性雰囲気中 で行うことが好ましぐ非酸化性雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリ ゥム雰囲気等を挙げることができ、場合によっては水素雰囲気とすることもできる。な お、非酸化性雰囲気は、繊維状の高分子材料が完全に酸化されない限り、少量の 酸素を含んでもよい。また、焼成条件としては、特に限定されるものではないが、 500 〜3000°Cの温度範囲で、 0.5〜6時間焼成することが好ましい。
[0032] また、本発明の第 2の炭素繊維の製造方法では、次に、ドラム 2等の上に形成され たカーボンブラック分散高分子材料の繊維状物にマイクロ波を照射し、該繊維状物 を焼成して炭素繊維を得る。本発明の第 2の炭素繊維の製造方法では、マイクロ波 でカーボンブラックを加熱し、該カーボンブラックが高分子材料を内部から加熱する ため、高分子材料を高速加熱することができる。そのため、本発明の第 2の炭素繊維 の製造方法によれば、短時間で高分子材料を焼成し、高い生産性で炭素繊維を製 造することができる。ここで、使用するマイクロ波の波長は、 0.1〜100cmの範囲が好ま しぐ周波数は、 300MHz〜30GHzの範囲が好ましレ、。また、照射条件としては、特に 限定されるものではないが、アーキングの発生を抑えるために、 28GHz等の高周波で 、 1分〜 3時間照射することが好ましい。また、カーボンペーパー、高分子材料の酸化 を生じさせないために、非酸化性雰囲気下で照射する、或いは、減圧下で照射を行 うことが好ましい。
[0033] 上記のようにして得られる炭素繊維は、繊維径が小さいため、高表面積であり、また 、導電性にも優れる。ここで、該炭素繊維は、好ましくは、直径が 100〜3000nmであり 、長さが 0.1〜10 z mであり、表面抵抗が 106〜10— 2 Ωであり、残炭率が 10〜90%であ る。 [0034] 上記の炭素繊維の製造方法においては、高分子材料含有溶液又はカーボンブラ ック分散高分子材料含有溶液をエレクトロスピユング法により、支持体、ドラム又はド ラム上に配設された支持体に向けて噴射するが、ここで、高分子材料含有溶液又は カーボンブラック分散高分子材料含有溶液を多孔質支持体上に噴射することで、多 孔質支持体—炭素繊維複合体を製造することができる。また、上記エレクトロスピニ ング法における諸条件を適宜調製することで、複合体の炭素繊維部分の空隙率を調 整すること力 Sできる。
[0035] 上記支持体及びドラムは、良導電性であることを要し、ドラムの材質としては、鉄、ス テンレス、アルミニウム等の金属等が挙げられ、支持体の材質としては、金属、グラフ アイト、透明導電膜の付いたガラス基板やフィルム等が挙げられる。また、上記支持 体としては、多孔質支持体が好ましぐ該多孔質支持体としては、カーボンペーパー 、カーボン不織布、カーボンクロス、カーボンネット及びメッシュ状カーボン等が挙げ られ、これらの中でも、カーボンペーパーが好ましい。
[0036] 本発明の触媒構造体は、上述した多孔質支持体 炭素繊維複合体の炭素繊維に 金属、好ましくは金属の微粒子を担持してなる。該触媒構造体は、固体高分子型燃 料電池用電極の他、水素化反応等の種々の化学反応の触媒として用いることができ る。ここで、複合体に担持される金属としては、貴金属が好ましぐ Ptが特に好ましレ、 。なお、本発明においては、 Ptを単独で用いてもよいし、 Ru等の他の金属との合金と して用いてもよい。金属として Ptを用い、本発明の触媒構造体を固体高分子型燃料 電池の電極として用いることで、 100°C以下の低温でも水素を高効率で酸化すること ができる。また、 Ptと Ru等の合金を用いることで、 C〇による Ptの被毒を防止して、触 媒の活性低下を防止することができる。なお、上記複合体の炭素繊維上に担持され る金属が微粒子状の場合、その粒径は、 0.5〜100nmの範囲が好ましぐ l〜50nmの 範囲が更に好ましい。また、上記金属は、繊維状、ワイヤー状、薄膜状でもよい。該 金属の担持率は、複合体の炭素繊維の投影面積 lcm2に対して 0.01〜lmgの範囲が 好ましい。ここで、上記金属の炭素繊維への担持法としては、特に限定されるもので はなぐ例えば、含浸法、電気メツキ法(電解還元法)、無電解メツキ法、スパッタ法等 力 S挙げられる。また、複数種の金属を炭素繊維に担持した後、酸及び/又はアルカリ 等で担持された金属の一部を溶解させて、担持された金属の表面積を拡大させても よい。
[0037] 本発明の固体高分子型燃料電池用電極は、上記触媒構造体、即ち、上述した複 合体の炭素繊維に金属を担持してなり、該電極は、ガス拡散層と触媒層とを備える。 ここで、本発明の固体高分子型燃料電池用電極においては、上記複合体の多孔質 支持体がガス拡散層に相当し、金属が担持された炭素繊維が触媒層に相当する。 本発明の固体高分子型燃料電池用電極は、上述した高表面積の多孔質支持体一 炭素繊維複合体が用いられており、その高表面積な炭素繊維に金属が担持されて いるため、固体高分子電解質膜と触媒層とガスとの三相界面における電気化学反応 の反応場が大幅に拡大されており、触媒の利用率が高ぐ触媒層の触媒活性が高い
[0038] 上記触媒層には、高分子電解質を含浸させることが好ましぐ該高分子電解質とし ては、イオン伝導性のポリマーを使用することができ、該イオン伝導性のポリマーとし ては、スルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸等のイオン交換基を有する ポリマーを挙げることができ、該ポリマーはフッ素を含んでも、含まなくてもよい。該ィ オン伝導性のポリマーとして、具体的には、ナフイオン (登録商標)等のパーフルォロ カーボンスルホン酸系ポリマー等が好ましい。該高分子電解質の含浸量は、触媒層 の炭素繊維 100質量部に対して 10〜500質量部の範囲が好ましい。なお、触媒層の 厚さは、特に限定されるものではないが、 0.1〜100 z mの範囲が好ましレ、。また、触 媒層の金属担持量は、前記担持率と触媒層の厚さにより定まり、 0.001〜 8mgん m2 の範囲が好ましい。
[0039] 上記ガス拡散層は、上記触媒層へ水素ガス或いは、酸素や空気等の酸化剤ガスを 供給し、発生した電子の授受を行うための層であり、ガスの拡散層としての機能と集 電体としての機能を担う。
[0040] 本発明の固体高分子型燃料電池は、上記固体高分子型燃料電池用電極を備える ことを特徴とする。以下に、本発明の固体高分子型燃料電池を図 2を参照しながら詳 細に説明する。図示例の固体高分子型燃料電池は、膜電極接合体 (MEA) 11とそ の両側にそれぞれ位置するセパレータ 12とを備える。膜電極接合体 (MEA) 11は、 固体高分子電解質膜 13とその両側に位置する燃料極 14A及び空気極 14Bとからな る。燃料極 14Aでは、 2H→4H+ + 4e—で表される反応が起こり、発生した H+は固体 高分子電解質膜 13を経て空気極 14Bに至り、また、発生した e—は外部に取り出され て電流となる。一方、空気極 14Bでは、 O +4H+ + 4e—→2H Oで表される反応が起 こり、水が発生する。燃料極 14A及び空気極 14Bの少なくとも一方は、上述した本発 明の固体高分子型燃料電池用電極である。また、燃料極 14A及び空気極 14Bは、 それぞれ触媒層 15及びガス拡散層 16からなり、触媒層 15が固体高分子電解質膜 1 3に接触するように配置されてレ、る。
[0041] ここで、本発明の固体高分子型燃料電池においては、燃料極 14A及び空気極 14 Bの少なくとも一方に、上記多孔質支持体—炭素繊維複合体に金属を担持してなる 本発明の固体高分子型燃料電池用電極が用いられるため、固体高分子電解質膜 1 3と触媒層 15とガスとの三相界面での電気化学反応の反応場が非常に大きぐその 結果、固体高分子型燃料電池の発電効率が大幅に改善されている。
[0042] なお、上記固体高分子電解質膜 13としては、イオン伝導性のポリマーを使用するこ とができ、該イオン伝導性のポリマーとしては、上記触媒層に含浸させることが可能な 高分子電解質として例示したものを用いることができる。また、セパレータ 12としては 、表面に燃料、空気及び生成した水等の流路(図示せず)が形成された通常のセパ レータを用いることができる。
[0043] <実施例 >
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例 に何ら限定されるものではない。
[0044] (実施例 1)
市販の 35wt%ポリアクリル酸水溶液 [アルドリッチ製]を希釈し、 10wt%高分子材料 含有溶液を調製した。この高分子材料含有溶液を用いて、図 1に示すエレクトロスピ ユング法(エレクトロスピユング条件: 印加電圧: 20kV、キヤピラリー先端と基板との 距離: 15cm)により、下記条件でカーボンペーパー [東レ製]上にナノファイバーの堆 積層を形成させた。得られた膜を SEMで観察したところ、繊維状ポリアクリル酸が絡 み合った状態で得られていることが確認できた。この堆積層をカーボンペーパーごと Ar雰囲気下 7°C/分の昇温速度で 900°Cまで加熱し、その後、 900°Cで 1時間保持し て焼成処理した。得られた焼成物を SEMで観察したところ、カーボンペーパーを構 成している炭素繊維上に直径力 〜 2 μ mの炭素繊維が焼成前とほとんど同形状で 得られていることを確認した。
[0045] 次に、 3wt%の塩化白金酸水溶液中に上記炭素繊維を表面に有するカーボンぺー パーを作用極として設置し、対極として白金板を使用し、室温にて 30mAん m2の定電 流で電気メツキを 25秒間行い、炭素繊維上に白金を析出させ、白金担持量 0.4mgん m2の触媒構造体をカーボンペーパー上に形成した。
[0046] 上記カーボンペーパー上に形成した触媒構造体に、 5wt%のナフイオン (登録商標 )溶液を塗布した後、乾燥して、カーボンペーパー上に触媒層を形成した。次に、ナ フイオン (登録商標)からなる固体高分子電解質膜 (膜厚 175 μ πι)の両面に上記触媒 層が接触するように触媒層付きカーボンペーパーをそれぞれ配置し、ホットプレスに より膜電極接合体を作製した。該膜電極接合体をエレクトロケム社製の試験セル (EF C25— 01SP)に組込み燃料電池を作製した。該燃料電池の電圧 電流特性を、水 素 300cc/分、酸素 300cc/分、セル温度 80°C、加湿温度 80°Cの条件で測定した。巿 販品の結果と共に、結果を図 3に示す。結果、白金担持量が少ないにもかかわらず、 市販品と同等レベルの性能が得られた。
[0047] (実施例 2)
市販の 35wt%ポリアクリル酸水溶液 [アルドリッチ製]を希釈すると共に市販のカー ボンブラックを分散させ、 10wt%のポリアクリル酸と 20wt%のカーボンブラックを含む 高分子材料含有溶液を調製した。この高分子材料含有溶液を用いて、図 1に示すェ レクトロスピユング法(エレクトロスピユング条件: 印加電圧: 20kV、キヤピラリー先 端と基板との距離: 15cm)により、下記条件でカーボンペーパー [東レ製]上にナノフ アイバーの堆積層を形成させた。得られた膜を SEMで観察したところ、繊維状ポリア クリル酸が絡み合った状態で得られていることが確認できた。この堆積層をカーボン ペーパーごと減圧条件下で 28GHzのマイクロ波を 1時間照射して焼成処理した。得ら れた焼成物を SEMで観察したところ、カーボンペーパーを構成している炭素繊維上 に直径カ^〜 2 μ mの炭素繊維が焼成前とほとんど同形状で得られていることを確認 した。
[0048] 次に、 3wt%の塩化白金酸水溶液中に上記炭素繊維を表面に有するカーボンぺー パーを作用極として設置し、対極として白金板を使用し、室温にて 30mAん m2の定電 流で電気メツキを 25秒間行い、炭素繊維上に白金を析出させ、白金担持量 0.4mgん m2の触媒構造体をカーボンペーパー上に形成した。
[0049] 上記カーボンペーパー上に形成した触媒構造体に、 5wt%のナフイオン (登録商標 )溶液を塗布した後、乾燥して、カーボンペーパー上に触媒層を形成した。次に、ナ フイオン (登録商標)からなる固体高分子電解質膜 (膜厚 175 μ ΐη)の両面に上記触媒 層が接触するように触媒層付きカーボンペーパーをそれぞれ配置し、ホットプレスに より膜電極接合体を作製した。該膜電極接合体をエレクトロケム社製の試験セル (EF C25— 01SP)に組込み燃料電池を作製した。該燃料電池の電圧 電流特性を、水 素 300cc/分、酸素 300cc/分、セル温度 80°C、加湿温度 80°Cの条件で測定した。巿 販品の結果と共に、結果を図 4に示す。その結果、市販品と同等レベルの性能が得 られることが確認された。

Claims

請求の範囲
[1] エレクトロスピユング法により高分子材料含有溶液を、支持体、ドラム又はドラム上 に配設された支持体に向けて噴射して、該支持体、ドラム又はドラム上に配設された 支持体上に前記高分子材料からなる繊維状物の堆積層を形成する工程と、 前記高分子材料からなる繊維状物の堆積層を焼成して、炭素繊維を生成させるェ 程とを含む炭素繊維の製造方法。
[2] 前記高分子材料からなる繊維状物の堆積層の焼成を非酸化性雰囲気中で行うこと を特徴とする請求項 1に記載の炭素繊維の製造方法。
[3] エレクトロスピユング法により、カーボンブラックを分散させた高分子材料含有溶液 を、支持体、ドラム又はドラム上に配設された支持体に向けて噴射して、該支持体、ド ラム又はドラム上に配設された支持体上にカーボンブラックが分散した高分子材料か らなる繊維状物の堆積層を形成する工程と、
前記カーボンブラックが分散した高分子材料からなる繊維状物の堆積層にマイクロ 波を照射し、該堆積層中の高分子材料を焼成して炭素繊維を生成させる工程とを含 む炭素繊維の製造方法。
[4] 前記支持体が多孔質支持体であることを特徴とする請求項 1又は 3に記載の炭素 繊維の製造方法。
[5] 前記多孔質支持体がカーボンペーパーであることを特徴とする請求項 4に記載の 炭素繊維の製造方法。
[6] 請求項 1〜5のいずれかに記載の方法で製造された炭素繊維。
[7] エレクトロスピユング法により高分子材料含有溶液を多孔質支持体に向けて噴射し て、該多孔質支持体上に前記高分子材料力らなる繊維状物の堆積層を形成するェ 程と、
前記高分子材料からなる繊維状物の堆積層を焼成して、前記多孔質支持体上に 炭素繊維を生成させる工程とを含む多孔質支持体 炭素繊維複合体の製造方法。
[8] 前記高分子材料からなる繊維状物の堆積層の焼成を非酸化性雰囲気中で行うこと を特徴とする請求項 7に記載の多孔質支持体 炭素繊維複合体の製造方法。
[9] カーボンブラックを分散させた高分子材料含有溶液をエレクトロスピニング法により 多孔質支持体に向けて噴射して、該多孔質支持体上にカーボンブラックが分散した 高分子材料からなる繊維状物の堆積層を形成する工程と、
前記カーボンブラックが分散した高分子材料からなる繊維状物の堆積層にマイクロ 波を照射し、該堆積層中の高分子材料を焼成して前記多孔質支持体上に炭素繊維 を生成させる工程とを含む多孔質支持体一炭素繊維複合体の製造方法。
[10] 前記多孔質支持体がカーボンペーパーであることを特徴とする請求項 7又は 9に記 載の多孔質支持体一炭素繊維複合体の製造方法。
[11] 請求項 7〜: 10のいずれかに記載の方法で製造された多孔質支持体 炭素繊維複 合体。
[12] 請求項 11に記載の多孔質支持体 炭素繊維複合体の炭素繊維に金属を担持し たことを特徴とする触媒構造体。
[13] 前記金属が少なくとも Ptを含むことを特徴とする請求項 12に記載の触媒構造体。
[14] 請求項 12又は 13に記載の触媒構造体からなる固体高分子型燃料電池用電極。
[15] 請求項 14に記載の電極を備えた固体高分子型燃料電池。
PCT/JP2005/021114 2004-11-19 2005-11-17 炭素繊維及び多孔質支持体-炭素繊維複合体及びそれらの製造方法、並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池 WO2006054636A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/719,408 US20090142647A1 (en) 2004-11-19 2005-11-17 Carbon fiber, porous support-carbon fiber composite and method for producing the same as well as catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell
JP2006545125A JPWO2006054636A1 (ja) 2004-11-19 2005-11-17 炭素繊維及び多孔質支持体−炭素繊維複合体及びそれらの製造方法、並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池
EP05806980A EP1813701A1 (en) 2004-11-19 2005-11-17 Carbon fiber, porous support-carbon fiber composite, process for producing them, catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004335732 2004-11-19
JP2004335714 2004-11-19
JP2004-335714 2004-11-19
JP2004-335732 2004-11-19

Publications (1)

Publication Number Publication Date
WO2006054636A1 true WO2006054636A1 (ja) 2006-05-26

Family

ID=36407174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021114 WO2006054636A1 (ja) 2004-11-19 2005-11-17 炭素繊維及び多孔質支持体-炭素繊維複合体及びそれらの製造方法、並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池

Country Status (4)

Country Link
US (1) US20090142647A1 (ja)
EP (1) EP1813701A1 (ja)
JP (1) JPWO2006054636A1 (ja)
WO (1) WO2006054636A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214824A (ja) * 2007-03-07 2008-09-18 Toyobo Co Ltd カーボンナノファイバーシート
JP2008270807A (ja) * 2007-04-16 2008-11-06 Korea Inst Of Science & Technology 超極細炭素繊維上に堆積された金属酸化物からなるスーパーキャパシタ用電極およびその製造方法
WO2009069505A1 (ja) * 2007-11-30 2009-06-04 Toyota Jidosha Kabushiki Kaisha 金属微粒子担持カーボンナノファイバーの製造方法
WO2009075357A1 (ja) * 2007-12-13 2009-06-18 Asahi Glass Company, Limited 固体高分子形燃料電池用電極、膜電極接合体および触媒層の製造方法
JP2009208061A (ja) * 2008-02-06 2009-09-17 Gunma Univ 炭素触媒及びこの炭素触媒を含むスラリー、炭素触媒の製造方法、ならびに、炭素触媒を用いた燃料電池、蓄電装置及び環境触媒
JP2012507638A (ja) * 2008-11-06 2012-03-29 インダストリー ファウンデーション オブ チョンナム ナショナル ユニバーシティ スキン−コア構造を有する炭素ナノ繊維、その製造方法、および前記炭素ナノ繊維を含む製品
EP2485308A1 (en) 2011-02-07 2012-08-08 Japan Vilene Company, Ltd. Water control sheet, gas diffusion sheet, membrane-electrode assembly and polymer electrolyte fuel cell
JP2014098218A (ja) * 2012-11-14 2014-05-29 Industrial Technology Research Institute 燃料電池、炭素複合構造、およびその作製方法
US8808609B2 (en) 2010-01-21 2014-08-19 Tec One Co., Ltd. Process of making a carbon fiber nonwoven fabric
JP2015176648A (ja) * 2014-03-13 2015-10-05 旭化成イーマテリアルズ株式会社 樹脂付電極層、樹脂付電極複合体及びレドックスフロー二次電池
JP2015186923A (ja) * 2015-05-25 2015-10-29 財團法人工業技術研究院Industrial Technology Research Institute 燃料電池および炭素複合構造
US9180649B2 (en) 2011-07-13 2015-11-10 Industrial Technology Research Institute Fuel cells, carbon composite structures and methods for manufacturing the same
CN106537668A (zh) * 2016-04-04 2017-03-22 太克万株式会社 碳纤维、碳纤维材料制造方法、电气设备、二次电池和产品
WO2017175401A1 (ja) * 2016-04-04 2017-10-12 テックワン株式会社 炭素繊維、炭素繊維材製造方法、電気デバイス、二次電池、及び製品

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428209B (zh) * 2007-11-08 2010-12-01 北京化工大学 纳米纤维负载二氧化钛光催化剂及其制备方法
EP2241658B1 (en) * 2009-04-15 2012-06-20 Korea Advanced Institute of Science and Technology Fabrication method for porous carbon fibers
JP5552904B2 (ja) * 2010-05-28 2014-07-16 三菱レイヨン株式会社 ナノ炭素含有繊維及びナノ炭素構造体繊維の製造方法並びにそれらの方法で得られたナノ炭素含有繊維及びナノ炭素構造体繊維
CN102260930B (zh) * 2011-06-22 2015-01-07 东华大学 一种收集取向纳米纤维装置及方法
KR101392227B1 (ko) * 2013-03-21 2014-05-27 한국에너지기술연구원 고분자 나노섬유를 포함하는 탄소섬유 웹
CN104562232A (zh) * 2015-01-09 2015-04-29 苏州大学 一种制备有序纳米纤维的静电纺丝装置
US20170200955A1 (en) * 2016-01-08 2017-07-13 Ford Global Technologies, Llc Carbon Nanofiber Catalyst Substrate
EP3246436A1 (en) 2016-05-19 2017-11-22 DWI - Leibniz-Institut für Interaktive Materialien e.V. Process for the preparation of highly porous carbon fibers by fast carbonization of carbon precursor fibers
US11043338B2 (en) * 2017-11-09 2021-06-22 Korea Research Institute Of Chemical Technology Manufacturing method of porous composite electrode and organic removal method of porous composite electrode
CN107988713B (zh) * 2017-12-18 2020-06-30 中国科学院山西煤炭化学研究所 利用煤炭直接液化残渣基沥青烯类物质制备无纺布的方法
CN115367548B (zh) * 2022-07-27 2024-06-11 浙江大学 一种大规模微细碳纤维分散收集与二次输送装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0047795A2 (de) * 1980-09-15 1982-03-24 Firma Carl Freudenberg Elektrostatisch ersponnene Faser aus einem polymeren Werkstoff
US6308509B1 (en) * 1997-10-10 2001-10-30 Quantum Group, Inc Fibrous structures containing nanofibrils and other textile fibers
WO2004087411A1 (ja) * 2003-03-31 2004-10-14 Oji Paper Co., Ltd. 積層体、記録材料及びそれらの製造方法
JP2004322440A (ja) * 2003-04-24 2004-11-18 Oji Paper Co Ltd 積層体及びその製造方法
WO2005028719A1 (ja) * 2003-09-19 2005-03-31 Teijin Limited 繊維状活性炭およびこれよりなる不織布

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0047795A2 (de) * 1980-09-15 1982-03-24 Firma Carl Freudenberg Elektrostatisch ersponnene Faser aus einem polymeren Werkstoff
US6308509B1 (en) * 1997-10-10 2001-10-30 Quantum Group, Inc Fibrous structures containing nanofibrils and other textile fibers
WO2004087411A1 (ja) * 2003-03-31 2004-10-14 Oji Paper Co., Ltd. 積層体、記録材料及びそれらの製造方法
JP2004322440A (ja) * 2003-04-24 2004-11-18 Oji Paper Co Ltd 積層体及びその製造方法
WO2005028719A1 (ja) * 2003-09-19 2005-03-31 Teijin Limited 繊維状活性炭およびこれよりなる不織布

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANIOKA A.: "Nanofiber Technology.", JOURNAL OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY., vol. 59, no. 1, 2003, pages 3 - 7, XP002999339 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214824A (ja) * 2007-03-07 2008-09-18 Toyobo Co Ltd カーボンナノファイバーシート
JP2008270807A (ja) * 2007-04-16 2008-11-06 Korea Inst Of Science & Technology 超極細炭素繊維上に堆積された金属酸化物からなるスーパーキャパシタ用電極およびその製造方法
WO2009069505A1 (ja) * 2007-11-30 2009-06-04 Toyota Jidosha Kabushiki Kaisha 金属微粒子担持カーボンナノファイバーの製造方法
US8404174B2 (en) 2007-11-30 2013-03-26 Toyota Jidosha Kabushiki Kaisha Method for producing carbon nanofiber supporting metal fine particle
WO2009075357A1 (ja) * 2007-12-13 2009-06-18 Asahi Glass Company, Limited 固体高分子形燃料電池用電極、膜電極接合体および触媒層の製造方法
JPWO2009075357A1 (ja) * 2007-12-13 2011-04-28 旭硝子株式会社 固体高分子形燃料電池用電極、膜電極接合体および触媒層の製造方法
JP2009208061A (ja) * 2008-02-06 2009-09-17 Gunma Univ 炭素触媒及びこの炭素触媒を含むスラリー、炭素触媒の製造方法、ならびに、炭素触媒を用いた燃料電池、蓄電装置及び環境触媒
JP2012507638A (ja) * 2008-11-06 2012-03-29 インダストリー ファウンデーション オブ チョンナム ナショナル ユニバーシティ スキン−コア構造を有する炭素ナノ繊維、その製造方法、および前記炭素ナノ繊維を含む製品
US8808609B2 (en) 2010-01-21 2014-08-19 Tec One Co., Ltd. Process of making a carbon fiber nonwoven fabric
EP2485308A1 (en) 2011-02-07 2012-08-08 Japan Vilene Company, Ltd. Water control sheet, gas diffusion sheet, membrane-electrode assembly and polymer electrolyte fuel cell
US8617751B2 (en) 2011-02-07 2013-12-31 Japan Vilene Company, Ltd. Water control sheet, gas diffusion sheet, membrane-electrode assembly and polymer electrolyte fuel cell
US9180649B2 (en) 2011-07-13 2015-11-10 Industrial Technology Research Institute Fuel cells, carbon composite structures and methods for manufacturing the same
JP2014098218A (ja) * 2012-11-14 2014-05-29 Industrial Technology Research Institute 燃料電池、炭素複合構造、およびその作製方法
JP2015176648A (ja) * 2014-03-13 2015-10-05 旭化成イーマテリアルズ株式会社 樹脂付電極層、樹脂付電極複合体及びレドックスフロー二次電池
JP2015186923A (ja) * 2015-05-25 2015-10-29 財團法人工業技術研究院Industrial Technology Research Institute 燃料電池および炭素複合構造
CN106537668A (zh) * 2016-04-04 2017-03-22 太克万株式会社 碳纤维、碳纤维材料制造方法、电气设备、二次电池和产品
JP6142332B1 (ja) * 2016-04-04 2017-06-07 テックワン株式会社 炭素繊維、炭素繊維材製造方法、電気デバイス、二次電池、及び製品
WO2017175401A1 (ja) * 2016-04-04 2017-10-12 テックワン株式会社 炭素繊維、炭素繊維材製造方法、電気デバイス、二次電池、及び製品
WO2017175262A1 (ja) * 2016-04-04 2017-10-12 テックワン株式会社 炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池
CN106537668B (zh) * 2016-04-04 2018-07-10 太克万株式会社 碳纤维、碳纤维材料制造方法、电气设备、二次电池和产品

Also Published As

Publication number Publication date
US20090142647A1 (en) 2009-06-04
JPWO2006054636A1 (ja) 2008-05-29
EP1813701A1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2006054636A1 (ja) 炭素繊維及び多孔質支持体-炭素繊維複合体及びそれらの製造方法、並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池
JP5648785B2 (ja) 燃料電池用電極
JP4907163B2 (ja) 燃料電池用電極、これを備えた燃料電池、及び燃料電池用電極の製造方法
JP5320579B2 (ja) ガス拡散電極及びその製造方法、膜電極接合体及びその製造方法、燃料電池部材及びその製造方法、燃料電池、蓄電装置及び電極材
JP5005015B2 (ja) 燃料電池用電極、これを含む燃料電池システム及び燃料電池用電極の製造方法
KR100715155B1 (ko) 나노 복합체 탄소섬유 지지체를 이용한 연료전지용 전극촉매의 제조방법
CN105261767A (zh) 纳米碳掺杂多孔纤维单电极、膜电极及制备方法
KR20140000700A (ko) 나노섬유 전극 및 그 형성 방법
JP2004079244A (ja) 燃料電池用触媒及び燃料電池
JP2009295441A (ja) 炭素触媒、炭素触媒の製造方法、膜電極接合体、及び、燃料電池
JP5751239B2 (ja) 燃料電池用複合触媒の製造方法、及び燃料電池用複合触媒
US20190036129A1 (en) Carbon nanofiber catalyst substrate production process
JP2007099551A (ja) 炭素系複合材料及びその製造方法、固体高分子型燃料電池用電極並びに固体高分子型燃料電池
Huang et al. Fabrication of platinum nanowires by centrifugal electrospinning method for proton exchange membrane fuel cell
KR20110078573A (ko) 연료전지 전극 및 그 제조방법
Nakagawa et al. PAN based carbon nanofibers as an active ORR catalyst for DMFC
JP2009181783A (ja) 燃料電池用触媒電極
KR101493826B1 (ko) 연료 전지용 탄소 나노 파이버, 이를 포함한 나노 복합체,그 제조 방법 및 이를 채용한 연료 전지
JP5074662B2 (ja) 燃料電池用触媒層の製造方法及び製造装置
JP2005310697A (ja) 無機有機複合電解質膜の製造方法及び無機有機複合電解質膜並びにそれを用いる燃料電池
Abdelkareem et al. PAN based carbon nanofibers as an active ORR catalyst
JP2004119223A (ja) ガス拡散電極及びこれを用いた燃料電池
WO2005008815A1 (ja) 燃料電池、燃料電池用電極材およびその製造方法
CN108777310A (zh) 一种掺杂多孔金刚石载体的燃料电池催化剂及制备方法
KR102285750B1 (ko) 연료전지용 전이금속 도금된 다공성 탄소나노섬유 복합체의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006545125

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11719408

Country of ref document: US

Ref document number: 2005806980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005806980

Country of ref document: EP