WO2017175262A1 - 炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池 - Google Patents

炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池 Download PDF

Info

Publication number
WO2017175262A1
WO2017175262A1 PCT/JP2016/060987 JP2016060987W WO2017175262A1 WO 2017175262 A1 WO2017175262 A1 WO 2017175262A1 JP 2016060987 W JP2016060987 W JP 2016060987W WO 2017175262 A1 WO2017175262 A1 WO 2017175262A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
particles
mass
carbon
requirement
Prior art date
Application number
PCT/JP2016/060987
Other languages
English (en)
French (fr)
Inventor
北野 高広
Original Assignee
テックワン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テックワン株式会社 filed Critical テックワン株式会社
Priority to PCT/JP2016/060987 priority Critical patent/WO2017175262A1/ja
Priority to US15/308,649 priority patent/US20180187338A1/en
Priority to JP2016563488A priority patent/JP6142332B1/ja
Priority to PCT/JP2016/069494 priority patent/WO2017175401A1/ja
Priority to KR1020167031955A priority patent/KR101810439B1/ko
Priority to CN201680001506.1A priority patent/CN106537668B/zh
Publication of WO2017175262A1 publication Critical patent/WO2017175262A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/20Formation of filaments, threads, or the like with varying denier along their length
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/14Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to carbon fiber technology.
  • Carbon fiber is used in various fields. For example, it is used for a secondary battery (such as a lithium ion battery). In the secondary battery, for example, it is used as a conductive additive.
  • a secondary battery such as a lithium ion battery
  • the secondary battery for example, it is used as a conductive additive.
  • Patent Document 1 proposes the following manufacturing method.
  • the method includes a dispersion preparation step, an electrospinning step, and a modification step. An unpacking step is provided as necessary.
  • the dispersion preparation step is a step in which a dispersion containing pitch and resin is prepared.
  • the electrostatic spinning step is a step of electrostatic spinning the dispersion.
  • the modification step is a step in which the carbon fiber precursor (nonwoven fabric) is modified into carbon fibers.
  • the unpacking step is a step in which the nonwoven fabric (made of carbon fiber) that has undergone the modification step is unwound.
  • the following negative electrode active material has been proposed (Japanese Patent No. 5376530: Patent Document 3).
  • the negative electrode active material includes carbon fiber and a material capable of forming an alloy with lithium. The substance is provided on the surface of the carbon fiber.
  • the negative electrode active material is subjected to lithium ion storage / release treatment before being incorporated into a battery.
  • the carbon fibers of Patent Documents 1 and 2 have a large diameter portion and a small diameter portion.
  • the carbon fiber has a larger surface area than a carbon fiber having the same diameter.
  • the contact resistance between the fibers is large. It has also been found that the contact resistance between the fiber and the active material is large. It has been difficult to significantly improve the rate characteristics of the battery.
  • the first problem to be solved by the present invention is to provide a carbon fiber having low contact resistance and high conductivity.
  • the second problem to be solved by the present invention is to provide a carbon fiber suitable as an electrode material.
  • the present invention A carbon fiber characterized by satisfying the following [Requirement 1] to [Requirement 4] is proposed.
  • the carbon fiber has a projection. Projection height: 20 to 300 nm Number of projections: 3 to 25 per 1 ⁇ m carbon fiber (length along the carbon fiber)
  • the carbon fiber has carbon black.
  • the present invention A carbon fiber characterized by satisfying the above [Requirement 1] to [Requirement 4] and the following requirement [5] is proposed.
  • the present invention A carbon fiber characterized by satisfying the above [Requirement 1] to [Requirement 4] and the following requirement [6] is proposed.
  • the present invention proposes an electric device comprising the carbon fiber.
  • the present invention proposes a secondary battery comprising a negative electrode composed of the carbon fiber.
  • the present invention proposes a secondary battery including a positive electrode formed using the carbon fiber.
  • the present invention A method for producing a carbon fiber material comprising a dispersion preparation step, a spinning step, and a modification step
  • the dispersion preparation step is a step of preparing a dispersion containing polyvinyl alcohol, carbon black (primary particle size is 21 to 69 nm), and a solvent.
  • the spinning step is a step in which a nonwoven fabric made of a carbon fiber precursor is produced from the dispersion
  • the modification step proposes a method for producing a carbon fiber material, wherein the carbon fiber precursor is a step of modifying the carbon fiber precursor into a carbon fiber.
  • the present invention proposes a method for producing a carbon fiber material, wherein the carbon black is 5 to 200 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol.
  • the present invention proposes a method for producing a carbon fiber material, wherein the polyvinyl alcohol has a polymerization degree of 2200 to 4000 and a saponification degree of 75 to 90 mol%. .
  • This invention is the said carbon fiber material manufacturing method, Comprising: Furthermore, it comprises the unpacking process and the classification process,
  • the said unpacking process is a process in which a nonwoven fabric is unwound, and the said classification process is carbon fiber (
  • a carbon fiber with low contact resistance and high conductivity was obtained.
  • the carbon fiber of the present invention was used as a negative electrode active material for a lithium ion battery, the divergence between Si (silicon) particles and carbon fiber (conductive aid) was suppressed.
  • the carbon fiber of the present invention was used as a positive electrode active material of a lithium ion battery, the divergence between S (sulfur) particles and carbon fiber (conducting aid) was suppressed.
  • the first invention is carbon fiber.
  • the carbon fiber satisfies the following [Requirement 1] to [Requirement 4].
  • the following [Requirement 5] (or [Requirement 6]) is further satisfied.
  • the carbon fiber has a projection. Projection height: 20 to 300 nm Number of projections: 3 to 25 per 1 ⁇ m carbon fiber (length along the carbon fiber)
  • the carbon fiber has carbon black.
  • the capacity as a lithium ion battery negative electrode material is increased.
  • the capacity as a lithium ion battery positive electrode material is increased.
  • the Si particles (S particles) are not conductive.
  • the carbon fiber has carbon black (carbon black having conductivity). Therefore, the carbon fiber has conductivity.
  • the carbon fiber becomes a high-capacity active material. Since the carbon fiber has a fiber shape, it is easier to maintain conductivity with the surrounding substances than in the case of a spherical shape. Even if the volume change due to charging / discharging is large, the cycle characteristics are hardly deteriorated.
  • the second invention is a method for producing a carbon fiber material.
  • Carbon fiber includes carbon fiber.
  • Carbon fiber nonwovens are also included. Includes other carbon fiber products.
  • This method comprises a dispersion preparation step, a spinning step, and a modification step.
  • it further comprises a defibrating step.
  • a classification step is further provided.
  • the dispersion (dispersion obtained in the dispersion preparation step) contains carbon black (abbreviated as CB).
  • the dispersion contains polyvinyl alcohol (abbreviated as PVA).
  • the dispersion contains a solvent.
  • the dispersion preferably contains Si particles.
  • the dispersion preferably contains S particles.
  • the primary particle size of CB was 21 to 69 nm. Preferably, it was less than 69 nm. More preferably, it was 60 nm or less. More preferably, it was 55 nm or less.
  • the primary particle size (average primary particle size) is obtained, for example, by a specific surface area measurement method (gas adsorption method). It is calculated
  • the concentration of CB in the dispersion was preferably 20 to 200 g / L. More preferably, it was 30 g / L or more. More preferably, it was 100 g / L or less. However, when Si particles or S particles were contained, the amount of CB could be small. For example, it could be 20 g / L or less. That is, when Si particles or S particles are contained, the concentration of CB is preferably 1 to 100 g / L.
  • the PVA preferably had an average molecular weight (degree of polymerization) of 2200 to 4000. More preferably, it was 3000 or less.
  • the degree of polymerization was determined according to JIS K 6726. For example, 1 part PVA was dissolved in 100 parts water. The viscosity (30 ° C.) was determined with an Ostwald viscometer (relative viscometer). The degree of polymerization (P A ) was determined from the following formulas (1) to (3).
  • the PVA preferably had a saponification degree of 75 to 90 mol%. More preferably, it was 80 mol% or more.
  • the degree of saponification was determined according to JIS K 6726. For example, depending on the estimated degree of saponification, 1 to 3 parts of sample, 100 parts of water and 3 drops of phenolphthalein solution were added and completely dissolved. 25 ml of 0.5 mol / L NaOH aqueous solution was added and left for 2 hours after stirring. 25 ml of 0.5 mol / L HCl aqueous solution was added. Titration was performed with a 0.5 mol / L aqueous NaOH solution.
  • the saponification degree (H) was determined from the following formulas (1) to (3).
  • X 1 ⁇ (ab) ⁇ f ⁇ D ⁇ 0.06005 ⁇ / ⁇ S ⁇ (P / 100) ⁇ ⁇ 100 (1)
  • X 1 Amount of acetic acid corresponding to residual acetic acid group (%)
  • X 2 residual acetic acid group (mol%)
  • H Degree of saponification (mol%)
  • b Amount used of 0.5 mol / l NaOH solution in the blank test (ml)
  • f Factor of 0.5 mol / l NaOH solution
  • D Concentration of normal solution (0.1 mol / l or 0.5 mol / l)
  • S Sampling amount (g)
  • P Sample pure content (%)
  • the concentration of the PVA in the dispersion was preferably 50 to 200 g / L. More preferably, it was 60 g / L or more. More preferably, it was 150 g / L or less.
  • the CB was preferably 5 to 200 parts by mass with respect to 100 parts by mass of the PVA. More preferably, it was 10 parts by mass or more. More preferably, it was 100 parts by mass or less.
  • the solvent was preferably one or more (mixture) selected from the group of water and alcohol.
  • mixture selected from the group of water and alcohol.
  • water or alcohol was preferred. Water was the most preferred. Even when water is used, the combined use of other types of solvents is not prohibited. In the case of 30% by mass or less, there will be few problems.
  • the Si particles preferably had a particle size of 0.25 to 3 ⁇ m. More preferably, it was 0.3 ⁇ m or more. More preferably, it was 2.5 ⁇ m or less.
  • the S particles preferably had a particle size of 0.25 to 3 ⁇ m. More preferably, it was 0.3 ⁇ m or more. More preferably, it was 2.5 ⁇ m or less.
  • the particle size was determined by scanning electron microscope / energy dispersive X-ray spectroscopy (SEM-EDS).
  • the concentration of the Si particles was preferably 10 to 100 g / L. More preferably, it was 30 g / L or more. More preferably, it was 90 g / L or less.
  • the concentration of the S particles was preferably 10 to 100 g / L. More preferably, it was 30 g / L or more. More preferably, it was 90 g / L or less.
  • the viscosity of the dispersion liquid was preferably 10 to 10,000 mPa ⁇ S.
  • the viscosity is a viscosity measured by a coaxial double cylinder viscometer.
  • the dispersion preferably had a solid content concentration of 0.1 to 50% by mass.
  • the spinning step is a step in which the dispersion is spun.
  • a nonwoven fabric is obtained by this process.
  • This nonwoven fabric is a precursor of carbon fiber.
  • the spinning process was preferably a centrifugal spinning process.
  • the centrifugal spinning method with a disk rotational speed of 1000 to 100,000 rpm was preferred.
  • the modification step is a step in which the carbon fiber precursor (nonwoven fabric obtained in the spinning step) is modified to carbon fibers.
  • This process is basically a heating process.
  • the non-woven fabric non-woven fabric made of a carbon fiber precursor
  • the modification step preferably includes a resin removal step.
  • This resin removal step is a step in which the resin contained in the nonwoven fabric (nonwoven fabric obtained in the spinning step) is removed.
  • the resin removal step is, for example, a heating step.
  • This heating step is a step in which the non-woven fabric (non-woven fabric obtained in the spinning step) is heated, for example, in an oxidizing gas atmosphere.
  • the modification step preferably includes a carbonization step.
  • This carbonization step is a step in which a nonwoven fabric (particularly, the nonwoven fabric after the resin removal step) is carbonized.
  • the modification step preferably includes a graphitization step.
  • This graphitization step is a step in which a nonwoven fabric (particularly, the nonwoven fabric after the carbonization step) is graphitized.
  • the graphitization step is, for example, a heating step.
  • This heating step is a step in which a non-woven fabric (particularly, the non-woven fabric after the carbonization step) is heated, for example, in an inert atmosphere.
  • the said heating process is a heat_generation
  • the unpacking step is a step in which the nonwoven fabric is unwound. For example, it is a process in which a nonwoven fabric is pulverized. Or it is the process by which a nonwoven fabric is hit. Carbon fiber is obtained by the unpacking step.
  • the classification step is a step of obtaining carbon fibers having a predetermined shape.
  • the third invention is a member used for an electric device.
  • the member is configured using the carbon fiber.
  • the member is, for example, a battery electrode.
  • it is an electrode of a lithium ion secondary battery.
  • the electrode includes the carbon fiber (conductive aid).
  • it is a negative electrode of a lithium ion secondary battery.
  • the negative electrode includes a negative electrode active material (a negative electrode active material made of a carbon fiber material containing the Si particles).
  • it is a positive electrode of a lithium ion secondary battery.
  • the positive electrode includes a positive electrode active material (a positive electrode active material made of a carbon fiber material containing the S particles).
  • an electrode of a capacitor electric double layer capacitor).
  • an electrode of a lithium ion capacitor for example, an electrode of a lithium ion capacitor.
  • the fourth invention is an electrical device.
  • the electrical device includes the member.
  • the dispersion contains the PVA, the CB, and the solvent.
  • the PVA preferably had a degree of polymerization of 2200 to 4000 from the viewpoint of spinnability. More preferably, it was 3000 or less. Preferably, the saponification degree was 75 to 90 mol%. More preferably, it was 80 mol% or more.
  • the degree of polymerization was too small, the yarn was easily broken during spinning. If the degree of polymerization was too large, spinning was difficult. When the degree of saponification was too low, it was difficult to dissolve in water and spinning was difficult. When the degree of saponification was too large, the viscosity was high and spinning was difficult.
  • the dispersion liquid may be a vinyl resin (for example, polyvinyl alcohol copolymer, polyvinyl butyral (PVB), etc.), polyethylene oxide (PEO), acrylic resin (for example, polyacrylic acid (PAA), polymethyl methacrylate, if necessary.
  • a vinyl resin for example, polyvinyl alcohol copolymer, polyvinyl butyral (PVB), etc.
  • PEO polyethylene oxide
  • acrylic resin for example, polyacrylic acid (PAA), polymethyl methacrylate, if necessary.
  • PMMA polyacrylonitrile
  • PAN polyacrylonitrile
  • PVDF polyvinylidene difluoride
  • polymers derived from natural products eg, cellulose resin, cellulose resin derivatives (polylactic acid, chitosan, carboxymethyl cellulose) (CMC), hydroxyethyl cellulose (HEC), etc.), engineering plastic resin (polyethersulfone (PES), etc.), polyurethane resin (PU), polyamide resin (nylon), aromatic polyamide resin (aramid resin), Riesuteru resins, polystyrene resins, one or may contain two or more selected from the group of polycarbonate resin. The amount is in a range that does not impair the effects of the present invention.
  • the dispersion contains CB having a primary particle size (average primary particle size) of 21 nm to 69 nm.
  • CB having a primary particle size of less than 21 nm is used, the specific surface area of the obtained carbon fiber increases. However, the bulk density decreased. The solid content concentration of the dispersion was not high, and handling was difficult.
  • CB having a primary particle size exceeding 69 nm was used, the specific surface area of the obtained carbon fiber was reduced. Contact resistance was high.
  • the solvent is water, alcohol (eg, methanol, ethanol, propanol, butanol, isobutyl alcohol, amyl alcohol, isoamyl alcohol, cyclohexanol, etc.), ester (eg, ethyl acetate, butyl acetate, etc.), ether (eg, diethyl ether).
  • alcohol eg, methanol, ethanol, propanol, butanol, isobutyl alcohol, amyl alcohol, isoamyl alcohol, cyclohexanol, etc.
  • ester eg, ethyl acetate, butyl acetate, etc.
  • ether eg, diethyl ether
  • aprotic polar solvents eg, N, N′-dimethylformamide, dimethyl sulfoxide, acetonitrile, dimethylacetamide, etc.
  • halogenated hydrocarbons One type or two or more types selected from the group of acids (for example, chloroform, tetrachloromethane, hexafluoroisopropyl alcohol, etc.) and acids (acetic acid, formic acid, etc.) are used. From the environmental aspect, water or alcohol was preferable. Particularly preferred was water.
  • the dispersion preferably contains Si particles.
  • the dispersion preferably contains S particles.
  • the particles had a particle size (average particle size) of 0.25 to 3 ⁇ m. Large particles exceeding 3 ⁇ m may not enter the fiber during spinning. If it was too small, less than 0.25 ⁇ m, the production cost increased. In the case of metal silicon particles, there was a risk of reaction with water. The specific surface area increased and the reaction area also increased, making it unsuitable as a negative electrode active material for lithium ion batteries.
  • Si particles are substantially silicon simple substance.
  • the S particles are substantially simple sulfur.
  • the term “substantially” means that impurities contained in the process and cases where impurities are contained due to oxidation of the particle surface during storage are included.
  • the particle of the present invention is not limited as long as it is a particle containing silicon alone (or sulfur alone).
  • the particle surface may be coated with other components.
  • a structure in which silicon alone (or sulfur alone) is dispersed in particles made of other components may be used.
  • particles in which Si particles are coated with carbon are exemplified. Examples are particles in which Si particles are dispersed in SiO 2 .
  • Examples are particles in which S particles are coated with a surfactant.
  • the particle diameter of the composite particles may be within the above range.
  • Si component (or S component) contained in the carbon fiber is a simple substance or a compound can be determined by a known measurement method such as X-ray diffraction measurement (XRD).
  • the dispersion may contain carbon nanotubes (for example, single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), a mixture thereof) or the like as necessary from the viewpoint of strength and conductivity. good.
  • carbon nanotubes for example, single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), a mixture thereof) or the like as necessary from the viewpoint of strength and conductivity. good.
  • the dispersion contains a dispersant as necessary.
  • the dispersant is, for example, a surfactant.
  • the surfactant may be a low molecular weight one or a high molecular weight one.
  • the PVA and the CB are preferably in the following ratio.
  • the carbon content which remains after carbonization will decrease.
  • the CB is preferably 5 to 200 parts by mass (more preferably 10 to 100 parts by mass) with respect to 100 parts by mass of the PVA.
  • the concentration of the solid content is 0.1 to 50% by mass (more preferably 1 to 30% by mass, still more preferably 5 to 20% by mass).
  • the viscosity of the dispersion was too high, it was difficult to discharge the dispersion from the nozzle during spinning. On the other hand, if the viscosity is too low, spinning was difficult.
  • the viscosity of the dispersion (viscosity during spinning: the viscometer is a coaxial double cylindrical viscometer) is preferably 10 to 10000 mPa ⁇ S (more preferably 50 to 5000 mPa ⁇ S, more preferably 500 to 5000 mPa ⁇ S).
  • the dispersion preparation process includes, for example, a mixing process and a miniaturization process.
  • the mixing step is a step in which the PVA and the CB are mixed.
  • the miniaturization step is a step in which the CB is miniaturized.
  • the refinement process is a process in which a shearing force is applied to the CB. Thereby, the secondary aggregation of CB is solved. Either the mixing process or the miniaturization process may be performed first. It may be done at the same time.
  • the mixing step there are a case where both the PVA and the CB are powder, a case where one is a powder and the other is a solution (dispersion), and a case where both are solutions (dispersion). From the viewpoint of operability, it is preferable that the PVA and the CB are both solutions (dispersions).
  • a medialess bead mill is used.
  • a bead mill is used.
  • an ultrasonic irradiator is used.
  • a medialess bead mill is preferably used.
  • a bead mill is preferably used.
  • an ultrasonic irradiator is preferably used.
  • a bead mill is used because it is important to control the particle size of CB.
  • the conditions of this step I affect the diameter of the carbon fiber, the number of “undulations”, the size and number of convexities on the surface of the carbon fiber, the carbon component, and the ratio of Si particles (or S particles).
  • FIG. 1 is a schematic side view of a centrifugal spinning apparatus.
  • FIG. 2 is a schematic plan view of the centrifugal spinning apparatus.
  • reference numeral 1 denotes a rotating body (disk).
  • the disk 1 is a hollow body.
  • a nozzle (or hole) is provided on the wall surface of the disk 1.
  • An inside (hollow part) 2 (not shown) of the disk 1 is filled with the spinning dope.
  • the disk 1 is rotated at a high speed.
  • the spinning dope is stretched by centrifugal force.
  • the solvent is deposited on the collecting plate 3 while volatilizing.
  • the nonwoven fabric 4 is formed by this deposition.
  • the centrifugal spinning device may have a heating device for the disk 1. You may have a spinning solution continuous supply apparatus.
  • the centrifugal spinning device is not limited to that shown in FIGS.
  • the disk 1 may be a vertical type. Or the disk 1 may be fixed to the upper part.
  • the disk 1 may be a bell type disk or a pin type disk used in a known spray drying apparatus.
  • the collection plate 3 may be a continuous type instead of a batch type.
  • the collection plate 3 may be an inverted conical cylinder used in a known spray drying apparatus. Heating the entire solvent evaporation space is preferred because the solvent dries quickly.
  • the rotational speed (angular speed) of the disk 1 was preferably 1,000 to 100,000 rpm. More preferably, it was 5,000 to 50,000 rpm.
  • the burden on the device has increased. Therefore, preferably, it was set to 100,000 rpm or less.
  • the distance between the disk 1 and the collection plate 3 is too short, the solvent is difficult to evaporate. Conversely, if it is too long, the device will be larger than necessary.
  • the preferred distance also depends on the size of the device. When the diameter of the disk was 10 cm, the distance between the disk 1 and the collecting plate 3 was, for example, 20 cm to 3 m.
  • Centrifugal spinning could use a higher viscosity liquid (dispersion with a higher solid content concentration) than electrostatic spinning. Centrifugal spinning is less susceptible to humidity (temperature) than electrostatic spinning. Stable spinning was possible for a long time.
  • the centrifugal spinning method was highly productive. The centrifugal spinning method is a spinning method using centrifugal force. Therefore, the draw ratio during spinning is high. It was imagined for this reason, but the degree of orientation of the carbon particles in the fiber was high. High conductivity.
  • the obtained carbon fiber had a small diameter. There was little variation in fiber diameter. There was little contamination of metal powder. In the case of the nonwoven fabric, the surface area was large.
  • the nonwoven fabric obtained in this process is composed of a carbon fiber precursor.
  • the carbon fiber precursor is a mixture of PVA and CB.
  • a plurality of the nonwoven fabrics (made of carbon fiber precursors) may be laminated.
  • the laminated nonwoven fabric may be compressed with a roll or the like. The film thickness and density are appropriately adjusted by the compression.
  • Nonwoven fabric (made of carbon fiber precursor) is peeled off from the collector and handled. Alternatively, the nonwoven fabric is handled while adhering to the collector. Or the produced nonwoven fabric may be wound up with a stick
  • the conditions of this step II affect the diameter of the carbon fiber, the number of “swells”, the size and number of convexities on the surface of the carbon fiber, the carbon component, and the ratio of Si particles (or S particles).
  • a carbon fiber nonwoven fabric is obtained from the carbon fiber precursor nonwoven fabric. That is, the carbon fiber precursor is modified to carbon fiber.
  • the modification treatment is, for example, heat treatment.
  • the heat treatment is performed in an oxidizing gas atmosphere. By this heat treatment, the PVA constituting the carbon fiber precursor is removed. That is, carbon sources other than CB are removed.
  • This step is performed after the spinning step (step II).
  • the oxidizing gas in this step is a compound containing an oxygen atom or an electron acceptor compound.
  • the oxidizing gas is, for example, one or more selected from the group consisting of air, oxygen, halogen gas, nitrogen dioxide, ozone, water vapor, and carbon dioxide. Among these, air is preferable from the viewpoint of cost performance and rapid infusibilization at a low temperature.
  • a gas containing a halogen gas is, for example, fluorine, iodine, bromine or the like. Among them, fluorine is used. Or it is the mixed gas of the said component.
  • the temperature of the heat treatment was preferably 100 to 400 ° C. (more preferably 150 to 350 ° C.).
  • the heat treatment time was preferably 3 minutes to 24 hours (more preferably 5 minutes to 2 hours).
  • This process is performed in sheet format. Alternatively, it is continuously performed by roll-to-roll. Or it heat-processes in a roll state. Alternatively, it is carried out by filling the sheath into a lump. From the viewpoint of productivity, it is preferably a massive continuous heat treatment.
  • a weight reduction treatment is preferably performed to remove it.
  • This weight loss process is a heat treatment.
  • the heat treatment is performed under an inert gas atmosphere. Through this step, the PVA carbide is removed and the weight is reduced. This step is performed after the step III-1.
  • the inert gas in this step is a gas that does not chemically react with the infusible carbon fiber precursor during carbonization.
  • it is one or more selected from the group consisting of carbon monoxide, carbon dioxide, nitrogen, argon, krypton, and the like.
  • nitrogen gas is preferable from the viewpoint of cost.
  • the treatment temperature in this step was preferably 500 to 2000 ° C. (more preferably 600 to 1500 ° C.). At low temperatures below 500 ° C., it is difficult to lose weight. At high temperatures above 2000 ° C. graphitization occurs. However, when the graphitization process described later is performed, a temperature rise exceeding 2000 ° C. is allowed.
  • the treatment time in this step is preferably 5 minutes to 24 hours (more preferably 30 minutes to 2 hours).
  • Graphitization Preferably, a graphitization process is performed.
  • the graphitization treatment is preferably performed in an inert gas atmosphere.
  • This step is an important step when CB containing iron (impurities) is used as a raw material. Thereby, the iron content is removed.
  • the crystallinity of CB is improved and the conductivity is improved.
  • This step is preferably performed after the step III-2.
  • the inert gas is a gas that does not chemically react with the carbon fiber precursor during graphitization.
  • the inert gas is a gas that does not chemically react with the carbon fiber precursor during graphitization.
  • the carbon fiber precursor for example, carbon monoxide, carbon dioxide, argon, krypton and the like. Nitrogen gas is not preferred because it causes ionization.
  • the treatment temperature in this step was preferably 2000 to 3500 ° C. (more preferably 2300 to 3200 ° C.).
  • the treatment time was preferably 2 to 24 hours.
  • This step is performed by maintaining the temperature. In particular, it is carried out by filling the sheath and energizing the sheath.
  • the temperature is maintained by Joule heat generated by energization.
  • Graphitization is also possible by microwave heating. From the viewpoint of production cost, the graphitization treatment is preferably energization heating.
  • This step is a step of obtaining carbon fiber from the nonwoven fabric (made of carbon fiber) obtained in the above step.
  • This step is a step in which, for example, the nonwoven fabric obtained in Step II (or Step III-1, or Step III-2, or Step III-3) is pulverized. Fibers are obtained by the grinding. The nonwoven fabric is also unwound by hitting the nonwoven fabric. That is, a fiber is obtained.
  • a cutter mill for example, a cutter mill, a hammer mill, a pin mill, a ball mill, or a jet mill is used. Either a wet method or a dry method can be employed. However, when used for applications such as non-aqueous electrolyte secondary batteries, it is preferable to employ a dry method.
  • a medialess mill When a medialess mill is used, the fibers are prevented from being crushed. Therefore, it is preferable to use a medialess mill.
  • a cutter mill or an air jet mill is preferable.
  • This step is a step in which fibers of a desired size are selected from the fibers obtained in the step IV.
  • fibers of a desired size For example, carbon fiber that has passed through a sieve (aperture 20 to 300 ⁇ m) is used.
  • a sieve having a small mesh opening is used, the proportion of carbon fibers that are not used increases. This causes an increase in cost.
  • a sieve with a large opening is used, the proportion of carbon fibers used increases.
  • a method equivalent to a sieve may be used. For example, airflow classification (cyclone classification) may be used.
  • Carbon fibers satisfying the following requirements 1 to 4 have significant features.
  • the carbon fiber satisfying requirement 5 (or requirement 6) has a great feature.
  • Diameter of the carbon fiber 0.5 to 6.5 ⁇ m
  • Carbon fiber length 5 to 65 ⁇ m (Diameter of the carbon fiber) ⁇ (length of the carbon fiber) The diameter was preferably 0.8 ⁇ m or more. The diameter was preferably 5 ⁇ m or less. The length was preferably 10 ⁇ m or more. The length was preferably 40 ⁇ m or less.
  • the said diameter was calculated
  • the length was obtained from a SEM photograph of carbon fiber. That is, ten carbon fibers (carbon fibers satisfying the requirement 1) were randomly extracted from the SEM photograph of the carbon fibers, and the average length was obtained. When the number of carbon fibers is less than 10 (N), the average length is obtained from N carbon fibers.
  • “Swell” is applied to carbon fiber with fixed shape. It does not apply to fibers that are soft like single-walled carbon nanotubes (its shape can change at 25 ° C.).
  • the above “swell” is as follows.
  • the carbon fiber was photographed with a scanning electron microscope (SEM). A photographed two-dimensional image was observed.
  • SEM scanning electron microscope
  • the bent portion was regarded as “undulation”. That is, it is considered that the carbon fiber having the bent portion having the above characteristics has “swell”.
  • a bent portion not having the above characteristics is not regarded as “swell”.
  • FIG. 5 is a SEM photograph of carbon fiber.
  • FIG. 3 is a schematic view of the carbon fiber of FIG. In FIG. 3, reference numeral 5 is given to the “undulation (bent portion)” portion.
  • the number of “swells” of the carbon fiber was preferably 1 to 6 per 5 ⁇ m carbon fiber (length along the carbon fiber). More preferably, it was 3 or less.
  • the carbon fiber has a protrusion (protrusion: protrusion; see FIGS. 3 and 5).
  • the reference numeral 6 is marked on the protrusion (protrusion: protrusion).
  • Projection height 20 to 300 nm
  • the protrusion height was preferably 200 nm or less.
  • Number of the protrusions protrusions having a protrusion height of 20 to 300 nm constituted by the CB: 3 to 25 per 1 ⁇ m length of carbon fiber (length along the carbon fiber)
  • the number of protrusions is preferably It was 5 or more.
  • the number of the protrusions was preferably 23.5 or less. More preferably, it was 20 or less.
  • CB having an average primary particle size of 21 to 69 nm. This is because the particle size of CB was a major factor determining the height of the convexity of the carbon fiber surface.
  • the convexity was obtained from an SEM photograph of carbon fiber. That is, an SEM photograph having a magnification (3,000 to 10,000 times) at which the carbon fiber surface shape can be confirmed was used. In this photograph, the number of protrusions having the above characteristics was randomly measured five times in a length of 1 ⁇ m in the fiber length direction. And the average value was calculated.
  • the carbon component is substantially CB having a primary particle size of 21 to 69 nm. This is because the protrusion height is determined by the particle size of CB. “Substantially” means that carbon components other than those intentionally added, such as carbon components covering PVA carbides and metal silicon particles, are removed.
  • the carbon fiber has CB (carbon component).
  • Primary particle size of the CB 21 to 69 nm
  • the primary particle size was preferably 60 nm or less.
  • the primary particle size was determined with a transmission microscope (TEM). That is, ten particles having the above particle diameter were randomly measured in a TEM photograph at a magnification (10,000 to 100,000 times) at which the primary particle diameter of CB can be sufficiently confirmed. And the average particle diameter was computed. In the TEM photograph, when the number of particles having the above particle size is less than 10 (N), the average particle size of N particles is used.
  • the value of the primary particle size is a value of the primary particle size (21 to 69 nm) of CB used for preparing the dispersion. From the meaning of the primary particle size, this is natural.
  • the convex of “Requirement 3” is formed by combining the CB having the primary particle diameter.
  • the projection (projection height: 20 to 300 nm) 6 is composed of the CB.
  • the carbon fiber has Si particles (for example, metal silicon particles).
  • the amount of the Si particles was determined by SEM-EDS. That is, in the EDS spectrum (horizontal axis: X-ray energy (eV), vertical axis: X-ray count number), the amount of Si is obtained from the count numbers of carbon (0.277 eV) and silicon (1.739 eV). It was.
  • the size of the Si particles was preferably 0.25 to 3 ⁇ m.
  • the size was obtained by SEM-EDS. That is, the electron beam was manipulated by paying attention to the characteristic X-ray of Si (1.739 eV). X-ray mapping of silicon was performed. The size of the Si particles was determined from the obtained image.
  • the carbon fiber has S particles (sulfur particles).
  • the amount of S particles was determined by SEM-EDS. That is, in the EDS spectrum (horizontal axis: X-ray energy (eV), vertical axis: X-ray count), the amount of S particles is determined from the count of carbon (0.277 eV) and sulfur (2.307 eV). I was asked.
  • the size of the S particles was preferably 0.25 to 3 ⁇ m.
  • the size was obtained by SEM-EDS. That is, the electron beam was manipulated focusing on the characteristic X-ray (2.307 eV) of sulfur. X-ray mapping of sulfur was performed. The size of S particles was determined from the obtained image.
  • the carbon fiber is preferably a carbon fiber having the characteristics (requirements 1 to 4, or requirements 1 to 5, or requirements 1, 2, 3, 4, 6).
  • the carbon fiber which does not have the said characteristic may be contained.
  • the ratio is 0.6 or more. More preferably, the ratio is 0.7 or more. More preferably, the ratio is 0.8 or more. More preferably, the ratio is 0.9 or more.
  • the volume ratio is determined by a method such as electron microscope observation. From this viewpoint, it can be said that the diameter is an “average diameter”.
  • the length is an “average length”.
  • the particle diameter is “average particle diameter”.
  • the number of undulations is an “average value”.
  • the protrusion height is “average protrusion height”.
  • the number of the convexes is an “average value”.
  • the amount of the particles is an “average value”.
  • the particle size is an “average value”.
  • the carbon fiber is used for a member of an electric element (an electronic element is also included in the electric element).
  • an electric element is also included in the electric element.
  • members such as storage batteries, capacitors, and fuel cells.
  • the carbon fiber is applied to a storage battery electrode.
  • the storage battery include a lead storage battery, a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, a sodium sulfur battery, a redox flow battery, and a lithium ion capacitor.
  • a lithium ion battery is preferably a negative electrode (or a positive electrode).
  • a negative electrode active material (or a positive electrode active material) is preferable.
  • a conductive agent is preferable.
  • carbon fibers having only a carbon component are used as a conductive agent.
  • Carbon fiber containing Si (metallic silicon) particles is used as a negative electrode active material.
  • Carbon fiber containing S (sulfur) particles is used as a positive electrode active material.
  • a lithium ion battery is composed of various members (for example, a positive electrode, a negative electrode, a separator, and an electrolytic solution).
  • the positive electrode (or negative electrode) is configured as follows. That is, a mixture containing an active material (a positive electrode active material or a negative electrode active material), a conductive agent, a binder, and the like is laminated on a current collector (for example, an aluminum foil or a copper foil). Thereby, a positive electrode (or negative electrode) is obtained.
  • the negative electrode active material examples include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. It is done.
  • a single element, alloy and compound of a metal element capable of forming an alloy with lithium and a metal element including at least one member selected from the group consisting of a single element, alloy and compound of a metalloid element capable of forming an alloy with lithium are used ( These are hereinafter referred to as alloy-based negative electrode active materials).
  • metal element examples include tin (Sn), lead (Pb), aluminum, indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), and cadmium. (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y) or hafnium (Hf). It is done.
  • the compound include LiAl, AlSb, CuMgSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO V (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO, LiSnO and the like.
  • Lithium titanium composite oxides spinel type, ramsterite type, etc. are also preferable.
  • the positive electrode active material may be any material that can occlude and release lithium ions.
  • Preferable examples include lithium-containing composite metal oxides and olivine type lithium phosphate.
  • the lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal.
  • the transition metal element contains at least one or more members selected from the group consisting of cobalt, nickel, manganese, and iron.
  • Li x Fe 1-y M y PO 4 M is, Co, Ni, Cu, Zn , Al, Sn, B, Ga, Cr, V, Ti, Mg, Ca, It is at least one element selected from the group of Sr.
  • a compound represented by 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.3) (lithium iron phosphate) can also be used. .
  • LiFePO 4 is suitable.
  • lithium thiolate examples include compounds represented by the general formula XSRS— (SRS) n—SRSXX ′ described in European Patent No. 415856. Used.
  • lithium thiolate and carbon fiber of the present invention when a carbon fiber containing sulfur is used as a positive electrode active material, since the active material itself does not contain lithium ions, an electrode containing lithium such as a lithium foil as a counter electrode Is preferred.
  • the separator is composed of a porous membrane. Two or more porous films may be laminated.
  • the porous membrane include a porous membrane made of a synthetic resin (for example, polyurethane, polytetrafluoroethylene, polypropylene, polyethylene, etc.).
  • a ceramic porous membrane may be used.
  • the electrolytic solution contains a nonaqueous solvent and an electrolyte salt.
  • Nonaqueous solvents include, for example, cyclic carbonates (propylene carbonate, ethylene carbonate, etc.), chain esters (diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, etc.), ethers ( ⁇ -butyrolactone, sulfolane, 2-methyltetrahydrofuran, dimethoxyethane, etc. Etc.). These may be used alone or as a mixture (two or more). Carbonic acid esters are preferred from the viewpoint of oxidation stability.
  • the electrolyte salt for example LiBF 4, LiClO 4, LiPF 6 , LiSbF 6, LiAsF 6, LiAlCl 4, LiCF 3 SO 3, LiCF 3 CO 2, LiSCN, lower aliphatic lithium carboxylate, LiBCl, LiB 10 Cl 10, halogen Lithium bromide (LiCl, LiBr, LiI, etc.), borate salts (bis (1,2-benzenediolate (2-)-O, O ′) lithium borate, bis (2,3-naphthalenedioleate (2- ) -O, O ') lithium borate, bis (2,2'-biphenyldiolate (2-)-O, O') lithium borate, bis (5-fluoro-2-olate-1-benzenesulfonic acid) -O, O ') lithium borate), imidates (LiN (CF 3 SO 2) 2, LiN (CF 3 SO 2) (C 4 F 9 SO ), Etc.).
  • Lithium salts such as
  • a gel electrolyte in which an electrolytic solution is held in a polymer compound may be used.
  • the polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of polyvinylidene fluoride and polyhexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, and polysiloxane.
  • Examples of the conductive agent include graphite (natural graphite, artificial graphite, etc.), carbon black (acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, etc.), conductive fiber (carbon fiber, metal fiber), Metal (Al and the like) powder, conductive whiskers (such as zinc oxide and potassium titanate), conductive metal oxides (such as titanium oxide), organic conductive materials (such as phenylene derivatives), and carbon fluoride.
  • graphite natural graphite, artificial graphite, etc.
  • carbon black acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, etc.
  • conductive fiber carbon fiber, metal fiber
  • Metal (Al and the like) powder Metal (Al and the like) powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • organic conductive materials such as phenylene derivatives
  • binder examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polymethyl acrylate, polyethyl acrylate, and polyhexyl hexyl.
  • An electrode (a negative electrode and a positive electrode) of a lithium ion battery is obtained by laminating an active material (eg, graphite material, lithium cobalt oxide) on a collector electrode plate (eg, copper foil, aluminum foil).
  • an active material eg, graphite material, lithium cobalt oxide
  • a collector electrode plate eg, copper foil, aluminum foil.
  • carbon fiber containing only a carbon component is used as a conductive agent.
  • Carbon fiber containing Si particles is used as a negative electrode active material.
  • the carbon fiber containing S particles is used as a positive electrode active material.
  • the amount of the carbon fiber is preferably 3 to 50% by mass with respect to the total amount of the active material.
  • the case of 5 to 30% by mass is more preferable.
  • a case of 10 to 20% by mass is particularly preferable.
  • the carbon fiber is used as a conductive aid.
  • a non-conductive material such as lithium cobaltate is used for the positive electrode of the lithium ion battery.
  • the carbon fiber can be used as a conductive aid for the negative electrode.
  • the amount of the conductive assistant is 0.1 to 20% by mass with respect to the total amount of active material used for the electrode. More preferably, it is 0.5 to 10% by mass. The amount is particularly preferably 0.5 to 3% by mass.
  • the amount of the carbon fiber is preferably 10 to 70% by mass with respect to the total amount of the conductive additive. More preferred is 20 to 60% by mass. A case of 30 to 50% by mass is particularly preferable.
  • the carbon fiber is applied to the capacitor electrode.
  • the capacitor is an electric double layer capacitor.
  • the capacitor is a lithium ion capacitor.
  • the electrode is preferably a negative electrode.
  • a negative electrode of a lithium ion capacitor has a negative electrode active material laminated on a collector electrode plate (for example, copper foil).
  • the material of the present invention is used as a conductive additive.
  • the material of the present invention is used for a negative electrode active material.
  • Example 1 70 parts by mass of PVA (trade name: Poval 224: saponification degree 88 mol%, polymerization degree 2400: manufactured by Kuraray Co., Ltd.), carbon black (trade name: # 3050B, primary particle size 50 nm, iron content 1,000 ppm, manufactured by Mitsubishi Chemical Corporation) ) 30 parts by mass and 400 parts by mass of water were mixed in a bead mill. A carbon black dispersion (PVA dissolved) was obtained.
  • PVA trade name: Poval 224: saponification degree 88 mol%, polymerization degree 2400: manufactured by Kuraray Co., Ltd.
  • carbon black trade name: # 3050B, primary particle size 50 nm, iron content 1,000 ppm, manufactured by Mitsubishi Chemical Corporation
  • a centrifugal spinning device (see FIGS. 1 and 2; distance between nozzle and collector; 20 cm, disk rotation speed: 10,000 rpm) was used. The dispersion was used and centrifugal spinning was performed. A non-woven fabric (made of carbon fiber precursor) was produced on the collection plate.
  • the obtained nonwoven fabric was heated (300 ° C., 1 hour, in air).
  • the obtained non-woven fabric (made of carbon fiber) was processed with a mixer. This dismantled. That is, carbon fiber was obtained.
  • the obtained carbon fiber was classified.
  • a sieve (aperture: 75 ⁇ m) was used.
  • FIG. 16 shows a photograph of the obtained carbon fiber observed with TEM (device name: H-7100, manufactured by Hitachi, Ltd.). CB was observed. The primary particle size of CB was 50 nm.
  • the charge / discharge of the coin cell was performed at a constant current (charge / discharge rate: 10C).
  • the discharge capacity was measured.
  • the obtained charge / discharge curve is shown in FIG.
  • the discharge capacity was 50.9 mAh / g.
  • the discharge capacity of Comparative Example 1 described later was 5.6 mAh / g.
  • Example 2 In Example 1, it carried out according to Example 1 except that carbon black (primary particle size 23 nm, iron content 1 ppm) was used instead of carbon black (primary particle size 50 nm, iron content 1,000 ppm). The results are shown in Table-1. CB was observed in the obtained carbon fiber. The primary particle size of the CB was 23 nm.
  • Example 3 In Example 2, it carried out according to Example 2 except heating (3000 degreeC, graphitization furnace) was abbreviate
  • Example 4 In Example 3, it carried out according to Example 3 except that carbon black (primary particle size 35 nm, iron content 10 ppm) was used instead of carbon black (primary particle size 23 nm, iron content 1 ppm). The results are shown in Table 1. CB was observed in the obtained carbon fiber. The primary particle size of the CB was 35 nm.
  • Example 5 In Example 3, it carried out according to Example 3 except that carbon black (primary particle size 60 nm, iron content 10 ppm) was used instead of carbon black (primary particle size 23 nm, iron content 1 ppm). The results are shown in Table 1. CB was observed in the obtained carbon fiber. The primary particle size of the CB was 60 nm.
  • Example 6 In Example 1, it carried out according to Example 1 except having changed the amount of carbon black from 30 mass parts to 150 mass parts. The results are shown in Table-1. CB was observed in the obtained carbon fiber. The primary particle size of the CB was 50 nm.
  • Example 7 In Example 1, it carried out according to Example 1 except that PVA having a polymerization degree of 2000 and a saponification degree of 88 mol% was used. The results are shown in Table-1. CB was observed in the obtained carbon fiber. The primary particle size of the CB was 50 nm.
  • Example 8 In Example 1, it carried out according to Example 1 except that PVA having a polymerization degree of 2400 and a saponification degree of 70 mol% was used. The results are shown in Table 1. CB was observed in the obtained carbon fiber. The primary particle size of the CB was 50 nm.
  • Example 2 The centrifugal spinning apparatus of Example 1 was used. The dispersion was used and centrifugal spinning was performed. A non-woven fabric made of a carbon fiber precursor was produced on the collection plate.
  • the obtained nonwoven fabric was heated (300 ° C., 1 hour, in air).
  • the obtained carbon fiber was measured by SEM (JSM-7001F). The results are shown in FIGS.
  • the carbon fiber of Comparative Example 1 was used, and a coin cell of a lithium ion battery was produced according to Example 1. The same charging / discharging as Example 1 was performed. The discharge capacity was measured. The obtained charge / discharge curve is shown in FIG.
  • Comparative Example 2 The carbon fibers obtained in Comparative Example 1 were classified with a sieve (aperture: 75 ⁇ m). This classified carbon fiber was used and carried out according to Example 1. The results are shown in Table 1.
  • Example 3 it carried out according to Example 3 except that carbon black (primary particle size 15 nm, iron content 1,000 ppm) was used instead of carbon black (primary particle size 23 nm, iron content 1 ppm). The spinning stock solution was too viscous to spin.
  • Example 3 it carried out according to Example 3 except that carbon black (primary particle size 75 nm, iron content 10 ppm) was used instead of carbon black (primary particle size 23 nm, iron content 1 ppm). The results are shown in Table-1.
  • Example 5 In Example 3, it carried out according to Example 3 except having used polyethyleneglycol instead of PVA. The fiber melted in the heating process, and no carbon fiber was obtained.
  • Example 1 Average diameter Average length Number of undulations Number of protrusions Specific surface area Discharge capacity ( ⁇ m) ( ⁇ m) (pieces) (pieces) (m 2 / g) (mAh / g) Example 1 0.9 15 1.3 8.2 20.3 50.9 Example 2 2.0 35 2.5 23.4 25.4 63.8 Example 3 2.0 35 2.5 23.4 21.5 55.8 Example 4 1.5 23 1.1 12.8 53.2 73.5 Example 5 2.5 17 1.2 5.3 15.7 46.5 Example 6 3.5 6.5 1.7 18.2 30.2 29.8 Example 7 2.8 10.2 2.4 12.5 18.5 38.5 Example 8 3.2 12.5 3.1 18.4 17.2 32.8 Comparative Example 1 1.2 21 1.5 0.8 7.2 5.6 Comparative Example 2 1.2 21 1.5 0.8 8.2 8.2 8.3 Comparative Example 4 2.5 13 1.1 1.8 8.8 10.1
  • Example 9 60 parts by mass of PVA (trade name: Poval 224: degree of saponification 88 mol%, degree of polymerization 2400: manufactured by Kuraray Co., Ltd.), 5 parts by mass of carbon black (primary particle size 23 nm, iron content 1 ppm), metal silicon (average particle size 0.8 ⁇ m) 35 parts by mass, manufactured by Kinsei Matec Co., Ltd.) and 500 parts by mass of water were mixed in a bead mill. A carbon black / metal silicon dispersion (PVA dissolved) was obtained.
  • PVA trade name: Poval 224: degree of saponification 88 mol%, degree of polymerization 2400: manufactured by Kuraray Co., Ltd.
  • carbon black primary particle size 23 nm, iron content 1 ppm
  • metal silicon average particle size 0.8 ⁇ m
  • the obtained carbon fiber was measured by SEM (JSM-7001F). The results are shown in FIGS.
  • the physical properties of the obtained carbon fiber are shown in Table 2.
  • CB was observed in the carbon fiber.
  • the primary particle size of the CB was 23 nm.
  • X-ray diffraction measurement (XRD: manufactured by Rigaku Corporation) is shown in FIG. Diffraction lines attributed to the 111 plane (near 28 °), 220 plane (near 47 °), and 311 plane (near 56 °) peculiar to metallic silicon were observed.
  • the ratio of carbon to silicon was measured with JSM-7001F (manufactured by JEOL Ltd.).
  • the left side of FIG. 17 is an SEM photograph.
  • the middle of FIG. 17 is carbon mapping.
  • the average particle size of the silicon particles was 0.8 ⁇ m.
  • the coin cell was charged / discharged at a constant current (charge / discharge rate: 0.1 C).
  • the discharge capacity was measured.
  • the obtained charge / discharge curve is shown in FIG.
  • the discharge capacity was 618 mAh / g.
  • the discharge capacity after 30 charge / discharge cycles was 575 mAh / g.
  • the cycle characteristics (ratio of discharge capacity after 30 cycles to initial discharge capacity) was 93%.
  • the results are shown in Table-2.
  • Example 9 it was carried out according to Example 9 except that silicon-containing carbon fiber was not used and the amount of artificial graphite was 97 parts by mass. The results are shown in Table 2.
  • Example 10 60 parts by mass of PVA (trade name: Poval 224: degree of saponification 88 mol%, degree of polymerization 2400: manufactured by Kuraray Co., Ltd.), 30 parts by mass of carbon black (primary particle size 35 nm, iron content 1 ppm), metal silicon (average particle size 0.3 ⁇ m) 10 parts by mass, manufactured by Kinsei Matec Co., Ltd.) and 500 parts by mass of water were mixed in a bead mill. A carbon black / metal silicon dispersion (PVA dissolved) was obtained. This dispersion was used and carried out according to Example 9. The results are shown in Table 2. The average particle size of the silicon particles was 0.3 ⁇ m. CB was observed in the carbon fiber. The primary particle size of the CB was 35 nm.
  • Example 11 60 parts by mass of PVA (trade name: Poval 224: saponification degree 88 mol%, polymerization degree 2400: manufactured by Kuraray Co., Ltd.), 1 part by mass of carbon black (primary particle size 35 nm, iron content 10 ppm), metal silicon (average particle size 0.9 ⁇ m) 39 parts by mass, manufactured by Kinsei Matec Co., Ltd.) and 500 parts by mass of water were mixed in a bead mill. A carbon black / metal silicon dispersion (PVA dissolved) was obtained. This dispersion was used and carried out according to Example 9. The results are shown in Table 2. The average particle size of the silicon particles was 0.9 ⁇ m. CB was observed in the carbon fiber. The primary particle size of the CB was 35 nm.
  • Example 10 Example 11 Comparative Example 6 Average diameter ( ⁇ m) 3.2 0.6 5.2- Average length ( ⁇ m) 25 5 45- Number of swells (pieces) 3.0 4.2 1.8- Convex number (pieces) 12.3 23.4 8.2- Carbon / silicon (wt%) 21/79 80/20 7/93 ⁇ Discharge capacity (mAh / g) 618 411 658 360 Cycle characteristics (%) 93 95 85 71 * The average diameter, average length, number of undulations, and number of protrusions are the same as in Example 1.
  • Example 12 60 parts by mass of PVA (trade name: Poval 224: degree of saponification 88 mol%, degree of polymerization 2400: manufactured by Kuraray Co., Ltd.), 5 parts by mass of carbon black (primary particle size 23 nm, iron content 1 ppm), sulfur (average particle size 2 ⁇ m, Kishida Chemical) 35 parts by mass) and 500 parts by mass of water were mixed with a bead mill. A carbon black / sulfur dispersion (PVA dissolved) was obtained. This dispersion was used and carried out according to Example 9.
  • PVA trade name: Poval 224: degree of saponification 88 mol%, degree of polymerization 2400: manufactured by Kuraray Co., Ltd.
  • carbon black primary particle size 23 nm, iron content 1 ppm
  • sulfur average particle size 2 ⁇ m, Kishida Chemical
  • the obtained carbon fiber was measured by SEM (JSM-7001F). The results are shown in FIGS. CB was observed in the carbon fiber.
  • the primary particle size of the CB was 23 nm.
  • the coin cell was charged / discharged at a constant current (charge / discharge rate: 0.1 C).
  • the discharge capacity was measured.
  • the obtained charge / discharge curve is shown in FIG.
  • the discharge capacity was 237.3 mAh / g.
  • the discharge capacity after 10 charge / discharge cycles was 206.5 mAh / g.
  • the cycle characteristics (the ratio of the discharge capacity after 10 cycles to the initial discharge capacity) was 87%.
  • the results are shown in Table-3.
  • Example 13 PVA (trade name: Poval 224: saponification degree 88 mol%, polymerization degree 2400: manufactured by Kuraray Co., Ltd.) 60 parts by mass, carbon black (primary particle size 35 nm, iron content 1 ppm), sulfur (average particle size 0.3 ⁇ m, 10 parts by mass of Kishida Chemical Co., Ltd.) and 500 parts by mass of water were mixed in a bead mill. A carbon black / sulfur dispersion (PVA dissolved) was obtained. This dispersion was used and carried out according to Example 12. The results are shown in Table-3. The average particle size of the sulfur particles was 0.3 ⁇ m. CB was observed in the carbon fiber. The primary particle size of the CB was 35 nm.
  • Example 14 60 parts by mass of PVA (trade name: Poval 224: degree of saponification 88 mol%, degree of polymerization 2400: manufactured by Kuraray Co., Ltd.), 1 part by mass of carbon black (primary particle size 35 nm, iron content 1 ppm), sulfur (average particle size 0.8 ⁇ m, 39 parts by mass (manufactured by Kishida Chemical Co., Ltd.) and 500 parts by mass of water were mixed in a bead mill. A carbon black / sulfur dispersion (PVA dissolved) was obtained. This dispersion was used and carried out according to Example 12. The results are shown in Table-3. The average particle size of the sulfur particles was 0.8 ⁇ m. CB was observed in the carbon fiber. The primary particle size of the CB was 35 nm.
  • Example 12 Example 13
  • Example 14 Comparative Example 7 Average diameter ( ⁇ m) 4.8 2.1 5.3- Average length ( ⁇ m) 32 8.4 46- Number of swells (pieces) 1.2 3.5 2.5- Convex number (pieces) 5.3 10.2 8.5- Carbon / sulfur (wt%) 17/83 80/20 7/93 ⁇ Discharge capacity (mAh / g) 237.3 60.3 253.2 27.8 Cycle characteristics (%) 87 91 85 17 * The average diameter, average length, number of undulations, and number of protrusions are the same as in Example 1.
  • Comparing Comparative Example 7 with Examples 12, 13, and 14 reveals that the cell of this example has an increased discharge capacity and improved cycle characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 接触抵抗が低く、かつ、導電性が高い炭素繊維を提供することである。下記の要件が満たされる炭素繊維。前記炭素繊維の直径は0.5~6.5μmである。前記炭素繊維の長さは5~65μmである。前記炭素繊維は「うねり」を有する。前記炭素繊維は凸を有する。前記凸の突出高さが20~300nmである。前記凸の数は、炭素繊維1μm長(炭素繊維に沿っての長さ)当たり、3~25個である。前記炭素繊維はカーボンブラックを有する。前記カーボンブラックの一次粒径は21~69nmである。

Description

炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池
 本発明は炭素繊維の技術に関する。
 炭素繊維は各種の分野で用いられている。例えば、二次電池(リチウムイオン電池など)に用いられている。前記二次電池では、例えば導電助剤として用いられている。
 次の炭素繊維が提案(特許第4697901号:特許文献1)されている。前記炭素繊維は大径部と小径部とを具備する。前記大径部の直径は20nm~2μmである。前記小径部の直径は10nm~1μmである。(前記大径部における直径)>(前記小径部における直径)。前記特許文献1は次の製造方法を提案している。前記方法は、分散液作製工程と、静電紡糸工程と、変性工程とを具備する。必要に応じて、解布工程を具備する。前記分散液作製工程は、ピッチ及び樹脂を含む分散液が作製される工程である。前記静電紡糸工程は、前記分散液を静電紡糸する工程である。本工程により、不織布(炭素繊維前駆体からなる不織布)が作製される。前記変性工程は、前記炭素繊維前駆体(不織布)が炭素繊維に変性する工程である。前記解布工程は、前記変性工程を経た不織布(炭素繊維製)が解かれる工程である。
 前記静電紡糸工程に代わって遠心紡糸工程が採用された技術も提案(特許第5334278号:特許文献2)されている。
 次の負極活物質が提案(特許第5376530号:特許文献3)されている。前記負極活物質は、炭素繊維と、リチウムと合金形成が可能な物質とを具備する。前記物質は前記炭素繊維の表面に設けられている。前記負極活物質は、電池に組み込まれる前において、リチウムイオンの吸蔵・脱離処理が行われている。
特許第4697901号 特許第5334278号 特許第5376530号
 前記特許文献1,2の炭素繊維は、大径部と小径部とを具備する。前記炭素繊維は、同一径の炭素繊維に比べて、表面積が大きい。しかし、前記特徴(大径部と小径部とを具備)の炭素繊維が導電助剤として用いられた場合、繊維と繊維との間の接触抵抗が大きいことが判って来た。繊維と活物質との間の接触抵抗が大きいことも判って来た。電池のレート特性を大幅に向上させることは困難であった。
 リチウムイオン電池の分野では、電池の高容量化が求められている。負極材料としては、ケイ素(Si)系活物質が注目されている。正極材料としては、硫黄(S)系活物質が注目されている。前記ケイ素(Si)系活物質や前記硫黄(S)系活物質は導電性がない。この為、導電助剤が必要である。前記活物質は、充放電に伴う体積変化が大きい。この為、充放電が繰り返されると、活物質と導電助剤とは離れる。この結果、放電容量が大きく低下する。
 この問題を解決する為、ケイ素系負極活物質と炭素繊維との複合化の検討が行われた。例えば、金属ケイ素が、スパッタリングで、炭素繊維(不織布)に設けられた(特許文献2)。この技術は、金属ケイ素が電極に設けられる方法より、優れていた。しかし、充電容量(667mA/g)に対し、放電容量(300mA/g)が低い。金属ケイ素が、電気化学的処理により、炭素繊維表面に設けられる技術が提案(特許文献3)されている。この技術はサイクル特性が良い。しかし、放電容量(200mA/g)が低い。
 本発明が解決しようとする第1の課題は、接触抵抗が低く、かつ、導電性が高い炭素繊維を提供することである。
 本発明が解決しようとする第2の課題は、電極材料として好適な炭素繊維を提供することである。
 本発明は、
 下記の[要件1]~[要件4]が満足される
ことを特徴とする炭素繊維を提案する。
  [要件1]
 前記炭素繊維の直径:0.5~6.5μm
 前記炭素繊維の長さ:5~65μm
 (前記炭素繊維の直径)<(前記炭素繊維の長さ)
  [要件2]
 前記炭素繊維は「うねり」を有する。
  [要件3]
 前記炭素繊維は凸を有する。
 前記凸の突出高さ:20~300nm
 前記凸の数:炭素繊維1μm長(炭素繊維に沿っての長さ)当たり、3~25個
  [要件4]
 前記炭素繊維はカーボンブラックを有する。
 本発明は、
 前記[要件1]~[要件4]と、下記要件[5]とが満足される
ことを特徴とする炭素繊維を提案する。
  [要件5]
 前記炭素繊維はSi粒子を有する。
 [前記Si粒子の質量]/[前記カーボンブラックの質量+前記Si粒子の質量]=20~94%
 本発明は、
 前記[要件1]~[要件4]と、下記要件[6]とが満足される
ことを特徴とする炭素繊維を提案する。
  [要件6]
 前記炭素繊維はS粒子を有する。
 [前記S粒子の質量]/[前記カーボンブラックの質量+前記S粒子の質量]=20~94%
 本発明は、前記炭素繊維を具備する電気デバイスを提案する。
 本発明は、前記炭素繊維を用いて構成された負極を具備する二次電池を提案する。
 本発明は、前記炭素繊維を用いて構成された正極を具備する二次電池を提案する。
 本発明は、
 分散液作製工程と紡糸工程と変性工程とを具備する炭素繊維材の製造方法であって、
 前記分散液作製工程は、ポリビニルアルコール、カーボンブラック(一次粒径が21~69nm)、及び溶媒を含む分散液が作製される工程であり、
 前記紡糸工程は、前記分散液から、炭素繊維前駆体よりなる不織布が作製される工程であり、
 前記変性工程は、前記炭素繊維前駆体が炭素繊維に変性する工程である
ことを特徴とする炭素繊維材製造方法を提案する。
 本発明は、前記炭素繊維材製造方法であって、前記カーボンブラックは、前記ポリビニルアルコール100質量部に対して、5~200質量部であることを特徴とする炭素繊維材製造方法を提案する。
 本発明は、前記炭素繊維材製造方法であって、前記ポリビニルアルコールは、その重合度が2200~4000、その鹸化度が75~90mol%であることを特徴とする炭素繊維材製造方法を提案する。
 本発明は、前記炭素繊維材製造方法であって、更に、解布工程と、分級工程とを具備し、前記解布工程は、不織布が解かれる工程であり、前記分級工程は、炭素繊維(直径が0.5~6.5μm、長さが5~65μm)が分取される工程であることを特徴とする請炭素繊維材製造方法を提案する。
 本発明は、前記炭素繊維材製造方法であって、前記分散液作製工程は、更に、Si粒子(又はS粒子)が用いられて分散液が作製される工程であり、前記Si粒子(又はS粒子)は、粒径が0.25~3μmであり、[前記Si粒子(又はS粒子)の質量]/[前記カーボンブラックの質量+前記Si粒子(又はS粒子)の質量]=20~94%であることを特徴とする炭素繊維材製造方法を提案する。
 接触抵抗が低く、導電性が高い炭素繊維が得られた。
 本発明の炭素繊維がリチウムイオン電池の負極活物質として用いられた場合、Si(ケイ素)粒子と炭素繊維(導電助剤)との乖離が抑えられた。
 本発明の炭素繊維がリチウムイオン電池の正極活物質として用いられた場合、S(硫黄)粒子と炭素繊維(導電助剤)との乖離が抑えられた。
 耐久性(繰り返しての充放電の特性:サイクル特性)に優れた電極材料が得られた。
遠心紡装置の概略側面図 遠心紡装置の概略平面図 炭素繊維の模式図 SEM写真 SEM写真 放電特性図 SEM写真 SEM写真 SEM写真 SEM写真 X線回折図 放電特性図 SEM写真 SEM写真 放電特性図 TEM写真 SEM写真、炭素マッピング、ケイ素マッピング
 第1の発明は炭素繊維である。前記炭素繊維は次の[要件1]~[要件4]を満足する。好ましくは、次の[要件5](又は、[要件6])を更に満足する。
  [要件1]
 前記炭素繊維の直径:0.5~6.5μm
 前記炭素繊維の長さ:5~65μm
 (前記炭素繊維の直径)<(前記炭素繊維の長さ)
  [要件2]
 前記炭素繊維は「うねり」を有する。
  [要件3]
 前記炭素繊維は凸を有する。
 前記凸の突出高さ:20~300nm
 前記凸の数:炭素繊維1μm長(炭素繊維に沿っての長さ)当たり、3~25個
  [要件4]
 前記炭素繊維はカーボンブラックを有する。
  [要件5]
 前記炭素繊維はSi粒子を有する。
 [前記Si粒子の質量]/[前記カーボンブラックの質量+前記Si粒子の質量]=20~94%
  [要件6]
 前記炭素繊維はS粒子を有する。
 [前記S粒子の質量]/[前記カーボンブラックの質量+前記S粒子の質量]=20~94%
 前記Si粒子を有する場合、リチウムイオン電池負極材料としての容量が増す。
 前記S粒子を有する場合、リチウムイオン電池正極材料としての容量が増す。
 前記Si粒子(前記S粒子)は導電性が無い。前記炭素繊維はカーボンブラック(導電性を有するカーボンブラック)を持つ。従って、前記炭素繊維は導電性を有する。前記炭素繊維は高容量の活物質となる。前記炭素繊維は繊維形状であるから、球状の場合に比べ、周囲の物質と導電性を保ち易い。充放電による体積変化が大きくても、サイクル特性が低下し難い。
 第2の発明は炭素繊維材の製造方法である。炭素繊維材には炭素繊維も含まれる。炭素繊維製の不織布も含まれる。その他の炭素繊維製の製品が含まれる。本方法は、分散液作製工程と、紡糸工程と、変性工程とを具備する。好ましくは、更に、解布工程を具備する。好ましくは、更に、分級工程を具備する。
 前記分散液(分散液作製工程で得られた分散液)はカーボンブラック(CBと略される。)を含有する。前記分散液はポリビニルアルコール(PVAと略される)を含有する。前記分散液は溶媒を含有する。前記分散液は、好ましくは、Si粒子を含有する。前記分散液は、好ましくは、S粒子を含有する。
 前記CBの一次粒径(分散状態におけるCB粒子の粒径)は21~69nmであった。好ましくは、69nm未満であった。より好ましくは、60nm以下であった。更に好ましくは、55nm以下であった。
 一次粒径(平均一次粒径)は、例えば比表面積測定法(ガス吸着法)によって求められる。透過型電子顕微鏡(TEM)によっても求められる。X線散乱法によっても求められる。本発明では、一次粒径(平均一次粒径)はTEMによって求められた。
 前記粒径のCBが用いられた場合、比表面積が大きな炭素繊維が得られた。例えば、メソフェーズピッチが用いられた場合に比べて、比表面積が大きな炭素繊維が得られた。比表面積が大きいことから、炭素繊維と活物質との接触面積が大きい。従って、接触抵抗が下がった。内部抵抗が低い電極になった。高速充放電が可能になった。
 前記分散液中のCBの濃度は、好ましくは、20~200g/Lであった。より好ましくは、30g/L以上であった。より好ましくは、100g/L以下であった。但し、Si粒子またはS粒子を含有する場合、CB量は少なくても良かった。例えば、20g/L以下でも良かった。すなわち、Si粒子またはS粒子を含有する場合、CBの濃度は、好ましくは、1~100g/Lであった。
 前記PVAは、好ましくは、平均分子量(重合度)が2200~4000であった。更に好ましくは、3000以下であった。
 重合度はJIS K 6726に準じて求められた。例えば、1部のPVAが100部の水に溶解した。粘度(30℃)がオストワルド粘度計(相対粘度計)にて求められた。重合度(P)が、次の式(1)~(3)より、求められた。
   log(P)=1.613×log{([η]×10)/8.29}  (1)
   [η]={2.303×log[ηrel]}/C  (2)
   [ηrel]=t/t  (3)
:重合度、[η]:極限粘度、ηrel:相対粘度、C:試験溶液の濃度(g/L)、t:水の落下秒数(s)、t:試験溶液の落下秒数(s)
 前記PVAは、好ましくは、鹸化度が75~90mol%であった。更に好ましくは、80mol%以上であった。
 鹸化度はJIS K 6726に準じて求められた。例えば、推定鹸化度に応じて、1~3部の試料、水100部、フェノールフタレイン液3滴が加えられて完全に溶解した。0.5mol/LのNaOH水溶液25mlが加えられ、撹拌後、2時間放置された。0.5mol/LのHCl水溶液25mlが加えられた。0.5mol/LのNaOH水溶液にて滴定が行われた。鹸化度(H)は、次の式(1)~(3)より、求められた。
={(a-b)×f×D×0.06005}/{S×(P/100)}×100 (1)
=(44.05×X)/(60.05-0.42×X) (2)
H=100-X
 (3)
   X:残存酢酸基に相当する酢酸量(%)
   X:残存酢酸基(モル%)
   H:鹸化度(モル%)
   a:0.5mol/lNaOH溶液の使用量(ml)
   b:空試験での0.5mol/lNaOH溶液の使用量(ml)
   f:0.5mol/lNaOH溶液のファクター
   D:規定液の濃度(0.1mol/l又は0.5mol/l)
   S:試料採取量(g)
   P:試料の純分(%)
 前記分散液中の前記PVAの濃度は、好ましくは、50~200g/Lであった。より好ましくは、60g/L以上であった。より好ましくは、150g/L以下であった。
 前記CBは、前記PVA100質量部に対して、好ましくは、5~200質量部であった。より好ましくは、10質量部以上であった。より好ましくは、100質量部以下であった。
 前記溶媒は、好ましくは、水、アルコールの群の中から選ばれる一種または二種以上(混合物)であった。勿論、他の種類の溶媒を用いることも出来る。環境面から、水あるいはアルコールが好ましかった。水が最も好ましかった。水が用いられた場合でも、他の種類の溶媒の併用は禁止されない。30質量%以下の場合、問題は少ないであろう。
 前記Si粒子は、好ましくは、その粒径が0.25~3μmであった。更に好ましくは、0.3μm以上であった。更に好ましくは、2.5μm以下であった。
 前記S粒子は、好ましくは、その粒径が0.25~3μmであった。更に好ましくは、0.3μm以上であった。更に好ましくは、2.5μm以下であった。前記粒径は、走査型電子顕微鏡/エネルギー分散型X線分光法(SEM-EDSによって求められた。
 前記Si粒子の濃度は、好ましくは、10~100g/Lであった。より好ましくは、30g/L以上であった。より好ましくは、90g/L以下であった。
 前記S粒子の濃度は、好ましくは、10~100g/Lであった。より好ましくは、30g/L以上であった。より好ましくは、90g/L以下であった。
 前記分散液(前記分散液作工程後における分散液:前記紡糸工程(紡糸装置)に供給する前段階での分散液)の粘度は、好ましくは、10~10000mPa・Sであった。前記粘度は共軸二重円筒型粘度計による粘度である。前記分散液は、好ましくは、固形分濃度が0.1~50質量%であった。
 前記紡糸工程は、前記分散液が紡糸される工程である。本工程で不織布が得られる。この不織布は炭素繊維の前駆体である。前記紡糸工程は、好ましくは、遠心紡糸工程であった。特に、円盤回転数が1000~100000rpmの遠心紡糸法が好ましかった。
 前記変性工程は、炭素繊維前駆体(前記紡糸工程で得られた不織布)が炭素繊維に変性する工程である。この工程は、基本的には、加熱工程である。この加熱工程では、前記不織布(炭素繊維前駆体製の不織布)が、例えば50~4000℃に加熱される。前記変性工程は、好ましくは、樹脂除去工程を有する。この樹脂除去工程は、不織布(前記紡糸工程で得られた不織布)に含まれる樹脂が除去される工程である。前記樹脂除去工程は、例えば加熱工程である。この加熱工程は、例えば酸化性ガス雰囲気下において、前記不織布(前記紡糸工程で得られた不織布)が加熱される工程である。前記変性工程は、好ましくは、炭化工程を有する。この炭化工程は、不織布(特に、前記樹脂除去工程後の不織布)が炭化処理される工程である。前記変性工程は、好ましくは、黒鉛化工程を有する。この黒鉛化工程は、不織布(特に、前記炭化工程後の不織布)が黒鉛化処理される工程である。前記黒鉛化工程は、例えば加熱工程である。この加熱工程は、例えば不活性雰囲気下において、不織布(特に、前記炭化工程後の不織布)が加熱される工程である。前記加熱工程は、例えば不織布(特に、前記炭化工程後の不織布)への通電による発熱(加熱)工程である。
 前記解布工程は、不織布が解かれる工程である。例えば、不織布が粉砕される工程である。又は、不織布が叩かれる工程である。前記解布工程によって、炭素繊維が得られる。
 前記分級工程は、所定形状の炭素繊維を得る工程である。
 第3の発明は電気デバイスに用いられる部材である。前記部材は、前記炭素繊維を用いて構成される。前記部材は、例えば電池の電極である。例えば、リチウムイオン二次電池の電極である。前記電極は前記炭素繊維(導電助剤)を含む。例えば、リチウムイオン二次電池の負極である。前記負極は負極活物質(前記Si粒子を含む炭素繊維材からなる負極活物質)を含む。例えば、リチウムイオン二次電池の正極である。前記正極は正極活物質(前記S粒子を含む炭素繊維材からなる正極活物質)を含む。例えば、キャパシタ(電気2重層キャパシタ)の電極である。例えばリチウムイオンキャパシタの電極である。
 第4の発明は電気デバイスである。前記電気デバイスは、前記部材を具備する。
 以下、更に詳しく説明する。
 [分散液作製工程(工程I)]
 前記分散液は、前記PVAと、前記CBと、前記溶媒とを含有する。
 前記PVAは、紡糸性の観点から、好ましくは、重合度が2200~4000であった。より好ましくは3000以下であった。好ましくは、鹸化度が75~90mol%であった。より好ましくは80mol%以上であった。重合度が小さ過ぎた場合、紡糸時に、糸が切れ易かった。重合度が大き過ぎた場合、紡糸が困難であった。鹸化度が低すぎた場合、水に溶け難く、紡糸が困難であった。鹸化度が大きすぎた場合、粘度が高く、紡糸が困難であった。
 前記分散液は、必要に応じて、ビニル樹脂(例えば、ポリビニルアルコール共重合体、ポリビニルブチラール(PVB)等)、ポリエチレンオキサイド(PEO)、アクリル樹脂(例えば、ポリアクリル酸(PAA)、ポリメチルメタアクリレート(PMMA)、ポリアクリロニトリル(PAN)等)、フッ素樹脂(例えば、ポリビニリデンジフルオリド(PVDF)等)、天然物由来高分子(例えば、セルロース樹脂、セルロース樹脂誘導体(ポリ乳酸、キトサン、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)等))、エンジニアリングプラスチック樹脂(ポリエーテルスルホン(PES)等)、ポリウレタン樹脂(PU)、ポリアミド樹脂(ナイロン)、芳香族ポリアミド樹脂(アラミド樹脂)、ポリエステル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂の群の中から選ばれる一種または二種以上を含有しても良い。その量は本発明の効果を損なわない範囲である。
 前記分散液は、一次粒径(平均一次粒径)が21nm~69nmのCBを含む。一次粒径が21nm未満のCBが用いられた場合、得られた炭素繊維の比表面積は増す。しかし、嵩密度が低下した。分散液の固形分濃度が高くならず、取り扱いが困難であった。一次粒径が69nmを越えたCBが用いられた場合、得られた炭素繊維の比表面積が小さくなった。接触抵抗が大きかった。
 前記溶媒は、水、アルコール(例えば、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、アミルアルコール、イソアミルアルコール、シクロヘキサノール等)、エステル(例えば、酢酸エチル、酢酸ブチル等)、エーテル(例えば、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等)、ケトン(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、非プロトン性極性溶媒(例えば、N,N’-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、ジメチルアセトアミド等)、ハロゲン化炭化水素(例えば、クロロホルム、テトラクロロメタン、ヘキサフルオロイソプロピルアルコール等)、酸(酢酸、蟻酸など)の群の中から選ばれる一種または二種以上が用いられる。環境面から、好ましくは、水またはアルコールであった。特に好ましくは水であった。
 前記分散液は、好ましくは、Si粒子を含有する。前記分散液は、好ましくは、S粒子を含有する。前記粒子は、粒径(平均粒径)が0.25~3μmであった。3μmを越えた大きな粒子は、紡糸時に、繊維に入らない恐れが有った。0.25μm未満の小さ過ぎた場合、製造コストが高くなった。金属ケイ素粒子の場合、水と反応する恐れが有った。比表面積が大きくなり、反応面積も大きくなり、リチウムイオン電池の負極活物質としては適さなくなった。
 本発明において、Si粒子(金属ケイ素粒子)は、実質的に、ケイ素単体である。S粒子は、実質的に、硫黄単体である。「実質的」とは、工程上含まれる不純物や、保管中に粒子表面が酸化された場合等による不純物の含有が有る場合も含まれると言う意味である。本発明の前記粒子は、ケイ素単体(又は、硫黄単体)が含まれている粒子であれば制限はない。例えば、粒子表面が他成分で被覆されたものであっても良い。他成分からなる粒子中に、ケイ素単体(又は、硫黄単体)が分散した構造であっても良い。例えば、Si粒子が炭素で被覆された粒子が例示される。Si粒子がSiO中に分散した粒子が例示される。S粒子が界面活性剤で被覆された粒子が例示される。前記複合粒子の場合は、前記複合粒子の粒径が前記範囲内に入っていれば良い。前記炭素繊維に含まれているSi成分(又は、S成分)が単体であるか化合物であるかの判断は、X線回折測定(XRD)など公知の測定方法で判断できる。
 前記分散液は、強度や導電性の観点から、必要に応じて、カーボンナノチューブ(例えば、シングルウォールカーボンナノチューブ(SWNT)、マルチウォールカーボンナノチューブ(MWNT)、これ等の混合物)等を含有しても良い。
 前記分散液は、必要に応じて、分散剤を含有する。前記分散剤は、例えば界面活性剤である。界面活性剤は、低分子系のものでも、高分子系のものでも良い。
 前記PVAと前記CBとは、好ましくは、次の割合である。前記PVAが多すぎると、炭化後に残る炭素分が少なくなる。逆に、前記PVAが少なすぎると、遠心紡糸が困難になる。従って、好ましくは、前記PVA100質量部に対して、前記CBが5~200質量部(より好ましくは10~100質量部)であった。
 前記Si粒子(又は、S粒子)が含まれる場合、[前記Si粒子(又は、S粒子)の質量]/[前記CBの質量+前記Si粒子(又は、S粒子)の質量]=20~94%が好ましかった。又、前記粒子と前記CBとの総量が、前記PVA100質量部に対して、好ましくは、5~200質量部(より好ましくは10~100質量部)であった。前記CBが多すぎると、負極活物質(又は、正極活物質)としての容量が低下した。前記CBが少なすぎると、導電性が失われた。
 前記分散液における固形分(溶媒以外の成分)の濃度が高すぎると、紡糸が困難であった。逆に、前記濃度が低すぎても、紡糸が困難であった。好ましくは、前記固形分の濃度が0.1~50質量%(より好ましくは、1~30質量%。更に好ましくは、5~20質量%)であった。前記分散液の粘度が高すぎると、紡糸時に、分散液がノズルから吐出され難かった。逆に、前記粘度が低すぎると、紡糸が困難であった。従って、前記分散液の粘度(紡糸時における粘度:粘度計は共軸二重円筒型粘度計)は、好ましくは、10~10000mPa・S(より好ましくは、50~5000mPa・S。更に好ましくは、500~5000mPa・S)であった。
 前記分散液作製工程は、例えば混合工程と微細化工程とを有する。前記混合工程は、前記PVAと前記CBとが混合される工程である。前記微細化工程は、前記CBが微細化される工程である。前記微細化工程は、前記CBに剪断力が付与される工程である。これにより、CBの二次凝集が解かれる。前記混合工程と前記微細化工程とは、どちらが先でも良い。同時に行われても良い。
 前記混合工程においては、前記PVAと前記CBとの双方が粉体の場合と、一方が粉体で他方が溶液(分散液)の場合と、双方が溶液(分散液)の場合とが有る。操作性の観点から、好ましくは、前記PVA及び前記CBが、共に、溶液(分散液)の場合である。
 前記微細化工程では、例えばメディアレスビーズミルが用いられる。或いは、ビーズミルが用いられる。又は、超音波照射機が用いられる。異物の混入を防ぎたい場合、好ましくは、メディアレスビーズミルが用いられる。CBの粒径を制御したい場合、好ましくは、ビーズミルが用いられる。簡便な操作で行いたい場合、好ましくは、超音波照射機が用いられる。本発明においては、CBの粒径制御が大事であるから、ビーズミルが用いられた。
 本工程Iの条件は、炭素繊維の直径、「うねり」の数、炭素繊維表面の凸の大きさ及び数、炭素成分、Si粒子(又は、S粒子)の割合に影響する。
 [紡糸工程(不織布(炭素繊維前駆体)の作製工程:工程II)]
 例えば、図1,2の遠心紡糸装置が用いられた。図1は遠心紡糸装置の概略側面図である。図2は遠心紡糸装置の概略平面図である。図中、1は回転体(円盤)である。前記円盤1は空洞体である。前記円盤1の壁面にはノズル(又は孔)が設けられている。前記円盤1の内部(空洞部)2(図示せず)に紡糸原液が充填される。円盤1が高速回転させられる。これによって、紡糸原液が遠心力によって引き伸ばされる。そして、溶媒は揮発しつつ、捕集板3上に堆積する。この堆積によって、不織布4が形成される。
 遠心紡糸装置は、円盤1の加熱装置を有していても良い。紡糸原液連続供給装置を有していても良い。遠心紡糸装置は図1,2のものに限定されない。例えば、円盤1は縦型であっても良い。或いは、円盤1は上部に固定されていても良い。円盤1は公知のスプレードライ装置で使用されるベル型ディスクやピン型ディスクであっても良い。捕集板3は、バッチ式では無く、連続式であっても良い。捕集板3は、公知のスプレードライ装置で使用される逆円錐形の筒であっても良い。溶媒蒸発空間全体の加熱は、溶媒が早く乾燥するので、好ましい。円盤1の回転速度(角速度)は、好ましくは、1,000~100,000rpmであった。より好ましくは、5,000~50,000rpmであった。速度が遅すぎると、延伸倍率が低いからである。速度は高速の方が好ましい。しかし、或る上限値を越えても、大きな改善は得られ難い。逆に、装置に掛かる負担が大きくなった。従って、好ましくは、100,000rpm以下とした。円盤1と捕集板3との間の距離が短すぎると、溶媒が蒸発し難い。逆に、長すぎると、装置が必要以上に大きくなる。好ましい距離は装置の大きさによっても異なる。円盤の直径が10cmの場合は、円盤1と捕集板3との間の距離は、例えば20cm~3mであった。
 遠心紡糸法は、静電紡糸法よりも、高粘度の液(固形分濃度が高い分散液)を用いることが出来た。遠心紡糸法は、静電紡糸法よりも、湿度(温度)の影響を受け難い。長時間に亘って、安定した紡糸が可能であった。遠心紡糸法は生産性が高かった。遠心紡糸法は、遠心力を利用した紡糸法である。従って、紡糸時における延伸倍率が高い。この為と想像されたが、繊維中における炭素粒子の配向度が高かった。導電性が高かった。得られた炭素繊維の径は小さかった。繊維径のバラツキが少なかった。金属粉の混入が少なかった。不織布の場合、表面積が大きかった。
 本工程(紡糸工程)で得られた不織布は炭素繊維前駆体で構成されている。炭素繊維前駆体は、PVAとCBとの混合物である。前記不織布(炭素繊維前駆体製)が複数枚積層されても良い。積層された不織布がロールなどで圧縮されても良い。圧縮により、膜厚や密度が、適宜、調節される。
 不織布(炭素繊維前駆体製)が捕集体から剥離して取り扱われる。或は、前記不織布が捕集体に付着したままで取り扱われる。又は、綿あめを製造する場合の如く、生成した不織布が棒で巻き取られても良い。
 本工程IIの条件は、炭素繊維の直径、「うねり」の数、炭素繊維表面の凸の大きさ及び数、炭素成分、Si粒子(又は、S粒子)の割合に影響する。
 [変性工程(工程III)]
  [炭化処理(工程III-1)]
 炭素繊維製の不織布が前記炭素繊維前駆体製の不織布から得られる。炭素繊維前駆体が炭素繊維に変性されると言うことである。変性処理は、例えば熱処理である。特に、酸化性ガス雰囲気下での熱処理である。この熱処理により、前記炭素繊維前駆体を構成しているPVAが除去される。すなわち、CB以外の炭素源が除去される。
 本工程は前記紡糸工程(前記工程II)の後で行われる。
 本工程における酸化性ガスは、酸素原子を含有した化合物、又は電子アクセプター化合物である。前記酸化性ガスは、例えば空気、酸素、ハロゲンガス、二酸化窒素、オゾン、水蒸気、及び二酸化炭素などの群の中から選ばれる一種または二種以上である。これらの中でも、コストパフォーマンスと、低温での速やかな不融化の観点から、好ましくは、空気である。或いは、ハロゲンガスを含むガスである。前記ハロゲンガスは、例えばフッ素、ヨウ素、臭素などである。中でもフッ素である。又は、前記成分の混合ガスである。
 前記熱処理の温度は、好ましくは、100~400℃(より好ましくは、150~350℃)であった。前記熱処理の時間は、好ましくは、3分~24時間(より好ましくは、5分~2時間)であった。
 本工程で炭素繊維(不織布)が得られる。
 本工程は枚様式で行われる。或いは、ロールトゥーロールで連続的に行われる。又は、ロール状態で熱処理される。又は、塊状に鞘に詰めて行われる。生産性の観点から、好ましくは、塊状の連続的熱処理である。
  [減量処理(工程III-2)]
 不織布(炭素繊維)にPVAの炭化物が残っている場合、これを除去する為、好ましくは、減量処理が行われる。この減量処理は熱処理である。好ましくは、不活性ガス雰囲気下での熱処理である。本工程を経て、PVAの炭化物が除去され、減量が行われる。本工程は前記工程III-1の後に行われる。
 本工程における不活性ガスは、炭化処理中に、不融化炭素繊維前駆体と化学反応しないガスである。例えば、一酸化炭素、二酸化炭素、窒素、アルゴン、及びクリプトン等の群の中から選ばれる一種または二種以上である。これらの中でも、コストの観点から、好ましくは、窒素ガスである。
 本工程の処理温度は、好ましくは、500~2000℃(より好ましくは、600~1500℃)であった。500℃未満の低い温度では、減量が進み難い。2000℃を越えた高い温度では、黒鉛化が起きる。但し、後述の黒鉛化処理が行われる場合、2000℃を越える昇温は差し支えない。本工程の処理時間は、好ましくは、5分~24時間(より好ましくは、30分~2時間)であった。
  [黒鉛化処理(工程III-3)]
 好ましくは、黒鉛化処理が行われる。黒鉛化処理は、好ましくは、不活性ガス雰囲気下で行われる。本工程は、鉄分(不純物)を含むCBが原料に用いられる場合、大事な工程である。これによって、前記鉄分が除去される。CBの結晶性が良くなり、導電性が向上する。本工程は、好ましくは、前記工程III-2の後に行われる。
 本工程において、不活性ガスは、黒鉛化処理中に、炭素繊維製前駆体と化学反応しないガスである。例えば、一酸化炭素、二酸化炭素、アルゴン、クリプトン等である。窒素ガスは、電離を起こすので、好ましくない。
 本工程の処理温度は、好ましくは、2000~3500℃(より好ましくは、2300~3200℃)であった。処理時間は、好ましくは、2~24時間であった。
 本工程は前記温度に保持することで実施される。特に、鞘へ充填し、鞘への通電により実施される。通電で発生するジュール熱によって、前記温度が保持される。マイクロ波加熱によっても、黒鉛化が可能である。製造コストの観点から、黒鉛化処理は、好ましくは、通電加熱である。
 [解布工程(工程IV)]
 本工程は、前記工程で得られた不織布(炭素繊維製)から炭素繊維を得る工程である。本工程は、例えば前記工程II(或いは、前記工程III-1、若しくは前記工程III-2、又は前記工程III-3)で得られた不織布が粉砕される工程である。前記粉砕によって繊維が得られる。前記不織布が叩かれることによっても、前記不織布は解かれる。すなわち、繊維が得られる。
 粉砕には、例えばカッタミル、ハンマーミル、ピンミル、ボールミル、又はジェットミルが用いられる。湿式法、乾式法の何れの方法でも採用できる。但し、非水系電解質二次電池などの用途に用いられる場合は、乾式法の採用が好ましい。
 メディアレスミルが用いられると、繊維の潰れが防止される。従って、メディアレスミルの採用は好ましい。例えば、カッターミルやエアージェットミルの採用は好ましい。
 本工程IVの条件は、炭素繊維の長さに影響する。
 [分級工程(工程V)]
 本工程は、前記工程IVで得られた繊維から所望の大きさのものが選ばれる工程である。例えば、篩(目開き20~300μm)を通過した炭素繊維が用いられる。目開きが小さな篩が用いられた場合、利用されない炭素繊維の割合が多くなる。これはコスト増を引き起こす。目開きが大きな篩が用いられた場合、利用される炭素繊維の割合が多くなる。しかし、炭素繊維の品質のバラツキが大きい。篩と同等の方法が用いられても良い。例えば、気流分級(サイクロン分級)が用いられても良い。
 本工程Vの条件は、炭素繊維の長さに影響する。
 [炭素繊維]
 以下の要件1~4を満たす炭素繊維は、大きな特長を奏する。
 更に要件5(又は、要件6)を満たす炭素繊維は、大きな特長を奏する。
  [要件1]
 前記炭素繊維の直径:0.5~6.5μm
 前記炭素繊維の長さ:5~65μm
 (前記炭素繊維の直径)<(前記炭素繊維の長さ)
 前記直径は、好ましくは、0.8μm以上であった。前記直径は、好ましくは、5μm以下であった。前記長さは、好ましくは、10μm以上であった。前記長さは、好ましくは、40μm以下であった。
 前記直径が大きい場合、表面積が小さかった。前記直径が小さい場合、生産性が低下した。前記長さが短い場合、繊維形状の特徴が失われた。前記長さが長い場合、電極を作製する際の取り扱い性が低下した。このような観点から、前記値が決められた。
 前記直径は炭素繊維のSEM写真から求められた。すなわち、炭素繊維のSEM写真から炭素繊維(前記要件1が満たされる炭素繊維)がランダムに10本抽出され、その平均直径が求められた。前記炭素繊維が10本未満(N本)の場合、N本の炭素繊維から平均直径が求められる。
 前記長さは炭素繊維のSEM写真から求められた。すなわち、炭素繊維のSEM写真から炭素繊維(前記要件1が満たされる炭素繊維)がランダムに10本抽出され、その平均長さが求められた。前記炭素繊維が10本未満(N本)の場合、N本の炭素繊維から平均長さが求められる。
  [要件2]
 前記炭素繊維には「うねり」が存在する。
 「うねり」は少なくとも形状が固定された炭素繊維に適用される。単層カーボンナノチューブの如くに柔らかい(25℃において形状が変化し得る)繊維には適用されない。
 前記「うねり」は次の内容である。前記炭素繊維が、走査型電子顕微鏡(SEM)により、撮影された。撮影された二次元画像が観察された。この時、屈曲部(但し、曲率半径が1~100μm。高さが2~50μm)が観察された場合、前記屈曲部が「うねり」であると見做された。すなわち、前記特徴の屈曲部を持つ炭素繊維は「うねり」を有すると見做される。前記特徴を有さない屈曲部は「うねり」とは見做されない。
 図5は炭素繊維のSEM写真である。図3は図5の炭素繊維の模式図である。図3中、「うねり(屈曲部)」部分には符号5が記された。
 前記炭素繊維の「うねり」の数は、好ましくは、炭素繊維5μm長(炭素繊維に沿っての長さ)当たり、1~6個であった。より好ましくは3個以下であった。
 前記「うねり」の数が少ない場合、本発明の特長(効果)が低かった。前記「うねり」の数が多い炭素繊維はコストが高く付いた。
  [要件3]
 前記炭素繊維には凸(突起:突部;図3,5参照)が存在する。
 図3中、凸(突起:突部)には符号6が記された。
 前記凸の突出高さ:20~300nm
 前記突出高さは、好ましくは、200nm以下であった。
 前記凸(前記CBで構成された突出高さが20~300nmの凸)の数:炭素繊維1μm長(炭素繊維に沿っての長さ)当たり、3~25個
 前記凸の数は、好ましくは、5個以上であった。前記凸の数は、好ましくは、23.5個以下であった。更に好ましくは20以下であった。
 前記「凸」の数が少ない場合、又は、前記「凸」の高さが低い場合、表面積が低下し、本発明の特長(効果)が低かった。前記「凸」の高さが高い場合、炭素繊維は切れ易かった。前記「凸」の数が多い炭素繊維は、作製が困難であった。
 前記特徴の凸を有する炭素繊維の作製には、平均一次粒径が21~69nmのCBの使用が大事であった。これは、CBの粒径が炭素繊維表面の凸の高さを決定する大きな要因であったからによる。
 前記凸は炭素繊維のSEM写真から求められた。すなわち、炭素繊維表面形状が確認できる倍率(3,000倍~10,000倍)のSEM写真が用いられた。この写真中、繊維の長さ方向に1μmの長さにおいて、上記特徴を有する凸の数が、ランダムに、5回に亘って、計測された。そして、平均値が算出された。
 前記特徴の「凸」が形成される為には、炭素成分が、実質的に、一次粒径が21~69nmのCBであることが好ましかった。前記突出高さは、CBの粒径によって、決まるからである。「実質的」は、PVAの炭化物や金属シリコン粒子を被覆する炭素成分など、意図的に添加した以外の炭素成分が除かれると言う意味である。
  [要件4]
 前記炭素繊維はCB(炭素成分)を有する。
 前記CBの一次粒径:21~69nm
 前記一次粒径は、好ましくは、60nm以下であった。
 前記一次粒径は透過型顕微鏡(TEM)によって求められた。すなわち、CBの1次粒径が十分に確認できる倍率(10,000倍~100,000倍)のTEM写真において、上記粒径の粒子がランダムに10個計測された。そして、その平均粒径が算出された。TEM写真には上記粒径の粒子が10個未満(N個)の場合、N個の粒子における平均粒径である。
 この一次粒径の値は、分散液作製に用いたCBの一次粒径(21~69nm)の値である。一次粒径の意味から、これは、当然とも言える。この一次粒径のCBが合体して出来たのが前記「要件3」の凸である。
 前記凸(突出高さ:20~300nm)6は前記CBで構成されている。
  [要件5]
 前記炭素繊維はSi粒子(例えば、金属ケイ素粒子)を有する。
 [前記Si粒子の質量]/[前記CBの質量+前記Si粒子の質量]=20~94%
 より好ましくは40%以上であった。より好ましくは90%以下であった。
 前記Si粒子が少な過ぎた場合、活物質としての容量が低下した。前記Si粒子が多すぎた場合、導電性が低下した。
 前記Si粒子の量は、SEM-EDSによって求められた。すなわち、EDSスペクトル(横軸:X線のエネルギー(eV)、縦軸:X線のカウント数)において、炭素(0.277eV)とケイ素(1.739eV)のカウント数から、Siの量が求められた。
 前記Si粒子の大きさは、好ましくは、0.25~3μmであった。
 前記大きさは、SEM-EDSによって、求められた。すなわち、Siの特性X線(1.739eV)に注目して電子線が操作された。ケイ素のX線マッピングが行われた。得られた画像からSi粒子の大きさが求められた。
  [要件6]
 前記炭素繊維はS粒子(硫黄粒子)を有する。
 [前記S粒子の質量]/[前記CBの質量+前記S粒子の質量]=20~94%
 より好ましくは40%以上であった。より好ましくは90%以下であった。
 前記S粒子が少な過ぎた場合、活物質としての容量が低下した。前記S粒子が多すぎた場合、導電性が低下した。
 前記S粒子の量は、SEM-EDSによって求められた。すなわち、EDSスペクトル(横軸:X線のエネルギー(eV)、縦軸:X線のカウント数)において、炭素(0.277eV)と硫黄(2.307eV)のカウント数から、S粒子の量が求められた。
 前記S粒子の大きさは、好ましくは、0.25~3μmであった。
 前記大きさは、SEM-EDSによって求められた。すなわち、硫黄の特性X線(2.307eV)に注目して電子線が操作された。硫黄のX線マッピングが行われた。得られた画像からS粒子の大きさが求められた。
 前記炭素繊維は、好ましくは、前記特徴(要件1~4、若しくは要件1~5、又は要件1,2,3,4,6)を有する炭素繊維である。しかしながら、前記特徴を有さない炭素繊維が含まれていても良い。例えば、(本発明の特徴を有する炭素繊維の体積量)/(本発明の特徴を有する炭素繊維の体積量+本発明の特徴を有さない炭素繊維の体積量)≧0.5であれば、本発明の特徴が大きく損なわれるものではなかった。好ましくは、前記比が0.6以上である。より好ましくは、前記比が0.7以上である。更に好ましくは、前記比が0.8以上である。もっと好ましくは、前記比が0.9以上である。体積量比は電子顕微鏡観察などの方法で求められる。この観点から、前記直径は「平均直径」であると言える。前記長さは「平均長さ」であると言える。前記粒径は「平均粒径」であると言える。前記うねりの数は「平均値」であると言える。前記突出高さは「平均突出高さ」であると言える。前記凸の数は「平均値」であると言える。前記粒子の量は「平均値」であると言える。前記粒子の大きさは「平均値」であると言える。
 [電極]
 前記炭素繊維は、電気素子(電子素子も電気素子の中に含まれる)の部材に用いられる。例えば、蓄電池、キャパシタ、燃料電池などの部材に用いられる。
 前記炭素繊維は、蓄電池の電極に応用される。蓄電池は、例えば鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池、ナトリウム硫黄電池、レドックスフロー電池、リチウムイオンキャパシタ等である。中でも、リチウムイオン電池である。前記電極は、好ましくは、負極(又は、正極)である。好ましくは負極活物質(又は、正極活物質)である。好ましくは導電剤である。
 本発明の炭素繊維の中、炭素成分のみの炭素繊維は導電剤として用いられる。Si(金属シリコン)粒子を含む炭素繊維は負極活物質として用いられる。S(硫黄)粒子を含む炭素繊維は正極活物質として用いられる。
 リチウムイオン電池は各種の部材(例えば、正極、負極、セパレータ、電解液)からなる。正極(又は、負極)は次のようにして構成される。すなわち、活物質(正極活物質、又は負極活物質)、導電剤、結着剤などを含む混合物が、集電体(例えば、アルミ箔や銅箔など)上に積層される。これによって、正極(又は、負極)が得られる。
 負極活物質として、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、又は活性炭などの炭素材料が挙げられる。リチウムと合金を形成可能な金属元素の単体、合金および化合物、並びにリチウムと合金を形成可能な半金属元素の単体、合金および化合物からなる群の中の少なくとも一種を含んでいるものが用いられる(これらを以下合金系負極活物質と称する)。
 前記金属元素(又は半金属元素)としては、スズ(Sn),鉛(Pb),アルミニウム,インジウム(In),ケイ素(Si),亜鉛(Zn),アンチモン(Sb),ビスマス(Bi),カドミウム(Cd),マグネシウム(Mg),ホウ素(B),ガリウム(Ga),ゲルマニウム(Ge),ヒ素(As),銀(Ag),ジルコニウム(Zr),イットリウム(Y)またはハフニウム(Hf)が挙げられる。具体的な化合物例としては、LiAl,AlSb,CuMgSb,SiB,SiB,MgSi,MgSn,NiSi,TiSi,MoSi,CoSi,NiSi,CaSi,CrSi,CuSi,FeSi,MnSi,NbSi,TaSi,VSi,WSi,ZnSi,SiC,Si,SiO,SiO(0<v≦2),SnO(0<w≦2),SnSiO,LiSiO,LiSnO等が挙げられる。リチウムチタン複合酸化物(スピネル型、ラムステライト型等)も好ましい。
 正極活物質は、リチウムイオンを吸蔵および放出できる物質であれば良い。好ましい例としては、例えばリチウム含有複合金属酸化物、オリビン型リン酸リチウムなどが挙げられる。
 リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物である。或いは、金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。遷移金属元素として、コバルト、ニッケル、マンガン、鉄の群の中の少なくとも一種以上を含有するものがより好ましい。リチウム含有複合金属酸化物の具体例としては、例えばLikCoO,LiNiO,LiMnO,LiCoNi1-m,LiCo1-m,LiNi1-m,LiMn,LiMn2-mMnO(Mは、Na,Mg,Sc,Y,Mn,Fe,Co,Ni,Cu,Zn,Al,Cr,Pb,Sb,Bの群の中から選ばれる少なくとも一つの元素である。k=0~1.2,m=0~0.9,n=2.0~2.3)等が挙げられる。
 オリビン型結晶構造を有し、一般式LiFe1-yPO(Mは、Co,Ni,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの群の中から選ばれる少なくとも一つの元素である。0.9<x<1.2,0≦y<0.3)で表される化合物(リチウム鉄リン酸化物)を用いることも出来る。このようなリチウム鉄リン酸化物としては、例えばLiFePOが好適である。
 リチウムチオレートとしては、ヨーロッパ特許第415856号公報に述べられている一般式X-S-R-S-(S-R-S)n-S-R-S-X′で表される化合物が用いられる。
 リチウムチオレート及び本発明の炭素繊維の中、硫黄を含む炭素繊維を正極活物質として用いる場合は、これら活物質自体にリチウムイオンが含まれていない為、対極としてはリチウム箔などリチウムを含む電極が好ましい。
 セパレータは多孔質膜により構成される。二種以上の多孔質膜が積層されたものでも良い。多孔質膜としては、合成樹脂(例えばポリウレタン、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン等)製の多孔質膜が例示される。セラミック製の多孔質膜が用いられても良い。
 電解液は非水溶媒と電解質塩とを含有する。非水溶媒は、例えば環状炭酸エステル(炭酸プロピレン、炭酸エチレン等)、鎖状エステル(炭酸ジエチル、炭酸ジメチル、炭酸エチルメチル等)、エーテル類(γ-ブチロラクトン、スルホラン、2-メチルテトラヒドロフラン、ジメトキシエタン等)である。これらは単独でも、混合物(二種以上)でも良い。炭酸エステルは、酸化安定性の観点から、好ましい。
 電解質塩は、例えばLiBF,LiClO,LiPF,LiSbF,LiAsF,LiAlCl,LiCFSO,LiCFCO,LiSCN、低級脂肪族カルボン酸リチウム、LiBCl,LiB10Cl10、ハロゲン化リチウム(LiCl,LiBr,LiI等)、ホウ酸塩類(ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等)、イミド塩類(LiN(CFSO,LiN(CFSO)(CSO)等)である。LiPF,LiBF等のリチウム塩は好ましい。LiPFは特に好ましい。
 電解液として、高分子化合物に電解液が保持されたゲル状の電解質が用いられても良い。前記高分子化合物は、例えばポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデンとポリヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレン、ポリカーボネート等である。電気化学的安定性の観点から、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイドの構造を持つ高分子化合物が好ましい。
 導電剤は、例えばグラファイト(天然黒鉛、人造黒鉛など)、カーボンブラック(アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等)、導電性繊維(炭素繊維、金属繊維)、金属(Al等)粉末、導電性ウィスカー(酸化亜鉛、チタン酸カリウムなど)、導電性金属酸化物(酸化チタン等)、有機導電性材料(フェニレン誘導体など)、フッ化カーボン等である。
 結着剤は、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリロニトリル、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ヘキシル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ヘキシル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルホン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、変性アクリルゴム、カルボキシメチルセルロース等である。
 リチウムイオン電池の電極(負極および正極)は活物質(例えば、黒鉛材、コバルト酸リチウム)が集電極板(例えば、銅箔、アルミ箔)上に積層されたものである。本発明の材料は、炭素成分のみの炭素繊維は導電剤として用いられる。Si粒子を含む炭素繊維は負極活物質として用いられる。S粒子を含む炭素繊維は正極活物質として用いられる。
 尚、従来の活物質と併用されても良い。併用の場合、全活物質の量に対する前記炭素繊維の量が3~50質量%であることが好ましい。5~30質量%の場合が更に好ましい。10~20質量%の場合が特に好ましい。
 前記炭素繊維は導電助剤として用いられる。リチウムイオン電池の正極にはコバルト酸リチウムなど導電性のない材料が使われている。前記炭素繊維が用いられた場合、内部抵抗が低減される。リチウムイオン電池において、導電性の低い合金系の負極材が用いられた場合、負極の導電助剤として前記炭素繊維が利用できる。導電助剤の量は、電極に用いる全活物質量に対して、0.1~20質量%である。より好ましくは、0.5~10質量%である。特に好ましくは0.5~3質量%である。
 従来の導電助剤と併用されても良い。併用の場合、全導電助剤の量に対する前記炭素繊維の量が10~70質量%であることが好ましい。20~60質量%の場合が更に好ましい。30~50質量%の場合が特に好ましい。
 前記炭素繊維は、キャパシタの電極に応用される。前記キャパシタは電気二重層キャパシタである。前記キャパシタはリチウムイオンキャパシタである。前記電極は、好ましくは、負極である。リチウムイオンキャパシタの負極は、一般的には、負極活物質が集電極板(例えば、銅箔)上に積層されている。本発明の材料は、導電助剤に用いられる。本発明の材料は、負極活物質に用いられる。
 以下、具体的な実施例が挙げられる。但し、本発明は以下の実施例にのみ限定されない。本発明の特長が大きく損なわれない限り、各種の変形例や応用例も本発明に含まれる。
 [実施例1]
 PVA(商品名:ポバール224:鹸化度88mol%、重合度2400:株式会社クラレ製)70質量部、カーボンブラック(商品名:#3050B、一次粒径50nm、鉄分1,000ppm、三菱化学株式会社製)30質量部、及び水400質量部が、ビーズミルで、混合された。カーボンブラック分散液(PVAは溶解)が得られた。
 遠心紡糸装置(図1,2参照、ノズルと捕集体との距離;20cm、円盤回転数:10,000rpm)が用いられた。上記分散液が用いられ、遠心紡糸が行われた。不織布(炭素繊維前駆体製)が捕集板上に作製された。
 得られた不織布が加熱(300℃、1時間、空気中)された。
 次いで、加熱(3000℃、黒鉛化炉)が行われた。
 得られた不織布(炭素繊維製)がミキサーで処理された。これにより解布が行われた。すなわち、炭素繊維が得られた。
 得られた炭素繊維が分級された。分級には、篩(目開き:75μm)が用いられた。
 前記篩を通過した炭素繊維がSEM-EDS(JSM-7001F(日本電子株式会社製))で測定された。その結果が図4,5に示される。
 この炭素繊維の物性[長さ(平均長さ)、直径(平均直径)、「うねり」の数(長さ(炭素繊維に沿っての長さ)5μm当たりの数(平均値))、炭素繊維の表面に存在する凸(突出高さ:20~300nm)の数(長さ(炭素繊維に沿っての長さ)が1μm当たりの数(平均値))、BET比表面積]が、表-1に示される。
 得られた炭素繊維がTEM(装置名:H-7100、株式会社日立製作所製)で観察された写真が図16に示される。CBが観察された。CBの一次粒径は50nmであった。
 この炭素繊維5質量部、コバルト酸リチウム93質量部、及びポリフッ化ビニリデン2質量部が、N-メチルピロリドン200質量部に、分散させられた。この分散液がアルミ箔上に塗工された。乾燥後にプレスされた。リチウムイオン電池正極が得られた。リチウム箔(対極)が用いられた。エチレンカーボネート/ジエチレンカーボネート(1/1(体積比):電解液)が用いられた。1mol%のLiPF(電解質)が用いられた。リチウムイオン電池のコインセルが作製された。
 前記コインセルに定電流(充放電レート:10C)で充放電が行われた。放電容量が測定された。得られた充放電曲線が図6に示される。放電容量は50.9mAh/gであった。後述の比較例1の放電容量は5.6mAh/gであった。
 [実施例2]
 実施例1において、カーボンブラック(一次粒径50nm、鉄分1,000ppm)の代わりに、カーボンブラック(一次粒径23nm、鉄分1ppm)が用いられた以外は、実施例1に準じて行われた。その結果が表-1に示される。得られた炭素繊維にはCBが観察された。前記CBの一次粒径は23nmであった。
 [実施例3]
 実施例2において、加熱(3000℃、黒鉛化炉)が省略された以外は、実施例2に準じて行われた。その結果が表-1に示される。得られた炭素繊維にはCBが観察された。前記CBの一次粒径は23nmであった。
 [実施例4]
 実施例3において、カーボンブラック(一次粒径23nm、鉄分1ppm)の代わりに、カーボンブラック(一次粒径35nm、鉄分10ppm)が用いられた以外は、実施例3に準じて行われた。その結果が表-1に示される。得られた炭素繊維にはCBが観察された。前記CBの一次粒径は35nmであった。
 [実施例5]
 実施例3において、カーボンブラック(一次粒径23nm、鉄分1ppm)の代わりに、カーボンブラック(一次粒径60nm、鉄分10ppm)が用いられた以外は、実施例3に準じて行われた。その結果が表-1に示される。得られた炭素繊維にはCBが観察された。前記CBの一次粒径は60nmであった。
 [実施例6]
 実施例1において、カーボンブラック量を30質量部から150質量部に変更した以外は、実施例1に準じて行われた。その結果が表-1に示される。得られた炭素繊維にはCBが観察された。前記CBの一次粒径は50nmであった。
 [実施例7]
 実施例1において、重合度2000、鹸化度88mol%のPVAが用いられた以外は、実施例1に準じて行われた。その結果が表-1に示される。得られた炭素繊維にはCBが観察された。前記CBの一次粒径は50nmであった。
 [実施例8]
 実施例1において、重合度2400、鹸化度70mol%のPVAが用いられた以外は、実施例1に準じて行われた。その結果が表-1に示される。得られた炭素繊維にはCBが観察された。前記CBの一次粒径は50nmであった。
 [比較例1]
 「前記特許文献2の実施例5」が本比較例1に相当する。
 PVA(商品名:ポバール117、鹸化度98~99mol%、重合度1700:株式会社クラレ製)70質量部、メソフェーズピッチ(商品名:AR:三菱ガス化学株式会社社製)30質量部、及び水400質量部が、ビーズミルで、混合された。メソフェーズピッチ分散液(PVAは溶解)が得られた。
 実施例1の遠心紡糸装置が用いられた。上記分散液が用いられ、遠心紡糸が行われた。炭素繊維前駆体製の不織布が捕集板上に作製された。
 得られた不織布が加熱(300℃、1時間、空気中)された。
 この後、加熱(900℃、アルゴンガス雰囲気下)が行われた。
 次いで、加熱(3000℃、黒鉛化炉)が行われた。
 得られた炭素繊維製の不織布10mgがガラス瓶に入れられた。水10gが投入された。超音波照射により解布が行われた。得られた炭素繊維分散水がフィルタで濾過された。これにより炭素繊維が回収された。
 得られた炭素繊維がSEM(JSM-7001F)で測定された。その結果が図7,8に示される。
 得られた炭素繊維の物性が表-1に示される。
 本比較例1の炭素繊維が用いられ、実施例1に準じて、リチウムイオン電池のコインセルが作製された。実施例1と同様な充放電が行われた。放電容量が測定された。得られた充放電曲線が図6に示される。
 [比較例2]
 比較例1で得られた炭素繊維が篩(目開き:75μm)により分級された。この分級された炭素繊維が用いられ、実施例1に準じて行われた。その結果が表-1に示される。
 [比較例3]
 実施例3において、カーボンブラック(一次粒径23nm、鉄分1ppm)の代わりに、カーボンブラック(一次粒径15nm、鉄分1,000ppm)が用いられた以外は、実施例3に準じて行われた。紡糸原液の粘度が高く、紡糸が出来なかった。
 [比較例4]
 実施例3において、カーボンブラック(一次粒径23nm、鉄分1ppm)の代わりに、カーボンブラック(一次粒径75nm、鉄分10ppm)が用いられた以外は、実施例3に準じて行われた。その結果が表-1に示される。
 [比較例5]
 実施例3において、PVAの代わりに、ポリエチレングリコールが用いられた以外は、実施例3に準じて行われた。加熱工程で繊維が溶融し、炭素繊維が得られなかった。
               表-1
     平均直径 平均長さ うねり数 凸の数 比表面積 放電容量
     (μm) (μm) (個) (個) (m/g) (mAh/g)
実施例1  0.9  15  1.3  8.2 20.3 50.9
実施例2  2.0  35  2.5 23.4 25.4 63.8
実施例3  2.0  35  2.5 23.4 21.5 55.8
実施例4  1.5  23  1.1 12.8 53.2 73.5
実施例5  2.5  17  1.2  5.3 15.7 46.5
実施例6  3.5  6.5 1.7 18.2 30.2 29.8
実施例7  2.8 10.2 2.4 12.5 18.5 38.5
実施例8  3.2 12.5 3.1 18.4 17.2 32.8
比較例1  1.2 21   1.5  0.8  7.2  5.6
比較例2  1.2 21   1.5  0.8  8.2  8.3
比較例4  2.5 13   1.1  1.8  8.8 10.1
 [実施例9]
 PVA(商品名:ポバール224:鹸化度88mol%、重合度2400:株式会社クラレ製)60質量部、カーボンブラック(一次粒径23nm、鉄分1ppm)5質量部、金属ケイ素(平均粒径0.8μm、キンセイマテック株式会社製)35質量部、及び水500質量部が、ビーズミルで、混合された。カーボンブラック・金属ケイ素分散液(PVAは溶解)が得られた。
 この分散液が用いられ、実施例3に準じて行われた。
 得られた炭素繊維がSEM(JSM-7001F)で測定された。その結果が図9,10に示される。
 得られた炭素繊維の物性が表-2に示される。前記炭素繊維にはCBが観察された。前記CBの一次粒径は23nmであった。
 X線回折測定(XRD:株式会社リガク製)の結果が図11に示される。金属ケイ素に特有の111面(28°付近)、220面(47°付近)、311面(56°付近)に帰属される回折線が観測された。
 炭素とケイ素との比率がJSM-7001F(日本電子株式会社製)で測定された。図17の左側はSEM写真である。図17の真ん中は炭素マッピングである。図17の右側はケイ素マッピングである。これによれば、炭素/ケイ素=21/79(質量比)であった。ケイ素粒子の平均粒径は0.8μmであった。
 前記ケイ素含有炭素繊維10質量部、人造黒鉛87質量部、カルボキシメチルセルロース1質量部、及びスチレン-ブタジエン共重合体粒子2質量部が、水400質量部に、分散させられた。この分散液が銅箔上に塗工された。乾燥後にプレスされた。リチウムイオン電池負極が得られた。リチウム箔(対極)が用いられた。エチレンカーボネート/ジエチレンカーボネート(1/1(体積比):電解液)が用いられた。1mol%のLiPF(電解質)が用いられた。リチウムイオン電池のコインセルが作製された。
 前記コインセルに定電流(充放電レート:0.1C)で充放電が行われた。放電容量が測定された。得られた充放電曲線が図12に示される。放電容量は618mAh/gであった。充放電が30回繰り返された後の放電容量は575mAh/gであった。サイクル特性(30サイクル後の放電容量の初回放電容量に対する割合)は93%であった。結果が表-2に示される。
 [比較例6]
 実施例9において、ケイ素含有炭素繊維を用いず、人造黒鉛の量を97質量部とした以外は、実施例9に準じて行われた。その結果が表-2に示される。
 [実施例10]
 PVA(商品名:ポバール224:鹸化度88mol%、重合度2400:株式会社クラレ製)60質量部、カーボンブラック(一次粒径35nm、鉄分1ppm)30質量部、金属ケイ素(平均粒径0.3μm、キンセイマテック株式会社製)10質量部、及び水500質量部が、ビーズミルで、混合された。カーボンブラック・金属ケイ素分散液(PVAは溶解)が得られた。この分散液が用いられ、実施例9に準じて行われた。その結果が表-2に示される。ケイ素粒子の平均粒径は0.3μmであった。炭素繊維にはCBが観察された。前記CBの一次粒径は35nmであった。
 [実施例11]
 PVA(商品名:ポバール224:鹸化度88mol%、重合度2400:株式会社クラレ製)60質量部、カーボンブラック(一次粒径35nm、鉄分10ppm)1質量部、金属ケイ素(平均粒径0.9μm、キンセイマテック株式会社製)39質量部、及び水500質量部が、ビーズミルで、混合された。カーボンブラック・金属ケイ素分散液(PVAは溶解)が得られた。この分散液が用いられ、実施例9に準じて行われた。その結果が表-2に示される。ケイ素粒子の平均粒径は0.9μmであった。炭素繊維にはCBが観察された。前記CBの一次粒径は35nmであった。
               表-2
         実施例9  実施例10  実施例11  比較例6
平均直径(μm)  3.2   0.6    5.2     -
平均長さ(μm) 25     5     45       -
うねり数(個)   3.0   4.2    1.8     -
凸の数(個)   12.3  23.4    8.2     -
炭素/珪素(wt%)21/79 80/20  7/93    -
放電容量(mAh/g) 618   411    658     360
サイクル特性(%)  93    95     85      71
  *平均直径、平均長さ、うねり数、凸の数に関しては、実施例1の場合と同様。
 比較例6と実施例9,10,11とを比較すると、本実施例のセルは放電容量が増大し、サイクル特性が向上していることが判る。
 [実施例12]
 PVA(商品名:ポバール224:鹸化度88mol%、重合度2400:株式会社クラレ製)60質量部、カーボンブラック(一次粒径23nm、鉄分1ppm)5質量部、硫黄(平均粒径2μm、キシダ化学株式会社製)35質量部、及び水500質量部が、ビーズミルで、混合された。カーボンブラック・硫黄分散液(PVAは溶解)が得られた。この分散液が用いられ、実施例9に準じて行われた。
 その結果が表-3に示される。
 得られた炭素繊維がSEM(JSM-7001F)で測定された。その結果が図13,14に示される。前記炭素繊維にはCBが観察された。前記CBの一次粒径は23nmであった。
 前記炭素繊維がSEM-EDS(JSM-7001F)で測定された。炭素/硫黄=17/83(質量比)であった。硫黄粒子の平均粒径は2μmであった。
 前記硫黄含有炭素繊維98質量部、及びポリビニリデンフルオライド2質量部が、N-メチルピロリドン200質量部に、分散させられた。この分散液がAl箔上に塗工された。乾燥後にプレスされた。これにより、リチウムイオン電池負極が得られた。リチウム箔(対極)が用いられた。エチレンカーボネート/ジエチレンカーボネート(1/1(体積比):電解液)が用いられた。1mol%のLiPF(電解質)が用いられた。リチウムイオン電池のコインセルが作製された。
 前記コインセルに定電流(充放電レート:0.1C)で充放電が行われた。放電容量が測定された。得られた充放電曲線が図15に示される。放電容量は237.3mAh/gであった。充放電が10回繰り返された後の放電容量は206.5mAh/gであった。サイクル特性(10サイクル後の放電容量の初回放電容量に対する割合)は87%であった。結果が表-3に示される。
 [実施例13]
 PVA(商品名:ポバール224:鹸化度88mol%、重合度2400:株式会社クラレ製)60質量部、カーボンブラック(一次粒径35nm、鉄分1ppm)30質量部、硫黄(平均粒径0.3μm、キシダ化学株式会社製)10質量部、及び水500質量部が、ビーズミルで、混合された。カーボンブラック・硫黄分散液(PVAは溶解)が得られた。この分散液が用いられ、実施例12に準じて行われた。結果が表-3に示される。硫黄粒子の平均粒径は0.3μmであった。炭素繊維にはCBが観察された。前記CBの一次粒径は35nmであった。
 [実施例14]
 PVA(商品名:ポバール224:鹸化度88mol%、重合度2400:株式会社クラレ製)60質量部、カーボンブラック(一次粒径35nm、鉄分1ppm)1質量部、硫黄(平均粒径0.8μm、キシダ化学株式会社製)39質量部、及び水500質量部が、ビーズミルで、混合された。カーボンブラック・硫黄分散液(PVAは溶解)が得られた。この分散液が用いられ、実施例12に準じて行われた。結果が表-3に示される。硫黄粒子の平均粒径は0.8μmであった。炭素繊維にはCBが観察された。前記CBの一次粒径は35nmであった。
 [比較例7]
 カーボンブラック(一次粒径35nm、鉄分1ppm)5質量部、硫黄(平均粒径2μm、キシダ化学株式会社製)35質量部、ポリビニリデンフルオライド1質量部、及びN-メチルピロリドン200質量部が混合された。カーボンブラック・硫黄分散液が作製された。この分散液が用いられ、実施例12に準じて行われた。結果が表-3に示される。
               表-3
         実施例12  実施例13  実施例14  比較例7
平均直径(μm)  4.8    2.1    5.3     -
平均長さ(μm) 32      8.4   46       -
うねり数(個)   1.2    3.5    2.5     -
凸の数(個)    5.3   10.2    8.5     -
炭素/硫黄(wt%)17/83 80/20  7/93     -
放電容量(mAh/g) 237.3  60.3  253.2   27.8
サイクル特性(%) 87     91     85      17
  *平均直径、平均長さ、うねり数、凸の数に関しては、実施例1の場合と同様。
 比較例7と実施例12,13,14とを比較すると、本実施例のセルは放電容量が増大し、サイクル特性が向上していることが判る。
1   回転体(円盤)
2   内部(空洞部)
3   捕集板
4   不織布
5   うねり
6   凸
 

Claims (11)

  1.  下記の[要件1]~[要件4]が満足される
    ことを特徴とする炭素繊維。
      [要件1]
     前記炭素繊維の直径:0.5~6.5μm
     前記炭素繊維の長さ:5~65μm
     (前記炭素繊維の直径)<(前記炭素繊維の長さ)
      [要件2]
     前記炭素繊維は「うねり」を有する。
      [要件3]
     前記炭素繊維は凸を有する。
     前記凸の突出高さ:20~300nm
     前記凸の数:炭素繊維1μm長(炭素繊維に沿っての長さ)当たり、3~25個
      [要件4]
     前記炭素繊維はカーボンブラックを有する。
  2.  更に下記の[要件5]が満足される
    ことを特徴とする請求項1の炭素繊維。
      [要件5]
     前記炭素繊維はSi粒子を有する。
     [前記Si粒子の質量]/[前記カーボンブラックの質量+前記Si粒子の質量]=20~94%
  3.  更に下記の[要件6]が満足される
    ことを特徴とする請求項1の炭素繊維。
      [要件6]
     前記炭素繊維はS粒子を有する。
     [前記S粒子の質量]/[前記カーボンブラックの質量+前記S粒子の質量]=20~94%
  4.  分散液作製工程と紡糸工程と変性工程とを具備する炭素繊維材の製造方法であって、
     前記分散液作製工程は、ポリビニルアルコール、カーボンブラック(一次粒径が21~69nm)、及び溶媒を含む分散液が作製される工程であり、
     前記紡糸工程は、前記分散液から、炭素繊維前駆体よりなる不織布が作製される工程であり、
     前記変性工程は、前記炭素繊維前駆体が炭素繊維に変性する工程である
    ことを特徴とする炭素繊維材製造方法。
  5.  前記カーボンブラックは、前記ポリビニルアルコール100質量部に対して、5~200質量部である
    ことを特徴とする請求項4の炭素繊維材製造方法。
  6.  前記ポリビニルアルコールは、
      重合度が2200~4000、
      鹸化度が75~90mol%
    であることを特徴とする請求項4又は請求項5の炭素繊維材製造方法。
  7.  更に、解布工程と、分級工程とを具備し、
     前記解布工程は、不織布が解かれる工程であり、
     前記分級工程は、炭素繊維(直径が0.5~6.5μm、長さが5~65μm)が分取される工程である
    ことを特徴とする請求項4~請求項6いずれかの炭素繊維材製造方法。
  8.  前記分散液作製工程は、更に、Si粒子(又はS粒子)が用いられて分散液が作製される工程であり、
     前記Si粒子(又はS粒子)は、粒径が0.25~3μmであり、
     [前記Si粒子(又はS粒子)の質量]/[前記カーボンブラックの質量+前記Si粒子(又はS粒子)の質量]=20~94%
    であることを特徴とする請求項4~請求項7いずれかの炭素繊維材製造方法。
  9.  請求項1~請求項3いずれかの炭素繊維を具備する電気デバイス。
  10.  請求項1~請求項3いずれかの炭素繊維を用いて構成された負極を具備する二次電池。
  11.  請求項1~請求項3いずれかの炭素繊維を用いて構成された正極を具備する二次電池。
     
     
PCT/JP2016/060987 2016-04-04 2016-04-04 炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池 WO2017175262A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2016/060987 WO2017175262A1 (ja) 2016-04-04 2016-04-04 炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池
US15/308,649 US20180187338A1 (en) 2016-04-04 2016-06-30 Carbon fiber, method of producing carbon fiber material, electrical device, secondary battery, and product
JP2016563488A JP6142332B1 (ja) 2016-04-04 2016-06-30 炭素繊維、炭素繊維材製造方法、電気デバイス、二次電池、及び製品
PCT/JP2016/069494 WO2017175401A1 (ja) 2016-04-04 2016-06-30 炭素繊維、炭素繊維材製造方法、電気デバイス、二次電池、及び製品
KR1020167031955A KR101810439B1 (ko) 2016-04-04 2016-06-30 탄소 섬유, 탄소 섬유재 제조 방법, 전기 디바이스, 이차전지, 및 제품
CN201680001506.1A CN106537668B (zh) 2016-04-04 2016-06-30 碳纤维、碳纤维材料制造方法、电气设备、二次电池和产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060987 WO2017175262A1 (ja) 2016-04-04 2016-04-04 炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池

Publications (1)

Publication Number Publication Date
WO2017175262A1 true WO2017175262A1 (ja) 2017-10-12

Family

ID=60000281

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/060987 WO2017175262A1 (ja) 2016-04-04 2016-04-04 炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池
PCT/JP2016/069494 WO2017175401A1 (ja) 2016-04-04 2016-06-30 炭素繊維、炭素繊維材製造方法、電気デバイス、二次電池、及び製品

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069494 WO2017175401A1 (ja) 2016-04-04 2016-06-30 炭素繊維、炭素繊維材製造方法、電気デバイス、二次電池、及び製品

Country Status (3)

Country Link
US (1) US20180187338A1 (ja)
KR (1) KR101810439B1 (ja)
WO (2) WO2017175262A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046359B2 (en) 2017-09-25 2021-06-29 Mando Corporation Steer-by-wire system and control method thereof
JP6970388B2 (ja) * 2018-03-02 2021-11-24 住友電気工業株式会社 レドックスフロー電池用電極、レドックスフロー電池セル及びレドックスフロー電池
CN113871574B (zh) * 2021-09-24 2023-08-08 远景动力技术(江苏)有限公司 锂离子电池负极片及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054636A1 (ja) * 2004-11-19 2006-05-26 Bridgestone Corporation 炭素繊維及び多孔質支持体-炭素繊維複合体及びそれらの製造方法、並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池
WO2013157160A1 (ja) * 2012-04-18 2013-10-24 テックワン株式会社 炭素繊維材、炭素繊維材製造方法、前記炭素繊維材を有する材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1341507C (fr) 1989-09-01 2006-06-13 Michel Gauthier Generateur a l'etat solide fonctionnant par polymerisation redox
HU228482B1 (en) * 2000-05-09 2013-03-28 Mitsubishi Rayon Co Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof
TW200508431A (en) * 2003-08-26 2005-03-01 Showa Denko Kk Crimped carbon fiber and production method thereof
IN2012DN02063A (ja) * 2009-08-28 2015-08-21 Sion Power Corp
JP4697901B1 (ja) 2010-01-21 2011-06-08 平松産業株式会社 炭素繊維製不織布、炭素繊維、及びその製造方法、電極、電池、及びフィルタ
JP5376530B2 (ja) 2010-11-29 2013-12-25 テックワン株式会社 負極活物質、負極製造方法、負極、及び二次電池
KR102353511B1 (ko) * 2012-03-02 2022-01-21 코넬 유니버시티 나노섬유들을 포함하는 리튬 이온 배터리들
JP5510970B2 (ja) * 2012-04-18 2014-06-04 テックワン株式会社 炭素繊維、炭素繊維製造方法、前記炭素繊維を有する材
WO2014160174A1 (en) * 2013-03-14 2014-10-02 Cornell University Carbon and carbon precursors in nanofibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054636A1 (ja) * 2004-11-19 2006-05-26 Bridgestone Corporation 炭素繊維及び多孔質支持体-炭素繊維複合体及びそれらの製造方法、並びに触媒構造体、固体高分子型燃料電池用電極及び固体高分子型燃料電池
WO2013157160A1 (ja) * 2012-04-18 2013-10-24 テックワン株式会社 炭素繊維材、炭素繊維材製造方法、前記炭素繊維材を有する材

Also Published As

Publication number Publication date
KR20170123575A (ko) 2017-11-08
WO2017175401A1 (ja) 2017-10-12
KR101810439B1 (ko) 2017-12-20
US20180187338A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
KR102650964B1 (ko) 음극 활물질 복합체, 상기 복합체를 포함하는 음극, 상기 음극을 포함하는 리튬 이차전지, 및 상기 복합체의 제조방법
JP5334278B1 (ja) 炭素繊維材、炭素繊維材製造方法、前記炭素繊維材を有する材
WO2011089754A1 (ja) 炭素繊維製不織布、炭素繊維、及びその製造方法、電極、電池、及びフィルタ
JP4697901B1 (ja) 炭素繊維製不織布、炭素繊維、及びその製造方法、電極、電池、及びフィルタ
JP6229245B1 (ja) 炭素−珪素複合材、負極、二次電池
WO2005067081A1 (en) Negative electrode material for lithium battery, and lithium battery
KR102065256B1 (ko) 실리콘계 음극활물질, 그 제조방법 및 이를 포함하는 리튬 이온 이차전지
JP6283801B1 (ja) 炭素−珪素複合材、負極、二次電池、炭素−珪素複合材製造方法
WO2017175262A1 (ja) 炭素繊維、炭素繊維材製造方法、電気デバイス、及び二次電池
JP5489184B2 (ja) 分岐型炭素繊維、分岐型炭素繊維製造方法、前記分岐型炭素繊維を有する材
JP6142332B1 (ja) 炭素繊維、炭素繊維材製造方法、電気デバイス、二次電池、及び製品
JP5510970B2 (ja) 炭素繊維、炭素繊維製造方法、前記炭素繊維を有する材
KR20180004487A (ko) 복합 전극활물질, 이를 포함하는 리튬전지, 및 상기 복합 전극활물질의 제조방법
JP6283800B1 (ja) 炭素−珪素複合材、負極、二次電池、炭素−珪素複合材製造方法
EP3252193B1 (en) Carbon fiber, carbon fiber material production method, electrical device, rechargeable battery, and product

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897821

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP