WO2006049064A1 - 質量分析方法 - Google Patents

質量分析方法 Download PDF

Info

Publication number
WO2006049064A1
WO2006049064A1 PCT/JP2005/019728 JP2005019728W WO2006049064A1 WO 2006049064 A1 WO2006049064 A1 WO 2006049064A1 JP 2005019728 W JP2005019728 W JP 2005019728W WO 2006049064 A1 WO2006049064 A1 WO 2006049064A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate
mass
analysis
ion
daughter
Prior art date
Application number
PCT/JP2005/019728
Other languages
English (en)
French (fr)
Inventor
Shinichi Yamaguchi
Yusuke Inohana
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to US11/718,365 priority Critical patent/US7544931B2/en
Priority to JP2006515409A priority patent/JP4324702B2/ja
Publication of WO2006049064A1 publication Critical patent/WO2006049064A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0081Tandem in time, i.e. using a single spectrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers

Definitions

  • the present invention relates to a mass spectrometry method using a mass spectrometer, and more specifically, a mass spectrometry method using a mass spectrometer capable of analyzing daughter ions generated by cleaving ions to be analyzed, In particular, it relates to a method for analyzing the composition and structure of molecules.
  • MSZMS analysis For mass spectrometry using an ion trap mass spectrometer or the like, a technique called MSZMS analysis (tandem analysis) is known.
  • MSZMS analysis first, ions having a specific mass number (mass Z charge) are selected from the analysis target as precursor ions (parent ions), and the selected precursor ions are then collided by CID (Collision Induced Dissociation: Cleavage is performed by collision-induced decomposition, and cleavage ions are generated. Then, by analyzing the mass of the daughter ions generated by cleavage, information on the mass and chemical structure of the target ions can be obtained.
  • CID collision Induced Dissociation
  • Patent Document 1 Japanese Patent Laid-Open No. 10-142196
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-249114
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to facilitate such analysis particularly when analyzing the molecular structure and composition of a sample having a large molecular weight. Another object of the present invention is to provide a mass spectrometry method that can be performed accurately.
  • the mass spectrometry method according to the first aspect of the present invention cleaves a parent ion derived from a sample to be analyzed into n ⁇ 1 (n ⁇ 3) stages.
  • a candidate X deriving step for deriving a candidate X of a component corresponding to the parent ion based on the mass number of the parent ion obtained by MS 1 analysis without performing a cleavage operation
  • a parent ion derived from a sample to be analyzed is cleaved in a ⁇ -1 ( ⁇ 2) stage,
  • a mass spectrometry method for analyzing the molecular structure and composition of the sample using a mass spectrometer capable of MS 1 ⁇ pray that performs mass analysis of daughter ions generated by cleavage,
  • MS m (l ⁇ m ⁇ n— 1) Based on the mass number of the parent ion or daughter ion obtained by analysis.
  • candidate (Y + Z) creation step for creating a candidate (Y + Z) consisting of the candidate Y and candidate Z
  • the third aspect of the present invention which has been made to solve the above-mentioned problem, generates a parent ion derived from the sample to be analyzed in the n ⁇ 1 (n ⁇ 2) stage and is generated by the cleavage.
  • an analysis condition table creation step for creating an analysis condition table describing the maximum and minimum numbers of each atom that can be included in the parent ion;
  • analysis condition revision step A for increasing the minimum number of atoms described in the above analysis condition table
  • the analysis condition was revised in step A. It is characterized by using the minimum and maximum numbers of each atom described in the analysis condition table as analysis conditions when deriving the candidate X.
  • the mass number of the parent ion derived from the target sample is measured without performing a cleavage operation as MS 1 analysis.
  • the candidate X derivation step takes into account the mass accuracy of the mass spectrometer, the types of atoms that can be a component, the maximum number of conditions, etc., and the candidate X of the component (composition) of the parent ion (that is, the original sample). Give up. If the mass accuracy of the mass spectrometer is extremely high, candidate X of the parent ion component can be easily narrowed down. However, in many cases, there is no mass accuracy up to that point, so there are many candidate X.
  • candidate Y of the daughter ion component is selected from the mass number of the daughter ion.
  • the candidate Z derivation step determines the candidate Z for the desorbed ions by cleavage.
  • candidate Y is refined using candidate Y and candidate ⁇ . If the number of candidate X for the parent ion is reduced to one or less than the predetermined number, the analysis is completed and the candidate X obtained is presented to the user.
  • the candidate Z derivation step and the narrowing step may be executed, but as described above Since the possibility of narrowing down the candidate X is very small, there is virtually no point in executing it. Therefore, preferably, if the number of candidates Y in the candidate Y derivation step exceeds a predetermined value, In this case, increase the m without executing the candidate Z derivation step and the narrowing step.
  • the mass spectrometric method according to the second aspect of the present invention provides a candidate Y that is a candidate composition of daughter ions and desorbed ions generated by cleaving the target ion once or a plurality of times.
  • the present invention relates to a method for narrowing down the target ion composition candidate X using Z.
  • a candidate X of a component corresponding to the ion is derived under the predetermined analysis conditions as described above.
  • the target ion is a sample that is not cleaved! / ⁇
  • the parent ion which may be a ion (parent ion) obtained by MS 1 analysis, is used once. Or it may be a daughter girl obtained by cleaving a plurality of times.
  • the composition formula candidate Y is derived from the mass number of the daughter ions obtained by cleaving the target ion one or more times.
  • the mass number difference of the ions before and after each one or more of the cleavage operations until obtaining the daughter ions from the target ions is obtained, and based on the mass number difference, Derived ion candidates Z are derived respectively.
  • a candidate (Y + Z) is created by combining all composition candidates included in the candidate Y and all composition candidates included in the candidate Z in the candidate (Y + Z) creation step. Then, the candidate X is narrowed down by comparing the candidate (Y + Z) with the candidate X in the narrowing step.
  • the mass analysis method according to the third aspect of the present invention narrows down the analysis conditions when estimating the composition of the parent ion, using the analysis results of the daughter ions and desorbed ions generated by the cleavage. .
  • an analysis condition table describing the types of atoms that can be constituent elements of the parent ion and the maximum and minimum numbers of each atom is created.
  • the target sample is subjected to MS n analysis including one or more cleavage operations to obtain a mass spectrum at each stage.
  • the candidate Y derivation step the candidate Y of the composition formula of the component corresponding to the daughter ion is calculated from the mass number of the daughter ion obtained by MS m analysis (2 ⁇ m ⁇ n), and the candidate Z derivation step From this, the candidate Z of the desorbed ions due to cleavage is derived.
  • the analysis condition table it is desirable to use the maximum number of each atom described in the analysis condition table as the analysis condition. Further, in order to estimate the composition of the desorbed ion candidate Z, the analysis condition table It is desirable to further narrow down the analysis conditions by subtracting the minimum number of each atom contained in the daughter ion candidate Y from the maximum number of each atom described. As a result, the number of desorbed ion candidates Z in the candidate Z derivation step can be reduced, and the analysis efficiency can be further improved.
  • the analysis conditions in the candidate Y derivation step may be narrowed down using the analysis result in the candidate Z derivation step.
  • the candidate Z derivation step is executed using the maximum number of atoms described in the analysis condition table as an analysis condition, and then the candidate Z is calculated from the maximum number of atoms described in the analysis condition table.
  • the analysis conditions are narrowed down by reducing the minimum number of atoms in the desorbed ion candidate Z obtained in the derivation step. Thereafter, by executing the candidate Y derivation step using the analysis conditions, the number of daughter ion candidates Y in the candidate Y derivation step can be reduced.
  • the minimum number of each element contained in the daughter ions and the minimum number of each element contained in the desorbed ions are clarified.
  • the total number of atoms is the sum of the minimum number of elements contained in each of the daughter ions and desorbed ions obtained in the analysis. Therefore, in analysis condition revision step A, this value is recorded in the analysis condition table as the minimum number of atoms that can be included in the parent ion. As a result, the analysis conditions are narrowed down.
  • the daughter ions and the precursor ions of the desorption ions are considered in consideration of the minimum and maximum numbers of each atom described in the revised analysis condition table.
  • the number of precursor ion composition candidates X obtained can be limited by calculating the daughter ion or parent ion composition candidates in the MS m_1 analysis corresponding to. Therefore, according to the mass spectrometry method according to the third aspect of the present invention, it is possible to realize a composition analysis with higher efficiency and accuracy.
  • FIG. 1 is a schematic configuration diagram of a mass spectrometer according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of a procedure of characteristic analysis processing operation using the mass spectrometer according to the present embodiment.
  • FIG. 3 The first half of a flowchart showing another example of the procedure of the characteristic analysis processing operation using the mass spectrometer according to the present embodiment (steps S21 to S30).
  • FIG. 5 is a schematic diagram showing a specific example of the analysis processing operation along the flowchart of FIG.
  • FIG. 1 is a schematic configuration diagram of a mass spectrometer according to the present embodiment. Not shown in Fig. 1! Inside the vacuum chamber are an ion source 1, an ion trap 2, and a time-of-flight mass spectrometer (hereinafter referred to as TOFMS (Time Of Flight Mass Spectrometer)) 3. It is arranged.
  • the ion trap 2 includes a ring electrode 21 and two end cap electrodes 22 and 23 facing each other. A high frequency high voltage is applied to the ring electrode 21 from the voltage generating unit 27, and an ion trapping space 24 is formed by a quadrupole electric field formed in a space surrounded by the ring electrode 21 and the pair of end cap electrodes 22 and 23. And trap ions there.
  • an appropriate auxiliary AC voltage is applied to the end cap electrodes 22 and 23 from the voltage generator 27 according to the analysis mode at that time.
  • CID gas can be introduced into the inside of the ion trap 2 from the gas supply source 28 in order to promote the cleavage of ions trapped in the ion trapping space 24.
  • the operations of the ion source 1, TOFMS 3, voltage generation unit 27, gas supply source 28, and the like are controlled by a control unit 4 mainly composed of a CPU.
  • the target sample is ionized into the ion source 1 and the generated ions are introduced into the ion trap 2 through the entrance 25.
  • ions are once trapped in the ion trapping space 24 by the electric field formed by the ring electrode 21 and the end cap electrodes 22 and 23.
  • CID gas is introduced into the inside of the ion trap 2 from the gas supply source 28, and ions are collided with molecules of the gas to promote ion cleavage.
  • the voltage applied to the electrodes 21, 22 and 23 is changed, and an electric field is formed inside the ion trap 2 to discharge the ions. And release.
  • Ions emitted from the ion trap 2 fly in the flight space 31 of the TOFMS 3 and reach the detector 32 with a flight time corresponding to the mass number.
  • the detector 32 outputs a detection signal corresponding to the amount of ions that arrive sequentially.
  • the data processing unit 5 receives this detection signal, creates a mass spectrum, and refers to the library stored in the database 6 based on the mass number of the peak appearing in the mass spectrum, while referring to the molecule of the target sample. An analysis process for estimating the structure and composition is executed.
  • the mass spectrometer of the present embodiment has a great feature in such an analysis processing operation. Regarding this point, an example of the procedure of the analysis processing operation will be described first with reference to the flowchart of FIG.
  • a normal mass analysis (MS 1 analysis) is performed without performing the cleavage operation inside the ion trap 2 ( Step Sl).
  • MS 1 analysis mass analysis
  • the ions generated in the ion source 1 are trapped inside the ion trap 2 and then introduced into the ion trap 2
  • the ions are ejected through the outlet 26 at a predetermined timing, and mass analysis is performed by the TOFMS3.
  • the mass number data is acquired (step S2).
  • the data processor 5 creates a mass spectrum from this mass number data, appears in the mass spectrum, finds the peak of the ion (parent ion) derived from the target sample in the peak, and calculates the mass number P Is calculated (step S3).
  • the data processing unit 5 refers to the database 6 and calculates a composition formula candidate X under a predetermined analysis condition with the mass number P force of the parent ion (step S4).
  • the analysis conditions include, for example, the types of atoms (elements) that can be selected as constituent elements according to the type of target sample, the maximum number of atoms, mass accuracy of mass analysis, and the like. This analysis condition can limit the number of candidates to some extent. However, if the analysis conditions are too severe, the actual composition formula may leak candidate power, so the analysis conditions must be somewhat relaxed. Therefore, especially when the molecular weight of the target sample is large, the number of candidates based on the mass number of the parent ion is often too large.
  • the analysis repetition frequency variable n is set to 2 and MS n analysis is executed (steps S5 and S6). That is, the same target sample as in the above MS 1 analysis is ionized by the ion source 1 and introduced into the ion trap 2.
  • the daughter ions generated by the cleavage are mass analyzed with TOFMS3 (MS 2 analysis).
  • MS 2 analysis mass number data of daughter ions can be obtained by MS 2 analysis, so the data processor 5 creates a mass spectrum based on this data, and the daughter ions in the peaks appearing in the mass spectrum. Find the peak and calculate its mass number d by n-1 (steps S7, S8).
  • the daughter ion composition formula candidate Y is calculated from the daughter ion mass number d force nl under predetermined analysis conditions (step S9).
  • the analysis conditions may be changed as appropriate, such as knowledge based on the results of analysis of force past, which is generally the same as that for the above-mentioned treatment for the parent ion.
  • step SI 1 calculate the mass number difference f between the parent ion mass number P and the daughter ion mass number d, which is the result of MS 1 analysis and MS 2 analysis (step SI 1), and refer to database 6.
  • Step S12 After that, according to a predetermined algorithm, the composition formula candidates Y and Z are narrowed down with respect to the parent ion using the composition formula candidates Y and Z (step S13), and the force focused on only one or less than a predetermined number of candidates is selected. It is determined whether or not (step S14).
  • the predetermined number can be determined as appropriate, but in the sense of providing appropriate information to the user, it is at most about several, and usually two to three. If it is determined in step S14 that appropriate narrowing has been made, the result is output through a display screen (step S15).
  • composition formula candidates included in the daughter ion candidate Y obtained in step S9 and all composition formula candidate powers included in each desorption ion candidate Z obtained in step S12. Create a possible combination and use it as a candidate (Y + Z).
  • the candidate X is narrowed down by comparing the candidate (Y + Z) with the parent ion composition candidate X obtained in step S4, and selecting those that are included in both. As a result, even when a large number of composition candidates are included in the parent ion candidate X, it is possible to exclude candidates that are considered to be inappropriate in the combined force of the daughter ion candidate Y and the desorbed ion candidate Z. It is possible to show the composition formula candidate with high reliability to the user.
  • the analysis target sample is subjected to MS 1 analysis without cleavage operation, MS 2 analysis and MS 3 analysis, and the components corresponding to V and parent ions based on the results (i.e., the original sample) ) Shows the analysis procedure for estimating the composition.
  • the number of times of performing the cleavage operation may be arbitrarily determined by the user, or as in the case of the analysis processing operation described above, the cleavage is performed until the number Y of daughter ion composition formula candidates is less than a predetermined number. You may repeat the operation.
  • the MS 1 spectrum, MS 2 spectrum, and MS 3 spectrum obtained in each analysis include lmax, 2max, and 3max peaks, respectively. Indicates the type of spectrum (number of cleavage stages) and a symbol using the peak number in each spectrum.
  • the a-th peak in the MS 1 spectrum is p (a, 0,0)
  • the b-th peak in the spectrum obtained by MS 2 analysis of the peak is p (a, b, 0)
  • the c-th peak in the spectrum obtained by MS 3 analysis of the peak is expressed as p (a, b, c).
  • the data processing unit 5 selects the peak p (a, 0,0) of the target ion (parent ion) from the peaks appearing in the MS 1 spectrum. Select (Step S21).
  • step S22 it is determined whether MS 2 analysis has been performed on the peak. If MS 2 analysis has been performed, the peak force in the MS 2 spectrum is also determined according to a predetermined criterion (for example, For example, the peak p (a, b, 0) is selected according to the peak order and height (step S23). If MS 2 analysis has not been performed for p (a, 0,0), step S36 described later is executed.
  • a predetermined criterion for example, For example, the peak p (a, b, 0) is selected according to the peak order and height (step S23). If MS 2 analysis has not been performed for p (a, 0,0), step S36 described later is executed.
  • step S24 it is determined whether or not MS 3 analysis has been performed on p (a, b, 0) (step S24). If MS 3 analysis has been performed, the peak force in the MS 3 spectrum is predetermined. The peak p (a, b, c) is selected according to the criterion (step S25). If p (a, b, 0) has not been subjected to MS 3 analysis, step S31 described later is executed.
  • a candidate Y for the composition formula of the daughter ions p (a, b, c) in the MS 3 analysis is calculated with reference to the database 6 based on the mass number (step S26). At this time, the analysis condition
  • the minimum number of atoms of each element in the list that is, the number of atoms of each element at least included in the daughter ion p (a, b, c), Result (a, b, c). Expressed as min (etc). Note that etc indicates an arbitrary element.For example, the minimum number of carbon atoms C and hydrogen H contained in the ion corresponding to p (a, b, c) is Result (a, b, c) .minC , Re sult (a, b, c) .minH.
  • the candidate Z is narrowed down in consideration of the maximum number of each atom and the mass accuracy as analysis conditions, but the maximum number of each atom can be found in the above table.
  • the composition formula candidate X is derived (step S31).
  • the result obtained here is expressed as Result (a, b, 0).
  • step S32 the maximum number force of each atom that can be included in the parent ion described in the condition table T is also included in the candidate X obtained in step S31.
  • step S28 the minimum number of each atom contained in the daughter ion Result (a, b, 0) and the minimum number of each atom contained in the desorbed ion DResult (a, b, 0 ) Is added to calculate TResult (a, b, 0) .min (etc) (step S33).
  • TResult (a, 0,0) .max (etc) described in the analysis condition table T at the start of analysis and the above step 35 Based on the mass number of p (a, 0,0), where TResult (a, 0,0) .min (etc) described in the analysis condition table is the maximum and minimum number of each atom included in the candidate.
  • a parent ion composition formula candidate X is derived (step S36). The result obtained here is expressed as Result (a, 0,0).
  • step S37 based on Result (a, 0, 0) obtained in step S36, it is determined whether or not the composition estimation is performed again based on a predetermined criterion (step S37). For example, if the number of candidate X included in Result (a, 0,0) is greater than or equal to a predetermined number, the analysis is performed again, and when the number of candidate X falls below the predetermined number, or the analysis is repeated. Also, the analysis can be terminated when the number of candidate Xs does not change.
  • step S37 When it is determined in step S37 that the analysis needs to be performed again, the Result (a, 0,0) force obtained in step S36 is also the minimum number of atoms included in the parent ion. And change the TResult (a, 0,0) .min (etc) and TResult (a, 0,0) .max (etc) described in the analysis condition table T to the above values. Thus, the process returns to step S22 and the processes of S22 to S36 are executed again. On the other hand, if it is determined in step S37 that the analysis need not be repeated any more, the composition formula candidate X obtained in S36 is determined in consideration of the isotope distribution, the nitrogen rule, and the like (step S38).
  • the minimum number of atoms included in the precursor ions is determined using the analysis results of the daughter ions and desorption ions generated by the cleavage. Since the conditions for estimating the composition of the precursor ions can be narrowed down using the value, the number of candidates obtained by the composition calculation can be reduced. In addition, since the data of all peaks on the MS 2 spectrum and MS 3 spectrum are used to determine analysis conditions, more accurate analysis can be performed.
  • the mass number difference f between the daughter ion mass number and the daughter ion mass number in MS n analysis is as shown in Fig. 5 m.
  • Table 2 shows the composition formula candidates under the analysis conditions.
  • Table 3 shows the candidates for the formula, and the number of candidates is greatly reduced to two.
  • Table 4 shows the candidates for desorbed ions.
  • composition formula N can be eliminated, and CO can be obtained as a reasonable result.
  • step S10 if the predetermined value in step S10 is set to 2 or 3, for example, after MS 6 analysis is performed, YES is determined in step S10, and the mass number Differences f to f are calculated, and each candidate for desorbed ions is derived as described above. Symptoms in Figure 2
  • Step D10 force that was not performed here was not set to YES, and the daughter ion composition candidate in MS n analysis was also used, and the consistency with the result obtained as described above was confirmed. By verifying whether or not it can be taken, it is possible to increase the reliability of the results or further refine the results.
  • a composition formula candidate for a parent ion is obtained by using a combination of a composition formula candidate for a daughter ion and a composition formula candidate for a desorbed ion.
  • the procedure for narrowing down will be described with a specific example.
  • CF (P), CF (d), and CF (P-d) are the composition candidates of the parent ion, daughter ion, and desorption ion, respectively, and the daughter ion composition formula candidate CF (d) is desorbed.
  • composition formula candidates that match the above-mentioned mass numbers P, d, and Pd are derived. At this time, the price
  • composition formula candidates CF (P), CF (d), and CF (Pd) obtained as described above are as follows.
  • composition formula is CH N O S, this can be determined as a candidate composition formula for the parent ion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

 或る試料の質量分析に際し、開裂で生じた娘イオンの質量数から組成の候補Yを導出し(S6~S9)、その候補Yの数が所定値を超えている場合には(S10でNo)更に開裂操作の段数を1段増加させて(S16)再び娘イオンの質量分析を行う。候補数が所定値以下であったならば、各分析の前後の娘イオンの質量数の差を求め(S11)、その質量数差から各脱離イオンの組成の候補Zを求め(S12)、この候補Zと候補Yとを利用して親イオンの質量数から導出された組成式の候補Xを絞り込み(S13)、唯一又は所定個数以下に絞り込めたならばその結果を出力する(S14、S15)。これにより、分子量が大きな試料の分子構造や組成を解析する際に、候補の数をできるだけ絞って有用な情報をユーザーに提供することができる。

Description

明 細 書
質量分析方法
技術分野
[0001] 本発明は質量分析装置による質量分析方法に関し、更に詳しくは、分析対象であ るイオンを開裂させて発生した娘イオンを分析することが可能な質量分析装置を用い た質量分析方法、特に分子の組成や構造を解析する方法に関する。
背景技術
[0002] イオントラップ型質量分析装置などを用いた質量分析にお!ヽては MSZMS分析 ( タンデム分析)という手法が知られている。一般的な MSZMS分析では、まず分析 対象物から目的とする特定の質量数 (質量 Z電荷)を有するイオンを前駆イオン (親 イオン)として選別し、その選別した前駆イオンを CID (Collision Induced Dissociation :衝突誘起分解)によって開裂させ、開裂イオンを生成する。その後、開裂によって生 成した娘イオンを質量分析することによって、目的とするイオンの質量や化学構造に つ!、ての情報を取得することができる。
[0003] 近年、こうした装置で分析しょうとする試料はますます分子量が大きくなり、構造 (組 成)も複雑になる傾向にある。そのため、試料の性質によっては、一段階の開裂操作 だけでは十分に小さな質量までイオンが開裂しない場合がある。そうした場合には、 開裂の操作を複数回 (n—1回)繰り返し、最終的に生成した娘イオンを質量分析す る MSn分析が行われることもある(例えば特許文献 1、 2など参照)。なお、上記のよう な 1回の開裂操作による娘イオンの質量分析は MS2分析である。
[0004] こうした MSn分析では、基本的に、親イオンの質量数力 推定される元素の組み合 わせによる組成式と娘イオンの質量数力 推定される元素の組み合わせとの両方を 用いて、元の試料の分子構造や組成の候補を絞る。しかしながら、或る程度の高い 精度で質量数を算出することが可能な装置であっても、分子量が大きくなるほど推定 される候補の数が多くなり、最終的に目的試料の組成を決定することが非常に困難 になるという問題がある。
[0005] 特許文献 1 :特開平 10— 142196号公報 特許文献 2:特開 2001— 249114号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は上記課題を解決するために成されたものであり、その目的とするところは、 特に大きな分子量を持つ試料の分子構造や組成の解析を行う際に、そうした解析を 容易に且つ正確に行うことができる質量分析方法を提供することにある。
課題を解決するための手段
[0007] 上記課題を解決するために成された本発明の第 1の態様に係る質量分析方法は、 分析対象である試料に由来する親イオンを n— l (n≥3)段階に開裂させ、該開裂に よって発生した娘イオンを質量分析する MS1^祈が可能な質量分析装置を用い、前 記試料の分子構造や組成の解析を行う質量分析方法であって、
a)開裂操作を行わない MS1分析により得られた親イオンの質量数に基づき、該親 イオンに対応する成分の候補 Xを導出する候補 X導出ステップと、
b) MSm (2≤m≤n)分析により得られた娘イオンの質量数に基づき、該娘イオンに 対応する成分の候補 Yを導出する候補 Y導出ステップと、
c)前記候補 Yの数が所定値以下である場合に、 MSP(p = 2〜m)分析にょり得られ た娘イオンの質量数と MSP_1分析により得られた親イオン又は娘イオンの質量数との 差を算出するとともに、該質量数の差に対応した成分の候補 Zをそれぞれ導出する 候補 Z導出ステップと、
d)少なくとも前記候補 Y、候補 Ζを利用して候補 Xの絞り込みを実行する絞り込みス テツプと、を有し、
前記候補 Xの数が 1個又は所定の個数以下になるまで mを 2から最大 ηまで順次増 カロさせてゆくことを特徴として!/、る。
[0008] また、上記課題を解決するためになされた本発明の第 2の態様のものは、分析対象 である試料に由来する親イオンを η— 1 (η≥2)段階に開裂させ、該開裂によって発 生した娘イオンを質量分析する MS1^祈が可能な質量分析装置を用い、前記試料 の分子構造や組成の解析を行う質量分析方法であって、
a) MSm (l≤m≤n— 1)分析により得られた親イオン又は娘イオンの質量数に基づ き、該親イオン又は娘イオンに相当する成分の組成候補 Xを導出するステップと、 b)前記親イオン又は娘イオンを 1回又は複数回開裂させる MSP (p≥m+ 1)分析に より得られた娘イオンの質量数に基づき、該娘イオンに対応する成分の候補 Yを導出 する候補 Y導出ステップと、
c) MSq(q = m+ l〜p)分析により得られた娘イオンの質量数と MSq1分析により得 られた親イオン又は娘イオンの質量数との差を算出するとともに、該質量数の差に対 応した成分の候補 Zをそれぞれ導出する候補 Z導出ステップと、
d)前記候補 Yと候補 Zの組み合わせ力 成る候補 (Y+Z)を作成する候補 (Y+Z) 作成ステップと、
e)前記候補 Xと候補 (Y+Z)を比較することで候補 Xの絞り込みを行う絞り込みステ ップと、
を有することを特徴として 、る。
上記課題を解決するためになされた本発明の第 3の態様のものは、分析対象であ る試料に由来する親イオンを n— l (n≥2)段階に開裂させ、該開裂によって発生し た娘イオンを質量分析する MSn分析が可能な質量分析装置を用い、前記試料の分 子構造や組成の解析を行う質量分析方法であって、
a)上記親イオンに含まれ得る各原子の最大数及び最小数を記載した解析条件テ 一ブルを作成する解析条件テーブル作成ステップと、
b) MSm(2≤m≤n)分析により得られた娘イオンの質量数に基づき、該娘イオンに 対応する成分の候補 Yを導出する候補 Y導出ステップと、
c) MSm_1分析により得られた前記娘イオンの前駆イオンに相当するイオンの質量数 と該娘イオンの質量数との差を算出するとともに、該質量数の差に対応した成分の候 補 Zを導出する候補 Z導出ステップと、
d)候補 Y及び候補 Zに含まれる各原子の最小数を考慮して、上記解析条件テープ ルに記載された各原子の最小数を増加させる解析条件改定ステップ Aと、
e)前記前駆イオンの質量数に基づき、該前駆イオンに対応する成分の候補 Xを導 出する候補 X導出ステップと、を有し、
上記候補 X導出ステップにお 、て、解析条件改定ステップ Aにお 、て改定された 解析条件テーブルに記載された各原子の最小数及び最大数を候補 Xを導出する際 の解析条件として利用することを特徴としている。
発明の効果
[0010] 本発明の第 1の態様に係る質量分析方法では、まず MS1分析として開裂操作を行 わずに目的試料に由来する親イオンの質量数を測定する。そして、候補 X導出ステツ プにより、質量分析装置の質量精度や構成要素となり得る原子の種類、最大個数な どの条件を考慮して、親イオン (つまり元の試料)の成分 (組成)の候補 Xを挙げる。質 量分析装置の質量精度がきわめて高ければ、親イオンの成分の候補 Xを容易に絞る ことができるが、多くの場合、そこまでの質量精度はないため、多数の候補 Xが挙げら れる。そこで、次に n= 2として 1回のみ開裂操作を行う MS2分析を実行し、娘イオン の質量数を測定する。そして、候補 Y導出ステップにより、この娘イオンの質量数から 該娘イオンの成分の候補 Yを挙げる。
[0011] 娘イオンは親イオンの開裂により生じたものであるから、その質量数は親イオンの質 量数よりも小さくなる。しかしながら、元の試料の分子量が大きい場合、娘イオンの質 量数が親イオンの質量数に比べて十分に小さくなるまで候補 Yの数を十分に絞ること は困難である。また、娘イオンに対する候補 Yの数が多い場合、親イオンに対する候 補 Xを絞ることも困難である。換言すれば、 m=4、 5、…と大きくしてゆき、娘イオンの 質量数自体が或る程度小さくなると、候補 Yの数を力なり絞ることが可能である。そこ で、娘イオンに対する候補 Yの数が所定値以下になるまで mを順次増力!]させ、つまり は開裂操作の段数を増加させてゆき、娘イオンに対する候補 Yの数が所定値以下に なったならば、候補 Z導出ステップにより、開裂による脱離イオンに対する候補 Zを求 め、絞り込みステップにより、候補 Y、候補 Ζを利用して候補 Xの絞り込みを行う。そし て、親イオンに対する候補 Xが 1個又は所定個数以下にまで絞り込めたならば、分析 を終了して求まった候補 Xをユーザーに提示する。
[0012] mが或る値であるときに候補 Υ導出ステップによる候補 Υの数が所定値を超えて ヽ た場合、候補 Z導出ステップ及び絞り込みステップを実行してもよいが、上述したよう に候補 Xを絞り込める可能性は非常に小さいので実質的には実行しても意味がない 。そこで、好ましくは、候補 Y導出ステップによる候補 Yの数が所定値を超えていた場 合には、候補 Z導出ステップ及び絞り込みステップを実行せずに mを増加させて候補
Y導出ステップを実行するようにするとよい。これにより、無駄な処理動作を省いて結 果を迅速に出すことができる。
[0013] このようにして本発明に係る質量分析方法によれば、目的試料の分子量が大き!/、よ うな場合であっても、その試料の分子構造や組成を推定するために有用な情報をュ 一ザ一に確実に且つ迅速に提供することができる。
[0014] また、本発明の第 2の態様に係る質量分析方法は、目的とするイオンを 1回又は複 数回開裂させることによって生じた娘イオン及び脱離イオンの組成候補である候補 Y 及び候補
Zを用いた該目的イオンの組成候補 Xの絞り込み方法に関するものである。
[0015] まず、候補 X導出ステップによって、目的とするイオンの質量数力 上述のような所 定の解析条件の下で該イオンに相当する成分の候補 Xを導出する。ここで、目的と するイオンとは、試料を開裂操作を行わな!/ヽ MS1分析で分析することで得られたィォ ン (親イオン)であってもよぐ該親イオンを 1回又は複数回開裂させて得られた娘ィォ ンであってもよい。次に、候補 Y導出ステップによって、上記目的イオンを 1回又は複 数回開裂させて得られた娘イオンの質量数カゝらその組成式候補 Yを導出する。その 後、候補 Z導出ステップによって、上記目的イオンから上記娘イオンを得るまでの 1回 又は複数回の各開裂操作の前後におけるイオンの質量数差を求め、該質量数差に 基づいて各開裂による脱離イオンの候補 Zをそれぞれ導出する。
[0016] 続、て、候補 (Y+Z)作成ステップによって、上記候補 Yに含まれる全ての組成候 補と上記候補 Zに含まれる全ての組成候補とを組み合わせることによって候補 (Y+Z )を作成し、その後、絞り込みステップにおいて該候補 (Y+Z)と上記候補 Xとを比較 することで候補 Xの絞り込みを行う。
[0017] このように、本発明の第 2の態様に係る質量分析方法によれば、目的イオンについ て多数の候補 Xが得られた場合にも、候補 Yと候補 zとの組み合わせ力 あり得な ヽ 候補を排除することができ、質量分析による測定物質の組成式の決定を容易に行う ことがでさるよう〖こなる。
[0018] 一方、上記のように、質量数力 イオンの組成式の候補を計算する際には、解析条 件として質量分析装置の質量精度や親イオン (すなわち元の試料)の構成要素となり 得る原子の種類や各原子の最大数等を利用するが、このような解析条件の幅が広い 場合には、多数の候補 Xが挙げられてしまう。そこで、本発明の第 3の態様に係る質 量分析方法は、開裂によって生じる娘イオンと脱離イオンの解析結果を利用して、親 イオンの組成推定時における解析条件の絞り込みを行うものである。
[0019] まず、解析条件テーブル作成ステップにお ヽて、親イオンの構成要素となり得る原 子の種類と各原子の最大数及び最小数を記載した解析条件テーブルを作成する。 次に、目的試料について、 1回又は複数回の開裂操作を含む MSn分析を行い、各 段階におけるマススペクトルを得る。そして、候補 Y導出ステップにより、 MSm分析(2 ≤m≤n)によって得られた娘イオンの質量数から該娘イオンに対応する成分の組成 式の候補 Yを計算すると共に、候補 Z導出ステップにより、開裂による脱離イオンの候 補 Zを導出する。このとき、解析条件としては上記解析条件テーブルに記載された各 原子の最大数等を利用することが望ましぐ更に、脱離イオンの候補 Zの組成推定に ぉ 、ては、解析条件テーブルに記載された各原子の最大数から上記娘イオンの候 補 Yに含まれる各原子の最小個数を減じることで解析条件を更に絞り込むことが望ま しい。これにより、候補 Z導出ステップにおける脱離イオンの候補 Zの数を少なくして、 解析効率を更に向上させることができる。
[0020] なお、上記とは逆に、候補 Z導出ステップにおける解析結果を利用して候補 Y導出 ステップにおける解析条件の絞り込みを行うようにしてもよい。この場合、上記解析条 件テーブルに記載された各原子の最大数等を解析条件として候補 Z導出ステップを 実行し、続いて、該解析条件テーブルに記載された各原子の最大数から該候補 Z導 出ステップで得られた脱離イオンの候補 Zに含まれる各原子の最小個数を減じること で解析条件の絞り込みを行う。その後、該解析条件を用いて候補 Y導出ステップを実 行することにより候補 Y導出ステップにおける娘イオンの候補 Yの数を少なくすること ができる。
[0021] このようにして求められた候補 Y及び候補 Zから、上記娘イオンに含まれる各元素の 最小数と脱離イオンに含まれる各元素の最小数が明らかになる。該娘イオンの前駆 イオンに相当する MSm_ 1分析における娘イオン又は親イオンには、少なくとも MSm 分析で得られた娘イオンと脱離イオンのそれぞれに含まれる各元素の最小数を足し 合わせた数の各原子が含まれることになる。そこで、解析条件改定ステップ Aにおい て、この値を親イオンに含まれ得る各原子の最小個数として解析条件テーブルに記 載する。これにより、解析条件が絞り込まれるため、候補 X導出ステップにおいて、改 定された解析条件テーブルに記載された各原子の最小数及び最大数を考慮して前 記娘イオン及び脱離イオンの前駆イオンに相当する MSm_1分析における娘イオン又 は親イオンの組成候補を計算することで、得られる前駆イオンの組成候補 Xの数を制 限することができる。従って、本発明の第 3の態様に係る質量分析方法によれば、より 高効率且つ高精度な組成解析を実現することができる。
図面の簡単な説明
[0022] [図 1]本発明の一実施例による質量分析装置の概略構成図。
[図 2]本実施例による質量分析装置を利用した特徴的な解析処理動作の手順の一 例を示すフローチャート。
[図 3]本実施例による質量分析装置を利用した特徴的な解析処理動作の手順の別 の例を示すフローチャートの前半部分 (ステップ S21〜S30)。
[図 4]同フローチャートの後半部分 (ステップ S31〜S38)。
[図 5]図 2のフローチャートに沿った解析処理動作の具体例を示す模式図。
符号の説明
[0023] 1· ··イオン源
2· ··イオントラップ
21 · ··リング電極
22、 23· ··エンドキャップ電極
24…イオン捕捉空間
25…入射口
26· ··出射口
27…電圧発生部
28· ··ガス供給源
3- --TOFMS 31 · ··飛行空間
32…検出器
4…制御部
5…データ処理部
6…データベース
7…条件記憶部
発明を実施するための最良の形態
[0024] 本発明に係る質量分析方法により分析を実行する質量分析装置の一実施例につ いて、図面を参照しながら説明する。
[0025] 図 1は本実施例の質量分析装置の概略構成図である。図 1にお ヽて、図示しな!ヽ 真空室の内部には、イオン源 1、イオントラップ 2、及び飛行時間型質量分析器 (以下 、 TOFMS (=Time Of Flight Mass Spectrometer)という) 3が配設されている。イオント ラップ 2は、 1つのリング電極 21と 2つの互いに対向するエンドキャップ電極 22、 23に より構成されている。リング電極 21には電圧発生部 27より高周波高電圧が印加され 、リング電極 21と一対のエンドキャップ電極 22、 23とで囲まれる空間内に形成される 四重極電場によってイオン捕捉空間 24を形成し、そこにイオンを捕捉する。一方、ェ ンドキャップ電極 22、 23にはそのときの分析モードに応じて適宜の補助交流電圧が 電圧発生部 27より印加される。また、イオントラップ 2の内部には、イオン捕捉空間 24 に捕捉されているイオンの開裂を促進するために、ガス供給源 28から CIDガスが導 入され得るようになつている。これらイオン源 1、 TOFMS 3,電圧発生部 27、ガス供 給源 28等の動作は、 CPUを中心に構成される制御部 4により制御される。
[0026] 上記構成の質量分析装置では、イオン源 1にお!/ヽて目的試料をイオンィ匕し、発生し たイオンを入射口 25を通してイオントラップ 2内部に導入する。イオントラップ 2では、 リング電極 21及びエンドキャップ電極 22、 23により形成される電場によりイオンをィ オン捕捉空間 24に一旦捕捉する。その後にガス供給源 28からイオントラップ 2内部 に CIDガスを導入し、該ガスの分子にイオンを衝突させることでイオンの開裂を促進 する。そして十分に開裂が行われた後に電極 21、 22、 23へ印加する電圧を変更し、 イオントラップ 2内部にイオンを排出するような電場を形成してイオンを出射口 26を通 して放出させる。イオントラップ 2から出たイオンは TOFMS3の飛行空間 31を飛行し 、質量数に応じた飛行時間で以て検出器 32に到達する。検出器 32は順次到達する イオンの量に応じた検出信号を出力する。データ処理部 5はこの検出信号を受け取 つて、マススペクトルを作成するとともに、このマススペクトルに現れているピークの質 量数に基づきデータベース 6に保存されているライブラリを参照しながら、目的試料 の分子構造や組成を推定する解析処理を実行する。
[0027] 本実施例の質量分析装置では、このような解析処理動作に大きな特徴を有して 、 る。この点について、まず図 2のフローチャートを参照しつつ、解析処理動作の手順 の一例について説明する。
[0028] ユーザーの指示により分析が開始されると、制御部 4の制御の下に、まずイオントラ ップ 2内部での開裂操作を行わな ヽ通常の質量分析 (MS1分析)を実行する (ステツ プ Sl)。即ち、イオン源 1で発生したイオンをイオントラップ 2内部にー且捕捉した後、 CIDガスをイオントラップ 2内部に導入することなぐ所定のタイミングでイオンを出射 口 26を通して出射させて TOFMS3で質量分析し、質量数データを取得する (ステツ プ S2)。データ処理部 5はこの質量数データからマススペクトルを作成し、マススぺク トル中に現れて 、るピークの中で目的試料に由来するイオン (親イオン)のピークを見 つけてその質量数 Pを算出する (ステップ S3)。
[0029] 次に、データ処理部 5は、データベース 6を参照して親イオンの質量数 P力 所定の 解析条件の下で組成式の候補 Xを計算する (ステップ S4)。ここで解析条件とは、例 えば目的試料の種類などに応じて選択された構成要素となり得る原子 (元素)の種類 やその原子の最大個数、質量分析の質量精度などである。この解析条件によって或 る程度は候補の数を制限することができる。但し、解析条件を厳しくしすぎると実際の 組成式が候補力 漏れるおそれがあるため、解析条件は或る程度緩めにしておく必 要がある。そのため、特に目的試料の分子量が大きい場合には、親イオンの質量数 に基づく候補の数が多くなりすぎることが多 、。
[0030] そこで、次に制御部 4の制御の下に、分析繰り返し回数変数 nを 2に設定して MSn 分析を実行する (ステップ S5、 S6)。即ち、上記 MS1分析時と同じ目的試料をイオン 源 1でイオンィ匕してイオントラップ 2内部に導入し、今度はイオントラップ 2の内部で 1 回の開裂操作を実行し、その開裂によって発生した娘イオンを TOFMS3で質量分 析する(MS2分析)。これにより、 MS2分析による娘イオンの質量数データが得られる から、データ処理部 5ではこのデータに基づいてマススペクトルを作成し、マススぺク トル中に現れているピークの中で娘イオンのピークを見つけてその質量数 d を算出 n-1 する(ステップ S7、 S8)。そして、 データベース 6を参照して娘イオンの質量数 d 力 n-l ら所定の解析条件の下で娘イオンの組成式の候補 Yを計算する (ステップ S9)。ここ で解析条件は上記の親イオンに対する処理時と同一とするのが一般的である力 過 去の分析結果に基づく知見など力 解析条件を適宜変更してもよい。
[0031] 次に上記の候補 Yの数が所定値以下である力否かを判定し (ステップ S 10)、所定 値を超えている場合には後述するステップ S 16へと進む。他方、候補 Yの数が所定 値以下である場合には、これまでの分析の前後で求まった質量数の差 f 、つまり n= m
2であるときには MS1分析と MS2分析との結果である親イオンの質量数 Pと娘イオン の質量数 dとの質量数差 f を計算し (ステップ SI 1)、データベース 6を参照して所定
1 1
の解析条件の下でその質量数差 f に対応した脱離イオンの組成式の候補 zを計算
1
する (ステップ S12)。その後に、所定のアルゴリズムに従って、上記組成式の候補 Y 、 Zを利用して、親イオンに対する組成式の候補 Xの絞り込みを行い (ステップ S13)、 唯一又は所定個数以下の候補に絞られた力否かを判定する (ステップ S 14)。ここで 所定個数とは適宜に決めることができるが、ユーザーに適切な情報を提供するという 意味では多くても数個程度、通常は 2〜3個程度としておくとよい。ステップ S 14で適 切な絞り込みが為されたと判断されると、その結果を表示画面などを通して出力する (ステップ S 15)。
[0032] ステップ S 14で唯一の又は所定個数以下の候補の絞り込みができな力つたと判定 された場合には、分析繰り返し回数変数 nをインクリメントして (ステップ S 16)ステップ S6へと戻る。また、上述したようにステップ S 10で候補 Yの数が所定値を超えていた 場合にもステップ S16を介してステップ S6へと戻る。ステップ S6〖こ戻ると、制御部 4の 制御の下に、上述したようにイオントラップ 2内部での開裂操作の回数を増加し、例え ば n= 3であれば 2回の開裂操作を行って、それ結果生成された娘イオンの質量分 析を実行する。そして、上述したような手順でそれ以降の処理を遂行する。 [0033] 試料の分子量が大きい場合、開裂操作の回数が少ない間は、その試料に由来す る娘イオンの質量数に基づく組成式の候補の数を絞ることは難 、が、開裂操作の 回数が増カロして来ると、娘イオンの質量数自体が力なり小さくなるため、候補数を絞 ることが容易になる。従って、ステップ S10で YESと判定される確率が高くなる。また、 その場合には、質量数差 f に基づく脱離イオンの数も増加するため、親イオンの組 m
成式の候補を絞る際に利用し得るデータが増える。そのため、親イオンの組成式の 候補 Xの絞り込みが容易になる。従って、この方法によれば、試料の分子量が大きい 場合であっても開裂操作の回数を増力!]させてゆく過程で、高い確率で以て唯一又は ユーザーが容易に判断できる程度の少数の組成式の候補を決定することができる。
[0034] なお、上述のように娘イオンの組成式の候補 Yと脱離イオンの組成式の候補 Zを利 用して親イオンの組成式の候補 Xを絞り込む方法としては、例えば、以下のような方 法を用いることができる。
[0035] まず、上記ステップ S 9で得られた娘イオンの候補 Yに含まれる全ての組成式候補と ステップ S 12で得られた各脱離イオンの候補 Zに含まれる全ての組成式候補力ゝら考 えられる組み合わせを作成し、これを候補 (Y+Z)とする。次に、該候補 (Y+Z)とス テツプ S4で得られた親イオンの組成候補 Xとを比較し、両者に共通に含まれるものを 選び出すことによって候補 Xの絞り込みを行う。これにより、親イオンの候補 Xに多数 の組成候補が含まれる場合にも、娘イオンの候補 Yと脱離イオンの候補 Zとの組み合 わせ力も不適当と考えられる候補を除外することができ、ユーザーに信頼性の高い 組成式候補を示すことができる。
[0036] 次に、本発明の質量分析装置における解析処理動作の別の例について図 3及び 図 4のフローチャートを用いて説明する。図 3及び図 4では、分析対象試料について 開裂操作を行わない MS1分析と、 MS2分析及び MS3分析を行い、その結果に基づ V、て親イオンに相当する成分 (すなわち元の試料)の組成推定を行う場合の解析手 順を示している。なお、開裂操作を行う回数はユーザーが任意に決定してもよぐある いは、上述した解析処理動作の場合と同様に、娘イオンの組成式の候補 Yが所定の 個数以下になるまで開裂操作を繰り返すようにしてもよ ヽ。 [0037] ここで、各分析で得られた MS1スペクトル、 MS2スペクトル、 MS3スペクトルには、そ れぞれ lmax、 2max、 3max本のピークが含まれているとし、各スペクトル中のピークは 、スペクトルの種類(開裂段数)と各スペクトル中におけるピーク番号を用いた記号で 示す。例えば、 MS1スペクトル中の a番目のピークは p(a,0,0)、該ピークを MS2分析し て得られたスペクトル中の b番目のピークは p(a,b,0)、更にそのピークを MS3分析して 得られたスペクトル中の c番目のピークは p(a,b,c)と表される。
[0038] なお、分析開始前に予め試料由来の親イオンに含まれ得る原子の種類及び各原 子の最大数及び最小数(TResult(a,0,0).max(etc)及び TResult(a,0,0).min(etc)、記号 の意味については後述する)を記載した条件テーブル Tを作成し、その他の解析条 件 (質量分析装置の質量精度等)と共に条件記憶部 7に記憶させておく。なお、該テ ーブノレ Tは、ユーザーがキーボード等の入力手段を用いて作成してもよぐあるいは 所定の方法で試料の種類等を指定することで自動的に作成されるようにしてもょ ヽ。 その後、 MSi MS3までの分析を行い、その結果を基に組成解析を開始する。
[0039] ユーザーの指示により解析が開始されると、データ処理部 5は MS1スペクトル中に 現れているピークの中から目的とするイオン (親イオン)のピーク p(a,0,0)を選択する( ステップ S21)。
[0040] 次に、該ピークに対して MS2分析がなされているかを判定し (ステップ S22)、 MS2 分析がなされていた場合には、 MS2スペクトル中のピーク力も所定の判断基準 (例え ばピークの順番や高さ)に従ってピーク p(a,b,0)を選択する (ステップ S23)。なお、 p(a ,0,0)について MS2分析が行われていなかった場合には後述のステップ S36を実行 する。
[0041] 続いて、 p(a,b,0)について MS3分析がなされているかが判定され (ステップ S 24)、 MS3分析がなされていた場合には、 MS3スペクトル中のピーク力 所定の判断基準 に従ってピーク p(a,b,c)を選択する(ステップ S25)。なお、 p(a,b,0)について MS3分析 がなされていな力つた場合には、後述のステップ S31を実行する。
[0042] 次に、質量数に基づきデータベース 6を参照して上記 MS3分析における娘イオン p( a,b,c)の組成式の候補 Yを計算する (ステップ S26)。このとき、解析条件として条件
3
テーブル Tに記載された各原子の最大数 (TResult(a,0,0).max(etc))及び質量精度を 考慮して候補 Yの絞り込みを行う。組成計算の結果 (Result(a,b,C)と表す)は、組成
3
式候補 Y
3のリストとして得られ、該リスト中における各元素の最小原子個数、すなわち 該娘イオン p(a,b,c)に少なくとも含まれる各元素の原子個数は、 Result(a,b,c).min(etc) のように表される。なお、 etcは任意の元素を示しており、例えば、 p(a,b,c)に相当する イオンに含まれる炭素原子 C及び水素 Hの最小数はそれぞれ Result(a,b,c).minC、 Re sult(a,b,c).minHと表される。
[0043] 次に、ピーク p(a,b,c)の質量数とその前駆イオンにあたる MS2スペクトル中の娘ィォ ンのピーク p(a,b,0)の質量数(それぞれ p(a,b,c).ms、 p(a,b,0).msと表す)との差が求め られ、データベース 6を参照してその質量数差 (p(a,b,0).ms—p(a,b,c).ms)に対応する 脱離イオンの組成式候補 Zを計算する (得られた結果を DReSult(a,b,C)と表す)(ステ
3
ップ S27)。このとき、上記と同様に、解析条件として各原子の最大数、及び質量精度 を考慮して候補 Zの絞り込みを行うが、各原子の最大数としては、上記テーブル丁に
3
記載された親イオン p(a,0,0)に含まれ得る各原子の最大数から上記ステップ S26で得 られた娘イオン p(a,b,c)に少なくとも含まれる各原子の数を減じたもの(TResult(a,0,0). max(etc)— Result(a,b,c).min(etc))を使用する。これにより、脱離イオンの組成推定に おける解析条件を絞り込み、得られる候補 Zの
3 数を少なくすることができる。
[0044] 次に、上記ステップ S26で得られた娘イオンに含まれる各原子の最小数 Result(a,b, c).min(etc)とステップ S27で得られた脱離イオンに含まれる各原子の最小数 DResult( a, b,c).min(etc)を力卩算する(ステップ S28)。ここで、 TResult(a,b,c).min(etc) = Result(a, b, c).min(etcノ + DResult(a,b,c).min(etcノとする。
[0045] MS3スペクトル中の全てのピーク p(a,b,c)、 (c= l〜3max)について上記ステップ S2 5〜28が実行されたかどうかが判定され (ステップ S29)、 MS3スペクトル中の全ピー クについての解析が完了するまで上記ステップ S25〜28が繰り返し実行される。
[0046] 次に、 MS3スペクトル中の各ピークについて求められた TResult(a,b,c).min(etc)、 (c =l〜3max)から各原子の個数が最大のものを選択することで、 MS2スペクトル中のピ ーク p(a,b,0)に相当するイオンに少なくとも含まれる各原子の数、 TResult(a,b,0).min(e tc) (TResult(a,b,0).minC、 TResult(a,b,0).minH、 TResult(a,b,0).minO等)を決定し、条 件テーブル Tに記載する (ステップ S30)。 [0047] 以上により、 MS3スペクトル上のピーク p(a,b,c)、 (c= l〜3max)に基づいた解析が 終了し、それらの前駆イオンに相当する MS2スペクトル中の娘イオン (p(a,b,0)に相当 )の組成候補 Xを計算するための解析条件が決定されたことになる。そこで、分析開
2
始時に条件テーブル Tに記載された TResult(a,0,0).max(etc)と上記ステップ 30で条 件テーブル Tに追加された TResult(a,b,0).min(etc)をそれぞれ候補 Xに含まれる各
2
原子の最大数及び最小数として、 p(a,b,0)の質量数 (p(a,b,0).ms)に基づいてその組 成式候補 Xを導出する (ステップ S31)。ここで得られた結果を Result(a,b,0)と表す。
2
[0048] 続いて、ピーク p(a,b,0)の質量数とその前駆イオンにあたる MS1スペクトル中の親ィ オンのピーク p(a,0,0)の質量数との差が求められ、その質量数差(p(a,0,0).ms— p(a,b, 0).ms)に対応する脱離イオンの組成式候補 Zを計算する(得られた結果を DResult(a
2
,b,0)と表す)(ステップ S32)。このときの解析条件としては、条件テーブル Tに記載さ れた親イオンに含まれ得る各原子の最大数力もステップ S31で求められた候補 Xに
2 含まれる各原子の最小数を減じたもの(TResult(a,0,0).max(etc)— Result(a,b,0).min(e tc))を各原子の最大数として用いる。
[0049] 次に、ステップ S28と同様にして、娘イオンに含まれる各原子の最小数 Result(a,b,0) と脱離イオンに含まれる各原子の最小数 DResult(a,b,0)を加算することで、 TResult(a, b,0).min(etc)を算出する(ステップ S33)。
[0050] その後、 MS2スペクトル中の全てのピーク p(a,b,0), (b = l〜2max)について上記ステ ップ S23〜33が実行されたかどうかが判定される(ステップ S34)。 MS2スペクトル中 の全ピークについての解析が完了するまで上記ステップ S23〜33が繰り返し実行さ れた後、各ピークについて得られた TResult(a,b,0).min(etc), (b = l〜2max)の内、各 原子の個数が最大のものを選択することで、ピーク p(a,0,0)に相当するイオン (親ィォ ン)に少なくとも含まれる各原子の数 TResult(a,0,0).min(etc)を決定し、解析条件テー ブル Tに記載する(ステップ S35)。
[0051] 以上により、 MS2スペクトル上のピーク p(a,b,0), (b= l〜2max)に基づいた解析が 終了し、それらの前駆イオンに相当する MS1スペクトル中の親イオン (p(a,0,0)に相当 )の組成候補 Xを計算するための解析条件が決定されたことになる。そこで、分析開 始時に解析条件テーブル Tに記載された TResult(a,0,0).max(etc)と上記ステップ 35 で解析条件テーブルに記載された TResult(a,0,0).min(etc)をそれぞれ候補 に含ま れる各原子の最大数及び最小数として、 p(a,0,0)の質量数に基づ ヽて親イオン組成 式候補 Xが導出される(ステップ S36)。ここで得られた結果を Result(a,0,0)と表す。
[0052] 次に、上記ステップ S36で得られた Result(a,0,0)より、所定の基準に基づいて再度 組成推定をやり直すか否かを判定する (ステップ S37)。例えば、 Result(a,0,0)に含ま れる候補 Xが所定の数以上であった場合に再度解析を行うものとし、候補 Xの個数 が所定の数を下回った時点、又は解析を繰り返しても候補 Xの数が変化しなくなつ た時点で解析を終了するものなどとすることができる。
[0053] ステップ S37において、再度解析をやり直す必要があると判定された場合には、上 記ステップ S36で得られた Result(a,0,0)力も親イオンに含まれる各原子の最小数及 び最大数を求め、解析条件テーブル Tに記載された TResult(a,0,0).min(etc)及び TRe sult(a,0,0).max(etc)を上記の値に変更した上で、ステップ S22に戻って S22〜S36の 処理を再度実行する。一方、ステップ S37で、これ以上解析を繰り返す必要がないと 判定された場合には、 S36で得られた組成式候補 Xを同位体分布や窒素ルール等 も考慮して確定する (ステップ S38)。
[0054] 以上の様な解析処理動作を行うことにより、開裂によって生じた娘イオンと脱離ィォ ンの解析結果を利用して、それらの前駆イオンに含まれる各原子の最小数を決定し 、その値を用いて該前駆イオンの組成推定の際の条件を絞り込むことができるため、 組成計算で得られる候補の数を少なくすることができる。また、 MS2スペクトルや MS3 スペクトル上の全てのピークのデータを解析条件の決定に用いるため、より正確な解 析を行うことができる。
[0055] なお、図 4に示す解析処理動作のステップ S31やステップ S36において組成推定 を行う際には、前述の解析処理の場合と同様に、該イオンの開裂によって生じた娘ィ オンの候補 Yと脱離イオンの候補 Zを利用して候補 Xの絞り込みを行うことが望ましい 実施例 1
[0056] 図 2のフローチャートに従って試料の組成を推定することにより親イオンの組成式の 候補の絞り込みが容易になることについて、具体例を挙げて説明する。 [0057] いま、目的試料をイオン化することで生成された親イオンの質量数 Pが P= 171. 0 66 (u:原子質量単位)であるとし、 5回の開裂を行う際のその開裂操作毎に生成され た娘イオンの質量数力 Sそれぞれ d = 153. 056、 d = 125. 021、 d = 97. 027、 d
1 2 3 4
= 69. 032、 d =41. 038であるちのとする。このとさ、 MS111分析における親ィ才ン
5
又は娘イオンの質量数と MSn分析における娘イオンの質量数との質量数差 f は図 5 m に示すようになる。
[0058] MS1分析の結果、つまり親イオンの質量数 Pから、原子の種類及び最大個数が炭 素 (C): 14個、水素 (H): 30個、酸素 (O): 10個、窒素 (N): 10個で且つ質量精度: 0. 02uという解析条件の下で組成式の候補を挙げると、次の表 1に示すようになる。
[表 1]
# Mass Diff. Formula
1 171 .068 0.001 C11 H9NO
2 171 .067 0.002 C9H7N4
3 171 .072 0.003 H9N7O4
27 171 .049 0.020 CH3N10O 即ち、組成式の候補 Xが多数出て来ることになる。仮に質量精度がきわめて高けれ ば、具体的に例えば上記表 1中の [Diff]が 0. 001であるという条件を設定できれば、 唯一の候補 (表 1中の # 1のもの)に絞り込むことができる。し力しながら、実際の質量 分析装置では ppm程度のレベルの質量精度しカゝ得られず、上記のように多数の候 補が出て来ることが避けられな 、。
[0059] 次に MS2分析の結果、つまり 1回の開裂操作後の娘イオンの質量数 dから、上記解
1
析条件の下で組成式の候補を挙げると、次の表 2に示すようになる。
[表 2] # Mass Diff. Formula
1 153.055 0.001 C8H903
2 153.058 0.002 C11 H7N
3 153.054 0.002 C6H7N302
24 153.075 0.019 C3H11 304 この場合でも親イオンの質量数 Pから計算したものと同程度の数の候補が出てきて しまい、組成式を決定することは困難である。
[0060] これに対し、 5回の開裂操作を行った後の娘イオンの質量数 d力 同様にして組成
5
式の候補を挙げると次の表 3に示すようになり、候補の数が 2個と大幅に減少する。
[表 3]
# Mass Diff. Formula
1 41.039 0.001 C3H5
2 41 .027 0.01 1 C2H3N これは開裂操作の繰り返しによって娘イオンの質量数 dが親イオンの質量数 Pと比
5
ベて格段に小さくなつたためである。また、質量数差がほぼ同一である f 、 f 、 f につ
3 4 5
Vヽて脱離イオンの候補を挙げると、表 4に示すようになる。
[表 4]
# Mass Diff. Formula
1 27.995 0.001 CO
2 28.006 0.012 N2 但し、一般にイオンの開裂現象においては各種の知見により脱離イオンが Nである
2 ことは殆ど考えられない。従って、予めこうした知見に基づく情報を与えておくことによ り、 Nという組成式は排除することができ、 COが妥当な結果として求まる。
2
[0061] 同様に、質量数差 f 、 f についてそれぞれ脱離イオンの候補を挙げると、表 5、表 6 に示すようになる。
[表 5]
# Mass Diff. Formula
1 28.031 0.004 C2H4
2 28.019 0.016 CH2N
[表 6]
# Mass Diff. Formula
1 18.01 1 0.000 H20
[0062] 図 2のフローチャートに照らして考えると、ステップ S10中の所定値を例えば 2又は 3 と設定しておくと、 MS6分析が実行された後にステップ S 10で YESと判定され、質量 数差 f 〜f が算出されて上記のように脱離イオンの各候補が導出される。図 2中の候
1 5
補 Yは表 3に示すものであり、候補 Zは表 4、表 5及び表 6に示すものである。これらか ら想定される親イオンの組成式の候補は、
(C H 又は C H N) +CO + CO + CO+ (C H 又は CH N) +H O
3 5 2 3 2 4 2 2
=C H O 又は C H NO 又は C H N O
8 11 4 7 9 4 6 7 2 4
となり、当初の 27個の候補の中から 3個まで絞り込むことができる。この絞り込みの結 果を例えば表示画面上に表示することで、分析担当者が最終的に組成を決定する 重要な情報を提供することができる。
[0063] なお、ここでは行わなかった力 ステップ S 10で YESとならなかった MSn分析にお ける娘イオンの組成の候補も利用して、上記のようにして求まった結果との整合性が とれるか否かを検証することにより、結果の信頼性を高めたり更に絞り込みを行ったり することも可會である。
実施例 2
[0064] 以下、上記本発明の第 2の態様に係る質量分析方法において、娘イオンの組成式 候補と脱離イオンの組成式候補との組み合わせを利用して親イオンの組成式候補の 絞り込みを行う際の手順について、具体例を挙げて説明する。
[0065] いま、目的試料をイオン化することで生成された親イオンの質量数 Pが 150. 01 (u) であるとし、該親イオンを 1回開裂させて生成された娘イオンの質量数 d力 SlOO. 0 (u
1
)であるものとする。このとき該親イオンと娘イオンとの質量数差 f は、 P— d = 50. 01
1 1
(u)である。ここで、親イオン、娘イオン、及び脱離イオンの組成候補をそれぞれ、 CF (P)、 CF (d )、 CF (P— d )とし、娘イオンの組成式候補 CF (d )と脱離イオンの組成
1 1 1 式候補 CF (P— d )との組み合わせを CF (d ) * CF (P— d )と表すものとする。
1 1 1
[0066] P及び dの許容誤差を 0· 003 (u)、 P— dの許容誤差を 0· 006 (u)とし、且つ原子
1 1
の種類及び最小個数、最大個数を表 7に示すように設定し、これらの解析条件の下 で上記の質量数 P、 d、 P— dに合致する組成式候補を導出する。なお、このとき、価
1 1
電子数を考慮して結合数が不自然になるものは排除する。
[表 7]
Figure imgf000021_0001
以上により得られる組成式の候補 CF (P)、 CF (d )、 CF (P-d )は、それぞれ次の
1 1
表 8〜10に示すようになる。
[表 8]
# Mass Diff. Formula
1 150.0099 0.00009 C3H6N2O3S
2 150.0106 0.00056 C11 H2O
3 150.0092 0.00078 C9N3
4 150.0086 0.00143 CH4N5O2S
5 150.0126 0.00259 C6H4N3S [表 9]
# Mass Diff. Formula
1 99.9983 0.00171 C4H40S
2 100.0021 0.00213 CN402
[表 10]
# Mass Diff. Formula
1 50.0064 0.00356 H4NS
2 50.0157 0.00565 C4H2
[0067] 上記表 9及び表 10から、 CF(d) *CF(P— d)は次のようになる。
1 1
C H NOS、 C H OSゝ CH N O Sゝ C H N O
4 8 2 8 6 4 5 2 5 2 4 2
[0068] このとき、上記 CF(d) *CF(P— d)と表 8に示す CF(P)とに共通に含まれている
1 1
組成式は CH N O Sであるので、これを親イオンの組成式候補として決定することが
4 5 2
できる。
[0069] なお、上記実施例は本発明の一例であって、本発明の趣旨の範囲で適宜に修正、 変更、追加などを行っても本願特許請求の範囲に包含されることは明らかである。

Claims

請求の範囲
[1] 分析対象である試料に由来する親イオンを n—l (n≥3)段階に開裂させ、該開裂 によって発生した娘イオンを質量分析する MS1^祈が可能な質量分析装置を用い、 前記試料の分子構造や組成の解析を行う質量分析方法であって、
a)開裂操作を行わない MS1分析により得られた親イオンの質量数に基づき、該親 イオンに対応する成分の候補 Xを導出する候補 X導出ステップと、
b) MSm (2≤m≤n)分析により得られた娘イオンの質量数に基づき、該娘イオンに 対応する成分の候補 Yを導出する候補 Y導出ステップと、
c)前記候補 Yの数が所定値以下である場合に、 MSP(p = 2〜m)分析にょり得られ た娘イオンの質量数と MSP_1分析により得られた親イオン又は娘イオンの質量数との 差を算出するとともに、該質量数の差に対応した成分の候補 Zをそれぞれ導出する 候補 Z導出ステップと、
d)少なくとも前記候補 Y、候補 Ζを利用して候補 Xの絞り込みを実行する絞り込みス テツプと、を有し、
前記候補 Xの数が 1個又は所定の個数以下になるまで mを 2から最大 ηまで順次増 加させてゆくことを特徴とする質量分析方法。
[2] mが或る値であるときに候補 Υ導出ステップによる候補 Υの数が所定値を超えて ヽ た場合には、前記候補 Z導出ステップ及び絞り込みステップを実行せずに mを増加さ せて候補 Y導出ステップを実行することを特徴とする請求項 1に記載の質量分析方 法。
[3] 分析対象である試料に由来する親イオンを n—l (n≥2)段階に開裂させ、該開裂 によって発生した娘イオンを質量分析する MS1^祈が可能な質量分析装置を用い、 前記試料の分子構造や組成の解析を行う質量分析方法であって、
a) MSm (l≤m≤n— 1)分析により得られた親イオン又は娘イオンの質量数に基づ き、該親イオン又は娘イオンに相当する成分の組成候補 Xを導出するステップと、 b)前記親イオン又は娘イオンを 1回又は複数回開裂させる MSP (p≥m+ 1)分析に より得られた娘イオンの質量数に基づき、該娘イオンに対応する成分の候補 Yを導出 する候補 Y導出ステップと、 c) MSq(q = m+ l〜p)分析により得られた娘イオンの質量数と MSq1分析により得 られた親イオン又は娘イオンの質量数との差を算出するとともに、該質量数の差に対 応した成分の候補 Zをそれぞれ導出する候補 Z導出ステップと、
d)前記候補 Yと候補 Zの組み合わせ力 成る候補 (Y+Z)を作成する候補 (Y+Z) 作成ステップと、
e)前記候補 Xと候補 (Y+Z)を比較することで候補 Xの絞り込みを行う絞り込みステ ップと、
を有することを特徴とする質量分析方法。
[4] 分析対象である試料に由来する親イオンを n—l (n≥2)段階に開裂させ、該開裂 によって発生した娘イオンを質量分析する MS1^祈が可能な質量分析装置を用い、 前記試料の分子構造や組成の解析を行う質量分析方法であって、
a)上記親イオンに含まれ得る各原子の最大数及び最小数を記載した解析条件テ 一ブルを作成する解析条件テーブル作成ステップと、
b) MSm (2≤m≤n)分析により得られた娘イオンの質量数に基づき、該娘イオンに 対応する成分の候補 Yを導出する候補 Y導出ステップと、
c) MSm_1分析により得られた前記娘イオンの前駆イオンに相当するイオンの質量数 と該娘イオンの質量数との差を算出するとともに、該質量数の差に対応した成分の候 補 Zを導出する候補 Z導出ステップと、
d)候補 Y及び候補 Zに含まれる各原子の最小数を考慮して、上記解析条件テープ ルに記載された各原子の最小数を増加させる解析条件改定ステップ Aと、
e)前記前駆イオンの質量数に基づき、該前駆イオンに対応する成分の候補 Xを導 出する候補 X導出ステップと、を有し、
上記候補 X導出ステップにお 、て、解析条件改定ステップ Aにお 、て改定された 解析条件テーブルに記載された各原子の最小数及び最大数を候補 Xを導出する際 の解析条件として利用することを特徴とする質量分析方法。
[5] 更に、上記解析条件テーブルに記載された親イオンに含まれ得る各原子の最大数 カゝら上記候補 Yに含まれる各原子の最小数を減じる解析条件改定ステップ Bを有し、 上記候補 Z導出ステップにお 、て、解析条件改定ステップ Bによって改定された解 析条件テーブルに記載された各原子の最大数を候補 zを導出する際の解析条件とし て利用することを特徴とする請求項 4に記載の質量分析方法。
[6] 更に、上記解析条件テーブルに記載された親イオンに含まれ得る各原子の最大数 力 上記候補 Zに含まれる各原子の最小数を減じる解析条件改定ステップ Cを有し、 上記候補 Y導出ステップにお 、て、解析条件改定ステップ Cによって改定された解 析条件テーブルに記載された各原子の最大数を候補 Yを導出する際の解析条件と して利用することを特徴とする請求項 4に記載の質量分析方法。
[7] 上記候補 X導出ステップによって導出された親イオンに対応する成分の候補 Xに含 まれる各原子の最小数及び最大数を考慮して、上記解析条件テーブルの各原子の 最小数を増加及び最大数を減少させ、改定された該解析条件テーブルを用いて上 記 b)〜e)の各ステップを再度実行することを特徴とする請求項 4〜6のいずれかに記 載の質量分析方法。
PCT/JP2005/019728 2004-11-02 2005-10-26 質量分析方法 WO2006049064A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/718,365 US7544931B2 (en) 2004-11-02 2005-10-26 Mass-analyzing method
JP2006515409A JP4324702B2 (ja) 2004-11-02 2005-10-26 質量分析方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004318642 2004-11-02
JP2004-318642 2004-11-02
JP2005282981 2005-09-28
JP2005-282981 2005-09-28

Publications (1)

Publication Number Publication Date
WO2006049064A1 true WO2006049064A1 (ja) 2006-05-11

Family

ID=36319076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019728 WO2006049064A1 (ja) 2004-11-02 2005-10-26 質量分析方法

Country Status (3)

Country Link
US (1) US7544931B2 (ja)
JP (1) JP4324702B2 (ja)
WO (1) WO2006049064A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317326A (ja) * 2005-05-13 2006-11-24 Hitachi High-Technologies Corp 質量分析を用いた物質の同定方法
JP2007163212A (ja) * 2005-12-12 2007-06-28 Nara Institute Of Science & Technology 分子式構築装置、分子式構築装置の制御方法、分子式構築制御プログラム、およびコンピュータ読み取り可能な記録媒体
JP2010506150A (ja) * 2006-09-28 2010-02-25 スミスズ ディテクション インコーポレイティド マルチ検出器によるガス同定システム
US8026476B2 (en) 2006-09-21 2011-09-27 Shimadzu Corporation Mass analyzing method
JP4811466B2 (ja) * 2006-11-15 2011-11-09 株式会社島津製作所 質量分析方法及び質量分析装置
JP2012094252A (ja) * 2010-10-25 2012-05-17 Hitachi Ltd 質量分析装置
WO2015033397A1 (ja) * 2013-09-04 2015-03-12 株式会社島津製作所 クロマトグラフ質量分析用データ処理装置
JP2016170174A (ja) * 2016-05-25 2016-09-23 株式会社島津製作所 タンデム質量分析データ処理装置
US10249480B2 (en) 2014-01-20 2019-04-02 Shimadzu Corporation Tandem mass spectrometry data processing system
EP3751597A1 (en) 2019-06-10 2020-12-16 Jeol Ltd. Composition estimating apparatus and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969938B1 (ko) * 2005-11-22 2010-07-14 가부시키가이샤 시마쓰세사쿠쇼 질량분석장치
JP4996962B2 (ja) * 2007-04-04 2012-08-08 株式会社日立ハイテクノロジーズ 質量分析装置
DE102011053684B4 (de) * 2010-09-17 2019-03-28 Wisconsin Alumni Research Foundation Verfahren zur Durchführung von strahlformstossaktivierter Dissoziation im bereits bestehenden Ioneninjektionspfad eines Massenspektrometers
US8884218B2 (en) * 2011-01-31 2014-11-11 Shimadzu Corporation Method and systems for mass spectrometry for identification and structural analysis of unknown substance
JP6044385B2 (ja) * 2013-02-26 2016-12-14 株式会社島津製作所 タンデム型質量分析装置
JP6229529B2 (ja) * 2014-02-19 2017-11-15 株式会社島津製作所 イオントラップ質量分析装置及びイオントラップ質量分析方法
WO2015148941A1 (en) * 2014-03-28 2015-10-01 Wisconsin Alumni Research Foundation High mass accuracy filtering for improved spectral matching of high-resolution gas chromatography-mass spectrometry data against unit-resolution reference databases
JP6994921B2 (ja) * 2017-12-05 2022-01-14 日本電子株式会社 質量分析データ処理装置および質量分析データ処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124519A (ja) * 1994-10-21 1996-05-17 Shimadzu Corp Ms/ms質量分析装置用データ処理装置
JPH1164285A (ja) * 1997-08-21 1999-03-05 Shimadzu Corp 質量分析装置のデータ処理装置
JP2002505443A (ja) * 1998-03-02 2002-02-19 アイシス・ファーマシューティカルス・インコーポレーテッド 生体分子スクリーニングのための質量分析的方法
JP2004028782A (ja) * 2002-06-25 2004-01-29 Hitachi Ltd 質量分析データの解析方法および質量分析データの解析装置および質量分析データの解析プログラムならびにソリューション提供システム
JP2004257922A (ja) * 2003-02-27 2004-09-16 Hitachi High-Technologies Corp 質量分析スペクトルの解析システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142196A (ja) 1996-11-13 1998-05-29 Hitachi Ltd 質量分析方法および装置
JP3805979B2 (ja) 1999-12-27 2006-08-09 株式会社日立製作所 質量分析方法および装置
EP1463090B1 (en) * 2001-11-07 2012-02-15 Hitachi High-Technologies Corporation Mass spectrometry and ion trap mass spectrometer
US20030108876A1 (en) * 2001-12-11 2003-06-12 Speir Johnny Paul Method for the application of FTMS to drug testing
US7197402B2 (en) * 2004-10-14 2007-03-27 Highchem, Ltd. Determination of molecular structures using tandem mass spectrometry
JP4843250B2 (ja) * 2005-05-13 2011-12-21 株式会社日立ハイテクノロジーズ 質量分析を用いた物質の同定方法
US7429727B2 (en) * 2005-12-13 2008-09-30 Palo Alto Research Center Incorporated Method, apparatus, and program product for quickly selecting complex molecules from a data base of molecules
JP4984617B2 (ja) * 2006-04-12 2012-07-25 株式会社島津製作所 質量分析データ解析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124519A (ja) * 1994-10-21 1996-05-17 Shimadzu Corp Ms/ms質量分析装置用データ処理装置
JPH1164285A (ja) * 1997-08-21 1999-03-05 Shimadzu Corp 質量分析装置のデータ処理装置
JP2002505443A (ja) * 1998-03-02 2002-02-19 アイシス・ファーマシューティカルス・インコーポレーテッド 生体分子スクリーニングのための質量分析的方法
JP2004028782A (ja) * 2002-06-25 2004-01-29 Hitachi Ltd 質量分析データの解析方法および質量分析データの解析装置および質量分析データの解析プログラムならびにソリューション提供システム
JP2004257922A (ja) * 2003-02-27 2004-09-16 Hitachi High-Technologies Corp 質量分析スペクトルの解析システム

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317326A (ja) * 2005-05-13 2006-11-24 Hitachi High-Technologies Corp 質量分析を用いた物質の同定方法
JP2007163212A (ja) * 2005-12-12 2007-06-28 Nara Institute Of Science & Technology 分子式構築装置、分子式構築装置の制御方法、分子式構築制御プログラム、およびコンピュータ読み取り可能な記録媒体
US8026476B2 (en) 2006-09-21 2011-09-27 Shimadzu Corporation Mass analyzing method
JP4849128B2 (ja) * 2006-09-21 2012-01-11 株式会社島津製作所 質量分析方法
JP2010506150A (ja) * 2006-09-28 2010-02-25 スミスズ ディテクション インコーポレイティド マルチ検出器によるガス同定システム
JP4811466B2 (ja) * 2006-11-15 2011-11-09 株式会社島津製作所 質量分析方法及び質量分析装置
JP2012094252A (ja) * 2010-10-25 2012-05-17 Hitachi Ltd 質量分析装置
WO2015033397A1 (ja) * 2013-09-04 2015-03-12 株式会社島津製作所 クロマトグラフ質量分析用データ処理装置
JP6065983B2 (ja) * 2013-09-04 2017-01-25 株式会社島津製作所 クロマトグラフ質量分析用データ処理装置
JPWO2015033397A1 (ja) * 2013-09-04 2017-03-02 株式会社島津製作所 クロマトグラフ質量分析用データ処理装置
US11145498B2 (en) 2014-01-20 2021-10-12 Shimadzu Corporation Tandem mass spectrometry data processing system
US10249480B2 (en) 2014-01-20 2019-04-02 Shimadzu Corporation Tandem mass spectrometry data processing system
JP2016170174A (ja) * 2016-05-25 2016-09-23 株式会社島津製作所 タンデム質量分析データ処理装置
JP2020201110A (ja) * 2019-06-10 2020-12-17 日本電子株式会社 組成推定装置及び方法
EP3751597A1 (en) 2019-06-10 2020-12-16 Jeol Ltd. Composition estimating apparatus and method
JP7114527B2 (ja) 2019-06-10 2022-08-08 日本電子株式会社 組成推定装置及び方法
US11513105B2 (en) 2019-06-10 2022-11-29 Jeol Ltd. Composition estimating apparatus and method

Also Published As

Publication number Publication date
US7544931B2 (en) 2009-06-09
JP4324702B2 (ja) 2009-09-02
JPWO2006049064A1 (ja) 2008-05-29
US20080121793A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2006049064A1 (ja) 質量分析方法
JP4849128B2 (ja) 質量分析方法
JP6107978B2 (ja) 質量分析装置及び質量分析方法
JPH11154486A (ja) タンデム式質量分光分析の方法とタンデム式質量分光分析計
JP2009129868A (ja) 質量分析装置及びその調整方法
JP2013015485A (ja) Ms/ms型質量分析装置及び同装置用プログラム
US8030611B2 (en) Mass spectrometer, method of mass spectrometry and program for mass spectrometry
JP6508215B2 (ja) 質量分析装置
JP5003508B2 (ja) 質量分析システム
Kimura et al. Advances in Atomic, Molecular, and Optical Physics: Electron Collisions with Molecules in Gases: Applications to Plasma Diagnostics and Modeling
JP2009162665A (ja) ガス分析方法及びガス分析装置
JPWO2007132502A1 (ja) 質量分析装置用データ処理装置
EP3683823B1 (en) Mass spectrum processing apparatus and method
Cassuto Variations in mass spectra with the temperature of the ionization chamber between—150 C and+ 200 C
US11094399B2 (en) Method, system and program for analyzing mass spectrometoric data
US11513105B2 (en) Composition estimating apparatus and method
JP7259985B2 (ja) 質量分析方法及び質量分析装置
Vacher et al. Partial ionization cross-sections of acetone and 2-butanone
Vacher et al. Partial ionisation cross-sections of 2-propanol and ethanal
JP2021063752A (ja) 質量分析で得られたデータの解析装置、質量分析装置、質量分析で得られたデータの解析方法および解析プログラム
JPWO2015193946A1 (ja) Ms/ms型質量分析方法及びms/ms型質量分析装置
Jacobi et al. Multiple ionization of Sc+-ions by electron impact
JP7142867B2 (ja) イオン分析装置
JP7225743B2 (ja) スペクトル演算処理装置、スペクトル演算処理方法、スペクトル演算処理プログラム、イオントラップ質量分析システムおよびイオントラップ質量分析方法
WO2023233257A1 (en) Resonant cid for sequencing of oligonucleotides in mass spectrometery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006515409

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11718365

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805269

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11718365

Country of ref document: US