JP4984617B2 - 質量分析データ解析方法 - Google Patents

質量分析データ解析方法 Download PDF

Info

Publication number
JP4984617B2
JP4984617B2 JP2006109962A JP2006109962A JP4984617B2 JP 4984617 B2 JP4984617 B2 JP 4984617B2 JP 2006109962 A JP2006109962 A JP 2006109962A JP 2006109962 A JP2006109962 A JP 2006109962A JP 4984617 B2 JP4984617 B2 JP 4984617B2
Authority
JP
Japan
Prior art keywords
analysis
component
target component
mass
mass spectrometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006109962A
Other languages
English (en)
Other versions
JP2007285719A (ja
Inventor
真一 山口
祐介 猪鼻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006109962A priority Critical patent/JP4984617B2/ja
Priority to US11/730,983 priority patent/US7529630B2/en
Publication of JP2007285719A publication Critical patent/JP2007285719A/ja
Application granted granted Critical
Publication of JP4984617B2 publication Critical patent/JP4984617B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/20Identification of molecular entities, parts thereof or of chemical compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、分析対象試料に由来する親イオンを1回又は複数回開裂させ、該開裂によって発生した娘イオンを質量分析するMSn分析によって得られたデータを解析するための質量分析データ解析方法に関し、特に試料中の未知成分の中から目的の成分と類似する成分を選出する方法、及び選出された未知成分の分子構造を推定する方法に関するものである。
従来より、複数成分が混在する試料の分析には液体クロマトグラフ質量分析装置(LC/MS)やガスクロマトグラフ質量分析装置(GC/MS)等のクロマトグラフ質量分析装置が好適に利用されている。また、近年ではイオンの捕捉及び開裂を1回又は多段階に繰り返すMSn分析が可能な質量分析装置(例えば、非特許文献1などを参照)を使用して、クロマトグラフ部で分離された試料成分の構造情報を取得することも可能となっている。
このようなクロマトグラフ質量分析装置を利用して、例えば、薬物動態試験における代謝物の定量・構造解析や医薬品等の合成における反応副産物や分解生成物等の類縁不純物の同定等のように、混合試料中に含まれる既知成分と類似する成分の分析を行おうとする場合、まず、該混合試料について得られたMSn分析データに基づいて該試料中の多数の成分の中から対象分子と似た構造の分子を選出する必要がある。
このとき、従来であれば、被検試料のクロマトグラム上に存在する各ピークについて取得されたMSnスペクトル(例えばMS2スペクトル)を一つ一つモニタ上に表示させ、該スペクトルと目的とする既知物質のMSnスペクトルを目視によって比較することで両者の類似性を判断し、スペクトルパターンが目的成分のものと類似していると分析者が判定した成分を類似成分候補として選出していた。
「液体クロマトグラフ質量分析計 LCMS-IT-TOF」、株式会社島津製作所、インターネット<http://www.an.shimadzu.co.jp/products/lcms/it-tof.htm>、[平成18年4月6日検索]
しかし、このような手作業による解析には多くの知識と経験を要するため、熟練した分析者にしか行うことができず、また、各成分について得られたMSnスペクトルを一つ一つ目で確認する作業には膨大な時間と手間が掛かるため分析効率向上の妨げとなっていた。
そこで、本発明が解決しようとする課題は、試料中の各未知成分について得られたMSn分析の結果に基づいて目的成分に似た成分を迅速且つ正確に探索することのできる質量分析データ解析方法を提供することである。
上記課題を解決するために成された本発明に係る質量分析データ解析方法は、一つないし複数の未知成分に対し、各成分に由来するプリカーサイオンをn-1(n≧2)段階に開裂させ、発生したフラグメントイオンを質量分析するMSn分析を行った結果に基づいて前記未知成分の中から目的成分と類似する成分を選出する質量分析データ解析方法であって、前記MSn分析により得られたスペクトルデータ及び目的成分のMSnスペクトルデータから所定の変数を導出し、該変数を用いた多変量解析により前記目的成分と各未知成分との類似度を求め、該類似度に基づいて目的成分に類似する成分を選出することを特徴としている。
上記のような構成を有する本発明の質量分析データ解析装置によれば、試料中の各成分について得られたMSn分析データを用いた多変解析により、該試料に含まれる全成分について一度に目的成分との類似度を求めることができる。このため、従来のような手作業によるMSnスペクトルの比較を行うことなく、既知物質に類似する成分を大量のデータの中から容易に選出することが可能となる。
本発明に係る質量分析データ解析方法を実行する質量分析データ解析装置(以下、単に「データ解析装置」とする)の一例について図面を参照しながら説明する。ここでは、液体クロマトグラフ質量分析装置を用いる場合を例にとるが、ガスクロマトグラフ質量分析装置等の他のクロマトグラフ質量分析装置の場合も同様である。
図1は本実施例のデータ解析装置10の構成を示す図である。データ解析装置10は、液体クロマトグラフ質量分析装置(LC/MS)20から送出される検出データを処理するものであり、中央制御部11、スペクトルデータ作成部12、解析処理部13、測定データ記憶部14、及び参照データ記憶部15を備えている。測定データ記憶部14及び参照データ記憶部15は中央制御部11に接続されている。また、中央制御部11には入力装置30及び表示装置40が接続されている。なお中央制御部11は、LC/MS20の各部の動作を制御する機能も兼ね備えている。
上記において、中央制御部11、スペクトルデータ作成部12、及び解析処理部13はコンピュータ・プログラムに従って動作するCPUにより構成することができる。測定データ記憶部14にはハードディスク(HD)や光磁気ディスク(MO)等の読出/書込可能な記憶装置が利用できる。参照データ記憶部15にもHD等が利用可能であるが、参照データ記憶部15へのデータの書込を行わないような構成とする場合は、CD−ROMのような読出専用の装置を用いてもよい。参照データ記憶部15には様々な化合物に関するデータ(構造式、組成式、MSnスペクトルデータなど)が格納されており、分析者が入力装置30を操作することにより前記化合物の中から類似成分探索の目的成分とする化合物を指定することができるようになっている。また、図1では、測定データ記憶部14及び参照データ記憶部15がそれぞれ独立に配置されているが、これらの記憶部は、単一の記憶装置(HD等)を論理的に分割して構成することも可能である。なお、入力装置30にはキーボードやマウス等を利用することができ、表示装置40にはCRTやプリンタ等が利用できる。
このようなデータ解析装置10は、LC/MS専用の制御・解析ユニットとして具現化してもよく、あるいはパーソナルコンピュータ等の汎用コンピュータに本発明の解析方法を実行するためのプログラムをインストールすることにより具現化してもよい。
LC/MS20は、混合試料を時間的に分離するためのカラムを有する液体クロマトグラフ装置とMSn分析(少なくともMS2分析)が可能な質量分析装置で構成される。このような質量分析装置としては、例えば、三連四重極型の質量分析装置やイオントラップ型の質量分析装置等を用いることができる。クロマトグラフ装置のカラムから溶出される試料成分は質量分析装置によって順次イオン化されてMSn分析に供される。このとき、各試料成分由来のイオンから適当な質量電荷比を有するイオンがプリカーサイオンとして自動的に選択され、該プリカーサイオンを開裂させて発生したフラグメントイオンの質量分離・検出が行われる。また、必要に応じてこのようなイオンの選択・開裂・検出を複数回繰り返すこともできる。
試料の測定中は、LC/MS20からデータ解析装置10に対し、各質量電荷比毎に検出されたイオン数に応じた電流による検出データ(デジタル化された検出信号)が送られる。スペクトルデータ作成部12は、所定のアルゴリズムに従って該検出データを処理することにより、質量電荷比と該質量電荷比におけるピーク強度(相対信号強度)とが対となったスペクトルデータを算出し、測定データ記憶部14に格納する。また、開裂操作を行わないMS1分析により得られたスペクトルデータを基にトータルイオンクロマトグラム(Total Ion Chromatogram:TIC)が作成され同様に測定データ記憶部14に格納される。
次に、試料の測定終了後の解析処理について図2のフローチャートを参照しながら説明する。まず中央制御部11は測定データ記憶部14及び参照データ記憶部15からそれぞれ前記TIC上の各ピークに対応するスペクトルデータ(MSn分析の各段階において得られたスペクトルデータ)及び分析者により指定された目的成分のスペクトルデータを読み出して解析処理部13へ転送する(ステップS11、S12)。
解析処理部13は、これらのスペクトルデータに基づいて、後述の多変量解析に使用する変数を導出してテーブル化する(ステップS13)。ここで、多変量解析に用いられる変数としては、例えば、(1)MSn分析の各段におけるフラグメントイオンの質量電荷比、(2)MSn分析の各段におけるフラグメントイオンの質量電荷比と上記プリカーサイオンの質量電荷比の差、(3)MSn分析の各段におけるフラグメントイオンの質量電荷比と該フラグメントイオンの基となった前段のフラグメントイオン又はプリカーサイオンの質量電荷比の差、(4)プリカーサイオンの同位体分布パターンなどを用いることができる。
続いて、解析処理部13において前記テーブルに基づく多変量解析が実行される(ステップS14)。ここで用いられる多変量解析の手法としては、例えば、階層的クラスター分析(Hierarchical Cluster Analysis:HCA)、主成分分析(Principal Component Analysis:PCA)、部分最小二乗法(Partial Least Squares:PLS)等が挙げられるがこれに限定されるものではない。
その後、解析処理部13における多変量解析の結果が表示装置40に出力され(ステップS15)、該結果に基づいて類似成分候補が選出される(ステップS16)。なお、類似成分候補を選出する手段としては、分析者が表示装置40に表示された解析結果を目で確認することにより行うものとしてもよく、あるいは、目的成分との類似度が予め設定された所定の閾値よりも高かったものをデータ解析装置10が自動的に選出して表示装置40に表示するものとしてもよい。
また、本発明の質量分析データ解析方法においては、上記多変量解析により目的成分に対する類似成分候補として選出された成分及び目的成分について、更に、上記変数を用いた多変量解析を行うことでこれらの候補成分を特徴別にグループ分けすることが望ましい。これにより、各グループ毎に、(1)該グループ内で共通に存在し、目的成分にも存在するピーク、(2)該グループ内では共通するが目的成分には存在しないピーク、(3)該グループ内では存在しないが、目的成分には存在するピーク等についての情報を得ることができる。ここで、(1)は、該グループに属する未知物質と目的の既知物質に共通する構造があることを示すものであり、これを基に各候補成分の構造がどの程度既知物質の構造と類似しているかを判断することができる。(2)は、該グループ内で共通した構造変化を示すものであり、(3)は、該ピークに相当する構造が該グループ内の各成分で失われていることを示す。このように、選出された類似成分候補に対し、更に多変量解析を行って各成分を特徴別にグループ分けすることにより、既知物質(目的成分)の構造からこれらの未知成分の構造推定に有用なデータを得ることができる。
以下、本発明の質量分析データ解析方法を用いた解析例について説明する。図3(a)、(b)は、それぞれ本実施例における目的成分(既知物質)のMSスペクトル及びMS/MSスペクトル(MSスペクトル上のm/z=366.1608のピークを開裂させて得られたもの)である。まず、分析対象である混合試料(前記目的成分とその代謝物とを含む生体試料)を液体クロマトグラフによって時間的に分離し、該クロマトグラフのカラムから溶出された成分に対し、順次MS/MS分析(MS2分析)を行い、得られたデータを用いて前記目的成分と類似する成分の探索を行った。
図4(a)は上記分析によって得られた被検試料のトータルイオンクロマトグラム(TIC)である。本実施例では、該TIC上の各ピークについてそれぞれ自動的に選択されたプリカーサイオンを開裂させ、MS/MS分析を行った。このようなMS/MSスペクトルの一例を図4(b)に示す。以上の分析により得られた被検試料のMS1スペクトルデータとMS2スペクトルデータ、及び上記目的成分に関する既存のMS1スペクトルデータとMS2スペクトルデータから所定の情報を導出してテーブル化したものを図5に示す。ここで、P#1, P#2…はTICの各ピークに対応するプリカーサイオンの変数名を、PrecRTは各プリカーサイオンが観測された時刻を、PrecMZは各プリカーサイオンの質量電荷比を、I#1, I#2…は各プリカーサイオンの開裂により生じたフラグメントイオンの質量電荷比、及びプリカーサイオンと各フラグメントイオンの質量電荷比の差を示し、テーブル内の数字は規格化された観測強度を示す。
このようなテーブルに基づき種々の手法により多変量解析を行った結果を図6〜8に示し、多変量解析による解析結果と同一データに対し手作業による解析を行った結果との比較を図9に示す(なお、表中の「予測された質量」とは、目的成分に既知の構造変化が発生したと仮定した場合に生じることが予測される質量を意味する)。図6はPCA法による解析結果を、図7はPLS法による解析結果を、図8はHCA法による解析結果を示すものである。図9に示すように、本発明の解析方法により得られた結果(表中の「実施例」)は、手作業によって見つけられたもの(表中の「比較例」)を全て網羅しており、更に手作業では発見できなかった候補成分も多数発見された。また、手作業による解析には約2日を要したのに対し、本発明の解析方法によれば数秒で解析を完了することができた。
このように、本実施例の質量分析データ解析方法を用いた解析例によれば、従来の手作業による方法に比べて解析に要する時間と手間を大幅に低減することができ、解析精度についても手作業による解析と同等以上の結果を得ることができた。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲内で適宜変更が許容されるものである。例えば、上記実施例ではMS/MS分析(MS2分析)のデータに基づく解析を例に説明したが、2段階以上の開裂を行うMSn分析のデータに基づく解析を行う場合についても同様に本発明を適用することができる。
本発明に係る質量分析データ解析方法を実施するための装置の一例を示す概略構成図。 本発明に係る質量分析データ解析方法による類似成分候補の選出手順を示すフローチャート。 本発明の質量分析データ解析方法を用いた解析例における目的成分の(a)MSスペクトル、及び(b)MS/MSスペクトル。 同解析例における被検試料の(a)トータルイオンクロマトグラム(TIC)、及び(b)該TIC中の或るピークについて得られたMS/MSスペクトル。 同解析例に係るテーブルを示す図。 PCA法による多変量解析の結果を示す図。 PLS法による多変量解析の結果を示す図。 HCA法による多変量解析の結果を示す図。 同解析例による解析結果及び手作業による解析結果を示す表。
符号の説明
10…データ解析装置
11…中央制御部
12…スペクトルデータ作成部
13…解析処理部
14…測定データ記憶部
15…参照データ記憶部
20…LC/MS
30…入力装置
40…表示装置

Claims (6)

  1. 一つないし複数の未知成分に対し、各成分に由来するプリカーサイオンをn-1(n≧2)段階に開裂させ、発生したフラグメントイオンを質量分析するMSn分析を行った結果に基づいて前記未知成分の中から目的成分と類似する成分を選出する質量分析データ解析方法であって、
    前記MSn分析により得られたスペクトルデータ及び目的成分のMSnスペクトルデータから所定の変数を導出し、該変数を用いた多変量解析により前記目的成分と各未知成分との類似度を求め、該類似度に基づいて目的成分に類似する成分を選出することを特徴とする質量分析データ解析方法。
  2. 更に、上記目的成分及び該目的成分に類似する成分として選出された複数の未知成分を対象として、前記変数を用いた多変量解析を行い、各成分を互いの類似度に基づいてグループ分けすることを特徴とする請求項1に記載の質量分析データ解析方法。
  3. 上記多変量解析に用いられる変数が、MSn分析の各段におけるフラグメントイオンの質量電荷比と上記プリカーサイオンの質量電荷比の差、MSn分析の各段におけるフラグメントイオンの質量電荷比と該フラグメントイオンの基となった前段のフラグメントイオン又はプリカーサイオンの質量電荷比の差、及びプリカーサイオンの同位体分布パターンのうちの、少なくともいずれかを含むことを特徴とする請求項1又は2に記載の質量分析データ解析方法。
  4. 一つないし複数の未知成分に対し、各成分に由来するプリカーサイオンをn-1(n≧2)段階に開裂させ、発生したフラグメントイオンを質量分析するMSn分析を行った結果に基づいて、前記未知成分の中から目的成分と類似する成分を選出する質量分析データ解析装置であって、
    a) 各未知成分について得られたMSn分析のスペクトルデータを読み込む測定データ取得手段と、
    b) 目的成分に関する既存のMSnスペクトルデータを読み込む目的成分データ取得手段と、
    c) 前記測定データ取得手段及び目的成分データ取得手段によって読み込まれたデータから所定の変数を導出する変数導出手段と、
    d) 前記変数を用いた多変量解析により前記各未知成分と目的成分との類似度を求める類似度導出手段と、
    を有することを特徴とする質量分析データ解析装置。
  5. 更に、
    e) 上記目的成分、及び上記類似度に基づいて前記目的成分に類似する成分として選出された複数の未知成分に対し、上記変数を用いた多変量解析を行うことにより、各成分を互いの類似度に基づいてグループ分けする類似成分分類手段、
    を有することを特徴とする請求項4に記載の質量分析データ解析装置。
  6. コンピュータを請求項4又は5に記載の質量分析データ解析装置として動作させるためのプログラム。
JP2006109962A 2006-04-12 2006-04-12 質量分析データ解析方法 Active JP4984617B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006109962A JP4984617B2 (ja) 2006-04-12 2006-04-12 質量分析データ解析方法
US11/730,983 US7529630B2 (en) 2006-04-12 2007-04-05 Method of analyzing mass analysis data and apparatus for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109962A JP4984617B2 (ja) 2006-04-12 2006-04-12 質量分析データ解析方法

Publications (2)

Publication Number Publication Date
JP2007285719A JP2007285719A (ja) 2007-11-01
JP4984617B2 true JP4984617B2 (ja) 2012-07-25

Family

ID=38757652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109962A Active JP4984617B2 (ja) 2006-04-12 2006-04-12 質量分析データ解析方法

Country Status (2)

Country Link
US (1) US7529630B2 (ja)
JP (1) JP4984617B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544931B2 (en) * 2004-11-02 2009-06-09 Shimadzu Corporation Mass-analyzing method
WO2008035419A1 (fr) * 2006-09-21 2008-03-27 Shimadzu Corporation Procédé de spectrométrie de masse
WO2010116409A1 (ja) * 2009-04-07 2010-10-14 株式会社島津製作所 質量分析データ処理方法及び装置
US11094399B2 (en) 2011-01-11 2021-08-17 Shimadzu Corporation Method, system and program for analyzing mass spectrometoric data
JP5860833B2 (ja) * 2013-04-08 2016-02-16 株式会社島津製作所 質量分析データ処理方法及び装置
JP6303896B2 (ja) * 2014-07-30 2018-04-04 株式会社島津製作所 質量分析データ処理装置及び質量分析データ処理方法
US11222773B2 (en) * 2015-07-01 2022-01-11 Shimadzu Corporation Data processing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008388A (en) * 1974-05-16 1977-02-15 Universal Monitor Corporation Mass spectrometric system for rapid, automatic and specific identification and quantitation of compounds
US5776723A (en) * 1996-02-08 1998-07-07 Herold; Christopher D. Rapid detection of mycobacterium tuberculosis
JP2002005890A (ja) * 2000-06-16 2002-01-09 Horiba Ltd 多成分混合スペクトルの解析方法
GB2417557B (en) * 2003-05-29 2008-05-21 Waters Investments Ltd A system and method for metabonomics directed processing of LC-MS or LC-MS/MS data
JP2005214799A (ja) * 2004-01-29 2005-08-11 Seikei Gakuen データ解析装置、データ解析方法およびデータ解析プログラム
JP4393270B2 (ja) * 2004-05-21 2010-01-06 株式会社日立ハイテクノロジーズ 質量分析装置および異性体分析方法

Also Published As

Publication number Publication date
US7529630B2 (en) 2009-05-05
JP2007285719A (ja) 2007-11-01
US20080073501A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP6494588B2 (ja) 滞留時間の決定または確認のための窓処理質量分析データの使用
JP2007287531A (ja) 質量分析データ解析方法
JP2020073900A (ja) 生成イオンスペクトルのデータ独立取得および参照スペクトルライブラリ照合
JP4596010B2 (ja) 質量分析装置
JP5590156B2 (ja) 質量分析方法及び装置
JP6065983B2 (ja) クロマトグラフ質量分析用データ処理装置
JP4984617B2 (ja) 質量分析データ解析方法
JP5757264B2 (ja) クロマトグラフ質量分析データ処理装置
JP5510011B2 (ja) 質量分析方法及び質量分析装置
JP5655758B2 (ja) 質量分析装置
JP5664667B2 (ja) 質量分析データ解析方法、質量分析データ解析装置、及び質量分析データ解析用プログラム
JP6027436B2 (ja) 質量分析データ解析方法
JP6222277B2 (ja) タンデム質量分析データ処理装置
JP2005083952A (ja) 液体クロマトグラフ質量分析装置
JP2019070547A (ja) 質量分析データ処理装置及び質量分析データ処理方法
JP6295910B2 (ja) 質量分析データ処理装置
JP2006038628A (ja) クロマトグラフ質量分析装置
US20220301839A1 (en) Method for analyzing mass spectrometry data, computer program medium, and device for analyzing mass spectrometry data
JP2010066036A (ja) 有機ハロゲン化合物分析方法、有機ハロゲン化合物分析装置、プログラムおよびコンピュータ読取可能な記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R151 Written notification of patent or utility model registration

Ref document number: 4984617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3