WO2006046391A1 - 充填剤組成物及びそれを使用した内部に空孔を有する光ファイバーの製造方法 - Google Patents

充填剤組成物及びそれを使用した内部に空孔を有する光ファイバーの製造方法 Download PDF

Info

Publication number
WO2006046391A1
WO2006046391A1 PCT/JP2005/018513 JP2005018513W WO2006046391A1 WO 2006046391 A1 WO2006046391 A1 WO 2006046391A1 JP 2005018513 W JP2005018513 W JP 2005018513W WO 2006046391 A1 WO2006046391 A1 WO 2006046391A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
general formula
filler composition
compound represented
holes
Prior art date
Application number
PCT/JP2005/018513
Other languages
English (en)
French (fr)
Inventor
Takafumi Iida
Masayoshi Hachiwaka
Original Assignee
Nagase Chemtex Corporation
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corporation, Mitsubishi Cable Industries, Ltd. filed Critical Nagase Chemtex Corporation
Priority to US11/666,070 priority Critical patent/US7477821B2/en
Priority to JP2006542318A priority patent/JP4243296B2/ja
Publication of WO2006046391A1 publication Critical patent/WO2006046391A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes

Definitions

  • the present invention relates to a filler composition for filling a hole in an optical fiber having holes inside a photonic crystal fiber or the like, and more specifically, a fluorine having an acrylic group-containing specific structure.
  • the present invention relates to a filler composition comprising a compound and a fluorine compound having a specific structure containing an epoxy group, a method for producing an optical fiber having pores therein, and an optical fiber having pores therein.
  • An optical fiber is widely used for optical communication, optical application measurement, and the like.
  • optical communication is being widely used in wide area or LAN optical communication networks, in-car communication, control of electrical products and industrial equipment.
  • conventional optical fiber that forms a waveguide called a core by adding additives to silica glass In the one hand, it was pointed out that there was a limit in optical characteristics.
  • an optical fiber having a new structure in which a hole cap and a shoe are provided in the cross section has been attracting attention.
  • an optical fiber has a core part that forms a central part through which light passes and a clad part force that forms the periphery of the core part.
  • the optical fiber having the new structure described above has a plurality of tubular holes extending along the axial direction of the optical fiber in the core portion and the Z or clad portion. A number of holes appear.
  • Such an optical fiber has a regular arrangement and an irregular arrangement of holes in the cross section, and there are a so-called holey fiber and a photonic bandgap fiber. Some are also called photonic crystal fibers. Since the optical fiber having the above-mentioned new structure always has a uniform name, several names may be used in duplicate.
  • index-guided photonic crystal fiber for example, index-guided photonic crystal fiber, air-clad fiber, hole-added fiber, and photonic band. These are the same as the gap-gap fibers, and all of them can be referred to as photonic crystal fibers, although the hole arrangement in the cross section is different.
  • the photonic crystal fiber has a regular arrangement of holes in the cross section.
  • an optical fiber having a hole in the inside thereof is indicated along the axial direction of the optical fiber in the core and Z or the clad as pointed out as the optical fiber having the new structure described above. It should be understood to include an optical fiber of any structure that has a plurality of elongated tubular cavities and in which a number of cavities appear in the cross-section when the optical fiber is cut.
  • the arrangement of the holes in the plane can be either regular or irregular.
  • Such optical fibers with holes inside, especially photonic crystal fibers are characterized by the ability to realize a single mode at an arbitrary wavelength, resistance to bending with a high refractive index ratio, and numerical aperture.
  • the characteristics of the conventional optical fiber are unmatched, such as the large refractive index and the average refractive index can be changed depending on the size and arrangement of the holes, and the refractive index and polarization characteristics can be designed as desired. It has been pointed out.
  • a filler for holes in the end face it is usual to arrange holes in the cladding, so that it can have a lower refractive index than that of the core and has good filling ability to the holes.
  • it is required to be an optical resin that ensures properties required for an optical fiber, such as heat resistance in consideration of heat generation during polishing, and good end surface polishing processability.
  • optical resin For example, a photopolymerizable composition having a specific epoxy-based fluorine compound power (see, for example, Patent Document 1), a photopolymerizable composition having a specific acrylate-based fluorine compound power (for example, Patent Document 2). , See Patent Document 3).
  • these compositions generally have a refractive index of 1.45 or higher and are not low refractive indexes.
  • an optical resin having an acrylic group or epoxy group-containing fluorine compound power for example, there is an optical thin film using a cured product of an epoxy compound having a fluorine-containing alkylene group (see, for example, Patent Document 4). ) 0
  • This technology is intended to improve the performance of optical coatings, and although it is described that an optical thin film with excellent scratch resistance can be formed, it is exclusively used for antireflection coatings. It belongs to the technical field and is not related to the filler.
  • connection problem peculiar to an optical fiber having a hole inside is a problem that does not exist in a conventional optical fiber.
  • What is simply a technique for bonding a fiber and a connector with an adhesive ?
  • the optically polished end faces of the connectors are fixed together so that they are end face processing problems.
  • low viscosity, heat resistance, fillability, and polishing processability are required. It is necessary to satisfy all of the adhesive strength above the required level, and fillers that contribute to this are still known!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-154233
  • Patent Document 2 Japanese Patent Laid-Open No. 62-265248
  • Patent Document 3 Japanese Patent Laid-Open No. 63-101409
  • Patent Document 4 Japanese Patent Laid-Open No. 11-133207
  • the present invention can achieve a low refractive index, and the pores are excellent in low viscosity, heat resistance, filling property, polishing workability, and adhesive strength. It is another object of the present invention to provide a method for manufacturing an optical fiber having holes therein and an optical fiber having holes therein.
  • the present inventor has found that a specific structure containing an acrylic group.
  • the inventors have found that the above object can be achieved by using a fluorine compound having a specific structure and a fluorine compound having a specific structure containing an epoxy group, thereby completing the present invention. That is, the present invention provides the above-described hole of an optical fiber having a hole inside, which contains a compound represented by the following general formula (I), a compound represented by the following general formula (II), and a photopolymerization initiator. It is a filler composition for filling.
  • a plurality of a are the same and represent 0 or 1
  • a plurality of b are the same and represent 0 or 1
  • m is an integer of 4 to 12.
  • Tfl represents a glycidyl group
  • the present invention also includes the step of filling the filler composition into the pores in the end face of the optical fiber having pores therein, and the step of irradiating the filled filler composition with ultraviolet rays.
  • the present invention further includes a step of filling the filler composition into the pores in the end face of the optical fiber having pores therein, and a step of irradiating the filled filler composition with ultraviolet rays. And a method of manufacturing an optical fiber having a hole in the polished end face including the step of polishing the end face after the ultraviolet irradiation step.
  • the sealing method and the manufacturing method may further include a step of heat curing treatment after the ultraviolet irradiation step.
  • the pores of the optical fiber having holes therein are filled with the filler composition, and the holes are in the longitudinal direction corresponding to the axial direction of the optical fiber. It is also an optical fiber having a hole in the inside that is partially sealed.
  • the present invention satisfies all of low viscosity, heat resistance, fillability, polishing processability, and adhesive strength above the required level.
  • the filler composition of the present invention can achieve a low refractive index due to the above-described configuration, and has a low viscosity and excellent heat resistance.
  • the filler composition of the present invention has a refractive index at 25 ° C. measured in a liquid before curing (D-line refractive index, expressed as n in the present specification) according to the above-mentioned configuration. 1.34
  • the filler composition of the present invention has a cured product having a Tg of 80-: L 10 ° C. and excellent heat resistance and polishing processability due to the above-described structure.
  • the filler composition of the present invention has a viscosity of 10 to 500 mPa ′s at 25 ° C. and excellent filling properties due to the above-described configuration.
  • the filler composition of the present invention achieves an adhesive strength of 4. ONZmm 2 or more and is excellent in filling processability due to the above-described configuration.
  • the hole sealing method of the present invention has the above-described configuration, and seals the above-mentioned hole of the optical fiber having holes inside while ensuring heat resistance and polishing processability at a lower refractive index than the core part. can do.
  • the manufacturing method of the present invention has a structure in which the pores in the end surface are filled with the filler composition and the end surface in which foreign matter such as polishing debris is prevented from entering the pores is polished inside.
  • An optical fiber having a hole can be realized.
  • the optical fiber according to the present invention has an inner surface in which the end surface is polished by the above-described configuration, in which the holes in the end surface are filled with the filler composition and foreign matter such as polishing dust is prevented from entering the holes.
  • This is an optical fiber having a hole in the hole.
  • the filler composition of the present invention comprises a compound represented by the above general formula (I), a compound represented by the general formula ( ⁇ ), and a photopolymerization initiator.
  • a plurality of a's are the same and represent 0 or 1.
  • a plurality of b's are the same and represent 0 or 1.
  • a is 0, a is 1, and in each of these cases, b is 0 and b is 1.
  • a, b, and m in formula (I) and a, b, and m in formula ( ⁇ ⁇ ⁇ ⁇ ) are independent of each other.
  • m 2 m , —O (CH)-(CF)-(CH) O and the like.
  • m is 4-12, preferably 6-10
  • m is 4-12, preferably 6-1
  • the compounding weight ratio of the compound represented by the general formula (I) and the compound represented by the general formula (II) is represented by the compound Z represented by the general formula (I) —general formula ( ⁇ ). It is preferable that the compound is 5Z95 to 95Z5 from the viewpoint of a balance of polishing processability, adhesiveness, and heat resistance.
  • c represents 0 or 1.
  • d represents an integer of 0-2.
  • n represents an integer from 1 to L 1.
  • Tf3 represents a glycidyl group or CH ⁇ CH—C (0).
  • A represents H or F.
  • Examples of the compound represented by the general formula ( ⁇ ) include 2, 2, 2 trifluoroethyl.
  • the compounding amount of the compound represented by the general formula (III) is the compound represented by the general formula (I), the compound represented by the general formula (II), and the compound represented by the general formula (III).
  • the total power of less than 50 parts by weight per 100 parts by weight also favors the viewpoints of the photopolymerizability and heat resistance of the composition. More preferably, it is less than 35 parts by weight.
  • the method for producing the compound represented by the above general formula (I) and the compound represented by the general formula ( ⁇ ) takes, for example, a compound in which the terminal Tf is an epoxy group, for example, a perfluoro group-containing di- or di-
  • the reaction can be carried out by reacting a monoalcohol with an epoxypropyl halide, or after reacting a perfluoro group-containing di- or monoalcohol with a gallic halide, followed by oxidation with a peracid such as formic acid, peracetic acid or perpropionic acid.
  • acrylic acid may be ester-reacted with perfluoro group-containing di- or monoalcohol.
  • a photoradical polymerization initiator and a photopower thione polymerization initiator are used in combination from the viewpoint of curability.
  • photo radical polymerization initiators include acetophenones, aminoacetophenones, benzophenones, Michler ketones, benzyls, benzoins, benzoin ethers, benzyldimethylketals, and thixanthones.
  • photopower thione polymerization initiator include diazo-um salt, sulfo-um salt, and ododonium salt.
  • Photo-radical polymerization initiators such as trimethylbenzoyldiphenylphosphine oxide; benzenediazo-hexafluoroantimonate, benzenediazo-umhexafluorophosphate, benzenediazo-umhexafluoroborate , Aromatic diazo-um salt, diarylhodonium salt, tria Rylsulfo-um salt, triarylselenium salt, triallylpyrylium salt, benzylpyridium thiocyanate, dialkylphenacylsulfo-um salt, dialkylhydroxyphenylsulfo-um salt, meta-oxycene Light power thione polymerization initiators such as compounds Can be mentioned.
  • radical photopolymerization initiators and photopower thione polymerization initiators can be used alone or in combination of two or more.
  • sulfo-um salt sufficient hardness may not be obtained by UV irradiation alone.
  • ododonium salt can be cured quickly by using alone or in combination with a sensitizer, and sufficient hardness can be obtained only by ultraviolet curing.
  • the addition amount of the photopolymerization initiator is preferably 1 to L0 parts by weight, particularly preferably 0.5 to 5 parts by weight, with respect to 100 parts by weight of the photopolymerizable compound in the composition. It is.
  • anthracene 9, 10-dimethoxyanthracene, 9, 10-dipropoxyanthracene, 9, 10-dibutoxyanthracene, 2-ethynole-9, 10- Dimethoxyanthracene, 2-ethyl-9,10-dibutoxyanthracene, 2-ethyl-9,10-dipropoxyanthracene and the like can be used.
  • the addition amount of these sensitizers is preferably 1 to 200 parts by weight, particularly preferably 10 to L00 parts by weight with respect to 100 parts by weight of the photopolymerization initiator.
  • additives may be used in the filler composition of the present invention as long as the object of the present invention is not impaired.
  • additives include silane coupling agents, leveling agents, and antifoaming agents.
  • silane coupling agent has the effect of improving the familiarity with inorganic optical fibers.
  • silane coupling examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, 13- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 13- ( 3, 4-Epoxycyclohexyl) ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane and the like.
  • Such other components can be used as long as the following properties such as refractive index, Tg, and viscosity are not impaired.
  • the blending amount of the other additives is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, in 100 parts by weight of the filler composition of the present invention.
  • the refractive index at 25 ° C of the cured product after polymerization (n)
  • the refractive index of the core Needs to be lower than the refractive index of the core. If the refractive index is higher than that of the core, the light confinement effect is lost, and light leaks toward the filler with a high refractive index. Since the refractive index (n) of quartz used for the core is 1. 452, the filler after polymerization The refractive index of the composition should be less than 1.452. Further, it is known that the refractive index of the cured product after polymerization is generally about 0.025 higher than the liquid refractive index. From this point of view, the refractive index (n) at 25 ° C measured in the liquid before curing is 1.34 ⁇
  • the lower limit is not particularly defined from the viewpoint of the refractive index, but 1. It is technically difficult to achieve a value lower than 34 in view of the balance with the polymerizability. More preferably, 1.35 ⁇ : L40.
  • the additive of the silane coupling agent exhibits an action of increasing the refractive index.
  • the additive of the compound represented by the general formula ( ⁇ ) exhibits the effect of lowering the refractive index. Therefore, by appropriately using these components, the refractive index of the filler composition of the present invention can be adjusted to the above range.
  • the filler composition of the present invention preferably has a Tg of 80 to 110 ° C of the cured product.
  • Tg exceeds 110 ° C, it will be too hard and cracks will be generated in the pores during cutting. More preferably, it is 80 to 100 ° C.
  • the filler composition of the present invention preferably has a viscosity at 25 ° C of from lOmPa's to 500mPa's. If the viscosity is lower than this range, if the fiber is placed sideways during UV irradiation, the filler will flow out, and it will be difficult to control the length to be filled. Conversely, if the viscosity is too high, the pores will be filled. It takes a long time. For example, if a 125 m diameter fiber (hole diameter 4.6 m) is used and the viscosity at 25 ° C is 2500 mPa's, it takes 1 hour or more to fill 5 mm. The upper limit is more preferably 200 mPa's or less, further preferably 10 mPa's or less, and still more preferably 50 mPa's or less.
  • the filler composition of the present invention preferably has an adhesive strength of 4. ONZmm 2 or more after 6jZcm 2 UV irradiation and 80 ° C Zl time thermosetting treatment. If the adhesive strength is low, the filler is peeled off when polishing is performed, and the filler is even pushed by the polishing debris that has entered the pores. Furthermore, if the adhesive strength is lower than the shearing force at the time of cutting, the filler will come off. From this point of view, the above range is more preferable, more preferably 5. ONZmm 2 or more.
  • the method for producing the filler composition of the present invention is not particularly limited, and the raw materials may be mixed so as to be mixed uniformly.
  • an epoxy compound of the general formula (I), an acrylate compound of the general formula ( ⁇ ), an epoxy compound of the general formula (III) or an ataretoy compound for example, an epoxy compound of the general formula (I), an acrylate compound of the general formula ( ⁇ ), an epoxy compound of the general formula (III) or an ataretoy compound, a photopolymerization initiator, a coupling agent, Mix and mix other necessary components, and stir and mix in a conventional manner under heating and reduced pressure.
  • the conditions are 40 to 80 ° C., 1 to 20 torr under reduced pressure, and 30 minutes and 2 hours of stirring and mixing.
  • the filler composition of the present invention can be suitably cured by UV irradiation.
  • the polymerizable is good, for example, 6. even irradiation of less than OjZcm 2 can be sufficiently cured is there.
  • the epoxy compound of the general formula (I) and the epoxy compound of the general formula ( ⁇ ) also have good polymerizability, and can be sufficiently cured even with 6. OjZcm 2 irradiation.
  • the curability can be further improved by using a thermosetting treatment in combination thereafter. In this case, for example, a thermosetting treatment of about 80 ° C. Zl hours can be used together if desired. .
  • the compatibility of the components is excellent, the photoradical polymerization initiator component of the acrylic compound exhibits the catalytic action of the epoxy compound component, and the fast curability is high. Be expected. Therefore, a synergistic effect is exhibited by the combined use of the two, the heat resistance of the epoxy resin and the adhesiveness of the acrylic resin are demonstrated, and the hardness of the epoxy resin is relaxed by the softness of the acrylic resin. The force can also adjust the low refractive index.
  • the optical fiber having pores in the inside where the filler composition of the present invention is applied is not particularly limited, but can be suitably applied to a photonic crystal fiber.
  • the term “photonic crystal fiber” is referred to as the above-mentioned one having no hole in the core part and one having a hole in the core part, for example, a so-called photonic band gap fiber. It should be understood that both are included.
  • the hole sealing method of the present invention includes a step of filling the above-described holes in the end face of the optical fiber having holes therein, a step of irradiating the filled filler composition with ultraviolet rays, and And a step of thermosetting as necessary.
  • the blocking method can be suitably applied to the method for manufacturing the optical fiber of the present invention described in detail below.
  • the filler composition is filled in the pores in the end face of the optical fiber having pores inside.
  • the filler is applied from the end face by utilizing capillary action. May be introduced into the hole, for example, about several millimeters to several tens of millimeters. This filling can be performed in about 10 seconds, for example, and the work efficiency is good.
  • irradiation with an irradiation energy of, for example, about 50 mW / cm 2 may be performed for about 60 seconds with a UV lamp or the like.
  • the end face is optically polished through a thermosetting treatment of about 80 ° C. Zl hours, thereby preventing the entry of foreign matter into the pores, and the light having holes inside the polished end face.
  • One fiber can be manufactured.
  • An optical fiber having holes inside the present invention is filled with the filler composition, and the holes are arranged in the longitudinal direction corresponding to the axial direction of the optical fiber. Some are blocked.
  • Such an optical fiber is preferably manufactured by the above manufacturing method.
  • the resulting optical fiber has a force in which holes are filled with a filler at the end face.
  • the core part has a higher refractive index than the filler, so even if the holes in the cladding part are blocked, the core part Light can be confined in the core, and the core portion can function as a light waveguide.
  • the end faces of the optical fiber 1 whose end faces are sealed with the filler composition and polished in this way, the end faces of the optical fiber 1 having holes inside and the conventional optical fiber 1, or
  • the end face of the optical fiber and the end face of the connector ferrule are fixed together so that the end faces closely contact each other, and the connection of the optical waveguide with the force can be achieved, so that light leaks from the connection part. Don't ask! / A good connection can be achieved.
  • connection method between optical fibers or between an optical fiber and an optical connector may be any appropriate connection method, such as fusion, butting and fixing, adhesives, and the like. Adopt applicable methods out of the law.
  • each component was mixed in the formulation (parts by weight) shown in Table 1, and the filler was mixed by a conventional method.
  • surface is as follows.
  • ART—3 Fluorine group-containing monofunctional attareito toy compound manufactured by Kyoeisha Chemical Industry Co., Ltd.
  • IC651 Irgacure 651 (trade name), photo radical polymerization initiator manufactured by Ciba Specialty Chemicals
  • IC 184 Irgacure 184 (trade name), photo radical polymerization initiator manufactured by Ciba Specialty Chemicals
  • A2074 Photoinitiator No. 2074 (trade name), Rhodia'Japan photopower thione polymerization initiator
  • Viscosity The viscosity of liquid fillers adjusted to 25 ° C was measured with an E-type (L type) rotary viscometer at a rotation speed of 5 rpm (mPa ⁇ s unit).
  • Refractive index Measured using a digital refractometer RX-5000 manufactured by Atago Co., Ltd. at 25 ° C. using sodium D-line (589 nm).
  • Tg Using a DMS manufactured by Seiko Instruments Inc., a 100 ⁇ m-thick test piece was made the peak value of Tan ⁇ using the shear mode.
  • Adhesive strength Apply the filler to an alkali glass plate at a thickness of about 20 ⁇ m, combine them, and then irradiate with a UV lamp at an irradiation energy of 50 mWZcm 2 for 60 seconds, then 80 ° CZl Heat-treated for hours. Thereafter, the tensile shear bond strength (NZmm 2 ) of both was measured with a tensile tester.
  • Filling time Photonic crystal fiber with a hole diameter of 4. and 1.2 m, with the end face cut perpendicularly, soaked in a filler, whether to fill the hole by capillary action, and filling time up to 10mm was measured. A filling time of 10 seconds or less was evaluated as ⁇ , 60 seconds or less as ⁇ , and 1 hour or more as X.
  • Filling situation Filler was filled into photonic crystal fiber and UV cured. The fiber was cut leaving about 2 mm of the filling portion, and the filling state of the cut surface was observed with an optical microscope. The case where there was no peeling and no change in the shape of the filler was evaluated as ⁇ , the case where there was a slight gap at the interface with the pores, ⁇ , the case where it was not cut evenly or was broken, and was evaluated as X. Processing status: After attaching an optical connector to a photonic crystal fiber in which pores were filled with a filler and optically polishing, the state of the filler in the pores on the polished end face was evaluated by observing with an optical microscope. The case where a good flat surface was formed in the pore filling portion was evaluated as ⁇ , and the case where the flat surface was uneven was evaluated as X.
  • Abrasion amount The abrasion amount of filler in the hole part of the fiber with respect to the ferrule was measured by interference fringes on the end face (unit: m). The evaluation of the numerical value is ⁇ for +0.1 to 1-05.111, and X for less than -0.05 m.
  • Optical Z insertion loss Using photonic crystal fiber with a hole diameter of 9.3 m and using a filler filled in a hole of about 5 mm and complying with 6.1 of JIS C 5961 optical connector test method The insertion method (B) and insertion method (C) were measured (in dB). The acceptance criteria (standard) are 0.5 dB or less for the insertion method (B) and 1. OdB or less for the insertion method (C).
  • the filler composition of the present invention has a low viscosity, a low refractive index and an appropriate Tg, and not only has excellent curability, but also has particularly high adhesive strength. It can be seen that it exhibits excellent performance that is well balanced in terms of processing conditions, amount of processing, and optical Z insertion loss.
  • Comparative Example 1 which is a composition of acrylic resin has a low Tg, poor heat resistance, and insufficient filling property.
  • Comparative Example 3 which is an acrylic resin has a low Tg, poor heat resistance, and insufficient filling properties. In all cases, although the viscosity is low, it cannot be used as a filler.
  • the viscosity of a commonly used acrylic adhesive composition is typically about 2500 mPa's, Tg is, for example, about 56 ° C, and the adhesive strength is about the same as the above comparative example.
  • the problem was that the viscosity was high.
  • the viscosity is lowered, the adhesive strength and the like are lowered, and it has been difficult to ensure a balanced required performance.
  • the composition of the present invention satisfies all necessary performances. Industrial applicability
  • the filler composition of the present invention can be adjusted to a low refractive index, and the strength also satisfies various performances such as low viscosity, heat resistance, and adhesive strength. It is possible to process the end face of an optical fiber and to provide technologies essential for the construction of large-capacity, long-distance, and high-performance optical communication networks. Very useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Sealing Material Composition (AREA)

Abstract

 低屈折率を達成でき、しかも、低粘度、耐熱性に優れ、充填性、研磨加工性が良好な空孔充填剤並びにこれを使用した内部に空孔を有する光ファイバーの製造方法及び光ファイバーを提供する。本発明は、下記一般式(I)の化合物と下記一般式(II)の化合物と光重合開始剤とを含有する、フォトニック結晶ファイバーのための充填剤組成物、及び、上記充填剤組成物を空孔に充填して端面を研磨する工程を含む光ファイバーの製造方法である。 Tf1-(O)a-(CH2)b-(CF2)m-(CH2)b-(O)a-Tf1  (I) Tf2-(O)a-(CH2)b-(CF2)m-(CH2)b-(O)a-Tf2 (II) (式(I)中及び式(II)中、aは0又は1を表し、bは0又は1を表し、mは4~12の整数を表す。Tf1はグリシジル基を表し、Tf2はCH2=CH-C(O)-を表す。)

Description

明 細 書
充填剤組成物及びそれを使用した内部に空孔を有する光ファイバ一の製 造方法
技術分野
[0001] 本発明は、フォトニック結晶ファイバ一等の内部に空孔を有する光ファイバ一の空 孔を充填するための充填剤組成物に関し、詳細には、アクリル基含有特定構造のフ ッ素化合物とエポキシ基含有特定構造のフッ素化合物からなる充填剤組成物並び にそれを使用した内部に空孔を有する光ファイバ一の製造方法及び内部に空孔を 有する光ファイバ一に関する。
背景技術
[0002] 光ファイバ一は光通信、光応用計測等広範囲に使用されている。例えば光通信は 、広域又は LAN光通信網、自動車内通信、電気製品や産業機器の制御等で広く使 用されつつある。しかし、さらなる大容量化、長距離化、高機能化された光通信ネット ワーク構築のためには、従来の、石英系ガラスに添加物をカ卩えてコアと呼ばれる導波 路を形成する光ファイバ一では、光学特性上限界があることが指摘されていた。これ に対して、近年、その断面内に空孔カ^、くつも設けられた新構造の光ファイバ一が注 目されている。
[0003] 光ファイバ一は一般に、光が通過する中心部をなすコア部及びその周辺を成すク ラッド部力 なる。上述の新構造の光ファイバ一は、コア部及び Z又はクラッド部に光 ファイバーの軸方向に沿って延びた複数の管状空孔を有し、光ファイバ一を切断し た場合にその断面内にいくつもの空孔が出現する。このような光ファイバ一は、断面 内の空孔の配列が規則的なものと不規則なものとがあり、また、ホーリーファイバーと 呼ばれるものと、フォトニックバンドギャップファイバーと呼ばれるものがある。さらにフ オトニック結晶ファイバーと呼ばれるものもある。上述の新構造の光ファイバ一は必ず しもその呼び名が統一されて!ヽな 、ので、幾つかの呼び名が重複して用いられること もある。こうした呼び名の例を幾つか指摘すれば、例えば、屈折率導波型フォトニック 結晶ファイバー、ェアークラッドファイバー、空孔付加型ファイバー、フォトニックバン ドギャップファイバ一等であり、これらは断面内の空孔配列が異なるが、全てフォト- ック結晶ファイバーと称され得る。フォトニック結晶ファイバ一は断面内の空孔の配列 が規則的である。
[0004] 本明細書中、内部に空孔を有する光ファイバ一は、上述の新構造の光ファイバ一と して指摘した、コア部及び Z又はクラッド部に光ファイバ一の軸方向に沿って延びた 複数の管状空孔を有し、光ファイバ一を切断した場合にその断面内にいくつもの空 孔が出現する全ての構造の光ファイバ一を含むものと理解すべきであり、従って、断 面内の空孔の配列が規則的なものと不規則なものとがあり得る。このような内部に空 孔を有する光ファイバ一、特に、フォトニック結晶ファイバーの特徴としては、任意波 長で単一モードを実現可能であること、高い屈折率比で曲げに強いこと、開口数が 大きいこと、及び、空孔の大きさや配置で平均の屈折率を変えることができるので、屈 折率や偏波特性を所望に応じて設計できること、等従来の光ファイバ一にない特徴 が指摘されている。
[0005] しかしながら、内部に空孔を有する光ファイバ一の接続のためにコネクタと呼ばれる 接続具を取り付ける際に端面を光学研磨する必要があるのであるが、研磨時に使用 する研磨砲粒や研磨屑等が空孔に侵入すると、光ファイバ一の光学特性を劣化させ るだけでなぐ使用中に研磨屑等が空孔カも噴出することがあり、伝送特性を劣化さ せる。メカ-カルスプライスの場合は、さらに、ファイバー同士を切断後、端面を直接 突き合わせて接続する場合に端面に屈折率整合剤 (接着剤でもあり得る)を塗布す るのであるが、この屈折率整合剤が空孔内に侵入することを防止する必要もある。加 えて、ファイバーの切断の際にも、通常の光ファイバ一と異なり空孔があるために切 断時に空孔部分力もクラックが発生することがある。このような、内部に空孔を有する 光ファイバ一には、従来の光ファイバ一では知られていな力つた特有の端面処理の 問題がある。
[0006] 端面における空孔の充填剤としては、クラッド部に空孔を配することが通例であるこ とから、コアよりも低屈折率にすることができること、空孔への充填性がよいこと、研磨 時の発熱を考慮して耐熱性があること、端面の研磨加工性が良好であること、等の光 ファイバーに必要な特性が確保される光学榭脂であることが要求される。光学樹脂と しては、例えば、特定のエポキシ系フッ素化合物力もなる光重合性組成物(例えば、 特許文献 1参照。)、特定のアタリレート系フッ素化合物力 なる光重合性組成物 (例 えば、特許文献 2、特許文献 3参照。)等がある。しかしこれらの組成物は概ね屈折率 が 1. 45以上あり、低屈折率ではない。
[0007] 一方、アクリル基又はエポキシ基含有のフッ素化合物力 なる光学榭脂としては、 例えば、フッ素含有アルキレン基を有するエポキシ化合物の硬化物を使用した光学 薄膜がある(例えば、特許文献 4参照。 ) 0この技術は光学コーティングの性能を改良 することを目的とするものであって、耐擦傷性に優れた光学薄膜を形成することがで きる旨の記載があるものの、もっぱら反射防止膜用途の技術分野に属するものであつ て、充填剤との関連性はない。
[0008] このように、内部に空孔を有する光ファイバ一特有の接続の問題点は、従来の光フ アイバーにはない問題であり、単にファイバーとコネクタとを接着剤で接着する技術と は異なり、コネクタにおいて光学研磨された端面同士を突き合わせて固定する仕組 みが採用されているので、端面処理の問題であって、その解決のためには低粘度、 耐熱性、充填性、研磨加工性、接着強度の全てを必要水準以上に満たすことが必要 であり、これに資する充填剤は!、まだ知られて 、な!/、。
[0009] 特許文献 1 :特開 2000— 154233号公報
特許文献 2:特開昭 62— 265248号公報
特許文献 3:特開昭 63 - 101409号公報
特許文献 4:特開平 11— 133207号公報
発明の開示
発明が解決しょうとする課題
[0010] 上述の現状に鑑みて、本発明は、低屈折率を達成でき、しカゝも、低粘度、耐熱性に 優れ、充填性、研磨加工性、接着強度に優れた空孔充填剤並びにこれを使用した 内部に空孔を有する光ファイバ一の製造方法及び内部に空孔を有する光ファイバ一 を提供することを目的とする。
課題を解決するための手段
[0011] 本発明者は上記課題を解決するべく鋭意検討した結果、アクリル基含有の特定構 造のフッ素化合物とエポキシ基含有の特定構造のフッ素化合物とを併用することによ り上記目的を達成できることを見出し、本発明を完成するに至った。即ち本発明は、 下記一般式 (I)で示される化合物と下記一般式 (II)で示される化合物と光重合開始 剤とを含有する、内部に空孔を有する光ファイバ一の上記空孔に充填するための充 填剤組成物である。
Tfl - (O)一(CH ) —(CF ) —(CH ) —(O) — Tfl (I)
a 2 b 2 m 2 b a
Tf2- (O) - (CH ) - (CF ) - (CH ) - (O) — Tf2 (II)
a 2 b 2 m 2 b a
式 (I)中及び式 (Π)中、それぞれ、複数の aは同一に、 0又は 1を表し、複数の bは 同一に、 0又は 1を表し、 mは 4〜12の整数を表す。 Tflはグリシジル基を表し、 Tf2 は CH =CH— C (0)—を表す。
2
[0012] 本発明はまた、上記充填剤組成物を、内部に空孔を有する光ファイバ一の端面に おける上記空孔に充填する工程、及び、充填した上記充填剤組成物に紫外線照射 する工程を含むことを特徴とする内部に空孔を有する光ファイバ一の上記空孔の封 鎖方法である。
[0013] 本発明はさらにまた、上記充填剤組成物を、内部に空孔を有する光ファイバ一の端 面における上記空孔に充填する工程、充填した上記充填剤組成物に紫外線照射す る工程、及び、上記紫外線照射工程を経た後、上記端面を研磨する工程を含む端 面が研磨された内部に空孔を有する光ファイバ一の製造方法である。
[0014] 上記封鎖方法及び製造方法において、好ましくは紫外線照射工程の後に、さらに 、熱硬化処理する工程を有してもよい。
[0015] 本発明はさらに、内部に空孔を有する光ファイバ一の上記空孔に上記充填剤組成 物が充填されて上記空孔が上記光ファイバ一の軸方向に一致するその長手方向に おいてその一部が封鎖されている内部に空孔を有する光ファイバ一でもある。
発明の効果
[0016] 本発明は以下のとおり、低粘度、耐熱性、充填性、研磨加工性、接着強度の全てを 必要水準以上に満たす。
(1)本発明の充填剤組成物は上述の構成により、低屈折率を達成できて、しカゝも、 低粘度、耐熱性に優れる。 (2)本発明の充填剤組成物は上述の構成により、硬化前の液状において測定され た 25°Cにおける屈折率 (D線屈折率。本明細書において nと表記する。) 1. 34
D 〜1
. 41を達成し、硬化後においても低屈折率とすることができる。
(3)本発明の充填剤組成物は上述の構成により、硬化物の Tgが 80〜: L 10°Cを達 成し、耐熱性、研磨加工性に優れる。
(4)本発明の充填剤組成物は上述の構成により、 25°Cにおける粘度が 10〜500 mPa' sであり、充填性に優れる。
(5)本発明の充填剤組成物は上述の構成により、接着強度が 4. ONZmm2以上を 達成し、充填加工性に優れる。
(6)本発明の空孔の封鎖方法は上述の構成により、コア部よりも低屈折率に耐熱性 及び研磨加工性を確保しつつ内部に空孔を有する光ファイバ一の上記空孔を封鎖 することができる。
(7)本発明の製造方法は上述の構成により、端面における空孔が充填剤組成物で 充填されて研磨屑等の異物の空孔への侵入が防止された端面が研磨された内部に 空孔を有する光ファイバ一を実現できる。
(8)本発明の光ファイバ一は上述の構成により、端面における空孔が充填剤組成 物で充填されて研磨屑等の異物の空孔への侵入が防止された端面が研磨された内 部に空孔を有する光ファイバ一である。
以下、本発明を詳細に説明する。
発明を実施するための最良の形態
[0017] 本発明の充填剤組成物は、上記一般式 (I)で示される化合物と一般式 (Π)で示さ れる化合物と光重合開始剤とからなる。上記一般式 (I)及び一般式 (Π)において、複 数の aは同一に、 0又は 1を表す。複数の bは同一に、 0又は 1を表す。これらのうちに は、 aが 0であるもの、 aが 1であるもの、これらのそれぞれの場合に、 bが 0であるもの、 及び bが 1であるもの、がある。なお、式 (I)中の a、 b及び mと式 (Π)中の a、 b及び mは 、それぞれ互いに独立であることは 、うまでもな!/、。
[0018] 上記一般式 (I)で示される化合物の具体例として、両端の Tflを除いた構造のみを 例示すれば、—(CF ) ―、—(CH )— (CF ) — (CH )—
2 m 2 2 m 2 、— O— (CF ) — O—
2 m 、— O (CH ) - (CF ) - (CH ) O 等である。 mは 4〜12、好ましくは 6〜 10
2 2 m 2
の整数を表す。
[0019] 上記一般式 (Π)で示される化合物の具体例として、両端の Tf 2を除 、た構造のみ を例示すれば、—(CF ) ―、—(CH )— (CF ) — (CH )—、 O— (CF ) O
2 m 2 2 m 2 2 m
—、— O (CH ) - (CF ) - (CH ) O 等である。 mは 4〜12、好ましくは 6〜1
2 2 m 2
oの整数を表す。
[0020] これらのうち、重合速度の観点からは、 aが 1であるものが好ましい。本発明の充填 剤組成物においては、これらの化合物の 1種のみを使用することも 2種以上を併用す ることちでさる。
[0021] 上記一般式 (I)で示される化合物と上記一般式 (II)で示される化合物との配合重 量比は、一般式 (I)で示される化合物 Z—般式 (Π)で示される化合物 = 5Z95〜95 Z5であることが、研磨加工性、接着性、耐熱性のバランスの観点から好ましい。
[0022] 本発明の充填剤組成物には、さらに、必要に応じて、上記一般式 (I)で示される化 合物及び Z又は上記一般式 (Π)で示される化合物の一部に代えて下記一般式 (III) で示される化合物の少なくとも 1種を含有させることができる。
Tf3— (O) 一 (CH ) 一(CF ) — A (III)
c 2 d 2 n
式中、 cは 0又は 1を表す。 dは 0〜2の整数を表す。 nは 1〜: L 1の整数を表す。 Tf3 はグリシジル基又は CH =CH-C (0) を表す。 Aは H又は Fを表す。
2
[0023] 上記一般式 (ΠΙ)で示される化合物としては、例えば、 2, 2, 2 トリフルォロェチル
(メタ)アタリレート、 2, 2, 3, 3—テトラフルォロプロピルアタリレート、 1H, 1H, 5H— ォクタフルォロペンチル(メタ)アタリレート、ヘプタデカンフルォロデシルアタリレート、 3— (1H, 1H, 9H へキサデカフルォロノ-ロイル)— 1, 2 エポキシプロパン、 3 (パーフルォロォクチル) 1, 2—エポキシプロパン等が挙げられる。これらの化合 物は 1種のみ使用してもよく又は 2種以上を併用することもできる。
[0024] 上記一般式 (I)で示される化合物に代えて使用する場合には上記一般式 (ΠΙ)で 示される化合物はグリシジル基を有するものであることが好ましぐ上記一般式 (Π)で 示される化合物に代えて使用する場合には上記一般式 (III)で示される化合物は C H =CH— C (0)—を有するものであることが好ましい。 [0025] 上記一般式 (III)で示される化合物の配合量は、上記一般式 (I)で示される化合物 と上記一般式 (II)で示される化合物と上記一般式 (III)で示される化合物との合計 1 00重量部あたり 50重量部未満であることが、組成物の光重合性及び耐熱性の観点 力も好ま 、。より好ましくは 35重量部未満である。
[0026] 上記一般式 (I)で示される化合物、一般式 (Π)で示される化合物の製造方法は、末 端 Tfがエポキシ基であるものを例にとれば、例えば、パーフルォロ基含有ジ又はモノ アルコールにハロゲン化エポキシプロピルを反応させればよぐ又は、パーフルォロ 基含有ジ又はモノアルコールにハロゲン化ァリルを反応させた後に、過蟻酸、過酢酸 、過プロピオン酸等の過酸で酸化させてもよい。 Tfが CH =CH-C (0)一であるも
2
のは、例えば、パーフルォロ基含有ジ又はモノアルコールにアクリル酸をエステル反 応させればよい。
[0027] 本発明の充填剤組成物に使用される光重合開始剤としては、硬化性の観点から、 光ラジカル重合開始剤と光力チオン重合開始剤とが併用される。光ラジカル重合開 始剤としては、例えば、ァセトフエノン類、アミノアセトフエノン類、ベンゾフエノン類、ミ ヒラーケトン類、ベンジル類、ベンゾイン類、ベンゾインエーテル類、ベンジルジメチ ルケタール類、チォキサントン類等がある。光力チオン重合開始剤としては、例えば、 ジァゾ -ゥム塩、スルホ -ゥム塩、ョードニゥム塩等がある。これらを具体的に例示す れば、例えば、 1—ヒドロキシ一シクロへキシルフエ-ルケトン、 2, 2—ジメトキシ一 2 —フエ-ルァセトフエノン、ベンゾフエノン、ベンゾインイソブチルエーテル、 2—ヒドロ キシー 2—メチノレー 1 フエニノレブロノ ン、 α , α—ジメトキシー α—ヒドロキシーアセ トフエノン、 1— [4— (2 ヒドロキシエトキシ)フエ-ル]— 2 ヒドロキシ一 2—メチルー プロパンー1 オン、 α—ヒドロキシイソブチルフエノン、 2, 4, 6 トリメチルベンゾィ ルジフエ-ルホスフィンォキシド等の光ラジカル重合開始剤;ベンゼンジァゾ -ゥムへ キサフルォロアンチモネート、ベンゼンジァゾ -ゥムへキサフルオロフォスフェート、ベ ンゼンジァゾ -ゥムへキサフルォロボレート、芳香族ジァゾ -ゥム塩、ジァリルョードニ ゥム塩、トリアリルスルホ -ゥム塩、トリァリルセレニウム塩、トリアリルピリリウム塩、ベン ジルピリジゥムチオシァネート、ジアルキルフエナシルスルホ -ゥム塩、ジアルキルヒド ロキシフエニルスルホ -ゥム塩、メタ口センィ匕合物等の光力チオン重合開始剤などが 挙げられる。これら光ラジカル重合開始剤及び光力チオン重合開始剤はそれぞれ、 1 種のみ、又は 2種以上を併用することができる。なお、スルホ -ゥム塩では、 UV照射 だけでは十分な硬さが得られないことがある。一方、ョードニゥム塩は、単独もしくは、 増感剤を併用することにより、速硬化が可能であり、紫外線硬化のみでも十分な硬さ を得ることが可能である。
[0028] 光重合開始剤の添加量は、組成物中の光重合性化合物 100重量部に対して、好 ましくは 1〜: L0重量部であり、特に好ましくは 0. 5〜5重量部である。
[0029] 更に、必要に応じ、増感剤として、例えば、アントラセン、 9, 10—ジメトキシアントラ セン、 9, 10—ジプロポキシアントラセン、 9, 10—ジブトキシアントラセン、 2—ェチノレ - 9, 10—ジメトキシアントラセン、 2—ェチルー 9, 10—ジブトキシアントラセン、 2— ェチルー 9, 10—ジプロポキシアントラセン等を使用することができる。
[0030] これら増感剤の添加量は、光重合開始剤 100重量部に対して、好ましくは 1〜200 重量部であり、特に好ましくは 10〜: L00重量部である。
[0031] 本発明の充填剤組成物には、本発明の目的を阻害しないかぎり、その他の添加剤 を使用することができる。このような添加剤としては、シランカップリング剤、レべリング 剤、消泡剤等が挙げられる。特に、シランカップリング剤を添加することは、無機光フ アイバーとの馴染みを向上できるという効果がある。シランカップリングとしては、例え ば、 Ύ—グリシドキシプロピルトリメトキシシラン、 γ—グリシドキシプロピルトリエトキシ シラン、 13 - (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 13 - (3, 4— エポキシシクロへキシル)ェチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルト リエトキシシラン等が挙げられる。このようなその他の成分は、特に、下記の屈折率、 Tg、粘度等の各特性を阻害しない範囲で使用され得る。
[0032] 上記その他の添加剤の配合量は、本発明の充填剤組成物 100重量部中、好ましく は 10重量部以下であり、より好ましくは 5重量部以下である。
[0033] 本発明の充填剤組成物においては、重合後の硬化物の 25°Cにおける屈折率 (n )
D
は、コア部の屈折率よりも低くすることができることが必要である。屈折率がコア部より 高い場合は光の閉じ込め効果が無くなり、屈折率が高い充填剤の方に光が漏れてし まう。コア部に使用される石英の屈折率 (n )は 1. 452であるから、重合後の充填剤 組成物の屈折率は 1. 452未満でなければならない。また、液状の屈折率に対して 重合後の硬化物の屈折率は一般に約 0. 025高くなることが知られている。このような 観点から、硬化前の液状において測定された 25°Cにおける屈折率 (n )は、 1. 34〜
D
1. 41であることが好ましい。下限は屈折率の観点からは特に定めるものではないが 、 1. 34より低い値を達成することは重合性とのバランス力もみて技術的に困難である 。より好ましくは 1. 35〜: L 40である。
[0034] 本発明の充填剤組成物において、上記シランカップリング剤の添カ卩は屈折率を高 める作用を発揮する。逆に、上記一般式 (ΠΙ)で示される化合物の添カ卩は屈折率を 低める作用を発揮する。従って、これらの成分を適宜使用することにより、本発明の 充填剤組成物の屈折率を、上述の範囲に調節することができる。
[0035] 本発明の充填剤組成物は、その硬化物の Tgが 80〜110°Cであることが好ましい。
80°C未満であると、研磨した場合に端面が溶けたようになり、また、切断した際に切 断面が割れた状態ではなくちぎれた様になり、端面の均一性が失われ、接続した際 にファイバー同士が接続せず、ちぎれた榭脂の存在によりファイバー間隔が開くので 、その部分で光の反射が生じる。逆に、 Tgが 110°Cを超えると、硬すぎて切断時に 空孔にクラックが発生する。より好ましくは 80〜100°Cである。
[0036] 本発明の充填剤組成物は、 25°Cにおける粘度が lOmPa's以上で 500mPa's以下 が好ましい。この範囲より粘度が低すぎると紫外線照射時にファイバーを横にすると、 充填剤が流れ出してしまったり、充填すべき長さのコントロールが難しくなり、逆に、 粘度が高すぎると、空孔に充填するのに非常に時間がかかる。例えば、 125 m径 のファイバー(空孔径 4. 6 m)を使用した場合に、 25°Cでの粘度が 2500mPa'sで あると、 5mm充填するのに 1時間以上かかる。上限はより好ましくは 200mPa's以下 、さらに好ましくは lOOmPa's以下、一層好ましくは 50mPa's以下である。
[0037] また、本発明の充填剤組成物は、 6jZcm2の紫外線照射及び 80°CZl時間の熱 硬化処理後の接着強度が 4. ONZmm2以上であることが好ましい。接着強度が低い と研磨を行った際に充填剤が剥離し、空孔内に入り込んだ研磨屑により充填剤が押 さえ込まれる。さらに、切断時の剪断力よりも接着強度が低いと充填剤が抜けてしまう 。このような観点から上記範囲が好ましぐより好ましくは 5. ONZmm2以上である。 [0038] 本発明の充填剤組成物の製造方法にはとくに限定はなぐ原料が均一に混ざり合 うように混合すればよい。例えば、一般式 (I)のエポキシィ匕合物や一般式 (Π)のアタリ レート化合物、一般式 (III)のエポキシィ匕合物やアタリレートイ匕合物、光重合開始剤、 カップリング剤、その他必要成分を配合混合し、常法に従い、加熱減圧下で、攪拌混 合し、脱泡処理を行う。条件としては、 40〜80°C、 l〜20torrの減圧下で、 30分力 2時間、攪拌混合を行う。
[0039] 本発明の充填剤組成物は、 UV照射により好適に硬化することができる。一般式 (II
)のアタリレートイ匕合物、一般式 (III)のうちのアタリレートイ匕合物は、重合性が良好で あり、例えば、 6. OjZcm2未満の照射であっても充分に硬化可能である。一般式 (I) のエポキシ化合物、一般式 (ΠΙ)のうちのエポキシィ匕合物も、重合性が良好であり、 6 . OjZcm2の照射であっても充分に硬化可能である。もっとも、エポキシ化合物の場 合、その後、熱硬化処理を併用することで更に硬化性が高められるので、その際に は所望により、例えば、 80°CZl時間程度の熱硬化処理を併用することができる。
[0040] 本発明の充填剤組成物は、各成分同士の相溶性がよぐし力もアクリル系化合物の 光ラジカル重合開始剤成分がエポキシ系化合物成分の触媒作用を発揮し、更に、 速硬化性が期待される。従って、両者の併用により相乗効果が発揮され、エポキシ榭 脂の耐熱性、アクリル榭脂の接着性がそれぞれ発揮されるとともに、エポキシ榭脂の 固さがアクリル榭脂の柔らかさで緩和され、し力も、低屈折率を調節可能である。
[0041] 本発明の充填剤組成物が適用されるところの内部に空孔を有する光ファイバ一とし ては特に限定されるものではないが、フォトニック結晶ファイバーに好適に適用するこ とができる。なお、フォトニック結晶ファイバーというときには、本明細書では、上述のと おり、コア部に空孔を持たないものと、コア部に空孔を有するもの、例えば、所謂フォ トニックバンドギャップファイバーと言われるもの、の双方を含めているものと理解すベ きである。
[0042] 本発明の空孔の封鎖方法は、内部に空孔を有する光ファイバ一の端面における上 記空孔に充填する工程、及び、充填した上記充填剤組成物に紫外線照射する工程 、更に、必要に応じて熱硬化処理する工程、を含む。上記封鎖方法は、下記に詳述 する本発明の光ファイバ一の製造方法に好適に適用することができる。 [0043] 本発明の端面が研磨された内部に空孔を有する光ファイバ一の製造方法は、上記 充填剤組成物を、内部に空孔を有する光ファイバ一の端面における上記空孔に充 填する工程、充填した上記充填剤組成物に紫外線照射する工程、更に、必要に応じ て熱硬化処理する工程、及び、上記紫外線照射工程又は該当する場合は熱硬化処 理工程を経た後、上記端面を研磨する工程を含む製造方法である。上記充填剤組 成物を、内部に空孔を有する光ファイバ一の端面における上記空孔に充填する工程 では、空孔の直径力 クロン程度であるから毛管現象を利用して、端面から充填剤を 、例えば、数ミリメートルから 10数ミリメートル程度、空孔に導入すればよい。この充填 は、例えば、 10秒程度で行うことが可能であり、作業効率がよい。つぎに、充填した 上記充填剤組成物に紫外線照射する工程では、 UVランプ等で、例えば、 50mW/ cm2程度の照射エネルギーで 60秒程度照射すればよい。この後、必要に応じて 80 °CZl時間程度の熱硬化処理を経て、端面を光学研磨することにより、空孔への異 物侵入を防止しつつ端面が研磨された内部に空孔を有する光ファイバ一製造するこ とがでさる。
[0044] 本発明の内部に空孔を有する光ファイバ一は、上記充填剤組成物が充填されて上 記空孔が上記光ファイバ一の軸方向に一致するその長手方向にお!、てその一部が 封鎖されている。このような光ファイバ一は、好ましくは上記製造方法で製造される。 こうして出来上がった光ファイバ一はその端面において空孔が充填剤で充填されて いるのである力 コア部の方が充填剤よりも屈折率が高いので、クラッド部の空孔が 封鎖されてもコア部に光を閉じ込めることができ、コア部が光の導波路として働くこと ができる。従って、このように端面が上記充填剤組成物で封鎖されて端面が研磨され た光ファイバ一の端面同士、内部に空孔を有する光ファイバ一と従来型の光ファイバ 一との端面同士、又は、光ファイバ一の端面とコネクタフエルール端面とを突き合わ せて固定することにより、端面同士がぴったりと密着し、し力も光の導波路の接続も達 成できるので、接続部から光が漏れると ヽうことがな!/ヽ良好な接続を達成することがで きる。
[0045] 光ファイバ一同士、又は、光ファイバ一と光コネクタとの接続方法は、適用可能な適 当な接続方法を採用すればよぐ例えば、融着、突き合わせて固定、接着剤等の手 法のうち適用可能な方法を採用すればょ 、。
[0046] 以下に実施例を示して、本発明をさらに詳細に説明するが、本発明はこれらに限定 されるものではない。
[0047] 実施例 1〜 3、比較例 1〜 3
表 1の配合 (重量部)で各成分を混合して充填剤を常法により混合して調製した。 なお、表中の成分の略号は以下のとおりである。
FA- 16 :共栄社化学工業 (株)社製のアタリレートイ匕合物 (一般式 (Π)にお 、て、 a = 1、 b= l、 m=8のアタリレートイ匕合物)である。
ART— 3:共栄社化学工業 (株)社製のフッ素基含有一官能アタリレートイ匕合物 H022 :東ソー ·エフテック (株)社製のエポキシィ匕合物(一般式 (I)において、 a = 0、 b =0、 m=4のエポキシ化合物)である。
H010 :東ソー ·エフテック (株)社製のエポキシィ匕合物(一般式 (ΠΙ)において、 c = 0 、 d=0、 n=8、 A=Fのエポキシ化合物)である。
IC651:ィルガキュア 651 (商品名)、チバスペシャルティケミカルズ社製光ラジカル 重合開始剤
IC 184 :ィルガキュア 184 (商品名)、チバスペシャルティケミカルズ社製光ラジカル 重合開始剤
A2074 :フォトイニシエータ一 2074 (商品名)、ローディア'ジャパン社製光力チオン 重合開始剤
[0048] 評価方法
粘度: 25°Cに温調された液状充填剤を E型 (Lタイプ)回転式粘度計にて、 5rpm回 転速度で、粘度を測定した (mPa · s単位)。
屈折率:(株)ァタゴ社製のデジタル屈折計 RX— 5000を用い、 25°Cでナトリウムの D 線(589nm)を用いて測定した。
Tg :セイコーインスツルメント(株)社製の DMSにて、 100 μ m厚みのテストピースを ずりモードを用いて、 Tan δのピーク値とした。
接着強度:充填剤をアルカリガラス板に約 20 μ m厚みで塗布し、両者を合わせてから 、 UVランプにて 50mWZcm2の照射エネルギーで 60秒間照射したのち、 80°CZl 時間加熱処理した。この後、両者を引張試験機で引張せん断接着強度 (NZmm2) を測定した。
充填時間:空孔径が 4. と 1. 2 mの、端面を垂直に切断したフォトニック結晶 ファイバーを充填剤に漬け、毛管現象により空孔への充填の可否、及び、 10mmま での充填時間を測定した。充填時間が 10秒以内を◎、 60秒以内を〇、 1時間以上 を Xとして評価した。
充填状況:充填剤をフォトニック結晶ファイバーに充填し、 UV硬化させた。充填部を 2mm程度残してファイバーを切断し、切断面の充填状況を光学顕微鏡で観察した。 剥離、充填剤の形状変化が無い場合を◎、空孔との界面に若干の隙間がある場合 を〇、均一に切断されていないか、又は、ちぎれた状態の場合を Xとして評価した。 加工状況:空孔に充填剤を充填したフォトニック結晶ファイバーに光コネクタを取り付 け光学研磨した後、研磨端面の空孔部の充填剤の状態を光学顕微鏡で観察して評 価した。空孔充填部に良好な平面が形成されている場合を◎、平面が不均一な場合 を Xとして評価した。
加工削れ量:フエルールに対するファイバ一部の空孔部の充填剤の削れ量を、端面 の干渉縞により計測した( m単位)。なお、数値の評価としては、 +0. 1〜一 0. 05 111の場合は©、—0. 05 mより小さい場合は Xである。
光学 Z挿入損失:空孔径が 9. 3 mのフォトニック結晶ファイバーを用い、充填剤を 約 5mm空孔に充填したものを用いて、 JIS C 5961光コネクタ試験方法の 6. 1項 に準拠して挿入法 (B)と挿入法 (C)を測定した (dB単位)。合格基準 (規格)は、挿入 法(B)で 0. 5dB以下であり、挿入法(C)で 1. OdB以下である。
[表 1] 実施例 比較例
1 2 3 1 2 3
FA-16 75 35 20 100 ― 70
ART-3 ― ― ― ― ― 30
H010 30 30 ― ― ―
H022 25 35 50 ― 100 ―
に 651 2 ― ~ 2 ― 2
に 184 ― 1 1 ― ― ―
A2074 1 1 1 ― 2 ―
粘度《25°C) 35 25 25 40 25 35
(mPa-s)
屈折率 1.38 1.36 1.37 1.38 1.36 1.38
(nD)(25°C)
Tg(°C) 84 90 98 86 67 60
接着強度 N/mm2 5,1 6.3 6.3 3.8 2.8 2.5
充填時間 O ◎ ◎ O © O
充填状況 O ◎ ◎ O X X
加工状況 © ◎ © ◎ ◎
加工削れ量 -0.04 一 0.03 -0.03 -0.07 -0.02 -0.05
(jt/ m) ◎ ◎ ◎ X ◎ ◎
挿入法 (B) (dB) 0.3 0.1 0.3 0.3 0,3 0.3
挿入法 (G) (dB) 0.5 0.2 0.4 0.5 0.5 0.5
[0050] 実施例 1〜3から、本発明の充填剤組成物は、低粘度、低屈折率、適度の Tgであり 、優れた硬化性を有しているのみならず、特に、接着強度に優れており、加工状況、 加工削れ量、光学 Z挿入損失等にぉ ヽてバランスのとれた優れた性能を発揮して ヽ ることが判る。これに対して、アクリル榭脂の組成物である比較例 1はカ卩ェ削れ量が 大きぐエポキシ榭脂である比較例 2は、 Tgが低く耐熱性が悪ぐ充填性が不充分で あり、アクリル榭脂である比較例 3は Tgが低く耐熱性が悪ぐ充填性が不充分であり、 いずれも、粘度は低いものの、充填剤としては使用できないものであった。
[0051] 通常使用されているアクリル系接着性組成物の粘度は上述したとおり、典型的には 2500mPa ' s程度あり、 Tgも例えば 56°C程度、接着強度も上記比較例程度であり、 とくに粘度が高いことが問題であった。しかし、一般には粘度を下げると接着強度等 が低下し、バランスのとれた必要性能を確保することが困難であった。これに対して、 上述のとおり、本発明の組成物は、必要性能の全てを充足するものであることが判明 した。 産業上の利用可能性
本発明の充填剤組成物は、低屈折率に調節することができ、し力も、低粘度、耐熱 性、接着強度等の各種性能を満たすので、フォトニック結晶ファイバ一等の内部に空 孔を有する光ファイバ一の端面処理を行うことができ、大容量化、長距離化、高機能 化された光通信ネットワーク構築に不可欠な技術を提供するものであり、光通信ネッ トワークの実現のために極めて有用である。

Claims

請求の範囲
[1] 下記一般式 (I)で示される化合物と下記一般式 (Π)で示される化合物と光重合開始 剤とを含有することを特徴とする、内部に空孔を有する光ファイバ一の前記空孔に充 填するための充填剤組成物。
Tfl - (O) 一 (CH ) —
a 2 b (CF ) —
2 m (CH )
2 b (O) Tfl (I)
a
Tf2- (O) - (CH ) - (CF ) - (CH ) - (O) — Tf2 (II)
a 2 b 2 m 2 b a
(式 (I)中及び式 (Π)中、それぞれ、複数の aは同一に、 0又は 1を表し、複数の bは同 一に、 0又は 1を表し、 mは 4〜12の整数を表す。 Tflはグリシジル基を表し、 Tf2は CH =CH-C (0) を表す。 )
2
[2] 前記一般式 (I)で示される化合物と前記一般式 (II)で示される化合物との配合重量 比は、一般式 (I)で示される化合物 Z—般式 (Π)で示される化合物 = 5Z95〜95Z
5である請求項 1記載の充填剤組成物。
[3] 前記一般式 (I)で示される化合物及び Z又は前記一般式 (Π)で示される化合物の一 部に代えて下記一般式 (III)で示される化合物を含有する請求項 2記載の充填剤組 成物。
Tf3— (O) 一 (CH ) 一 (CF ) — A (III)
c 2 d 2 n
(式中、 cは 0又は 1を表す。 dは 0〜2の整数を表す。 nは 1〜: L 1の整数を表す。 Tf3 はグリシジル基又は CH =CH-C (0) を表す。 Aは H又は Fを表す。)
2
[4] 前記一般式 (I)で示される化合物と前記一般式 (Π)で示される化合物と前記一般式 ( III)で示される化合物との合計 100重量部あたり 50重量部未満の前記一般式 (III) で示される化合物を含有する請求項 3記載の充填剤組成物。
[5] 液状において測定された 25°Cにおける屈折率 (n )は、 1. 34〜: L 41である請求項
D
、ずれか記載の充填剤糸且成物。
[6] 25°Cにおける粘度が 10〜500mPa' sである請求項 1〜5のいずれか記載の充填剤 組成物。
[7] 硬化物の Tgは、 80〜: L 10°Cである請求項 1〜5のいずれか記載の充填剤組成物。
[8] 前記内部に空孔を有する光ファイバ一は、フォトニック結晶ファイバーである請求項 1 〜7の!、ずれか記載の充填剤組成物。 請求項 1〜8のいずれか記載の充填剤組成物を、内部に空孔を有する光ファイバ一 の端面における前記空孔に充填する工程、及び、充填した前記充填剤組成物に紫 外線照射する工程を含むことを特徴とする内部に空孔を有する光ファイバ一の前記 空孔の封鎖方法。
さらに、熱硬化処理する工程を含む請求項 9記載の封鎖方法。
請求項 1〜8のいずれか記載の充填剤組成物を、内部に空孔を有する光ファイバ一 の端面における前記空孔に充填する工程、充填した前記充填剤組成物に紫外線照 射する工程、及び、前記紫外線照射工程を経た後、前記端面を研磨する工程を含 むことを特徴とする端面が研磨された内部に空孔を有する光ファイバ一の製造方法。 さらに、熱硬化処理する工程を含む請求項 11記載の製造方法。
内部に空孔を有する光ファイバ一の端面における前記空孔に前記充填剤組成物を
60秒以内で充填する請求項 11又は 12記載の製造方法。
内部に空孔を有する光ファイバ一の前記空孔に請求項 1〜8のいずれか記載の充填 剤組成物が充填されて前記空孔が前記光ファイバ一の軸方向に一致するその長手 方向にお 、てその一部が封鎖されて 、ることを特徴とする内部に空孔を有する光フ アイノ ー
PCT/JP2005/018513 2004-10-25 2005-10-06 充填剤組成物及びそれを使用した内部に空孔を有する光ファイバーの製造方法 WO2006046391A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/666,070 US7477821B2 (en) 2004-10-25 2005-10-06 Sealing composition and production method of optical fiber having air holes in the inside using the composition
JP2006542318A JP4243296B2 (ja) 2004-10-25 2005-10-06 充填剤組成物及びそれを使用した内部に空孔を有する光ファイバーの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004310141 2004-10-25
JP2004-310141 2004-10-25

Publications (1)

Publication Number Publication Date
WO2006046391A1 true WO2006046391A1 (ja) 2006-05-04

Family

ID=36227635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018513 WO2006046391A1 (ja) 2004-10-25 2005-10-06 充填剤組成物及びそれを使用した内部に空孔を有する光ファイバーの製造方法

Country Status (3)

Country Link
US (1) US7477821B2 (ja)
JP (1) JP4243296B2 (ja)
WO (1) WO2006046391A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086536A (ja) * 2005-09-22 2007-04-05 Nagase Chemtex Corp 充填剤組成物及びそれを使用したホールアシストファイバーの製造方法
JP2008292558A (ja) * 2007-05-22 2008-12-04 Hitachi Cable Ltd 光ファイバ、光ファイバの接続構造および光コネクタ
WO2009045339A1 (en) * 2007-10-01 2009-04-09 Corning Cable Systems Llc Index-matching gel for nanostructure optical fibers and mechanical splice assembly and connector using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742670B2 (en) * 2007-10-01 2010-06-22 Corning Cable Systems Llc Index-matching gel for nanostructure optical fibers and mechanical splice assembly and connector using same
US20140093690A1 (en) * 2011-05-31 2014-04-03 Nanoptics, Incorporated Method and apparatus for lithographic manufacture of multi-component polymeric fiber plates

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239351A2 (en) * 1986-03-24 1987-09-30 Nippon Telegraph And Telephone Corporation Epoxy(meth)acrylate resin, process for preparing the same and adhesive composition containing the same
JPH11133207A (ja) * 1997-03-27 1999-05-21 Toray Ind Inc 光学薄膜および反射防止性物品
JP2002323625A (ja) * 2001-04-25 2002-11-08 Sumitomo Electric Ind Ltd 光ファイバの端面部構造および光ファイバ
JP2003202431A (ja) * 2002-01-09 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> フォトニッククリスタル光ファイバ及びその製造方法
JP2004004320A (ja) * 2002-05-31 2004-01-08 Mitsubishi Cable Ind Ltd フォトニック結晶ファイバ及びその製造方法並びにフォトニック結晶ファイバの接続方法
JP2004004324A (ja) * 2002-05-31 2004-01-08 Mitsubishi Cable Ind Ltd フォトニック結晶ファイバの端末処理方法
JP2004133277A (ja) * 2002-10-11 2004-04-30 Mitsubishi Cable Ind Ltd フォトニック結晶ファイバの接続方法、及びフォトニック結晶ファイバの接続構造
JP2004246068A (ja) * 2003-02-13 2004-09-02 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバのファイバ端部処理方法
JP2004279516A (ja) * 2003-03-13 2004-10-07 Nippon Telegr & Teleph Corp <Ntt> 穴付き光ファイバの端面処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3825506B2 (ja) * 1996-09-02 2006-09-27 Jsr株式会社 液状硬化性樹脂組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239351A2 (en) * 1986-03-24 1987-09-30 Nippon Telegraph And Telephone Corporation Epoxy(meth)acrylate resin, process for preparing the same and adhesive composition containing the same
JPH11133207A (ja) * 1997-03-27 1999-05-21 Toray Ind Inc 光学薄膜および反射防止性物品
JP2002323625A (ja) * 2001-04-25 2002-11-08 Sumitomo Electric Ind Ltd 光ファイバの端面部構造および光ファイバ
JP2003202431A (ja) * 2002-01-09 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> フォトニッククリスタル光ファイバ及びその製造方法
JP2004004320A (ja) * 2002-05-31 2004-01-08 Mitsubishi Cable Ind Ltd フォトニック結晶ファイバ及びその製造方法並びにフォトニック結晶ファイバの接続方法
JP2004004324A (ja) * 2002-05-31 2004-01-08 Mitsubishi Cable Ind Ltd フォトニック結晶ファイバの端末処理方法
JP2004133277A (ja) * 2002-10-11 2004-04-30 Mitsubishi Cable Ind Ltd フォトニック結晶ファイバの接続方法、及びフォトニック結晶ファイバの接続構造
JP2004246068A (ja) * 2003-02-13 2004-09-02 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバのファイバ端部処理方法
JP2004279516A (ja) * 2003-03-13 2004-10-07 Nippon Telegr & Teleph Corp <Ntt> 穴付き光ファイバの端面処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086536A (ja) * 2005-09-22 2007-04-05 Nagase Chemtex Corp 充填剤組成物及びそれを使用したホールアシストファイバーの製造方法
JP2008292558A (ja) * 2007-05-22 2008-12-04 Hitachi Cable Ltd 光ファイバ、光ファイバの接続構造および光コネクタ
WO2009045339A1 (en) * 2007-10-01 2009-04-09 Corning Cable Systems Llc Index-matching gel for nanostructure optical fibers and mechanical splice assembly and connector using same
US8152387B2 (en) 2007-10-01 2012-04-10 Corning Cable Systems Llc Index-matching gel for nanostructure optical fibers and mechanical splice assemble and connector using same

Also Published As

Publication number Publication date
US7477821B2 (en) 2009-01-13
US20080056655A1 (en) 2008-03-06
JPWO2006046391A1 (ja) 2008-05-22
JP4243296B2 (ja) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4555760B2 (ja) 充填剤組成物及びそれを使用したホールアシストファイバーの製造方法
WO2006046391A1 (ja) 充填剤組成物及びそれを使用した内部に空孔を有する光ファイバーの製造方法
JP5027148B2 (ja) ケイ酸縮合生成物及びそれを使用してなる光導波路デバイス
JP2009132800A (ja) 放射線硬化性樹脂組成物
JP5331267B2 (ja) 光導波路用樹脂組成物、並びにそれを用いたドライフィルム、光導波路及び光電気複合配線板
JP4589211B2 (ja) 光学用紫外線硬化型液状樹脂組成物
JP2013221978A (ja) 光ファイバ
TW591251B (en) Small diameter, high strength optical fiber
JP5857886B2 (ja) 光ファイバ素線
JP5585578B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
US7740733B2 (en) Optical adhesive composition and method for bonding optical component
JP5118168B2 (ja) 光学装置及びその製造方法
JP5347529B2 (ja) クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
US8923681B2 (en) Optical fiber core
JP2015229609A (ja) 光ファイバ及びその製造方法
JP2009198706A (ja) ポリマークラッド光ファイバ心線
JP2010091733A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2005320434A (ja) 紫外線硬化型樹脂組成物
JP4142981B2 (ja) 紫外線硬化型エポキシ樹脂組成物およびその製法
JP4268014B2 (ja) 紫外線硬化型エポキシ樹脂組成物
JP2006008740A (ja) 紫外線硬化型樹脂組成物
JP2008046566A (ja) ポリマークラッド光ファイバ心線
JP2004352771A (ja) 紫外線硬化型エポキシ樹脂組成物
JP2013082576A (ja) 光ファイバ素線
JP4142980B2 (ja) 紫外線硬化型エポキシ樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542318

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11666070

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05790578

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11666070

Country of ref document: US