WO2006046294A1 - リニアライザ - Google Patents

リニアライザ Download PDF

Info

Publication number
WO2006046294A1
WO2006046294A1 PCT/JP2004/016033 JP2004016033W WO2006046294A1 WO 2006046294 A1 WO2006046294 A1 WO 2006046294A1 JP 2004016033 W JP2004016033 W JP 2004016033W WO 2006046294 A1 WO2006046294 A1 WO 2006046294A1
Authority
WO
WIPO (PCT)
Prior art keywords
linearizer
diode
bias
gain
resistor
Prior art date
Application number
PCT/JP2004/016033
Other languages
English (en)
French (fr)
Inventor
Hifumi Noto
Kazuhisa Yamauchi
Yoshihiro Hamamatsu
Tomokazu Hamada
Masatoshi Nakayama
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/016033 priority Critical patent/WO2006046294A1/ja
Priority to CNB2004800439827A priority patent/CN100499357C/zh
Priority to JP2006542171A priority patent/JP4319681B2/ja
Priority to US11/660,136 priority patent/US7557654B2/en
Publication of WO2006046294A1 publication Critical patent/WO2006046294A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3276Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using the nonlinearity inherent to components, e.g. a diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3223Modifications of amplifiers to reduce non-linear distortion using feed-forward
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/468Indexing scheme relating to amplifiers the temperature being sensed

Definitions

  • the present invention relates to a linearizer for a low distortion amplifier that is applied to a satellite communication amplifier, a mobile communication amplifier, and a terrestrial microwave communication amplifier and compensates for amplitude nonlinearity and phase nonlinearity.
  • FIG. 23 is a circuit diagram showing a linearizer according to a first conventional example (see, for example, Patent Document 1).
  • the linearizer according to the first conventional example shown in FIG. 23 has an input terminal 1 for inputting a radio frequency band signal (RF signal), an input side bias blocking capacitor 4, a diode 8, an output side bias blocking capacitor 5, And a signal path in which output terminals 2 for outputting signals in the radio frequency band are sequentially connected in series, and a first resistor between the signal path between the input side noise blocking capacitor 4 and diode 8 and the bias terminal 3.
  • bias circuit to which 7 is connected a bias circuit to which 7 is connected, an RF short-circuit capacitor 6 having one end connected to the bias circuit between the noise terminal 3 and the first resistor 7 and the other end grounded, and a diode 8 and output side bias blocking
  • a bias short-circuit inductor 11 having one end connected to the signal path between the capacitors 5 and the other end grounded, and a series circuit including a second resistor 9 and a first capacitor 10 connected in parallel to the diode 8 It is provided.
  • This linearizer is an example of an analog predistortion type linearizer.
  • Such a linearizer is connected in series before or after the amplifier to compensate for distortion of the amplifier having the characteristic that the gain increases and the phase is delayed with respect to the increase in input power.
  • This linearizer can adjust the gain characteristics (AM-AM characteristics) with respect to the input power and the phase characteristics (AM-PM characteristics) with respect to the input power by changing the values of the bias voltage, resistor 9, and capacitor 10.
  • FIG. 24 is a circuit diagram showing a linearizer according to a second conventional example (see, for example, Patent Document 2).
  • a linearizer according to a second conventional example see, for example, Patent Document 2.
  • two diodes 8 and 12 are RF
  • the signals are used in parallel with opposite polarities, and the DC bias is connected in series with the diode's forward polarity.
  • the two diodes 8 and 12 are provided with resistors 21 and 22 in parallel, and the bias is applied via the resistors 19 and 20.
  • Such a linearizer compensates for distortion of an amplifier having a characteristic in which a gain increases with respect to an increase in input power and a phase lags by being connected in series with the preceding or succeeding stage of the amplifier. .
  • the gain characteristics with respect to input power (AM-AM characteristics) and the phase characteristics with respect to input power (AM-PM characteristics) can be finely adjusted.
  • FIG. 25 is a circuit diagram showing a linearizer according to a third conventional example (see, for example, Patent Document 3).
  • the two diodes 23 and 24 are diode pairs provided in parallel with opposite polarities, and one is grounded with respect to the RF signal.
  • Resistors 31 and 32 are used as voltage dividers.
  • FIG. 26 is a circuit diagram showing a harmonic mixer according to a fourth conventional example (see, for example, Patent Document 4).
  • a low-pass filter 28 and a DC cut 27 are provided on the path between the IF input terminal 30 and the IF input terminal 29, and the low-pass filter 28 and the DC Between the connection point of Cut 27 and the ground, there are two diodes 23 and 24 connected in parallel with opposite polarities, and a line 25 that is / 4 wavelength with respect to the local signal.
  • . 26 is a line having a wavelength of ⁇ / 4 with respect to the local signal
  • 31 is a local signal input terminal.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-76784 (FIG. 1)
  • Patent Document 2 Japanese Utility Model Publication No. 61-68517 (Fig. 1)
  • Patent Document 3 Japanese Utility Model Publication No. 5-023612 (Fig. 1)
  • Patent Document 4 Japanese Patent Laid-Open No. 9-130236 (FIG. 5)
  • the gain characteristics (AM-AM characteristics) with respect to the input power can be obtained by changing the values of the bias voltage, resistor 9 and capacitor 10 of the linearizer in FIG.
  • the phase characteristics with respect to the input power (AM-PM characteristics) were adjusted.
  • the linearizer according to the first conventional example When the linearizer according to the first conventional example is used for the gain characteristic of the amplifier as shown in FIG. 27, the gain increases as shown in FIG. Used. In order to flatten the gain of the amplifier, the gain characteristic of the linearizer needs to be the inverse of the gain characteristic of the amplifier. In the linearizer according to the first conventional example, the inverse characteristic of the gain characteristic of the amplifier was obtained by adjusting the voltage applied to the diode 8 and the values of the resistor 9 and the capacitor 10. The characteristics of the linearizer at that time are shown in FIG.
  • a linearizer as shown in FIG. 28 is applied to an amplifier whose gain characteristic is as shown in FIG. 27, the gain characteristic is as shown in FIG.
  • the specified gain compression point at this time is represented by the square in FIG. It can be seen from the original amplifier gain characteristics (solid line) that the gain level after the linearizer is applied has a lower input level at the specified gain compression point. That is, in FIG. 30 showing the input / output characteristics of the amplifier, the output level at the specified gain compression point is lower than the characteristics of the original amplifier.
  • the amplifier with a linearizer is applied to, for example, a feedforward amplifier, the specified gain compression point is lowered, so that an amplifier having a larger output must be used, and there is a problem that power efficiency and circuit area are increased.
  • the two diode pairs 8 and 12 have opposite polarities with respect to the RF power, but are forward biased with respect to the DC bias. Therefore, when the RF power increases, the internal resistance value for the signal of the diode 8 increases due to the voltage drop of the resistor 19. Therefore, the gain characteristic of the linearizer decreases with respect to the input power. In addition, although the amount of decrease can be adjusted with parallel resistors 21 and 22, the gain characteristics of the linearizer and amplifier decrease in the high input region, resulting in a problem that output power at the specified gain compression point decreases. .
  • two resistors 31, 32 function as a voltage dividing circuit.
  • the diode pair 23, 24 is connected through this voltage dividing circuit.
  • the diodes 23 and 24 are used as part of the mixer, no bias is applied.
  • the two diodes 23 and 24 are used to cancel the second harmonic of the local signal by using the diode rectification. Therefore, the diodes 23 and 24 are operated as a linearizer.
  • the present invention has been made to solve the above-described problems associated with the conventional example, and an object of the present invention is to provide a linearizer that can have a gain characteristic that has a valley characteristic that increases after the gain decreases. .
  • an RF signal input terminal, an input side bias blocking capacitor, a diode pair of opposite polarities, an output side noise blocking capacitor, and an RF signal output terminal are sequentially connected in series.
  • One end is connected to the signal path between the RF short-circuiting capacitor, one end of which is connected to the noise circuit in between and the other end is grounded, and the diode pair and the output-side bias blocking capacitor, and the other end is grounded.
  • a DC feed inductor is provided to the signal path between the RF short-circuiting capacitor, one end of which is connected to the noise circuit in between and the other end.
  • the trough characteristic that increases the gain after the gain is decreased. Can be.
  • FIG. 13 A characteristic diagram showing the gain characteristic and phase characteristic of the linearizer according to the fifth embodiment shown in comparison with the gain characteristic and phase characteristic of the linearizer according to the fourth embodiment shown in FIG.
  • FIG. 16 A circuit diagram of a linearizer according to Embodiment 8 of the present invention
  • FIG. 17 is a characteristic diagram showing the gain characteristic and phase characteristic of the linearizer according to the eighth embodiment shown in comparison with the gain characteristic and phase characteristic of the linearizer according to the fourth embodiment shown in FIG.
  • FIG. 18 is a circuit diagram of a linearizer according to Embodiment 8 of the present invention.
  • FIG. 19 is a characteristic diagram showing gain characteristics and phase characteristics of the linearizer according to the ninth embodiment shown in comparison with the gain characteristics and phase characteristics of the linearizer according to the fourth embodiment shown in FIG.
  • FIG. 20 is a circuit diagram of a linearizer according to the tenth embodiment of the present invention.
  • FIG. 21 is a circuit diagram of a linearizer according to Embodiment 11 of the present invention.
  • FIG. 22 is a circuit diagram of a linearizer according to Embodiment 12 of the present invention.
  • FIG. 23 is a circuit diagram showing a linearizer according to a first conventional example
  • FIG. 24 is a circuit diagram showing a linearizer according to a second conventional example.
  • FIG. 25 is a circuit diagram showing a linearizer according to a third conventional example.
  • FIG. 26 is a circuit diagram showing a linearizer according to a fourth conventional example.
  • FIG. 29 is a gain characteristic diagram when the linearizer having the gain characteristic of FIG. 28 is applied to the amplifier having the gain characteristic shown in FIG. 27;
  • FIG. 30 is an input / output characteristic diagram of the amplifier after application of the linearizer having the gain characteristic of FIG.
  • FIG. 1 is a circuit diagram of the linearizer according to Embodiment 1 of the present invention
  • FIG. 2 shows gain characteristics (Gain) and phase characteristics with respect to the signal power Pin of the linearizer according to Embodiment 1 of the present invention. It is a characteristic view which shows (Phase).
  • the linearizer shown in FIG. 1 includes an RF signal input terminal 1, an input side bias blocking capacitor 4, a pair of diodes 8 and 12 having opposite polarities, an output side bias blocking capacitor 5, and Resistor 7 is installed between the signal path in which the output terminal 2 of the RF signal and the RF signal output terminal 2 are sequentially connected in series, the signal path between the input side bias prevention capacitor 4 and the diode pair 8 and 12, and the bias terminal 3.
  • the signal power Pin when the signal power Pin is increased, the signal is also clipped by the diode 12, and a direct current in the direction opposite to the direct current of the diode 8 is generated. That is, when the signal current is detected by the diode 12 and exceeds a certain level of power, the direct current of the diode 8 is suppressed and the internal resistance of the diode 8 decreases. Therefore, the gain Gain begins to increase when the power decreases to a certain level or more, and as shown in FIGS. 2 and 3, the gain characteristic decreases to the signal power Pin and then increases to a valley characteristic. .
  • Such a linearizer is particularly effective in compensating for distortion of an amplifier having a gain rise before saturation as seen in a class AB amplifier as shown in FIG.
  • the principle is that the gain characteristic of the linearizer is such that the gain decreases as shown in Fig. 3 and then increases, so that the power at which the gain decreases from the linear gain (where the gain is constant) drops before and after application. It is difficult. Therefore, the input / output characteristics after applying the linearizer are higher than the specified compression point after applying the linearizer of the first conventional example (see FIGS. 5 and 30).
  • the prescribed gain compression points after compensation and before compensation are lowered as shown in FIG.
  • the linearizer according to the present invention is used, the input / output characteristics after distortion compensation in FIG.
  • the linearity of gain can be improved without lowering the specified gain compression point.
  • the advantage of not lowering the specified gain compression point is in particular when the invention is used in a feedforward amplifier. This is because, in the feedforward amplifier, when the specified gain compression point decreases, the maximum power point for improving distortion also decreases.
  • FIG. 6 is a circuit diagram of a linearizer according to Embodiment 2 of the present invention.
  • the linearizer according to the second embodiment shown in FIG. 6 has a configuration in which a series connection of a resistor 13 and a capacitor 14 is connected in parallel with the diode pairs 8 and 12 with respect to the configuration of the linearizer according to the first embodiment shown in FIG. is doing.
  • Other configurations are the same as those in FIG. In FIG. 6, either one of the resistor 13 and the capacitor 14 connected in series with the diode pair 8 and 12 may be connected.
  • FIG. 7 is a characteristic diagram showing the gain characteristics and phase characteristics of the linearizer according to the second embodiment shown in comparison with the gain characteristics and phase characteristics of the linearizer according to the first embodiment shown in FIG. It is.
  • the gain characteristic and the phase characteristic are further adjusted as shown in FIG. 7 by further providing a resistor 13 and a capacitor 14 with respect to the configuration of the first embodiment. Togashi.
  • FIG. 8 is a circuit diagram of a linearizer according to Embodiment 3 of the present invention.
  • the linearizer according to the third embodiment shown in FIG. 8 is different from the configuration of the linearizer according to the first embodiment shown in FIG. 1 in any one of the diode pairs 8 and 12, for example, the diode 12 having the reverse polarity.
  • Resistor 15 is connected in series and the connection is connected in parallel with diode 8.
  • Other configurations are the same as those in FIG. Note that the connection order of the resistor 15 and the diode 12 having the opposite polarity may be reversed, and an inductor may be provided instead of the resistor 15.
  • FIG. 9 is a characteristic diagram showing the gain characteristic and phase characteristic of the linearizer according to the third embodiment shown in comparison with the gain characteristic and phase characteristic of the linearizer according to the first embodiment shown in FIG. It is.
  • the resistor 15 can adjust the slope of increase in gain characteristics, and the resistor 15 As a result, the increase in the valley characteristics of the gain can be suppressed as shown in FIG.
  • FIG. 10 is a circuit diagram of a linearizer according to Embodiment 4 of the present invention.
  • the linearizer according to the fourth embodiment shown in FIG. 10 is different from the configuration of the linearizer according to the second embodiment shown in FIG. 6 in either diode of the diode pairs 8 and 12, for example, a diode 12 having a reverse polarity.
  • Resistor 15 is connected in series, and the connection is connected in parallel with diode 8.
  • Other configurations are the same as those in FIG.
  • the connection order of the resistor 15 and the diode 12 having the opposite polarity may be reversed, and an inductor may be provided instead of the resistor 15.
  • FIG. 11 is a characteristic diagram showing the gain characteristic and the phase characteristic of the linearizer according to the fourth embodiment shown in comparison with the gain characteristic and the phase characteristic of the linearizer according to the second embodiment shown in FIG. .
  • the resistor 15 by providing the resistor 15, it is possible to adjust the gain decrease amount and the increase amount and also adjust the phase characteristics.
  • FIG. 12 is a circuit diagram of a linearizer according to the fifth embodiment of the present invention.
  • the linearizer according to the fifth embodiment shown in FIG. 12 has an inductor in the signal path between the DC feed inductor 11 and the bias blocking capacitor 5 with respect to the configuration of the reducer according to the fourth embodiment shown in FIG. And a circuit for adjusting the phase characteristics that also serve as capacitor capacitors. Other configurations are the same as those in FIG.
  • the circuit for adjusting the phase characteristics may be a circuit including a resistor, an inductor, and a capacitor capacitor in addition to the inductor and the capacitor. Further, this circuit may be provided in the signal path between the diode pairs 8 and 12 and the DC feed inductor 11.
  • FIG. 13 is a characteristic diagram showing the gain characteristics and phase characteristics of the linearizer according to the fifth embodiment shown in comparison with the gain characteristics and phase characteristics of the linearizer according to the fourth embodiment shown in FIG. is there.
  • the phase characteristics can be adjusted as shown in FIG. [0038] Embodiment 6.
  • FIG. 14 is a circuit diagram of a linearizer according to Embodiment 6 of the present invention.
  • isolators, amplifiers or attenuators 17 and 18 are provided at the signal input / output terminals of the linearizer 16 similar to the fourth embodiment.
  • the isolator, amplifier, or attenuator may be a shift of the signal input terminal or output terminal of the linearizer 16.
  • the influence of external impedance can be reduced. Further, by providing an amplifier at the signal input / output terminal of the re-realizer 16, the insertion loss of the linearizer can be compensated by the amplifier.
  • FIG. 15 is a circuit diagram of a linearizer according to Embodiment 7 of the present invention.
  • the attenuators 17 and 18 provided at the signal input / output terminals of the re-serializer 16 according to the sixth embodiment shown in FIG. 14 are configured by a combination of resistors Rl and R2.
  • the output bias blocking capacitor 5 and the attenuator 17 are replaced, and the DC feed inductor 11 is replaced by the attenuator 17.
  • the inductor 11 and the attenuator can be shared, and the size can be reduced.
  • an attenuator composed of resistors can reduce the change in external impedance, including the linearizer force, and can reduce the frequency characteristics over a wide range.
  • FIG. 16 is a circuit diagram of a linearizer according to the eighth embodiment of the present invention.
  • the linearizer according to Embodiment 8 shown in FIG. 16 is configured by a pair of diode series connection bodies in which a plurality of diode pairs 8, 12 of the realizer according to Embodiment 7 shown in FIG. 15 are connected in series. .
  • Other configurations are the same as those in FIG.
  • FIG. 17 is a characteristic diagram showing gain characteristics and phase characteristics of the linearizer according to the eighth embodiment shown in comparison with the gain characteristics and phase characteristics of the linearizer according to the fourth embodiment shown in FIG. is there.
  • resistor inductor, or capacitor is provided in series or in parallel with the diode. It is.
  • FIG. 18 is a circuit diagram of a linearizer according to the ninth embodiment of the present invention.
  • a linearizer according to the ninth embodiment shown in FIG. 18 is provided with a plurality of diode pairs 8 and 12 of the linearizer according to the seventh embodiment shown in FIG. 15 in parallel.
  • the other configuration is shown in Fig. 1.
  • FIG. 19 is a characteristic diagram showing gain characteristics and phase characteristics of the linearizer according to the ninth embodiment shown in comparison with the gain characteristics and phase characteristics of the linearizer according to the fourth embodiment shown in FIG. is there.
  • resistor inductor, or capacitor in parallel or in series with the diode.
  • the present invention can also be applied by providing a plurality of diodes in series as in the eighth embodiment.
  • FIG. 20 is a circuit diagram of a linearizer according to the tenth embodiment of the present invention.
  • the linearizer according to the tenth embodiment shown in FIG. 20 has a temperature sensor 21 that detects the temperature of the linearizer, for example, the temperature of a diode pair that is a main heat generation source, with respect to the linearizer 20 according to the nineteenth embodiment.
  • a bias control circuit 22 is provided for controlling the voltage applied from the bias terminal 3 in accordance with the temperature sent from the temperature sensor 21, the input signal of the linearizer 20, and the output signal.
  • gain characteristics and phase characteristics can be adjusted with respect to temperature, input signal, and output signal.
  • FIG. 21 is a circuit diagram of a linearizer according to Embodiment 11 of the present invention.
  • the linearizer according to the eleventh embodiment shown in FIG. 21 is obtained by connecting the linearizer 24 according to the first to tenth embodiments in front of the single-ended amplifier or the push-pull amplifier 23. Note that the linearizer 24 may be connected after the single-ended amplifier or the push-pull amplifier 23. [0051] With this configuration, the single-ended amplifier or the push-pull amplifier can be operated with high efficiency and low distortion.
  • FIG. 22 is a circuit diagram of a linearizer according to Embodiment 12 of the present invention.
  • the linearizer according to the twelfth embodiment shown in FIG. 22 includes the linearizer 24 according to the first to tenth embodiments in front of the main amplifier 26 and the error amplifier 27 that constitute the feedforward amplifier 25.
  • 25 and 26 are a main amplifier and an error amplifier, respectively.
  • the linearizer 24 may be placed after the main amplifier 26 and the error amplifier 27 that constitute the feedforward amplifier 25.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 リニアライザの利得性を、利得が減少した後に増加する谷特性にする。  RF信号の入力端子1、入力側バイアス阻止用キャパシタ4、互いに逆極性のダイオード対8,12、出力側バイアス阻止用キャパシタ5、およびRF信号の出力端子2が順次直列接続された信号路と、入力側バイアス阻止用キャパシタ4とダイオード対8,12との間の信号路とバイアス端子3との間に抵抗7が設けられたバイアス回路と、バイアス端子3と抵抗7との間のバイアス回路に一端が接続され他端が接地されたRF短絡用キャパシタ6と、ダイオード対8,12と出力側バイアス阻止用キャパシタ5との間の信号路に一端が接続され他端が接地されたDCフィード用インダクタ11とを備えた。

Description

明 細 書
リニアライザ
技術分野
[0001] この発明は、衛星通信用増幅器、移動体通信用増幅器、及び地上マイクロ波通信 用増幅器に適用され、振幅非線形性及び位相非線形性を補償する低歪増幅器用の リニアライザに関するものである。 背景技術
[0002] 図 23は、第 1の従来例に係るリニアライザを示す回路図である (例えば、特許文献 1 参照)。図 23に示す第 1の従来例に係るリニアライザは、無線周波数帯の信号 (RF 信号)を入力する入力端子 1、入力側バイアス阻止用キャパシタ 4、ダイオード 8、出 力側バイアス阻止用キャパシタ 5、および無線周波数帯の信号を出力する出力端子 2が順次直列接続された信号路と、入力側ノ ィァス阻止用キャパシタ 4及びダイォー ド 8間の信号路とバイアス端子 3との間に第 1の抵抗 7が接続されたバイアス回路と、 ノ ィァス端子 3及び第 1の抵抗 7間のバイアス回路に一端が接続され他端が接地さ れた RF短絡用キャパシタ 6と、ダイオード 8及び出力側バイアス阻止用キャパシタ 5 間の信号路に一端が接続され他端が接地されたバイアス短絡用インダクタ 11と、ダ ィオード 8に並列接続された第 2の抵抗 9および第 1のキャパシタ 10からなる直列回 路とを備えている。
[0003] このリニアライザは、アナログ ·プレディストーシヨン型のリニアライザの一例である。
このようなリニアライザは、増幅器の前段もしくは後段に直列に接続することにより、入 力電力の増加に対して利得が増加し、位相が遅れる特性を有する増幅器の歪補償 を行うものである。このリニアライザは、バイアス電圧、抵抗 9ならびにキャパシタ 10の 値を変化させることで、入力電力に対する利得特性 (AM - AM特性)と入力電力に 対する位相特性 (AM - PM特性)を調整できる。
[0004] また、図 24は、第 2の従来例に係るリニアライザを示す回路図である(例えば、特許 文献 2参照)。図 24において、図 23と同一部分は同一符号を付してその説明は省略 する。図 24に示す第 2の従来例に係るリニアライザは、 2つのダイオード 8、 12が RF 信号に対しては互いに逆極性で並列に使用され、直流バイアスはダイオードの順極 性に直列に接続している。また、この 2つのダイオード 8、 12に抵抗 21、 22が並列に 設けられており、バイアスは抵抗 19、 20を介して行われている。
[0005] このようなリニアライザは、増幅器の前段もしくは後段に直列に接続することにより、 入力電力の増加に対して利得が増加し、位相が遅れる特性を有する増幅器の歪補 償を行うものである。抵抗 21、 22の値を変化させることにより、入力電力に対する利 得特性 (AM— AM特性)と入力電力に対する位相特性 (AM— PM特性)を微調整で きる。
[0006] 図 25は、第 3の従来例に係るリニアライザを示す回路図である(例えば、特許文献 3 参照)。図 25において、図 23と同一部分は同一符号を付してその説明は省略する。 図 25に示す第 3の従来例に係るリニアライザにおいて、 2つのダイオード 23、 24は互 いに逆極性に並列に設けられたダイオード対で、 RF信号に対して一方は接地されて いる。また、抵抗 31、 32が、分圧器として用いられている。
[0007] 図 26は、第 4の従来例に係るハーモニックミキサを示す回路図である(例えば、特 許文献 4参照)。図 26に示す第 4の従来例に係るハーモニックミキサにおいて、 IF入 力端子 30と IF入力端子 29との間の経路には、ローノ スフィルタ 28と DCカット 27が 設けられ、ローパスフィルタ 28と DCカット 27殿の接続点とグランドとの間には、互い に逆極性に並列接続された 2つのダイオード 23、 24と、ローカル信号に対してえ /4 波長である線路 25が設けられて 、る。 26はローカル信号に対して λ /4波長である 線路であり、 31はローカル信号入力端子を示す。
[0008] 特許文献 1:特開 2002— 76784号公報(図 1)
特許文献 2 :実開昭 61— 68517号公報 (第 1図)
特許文献 3:実開平 5— 023612号公報(図 1)
特許文献 4:特開平 9— 130236号公報(図 5)
発明の開示
発明が解決しょうとする課題
[0009] 上述した第 1の従来例では、図 23のリニアライザのバイアス電圧、抵抗 9ならびにキ ャパシタ 10の値を変化させることで、入力電力に対する利得特性 (AM— AM特性)と 入力電力に対する位相特性 (AM— PM特性)を調整して ヽた。
[0010] し力しながら、図 27のような利得特性を持つ増幅器に図 23に示す構成のリニアライ ザを適用すると、高入力領域においてリニアライザと増幅器の利得特性が減少になる ため、線形利得から 2dB利得が下がる点としての規定利得圧縮点(例えば P :2dB
2dB 利得圧縮点)での出力電力が下がるという問題があった。
[0011] この原理を、図面を参照して説明する。
第 1の従来例に係るリニアライザを図 27のような増幅器の利得特性に用いる場合、 図 27に示す利得特性にぉ 、て利得が増加して 、る部分を平坦にするためにリニアラ ィザが用いられる。増幅器の利得を平坦にするためには、リニアライザの利得特性を 増幅器の利得特性の逆特性にする必要がある。第 1の従来例に係るリニアライザで は、ダイオード 8に印加する電圧と抵抗 9とキャパシタ 10の値を調整することで増幅器 の利得特性の逆特性を得て 、た。そのときのリニアライザの特性は図 28である。
[0012] 利得特性が図 27のような増幅器に利得特性が図 28のようなリニアライザを適用す ると、利得特性は図 29になる。このときの規定利得圧縮点を図 29の四角で表してい る。もとの増幅器の利得特性 (実線)よりリニアライザ適用後の利得特性が規定利得 圧縮点の入力レベルが低くなつていることが分かる。つまり、増幅器の入出力特性を 示す図 30において、規定利得圧縮点の出力レベルがもとの増幅器の特性より低くな る。前記リニアライザ付き増幅器を例えばフィードフォワード増幅器に適用した場合、 規定利得圧縮点が下がるために、より出力が大きな増幅器を用いなければならず、 電力効率や回路面積が大きくなるという問題があった。
[0013] また、図 24に示す第 2の従来例では、 RF電力に対して 2つのダイオード対 8, 12は 逆極性になるが、直流バイアスに対して順方向バイアスになる。そのため、 RF電力が 大きくなると、抵抗 19の電圧降下によりダイオード 8の信号に対する内部抵抗値が増 加する。そのため、リニアライザの利得特性は入力電力に対して減少する。また、並 列の抵抗 21、 22でその減少量を調整できるものの、高入力領域においてリニアライ ザと増幅器の利得特性が減少になるため、規定利得圧縮点での出力電力が下がる という問題があった。
[0014] また、図 25に示す第 3の従来例では、 2つの抵抗 31, 32が分圧回路として働いて おり、この分圧回路を介してダイオード対 23, 24が接続されている。第 3の従来例に 係るリニアライザを用いることにより、入力信号が小さいとき、ダイオードに印加される 電圧がダイオードの順電圧に比べて低いので、入力信号はそのまま出力される。逆 に入力信号が大きいときには、ダイオードに印加される電圧が高くなり、信号波形が クリップされる。そのため、入力信号の大きさが大きくなるほど、出力信号は入力信号 に比べて小さくなる。つまり、利得特性が信号の大きさに対して減少になっている。よ つて、抵抗で利得の減少量を調整できるものの、高入力領域においてリニアライザと 増幅器の利得特性が減少になるため、規定利得圧縮点での出力電力が下がるという 問題があった。
[0015] さらに、第 4の従来例では、ミキサの一部として 2つのダイオード 23, 24を用いてい るのでバイアスは印加しない。 2つのダイオード 23, 24はダイオードの整流作用を用 いてローカル信号の 2倍波を打ち消すためにある。したがって、ダイオード 23, 24は リニアライザとして動作させて 、な 、。
[0016] この発明は上述した従来例に係る課題を解決するためになされたもので、利得性を 、利得が減少した後に増加する谷特性にすることができるリニアライザを提供すること を目的とする。
課題を解決するための手段
[0017] この発明に係るリニアライザは、 RF信号の入力端子、入力側バイアス阻止用キャパ シタ、互いに逆極性のダイオード対、出力側ノ ィァス阻止用キャパシタ、および RF信 号の出力端子が順次直列接続された信号路と、前記入力側バイアス阻止用キャパシ タと前記ダイオード対との間の信号路と前記バイアス端子との間に抵抗が設けられた ノ ィァス回路と、前記バイアス端子と前記抵抗との間のノ ィァス回路に一端が接続さ れ他端が接地された RF短絡用キャパシタと、前記ダイオード対と前記出力側バイァ ス阻止用キャパシタとの間の信号路に一端が接続され他端が接地された DCフィード 用インダクタとを備えたものである。
発明の効果
[0018] この発明によれば、バイアス端子から印加するバイアス電圧により通過利得または 通過位相の特性を調整することにより、利得を利得が減少した後に増加する谷特性 にすることができる。
図面の簡単な説明
圆 1]この発明の実施の形態 1に係るリニアライザの回路図、
圆 2]この発明の実施の形態 1に係るリニアライザの利得特性および位相特性を示す 特性図、
[図 3]この発明のリニアライザの利得特性図、
圆 4]図 27に示す利得特性を持つ増幅器に図 3に示す利得特性を持つリニアライザ を適用した場合の利得特性図、
圆 5]図 3に示す利得特性を持つリニアライザの適用後の増幅器の入出力特性図、 圆 6]この発明の実施の形態 2に係るリニアライザの回路図、
圆 7]図 2に示す実施の形態 1に係るリニアライザの利得特性および位相特性と比較 して示す実施の形態 2に係るリニアライザの利得特性および位相特性を示す特性図 圆 8]この発明の実施の形態 3に係るリニアライザの回路図、
圆 9]図 2に示す実施の形態 1に係るリニアライザの利得特性および位相特性と比較 して示す実施の形態 3に係るリニアライザの利得特性および位相特性を示す特性図 圆 10]この発明の実施の形態 4に係るリニアライザの回路図、
圆 11]図 7に示す実施の形態 2に係るリニアライザの利得特性および位相特性と比較 して示す実施の形態 4に係るリニアライザの利得特性および位相特性を示す特性図 圆 12]この発明の実施の形態 5に係るリニアライザの回路図、
圆 13]図 11に示す実施の形態 4に係るリニアライザの利得特性および位相特性と比 較して示す実施の形態 5に係るリニアライザの利得特性および位相特性を示す特性 図、
圆 14]この発明の実施の形態 6に係るリニアライザの回路図、
圆 15]この発明の実施の形態 7に係るリニアライザの回路図、
圆 16]この発明の実施の形態 8に係るリニアライザの回路図、 [図 17]図 11に示す実施の形態 4に係るリニアライザの利得特性および位相特性と比 較して示す実施の形態 8に係るリニアライザの利得特性および位相特性を示す特性 図、
[図 18]この発明の実施の形態 8に係るリニアライザの回路図、
[図 19]図 11に示す実施の形態 4に係るリニアライザの利得特性および位相特性と比 較して示す実施の形態 9に係るリニアライザの利得特性および位相特性を示す特性 図、
[図 20]この発明の実施の形態 10に係るリニアライザの回路図、
[図 21]この発明の実施の形態 11に係るリニアライザの回路図、
[図 22]この発明の実施の形態 12に係るリニアライザの回路図、
[図 23]第 1の従来例に係るリニアライザを示す回路図、
[図 24]第 2の従来例に係るリニアライザを示す回路図、
[図 25]第 3の従来例に係るリニアライザを示す回路図、
[図 26]第 4の従来例に係るリニアライザを示す回路図、
[図 27]通常の増幅器が持つ利得特性図、
[図 28]従来のリニアライザの利得特性図、
[図 29]図 27に示す利得特性を持つ増幅器に図 28の利得特性を持つリニアライザを 適用した場合の利得特性図、
[図 30]図 28の利得特性を持つリニアライザの適用後の増幅器の入出力特性図であ る。
発明を実施するための最良の形態
[0020] 実施の形態 1.
以下、この発明の実施の形態について図面を参照して説明する。
図 1は、この発明の実施の形態 1に係るリニアライザの回路図であり、図 2は、この発 明の実施の形態 1に係るリニアライザの信号電力 Pinに対する利得特性 (Gain)およ び位相特性 (Phase)を示す特性図である。
[0021] 図 1に示すリニアライザは、 RF信号の入力端子 1、入力側バイアス阻止用キャパシ タ 4、互いに逆極性のダイオード対 8, 12、出力側バイアス阻止用キャパシタ 5、およ び RF信号の出力端子 2が順次直列接続された信号路と、入力側バイアス阻止用キ ャパシタ 4とダイオード対 8, 12との間の信号路とバイアス端子 3との間に抵抗 7が設 けられたバイアス回路と、バイアス端子 3と抵抗 7間のバイアス回路に一端が接続され 他端が接地された RF短絡用キャパシタ 6と、ダイオード対 8, 12と出力側ノ ィァス阻 止用キャパシタ 5との間の信号路に一端が接続され他端が接地された DCフィード用 インダクタ 11とを備え、バイアス端子 3から印加するバイアス電圧により通過利得もし くは通過位相の特性が調整されるようになって!/、る。
[0022] 図 1に示す回路において、ノ ィァス端子 3から正のバイアスを印加すると、抵抗 7を 介してダイオード 8には順方向バイアスが加えられ、ダイオード 12には逆方向バイァ スが加えられる。 RF信号の入力端子 1から信号電力 Pinが入力すると、ダイオード 8 によって信号波形はクリップされ、直流電流が発生する。この直流電流により、抵抗 7 において電圧降下が発生し、ダイオード 8に加えられるノィァス電圧が低下すること で、ダイオード 8の信号に対する内部抵抗値が増加する。
[0023] さらに、信号電力 Pinを増加させると、ダイオード 12によってもクリップされ、ダイォ ード 8の直流電流と逆方向の直流電流が発生する。つまり、信号電流をダイオード 12 で検波し、ある一定の電力以上になるとダイオード 8の直流電流が抑圧され、ダイォ ード 8の内部抵抗が減少する。よって、利得 Gainは減少する力 ある一定の電力以 上になると増加し始め、図 2及び図 3に示すように、利得特性は、信号電力 Pinに対し て減少した後、増加する谷特性になる。
[0024] このようなリニアライザは、図 27のように AB級アンプに見られるような飽和前に利得 の盛り上がりがある増幅器の歪を補償するのに特に有効である。その原理は、リニア ライザの利得特性を、図 3のように利得が減少し、その後に増加する特性を持つこと により、線形利得 (利得が一定なところ)より利得が下がる電力が適用前後で落ちにく いことにある。したがって、リニアライザ適用後の入出力特性は、第 1の従来例のリニ ァライザ適用後の規定圧縮点に比べて高くなる(図 5、図 30参照)。
[0025] さらに、第 1の従来例に係るリニアライザで利得の盛り上がりのある利得特性がある 増幅器の歪を補償する場合、図 30のように補償後と補償前の規定の利得圧縮点を 下げてしまうが、この発明に係るリニアライザを用いると、図 5の歪補償後の入出力特 性のように規定の利得圧縮点を下げることなぐ利得の線形性を改善することができ る。規定の利得圧縮点を下げない利点は、特にフィードフォワード増幅器にこの発明 を用いたときにある。フィードフォワード増幅器では、規定利得圧縮点が下がると、歪 を改善する最大の電力点も下がるからである。
[0026] 実施の形態 2.
図 6は、この発明の実施の形態 2に係るリニアライザの回路図である。
図 6に示す実施の形態 2に係るリニアライザは、図 1に示す実施の形態 1に係るリニ ァライザの構成に対し、ダイオード対 8, 12と並列に抵抗 13とキャパシタ 14の直列接 続体を接続している。その他の構成は図 1と同様である。なお、図 6では、ダイオード 対 8, 12と並列に抵抗 13とキャパシタ 14の直列接続体を接続している力 抵抗 13と キャパシタ 14の 、ずれか一方を接続しても良!、。
[0027] また、図 7は、図 2に示す実施の形態 1に係るリニアライザの利得特性および位相特 性と比較して示す実施の形態 2に係るリニアライザの利得特性および位相特性を示 す特性図である。
[0028] この実施の形態 2によれば、実施の形態 1の構成に対して、さらに抵抗 13とキャパ シタ 14を設けることにより、図 7に示すように利得特性と位相特性をさらに調整するこ とがでさる。
[0029] 実施の形態 3.
図 8は、この発明の実施の形態 3に係るリニアライザの回路図である。
図 8に示す実施の形態 3に係るリニアライザは、図 1に示す実施の形態 1に係るリニ ァライザの構成に対し、ダイオード対 8, 12のいずれか一方のダイオード、例えば逆 極性のダイオード 12に、抵抗 15を直列接続してその接続体をダイオード 8と並列接 続している。その他の構成は図 1と同様である。なお、抵抗 15と逆極性のダイオード 1 2の接続順序は逆でも良ぐまた、抵抗 15の代わりに、インダクタを設けても良い。
[0030] また、図 9は、図 2に示す実施の形態 1に係るリニアライザの利得特性および位相特 性と比較して示す実施の形態 3に係るリニアライザの利得特性および位相特性を示 す特性図である。
[0031] この実施の形態 3によれば、抵抗 15は利得特性の増加の傾きを調整でき、抵抗 15 によりダイオード 12でクリップされて発生した電流を抑える働きを持ち、図 9に示すよ うに利得の谷特性の増加量を抑えることができる。
[0032] 実施の形態 4.
図 10は、この発明の実施の形態 4に係るリニアライザの回路図である。 図 10に示す実施の形態 4に係るリニアライザは、図 6に示す実施の形態 2に係るリ ユアライザの構成に対し、ダイオード対 8, 12のいずれか一方のダイオード、例えば 逆極性のダイオード 12に、抵抗 15を直列接続してその接続体をダイオード 8と並列 接続している。その他の構成は図 6と同様である。なお、抵抗 15と逆極性のダイォー ド 12の接続順序は逆でも良ぐまた、抵抗 15の代わりに、インダクタを設けても良い。
[0033] また、図 11は、図 7に示す実施の形態 2に係るリニアライザの利得特性および位相 特性と比較して示す実施の形態 4に係るリニアライザの利得特性および位相特性を 示す特性図である。
[0034] この実施の形態 4によれば、抵抗 15を設けることで、利得の減少量と増加量を調整 するとともに位相特性も調整することができる。
[0035] 実施の形態 5.
図 12は、この発明の実施の形態 5に係るリニアライザの回路図である。 図 12に示す実施の形態 5に係るリニアライザは、図 10に示す実施の形態 4に係るリ ユアライザの構成に対し、 DCフィード用インダクタ 11とバイアス阻止用キャパシタ 5と の間の信号路に、インダクタとキャパシタカもなる位相特性を調整するための回路を 設けたものである。その他の構成は図 10と同様である。なお、位相特性を調整するた めの回路は、インダクタとキャパシタの他に、抵抗、インダクタ、キャパシタカもなる回 路であっても良い。また、この回路を、ダイオード対 8, 12と DCフィード用インダクタ 1 1との間の信号路に設けても良い。
[0036] また、図 13は、図 11に示す実施の形態 4に係るリニアライザの利得特性および位 相特性と比較して示す実施の形態 5に係るリニアライザの利得特性および位相特性 を示す特性図である。
[0037] この実施の形態 5によれば、位相特性を調整するための回路を設けることで、図 13 に示すように位相特性を調整することができる。 [0038] 実施の形態 6.
図 14は、この発明の実施の形態 6に係るリニアライザの回路図である。図 14に示す 実施の形態 6においては、実施の形態 1 4と同様なリニアライザ 16の信号入出力端 子に、アイソレータ、増幅器もしくはアテネータ 17、 18が設けられている。なお、この アイソレータ、増幅器もしくはアテネータは、リニアライザ 16の信号入力端子または出 力端子の 、ずれかであっても良 、。
[0039] この構成にすることで、外部インピーダンスの影響を小さくすることができる。また、リ ユアライザ 16の信号入出力端子に増幅器を設けることにより、リニアライザの挿入損 失を増幅器で補うことができる。
[0040] 実施の形態 7.
図 15は、この発明の実施の形態 7に係るリニアライザの回路図である。
図 15に示す実施の形態 7に係るリニアライザは、図 14に示す実施の形態 6に係るリ ユアライザ 16の信号入出力端子に設けられるアテネータ 17、 18を抵抗 Rl, R2の組 み合わせで構成し、出力側バイアス阻止用キャパシタ 5とアテネータ 17を入れ替え、 DCフィード用インダクタ 11をアテネータ 17で代用している。
[0041] この構成にすることで、インダクタ 11とアテネータを共用することができ、小型化が 図れる。また、抵抗で構成されたアテネータはリニアライザ力も見た外部インピーダン スの変化を軽減させ、広 、範囲で周波数特性を軽減することができる。
[0042] 実施の形態 8.
図 16は、この発明の実施の形態 8に係るリニアライザの回路図である。
図 16に示す実施の形態 8に係るリニアライザは、図 15に示す実施の形態 7に係るリ ユアライザのダイオード対 8, 12を、複数個直列接続したダイオード直列接続体の対 で構成したものである。他の構成は図 15と同様である。
[0043] また、図 17は、図 11に示す実施の形態 4に係るリニアライザの利得特性および位 相特性と比較して示す実施の形態 8に係るリニアライザの利得特性および位相特性 を示す特性図である。
[0044] この構成にすることで、利得特性と位相特性の調整が可能になる。
また、ダイオードと直列または並列に抵抗、インダクタ、キャパシタを設けても適用さ れる。
[0045] 実施の形態 9.
図 18は、この発明の実施の形態 9に係るリニアライザの回路図である。
図 18に示す実施の形態 9に係るリニアライザは、図 15に示す実施の形態 7に係るリ ユアライザのダイオード対 8, 12を、複数個並列に設けたものである。他の構成は図 1
5と同様である。
[0046] また、図 19は、図 11に示す実施の形態 4に係るリニアライザの利得特性および位 相特性と比較して示す実施の形態 9に係るリニアライザの利得特性および位相特性 を示す特性図である。
[0047] この構成にすることで、利得特性と位相特性の調整が可能になる。
また、ダイオードと並列または直列に抵抗、インダクタ、キャパシタを設けても適用さ れる。
さらに、実施の形態 8のように直列に複数個ダイオードを設けて 、ても適用される。
[0048] 実施の形態 10.
図 20は、この発明の実施の形態 10に係るリニアライザの回路図である。 図 20に示す実施の形態 10に係るリニアライザは、実施の形態 1 9のリニアライザ 2 0に対し、リニアライザの温度、例えば主要な熱発生源となるダイオード対の温度を検 出する温度センサ 21と、温度センサ 21から送られてきた温度、リニアライザ 20の入力 信号、出力信号に応じてバイアス端子 3から印加する電圧を制御するバイアス制御 回路 22とを備えている。
[0049] この構成にすることで、温度、入力信号、出力信号に対して利得特性と位相特性の 調整が可能になる。
[0050] 実施の形態 11.
図 21は、この発明の実施の形態 11に係るリニアライザの回路図である。 図 21に示す実施の形態 11に係るリニアライザは、実施の形態 1-10のリニアライザ 24を、シングルエンド増幅器またはプッシュプル増幅器 23の前段に接続したもので ある。なお、リニアライザ 24を、シングルエンド増幅器またはプッシュプル増幅器 23の 後段に接続しても良い。 [0051] この構成にすることで、シングルエンド増幅器またはプッシュプル増幅器を高効率 且つ低歪動作させることができる。
[0052] 実施の形態 12.
図 22は、この発明の実施の形態 12に係るリニアライザの回路図である。 図 22に示す実施の形態 12に係るリニアライザは、実施の形態 1-10のリニアライザ 24を、フィードフォワード増幅器 25を構成する主増幅器 26と誤差増幅器 27に前置し たものである。なお、である。 25,26はそれぞれ主増幅器と誤差増幅器である。なお、 リニアライザ 24を、フィードフォワード増幅器 25を構成する主増幅器 26と誤差増幅器 27に後置しても良い。
[0053] この構成にすることで、フィードフォワード増幅器 25に用いている増幅器 26, 27の 歪特性が向上し、歪特性を一層改善することができる。

Claims

請求の範囲
[1] RF信号の入力端子、入力側バイアス阻止用キャパシタ、互いに逆極性のダイォー ド対、出力側バイアス阻止用キャパシタ、および RF信号の出力端子が順次直列接続 された信号路と、
前記入力側バイアス阻止用キャパシタと前記ダイオード対との間の信号路と前記バ ィァス端子との間に抵抗が設けられたバイアス回路と、
前記ノィァス端子と前記抵抗との間のバイアス回路に一端が接続され他端が接地 された RF短絡用キャパシタと、
前記ダイオード対と前記出力側バイアス阻止用キャパシタとの間の信号路に一端 が接続され他端が接地された DCフィード用インダクタと
を備えたリニアライザ。
[2] 請求項 1に記載のリニアライザにおいて、
前記ダイオード対と並列に抵抗とキャパシタのいずれ力少なくとも一方を接続した ことを特徴とするリニアライザ。
[3] 請求項 1に記載のリニアライザにおいて、
前記ダイオード対のいずれか少なくとも一方のダイオード側に当該ダイオードと直 列に抵抗もしくはインダクタを設けた
ことを特徴とするリニアライザ。
[4] 請求項 2に記載のリニアライザにおいて、
前記ダイオード対のいずれか少なくとも一方のダイオード側に当該ダイオードと直 列に抵抗もしくはインダクタを設けた
ことを特徴とするリニアライザ。
[5] 請求項 4に記載のリニアライザにおいて、
前記ダイオード対と前記 DCフィード用インダクタとの間の信号路、もしくは前記 DC フィード用インダクタと前記出力側ノィァス阻止用キャパシタとの間の信号路に、抵 抗、インダクタ、もしくはキャパシタカもなる位相特性調整用回路を設けた
ことを特徴とするリニアライザ。
[6] 請求項 1から 5の!、ずれ力 1項に記載のリニアライザにぉ ヽて、 前記入力端子と前記出力端子の少なくともいずれか一方に、アテネータ、アイソレ ータもしくは増幅器を設けた
ことを特徴とするリニアライザ。
[7] 請求項 6に記載のリニアライザにおいて、
前記アテネータを抵抗で構成した
ことを特徴とするリニアライザ。
[8] 請求項 7に記載のリニアライザにおいて、
前記ダイオード対を、複数個直列接続したダイオードの直列接続体の対で構成し た
ことを特徴とするリニアライザ。
[9] 請求項 7に記載のリニアライザにおいて、
前記ダイオード対を、複数個並列に並べた
ことを特徴とするリニアライザ。
[10] 請求項 1から 9の!、ずれ力 1項に記載のリニアライザにぉ ヽて、
リニアライザの温度を検出する温度センサと、
前記温度センサによる検出温度、リニアライザの入力信号、出力信号に応じて前記 ダイオード対に加えるバイアス電圧を制御するバイアス制御回路と
を備えたことを特徴とするリニアライザ。
[11] 請求項 1から 10のいずれ力 1項に記載のリニアライザを、シングルエンド増幅器また はプッシュプル増幅器の前段または後段に接続した
ことを特徴とするリニアライザ。
[12] 請求項 1から 10のいずれ力 1項に記載のリニアライザを、フィードフォワード増幅器 を構成する増幅器に前置または後置した
ことを特徴とするリニアライザ。
PCT/JP2004/016033 2004-10-28 2004-10-28 リニアライザ WO2006046294A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/016033 WO2006046294A1 (ja) 2004-10-28 2004-10-28 リニアライザ
CNB2004800439827A CN100499357C (zh) 2004-10-28 2004-10-28 线性化电路
JP2006542171A JP4319681B2 (ja) 2004-10-28 2004-10-28 リニアライザ
US11/660,136 US7557654B2 (en) 2004-10-28 2004-10-28 Linearizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016033 WO2006046294A1 (ja) 2004-10-28 2004-10-28 リニアライザ

Publications (1)

Publication Number Publication Date
WO2006046294A1 true WO2006046294A1 (ja) 2006-05-04

Family

ID=36227546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016033 WO2006046294A1 (ja) 2004-10-28 2004-10-28 リニアライザ

Country Status (4)

Country Link
US (1) US7557654B2 (ja)
JP (1) JP4319681B2 (ja)
CN (1) CN100499357C (ja)
WO (1) WO2006046294A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172544A (ja) * 2007-01-12 2008-07-24 Mitsubishi Electric Corp ダイオードリニアライザを用いた歪補償回路
US8232839B2 (en) 2010-03-01 2012-07-31 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device and transmission and reception system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729667B2 (en) * 2006-02-16 2010-06-01 Raytheon Company System and method for intermodulation distortion cancellation
FR2911019B1 (fr) * 2006-12-28 2009-03-06 Alcatel Lucent Sa Dispositif de linearisation a pre-distortion a amplitude et galbe reglables
JP5565727B2 (ja) * 2010-07-01 2014-08-06 国立大学法人電気通信大学 歪補償回路
US20120242405A1 (en) * 2011-03-25 2012-09-27 Younkyu Chung Frequency-Desensitizer for Broadband Predistortion Linearizers
JP2013118435A (ja) * 2011-12-01 2013-06-13 Samsung Electro-Mechanics Co Ltd 電力増幅器
JP6508052B2 (ja) 2013-09-26 2019-05-08 日本電気株式会社 信号送信装置、歪補償装置、及び信号送信方法
JP6364956B2 (ja) * 2014-05-23 2018-08-01 三菱電機株式会社 リニアライザ
CN105071779B (zh) * 2015-08-11 2018-04-03 中国电子科技集团公司第三十六研究所 一种预失真器和一种信号接收机
CN109564441B (zh) * 2016-06-14 2021-07-27 阿里埃勒科学创新有限公司 热电发电机
WO2019208371A1 (ja) * 2018-04-26 2019-10-31 株式会社村田製作所 増幅回路
CN110768630B (zh) * 2019-09-26 2023-05-26 广州慧智微电子股份有限公司 一种射频功率放大器幅度调制对幅度调制的补偿电路
WO2024068001A1 (en) * 2022-09-30 2024-04-04 Huawei Technologies Co., Ltd. Power splitter and a power amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200807A (ja) * 1988-02-05 1989-08-14 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償回路
JPH08181544A (ja) * 1994-10-13 1996-07-12 Hughes Aircraft Co マイクロ波予め歪を与えた線形化回路
JPH09232901A (ja) * 1996-02-28 1997-09-05 Mitsubishi Electric Corp 歪補償回路
JP2002076784A (ja) * 2000-08-29 2002-03-15 Mitsubishi Electric Corp 歪補償回路

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2204334A5 (ja) * 1972-10-20 1974-05-17 Thomson Csf
US4638180A (en) * 1984-03-09 1987-01-20 Matsushita Electric Industrial Co., Ltd. Frequency divider circuits
JPH0230912Y2 (ja) 1984-10-09 1990-08-21
US4752743A (en) * 1986-09-26 1988-06-21 Varian Associates, Inc. Linearizer for TWT amplifiers
GB2204202B (en) * 1987-04-28 1991-11-27 Racal Communications Equip Radio transmitters
US5210633A (en) * 1990-09-12 1993-05-11 General Instrument Corporation Apparatus and method for linearizing the operation of an external optical modulator
JPH0523612U (ja) 1991-09-03 1993-03-26 日立電子株式会社 電力増幅器の直線性補償回路
CA2120965A1 (en) * 1993-04-14 1994-10-15 Katsumi Uesaka Distortion generating circuit
US5798854A (en) * 1994-05-19 1998-08-25 Ortel Corporation In-line predistorter for linearization of electronic and optical signals
US6288814B1 (en) * 1994-05-19 2001-09-11 Ortel Corporation In-line predistorter for linearization of electronic and optical signals
JP3219984B2 (ja) 1995-11-01 2001-10-15 三菱電機株式会社 位相同期発振器および通信装置
EP0981868A1 (en) * 1997-05-12 2000-03-01 PIRELLI CAVI E SISTEMI S.p.A. External optical modulation system comprising a predistorter
DE19837574A1 (de) * 1998-08-19 2000-02-24 Philips Corp Intellectual Pty Aktive elektronische Filterschaltung
US6577177B2 (en) * 1999-04-01 2003-06-10 General Instrument Corporation Non-linear distortion generator
EP1166434B1 (en) * 1999-04-01 2002-09-11 General Instrument Corporation Non-linear distortion generator for both second and third order distortion
US6107877A (en) * 1999-04-09 2000-08-22 General Instrument Corporation Predistortion generator coupled with an RF amplifier
JP3405401B2 (ja) * 1999-06-15 2003-05-12 日本電気株式会社 前置補償型線形化器および線形化増幅器
US6580319B1 (en) * 2000-04-19 2003-06-17 C-Cor.Net Corp. Amplitude and phase transfer linearization method and apparatus for a wideband amplifier
GB0028713D0 (en) * 2000-11-24 2001-01-10 Nokia Networks Oy Lineariser
AU2003269350A1 (en) * 2002-10-22 2004-05-13 Koninklijke Philips Electronics N.V. Predistortion linearizing
US7385447B1 (en) * 2004-06-28 2008-06-10 Anadigics, Inc. Power amplifier having curve-fitting predistorter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200807A (ja) * 1988-02-05 1989-08-14 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償回路
JPH08181544A (ja) * 1994-10-13 1996-07-12 Hughes Aircraft Co マイクロ波予め歪を与えた線形化回路
JPH09232901A (ja) * 1996-02-28 1997-09-05 Mitsubishi Electric Corp 歪補償回路
JP2002076784A (ja) * 2000-08-29 2002-03-15 Mitsubishi Electric Corp 歪補償回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172544A (ja) * 2007-01-12 2008-07-24 Mitsubishi Electric Corp ダイオードリニアライザを用いた歪補償回路
US8232839B2 (en) 2010-03-01 2012-07-31 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device and transmission and reception system

Also Published As

Publication number Publication date
US20070241815A1 (en) 2007-10-18
US7557654B2 (en) 2009-07-07
JPWO2006046294A1 (ja) 2008-05-22
JP4319681B2 (ja) 2009-08-26
CN100499357C (zh) 2009-06-10
CN101019310A (zh) 2007-08-15

Similar Documents

Publication Publication Date Title
Ali et al. A 28GHz 41%-PAE linear CMOS power amplifier using a transformer-based AM-PM distortion-correction technique for 5G phased arrays
JP3041805B2 (ja) 抵抗性結合器および分圧器を有する先行歪ませ等化器
US7038539B2 (en) RF amplifier employing active load linearization
US7427895B1 (en) Doherty amplifier with improved linearity
KR101429804B1 (ko) 저소모 증폭기
US8736365B2 (en) Broadband linearization module and method
JP4319681B2 (ja) リニアライザ
JP2529114B2 (ja) 進行波管増幅器のためのリニアライザ
US20070046377A1 (en) Power distribution and biasing in RF switch-mode power amplifiers
JP3405401B2 (ja) 前置補償型線形化器および線形化増幅器
JP2014217058A (ja) 非線形ドライバを用いる増幅器
JP3545125B2 (ja) 歪み補償回路
Park et al. An independently controllable AM/AM and AM/PM predistortion linearizer for cdma2000 multicarrier applications
JP3951521B2 (ja) 歪補償回路並びにその使用方法
JP2002064340A (ja) 高周波電力増幅器
JP4739717B2 (ja) 歪補償回路
JP2002076784A (ja) 歪補償回路
KR100832204B1 (ko) 리니어라이저
GB2439983A (en) Frequency compensation for an audio power amplifier
JP2004254095A (ja) 歪補償回路及び低歪半導体増幅器
JP2005184258A (ja) 高周波増幅器
CN115882795B (zh) 一种具备线性化补偿结构的功率放大器
JP2002043855A (ja) 電力増幅器およびそれを具備した通信端末
JP2001230635A (ja) 電力モニタ機能付前置歪補償回路および適応制御型高周波増幅器
US7729667B2 (en) System and method for intermodulation distortion cancellation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542171

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11660136

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200480043982.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077007193

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11660136

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 04793141

Country of ref document: EP

Kind code of ref document: A1