WO2006043508A1 - 異方性拡散媒体 - Google Patents

異方性拡散媒体 Download PDF

Info

Publication number
WO2006043508A1
WO2006043508A1 PCT/JP2005/019038 JP2005019038W WO2006043508A1 WO 2006043508 A1 WO2006043508 A1 WO 2006043508A1 JP 2005019038 W JP2005019038 W JP 2005019038W WO 2006043508 A1 WO2006043508 A1 WO 2006043508A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic diffusion
diffusion medium
light
fluorine
transmitted light
Prior art date
Application number
PCT/JP2005/019038
Other languages
English (en)
French (fr)
Inventor
Makoto Murata
Kensaku Higashi
Original Assignee
Tomoegawa Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Co., Ltd. filed Critical Tomoegawa Co., Ltd.
Priority to EP05793488A priority Critical patent/EP1806603A1/en
Priority to US11/665,632 priority patent/US20070291366A1/en
Publication of WO2006043508A1 publication Critical patent/WO2006043508A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes

Definitions

  • the present invention relates to an anisotropic diffusing medium in which the amount of linearly transmitted light varies greatly according to the incident angle of incident light.
  • Light diffusing members have been widely used in the latest displays, especially LCDs, which have long been used only for lighting equipment and building materials.
  • the light diffusion mechanism of these members includes scattering due to irregularities formed on the surface (surface scattering), scattering due to the refractive index difference between the matrix resin and the filler dispersed therein (internal scattering), and the surface This is due to both scattering and internal scattering.
  • surface scattering scattering due to irregularities formed on the surface
  • internal scattering scattering due to the refractive index difference between the matrix resin and the filler dispersed therein
  • the surface scattering internal scattering
  • the diffusion performance of these light diffusing members is generally isotropic, and even if the incident angle is slightly changed, the diffusion characteristics of the transmitted light are not greatly different.
  • This special light diffusing member which is a light control plate, is a resin composition having a plurality of strengths of a compound having one or more photopolymerizable carbon-carbon double bonds in a molecule having different refractive indexes. It is a plastic sheet cured by irradiating ultraviolet rays from a specific direction, and selectively scatters only incident light that forms a specific angle with respect to the sheet.
  • a combination of a compound A having a polymerizable carbon-carbon double bond in the molecule and a compound B having a refractive index difference of 0.01 or more and having no polymerizable carbon-carbon double bond, or a molecule Compounds having a plurality of polymerizable carbon-carbon double bonds therein and a refractive index difference before and after curing of 0.01 or more are listed (for example, see Patent Document 5).
  • Compound and butyl ether functional group A combination with a cationically polymerizable compound possessed by the compound is also disclosed (for example, see Patent Document 6).
  • an optical film called a light control film or a louver film, which has a property of transmitting only incident light in a certain angle range and shielding other incident light, is also known.
  • a light control film or a louver film which has a property of transmitting only incident light in a certain angle range and shielding other incident light.
  • This louver film has a structure in which colored louvers are arranged at equal intervals with a certain inclination in the thickness direction of the film, so that light rays that are substantially parallel to the direction of the louvers pass but pass through a plurality of adjacent louvers. Light that is incident at such an angle! / Can't be absorbed and transmitted by the louver! /.
  • Patent Document 1 JP-A-1 77001
  • Patent Document 2 JP-A-1-147405
  • Patent Document 3 JP-A-1-147406
  • Patent Document 4 JP-A-2-54201
  • Patent Document 5 JP-A-3-109501
  • Patent Document 6 JP-A-6-9714
  • Patent Document 7 Japanese Patent Laid-Open No. 50-92751
  • Patent Document 8 Patent No. 3043069
  • a problem with the anisotropic diffusion media listed above is that the anisotropic diffusion of light is weak.
  • the intensity of anisotropic diffusion is evaluated by the rate of change in the amount of linearly transmitted light as described below! / Speak.
  • louver film although anisotropic diffusion is strong, light rays are shielded so that they do not diffuse, and the amount of transmitted light decreases at every incident angle by the amount of the louver provided. Sexual diffusion media is what.
  • the present invention aims to improve the anisotropic diffusion medium based on the above conventional techniques.
  • An object of the present invention is to provide an anisotropic diffusion medium having a large rate of change in the amount of linearly transmitted light depending on the incident angle of light, that is, an anisotropic diffusion medium having strong anisotropic diffusion.
  • the anisotropic diffusion medium of the present invention has an oil diffusion layer comprising a cured product of a composition containing at least a fluorine-containing photocurable compound and a fluorine-free photocurable compound.
  • the amount of linearly transmitted light when light passes through the resin layer varies depending on the incident angle of incident light with respect to the resin layer.
  • a photocurable compound containing fluorine hereinafter referred to as a fluorine-containing photocurable compound
  • a photocurable compound containing no fluorine hereinafter referred to as fluorine-free photo-curable compound
  • fluorine-free photo-curable compound By forming regions with different refractive indexes, anisotropic diffusion with a large rate of change in the amount of linearly transmitted light due to the incident angle of light.
  • a medium that is, an anisotropic diffusion medium having strong anisotropic diffusion can be obtained.
  • a fluorine-based photocurable compound is used as a water / oil repellent or antifouling agent, and has a characteristic of poor affinity with other substances. It is considered that anisotropic diffusion becomes stronger because it is easy to form a region having a different refractive index by separating from a fluorine-free compound during curing.
  • an embodiment of the anisotropic diffusion medium of the present invention can be described with reference to FIG. That is, a large number of minute regions 2 are formed inside a sheet-like anisotropic diffusion medium 1 made of a cured product of a composition containing a fluorine-containing photocurable compound and a fluorine-free photocurable compound. Yes. These micro regions 2 are formed by irradiating the point light source forces arranged in the normal S direction of the anisotropic diffusion medium 1 with ultraviolet rays parallel to each other, and all these micro regions are flat with the normal S direction. Formed in a row. In FIG. 1, the microregion 2 is schematically described in a cylindrical shape, but the shape is not particularly limited, such as a circular shape, a polygonal shape, or an indefinite shape.
  • Fig. 2 (a) shows an optical micrograph of the cross-sectional view taken along the line A-A in Fig. 1
  • Fig. 2 (b) shows an optical micrograph of the cross-sectional view taken along the line BB. It can be confirmed that the micro area 2 exists in both cross-sectional views.
  • light diffusivity incidence angle dependence of diffusion characteristics
  • the cured region is a plate-shaped cured region parallel to the direction of the linear light source as shown in FIG. This can be confirmed by cross-section along line A-A in 3.
  • FIG. 3 shows an embodiment of the present invention, in which a sheet of anisotropic diffusion medium containing a fluorine-containing photocurable compound and a fluorine-free photocurable compound is refracted. Plate-like regions with different rates are formed in parallel to each other.
  • Fig. 4 (a) shows an optical micrograph of the cross section along the line A-A in Fig. 3
  • Fig. 4 (b) shows an optical micrograph of the cross section along the line BB.
  • This anisotropic diffusion medium is homogeneous with no change in the refractive index when viewed in the section AA, as shown in Fig. 4 (a).
  • a force that can obtain light diffusibility for incident light parallel to the A-A line cross section is almost impossible for incident light parallel to the B-B cross section. Light diffusivity cannot be obtained.
  • the shape is not limited to a plate shape, but the display can be viewed from all angles, so a rod shape (or circular, polygonal, or indefinite shape) that exhibits anisotropic diffusion at all 360 degrees. It is more preferable to form a hardened region.
  • the fluorine-containing photocurable compound preferably has a fluorine atom ratio of 0% or more of its molecular weight, more preferably 50% or more.
  • the anisotropic diffusion medium of the present invention is characterized in that the diffusion characteristic has an incident angle dependency in that the amount of linearly transmitted light varies depending on the incident angle of incident light.
  • diffusion characteristics include diffuse transmittance, parallel light transmittance, and power expressed by haze as shown in JIS-K7105 and JIS-K7136. These conditions are such that the sample is in close contact with the integrating sphere and there is no light leakage. It is measured by irradiating light from the normal direction, and it is not assumed to measure the incident angle arbitrarily. In other words, there is no officially accepted method for evaluating the incident angle dependence of the diffusion characteristics of anisotropic diffusion media. Therefore, in the present invention, as shown in FIG.
  • a sample is disposed between a light source (not shown) and the light receiver 3, and the sample is linearly transmitted while changing the angle around the straight line L on the sample surface.
  • a commercially available haze meter, goniophotometer, or spectrophotometer in which a rotatable sample holder is provided between the light source and the light receiving unit can be used.
  • the value of the light quantity obtained here is a relative value, and the measurement result shown in Fig. 6 can be obtained as the angle dependence of the force linear transmitted light quantity.
  • Rate of change :
  • FIG. 7 is a schematic cross-sectional view for explaining the incident angle dependence of the linearly transmitted light amount transmitted through the anisotropic diffusion medium shown in FIG. 1 by the linearly transmitted light amount measured by the measurement method.
  • reference numeral 2 is a schematic representation of the rod-like hardened region, where the rod-like hardened region extends in the normal S direction.
  • the transmitted light vector ⁇ is larger than ⁇ . Furthermore, incident light with an angular force deeper than incident light I
  • the corresponding transmitted light vector ⁇ is larger than ⁇ .
  • the transmitted light quantity is vectorized in the same manner as described above.
  • the anisotropic diffusion medium of the present invention is not limited to the above-described embodiment.
  • a direction P inclined at an arbitrary angle from the normal S direction is used as the symmetry axis.
  • An anisotropic diffusion medium having incident light angle dependency can also be used.
  • FIG. 10 is a schematic cross-sectional view for explaining the incident angle dependence of the amount of linearly transmitted light that passes through the anisotropic diffusion medium shown in FIG.
  • reference numeral 2 schematically shows a rod-like hardened region.
  • the curve shown is obtained, and the transmitted light level is similarly applied to all cross sections including the incident light I.
  • FIG. 6 An anisotropic diffusion medium manufactured using a linear light source exhibits the incident angle dependence shown in FIG. 6, which is caused by rotating the sample around a specific straight line L shown in FIG.
  • the incident angle dependence of the amount of transmitted light is hardly shown, or it appears to be completely different.
  • the angle dependency shows a completely different incident angle dependency as shown by the broken line when rotated around a straight line M orthogonal to the force line L shown by the solid line in FIG.
  • the force stated that the shape of the incident angle dependency of the amount of linear transmitted light exhibits symmetry about the predetermined direction P is the symmetry referred to here as the direction in FIG.
  • the incident angle of incident light that represents P is assumed to be 0 °, and the difference between the maximum and minimum values of the amount of linear transmitted light in the area where the incident light is on the plus side is represented by AR, and the minus side is represented by AL. This is the case where the relationship of ⁇ (AR / AL) ⁇ 2 holds.
  • the anisotropic diffusion medium of the present invention is produced by irradiating a composition containing a photocurable compound with parallel rays from the direction of the straight line P to cure the composition.
  • a composition containing a photocurable compound with parallel rays from the direction of the straight line P As the direction of the straight line P, it is required that the inclination from the normal line of the medium is within 45 °, and within 30 ° is preferable, and within 15 ° is more preferable. It is also a preferred form of the present invention that this straight line P coincides with the normal line.
  • the optical path lengths in the scattering medium differ significantly, and the transmitted light ⁇
  • the anisotropic diffusion medium of the present invention As the form of the anisotropic diffusion medium of the present invention, the anisotropic diffusion medium alone, a configuration in which the anisotropic diffusion medium is laminated on a transparent substrate, and a transparent substrate on both sides of the anisotropic diffusion medium. Stacked configurations can be provided.
  • the transparent substrate As the transparent substrate, the higher the transparency, the better, and the total light transmittance (JIS K7361-1) is 80% or more, more preferably 85% or more, the most preferable.
  • those having 90% or more and those having a haze value (JIS K7136) of 3.0 or less, more preferably 1.0 or less, and most preferably 0.5 or less can be suitably used.
  • a transparent plastic film or glass plate can be used, but a plastic film is preferred because it is thin, light, difficult to break, and has excellent productivity.
  • a plastic film is preferred because it is thin, light, difficult to break, and has excellent productivity.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • PC polycarbonate
  • PI polyimide
  • PS polysulfone
  • PS polyethersulfone
  • PES polyethersulfone
  • Cellophane polyethylene
  • PE polypropylene
  • PVA polybutyl alcohol
  • cycloolefin fin resin and the like.
  • the thickness of the substrate is 1 ⁇ m to 5 mm, preferably 10 to 500 ⁇ m, more preferably 50 to 150 ⁇ m in consideration of use and productivity.
  • the anisotropic diffusion medium of the present invention is obtained by curing a composition containing a fluorine-containing photocurable compound and a fluorine-free photocurable compound, By irradiation with light, a micron-order fine structure with a different refractive index is formed in the anisotropic diffusion medium.
  • the unique anisotropic diffusion characteristics shown in the present invention can be expressed. Therefore, it is preferable that the fluorine-containing photocurable compound and the fluorine-free photocurable compound are phase-separated so that a fine structure is formed upon curing.
  • the fluorine-containing photocurable compound and the fluorine-free photocurable compound have a high compatibility in an uncured state and are preferably compatible at an arbitrary ratio. ,. When both are highly compatible and combined, the fine structure formed during photocuring becomes finer, and each region formed during curing is clearly separated and immediately anisotropic diffusion occurs. become stronger.
  • the fluorine-containing photocurable compound is selected from polymers, oligomers, and monomers having a radically polymerizable or cationically polymerizable functional group having a fluorine atom in its chemical structure.
  • radical-polymerizable photocurable compounds include 2, 2, 2 trifluorocetate, 2, 2, 3, 3, 3 pentafunole, P-P pinole agile, 2, 2 , 3, 3—Tetrafluoropropyl acrylate, 2- (perfluoroethyl) ethyl acrylate, 2 (Perfluorobutyl) ethyl acrylate, 2- (perfluorooctyl) ethyl acrylate, 3 perfluorobutyl-2 hydropropyl acrylate, 3 perfluoro mouth hexyl 2 hydropropyl acrylate 2- (perfluoro-5-methylhexyl) ethyl acrylate, 2- (perfluoro-7-methyloctyl) ethyl acrylate, 1H, 1H, 4H, 4H-perfluoro 1,4 butanediol ditalate, 1H, 1H, 6H , 6H—
  • Specific examples of the cationically polymerizable photocuring compound include 3 heptafluorobutyl.
  • the fluorine-free photocurable compound is selected from a polymer, oligomer, or monomer having a radically polymerizable or cationically polymerizable functional group having no fluorine atom in its chemical structure.
  • radically polymerizable photocurable compounds include epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polybutadiene acrylate, and silicone acrylate.
  • Acrylic oligomer called 2- Tylhexyl acrylate, isoamyl acrylate, butoxetyl acrylate, ethoxydiethylene glycol acrylate, fenoxetyl acrylate, tetrahydrofurfuryl acrylate, isnorbornyl acrylate, 2-hydroxyethyl acrylate — Hydropropylpropyl talylate, 2-Atarylloy oxyphthalic acid, dicyclopentenyl acrylate, triethylene glycol ditalylate, neopentyl glycol ditalylate, 1, 6 hexanediol ditalylate, bisphenol A EO strength Diatalytes, trimethylolpropane tritalate,
  • a compound having at least one epoxy group, vinyl ether group or oxetane group in the molecule can be used.
  • the compound having an epoxy group include 2-ethylhexyl diglycol glycidyl ether, biphenyl glycidyl ether, bisphenol A, hydrogenated bisphenol A, bisphenol F, bisphenol AD, bisphenol S, Diglycidyl ethers of bisphenols such as tetramethylbisphenol A, tetramethylbisphenol F, tetrachlorobisphenol A, tetrabromobisphenol A, phenol novolac, cresol novolak, brominated phenol novolak, orthocresol novolak Polyglycidyl ethers of novolak rosin such as ethylene glycol, polyethylene glycol, polypropylene glycol, butanediol, 1,6 hexanediol, neopen
  • Examples of the compound having a butyl ether group include diethylene glycol dibuyl ether, triethylene glycol divinino ether, butanediol divinino ether, hexanediol divinyl ether, cyclohexane dimethanol divinyl ether, hydroxybutyl vinyl ether. , Ethyl ether, dodecyl vinyl ethereol, trimethylololepropane trivininoreethenore, propeninoreethenopropylene power, and the like, but not limited thereto. It is to be noted that the bulerite compound can be radically polymerized by combining it with a force acrylate which is generally cationically polymerizable.
  • Examples of the compound having an oxetane group include 1,4bis [(3 ethyl-3-oxeta-lmethoxy) methyl] benzene, 3-ethyl-3- (hydroxymethyl) oxetane, and the like.
  • Photoinitiators that can polymerize radically polymerizable compounds include benzophenone, benzyl, Michler's ketone, 2 cyclothioxanthone, 2, 4 getinoreoxysanton, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2, 2-diethoxyacetophenone, benzyl dimethyl ketal, 2, 2-dimethoxy-1,2-diphenylethane 1-one, 2-hydroxy-1-2-methyl-1 phenylpropane 1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl 1 1 [4 (methylthio) phenol ] 2 Morpholinopropanone 1, 1 [4 (2-Hydroxyethoxy) monophenyl] — 2-hydroxy-2-methyl-1-propane-1-one, bis (cyclopentage
  • the above-mentioned cationically polymerizable compound can be polymerized with the above-mentioned acid, and generally used are onium salts and meta-octacene complexes.
  • onium salts and meta-octacene complexes For example, diazonium salts, sulfo-um salts, iodonium salts, phosphonium salts, selenium salts, etc. are used, and these counter ions include BF-, PF-, AsF-, SbF-, etc.
  • the key-on is used
  • the photoinitiator is 0.01 to: LO parts by weight, preferably 0.1 to 7 parts by weight, more preferably 0 to 100 parts by weight of the photopolymerizable compound. About 1 to 5 parts by weight are blended. This is because if less than 0.01 parts by weight, the photocuring property is lowered, and if more than 10 parts by weight is blended, only the surface is cured and the internal curability is lowered. From.
  • photoinitiators are usually used by directly dissolving powder in a photopolymerizable compound, but if the solubility is poor, the photoinitiator is dissolved in a very small amount of solvent in advance at a high concentration. It is also possible to use things. Such a solvent is more preferably photopolymerizable, and specific examples thereof include propylene carbonate, y-peptidone rataton and the like. It is also possible to add various known dyes and sensitizers in order to improve the photopolymerizability. Furthermore, a thermosetting initiator capable of curing the photopolymerizable polymer by heating can be used together with the photoinitiator. In this case, it can be expected that heating after photocuring further accelerates the polymer curing of the photopolymerizable compound and completes it.
  • an anisotropic diffusion medium is formed by curing a composition obtained by mixing the above-described fluorine-containing photocurable compound and a fluorine-free photocurable compound.
  • the polymer resin that can be used here include acrylic resin, styrene resin, styrene-acrylic copolymer, polyurethane resin, polyester resin, epoxy resin, cellulose resin, and vinyl acetate resin. , Polyvinyl acetate copolymer, polyvinyl butyral rosin and the like.
  • These polymer resins and photocurable compounds are required to have sufficient compatibility before photocuring. To ensure this compatibility, various organic solvents and It is also possible to use a plasticizer.
  • the polymer resin is selected from acrylic resins.
  • the method for producing the anisotropic diffusion medium of the present invention is not particularly limited except that the photocurable compound is hardened by light irradiation.
  • the photocurable compound described above is used.
  • the composition containing is prepared in the form of a sheet, and this is irradiated with parallel rays from the direction of the straight line P to cure the composition.
  • one side of the composition provided on the sheet for the purpose of accelerating the curing of the composition containing the photocurable compound upon light irradiation or controlling the strength of anisotropic diffusion.
  • both sides may be covered with a transparent flexible sheet through which light passes.
  • the composition provided in the form of a sheet may be heated before and after the light irradiation.
  • a normal coating method or printing method is applied as a method of providing the composition containing the photocurable compound in a sheet form on the substrate. Specifically, air doctor coating, bar coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, slot orifice coating, calendar coating, dam coating Coating such as dip coating and die coating, intaglio printing such as gravure printing, and printing such as stencil printing such as screen printing can be used. Further, when the composition has a low viscosity, a weir having a certain height can be provided around the substrate, and the composition can be cast in the area surrounded by the weir.
  • a short arc ultraviolet light source is usually used. Specifically, a high pressure mercury lamp, a low pressure Mercury lamps, metal halide lamps, xenon lamps, etc. can be used.
  • the shape of the fine structure formed by light irradiation differs depending on the shape of the light emitting surface, and a light source having a rod-like light emitting surface forms a plate-like fine structure, but is used for resist exposure. If a parallel light source is used, a rod-like microstructure is formed, but this is more preferable for the purpose of the present invention. In addition, when forming a rod-like microstructure, if the anisotropic diffusion medium is small in size, it is possible to irradiate with sufficient distance force using an ultraviolet spot light source.
  • the light source for irradiating the sheet-shaped composition containing the photocurable compound is required to contain a wavelength capable of curing the photocurable compound, and is usually The light of the wavelength centered around 365nm of mercury lamp is used.
  • the illuminance is preferably in the range of 0.01 to: LOOmWZcm 2 , more preferably in the range of 0.1 to 20 mWZcm 2 . It is. If the illuminance is 0. OlmWZcm 2 or less, curing takes a long time, resulting in poor production efficiency. If it is lOOmWZcm 2 or more, the photo-curing compound cures too quickly and does not form a structure. This is because sex diffusion characteristics cannot be expressed. [Example]
  • the liquid film with a thickness of 0.2 mm sandwiched between both sides of the PET film is irradiated vertically from the epi-illumination unit of the UV spot light source (product name: L2859-01) manufactured by Hamamatsu Photonics.
  • An anisotropic diffusion medium of Example 1 having a large number of rod-shaped minute regions as shown in FIG. 1 was obtained by irradiating ultraviolet rays having an intensity of 30 mWZcm 2 for 1 minute.
  • a partition wall having a height of 0.2 mm was formed with a curable resin using a dispenser on the entire periphery of the edge of the 76 X 26 mm size slide glass.
  • the following ultraviolet curable resin composition was dropped into this and covered with another glass slide.
  • the liquid film with a thickness of 0.2 mm sandwiched between the two glass slides is irradiated vertically from the epi-illumination unit of the UV spot light source (product name: L2859-01) manufactured by Hamamatsu Photonics. Ultraviolet rays with an intensity of 30 mWZcm 2 were irradiated for 1 minute. Then remove the slide glass on both sides Thus, an anisotropic diffusion medium of Example 2 having many rod-like minute regions as shown in FIG. 1 was obtained.
  • the UV spot light source product name: L2859-01
  • a linear UV light source having a light emission length of 125 mm (Nippon UV Machine Co., Ltd.) placed in the direction perpendicular to the long side of the PET film on the UV curable composition sandwiched between the same PET films as in Example 1.
  • Product name: Handy UV device HUV-1000) is irradiated vertically with ultraviolet rays having the same irradiation intensity as in Example 1 and has plate-like regions with different refractive indexes as shown in FIG. An anisotropic diffusion medium was obtained.
  • a partition wall having a height of 0.2 mm was formed with a curable resin using a dispenser on the entire periphery of the edge of a 76 X 26 mm size slide glass.
  • the following ultraviolet curable resin composition was dropped into this and covered with another glass slide.
  • the liquid film with a thickness of 0.2 mm sandwiched between the two glass slides is irradiated vertically from the epi-illumination unit of the UV spot light source (product name: L2859-01) manufactured by Hamamatsu Photonics. Ultraviolet rays with an intensity of 30 mWZcm 2 were irradiated for 1 minute. Thereafter, the glass slides on both sides were removed to obtain an anisotropic diffusion medium of Example 4 having a large number of rod-shaped minute regions as shown in FIG.
  • the UV spot light source product name: L2859-01
  • a partition wall with a height of 0.2 mm was formed with a curable resin using a dispenser on the entire periphery of the edge of a 76 x 26 mm slide glass.
  • the following ultraviolet curable resin composition was dropped into this and covered with another glass slide.
  • the liquid film with a thickness of 0.2 mm sandwiched between the two glass slides is irradiated vertically from the epi-illumination unit of the UV spot light source (product name: L2859-01) manufactured by Hamamatsu Photonics. Ultraviolet rays with an intensity of 30 mWZcm 2 were irradiated for 1 minute. Thereafter, the glass slides on both sides were removed to obtain a comparative anisotropic diffusion medium having many rod-like minute regions as shown in FIG.
  • the UV spot light source product name: L2859-01
  • FIGS. 13 to 16 and 17 show the relationship between the incident angle measured with respect to the two rotation axes and the linear transmitted light amount, respectively.
  • both the short side axis rotation and the long side axis rotation include a small peak at an incident angle of 0 °, and the change rate of the linear transmitted light amount is a deep valley shape of about 0.8 to 0.9. It can be seen that it is almost symmetrical.
  • the short side axis rotation shows a deep valley similar to the other examples.
  • the long side axis rotation the amount of linear transmitted light is almost the same as the valley of the short side axis rotation even if the incident angle is changed. It showed selective anisotropic diffusion, unchanged.
  • the anisotropic diffusion medium of the comparative example shows a shallow valley shape with a change rate of the linear transmitted light amount of about 0.64 to 0.65, which is different from the examples. It is clear that the anisotropic diffusion is insufficient.
  • an amount of change in the amount of linearly transmitted light depending on the incident angle of a light beam is large, and an anisotropic diffusion medium can be provided.
  • FIG. 1 is a schematic diagram showing an example of an anisotropic diffusion medium of the present invention.
  • FIG. 2 (a) is an optical micrograph showing a cross section taken along line AA in FIG. (b) In Figure 1
  • FIG. 3 is a schematic diagram showing an example of the anisotropic diffusion medium of the present invention.
  • FIG. 4 (a) An optical micrograph showing an AA line cross section (cross section perpendicular to the direction of the linear light source) in the anisotropic diffusion medium of FIG. (b) BB line cross section in the anisotropic diffusion medium of Fig. 3
  • FIG. 5 is a schematic diagram showing a method for evaluating the dependence of the amount of linearly transmitted light on the incident angle of an anisotropic diffusion medium (when only the straight line L is used as the rotation axis).
  • FIG. 6 is a graph showing a relationship between an incident angle and a linear transmitted light amount in an evaluation of an incident angle dependency of a linear transmitted light amount of an anisotropic diffusion medium.
  • FIG. 7 is a schematic cross-sectional view for explaining the incident angle dependence of the amount of linearly transmitted light that passes through the anisotropic diffusion medium of FIG.
  • FIG. 8 is a schematic diagram for explaining the incident angle dependence of the amount of linearly transmitted light that passes through the anisotropic diffusion medium of the present invention.
  • FIG. 9 is a schematic view showing another embodiment of the anisotropic diffusion medium of the present invention.
  • FIG. 10 is a schematic cross-sectional view illustrating the incident angle dependence of the amount of linearly transmitted light that passes through the anisotropic diffusion medium of FIG.
  • FIG. 11 is a schematic diagram showing a method for evaluating the dependence of the amount of linearly transmitted light on the incident angle of an anisotropic diffusion medium (when the straight lines L and M are used as the rotation axis).
  • FIG. 12 is a graph showing the relationship between the incident angle and the linear transmitted light amount in the evaluation of the incident angle dependence of the linear transmitted light amount of the anisotropic diffusion medium.
  • FIG. 13 is a graph showing the incident angle dependence of the linearly transmitted light amount in Example 1.
  • FIG. 14 is a graph showing the incident angle dependence of the linearly transmitted light amount in Example 2.
  • FIG. 15 is a graph showing the incident angle dependence of the linearly transmitted light amount in Example 3.
  • FIG. 16 is a graph showing the incident angle dependence of the linearly transmitted light amount in Example 4.
  • FIG. 17 is a graph showing the incident angle dependence of the linearly transmitted light amount in a comparative example. Explanation of symbols

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

【課題】光線の入射角度による直線透過光量の変化量が多い異方性拡散媒体を提供する。 【解決手段】少なくともフッ素を含有する光硬化性化合物およびフッ素を含有しない光硬化性化合物を含む組成物の硬化物からなる樹脂層を有する異方性拡散媒体であって、樹脂層を光線が透過する際の直線透過光量が、樹脂層に対する入射光の入射角によって異なることを特徴とする異方性拡散媒体。    

Description

明 細 書
異方性拡散媒体
技術分野
[0001] 本発明は、入射光の入射角度に応じて直線透過光量が大きく変化する異方性拡 散媒体に関する。
背景技術
[0002] 光拡散性を有する部材は、古くから照明器具や建材に使われていただけでなぐ最 近のディスプレイ、特に LCDにおいても広く利用されている。これらの部材の光拡散 発現機構としては、表面に形成された凹凸による散乱 (表面散乱)、マトリックス榭脂と その中に分散されたフイラ一間の屈折率差による散乱(内部散乱)、及び表面散乱と 内部散乱の両方によるものが挙げられる。ただし、これらの光拡散部材には、一般に その拡散性能は等方的であり、入射角度を少々変化させても、その透過光の拡散特 性が大きく異なることはな力つた。
[0003] し力しながら、特定の角度からの入射光だけを選択的に散乱することができるという 光制御板が提案されている (例えば、特許文献 1参照)。この光制御板なる特殊な光 拡散部材は、それぞれの屈折率に差がある分子内に 1個以上の光重合性炭素-炭 素二重結合を有する化合物の複数力 なる榭脂組成物に、特定方向から紫外線を 照射して硬化させたプラスチックシートであり、そのシートに対して特定の角度をなす 入射光のみを選択的に散乱させるというものである。
[0004] この光制御板を作製するための材料としては、上述の「それぞれの屈折率に差があ る分子内に 1個以上の光重合性炭素 炭素二重結合を有する化合物の複数からな る榭脂組成物」以外にも、ウレタンアタリレートオリゴマーを含む組成物が開示されて いる (例えば、特許文献 2〜4参照)。また、分子内に重合性炭素 炭素二重結合を 有する化合物 Aと、この Aとの屈折率差が 0. 01以上である重合性炭素 炭素二重 結合を有しない化合物 Bとの組み合わせや、分子内に重合性炭素 炭素二重結合 を複数有し、その硬化前後の屈折率差が 0. 01以上である化合物が列挙されており( 例えば、特許文献 5参照)、更に、ラジカル重合性ィ匕合物とビュルエーテルを官能基 に有するカチオン重合性ィ匕合物との組み合わせも開示されている(例えば、特許文 献 6参照)。
[0005] これらの光制御板が示す、特定の角度からの入射光だけを選択的に散乱すること ができるという散乱特性の入射角依存性は、特許文献 2で図解されるように、光制御 板作製時にその上空に配置した線状光源を光制御板表面に投影した線を中心にし て光制御板を回転させた場合に観察されるものである。すなわち、線状光源の投影 線と直交する線を中心に回転した場合は、散乱特性の入射角依存性がほとんど見ら れないか、先の線状光源の投影線を中心に回転させた場合とは大きく異なる散乱特 性の入射角依存性を有することになる。
[0006] ところで、一定角範囲の入射光だけを透過し、それ以外の入射光は遮光する性質 を有する、ライトコントロールフィルムまたはルーバーフィルムと呼ばれて 、る光学フィ ルムも知られており、古くは計器盤の背面照明や、最近ではディスプレイの視角制御 、すなわち覼き見防止等の用途で用いられてきている。これは、透明プラスチック層と 着色プラスチック層とを交互に多数積層圧着して作製したブロックを、上記プラスチッ ク層に対して直角ないし所定の角度で平削ぎにして得られるものである(例えば、特 許文献 7、 8参照)。このルーバーフィルムは、そのフィルム厚さ方向に一定の傾きで 着色ルーバーが等間隔で配置された構造であるため、ルーバーの向きにほぼ平行 な光線は透過するが、隣接する複数のルーバーを通過するような角度で入射する光 につ!/、ては、ルーバーで吸収されて透過することができな!/、。
[0007] 特許文献 1 :特開平 1 77001号公報
特許文献 2:特開平 1― 147405号公報
特許文献 3:特開平 1― 147406号公報
特許文献 4:特開平 2 - 54201号公報
特許文献 5 :特開平 3— 109501号公報
特許文献 6:特開平 6— 9714号公報
特許文献 7:特開昭 50 - 92751号公報
特許文献 8:特許第 3043069号
発明の開示 発明が解決しょうとする課題
[0008] 以上に列挙した異方性拡散媒体の問題点として、光の異方性拡散が弱いことが挙 げられる。特に異方性拡散媒体と光源との間隔が数 mm以下ときわめて狭い LCDな どのディスプレイに使用した場合、異方性拡散が弱いと異方性拡散媒体としての効 果を発現しにくいため、前記光制御板については光源との間隔が広くとることができ る建材用途で使用されているだけである。なお、本発明では異方性拡散の強さを、後 述する直線透過光量の変化率で評価して!/ヽる。
[0009] 一方、前記ルーバーフィルムにおいては異方性拡散は強いものの、光線は遮光さ れるために拡散せず、またルーバーを設けた分だけあらゆる入射角において光線透 過量が低下するため、異方性拡散媒体とは 、えな 、ものである。
[0010] 本発明は、以上の従来技術を踏まえて異方性拡散媒体の改良を目指すものであり
、本発明は、光線の入射角度による直線透過光量の変化率が大きい異方性拡散媒 体、すなわち異方性拡散が強 、異方性拡散媒体を提供することを目的として!/、る。 課題を解決するための手段
[0011] 本発明の異方性拡散媒体は、少なくともフッ素を含有する光硬化性化合物および フッ素を含有しない光硬化性化合物を含む組成物の硬化物からなる榭脂層を有する 異方性拡散媒体であって、榭脂層を光線が透過する際の直線透過光量が、上記榭 脂層に対する入射光の入射角によって異なることを特徴として 、る。
発明の効果
[0012] このような異方性拡散媒体によれば、フッ素を含有する光硬化性化合物(以下、フ ッ素含有の光硬化性化合物と 、う)とフッ素を含有しな 、光硬化性化合物(以下、フ ッ素不含の光硬化性ィ匕合物という)によって、それぞれの屈折率が異なる領域を形成 することにより、光の入射角度による直線透過光量の変化率が大きい異方性拡散媒 体、すなわち異方性拡散が強い異方性拡散媒体を得ることができる。本発明におい ては、フッ素系の光硬化性ィ匕合物は、撥水 ·撥油剤や防汚剤として使用されている通 り、他の物質との親和性が悪い特性があることから、硬化の際にフッ素不含の化合物 と分離して屈折率の異なる領域を形成しやすいため、異方性拡散が強くなると考えら れる。 発明を実施するための最良の形態
[0013] 本発明の異方性拡散媒体について、以下詳細に説明を行う。
本発明の異方性拡散媒体の一実施形態は、図 1より説明できる。すなわち、フッ素 含有の光硬化性化合物とフッ素不含の光硬化性化合物を含む組成物の硬化物から なるシート状の異方性拡散媒体 1の内部には、微小な領域 2が多数形成されている。 これら微小領域 2は、異方性拡散媒体 1の法線 S方向に配された点状光源力 互い に平行な紫外線を照射して形成されており、これら微小領域は全て法線 S方向と平 行に形成されている。図 1では微小領域 2を円柱状に模式的に記載したが、その形 状は円状、多角形状、不定形状など、特に限定されるものではない。
[0014] 図 1における A— A線断面図の光学顕微鏡写真を図 2 (a)に、 B— B線断面図の光 学顕微鏡写真を図 2 (b)に示す。両断面図とも微小領域 2が存在していることを確認 できる。図 1の異方性拡散媒体では、このようにいずれの断面においても微小領域 2 が存在するため、いずれの方向からの入射光に対しても光拡散性 (拡散特性の入射 角依存性)を得ることができる。
[0015] さらには、照射光源を線状光源とした場合においては、硬化領域は図 3のような線 状光源の向きに平行な板状の硬化領域となり、拡散特性の入射角依存性は図 3の A —A線断面にぉ 、て確認できる。
[0016] すなわち、図 3には本発明の一実施形態が示され、フッ素含有の光硬化性化合物 とフッ素不含の光硬化性化合物とを含むシート状の異方性拡散媒体内に、屈折率の 異なる板状の領域が互いに平行に形成されたものである。図 3における A— A線断面 の光学顕微鏡写真を図 4 (a)に、 B— B線断面の光学顕微鏡写真を図 4 (b)に示す。 この異方性拡散媒体では、図 4 (a)のように A— A線断面で見た場合には屈折率の 変化がなく均質である。このような構造の異方性拡散媒体では、 A— A線断面に平行 する入射光に対しては光拡散性を得ることができる力 B— B線断面に平行する入射 光に対してはほとんど光拡散性を得ることはできない。
[0017] こちらも形状は板状に限定されるものではないが、ディスプレイはあらゆる角度から 鑑賞されるため、 360° 全てで異方性拡散を発現する棒状 (もしくは円状、多角形状 、不定形状等)の硬化領域を形成する方がより好まし ヽ。 [0018] さらに、フッ素含有の光硬化性ィ匕合物は、その分子量に占めるフッ素原子の割合 力 0%以上であることが好ましぐ 50%以上であることがより好ましい。
フッ素原子の割合が低いと、硬化した際に形成される領域が曖昧になり、異方性拡 散が弱くなる。
[0019] 本発明の異方性拡散媒体では、その拡散特性の入射角依存性を直線透過光量が 入射光の入射角によって異なることを特徴として 、る。一般に拡散特性としては、 JIS — K7105や JIS— K7136で示される拡散透過率や平行光線透過率、ヘーズで表現 される力 これらは積分球にサンプルを密着させて光漏れがないような条件で、法線 方向から光を照射して測定されるものであり、入射角度を任意に変えての測定は想 定されていない。すなわち、異方性拡散媒体の拡散特性の入射角依存性を評価す るための公式に認められた方法は存在しない。そこで、本発明では、図 5に示すよう に、図示しない光源と受光器 3との間にサンプルを配置し、サンプル表面の直線 Lを 中心として角度を変化させながらサンプルを直線透過して受光器 3に入る光量を測 定するという測定原理により直線透過光量の入射角依存性の評価を行うことにした。 具体的な装置としては、市販のヘーズメーターや変角光度計、分光光度計において 、光源と受光部との間に回転可能なサンプルホルダーを設けたものを使用することが できる。ここで得られる光量の値はあくまで相対的なものである力 直線透過光量の 角度依存性として図 6で示されるような測定結果を得ることができる。
[0020] この結果は直接散乱特性を表しているものではないが、直線透過光量が低下する ことで逆に拡散透過光量が増大することから、概ね拡散特性を示しているといえる。 そして、得られた直線透過光量の最大値と最小値との比率を直線透過光量の変化 率と定義し、異方性拡散の強さを評価している。
[0021] [数 1] 直線透過光量の最大値—直線透過光量の最小値
変化率 = :
直線透過光量の最大値
[0022] なお、以下直線透過光量およびその変化率により散乱特性の角度依存性を説明 する。 [0023] 前記測定法により測定される直線透過光量により、図 1に示す異方性拡散媒体を 透過する直線透過光量の入射角依存性を説明する模式的断面図を図 7に示す。図 7において、符号 2は棒状硬化領域を模式的に表したものであり、ここでは棒状硬化 領域は法線 S方向へ伸びている。この異方性拡散媒体の上方力 光が入射し、下方 へ出射する場合、法線 S方向、つまり棒状硬化領域の延在方向から入射した入射光 I
0は、異方性拡散媒体を通過する際に強く拡散されるため、その対応する直線透過 光量は小さい。図 7では、これを Iと同じ向きを持ち、直線透過光量に比例した大きさ
0
を持つ透過光ベクトル τで表している。次に、この入射光 Iから一定の角度だけ傾斜
0 0
した入射光 Iについては、これに対応する直線透過光量は増加するため、その透過 光ベクトル τは τより大きくなつている。さらに、入射光 Iよりも深い角度力もの入射
1 0 1
光 Iでは、その対応する透過光ベクトル τは τよりもさらに大きくなつている。
2 2 1
[0024] 入射光 Iから傾斜するすべての入射光について上記と同様に透過光量をベクトル
0
で表現し、そのベクトル先端部を結ぶと、図 7に破線で示す対称性を持つ曲線が得ら れる。さらに、入射光 I
0を含む他の断面について同様の検討を行った場合も、すべて の断面について図 7と同様の破線の曲線が得られる。すなわち、全ての方向につい て得られる透過光ベクトルの先端を結ぶと、図 8に示すような法線 S方向に軸を有す る釣鐘状曲面が得られることになる。
[0025] 本発明の異方性拡散媒体は上記の実施形態のみに限定されるものではなぐ例え ば図 9に示すような、法線 S方向から任意の角度傾斜した方向 Pを対称軸とした入射 光角度依存性を有する異方性拡散媒体とすることも可能である。
[0026] 図 9に示す異方性拡散媒体を透過する直線透過光量の入射角依存性を説明する 模式的断面図を図 10に示す。図 10において、符号 2は棒状硬化領域を模式的に示 したものである。この異方性拡散媒体についても上記と同様の検討を行うと、棒状硬 化領域の延在方向である P方向からの入射光 I
0、それに対して傾斜する入射光 I、 I
1 2 のそれぞれに対応する透過光ベクトル T、 T、 Tの先端を結べば、図 10に破線で
0 1 2
示した曲線が得られ、さらに入射光 Iを含むすべての断面について同様に透過光べ
0
タトルの先端を結べば、図 8に示すような方向 Pに対称軸を有する釣鐘状曲面が得ら れる。 [0027] 線状光源を用いて作製された異方性拡散媒体では、図 6に示す入射角依存性を 示すが、これは図 5に示された特定の直線 Lを中心にサンプルを回転させた場合だ けであって、サンプル面内の直線 Lと直交する直線を中心に回転させた場合は、直 線透過光量の入射角依存性がほとんど示されないか、全く異なった様相を呈すること になる。すなわち、図 11に示す直線 Lと同じ向きの線状光源力 光照射を行って作 製した光制御板にっ 、て、直線 Lを中心に光制御板を回転させた場合の直線透過 光量の角度依存性は図 12の実線で示される力 直線 Lと直交する直線 Mを中心に 回転させた場合は、破線のように全く異なった入射角依存性を示すのである。
[0028] また、本発明では、直線透過光量の入射角依存性の形状が所定の方向 Pを中心に 対称性を示すものであると述べた力 ここで言う対称性とは、図 6において方向 Pを差 す入射光の入射角を 0° として、入射光がプラス側の領域における直線透過光量の 最大値と最小値の差を AR、同様にマイナス側のそれを A Lで表し、 0. 5≤( AR/ A L)≤ 2の関係が成立する場合を言うものである。
[0029] 本発明の異方性拡散媒体は、光硬化性化合物を含む組成物に、直線 Pの方向か ら平行光線を照射して、該組成物を硬化させることにより作製されるが、この直線 Pの 方向としては、媒体の法線からの傾きが 45° 以内であることが求められ、 30° 以内 が好ましぐ 15° 以内であることがより好ましい。また、この直線 Pが法線と一致するこ とも本発明の好ましい形態である。なお、 45° 以上の深い傾き力も光を照射した場 合、照射光の吸収効率が悪く製造上不利であり、また本発明に示される直線 Pを含 む任意の入射面内における直線透過光量の入射角依存性の同一性を保てないた め好ましくない。これは図 10からも明らかなように、方向 Pの法線に対する傾斜が大き い場合、方向 Pに対して同じ角度だけ傾斜した入射光 I同士であっても、異方性拡
2
散媒体中の光路長がそれぞれ著しく異なってしまい、透過光 τ
2の光量に差が生じて しまうからである。
[0030] 本発明の異方性拡散媒体の形態としては、前記異方性拡散媒体単独、異方性拡 散媒体を透明基体上に積層した構成、異方性拡散媒体の両側に透明基体を積層し た構成が提供可能である。ここで透明基体としては、透明性は高いもの程良好であつ て、全光線透過率 (JIS K7361— 1)が 80%以上、より好ましくは 85%以上、最も好 ましくは 90%以上のもの、また、ヘーズ値 (JIS K7136)が 3. 0以下、より好ましくは 1. 0以下、最も好ましくは 0. 5以下のものが好適に使用できる。透明なプラスチックフ イルムやガラス板等が使用可能であるが、薄ぐ軽ぐ割れ難ぐ生産性に優れる点で プラスチックフィルムが好適である。具体的にはポリエチレンテレフタレート(PET)、 ポリエチレンナフタレート(PEN)、トリァセチルセルロース(TAC)、ポリカーボネート( PC)、ポリアリレート、ポリイミド(PI)、芳香族ポリアミド、ポリスルホン (PS)、ポリエーテ ルスルホン(PES)、セロファン、ポリエチレン(PE)、ポリプロピレン(PP)、ポリビュル アルコール (PVA)、シクロォレフィン榭脂等が挙げられ、これらの単独または混合、 更には積層したものを用いることが出来る。また基体の厚さは、用途や生産性を考慮 すると 1 μ m〜5mm、好ましくは 10〜500 μ m、より好ましくは、 50〜150 μ mである
[0031] 次に、本発明の異方性拡散媒体は、フッ素含有の光硬化性化合物と、フッ素不含 の光硬化性ィヒ合物とを含む組成物を硬化したものであり、これは、光照射により異方 性拡散媒体中に、屈折率の異なるミクロンオーダーの微細な構造が形成される。これ により本発明に示される特異な異方性拡散特性が発現できる。したがって、フッ素含 有の光硬化性化合物と、フッ素不含の光硬化性化合物とは、硬化の際に微細な構 造が形成されるよう相分離するものであることが好ましい。
[0032] また、フッ素含有の光硬化性化合物と、フッ素不含の光硬化性化合物は、未硬化 の状態では相溶性が高 、ことが好ましぐ任意の比率で相溶することがより好ま 、。 両者の相溶性が高 、組み合わせの場合、光硬化の際に形成される微細な構造がよ り細かくなり、硬化した際に形成される各々の領域が明確に分離されやすぐ異方性 拡散が強くなる。
[0033] フッ素含有の光硬化性ィ匕合物としては、その化学構造中にフッ素原子を有するラジ カル重合性またはカチオン重合性の官能基を有するポリマー、オリゴマー、モノマー から選択される。
[0034] ラジカル重合性の光硬化性ィ匕合物としては、具体的には 2, 2, 2 トリフルォロェチ ノレァクジレー卜、 2, 2, 3, 3, 3 ペンタフノレ才 Pプ Pピノレアクジレー卜、 2, 2, 3, 3—テ トラフルォロプロピルアタリレート、 2- (パーフルォロェチル) ェチルアタリレート、 2 (パーフルォロブチル) ェチルアタリレート、 2- (パーフルォロォクチル)ーェチ ルアタリレート、 3 パーフルォロブチルー 2 ヒドロプロピルアタリレート、 3 パーフ ルォ口へキシルー 2 ヒドロプロピルアタリレート、 2- (パーフルオロー 5—メチルへキ シル)ェチルアタリレート、 2- (パーフルオロー 7—メチルォクチル)ェチルアタリレー ト、 1H, 1H, 4H, 4H—パーフルオロー 1, 4 ブタンジオールジアタリレート、 1H, 1H, 6H, 6H—パーフルオロー 1, 6 へキサンジオールジアタリレート、 1H, 1H, 8 H, 8H—パーフルオロー 1, 8 オクタンジオールジアタリレート、ビスフエノール AF ジェチルジアタリレート、テトラフルオロー 1, 4ーヒドロキノンジグリコールジァクリレー ト等のアタリレートモノマーが挙げられる力 これらに限定されるものではない。また、 これらの化合物は、各単体で用いてもよぐ複数混合して用いてもよい。なお、同様に メタタリレートも使用可能である力 一般にはメタタリレートよりもアタリレートの方が光 重合速度が速 、ので好ま 、。
[0035] カチオン重合性の光硬化化合物としては、具体的には 3 ヘプタフルォロブチル
1, 2 エポキシェタン、 3 パーフルォロブチルー 1, 2 エポキシプロパン、 3— パーフルォ口へキシルー 1, 2 エポキシプロパン、 3 パーフルォロデシルー 1, 2 エポキシプロパン、 3 (パーフルオロー 3 メチルブチル) 1, 2 エポキシプロ パン、 3— (パーフルオロー 5—メチルへキシル) 1, 2 エポキシプロパン、 3- (パ 一フルォ口- 7-メチルォクチル) 1, 2 エポキシプロパン、 3- (2, 2, 3, 3—テトラ フルォロプロポキシ) 1, 2 エポキシプロパン、 3—(1H, 1H, 5H—ォクタフルォ 口ペンチルォキシ)—1, 2 エポキシプロパン、 3- [2- (パーフルォ口へキシル)ェ トキシ] 1, 2—エポキシプロパン、パーフルォロ(2— n—ブチルテトラヒドロフラン) 等の化合物が挙げられる力 これらに限定されるものではない。
[0036] フッ素不含の光硬化性ィ匕合物としては、その化学構造中にフッ素原子を有さないラ ジカル重合性またはカチオン重合性の官能基を有するポリマー、オリゴマー、モノマ 一から選択される。
[0037] ラジカル重合性の光硬化性ィ匕合物としては、具体的にはエポキシアタリレート、ウレ タンアタリレート、ポリエステルアタリレート、ポリエーテルアタリレート、ポリブタジエン アタリレート、シリコーンアタリレート等の名称で呼ばれるアクリルオリゴマーと、 2—ェ チルへキシルアタリレート、イソアミルアタリレート、ブトキシェチルアタリレート、ェトキ シジエチレングリコールアタリレート、フエノキシェチルアタリレート、テトラヒドロフルフ リルアタリレート、イソノルボル-ルアタリレート、 2—ヒドロキシェチルアタリレート、 2— ヒドロキシプロピルアタリレート、 2—アタリロイ口キシフタル酸、ジシクロペンテ二ルァク リレート、トリエチレングリコールジアタリレート、ネオペンチルグリコールジアタリレート 、 1, 6 へキサンジオールジアタリレート、ビスフエノール Aの EO付力卩物ジアタリレー ト、トリメチロールプロパントリアタリレート、 EO変成トリメチロールプロパントリアタリレー ト、ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、ジトリメ チロールプロパンテトラアタリレート、ジペンタエリスリトールへキサアタリレート等のァ タリレートモノマーが挙げられる。また、これらの化合物は、各単体で用いてもよぐ複 数混合して用いてもよい。なお、同様にメタタリレートも使用可能であるが、一般には メタタリレートよりもアタリレートの方が光重合速度が速 、ので好まし 、。
[0038] カチオン重合性の光硬化化合物としては、分子中にエポキシ基やビニルエーテル 基、ォキセタン基を 1個以上有する化合物が使用出来る。エポキシ基を有する化合 物としては、 2—ェチルへキシルジグリコールグリシジルエーテル、ビフエ二ルのグリシ ジルエーテル、ビスフエノール A、水添ビスフエノール A、ビスフエノール F、ビスフエノ ール AD、ビスフエノール S、テトラメチルビスフエノール A、テトラメチルビスフエノール F、テトラクロ口ビスフエノール A、テトラブロモビスフエノール A等のビスフエノール類 のジグリシジルエーテル類、フエノールノボラック、クレゾ一ルノボラック、ブロム化フエ ノールノボラック、オルトクレゾールノボラック等のノボラック榭脂のポリグリシジルエー テル類、エチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ブタ ンジオール、 1, 6 へキサンジオール、ネオペンチルグリコール、トリメチロールプロ パン、 1, 4 シクロへキサンジメタノール、ビスフエノール Aの EO付カ卩物、ビスフエノ ール Aの PO付カ卩物等のアルキレングリコール類のジグリシジルエーテル類、へキサ ヒドロフタル酸のグリシジルエステルやダイマー酸のジグリシジルエステル等のグリシ ジルエステル類が挙げられる。
[0039] 更に、 3, 4 エポキシシクロへキシノレメチノレー 3' , 4' エポキシシクロへキサン力 ルボキシレート、 2- (3, 4 エポキシシクロへキシルー 5, 5—スピロ 3, 4 ェポキ シ)シクロへキサン一メタ ジォキサン、ジ(3, 4—エポキシシクロへキシノレメチノレ)ァ ジペート、ジ(3, 4—エポキシー6—メチルシクロへキシルメチル)アジペート、 3, 4 エポキシー6—メチルシクロへキシルー 3' , 4' —エポキシ 6 ' —メチルシクロへキ サン力ノレボキシレート、メチレンビス(3, 4—エポキシシクロへキサン)、ジシクロペンタ ジェンジエポキシド、エチレングリコールのジ(3, 4—エポキシシクロへキシルメチル) エーテル、エチレンビス(3, 4—エポキシシクロへキサンカルボキシレート)、ラタトン 変'性 3, 4—エポキシシクロへキシノレメチノレー 3' , 4'—エポキシシクロへキサンカノレボ キシレート、テトラ(3, 4—エポキシシクロへキシノレメチノレ)ブタンテトラ力ノレボキシレー ト、ジ(3, 4—エポキシシクロへキシルメチル)ー 4, 5—エポキシテトラヒドロフタレート 等の脂環式エポキシ化合物も挙げられる力 これらに限定されるものではない。
[0040] ビュルエーテル基を有する化合物としては、例えばジエチレングリコールジビュル エーテル、トリエチレングリコールジビニノレエーテル、ブタンジオールジビニノレエーテ ル、へキサンジオールジビニルエーテル、シクロへキサンジメタノールジビニルエー テル、ヒドロキシブチルビニルエーテル、ェチルビニルエーテル、ドデシルビニルェ ーテノレ、 トリメチローノレプロパントリビニノレエーテノレ、プロぺニノレエーテノレプロピレン力 ーボネート等が挙げられる力 これらに限定されるものではない。なおビュルエーテ ルイ匕合物は、一般にはカチオン重合性である力 アタリレートと組み合わせることによ りラジカル重合も可能である。
[0041] またォキセタン基を有する化合物としては、 1, 4 ビス [ (3 ェチルー 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 3—ェチルー 3—(ヒドロキシメチル) ォキセタン等が 使用できる。
[0042] なお、以上のカチオン重合性ィ匕合物は、各単体で用いてもよぐ複数混合して用い てもよい。
[0043] 上記に列挙した光硬化性化合物を硬化させるためには感光性の光開始剤が必要 となる。ラジカル重合性ィ匕合物を重合させることの出来る光開始剤としては、ベンゾフ ェノン、ベンジル、ミヒラーズケトン、 2 クロ口チォキサントン、 2, 4 ジェチノレチォキ サントン、ベンゾインェチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインィ ソブチルエーテル、 2, 2—ジエトキシァセトフエノン、ベンジルジメチルケタール、 2, 2—ジメトキシ一 1, 2—ジフエニルェタン一 1—オン、 2—ヒドロキシ一 2—メチル 1 フエニルプロパン 1 オン、 1ーヒドロキシシクロへキシルフェニルケトン、 2—メチ ルー 1 [4 (メチルチオ)フエ-ル] 2 モルフォリノプロパノン 1、 1 [4一(2 -ヒドロキシエトキシ)一フエ-ル]— 2—ヒドロキシ - 2—メチル 1—プロパン一 1 オン、ビス(シクロペンタジェ -ル)一ビス(2, 6 ジフノレオ口一 3— (ピル一 1—ィル) チタニウム、 2—ベンジル一 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)一ブ タノン一 1、 2, 4, 6 トリメチルベンゾィルジフエ-ルフォスフィンオキサイド等が挙げ られる。また、これらの化合物は、各単体で用いてもよぐ複数混合して用いてもよい またカチオン重合性ィ匕合物の光開始剤は光照射によって酸を発生し、この発生し た酸により上述のカチオン重合性ィヒ合物を重合させることが出来る化合物であり、一 般的には、ォ -ゥム塩、メタ口セン錯体が好適に用いられる。ォ -ゥム塩としては、ジ ァゾニゥム塩、スルホ -ゥム塩、ョードニゥム塩、ホスホ-ゥム塩、セレニウム塩等が使 用され、これらの対イオンには、 BF―、 PF―、 AsF―、 SbF—等のァ-オンが用いら
4 6 6 6
れる。具体例としては、 4—クロ口ベンゼンジァゾ -ゥムへキサフルォロホスフェート、ト リフエ-ノレスノレホ-ゥムへキサフノレオ口アンチモネート、トリフエ-ノレスノレホ-ゥムへキ サフノレオ口ホスフェート、(4 フエ-ノレチォフエ-ル)ジフエ-ノレスノレホニゥムへキサ フルォロアンチモネート、(4 フエ-ルチオフエ-ル)ジフエ-ルスルホ -ゥムへキサ フルォロホスフェート、ビス [4— (ジフエ-ルスルホ -ォ)フエ-ル]スルフイド一ビス一 へキサフルォロアンチモネート、ビス [4— (ジフエ-ルスルホ -ォ)フエ-ル]スルフィ ド ビス -へキサフノレオ口ホスフェート、(4 -メトキシフエ-ル)ジフエ-ノレスノレホ-ゥ ムへキサフルォロアンチモネート、(4ーメトキシフエ-ル)フエ-ルョードニゥムへキサ フルォロアンチモネート、ビス(4 t ブチルフエ-ル)ョード -ゥムへキサフルォロホ スフエート、ベンジルトリフエ-ノレホスホ-ゥムへキサフノレオ口アンチモネート、トリフエ 二ルセレニウムへキサフルォロホスフェート、 ( 7} 5—イソプロピルベンゼン)( 5—シ クロペンタジェ -ル)鉄(Π)へキサフルォロホスフェート等が挙げられる力 これらに 限定されるものではない。また、これらの化合物は、各単体で用いてもよぐ複数混合 して用いてもよい。 [0045] 本発明において、上記光開始剤は、光重合性ィ匕合物 100重量部に対して、 0. 01 〜: LO重量部、好ましくは 0. 1〜7重量部、より好ましくは 0. 1〜5重量部程度配合さ れる。これは、 0. 01重量部未満では光硬化性が低下し、 10重量部を超えて配合し た場合には、表面だけが硬化して内部の硬化性が低下してしまう弊害が出てくるから である。これらの光開始剤は、通常粉体を光重合性ィ匕合物中に直接溶解して使用さ れるが、溶解性が悪い場合は光開始剤を予め極少量の溶剤に高濃度に溶解させた ものを使用することも出来る。このような溶剤としては光重合性であることが更に好まし く具体的には炭酸プロピレン、 y—プチ口ラタトン等が挙げられる。また、光重合性を 向上させるために公知の各種染料や増感剤を添加することも可能である。更に光重 合性ィヒ合物を加熱により硬化させることの出来る熱硬化開始剤を光開始剤と共に併 用することも出来る。この場合光硬化の後に加熱することにより光重合性化合物の重 合硬化を更に促進し完全なものにすることが期待できる。
[0046] 本発明では、上記のフッ素含有の光硬化性ィヒ合物とフッ素不含の光硬化性ィヒ合物 を混合した組成物を硬化させて、異方性拡散媒体を形成することが出来るが、さらに 他の光硬化性化合物と光硬化性を有しな!/ヽ高分子榭脂を加えてもよ!ヽ。ここで使用 できる高分子榭脂としては、アクリル榭脂、スチレン榭脂、スチレン—アクリル共重合 体、ポリウレタン榭脂、ポリエステル榭脂、エポキシ榭脂、セルロース系榭脂、酢酸ビ 二ル系榭脂、塩ビー酢ビ共重合体、ポリビニルブチラール榭脂等が挙げられる。これ らの高分子榭脂と光硬化性ィ匕合物は、光硬化前は十分な相溶性を有して 、ることが 必要であるが、この相溶性を確保するために各種有機溶剤や可塑剤等を使用するこ とも可能である。なお、光硬化性ィ匕合物としてアタリレートを使用する場合は、高分子 榭脂としてはアクリル榭脂から選択することが相溶性の点で好ましい。
[0047] 本発明の異方性拡散媒体の製造方法としては、光硬化性化合物を光照射により硬 化させる以外は特に限定されるものではないが、一例として上述の光硬化性ィヒ合物 を含む組成物をシート状に設け、これに直線 Pの方向から平行光線を照射して、該組 成物を硬化させることにより製造されるものである。
[0048] なお、光照射の際に光硬化性化合物を含む組成物の硬化を促進させたり異方性 拡散の強さをコントロールしたりする等の目的で、シート上に設けた組成物の片面ま たは両面を光線が透過する透明な可撓性シートで覆ってもよい。さらに同様の目的 で、光照射の前後にシート状に設けた組成物を加熱してもよい。
[0049] ここで、光硬化性化合物を含む組成物を基体上にシート状に設ける手法としては、 通常の塗工方式や印刷方式が適用される。具体的には、エアドクターコーティング、 バーコーティング、ブレードコーティング、ナイフコーティング、リバースコーティング、 トランスファロールコーティング、グラビアロールコーティング、キスコーティング、キヤ ストコーティング、スプレーコーティング、スロットオリフィスコーティング、カレンダーコ 一ティング、ダムコーティング、ディップコーティング、ダイコーティング等のコーティン グゃ、グラビア印刷等の凹版印刷、スクリーン印刷等の孔版印刷等の印刷等が使用 できる。また、組成物が低粘度の場合は、基体の周囲に一定の高さの堰を設けて、こ の堰で囲まれた中に組成物をキャストすることも出来る。
[0050] シート状に設けた光硬化性ィ匕合物を含む組成物に光照射を行うための光源として は、通常はショートアークの紫外線発生光源が使用され、具体的には高圧水銀灯、 低圧水銀灯、メタルノヽライドランプ、キセノンランプ等が使用可能である。
[0051] 光照射によって形成される微細構造の形状は発光面の形状によって異なっており 、棒状の発光面を有する光源では板状の微細構造が形成されるのに対し、レジスト の露光に使用される平行光源を使用すると、棒状の微細構造が形成されるが、本発 明の用途からすると、こちらの方がより好ましい。また、棒状の微細構造を形成する場 合、異方性拡散媒体のサイズが小さい場合は、紫外線スポット光源を用いて十分離 れた距離力 照射することも可能である。
[0052] 光硬化性ィ匕合物を含む組成物をシート状にしたものに照射する光源は、該光硬化 性ィ匕合物を硬化可能な波長を含んで 、ることが必要で、通常は水銀灯の 365nmを 中心とする波長の光が利用される。この波長帯を使って本発明の異方性拡散媒体を 作製する場合、照度としては 0. 01〜: LOOmWZcm2の範囲であることが好ましぐよ り好ましくは 0. l〜20mWZcm2の範囲である。照度が 0. OlmWZcm2以下である と硬化に長時間を要するため、生産効率が悪くなり、 lOOmWZcm2以上であると光 硬化性化合物の硬化が速過ぎて構造形成を生じず、目的の異方性拡散特性を発現 できなくなるからである。 [実施例]
実施例 1
[0053] 厚さ 75 m、 76 X 26mmサイズの PETフィルム(東洋紡社製、商品名: A4300)の 縁部全周に、ディスペンサーを使い硬化性榭脂で高さ 0. 2mmの隔壁を形成した。 この中に下記の紫外線硬化榭脂組成物を滴下し、別の PETフィルムでカバーした。 •2 (パーフルォロォクチル)ーェチノレアタリレート 50重量部
(フッ素含有率 61%、共栄社ィ匕学社製、商品名:ライトアタリレート FA— 108) •1, 9ーノナンジオールジアタリレート 50重量部
(フッ素不含、共栄社ィ匕学社製、商品名:ライトアタリレート 1. 9ND-A)
• 2 -ヒドロキシ - 2-メチル 1 フエ-ルプロパン一 1 オン 4重量部
(チノく'スペシャルティ'ケミカルズ製、商品名: Darocurel l73)
この両面を PETフィルムで挟まれた 0. 2mmの厚さの液膜に対して、 UVスポット光 源 (浜松ホトニタス社製、商品名: L2859— 01)の落射用照射ユニットから垂直に、照 射強度 30mWZcm2の紫外線を 1分間照射して、図 1に示すような棒状の微小な領 域を多数有する実施例 1の異方性拡散媒体を得た。
実施例 2
[0054] 76 X 26mmサイズのスライドガラスの縁部全周に、ディスペンサーを使 、硬化性榭 脂で高さ 0. 2mmの隔壁を形成した。この中に下記の紫外線硬化榭脂組成物を滴下 し、別のスライドガラスでカバーした。
•2 (パーフルォロォクチル)-ェチルアタリレート 50重量部
(フッ素含有率 61%、共栄社ィ匕学社製、商品名:ライトアタリレート FA— 108)
•1, 9ーノナンジオールジアタリレート 50重量部
(フッ素不含、共栄社ィ匕学社製、商品名:ライトアタリレート 1. 9ND-A)
• 2 -ヒドロキシ - 2-メチル 1 フエ-ルプロパン一 1 オン 4重量部
(チノく'スペシャルティ'ケミカルズ製、商品名: Darocurel l73)
この両面をスライドガラスで挟まれた 0. 2mmの厚さの液膜に対して、 UVスポット光 源 (浜松ホトニタス社製、商品名: L2859— 01)の落射用照射ユニットから垂直に、照 射強度 30mWZcm2の紫外線を 1分間照射した。その後両側のスライドガラスを外し て、図 1に示すような棒状の微小な領域を多数有する実施例 2の異方性拡散媒体を 得た。
実施例 3
[0055] 実施例 1と同じ PETフィルムに挟まれた状態の紫外線硬化組成物に、 PETフィルム の長辺と直交する方向に配置した発光長さ 125mmの線状 UV光源(日本 UVマシ ーン社製、商品名:ハンディ UV装置 HUV— 1000)から、実施例 1と同じ照射強度 の紫外線を垂直に照射して、図 3に示すような屈折率の異なる板状の領域を有する 実施例 3の異方性拡散媒体を得た。
実施例 4
[0056] 76 X 26mmサイズのスライドガラスの縁部全周に、ディスペンサーを使 、硬化性榭 脂で高さ 0. 2mmの隔壁を形成した。この中に下記の紫外線硬化榭脂組成物を滴下 し、別のスライドガラスでカバーした。
•2, 2, 2 トリフロロェチルメタタリレート 50重量部
(フッ素含有率 33%、共栄社ィ匕学社製、商品名:ライトエステル M— 3F) •1, 9ーノナンジオールジアタリレート 50重量部
(フッ素不含、共栄社ィ匕学社製、商品名:ライトアタリレート 1. 9ND-A) • 2 -ヒドロキシ - 2-メチル 1 フエ-ルプロパン一 1 オン 4重量部
(チノく'スペシャルティ'ケミカルズ製、商品名: Darocurel l73)
この両面をスライドガラスで挟まれた 0. 2mmの厚さの液膜に対して、 UVスポット光 源 (浜松ホトニタス社製、商品名: L2859— 01)の落射用照射ユニットから垂直に、照 射強度 30mWZcm2の紫外線を 1分間照射した。その後両側のスライドガラスを外し て、図 1に示すような棒状の微小な領域を多数有する実施例 4の異方性拡散媒体を 得た。
[0057] [比較例]
76 X 26mmサイズのスライドガラスの縁部全周に、ディスペンサーを使 、硬化性榭 脂で高さ 0. 2mmの隔壁を形成した。この中に下記の紫外線硬化榭脂組成物を滴下 し、別のスライドガラスでカバーした。
•3—メチルー n ブチルアタリレート 50重量部 (フッ素不含、共栄社ィ匕学社製、商品名:ライトアタリレート IAA)
•1, 9ーノナンジオールジアタリレート 50重量部
(フッ素不含、共栄社ィ匕学社製、商品名:ライトアタリレート 1. 9ND-A) • 2 -ヒドロキシ - 2-メチル 1 フエ-ルプロパン一 1 オン 4重量部
(チノく'スペシャルティ'ケミカルズ製、商品名: Darocurel l73)
この両面をスライドガラスで挟まれた 0. 2mmの厚さの液膜に対して、 UVスポット光 源 (浜松ホトニタス社製、商品名: L2859— 01)の落射用照射ユニットから垂直に、照 射強度 30mWZcm2の紫外線を 1分間照射した。その後両側のスライドガラスを外し て、図 1に示すような棒状の微小な領域を多数有する比較例の異方性拡散媒体を得 た。
[0058] ゴ-オフオトメーター (村上色彩社製、商品名: GP— 5)を使い、光源からの直進光 を受ける位置に受光部を固定し、その間のサンプルホルダーに実施例 1〜4および 比較例で得られた異方性拡散媒体をセットした。図 11に示すようにサンプルの短辺 方向を回転軸 (L)としてサンプルを回転させてそれぞれの入射角に対応する直線透 過光量を測定し、これを「短辺軸回転」と名付けた。次にサンプルホルダー力もサン プルをー且外して、これを面内に 90° 回転させて再度セットすることにより、今度はス ライドガラスの長辺を回転軸 (M)とする直線透過光量を測定し、「長辺軸回転」とした
[0059] 実施例 1〜4と比較例の異方性拡散媒体について、 2つの回転軸に対して測定した 入射角と直線透過光量との関係をそれぞれ図 13〜図 16と図 17に示す。実施例 2、 4では短辺軸回転と長辺軸回転の両者とも入射角 0° に小さい山を含む、直線透 過光量の変化率が約 0. 8〜0. 9の深い谷状で、ほぼ左右対称であることがわかる。 また、実施例 3では短辺軸回転で他の実施例と類似の深い谷状を示し、長辺軸回転 では入射角を変えても直線透過光量は短辺軸回転の谷の大きさでほとんど変化しな い、選択的な異方性拡散を示した。
[0060] これら実施例に対し、比較例の異方性拡散媒体では、直線透過光量の変化率が 約 0. 64〜0. 65の浅い谷状を示しており、実施例と比較して異方性拡散が不十分 であることが明らかである。 産業上の利用可能性
[0061] 以上説明したように、本発明によれば、光線の入射角度による直線透過光量の変 化量が多!、異方性拡散媒体を提供することができる。
図面の簡単な説明
[0062] [図 1]本発明の異方性拡散媒体の一例を示す模式図である。
[図 2] (a)図 1における A— A線断面を示す光学顕微鏡写真である。 (b)図 1における
B— B線断面 (A— A線断面に直交する断面)を示す光学顕微鏡写真である。
[図 3]本発明の異方性拡散媒体の一例を示す模式図である。
[図 4] (a)図 3の異方性拡散媒体における A— A線断面 (線状光源の向きと垂直な断 面)を示す光学顕微鏡写真である。 (b)図 3の異方性拡散媒体における B— B線断面
(線状光源の向きと平行な断面)を示す光学顕微鏡写真である。
[図 5]異方性拡散媒体の直線透過光量の入射角依存性の評価方法を示す模式図で ある(直線 Lのみを回転軸とした場合)。
[図 6]異方性拡散媒体の直線透過光量の入射角依存性の評価における入射角と直 線透過光量の関係を示すグラフである。
[図 7]図 1の異方性拡散媒体を透過する直線透過光量の入射角依存性を説明する 模式的断面図である。
[図 8]本発明の異方性拡散媒体を透過する直線透過光量の入射角依存性を説明す る模式図である。
[図 9]本発明の異方性拡散媒体の他の実施形態を示す模式図である。
[図 10]図 9の異方性拡散媒体を透過する直線透過光量の入射角依存性を説明する 模式的断面図である。
[図 11]異方性拡散媒体の直線透過光量の入射角依存性の評価方法を示す模式図 である(直線 Lおよび Mを回転軸とした場合)。
[図 12]異方性拡散媒体の直線透過光量の入射角依存性の評価における入射角と直 線透過光量の関係を示すグラフである。
[図 13]実施例 1における直線透過光量の入射角依存性を示すグラフである。
[図 14]実施例 2における直線透過光量の入射角依存性を示すグラフである。 [図 15]実施例 3における直線透過光量の入射角依存性を示すグラフである。
[図 16]実施例 4における直線透過光量の入射角依存性を示すグラフである。
[図 17]比較例における直線透過光量の入射角依存性を示すグラフである。 符号の説明
1 異方性拡散媒体
2 棒状硬化領域
3 受光部
I 入射光
T 透過光
P 入射方向
S 異方性拡散媒体表面の法線

Claims

請求の範囲
[1] 少なくともフッ素を含有する光硬化性化合物およびフッ素を含有しない光硬化性化 合物を含む組成物の硬化物力 なる榭脂層を有する異方性拡散媒体であって、上 記榭脂層を光線が透過する際の直線透過光量が、上記榭脂層に対する入射光の入 射角によって異なることを特徴とする異方性拡散媒体。
[2] 前記フッ素を含有する光硬化性化合物中のフッ素原子が占める質量の割合力 0 %以上であることを特徴とする請求項 1に記載の異方性拡散媒体。
[3] 前記榭脂層の内部には、複数の棒状硬化領域の集合体が形成されており、上記 棒状硬化領域は、所定の方向 Pに対して平行に延在し、上記異方性拡散媒体の一 方の側の任意の点における入射光の各入射方向に対応するそれぞれの直線透過 光量を、上記異方性拡散媒体の他方の側の空間の上記任意の点に対応する出射 点を起点として出射方向にベクトル表示した場合に、これらベクトルの先端を結んで 得られる曲面が、上記所定の方向 Pに対称軸を有する釣鐘状曲面であることを特徴 とする請求項 1または 2に記載の異方性拡散媒体。
[4] 前記所定の方向 Pは、前記異方性拡散媒体表面に対する法線 Sであることを特徴 とする請求項 1〜3のいずれかに記載の異方性拡散媒体。
[5] 透明基体上に請求項 1〜4のいずれ力に記載の異方性拡散媒体を積層した構成 からなることを特徴とする異方性拡散媒体。
[6] 請求項 1〜4の 、ずれかに記載の異方性拡散媒体の両側に透明基体を積層した 構成からなることを特徴とする異方性拡散媒体。
PCT/JP2005/019038 2004-10-20 2005-10-17 異方性拡散媒体 WO2006043508A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05793488A EP1806603A1 (en) 2004-10-20 2005-10-17 Anisotropic diffusion medium
US11/665,632 US20070291366A1 (en) 2004-10-20 2005-10-17 Anisotropic Diffusing Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-305232 2004-10-20
JP2004305232A JP4135940B2 (ja) 2004-10-20 2004-10-20 異方性拡散媒体

Publications (1)

Publication Number Publication Date
WO2006043508A1 true WO2006043508A1 (ja) 2006-04-27

Family

ID=36202924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019038 WO2006043508A1 (ja) 2004-10-20 2005-10-17 異方性拡散媒体

Country Status (7)

Country Link
US (1) US20070291366A1 (ja)
EP (1) EP1806603A1 (ja)
JP (1) JP4135940B2 (ja)
KR (1) KR20070083713A (ja)
CN (1) CN101044420A (ja)
TW (1) TW200622285A (ja)
WO (1) WO2006043508A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053592A1 (fr) * 2006-10-31 2008-05-08 Tomoegawa Co., Ltd. Film de diffusion de lumière anisotrope, ainsi que dispositif d'affichage et dispositif d'affichage à cristaux liquides utilisant ce même film
JPWO2008120709A1 (ja) * 2007-03-31 2010-07-15 株式会社巴川製紙所 プロジェクタ用反射型スクリーン
WO2009142900A1 (en) * 2008-05-22 2009-11-26 Dow Global Technologies Inc. Epoxy resin reactive diluent compositions
JP5435783B2 (ja) * 2008-10-15 2014-03-05 日東電工株式会社 光学素子、指向性拡散フィルムおよび光学素子の製造方法
JP4749483B2 (ja) * 2009-07-16 2011-08-17 東芝テック株式会社 商品情報読取表示装置
JP5926941B2 (ja) * 2010-12-15 2016-05-25 リンテック株式会社 異方性光拡散フィルム用組成物および異方性光拡散フィルム
JP5738006B2 (ja) * 2011-03-01 2015-06-17 株式会社巴川製紙所 光学フィルム
JP5749960B2 (ja) 2011-03-30 2015-07-15 株式会社ジャパンディスプレイ 表示装置および電子機器
US9523799B2 (en) 2012-01-19 2016-12-20 Lintec Corporation Method for producing light diffusion film and light diffusion film
WO2013108540A1 (ja) * 2012-01-19 2013-07-25 リンテック株式会社 異方性光拡散フィルム
JP5912767B2 (ja) * 2012-03-30 2016-04-27 リンテック株式会社 異方性光拡散フィルム
US10330831B2 (en) * 2014-01-21 2019-06-25 Tomoegawa Co., Ltd. Anisotropic optical film
KR102372287B1 (ko) 2016-09-14 2022-03-08 가부시키가이샤 도모에가와 세이시쇼 반사형 표시 장치용 광확산 필름 적층체 및 이것을 이용한 반사형 표시 장치
JP6994647B2 (ja) 2018-06-28 2022-02-04 パナソニックIpマネジメント株式会社 照明装置
KR102710337B1 (ko) * 2023-04-13 2024-09-26 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 편광자 및 액정 디스플레이 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762154A2 (en) * 1995-08-31 1997-03-12 Sumitomo Chemical Company, Limited Optical filter and liquid crystal display device comprising the same
EP0949515A2 (en) * 1998-04-08 1999-10-13 Toppan Printing Co., Ltd. Light scattering film and liquid crystal display device
JP2001221907A (ja) * 2000-02-10 2001-08-17 Toppan Printing Co Ltd 異方性光散乱フィルム用組成物及び異方性光散乱フィルム
JP2001228312A (ja) * 2000-02-15 2001-08-24 Toppan Printing Co Ltd 軸外し異方性光散乱フィルム及びその製造に用いる偏向用光重合性組成物
WO2003025632A1 (fr) * 2001-09-17 2003-03-27 Clariant International Ltd. Stratifie optique presentant des caracteristiques de diffusion/transmission
JP2003315508A (ja) * 2002-04-19 2003-11-06 Nitto Denko Corp 光拡散板、その製造方法、光学素子および画像表示装置
JP2004054132A (ja) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd 反射スクリーン
JP2004087234A (ja) * 2002-08-26 2004-03-18 Daicel Chem Ind Ltd 面光源ユニット及びそれを用いた透過型表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139879A (en) * 1991-09-20 1992-08-18 Allied-Signal Inc. Fluoropolymer blend anti-reflection coatings and coated articles
US6306563B1 (en) * 1999-06-21 2001-10-23 Corning Inc. Optical devices made from radiation curable fluorinated compositions
JP2002318311A (ja) * 2001-04-20 2002-10-31 Clariant (Japan) Kk 制御された散乱・透過特性を有する光学フィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762154A2 (en) * 1995-08-31 1997-03-12 Sumitomo Chemical Company, Limited Optical filter and liquid crystal display device comprising the same
EP0949515A2 (en) * 1998-04-08 1999-10-13 Toppan Printing Co., Ltd. Light scattering film and liquid crystal display device
JP2001221907A (ja) * 2000-02-10 2001-08-17 Toppan Printing Co Ltd 異方性光散乱フィルム用組成物及び異方性光散乱フィルム
JP2001228312A (ja) * 2000-02-15 2001-08-24 Toppan Printing Co Ltd 軸外し異方性光散乱フィルム及びその製造に用いる偏向用光重合性組成物
WO2003025632A1 (fr) * 2001-09-17 2003-03-27 Clariant International Ltd. Stratifie optique presentant des caracteristiques de diffusion/transmission
JP2003315508A (ja) * 2002-04-19 2003-11-06 Nitto Denko Corp 光拡散板、その製造方法、光学素子および画像表示装置
JP2004054132A (ja) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd 反射スクリーン
JP2004087234A (ja) * 2002-08-26 2004-03-18 Daicel Chem Ind Ltd 面光源ユニット及びそれを用いた透過型表示装置

Also Published As

Publication number Publication date
KR20070083713A (ko) 2007-08-24
JP2006119241A (ja) 2006-05-11
JP4135940B2 (ja) 2008-08-20
US20070291366A1 (en) 2007-12-20
CN101044420A (zh) 2007-09-26
EP1806603A1 (en) 2007-07-11
TW200622285A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
WO2006043508A1 (ja) 異方性拡散媒体
KR102316118B1 (ko) 이방성 광학 필름
KR102240334B1 (ko) 이방성 광학 필름
JP6433638B1 (ja) 異方性光学フィルムを用いた導光積層体及びそれを用いた面状光源装置
JP5670601B2 (ja) 異方性光学フィルム
JP6716313B2 (ja) 異方性光学フィルムの製造方法
KR101286859B1 (ko) 광학 필름
JP6093113B2 (ja) 異方性光学フィルム
JP6039911B2 (ja) 偏光板用異方性光学フィルムおよびその製造方法
JP5090862B2 (ja) 異方性拡散媒体及びそれを使用した光源ユニット
JP2005265915A (ja) 異方性拡散媒体及びその製造方法
JP4095573B2 (ja) 異方性拡散媒体の製造方法
JP2013167814A (ja) 異方性光学フィルム
JP2015222441A (ja) 異方性光学フィルム
JP6745625B2 (ja) 異方性光学フィルム
JP6542007B2 (ja) 異方性光学フィルム及びその製造方法
US20070190317A1 (en) Anisotropic scattering adhesive member
JP2007134281A (ja) バックライトユニット及びそれを使用した液晶表示装置
JP2019179203A (ja) 異方性光学フィルム
JP7475182B2 (ja) 異方性光拡散フィルム積層体および表示装置
JP2017187770A (ja) 異方性光学フィルム及びその製造方法
JP2023130815A (ja) 液晶フォトマスク積層体及び露光装置
CN115280190A (zh) 各向异性光扩散膜及显示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11665632

Country of ref document: US

Ref document number: 1020077008779

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005793488

Country of ref document: EP

Ref document number: 200580036102.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005793488

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11665632

Country of ref document: US