WO2006040902A1 - 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置 - Google Patents

回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置 Download PDF

Info

Publication number
WO2006040902A1
WO2006040902A1 PCT/JP2005/017092 JP2005017092W WO2006040902A1 WO 2006040902 A1 WO2006040902 A1 WO 2006040902A1 JP 2005017092 W JP2005017092 W JP 2005017092W WO 2006040902 A1 WO2006040902 A1 WO 2006040902A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive
lens structure
optical element
diffractive lens
diffraction
Prior art date
Application number
PCT/JP2005/017092
Other languages
English (en)
French (fr)
Other versions
WO2006040902A9 (ja
Inventor
Katsuhiro Koike
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2006540856A priority Critical patent/JP4340690B2/ja
Priority to EP05783583A priority patent/EP1801798B1/en
Priority to DE602005018801T priority patent/DE602005018801D1/de
Publication of WO2006040902A1 publication Critical patent/WO2006040902A1/ja
Publication of WO2006040902A9 publication Critical patent/WO2006040902A9/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4238Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in optical recording or readout devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/188Plurality of such optical elements formed in or on a supporting substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Definitions

  • Diffractive optical element Diffractive optical element, objective lens module, optical pickup and optical information recording / reproducing apparatus
  • the present invention relates to an optical pickup optical system in an optical information recording / reproducing apparatus for recording / reproducing information from / to optical disks having different wavelengths, and in particular, compatible with a plurality of optical recording media using laser light sources having different wavelengths.
  • the present invention relates to an optical information recording / reproducing apparatus, an optical pickup, an objective lens module, and a diffractive optical element.
  • Optical information recording / reproducing devices include optical disc devices that can read recorded information from optical discs such as Digital Versati 1 e D isc (hereinafter referred to as DVD) and Comp act Disc (hereinafter referred to as CD).
  • DVD Digital Versati 1 e D isc
  • CD Comp act Disc
  • Compatible optical disk devices that can read recorded information from DVDs and CDs are known.
  • the substrate thickness is 0.6 mm
  • the corresponding wavelength is 635 nm to 655 nm
  • the numerical aperture (NA) of the objective lens is about 0.6.
  • the substrate thickness is 1.2 mm
  • the corresponding wavelength is 760 to 800 nm
  • the numerical aperture of the objective lens is about 0.45.
  • This compatible optical disk device may be equipped with a laser light source having a wavelength of about 660 nm for DVD and a laser light source for emitting a laser beam of ⁇ DVD having a wavelength of about 780 nm for CD. For example, information can be recorded and played back on DVD / CD information recording media with different substrate thicknesses.
  • An objective lens provided with such a diffraction ring zone has a diffraction surface having a diffraction ring zone, and when the optical path difference function of the diffraction surface is ⁇ (h) (h is a distance from the optical axis), a predetermined distance h Where (h) Zdh is a discontinuous or substantially discontinuous function.
  • the thickness of the transparent protective layer of Blu-ray D isc (hereinafter referred to as BD) (equivalent to the thickness of the transparent substrate such as DVD) is 0.1 mm, the corresponding wavelength is 408 nm, and the aperture of the object lens The number is about 0.85. Therefore, in addition to the configuration of the compatible optical disc device, the BD, DVD, and CD compatible optical disc device must be equipped with a laser light source that emits an A BD laser beam having a wavelength of about 408 nm and its optical system. is there. In addition, since BD, DVD, and CD all have different optical disc thicknesses, it is necessary to have means for correcting three different types of spherical aberration.
  • the problem to be solved by the present invention is to provide an optical information recording / reproducing apparatus, an optical pick-up, and a diffractive optical element suitable for downsizing capable of recording / reproducing with respect to optical disks or recording surfaces having different wavelengths.
  • an optical information recording / reproducing apparatus an optical pick-up, and a diffractive optical element suitable for downsizing capable of recording / reproducing with respect to optical disks or recording surfaces having different wavelengths.
  • the objective lens module of the present invention is disposed concentrically with the condensing lens disposed coaxially in the optical path of the first laser light having the first wavelength, and concentrically disposed with the diffracted light of the first laser light incident on the condensing lens.
  • An objective lens module comprising a transmissive diffractive optical element, an entrance surface and an exit surface;
  • Second and third regions comprising diffraction gratings of different diffraction angles, which are provided around at least one optical axis of the entrance surface and the exit surface and are defined by different radial distances in order from the optical axis;
  • the first region diffracts the odd-order diffracted light of the first laser light to the condenser lens; PT / JP2005 / 017092
  • the second region diffracts even-order diffracted light of the first laser light to the condenser lens
  • the third region transmits even-order or zero-order diffracted light of the first laser light to the condenser lens.
  • the light is diffracted, and the condensing lens condenses the diffracted light from the first, second, and third regions with a predetermined aperture.
  • the diffractive optical element of the present invention includes an object lens for condensing the first laser beam on the first recording medium, a plurality of laser beams having different wavelengths from the first laser beam, and the plurality of lasers.
  • a diffractive optical element provided on an optical path of the first laser beam and the plurality of laser beams to be shared by a plurality of recording media corresponding to each of the light;
  • the plurality of laser beams include a second laser beam corresponding to the second recording medium and a third laser beam corresponding to the third recording medium,
  • a first diffractive lens structure which is provided around the optical axis and corrects an aberration generated based on a difference in wavelength between the first laser beam and the second and third laser beams; and the first diffractive lens structure And a second diffractive lens structure which is provided in the periphery and corrects aberrations generated based on a difference in wavelength between the first laser beam and the second laser beam.
  • the first recording medium has a recording layer that receives light through a transmission protective layer having a first thickness
  • the second recording medium has a second thickness not less than the first thickness
  • the third recording medium has a recording layer that receives light through a transmission protective layer having a second thickness that is a dog from the second thickness.
  • the first diffractive lens structure includes a first thickness of the transmission protective layer and a difference between the first laser beam and the second and third laser beams. Aberration caused by the difference between the second and third thickness of the transmission protective layer
  • the second diffractive lens structure includes a first thickness of the transmission protective layer and a second thickness of the transmission protection layer in addition to the wavelength difference between the first laser beam and the second laser beam. Aberration generated based on the difference between the two is corrected.
  • the diffractive optical element of the present invention includes a third diffractive lens structure that is provided on the incident or exit surface of the diffractive optical element and corrects chromatic aberration caused by minute wavelength fluctuations of the first laser light. It is characterized by.
  • the optical pick-up of the present invention comprises the objective lens module or the diffractive optical element. Also, an optical information recording / reproducing apparatus of the present invention comprises the above optical pickup.
  • the BD, DVD, and CD are all designed in an infinite system due to the device applied to the diffractive optical element. This is preferable because the optical path can be simplified.
  • a chromatic aberration correcting diffractive lens structure to the spherical aberration correcting diffractive optical element compatible with the B DZD VDZCD, discontinuous chromatic aberration can be corrected.
  • FIG. 1 is a schematic configuration diagram inside an optical pickup according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of the inside of an optical pickup according to another embodiment of the present invention.
  • FIG. 3 is a front view of the diffractive optical element according to the embodiment of the present invention viewed from the optical axis.
  • FIG. 4 is a cross-sectional view of a diffractive optical element according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a graph showing longitudinal spherical aberration with respect to CD by the objective lens module including the diffractive optical element according to the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a graph showing wavefront aberration with respect to CD by the objective lens module including the diffractive optical element according to the embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of an objective lens module for explaining the operation of the objective lens module including the diffractive optical element and the objective lens according to the embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of an objective lens module including a diffractive optical element and an objective lens according to another embodiment of the present invention.
  • FIG. 9 is a schematic sectional view of a diffractive optical element according to another embodiment of the present invention.
  • FIG. 10 is a schematic sectional view of a diffractive optical element according to another embodiment of the present invention.
  • FIG. 11 is a diagram for explaining synthesis of a diffractive lens structure in a diffractive optical element according to another embodiment of the present invention.
  • FIG. 12 is a schematic sectional view of a diffractive optical element according to another embodiment of the present invention.
  • FIG. 13 is a schematic sectional view of a composite objective lens having a diffractive optical element structure according to another embodiment of the present invention.
  • FIG. 14 is a diagram for explaining a phase function method used for optical design included in the method of manufacturing a diffractive optical element according to the present invention.
  • FIG. 15 is a schematic cross-sectional view of an objective lens module including the diffractive optical element of Example 1 and an objective lens according to the present invention.
  • FIG. 16 is a schematic cross-sectional view of the diffractive optical element of Example 1 according to the present invention.
  • FIG. 17 is a schematic sectional view of the diffractive optical element of Example 1 according to the present invention.
  • FIG. 18 is a graph showing the spherical aberration with respect to DVD and CD of the objective lens used in Example 1 according to the present invention.
  • FIG. 19 is a diagram for explaining the optical path length difference between the phase step constituting the diffractive lens structure 1 of the diffractive optical element of Example 1 and the wavefront passing therethrough according to the present invention.
  • FIG. 20 is a diagram for explaining a graph showing the result of calculating the longitudinal spherical aberration with respect to the CD using the phase function method when the diffractive optical element of Example 1 according to the present invention and the objective lens for BD are combined. It is.
  • FIG. 21 is a diagram illustrating a graph showing the result of calculating the wavefront aberration for CD using the phase function method when the diffractive optical element of Example 1 according to the present invention and the objective lens for BD are combined. It is.
  • FIG. 22 is a graph showing the result of calculating the wavefront aberration shape with respect to DV when the diffractive optical element of Example 1 according to the present invention and the BD objective lens are combined, using the phase function method.
  • FIG. 23 is a graph showing a result of calculating the wavefront aberration shape with respect to CD when the diffractive optical element of Example 1 according to the present invention and the objective lens for BD are combined, using the phase function method.
  • FIG. 24 is a graph of the diffractive lens function with respect to the height from the optical axis of the diffractive lens structure 1 in the diffractive optical element of Example 1 according to the present invention.
  • FIG. 25 is a front view of the diffractive lens structure 1 in the diffractive optical element of Example 1 according to the present invention viewed from the optical axis.
  • FIG. 26 shows the diffractive lens structure 1 in the diffractive optical element of Example 1 according to the present invention.
  • FIG. 5 is a cross-sectional view of a diffractive lens structure manufactured so that the diffraction efficiency of BD laser light is 100%.
  • FIG. 27 shows the diffractive lens structure of another embodiment manufactured in consideration of the balance of the diffraction efficiency of the BD laser beam and the CD laser beam of the diffractive lens structure 1 in the diffractive optical element of Example 1 according to the present invention.
  • FIG. 28 is a diagram for explaining the optical path length difference between the phase step constituting the diffractive lens structure 2 and the wavefront passing therethrough in the diffractive optical element of Example 1 according to the present invention.
  • FIG. 29 is a graph showing a result of calculating the wavefront aberration of DVD of the objective lens module using the diffractive optical element of Example 1 according to the present invention by using the phase function method.
  • FIG. 30 is a graph showing the result of calculating the BD wavefront aberration of the objective lens module using the diffractive optical element of Example 1 according to the present invention according to provisional shapes.
  • FIG. 31 is a graph showing the result of calculating the D V D wavefront aberration of the objective lens module using the diffractive optical element of Example 1 according to the present invention according to provisional shape data.
  • FIG. 32 is a graph showing the result of calculation of the wavefront aberration of CD of the objective lens module using the diffractive optical element of Example 1 according to the present invention, based on provisional shape data.
  • FIG. 33 is a graph showing the result of calculating the BD wavefront aberration of the objective lens module using the diffractive optical element of Example 1 according to the present invention based on provisional shape data.
  • FIG. 34 is a cross-sectional view of the diffractive lens structure when the phase shift is adjusted by the phase step amount at the boundary of the region of the diffractive optical element of Example 1 according to the present invention.
  • FIG. 35 is a graph showing the BD wavefront aberration of the objective lens module when the phase shift is adjusted by the phase step amount at the boundary of the region of the diffractive optical element of Example 1 according to the present invention.
  • FIG. 36 shows the diffractive lens function of the diffractive lens structure 1 with respect to the height from the optical axis when the phase shift is adjusted by the value of the constant term d 0 of the diffractive lens function of the diffractive optical element of Example 1 according to the present invention. It is a graph of.
  • FIG. 37 shows the BD wavefront aberration of the objective lens module when the phase shift is adjusted by the constant term d 0 of the diffraction lens function of the diffractive lens structure 1 of the diffractive lens element of Example 1 according to the present invention. It is a graph which shows.
  • FIG. 38 is a schematic cross-sectional view of an objective lens module including the diffractive optical element of Example 1 and an objective lens according to the present invention.
  • FIG. 39 is a diagram for explaining the aspherical shape used in the optical design included in the method of manufacturing a diffractive optical element according to the present invention.
  • FIG. 40 is a diagram for explaining steps and ring surface numbers when expressing the design results of the diffractive optical element according to the present invention.
  • FIG. 41 is a diagram for explaining a step code of a step amount when expressing a design result of the diffractive optical element according to the present invention.
  • FIG. 42 is a graph schematically showing a cross section of a diffractive lens structure formed in the diffractive optical element of Example 1 according to the present invention.
  • FIG. 43 shows a diffractive lens formed in the diffractive optical element of Example 1 according to the present invention. 2
  • FIG. 44 is a graph showing the result of calculating the BD wavefront aberration of the objective lens module using the diffractive optical element of Example 1 according to the present invention based on the data of the actual shape.
  • FIG. 45 is a graph showing the result of calculation of the D V D wavefront aberration of the objective lens module using the diffractive optical element of Example 1 according to the present invention based on the actual shape data.
  • FIG. 46 is a graph showing the result of calculating the CD wavefront aberration of the objective lens module using the diffractive optical element of Example 1 according to the present invention according to the actual shape.
  • Fig. 47 shows the spot shape on the BD calculated from the wavefront aberration of the objective lens module based on the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 1 according to the present invention. It is a graph to show.
  • Figure 48 shows the spot shape on the DVD calculated from the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 1 according to the present invention. It is a graph which shows.
  • FIG. 49 shows the spot shape on the CD calculated by calculating the wavefront aberration of the objective lens module from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 1 according to the present invention. It is a graph to show.
  • FIG. 50 shows the spot side lobe on the BD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 1 according to the present invention. It is a graph which shows a shape. 05 017092
  • Fig. 51 shows the actual wave shape of the diffractive lens structure of the diffractive optical element of Example 1 according to the present invention, and calculates the wavefront aberration of the objective lens module from the calculated DVD. It is a graph which shows the spot side lobe shape.
  • Fig. 52 shows the calculation of the wavefront aberration of the objective lens module from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 1 according to the present invention, and the spot side lobe on the CD calculated using the wavefront aberration. It is a graph which shows a shape.
  • Figure 53 shows the half width and side lobe strength, which are values representing the spot shape.
  • FIG. 54 is a graph showing the relationship between the spot half-width value at the time of tilt with respect to DV and the disc tilt angle when the objective lens module of Example 1 according to the present invention is used. '
  • FIG. 55 is a graph showing the relationship between the spot half-width value at the time of tilt with respect to C D and the disc tilt angle when the objective lens module of Example 1 according to the present invention is used.
  • FIG. 56 is a graph showing the relationship between the spot side lobe intensity at the time of tilt with respect to DV and the disc tilt angle when the objective lens module of Example 1 according to the present invention is used.
  • FIG. 57 is a graph showing the relationship between the spot side lobe intensity during tilt with respect to CD and the disc tilt angle when the objective lens module of Example 1 according to the present invention is used.
  • FIG. 58 is a schematic cross-sectional view of an objective lens module including the diffractive optical element according to Example 2 and an objective lens according to the present invention. 17092
  • FIG. 59 is a schematic sectional view of the diffractive optical element of Example 2 according to the present invention.
  • FIG. 60 is a graph schematically showing a cross section of a diffractive lens structure formed in the diffractive optical element of Example 2 according to the present invention.
  • FIG. 61 is a graph of the diffractive lens function with respect to the height from the optical axis of the diffractive lens structure in the diffractive optical element of Example 2 according to the present invention.
  • FIG. 62 is a front view of the diffractive lens structure of the diffractive optical element of Example 2 according to the present invention viewed from the optical axis.
  • FIG. 63 is a cross-sectional view of the diffractive lens structure manufactured by setting the diffraction efficiency of the BD laser light of the diffractive optical element of Example 2 according to the present invention to 100%.
  • FIG. 64 is a graph schematically showing a cross section of the diffractive lens structure B formed in the diffractive optical element of Example 2 according to the present invention.
  • FIG. 65 is a graph showing the result of calculating the BD wavefront aberration of the objective lens module using the diffractive optical element of Example 2 according to the present invention based on the data of the actual shape.
  • FIG. 66 is a graph showing the calculation result of the DVD wavefront aberration of the objective lens module using the diffractive optical element of Example 2 according to the present invention based on the actual shape data.
  • FIG. 67 is a graph showing the calculation result of the CD wavefront aberration of the objective lens module using the diffractive optical element of Example 2 according to the present invention based on the actual shape data.
  • Fig. 68 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 2 according to the present invention. It is a graph which shows the spot shape on BD calculated in this way.
  • Figure 69 shows the spot shape on the DVD calculated from the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 2 according to the present invention. It is a graph which shows.
  • FIG. 70 shows the spot shape on the CD calculated by calculating the wavefront aberration of the objective lens module from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 2 according to the present invention. It is a graph to show.
  • FIG. 71 shows the spot side lobe on the BD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 2 according to the present invention. It is a graph which shows a shape.
  • Fig. 7 2 shows the calculation of the wavefront aberration of the objective lens module from the actual surface shape of the diffractive lens structure of the diffractive optical element of Example 2 according to the present invention, and on the DVD calculated using the wavefront aberration. It is a graph which shows a spot side lobe shape.
  • FIG. 73 shows the spot side lobe on the CD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 2 according to the present invention. It is a graph which shows a shape.
  • FIG. 74 is a graph showing the relationship between the spot half-width value at the time of tilt with respect to DV and the disc tilt angle when the objective lens module of Example 2 according to the present invention is used.
  • FIG. 75 is a graph showing the relationship between the spot half-width value at the time of chilling with respect to CD and the disc tilt angle when the objective lens module of Example 2 according to the present invention is used.
  • FIG. 76 is a graph showing the relationship between the spot side lobe intensity at the time of tilting the DVD and the disc tilt angle when the objective lens module of Example 2 according to the present invention is used.
  • FIG. 77 is a graph showing the relationship between the spot side lobe intensity and the disc tilt angle during tilting with respect to CD when the objective lens module of Example 2 according to the present invention is used.
  • FIG. 78 is a graph showing the wavefront aberration shape of BD at the best image plane by the objective lens module of Example 2 according to the present invention.
  • FIG. 79 is a graph showing the wavefront aberration shape of BD at the best image plane when the wavelength of the light source by the objective lens module of Example 2 according to the present invention varies to 40 3 nm.
  • FIG. 80 is a graph showing the BD wavefront aberration shape on the best image plane when the wavelength of the light source by the objective lens module of Example 2 according to the present invention varies to 4 13 nm.
  • FIG. 81 is a graph showing the overall spot shape of the objective lens module of Example 2 according to the present invention at a BD wavelength of 40 3 nm.
  • FIG. 82 is a graph showing the overall spot shape of the objective lens module of Example 2 according to the present invention at a BD wavelength of 4 13 nm.
  • FIG. 83 is a graph showing a side lobe of a spot at a BD wavelength of 40 3 nm of the objective lens module according to Example 2 of the present invention.
  • FIG. 84 is a graph showing a side lobe of a spot at a BD wavelength of 4 13 nm of the objective lens module according to Example 2 of the present invention.
  • FIG. 85 is a graph showing the amount of movement of the best image plane (condensing point) with respect to the wavelength variation of the lens using the diffractive optical element according to Example 2 of the present invention.
  • FIG. 86 is a schematic cross-sectional view of a diffractive optical element according to a modification of Example 2 according to the present invention.
  • FIG. 87 is a schematic sectional view of an objective lens module including the diffractive optical element according to Example 3 of the present invention and an objective lens.
  • FIG. 88 is a partial cross-sectional view showing the manufacturing error of the step of the diffractive optical element.
  • FIG. 89 is a graph schematically showing a cross section of the diffractive lens structure B formed in the diffractive optical element of Example 3 according to the present invention.
  • FIG. 90 is a graph schematically showing a cross section of the diffractive lens structure A formed in the diffractive optical element of Example 3 according to the present invention.
  • FIG. 91 is a graph schematically showing a cross section when the diffractive lens structure A and the diffractive lens structure B formed in the diffractive optical element of Example 3 according to the present invention are combined.
  • FIG. 92 is a graph showing the result of calculating the BD wavefront aberration of the objective lens module using the diffractive optical element of Example 3 according to the present invention based on the data of the actual shape.
  • FIG. 93 is a graph showing the result of calculation of the D V D wavefront aberration of the objective lens module using the diffractive optical element of Example 3 according to the present invention based on the actual shape data.
  • FIG. 94 is a graph showing the results of calculating the wavefront aberration of the CD of the objective lens module using the diffractive optical element of Example 3 according to the present invention based on the actual shape data.
  • FIG. 95 shows the spot shape on the BD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 3 according to the present invention. It is a graph to show.
  • Fig. 96 shows the spot shape on the DVD calculated from the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 3 according to the present invention. It is a graph which shows.
  • FIG. 97 shows the spot on the CD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape of the diffractive lens structure of the diffractive optical element of Example 3 according to the present invention. It is a graph which shows a shape.
  • FIG. 98 shows the spot on the BD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape of the diffractive lens structure of the diffractive optical element of Example 3 according to the present invention. It is a graph which shows a side lobe shape.
  • FIG. 99 shows the spot side lobe on the DVD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 3 according to the present invention. It is a graph which shows a shape.
  • FIG. 10 shows the spot side on the CD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 3 according to the present invention. It is a graph which shows a lobe shape.
  • FIG. 10 is a graph showing the relationship between the spot half-width value during tilt with respect to DV and the disc tilt angle when the objective lens module of Example 3 according to the present invention is used.
  • Fig. 10 2 shows C when the objective lens module of Example 3 according to the present invention is used.
  • 6 is a graph showing a relationship between a spot half-width value at chilling with respect to D and a disc tilt angle.
  • FIG. 10 is a graph showing the relationship between the spot side lobe intensity at the time of tilt with respect to DV and the disc tilt angle when the objective lens module of Example 3 according to the present invention is used.
  • FIG. 10 is a graph showing the relationship between the spot side lobe intensity at the time of tilt with respect to CD and the disc tilt angle when the objective lens module of Example 3 according to the present invention is used.
  • FIG. 10 is a graph showing the wavefront aberration shape of BD at the best image plane by the objective lens module of Example 3 according to the present invention.
  • FIG. 10 is a graph showing the wavefront aberration shape of BD on the best image plane when the wavelength of the light source by the objective lens module of Example 3 according to the present invention varies to 40 3 nm.
  • FIG. 10 is a graph showing the BD wavefront aberration shape on the best image plane when the wavelength of the light source by the objective lens module of Example 3 according to the present invention varies to 4 13 nm. .
  • FIG. 10 is a graph showing the overall spot shape at the BD wavelength of 40 3 nm of the objective lens module of Example 3 according to the present invention.
  • FIG. 10 is a graph showing the entire spot shape at the BD wavelength 4 13 nm of the objective lens module of Example 3 according to the present invention.
  • FIG. 10 is a graph showing spot side lobes at a BD wavelength of 40 3 nm of the objective lens module of Example 3 according to the present invention.
  • FIG. 11 is a graph showing a side lobe of a spot at a BD wavelength of 4 13 nm of the objective lens module of Example 3 according to the present invention.
  • FIG. 11 is a graph showing the amount of movement of the best image plane (condensing point) with respect to wavelength variation of the lens using the diffractive optical element of Example 3 according to the present invention.
  • FIG. 11 is a graph showing the diffractive lens function of the diffractive lens structure A 1 in Example 4 according to the present invention.
  • FIG. 11 is a graph showing the diffractive lens function of the diffractive lens structure A 2 in Example 4 according to the present invention.
  • FIG. 11 is a graph schematically showing a cross section of the diffractive lens structure B formed in the diffractive optical element of Example 4 according to the present invention.
  • FIG. 11 is a graph schematically showing a cross section of the diffractive lens structure A formed in the diffractive optical element of Example 4 according to the present invention.
  • FIG. 11 is a graph schematically showing a cross section when the diffractive lens structure A and the diffractive lens structure B formed in the diffractive optical element of Example 4 according to the present invention are synthesized.
  • FIG. 11 is a graph showing the result of calculating the BD wavefront aberration of the objective lens module using the diffractive optical element of Example 4 according to the present invention based on the data of the actual shape.
  • FIG. 11 is a graph showing the result of calculation of the D V D wavefront aberration of the objective lens module using the diffractive optical element of Example 4 according to the present invention based on the actual shape data.
  • FIG. 12 shows an objective lens module using the diffractive optical element of Example 4 according to the present invention.
  • FIG. 6 is a graph showing the results of calculating the wavefront aberration of a CD using actual shape data.
  • Fig. 1 2 1 shows the spot shape on the BD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 4 according to the present invention. It is a graph which shows.
  • Figure 1 2 2 shows the spot on the DVD calculated from the wavefront aberration of the objective lens module based on the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 4 according to the present invention. It is a graph which shows a shape.
  • Fig. 1 2 3 shows the spot shape on the CD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 4 according to the present invention. It is a graph which shows.
  • Fig. 1 2 4 shows the spot side on the BD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 4 according to the present invention. It is a graph which shows a lobe shape.
  • Figure 1 25 shows the spot on the DVD calculated from the wavefront aberration of the objective lens module based on the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 4 according to the present invention. It is a graph which shows a side lobe shape.
  • Fig. 1 26 shows a spot spot on a CD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 4 according to the present invention. It is a graph which shows a side lobe shape.
  • FIG. 1 2 7 shows the relationship between the spot half-width value at the time of tilting with respect to the DVD and the disc tilt angle when the objective lens module of Example 4 according to the present invention is used. It is a graph.
  • FIG. 1 28 is a graph showing the relationship between the spot half-width value at the time of tilt with respect to CD and the disc tilt angle when the objective lens module of Example 4 according to the present invention is used.
  • FIG. 1 29 is a graph showing the relationship between the spot side lobe intensity and the disc tilt angle during tilting with respect to DV when the objective lens module of Example 4 according to the present invention is used.
  • FIG. 13 is a graph showing the relationship between the spot side lobe intensity at the time of tilt with respect to CD and the disc tilt angle when the objective lens module of Example 4 according to the present invention is used.
  • FIG. 13 is a graph showing the wavefront aberration shape of BD at the best image plane by the objective lens module of Example 4 according to the present invention.
  • FIG. 13 is a graph showing the BD wavefront aberration shape on the best image plane when the wavelength of the light source by the objective lens module of Example 4 according to the present invention varies to 40 3 nm.
  • FIG. 13 is a graph showing the BD wavefront aberration shape on the best image plane when the wavelength of the light source by the objective lens module of Example 4 according to the present invention varies to 4 13 nm.
  • FIG. 13 is a graph showing the overall spot shape of the objective lens module of Example 4 according to the present invention at a BD wavelength of 40 3 nm.
  • FIG. 1 35 is a graph showing the entire spot shape at a BD wavelength of 4 13 nm of the objective lens module of Example 4 according to the present invention.
  • FIG. 13 is a graph showing the side lobe of a spot at a BD wavelength of 40 3 nm of the objective lens module of Example 4 according to the present invention.
  • FIG. 13 is a graph showing the side lobe of the spot at the BD wavelength 4 13 nm of the objective lens module of Example 4 according to the present invention.
  • FIG. 13 is a graph showing the amount of movement of the best image plane (condensing point) with respect to the wavelength variation of the lens using the diffractive optical element of Example 4 according to the present invention.
  • FIG. 1 39 is a schematic cross-sectional view of an objective lens module including the diffractive optical element of Example 5 and an objective lens according to the present invention.
  • FIG. 140 is a schematic cross-sectional view of the diffractive optical element of Example 5 according to the present invention.
  • FIG. 14 is a diagram illustrating a graph showing a result of calculating longitudinal spherical aberration for a DVD using the phase function method when the diffractive optical element of Example 5 according to the present invention and a BD objective lens are combined. It is.
  • FIG. 14 is a graph of the diffractive lens function with respect to the height from the optical axis of the diffractive lens structure 2 in the diffractive optical element of Example 5 according to the present invention.
  • FIG. 14 3 is a graph of the diffractive lens function with respect to the height from the optical axis of the diffractive lens structure 3 in the diffractive optical element of Example 5 according to the present invention.
  • FIG. 14 is a graph schematically showing a cross section of the diffractive lens structure formed in the diffractive optical element of Example 5 according to the present invention.
  • FIG. 14 is a graph showing the result of calculating the BD wavefront aberration of the objective lens module using the diffractive optical element of Example 5 according to the present invention based on the actual shape data.
  • Figure 14 shows the objective lens module using the diffractive optical element of Example 5 according to the present invention. This is a graph showing the result of calculating the wavefront aberration of a DVD with actual shape data.
  • FIG. 14 is a graph showing the result of calculating the CD wavefront aberration of the objective lens module using the diffractive optical element of Example 5 according to the present invention based on the actual shape data.
  • Fig. 1 4 8 shows the spot shape on the BD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 5 according to the present invention. It is a graph which shows.
  • Figure 14 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 5 according to the present invention, and the spot on the DVD calculated using the wavefront aberration. It is a graph which shows a shape.
  • FIG. 150 shows the spot spot on the CD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 5 according to the present invention. It is a graph which shows a shape.
  • Figure 15 shows the spot side on the BD calculated using the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 5 according to the present invention. It is a graph which shows a lobe shape.
  • Fig. 15 2 shows the spot on the DVD where the wavefront aberration of the objective lens module is calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 5 according to the present invention, and the calculated wavefront aberration is used. It is a graph which shows a side lobe shape.
  • Figure 15 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 5 according to the present invention, and uses the wavefront aberration. It is a graph which shows the spot side lobe shape on CD calculated in this way.
  • FIG. 15 is a graph showing the relationship between the spot half-width value at the time of chilling and the disc tilt angle with respect to DV when the objective lens module of Example 5 according to the present invention is used.
  • FIG. 15 is a graph showing the relationship between the spot half-width value at the time of tilt with respect to CD and the disc tilt angle when the objective lens module of Example 5 according to the present invention is used.
  • FIG. 15 is a graph showing the relationship between the spot side lobe intensity at the time of tilting with respect to DVD and the disc tilt angle when the objective lens module of Example 5 according to the present invention is used.
  • FIG. 15 is a graph showing the relationship between the spot side lobe intensity during chilling and the disc tilt angle with respect to CD when the objective lens module of Example 5 according to the present invention is used.
  • FIG. 15 is a cross-sectional view of a diffractive optical element according to an embodiment of the present invention.
  • FIG. 15 is a schematic sectional view of the objective lens module for explaining the operation of the objective lens module including the diffractive optical element and the objective lens according to the embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of a diffractive optical element according to an embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view of an objective lens module for explaining the operation of the objective lens module including the diffractive optical element and the objective lens according to the embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of a diffractive optical element according to an embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view of the objective lens module for explaining the operation of the objective lens module including the diffractive optical element and the objective lens according to the embodiment of the present invention.
  • FIG. 16 is a schematic sectional view of an objective lens module including the diffractive optical element according to Example 6 of the present invention and an objective lens.
  • FIG. 1 65 is a schematic cross-sectional view of the diffractive optical element of Example 6 according to the present invention.
  • FIG. 16 is a graph schematically showing a cross section of the diffractive lens structure formed in the diffractive optical element of Example 6 according to the present invention.
  • FIG. 1 67 is a graph showing the results of calculating the HD—D VD wavefront aberration of the objective lens module using the diffractive optical element of Example 6 according to the present invention based on the actual shape data.
  • FIG. 1 68 is a graph showing the results of calculating the D V D wavefront aberration of the objective lens module using the diffractive optical element of Example 6 according to the present invention based on the data of the actual shape.
  • FIG. 16 is a graph showing the result of calculating the CD wavefront aberration of the objective lens module using the diffractive optical element of Example 6 according to the present invention based on the actual shape data.
  • Fig. 170 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 6 according to the present invention, and the calculated HD-D VD using the wavefront aberration. It is a graph which shows the spot shape.
  • Figure 17 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 6 according to the present invention, and uses the wavefront aberration. It is the graph which shows the spot shape on DVD calculated by calculating.
  • Fig. 1 7 2 shows the wavefront aberration of the objective lens module calculated from the actual surface shape of the diffractive lens structure of the diffractive optical element of Example 6 according to the present invention, and calculated on the CD using the wavefront aberration. It is a graph which shows a spot shape.
  • Figure 17 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 6 according to the present invention, and the calculated wavefront aberration on the HD-DVD. It is a graph which shows a spot side lobe shape.
  • Figure 17 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 6 according to the present invention, and calculated using the wavefront aberration. It is a graph which shows a lobe shape.
  • Fig. 1 75 shows the calculation of the wavefront aberration of the objective lens module from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 6 according to the present invention, and the calculated spotfront on the CD using the wavefront aberration. It is a graph which shows a lobe shape.
  • FIG. 17 is a graph showing the relationship between the spot half-width value at the time of tilt with respect to DV and the disc tilt angle when the objective lens module of Example 6 according to the present invention is used.
  • FIG. 17 is a graph showing the relationship between the spot half-width value at the time of tilt with respect to CD and the disc tilt angle when the objective lens module of Example 6 according to the present invention is used.
  • FIGS. 1 to 8 are graphs showing the relationship between the spot side lobe intensity at the time of tilting the DVD and the disc tilt angle when the objective lens module of Example 6 according to the present invention is used.
  • FIG. 1 79 is a graph showing the relationship between the spot side loop strength at the time of tilting with respect to the CD and the disc tilt angle when the objective lens module of Example 6 according to the present invention is used.
  • FIG. 180 is a schematic cross-sectional view of an objective lens module including the diffractive optical element according to Example 7 of the present invention and an objective lens.
  • FIG. 18 is a schematic cross-sectional view of the diffractive optical element of Example 7 according to the present invention.
  • FIG. 1 82 is a graph schematically showing a cross section of the diffractive lens structure formed in the diffractive optical element of Example 7 according to the present invention.
  • FIG. 1 83 is a graph showing the results of calculating the HD-D VD wavefront aberration of the objective lens module using the diffractive optical element of Example 7 according to the present invention based on the actual shape data.
  • FIG. 18 4 is a graph showing the result of calculation of the DVD wavefront aberration of the objective lens module using the diffractive optical element of Example 7 according to the present invention based on the actual shape data.
  • FIG. 1 85 is a graph showing the results of calculation of the wavefront aberration of the CD of the objective lens module using the diffractive optical element of Example 7 according to the invention from the data of the actual shape.
  • Fig. 1 86 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 7 according to the present invention, and the HD-D VD calculated using the wavefront aberration is calculated. It is a graph which shows the spot shape.
  • Fig. 1 87 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 7 according to the present invention. It is a graph which shows the spot shape on DVD calculated in this way.
  • Fig. 1 8 8 shows the spot shape on the CD calculated by calculating the wavefront aberration of the objective lens module from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 7 according to the present invention and using the wavefront aberration. It is a graph which shows.
  • Fig. 1 89 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 7 according to the present invention. It is a graph which shows the spot side lobe shape.
  • Figure 190 shows the spot on the DVD calculated from the wavefront aberration of the objective lens module calculated from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 7 according to the present invention. It is a graph which shows a side lobe shape.
  • Fig. 1 91 shows the calculation of the wavefront aberration of the objective lens module from the actual surface shape data of the diffractive lens structure of the diffractive optical element of Example 7 according to the present invention, and the calculated spotfront on the CD using the wavefront aberration. It is a graph which shows a lobe shape.
  • FIG. 19 2 is a graph showing the relationship between the spot half-width value at the time of tilting with respect to HD-DVD and the disc tilt angle when the objective lens module of Example 7 according to the present invention is used.
  • FIG. 1 93 is a graph showing the relationship between the spot half-width value at the time of tilting with respect to CD and the disc tilt angle when the objective lens module of Example 7 according to the present invention is used.
  • FIG. 19 is a graph showing the relationship between the spot side lobe strength and the disc tilt angle when tilting the HD-DVD when the objective lens module of Example 7 according to the present invention is used.
  • FIG. 19 is a graph showing the relationship between the spot side lobe intensity and the disc tilt angle during chilling with respect to CD when the objective lens module of Example 7 according to the present invention is used.
  • FIG. 1 96 is a schematic sectional view of an objective lens having the diffractive lens structure of Example 8 according to the present invention.
  • FIG. 19 is a schematic cross-sectional view of an objective lens having the diffractive lens structure of Example 8 according to the present invention.
  • FIG. 19 is a graph showing the result of calculating the HD-D VD wavefront aberration of the objective lens having the diffractive lens structure of Example 8 according to the present invention based on the actual shape data.
  • FIG. 199 is a graph showing the results of calculating the D V D wavefront aberration of the objective lens having the diffractive lens structure of Example 8 according to the present invention based on data of an actual shape.
  • FIG. 20 is a graph showing the results of calculating the CD wavefront aberration of the objective lens having the diffractive lens structure of Example 8 according to the present invention based on data of an actual shape.
  • FIG. 21 shows the wavefront aberration of the objective lens module calculated from the actual surface shape of the objective lens having the diffractive lens structure of Example 8 according to the present invention, and calculated using the wavefront convergence. It is a graph showing the spot shape on HD—D VD.
  • Figure 20 shows the calculation of the wavefront aberration of the objective lens module from the actual surface shape data of the objective lens having the diffractive lens structure of Example 8 according to the present invention, and calculated using the wavefront convergence. It is a graph which shows the upper spot shape.
  • FIG. 20 shows an objective lens having the diffractive lens structure of Example 8 according to the present invention.
  • 5 is a graph showing the spot shape on a CD calculated by calculating the wavefront aberration of the objective lens module from actual surface shape data and using the wavefront convergence. .
  • Figure 20 shows the calculation of the wavefront aberration of the objective lens module from the actual surface shape data of the objective lens having the diffractive lens structure of Example 8 according to the present invention, and the calculated HD— 4 is a graph showing a spot side lobe shape on DVD.
  • Figure 20 shows the calculation of the wavefront aberration of the objective lens module from the actual surface shape data of the objective lens having the diffractive lens structure of Example 8 according to the present invention, and calculated using the wavefront convergence. It is a graph which shows the upper spot side lobe shape.
  • FIG. 26 shows the wavefront aberration of the objective lens module calculated from the actual surface shape data of the objective lens having the diffractive lens structure of Example 8 according to the present invention, and calculated on the CD using the wavefront difference. It is a graph which shows the spot side lobe shape.
  • FIG. 20 is a graph showing the relationship between the spot half-width value at the time of tilting with respect to HD-DVD and the disc tilt angle when the objective lens having the diffractive lens structure of Example 8 according to the present invention is used. .
  • FIG. 20 is a graph showing the relationship between the spot half-width value at the time of tilt with respect to CD and the disc tilt angle when the objective lens having the diffractive lens structure of Example 8 according to the present invention is used.
  • FIG. 29 is a graph showing the relationship between the spot side lobe intensity and the disc tilt angle during tilting with respect to HD-D VD when the objective lens having the diffractive lens structure of Example 8 according to the present invention is used. It is.
  • FIG. 2 10 shows an objective lens to which the diffractive lens structure of Example 8 according to the present invention is applied.
  • 6 is a graph showing the relationship between the spot side lobe intensity during tilting with respect to the CD and the disc tilt angle when used.
  • FIG. 1 shows an outline of the optical pickup of the embodiment.
  • the optical pick-up consists of a BD semiconductor laser LD 1 that emits a short-wavelength ⁇ BD whose first wavelength is 400 nm to 410 nm, for example, around 408 nm, and a second wavelength longer than the first wavelength, that is, 630 nm to 670 nm, for example.
  • Semiconductor laser LD 2 for D VD that emits DVD and third wavelength longer than the second wavelength 760 nm to 800 nm, for example, longer wavelength for CD near 780 nm
  • a CD semiconductor laser LD3 for injecting CDs.
  • the semiconductor lasers LD 1, LD2 and LD3 are switched on and switched on selectively for BD, DVD and CD.
  • the optical pickup includes an optical axis coupling prism (color synthesis prism) 10 of an optical axis coupling element that shares the optical paths of the first, second, and third laser beams A BD , A DVD, and ⁇ CD .
  • the optical axis coupling prism 10 of this optical system is designed so that the divergent laser beams of the semiconductor lasers LD 1, LD 2 and LD 3 are used as a common optical path. It has a function of approximately matching.
  • Each dichroic mirror in the optical axis coupling prism 10 has a characteristic of transmitting or reflecting laser light of a desired wavelength, and is formed of a multilayer dielectric thin film so as to have an incident angle dependency. Has been.
  • the optical axis coupling element for synthesizing the optical axes is an optical axis coupling pre- Without being limited to a dichroic mirror, a diffractive grating using a wavelength difference between diffraction angles, a liquid crystal cholesteric layer, or the like can be used for an optical axis coupling element instead of a dichroic mirror.
  • the optical pickup also includes a beam splitter 13, a collimator overnight lens 14, and an objective lens module 16 downstream of the optical axis of the optical axis coupling prism 10.
  • the laser light from at least one of the first semiconductor laser LD 1 and the second semiconductor laser LD 2 passes through the optical axis coupling prism 10 and the beam splitter 13,
  • the collimator-evening lens 14 is converted into a parallel laser beam, passes through, and is focused by the objective lens module 16 toward the optical disk 5 placed near the focal point thereof. A light spot is formed on the line.
  • the optical pick-up further has a light detection optical system such as a detection lens 17, and the objective lens module 16 and beam splitter 13 are also used for the light detection optical system.
  • a light detection optical system such as a detection lens 17, and the objective lens module 16 and beam splitter 13 are also used for the light detection optical system.
  • the reflected light from the CD, B D or D VD optical disk 5 is collected by the objective lens module 16 and then directed to the detection condenser lens 17 by the beam splitter 13.
  • the focused light collected by the detection lens 17 passes through an astigmatism generation element (not shown) such as a cylindrical lens or a multi lens, and is divided into four by, for example, two orthogonal line segments.
  • a light spot is formed near the center of the light-receiving surface 20 of a quadrant photodetector having four light-receiving surfaces.
  • the light receiving surface 20 of the photodetector is connected to the demodulation circuit 30 and the error detection circuit 31.
  • the error detection circuit 31 is used for tracking control and objective lens module. 7092
  • the quadrant photodetector supplies an electrical signal corresponding to the light spot image formed near the center of the light receiving surface 20 to the demodulation circuit 30 and the error detection circuit 31.
  • the demodulator circuit 30 generates a recording signal based on the electrical signal.
  • the error detection circuit 31 generates a focus error signal, a tracking error signal, and other support signals based on the electric signal, and outputs each drive signal via the drive circuit 33 of the AC adapter. These are supplied overnight, and these drive the servo control of the objective lens module 16 and the like according to each drive signal.
  • the laser light from the laser light source LD 2 for BD, DVD, and CD is shared by the optical axis coupling prism 10 with one optical path, and the objective lens module 16 is used. Focus on the BD, DVD or CD optical disc recording surface.
  • This objective lens module 16 includes a condensing lens (reference lens) 16 a for condensing laser light onto a recording surface, and a diffraction ring zone (having an optical axis at the center) formed of a plurality of phase steps on a translucent flat plate.
  • it is an assembly of a compound objective lens that combines a diffractive optical element 16 b (DOE: diffractive optical element) having a diffraction grating and.
  • DOE diffractive optical element
  • the condensing lens 16 a and the diffractive optical element 16 b are coaxially arranged on the optical axis by the holder 16 c, and the diffractive optical element 16 b having the diffraction grating is collected from the light source side, that is, the optical axis coupling prism 10.
  • the optical lens is located in the optical path up to 16 a.
  • the condensing lens 16 a has a numerical aperture of 0.85 with an aberration corrected for a wavelength range of 400 nm to 410 nm of A BD and a thickness of the transmission protective layer of 0.1 mm.
  • Spherical lens (BD objective lens).
  • FIG. 2 schematically shows an optical pick-up according to another embodiment.
  • a three-wavelength laser LD 1 2 3 that emits the first, second, and third wavelengths as the light source instead of the semiconductor lasers LD 1, LD 2, and LD 3, the optical axis coupling prism, etc. can be omitted.
  • the optical path of the pick-up is preferable because it is further simplified.
  • the diffractive optical element 16 b of this embodiment is capable of recording and reproducing D V D and C D in combination with a BD objective lens.
  • the diffractive optical element 16b includes a diffraction grating formed on at least one surface on the incident side or the emission side of a substrate made of glass, plastic, or the like, that is, a diffractive ring zone 16e.
  • the diffractive annular zone 16 e is an annular groove or a convex annular zone cut into a plurality of concentric circles around the optical axis or laminated by photolithography.
  • the same effect can be obtained with a concentric discontinuous refractive index distribution.
  • the diffracting ring zone may be a layer having a physical step structure, a concentric discontinuous refractive index distribution, or any other means that causes a step in the wavefront phase of light passing therethrough.
  • a structure that generates a step in the phase of the wavefront of light is collectively referred to as a phase step or a phase step structure.
  • the notation method of the phase step amount is expressed by the physical step structure dimension, the difference in refractive index at the point where the refractive index is discontinuous, or the optical path length difference or phase difference generated there. It can be expressed in terms of quantity.
  • each diffraction zone 16 e is often formed to be a blaze shape, that is, a sawtooth shape, or a staircase shape.
  • a sawtooth diffraction grating This is advantageous because the diffraction efficiency is higher than others.
  • such a multi-stage blaze or blazed shape is formed on a mold, and a plurality of diffractive optical elements can be duplicated from a transparent material by injection molding or the so-called 2P method.
  • the diffractive ring zone 16 e of the diffractive optical element constitutes a diffractive lens structure.
  • a diffractive lens is a lens in which a diffractive surface is formed on the surface of an aspheric lens, and the diffractive lens structure is composed of, for example, concentric phase steps formed on a macroscopic aspheric shape.
  • the diffractive lens structure is provided on at least one side of the substrate, and is divided into a plurality of regions defined at different radial positions according to the effective diameter corresponding to the recording medium of the objective lens. ing.
  • the diffractive lens structure is formed so as to correct spherical aberration due to the difference in thickness and wavelength of the transmission protective layer.
  • the specific structure of the diffractive lens structure is as follows.
  • BD laser beam wavelength 40 8 nm
  • CD second laser beam
  • CD laser beam wavelength 7800 nm
  • BD primary light
  • D VD 1st order light
  • CD 3rd order light
  • D VD 2nd order light
  • CD 2nd order light
  • BD 7th order light
  • D VD 4th order light
  • CD 3rd-order light
  • BD 9th-order light
  • DVD 5th-order light
  • C D: 2nd or 3rd order light may be excluded because the phase difference generated at the phase step forming the diffractive lens structure is aligned by the BD laser light and the D V D laser light. Therefore, it is designed such that the diffraction order that maximizes the diffraction efficiency among the diffracted light generated when the first laser light passes through the first diffractive lens structure is an odd number excluding multiples of 5.
  • the diffraction efficiency of the diffracted light generated by the diffractive lens structure can be adjusted by the step amount of the concentric phase steps constituting it.
  • region 1 if the phase step amount is determined so that the diffraction efficiency of the BD laser beam is maximized, sufficient diffraction efficiency in the desired diffraction order of the CD laser beam cannot be obtained. Since unnecessary diffracted light is generated at the same time, it is desirable to design it in consideration of the balance between the diffraction efficiency of the BD laser light and the diffraction efficiency of the CD laser light. In addition, when designed in consideration of the balance of diffraction efficiency in this way, sawtooth wavefront aberrations partially occur as the optical path length difference generated at the phase step shifts from an integral multiple of the wavelength. This is not a problem because there is almost no degradation of the spot shape.
  • the depth of the multiple phase steps that make up the diffractive lens structure is designed so that the optical path length difference that occurs is the same for all steps, but the optical path length that occurs at the outermost phase step is the same as the other phase steps. It is preferable to design so that the phase of the wavefront passing through the other region can be more accurately matched and a better light collecting performance can be obtained.
  • BD secondary light, DVD: primary light, CD: primary light
  • a second diffractive lens structure (second aberration correcting means) is formed so as to be able to.
  • the phase difference generated at the phase step constituting the diffractive lens structure is almost uniform with the laser light corresponding to the recording and reproduction of all media, and the DVD Since the aberration correction effect cannot be selectively given to only the light, the diffraction order that maximizes the diffraction efficiency of the diffracted light generated when the BD laser light passes through the second diffraction lens structure. Is designed to be an even number excluding multiples of 10.
  • the depth of the phase step constituting the diffractive lens structure may be set to generate an optical path length difference that maximizes the diffraction efficiency of the BD laser light according to the required specifications.
  • a region 3 on the outer periphery outside the region 2 has a combination of diffracted light that can realize a diffractive lens structure that has no effect of correcting spherical aberration for all wavelengths (for example, BD: 10th order light, DVD : 6th order light, CD: 5th order light), the third diffraction lens structure (third aberration 'correction means) is formed.
  • the region 3 does not need to form a diffractive lens structure (only zero-order light is transmitted). Therefore, a predetermined BD numerical aperture of 0.85 is realized.
  • the first diffractive lens structure, the second diffractive lens structure, and the third diffractive lens structure are all formed on the same surface. All diffractive lenses like this By forming the structure on one surface, it is not necessary to use a plurality of molds having a fine structure for forming the phase step, which facilitates manufacture and is preferable in terms of cost. Also, by appropriately setting the diffraction order of the BD laser light and the image plane position of the DVD and CD in each diffractive lens structure, the direction of all phase steps can be made the same as shown in Fig. 4a. it can.
  • the direction of the phase step is expressed by the moving direction of the outer peripheral surface with reference to the inner peripheral surface of the step.
  • the surface shape becomes a simple staircase shape with no minute ring-shaped depressions and protrusions. Further, it is preferable because deterioration of releasability is suppressed, so that the life of the mold can be extended and the molding defect rate can be reduced.
  • the diffractive optical element according to the present embodiment corrects spherical aberration caused by the difference in thickness of the transmission protective layer of BDZDVDZCD, so that a diffractive lens structure composed of fine concentric phase steps is formed on at least one surface. ing.
  • BD, DVD, and CD all infinite systems, and at the same time, limit the numerical aperture to the numerical aperture necessary for recording and reproduction of each optical disc.
  • the diffractive lens structure is formed with a plurality of minute phase steps on the surface of the optical material.
  • a laser beam of wavelength ⁇ passes through a phase difference of depth d formed in an optical material with a refractive index N
  • an optical path length difference of ⁇ ( ⁇ 1) d / ⁇ ⁇ occurs at the step. .
  • the optical path length difference generated at the phase steps that make up the diffractive lens structure is ⁇ ( ⁇ — 1) d / ⁇ ⁇
  • r ound [(N— 1) d / ⁇ ] The diffraction efficiency of the next light is maximized.
  • r ound [] is an integer obtained by rounding the number in [].
  • the amount of aberration that can be corrected by one phase step constituting the diffractive lens structure is [round [(N ⁇ 1) d / ⁇ ] one ⁇ (N ⁇ 1) d / ⁇ ⁇ .
  • ( ⁇ -1) d / ⁇ is an integer, that is, if the optical path length difference generated at the phase step is an integer multiple of the wavelength, the amount of aberration that can be corrected by the phase step is zero, but the diffraction efficiency Is almost 100%.
  • ( ⁇ -1) d / ⁇ deviates from an integer, that is, as the optical path length difference generated at the phase step deviates from an integer multiple of the wavelength, the amount of aberration that can be corrected by one phase step increases. Diffraction efficiency decreases.
  • the refractive index ⁇ of an optical material generally varies depending on the wavelength. The shorter the wavelength, the higher the refractive index.
  • the wavelength of the laser beam for BD ( ⁇ ⁇ ) is about 408 nm
  • the wavelength of the laser beam for CD A CD is about 78 Onm
  • the refractive index varies depending on the wavelength as described above. Comparing the value of (N-1) d ⁇ when light passes through the same phase step, it is almost 2: 1.
  • the phase step of the optical path length difference generated by the 2 mA BD respect BD laser light (m is an integer)
  • the optical path length difference generated with respect to laser light for CD is substantially m A CD . Therefore, when the diffraction lens structure is designed so that the diffraction efficiency of the 2 m-order light of the BD laser light is maximized and has no spherical aberration correction effect, the m-order light of the CD laser light is Diffraction efficiency is maximized, and the diffractive lens structure has almost no spherical aberration correction effect, making it impossible to correct spherical aberration for CD.
  • an optical path length difference of (2m + l) ⁇ ⁇ 5 occurs for BD laser light.
  • the phase step amount of the diffractive lens structure is set to, the diffraction efficiency of the (2m + 1) -order odd-order diffracted light is maximized in the diffractive lens structure.
  • the optical path length difference generated at the phase step is approximately (m + 1/2) A CD .
  • the BD laser beam and the CD laser beam are different in the amount of deviation from an integral multiple of the wavelength of the optical path length difference generated at the phase step, and therefore have no aberration correction effect on the BD laser beam. Therefore, it is possible to realize a diffractive lens structure with an aberration correction effect for CD laser light.
  • the first diffraction diffracted light is used for the third diffraction effective diameter region 1 corresponding to the CD effective diameter with the BD laser light.
  • a diffractive lens structure it is possible to correct CD aberration to some extent with a first diffractive lens structure designed to correct spherical aberration of DVD without generating spherical aberration in BD.
  • the second diffractive lens structure that uses the even-order diffracted light of the BD laser light allows the DVD spherical surface to be produced without causing spherical aberration in the BD.
  • the second diffractive lens structure designed to correct aberrations allows CD spherical aberrations to remain without correction.
  • the optical path length difference generated by the phase steps constituting these diffractive lens structures is 5 ⁇ ⁇ 0
  • the optical path length difference generated by the phase steps is approximately 3 A for DVD laser light. Since it is a DVD, it is impossible to correct spherical aberration with a DVD without generating spherical aberration with a BD.
  • the first diffractive lens structure is a diffractive lens structure that uses odd-order diffracted light except for a multiple of 5 of the BD laser light
  • the second diffractive lens structure excludes a multiple of 10 for the BD laser light. Time using diffracted light at even time A folded lens structure may be used.
  • both spherical DVD and CD can be produced without generating aberration for BD if spherical aberration is not corrected for both DVD and CD.
  • the light can be diffused as flare.
  • the region 2 within the second effective diameter and outside the third effective diameter since spherical aberration exists only with respect to the CD, it is possible to diffuse light only as a flare with respect to the CD. .
  • a diffraction lens structure in which the diffraction order having the maximum diffraction efficiency among the diffracted light generated when the laser light having the shortest wavelength among the plurality of light source wavelengths used is incident is formed in the region 1.
  • even numbers are Spherical aberration is corrected only for light within an effective diameter corresponding to a different numerical aperture, and light outside the effective diameter can be diffused as flare by not correcting spherical aberration.
  • the diffractive lens structure is divided into three regions divided by two circles centered on the optical axis, and at least two of these regions are composed of concentric fine phase steps.
  • Optimal numerical aperture can be given to each light of B DZD VDZCD with different numerical apertures.
  • DVD transmission protective layer (substrate) thickness is 0.6 mm and CD transmission protective layer (substrate) thickness is 1.2 mm, so the amount of spherical aberration to be corrected is different.
  • a diffractive lens structure designed for BDZD VD compatibility cannot fully correct spherical aberration for CD.
  • diffractive lens structures designed for BDZCD compatibility cannot completely correct spherical aberration for DVDs.
  • the spherical aberration amount to be corrected by DVD and CD are corrected.
  • a method of correcting the amount of spherical aberration that is intermediate between the amount of spherical aberration to be corrected and balancing the amount of spherical aberration remaining on DVD and CD can be considered. With this method, it is possible to obtain a design in which the aberration is 0.07 A rms or less for both DVD and CD.
  • the first diffractive lens structure and the fourth diffractive lens structure that generates even-order diffracted light except 10 for the BD laser light are mixed in area 1.
  • a method of making it possible is conceivable.
  • the first diffractive lens structure is first designed to be compatible with BD ZCD.
  • the first diffractive lens structure also has a spherical aberration correction effect for the DVD laser light, but since the correction amount is different from the spherical aberration amount to be corrected, the spherical aberration corresponding to the difference remains.
  • a fourth diffractive lens structure that generates even-order diffracted light is added to the BD laser light in the same way as the second diffractive lens structure to correct the residual aberration.
  • the fourth diffraction lens structure has no aberration correction effect for BD laser light, and is designed to generate even-order diffracted light, so that it also has an aberration correction effect for CD laser light. do not have. In other words, the addition of the fourth diffractive lens structure has no adverse effect on the CD wavefront. This method makes it possible to design the aberration in region 1 to a sufficiently small value in both D VDZ CD.
  • the interval between the phase steps that make up the first diffractive lens structure and the phase steps that make up the fourth diffractive lens structure may be very small.
  • the total number of phase steps can be reduced.
  • the step difference between the two adjacent phase steps may be arranged at one of the positions where the phase steps are located or somewhere in between. In this way, when phase steps are combined, each phase step is slightly deviated from the original design value, resulting in slight performance degradation, but if the two phase steps to be combined are close, Since the deviation is small, performance degradation is not a problem.
  • the inventor found a design in which all of the BDZ DVD / CD has parallel light incidence by a design method different from the above two methods. The details are shown below.
  • Spherical aberration is proportional to the fourth power of the numerical aperture of the lens. Therefore, as shown in Fig. 4d, by making the area 1 which is a shared design area of DVD / CD smaller than the third diffraction effective diameter corresponding to the effective diameter of the CD and reducing the numerical aperture, the spherical aberration that cannot be corrected can be fully corrected. The amount can be reduced. For example, if the DVD / CD shared design area is about 80%, the remaining spherical aberration will be reduced to about 41%. However, simply reducing the shared design area will reduce the numerical aperture for the CD, which will hinder CD recording and playback. Therefore, the inventor paid attention to the condensing position of the laser beam for CD that passed through region 1. Fig.
  • the diffractive lens structure in Region 1 is designed so that aberrations are corrected for CD.
  • the collection of the desired diffracted light of the CD laser light is placed at a position where the longitudinal spherical aberration before correction is zero in the region 2 and at one point inside the CD effective diameter.
  • Fig. 6 shows the wavefront aberration for CD.
  • the horizontal axis represents the height from the optical axis
  • the vertical axis represents the amount of aberration.
  • the inclination of the wavefront is zero at the height h from the optical axis where the longitudinal spherical aberration is zero, and the inclination of the wavefront is relatively gentle in the vicinity. Is not so big.
  • the wavefront of region 4 in the vicinity of h can be used for CD reproduction by matching the phase with the wavefront passing through region 1 even though the spherical aberration is not corrected.
  • the first diffractive lens structure by narrowing the region 1 by setting the image plane position so that the longitudinal spherical aberration is zero somewhere in the fourth region of the CD. Is possible.
  • a diffractive optical element designed in this way is used, some aberrations remain in region 1 in DVD, but the amount of aberration is small, and this is not a substantial problem.
  • this design method is preferable because the phase difference constituting the plurality of diffractive lens structures does not coexist in the region 1, so that the design can be performed without increasing the number of phase steps.
  • Figure 7 shows the operation of the objective lens module.
  • Figure 7 (A) the when the first laser beam A BD is incident on the diffractive optical element 1 6 b substantially parallel light, the objective lenses 1 as substantially parallel light as the light that passes through the entire region 6 Guided to a.
  • the light condensed by the objective lens 16 a passes through the protective layer for BD and is condensed on the signal recording surface.
  • the third laser beam of A CD when incident as substantially parallel light, it passes through regions 1 and 4 within the third diffraction effective diameter corresponding to the effective diameter of CD.
  • the passing light is collected by the objective lens 16 a, passes through the CD transmission protective layer, and is collected on the signal recording surface.
  • the light that has passed outside the third diffraction effective diameter is condensed by the objective lens 16a and passes through the CD transmission protective layer.
  • spherical aberration is not corrected and flare is generated, which does not contribute to reproduction.
  • Spherical aberration correction diffractive lens when diffractive optical element has chromatic aberration correction function By adding the structure, the discontinuous chromatic aberration can be corrected and stable operation can be realized even when the wavelength of the laser is changed.
  • the corresponding objective lens has a very large numerical aperture of 0.85, and the wavelength of the light source used is short, so the depth of focus becomes shallow. Therefore, it is desirable to correct chromatic aberration.
  • chromatic aberration is corrected by combining lenses made of glass with different refractive indexes and canceling these chromatic aberrations, or by using a diffractive optical element separately to cancel chromatic aberrations caused by it. to correct.
  • spherical aberration correction and aperture restriction for DVD and CD are performed at the same time, and a diffractive optical element consisting of a diffractive lens structure with partially different characteristics is used. It becomes.
  • aberration correction is complicated with a general combined lens in which two spherical lenses using materials having different wavelength dispersions are combined.
  • the inventor designed the spherical aberration correcting diffractive lens structure so that the chromatic aberration in the region 1 and the region 2 does not become discontinuous.
  • a diffractive lens structure for correcting chromatic aberration is formed in region 3 so that the chromatic aberration in region 3 does not become discontinuous.
  • the third diffractive lens structure in the present embodiment is a chromatic aberration correcting diffractive lens structure, and does not generate any extra aberrations other than chromatic aberration correction.
  • BD 10th order light
  • DVD 6th order light
  • CD Can be used in combination with the diffraction order of 5th order light.
  • the first laser beam is T JP2005 / 017092
  • the third diffractive lens structure When correcting discontinuous chromatic aberration due to the first and second diffractive lens structures (for spherical aberration correction) formed in region 1 and region 2 and correcting chromatic aberration of the objective lens itself, use the third diffractive lens structure. (Chromatic aberration correction means) must be formed on the entire surface of the BD effective diameter (including D VD and CD effective diameter). In this case, since it is not desirable that an optical axis shift occurs in the spherical aberration correcting diffraction lens structure and the chromatic aberration correcting diffractive lens structure, the spherical aberration correcting diffractive lens structure and the chromatic aberration correcting diffractive lens structure have one diffraction grating. It is desirable to constitute an optical element.
  • the third diffractive lens structure for correcting chromatic aberration is formed on a different surface from the first and second diffractive lens structures for correcting spherical aberration to form one diffractive optical element. Since the number of parts is reduced as compared with the case where a chromatic aberration correcting optical element is separately used as in the prior art, it has a great effect on downsizing and cost reduction of the pickup.
  • first diffractive lens structure may be formed on a different surface from the second diffractive lens structure and the third diffractive lens structure.
  • the second diffractive lens structure may be formed on a different surface from the first diffractive lens structure and the third diffractive lens structure.
  • the first diffractive lens structure, the second diffractive lens structure, and the third diffractive lens structure are formed on any surface, and the direction of the phase step (depth direction) formed on each surface is the same. Preferably there is.
  • these diffractive lens structures are configured as a single diffractive optical element, as shown in FIG. 9, the diffractive lens structure is divided into both sides, and the phase steps of the diffractive lens structure are aligned on each surface. Therefore, the cross-sectional shape of the diffractive lens structure is simple.
  • the pure staircase shape facilitates mold processing, reduces molding defects, and prolongs the life of the mold, resulting in a great effect in maintaining high quality diffractive optical elements and reducing costs.
  • the optical path length difference generated at the step differs between the phase step constituting the third diffractive lens structure and the phase step constituting either the first or second diffractive lens structure.
  • the phase steps constituting the third diffractive lens structure in order to match the phase between the regions, any one or all of the phase steps in the vicinity of the first, second, and fourth diffraction effective diameters may be used. It may be preferable to set the optical path length so that it differs from the phase step.
  • a diffractive optical element having a plurality of diffractive lens structures by consolidating all of the diffractive lens structures on one side, a mold having fine steps that are difficult to manufacture can be obtained. Since it is not necessary to manufacture the surface, the cost of the diffractive optical element is greatly reduced. That is, all of the phase steps constituting the first diffractive lens structure, part of the phase steps constituting the second diffractive lens structure, and the third region in the region within the third diffraction effective diameter on the incident or exit surface of the diffractive optical element. A part of the phase steps constituting the diffractive lens structure may be mixed.
  • a part of the phase difference between the second diffractive lens structure and a part of the third diffractive lens structure is mixed in a region between the fourth diffractive effective diameter and the second diffractive effective diameter on the incident or exit surface of the diffractive optical element. You may do it.
  • the number of deep steps can be reduced by combining the phase steps to be combined with ones with different phase step directions as shown in Fig. 11.
  • the step amount of the phase step constituting the second diffractive lens structure and the step amount of the phase step constituting the third diffractive lens structure are set. There is at least one phase step with the added depth.
  • the diffractive optical element having the diffractive lens structure and the objective lens are described as separate optical elements, but it is also possible to form the diffractive lens structure directly on the objective lens as shown in FIG. In this case, it is preferable that the number of parts is further reduced.
  • Table 2 shows the diffraction orders of DVD and CD with respect to the diffraction orders of the diffractive lens structure used in BD, the aberration correction amount due to one phase step (the value obtained by subtracting the optical path length difference generated at the step from the diffraction order used), and diffraction. Shows efficiency.
  • the diffraction efficiency shown in Table 2 is an example when the diffractive lens structure is blazed so that the diffraction efficiency is 1 with respect to the light source for BD. In actual design, the phase step amount is changed. Therefore, it is possible to design in consideration of the balance of diffraction efficiency in BD, DVD and CD. Therefore, the combinations A to D of the diffraction efficiency of BD, DVD and CD in the actual diffractive lens structure are not limited to the values in Table 2.
  • Spherical aberration can be corrected for both CD and DVD (used in area 1).
  • d is the distance between steps, that is, adjacent step surfaces.
  • BD the wavelength A BD DVD and CD laser beam, A DVD and A refractive index each N BD for CD, the step d of the N DVD and N CD is a diffractive lens structure formed in the material
  • the optical path length difference that occurs at the phase steps that make up the diffractive lens structure is FB D X ⁇ B D for BD laser light (FB D is an integer and the diffraction order of the diffracted light of the BD laser light) I.e.,
  • the diffraction efficiency of the F BD secondary light is theoretically 100% for the BD laser light.
  • the optical path length difference A DVD in which a phase step occurs with respect to the DVD light source is obtained from the equations (4) and (5)
  • ⁇ DVD ⁇ BD / (N B D— 1) (N D VD 1) / ⁇ DVD ⁇ F BD ⁇ , DVD
  • the diffraction order F DVD with the highest diffraction efficiency among the diffraction lights of the DVD laser light generated by such a diffractive lens structure is
  • ROUND [] is a so-called rounding function that rounds the value in [] to the nearest decimal point to obtain an integer. Therefore, when the F BD order light of the BD laser light is used in designing the diffractive lens structure, it is preferable to use the F DVD order light of the DVD laser light satisfying the above formula. Therefore, it is reasonable to use F DVD secondary light for DVD recording and playback.
  • ⁇ CD (N CD — 1) / (N BD -1) ⁇ ⁇ PT / JP2005 / 017092
  • ⁇ CD (N CD -1) / (N BD -1) XF BD XA BD
  • ⁇ CD UBD, (N bd -1) X (N CD -1) / A CD XF BD ⁇ XA CD
  • the wavelength of the light source for BD and the wavelength of the light source for CD are 408 nm and 780 nm, respectively.
  • the refractive index of the optical material is generally larger as the wavelength is shorter. The relationship is true.
  • the ratio of the optical path length difference generated by the phase step is approximately 2: 1 between the BD light source and the CD light source. Therefore, when the BD diffraction order F BD is an even number, the optical path length difference generated with respect to the CD light source is almost an integer, so that it is possible to design a diffractive lens structure having no aberration correction effect with respect to the CD light source.
  • CD diffraction order F CD is
  • F CD ROUND [A BD / (N BD — 1) X (N CD — 1) / A CD XF BD ]
  • the optical path length difference generated for the CD light source is Since it is not an integer, it is possible to design a diffractive lens structure having an aberration correction effect for CD. Since both DVD and CD have a thicker laser light transmission layer than BD, the sign of spherical aberration to be corrected for the BD objective lens is the same. Therefore, if the diffractive lens structure is to have an aberration correction effect for both DVD and CD, the spherical aberration correction effect of the phase step needs to have the same sign.
  • the aberration correction amount due to the phase step is brass for the D V D laser beam, the aberration correction amount due to the phase step is also positive for the CD laser beam.
  • F CD CE IL [ ⁇ ⁇ 0 / (N BD — 1) X (N CD — 1) / A CD XF BD ]
  • CE IL [] is a function that obtains an integer by rounding up the decimal value of the value in the mouth.
  • the aberration correction amount due to the phase step with respect to the D V D laser beam is negative, the aberration correction amount due to the phase step with respect to the CD laser beam is also negative.
  • F CD FL ⁇ OR [ ⁇ ⁇ / (N BD — 1) X (N CD -1) / CD XF BD ]
  • FLOOR [] is a function that obtains an integer by rounding down the decimal point of the value in []. in this case,
  • F CD ROUND [ ⁇ ⁇ ⁇ (N BD -1) X (N CD — 1) / A CD XF BD ]
  • the relationship (18) may not hold.
  • the FeD secondary light of the CD laser light has the highest diffraction efficiency among the diffracted lights having the same sign of the spherical aberration correction effect as the DVD, but all generated The diffraction efficiency is not necessarily the highest among the diffracted light.
  • Table 2 shows a specific design that theoretically has a diffraction efficiency of 100% with respect to the BD laser beam so that the optimum combination of diffraction orders and aberration correction by one phase step can be intuitively understood.
  • the phase step is actually set so that the diffraction efficiency of the BD laser beam does not become 100%. If the diffractive lens structure is designed so as not to have an aberration correction effect on the BD even if the amount is designed, the phase step that constitutes it is different between the DVD laser light and the CD laser light.
  • the aberration correction amount shown in Table 2 is the diffraction efficiency of BDZD VDZ CD.
  • the aberration correction amounts and diffraction efficiencies listed in Table 2 are approximate values given as examples for reference in determining the diffraction order to be used.
  • the phase step distribution constituting the actual diffractive lens structure that is, the height from the optical axis of each phase step, is designed using a design method such as the phase function method.
  • the diffraction efficiency of BD-N VDZC D is slightly different depending on the relationship between the refractive index and wavelength of the material used. Therefore, in order to estimate the accurate diffraction efficiency, the refractive index characteristics of the material actually used should be considered. There is a need.
  • a diffractive lens structure used in an optical disc is composed of a plurality of minute phase steps on concentric circles, and the light wavefront is controlled by utilizing light diffraction caused by the phase steps.
  • a phase function method is used as one of the methods for designing such a diffractive lens structure.
  • the phase function method an infinitely thin phase object is assumed on the surface on which the diffractive lens structure is formed, and is given by the phase function ⁇ () shown in the following equation for light rays that pass through the distance (height) h from the optical axis.
  • the aberration is calculated by adding the phase to be calculated.
  • dor is the diffraction order, ⁇ . Is the design wavelength.
  • phase function (h) is set as follows, and ⁇ (h) is the diffraction lens function.
  • the height from the optical axis of the plurality of phase steps constituting the diffractive lens structure can be obtained by obtaining h where the diffractive lens function is an integer.
  • diffraction that enables compatible recording / reproduction of the first optical information recording medium BD, the second optical information recording medium DVD, and the third optical information recording medium CD is configured by combining an optical element and a double-sided aspheric lens for BD.
  • Table 3 shows the configuration of the lens system and the design conditions for BD, DVD, and CD.
  • the diffractive optical element of Example 1 has a diffractive lens structure formed on one side as shown in FIG. The other side is flat.
  • a plurality of diffractive lens structures having different characteristics are concentrically formed, and diffractive lens structure 1 (region 1), diffractive lens structure 2 (region 2), and It is composed of a flat outer peripheral surface (region 3).
  • the aberration generated by the diffractive optical element is the sum of the aberration generated by the macroscopic aspherical surface on which the diffractive lens structure is formed and the aberration generated by the phase step formed there.
  • the diffractive optical element and the BD objective lens are combined, the aberration due to the macroscopic aspherical shape is prevented so that no aberration occurs in the diffractive optical element for the BD laser light.
  • the design is designed to cancel out aberrations caused by phase steps.
  • the diameter of the outermost phase step is defined as the effective diameter of the diffractive lens structure, as shown in FIG. ⁇ (1) and ⁇ (2) (4th diffraction effective diameter and 2nd diffraction effective diameter).
  • the effective diameter ⁇ (1) (fourth diffraction effective diameter) of the diffractive lens structure 1 is smaller than the CD effective diameter ⁇ (CD) (third diffraction effective diameter) in the diffractive optical element, and the effective diameter ⁇ of the diffraction lens structure 2 (2) (Second diffraction effective diameter) is the same value as DVD effective diameter ⁇ (DVD) in the diffractive optical element.
  • BD effective diameter ⁇ (BD) (first diffraction effective diameter) is the largest. Specific values (mm) are shown in Table 4. ⁇ (DOE 1) indicates ⁇ (1), and ⁇ (DOE 2) indicates ⁇ (2).
  • the diffractive lens structure 1 and the diffractive lens structure 2 have different diffraction orders used in the BD.
  • the diffractive lens structure 1 has a spherical aberration correction effect for both DVD and CD
  • the diffractive lens structure 2 has a spherical aberration correction effect only for DVD
  • a spherical aberration correction effect for CD do not have.
  • Diffractive lens structure 1 (Region 1) provides spherical aberration correction for both DVD and CD.
  • DVD and CD are reproduced using the objective lens used in Example 1, the ratio of spherical aberration generated when the diameters are the same is shown in the spherical aberration graph for DVD and CD in FIG. If the CD aberration is 1, the DVD aberration is 0.63.
  • a diffractive lens structure having such a ratio of spherical aberration correction amounts cannot be realized.
  • the spherical aberration can be corrected by changing the magnification of the CD to make it a finite system.
  • using a CD finite system makes it difficult to share the light receiving element that receives the light containing the signal from the optical disk with BD, DVD, and CD, and the configuration of the pickup becomes complicated.
  • Table 5 shows the diffraction order of DVD and CD, the amount of aberration correction due to the phase step, and the diffraction efficiency with respect to the diffraction order of the diffractive lens structure used in BD.
  • the diffraction efficiency shown in Table 5 is an example in which the diffractive lens structure is blazed so that the diffraction efficiency is 1 with respect to the BD light source. In actual design, it is possible to consider the balance of diffraction efficiency among BD, DVD and CD by changing the phase step amount as described later. It is not limited.
  • the diffraction order of the DVD the order in which the diffraction efficiency with respect to the laser beam for DVD is the highest when blazed so that the diffraction efficiency of the BD is 100% is selected.
  • the diffraction order of CD has the same spherical aberration correction effect as that of DVD, and the diffraction order with the highest diffraction efficiency is selected.
  • the reason why the D V D aberration correction amount and the C D convergence correction amount have the same sign is because the sign of the spherical aberration to be corrected is the same when the BD objective lens is used.
  • the aberration correction amount is obtained by replacing the phase difference generated between adjacent ring-shaped surfaces separated by the phase steps constituting the diffractive lens structure with the optical path length difference.
  • the combinations in Table 5 are repeated.
  • Table 5 there is no combination of DVD and CD with an aberration correction effect of 3: 5, so there is a combination of spherical aberration correction amounts close to that, and the diffraction efficiency of DVD is high.
  • Aberration correction using the diffractive lens structure 1 (region 1) will be described below.
  • the diffractive lens structure 1 uses third-order diffracted light for BD and second-order diffracted light for DVD and CD, and is designed so that the spherical aberration for CD is almost zero with almost no effect on the wavefront aberration of BD. Has been.
  • the optical path length difference of 3 ⁇ is placed on the wavefront passing through the adjacent annular zone delimited by the phase step.
  • the phase step amount is set so as to give
  • the optical path length difference between the two is about 1.8 ⁇ . Because of the wave nature of light, light travels only in the direction where the optical path length difference between adjacent faces is an integral multiple of the wavelength, so an additional optical path length difference of +0.2 ⁇ has been added.
  • the first-order diffracted light is generated with the optical path length difference of 10.8 ⁇ added to the folded light.
  • the second-order diffracted light is used in the DVD, but in this case, an aberration corresponding to an optical path length difference of + 0.2 ⁇ is generated at one phase step.
  • the wavelength of the light further increases and the refractive index of the material decreases as shown in FIG. 19, so the difference in optical path length generated between adjacent annular surfaces is 1. 5 ⁇ .
  • an optical path length difference of +0.5 ⁇ was further added.
  • + First-order diffracted light with an additional optical path length difference of 0.5 ⁇ and second-order diffracted light is generated.
  • an aberration corresponding to an optical path length difference of +0.5 ⁇ is generated with one phase difference.
  • the difference in optical path length generated between adjacent annular zones of the diffractive lens structure varies depending on the wavelength, and the spherical aberration can be corrected by using the difference in optical path length added accordingly. It becomes possible.
  • the diffractive lens structure 1 is designed so that the spherical aberration of BD and CD becomes the opening, so that some aberrations remain with respect to DVD.
  • the amount of spherical aberration caused by the difference in the thickness of the transmission protective layer (substrate) increases in proportion to the fourth power of the numerical aperture.
  • the effective diameter to be corrected can be reduced and the numerical aperture can be reduced, the spherical aberration remaining in DVD can be reduced.
  • the effective diameter is simply reduced, the numerical aperture for the CD will be insufficient, which will be hindered.
  • such a diffractive lens structure 1 should be applied to the entire effective diameter to be corrected. .
  • it is not necessary to apply the diffractive lens structure 1 to the entire surface of the CD effective diameter by determining the image plane position of the laser beam for CD when designing the diffractive lens structure 1 under the following conditions. Realized the configuration.
  • FIG. 20 is a longitudinal spherical aberration diagram with respect to CD when the diffractive optical element of this example and the BD objective lens are combined.
  • the longitudinal spherical aberration diagram before correction by the diffractive lens structure is described by thin thin lines.
  • the light beam that passes through the region up to the height ⁇ (1) / 2 from the optical axis of the incident light is focused on the image plane because the spherical aberration is corrected by the diffractive lens structure 1 (region 1). Has been.
  • the optical axis Spherical aberration remains in the light beam that passes from ⁇ (1) / 2 to ⁇ (CD) / 2 because the aberration is not corrected, but the image plane position when designing the diffractive lens structure 1 Is set at the position where the light beam passing through the point h in this region is focused, so that the light beam passing through this region is focused on the image plane, although it has some aberrations.
  • Light rays passing through a position higher than the height ⁇ (CD) / 2 from the optical axis are not condensed at the image plane position, but are diffused as flares.
  • FIG. 21 is a wavefront aberration diagram of a lens showing the longitudinal spherical aberration characteristic as shown in FIG.
  • the wavefront in the region up to the height ⁇ (1) / 2 from the optical axis is flat and has a good wavefront shape because spherical aberration is corrected by the diffractive lens structure 1 (region 1).
  • the wavefront passing through the height ⁇ (1) 2 to ⁇ (CD) node 2 from the optical axis passes through the diffractive lens structure 2 (region 2).
  • This diffractive lens structure 2 is a laser beam for CD. Because there is no spherical aberration correction effect for, spherical aberration remains as it is.
  • the wavefront has a maximum value, and the surrounding inclination is gentle, which contributes to the light collection.
  • the wavefront passing outside the height ⁇ (CD) / 2 from the optical axis corresponding to the CD effective diameter does not contribute to the light collection because the wavefront is tight.
  • the effective diameter of the diffractive lens structure 1 can be minimized, and the diffractive lens structure 1 optimized for BD and CD can be obtained.
  • the spherical aberration remaining on the DVD can be reduced.
  • the effective diameter ⁇ (1) of the diffractive lens structure 1 is about 79% of the CD effective diameter ⁇ (CD), so the amount of remaining spherical aberration is 39 compared to the case where the diffractive lens structure 1 is applied to the entire effective diameter. It can be reduced to about%.
  • FIG. 22 and 23 show the combination of the diffractive optical element of Example 1 and the objective lens for BD.
  • FIG. 24 is a graph of the diffractive lens function of the diffractive lens structure 1. Inside the effective diameter of diffractive lens structure 1, the diffractive lens function increases monotonically, as is apparent from FIG.
  • the height from the optical axis of the plurality of phase steps constituting the diffractive lens structure 1 is the height from the optical axis at which the diffractive lens function is an integer, as shown in FIGS. 24 and 25.
  • the height from the optical axis ⁇ (1) corresponds to the effective diameter of the height h 8 from the optical axis.
  • Z becomes 2.
  • the diffractive lens function of the diffractive lens structure 1 is monotonically increasing, the diffractive lens function is blazed in a direction that becomes thicker than the macroscopic aspherical shape from the inner peripheral part to the outer peripheral part.
  • a step is formed in the direction in which the lens becomes thinner at a height hl to h 8 from the optical axis where the lens function is an integer.
  • the aberration due to the macroscopic aspheric shape of the diffractive lens structure is designed to cancel out the aberration due to the phase step.
  • the steps formed in 1 8 are set so that a difference in optical path length corresponding to three wavelengths of the BD laser light occurs.
  • the ring-shaped surfaces divided by the phase steps are all planes perpendicular to the optical axis. In this case, the diffraction efficiency of the third-order diffracted light with respect to the BD laser light is theoretically 100%.
  • the diffraction efficiency of the second-order diffracted light with respect to the CD laser beam is only about 40%, and the first-order diffracted light that becomes stray light is emitted about 40%. It is not preferable because it is produced.
  • the aberration correction characteristic of the diffractive lens structure is determined only by the macroscopic aspheric shape of the diffractive lens structure and the height from the optical axis where the phase step is formed. Then, by changing only the phase step amount without changing these, it is possible to adjust the diffraction efficiency without changing the characteristics as a lens.
  • the value of the phase step d is made deeper than the depth given by the equation of FIG.
  • FIG. 27 shows a cross-sectional view of the structure of a further embodiment.
  • Example 1 consideration is given to balancing the diffraction efficiencies of the two.
  • the step amount was determined.
  • the ring-shaped surface divided by the phase step is not a plane perpendicular to the optical axis, but only the step amount without changing the macroscopic aspheric shape and the phase step radius. It becomes a conical surface or an aspherical surface inclined to change. In this embodiment, these ring-shaped surfaces are represented as aspherical surfaces.
  • the effective diameter ⁇ (1) of the diffractive lens structure 1 is devised to be smaller than the CD effective diameter ⁇ (CD) to reduce the residual spherical aberration in DVD.
  • CD CD effective diameter
  • the ratio of the diffraction lens structure 1 is reduced, so that the overall efficiency reduction can be kept small.
  • diffractive lens structure 2 region 2
  • the combination of the columns shown in structure 6 in Table 6 below is used, and the second-order diffracted light is used for BD, and the first-order diffracted light is used for DVD and CD.
  • the wavelength of the light becomes longer and the refractive index of the material becomes lower.
  • the optical path length difference between the two is about 1.2 ⁇ . Because of the wave nature of light, light travels only in the direction where the optical path length difference between adjacent faces is an integral multiple of the wavelength, so the second-order diffracted light with an additional optical path length difference of +0.8 ⁇ is added. And the first-order diffracted light with the added optical path length difference of 0.2 ⁇ is generated.
  • the first-order diffracted light is used in the DVD, but in this case, an aberration corresponding to an optical path length difference of ⁇ 0.2 ⁇ occurs with one phase step.
  • the wavelength of light further increases and the refractive index of the material decreases, so the optical path length difference generated between adjacent annular surfaces is About 1 ⁇ .
  • the optical path length difference generated between adjacent annular zones is an integral multiple of the wavelength, the first-order diffracted light is generated without further optical path length difference being added.
  • the diffractive lens structure 2 region 2
  • an optical path length difference is added at a phase step only for DVD laser light, and for BD laser light and CD laser light. No new optical path length difference is added.
  • the diffractive lens structure 2 it is possible to provide an aberration correction effect only for the DVD laser beam.
  • the best image plane position of the DVD laser beam when designing the diffractive lens structure 2 (area 2) is set to the best image plane position of the light passing through the inside of the effective diameter of the diffractive lens structure 1 (area 1).
  • Figure 29 shows the wavefront aberration of a DVD when the diffractive lens structure 2 (region 2) is designed based on the above conditions.
  • Height from the optical axis ⁇ (1) Since the wavefront passing through the inner circumference from ⁇ 2 passes through the diffractive lens structure 1 (region 1), a slight amount of spherical aberration remains, and the height ⁇ (1) ⁇ 2 to ⁇ (2) In ⁇ 2, the spherical aberration is completely corrected by the diffractive lens structure 2 (region 2), so that it has a flat and favorable wavefront shape.
  • a phase shift occurs between the wavefront of the inner circumference from height ⁇ (1) ⁇ 2 and the wavefront of the outer circumference from height ⁇ (1) ⁇ 2.
  • phase term constant term d 0 1. 4563050 E-05 of diffractive lens structure 1 (region 1) is calculated temporarily. ing. These d 0 values are not used when determining the actual shape of the diffractive lens structure.
  • the shape of the diffractive lens structure 2 can be obtained in the same way as in the case of the diffractive lens structure 1 (region 1), but the shape is designed while correcting so that the wavefront transmitted through the diffractive lens structure 1 is in phase. There is a need.
  • the provisional shapes of the diffractive lens structure 1 and the diffractive lens structure 2 are obtained using the macroscopic aspherical shape and the phase function coefficient presented as examples.
  • the results are as shown in FIGS. 30, 31, and 32, respectively. Note that the wavefront aberrations in Fig. 30, Fig. 31 and Fig. 32 are described by calculating the actual wavefront aberration and subtracting the integral multiple of the optically negligible wavelength.
  • a sawtooth wavefront aberration exists within the effective diameter ⁇ (1) of the diffractive lens structure 1 (region 1). This is because the difference in optical path length generated at the phase step is slightly deviated from an integer multiple of the respective wavelengths due to the balance of diffraction efficiency between BD and CD, and the difference appears as a step in wavefront aberration. Because. Similarly, the wavefront that passes between the height ⁇ (1) / 2 force ⁇ and ⁇ (2) 2 from the optical axis where the diffractive lens structure 2 (region 2) is applied due to the wavefront aberration of the DVD. There is a sawtooth wavefront convergence, but this is due to the difference in the optical path length generated by the phase step. However, since it is slightly larger than 1.2 ⁇ and 1 ⁇ , the difference appears as a step in wavefront aberration.
  • the BD wavefront aberration shows that there is a phase shift between the mean value of the sawtooth wavefront on the inner circumference and the wavefront on the outer circumference.
  • phase shift can be adjusted by adjusting the amount of phase step near the boundary.
  • the constant term d 0 of the diffractive lens function remains zero, and as shown in Fig. 34, the phase difference of the 8th step counted from the inner periphery of the structure is from 0.0 0 2 5 15 mm. It was corrected by changing to 0.03 8 75 mm (broken line), and the wavefront of the outer periphery was shifted in the minus direction (broken line) as shown in Fig. 35.
  • phase shift is adjusted by adjusting the value of the constant term d 0 of the diffractive lens function as shown in Fig. 36 (broken line), and as shown in Fig. 37, the entire phase step can be It is also possible to shift the phase (broken line) to match the phase.
  • Table 7 shows paraxial data of specific design results of Example 1. This represents the amount of sag in the optical axis direction at the height h from the measured optical axis, where the optical axis direction is positive.
  • Table 11 shows the diffractive lens structure in Example 1 obtained from the macroscopic aspheric surface data and the diffractive lens function of diffractive lens structure 1 (region 1) and diffractive lens structure 2 (region 2).
  • 3 is diffractive lens structure shape data showing a specific shape of the structure.
  • the diffractive lens structure of Example 1 is composed of 3 to 4 phase steps and a center plane divided thereby, annulus surface 2 to annulus surface 3 4, a total of 3 to 3 ring zones, and an outer peripheral surface (region 3) It is constituted by.
  • FIG. 40 and FIG. 41 show the definition of the step, the zone surface number, and the step code.
  • the number of the phase step is counted in order from the optical axis
  • the number of the zone surface divided by the phase step is counted in order from the optical axis toward the outer periphery.
  • the zone width represents the difference between the step radii of the phase steps on the inner and outer circumferences of the zone.
  • the step difference is measured from the inner surface to the outer surface, and the optical axis direction is positive.
  • the phase steps 1 to 7 constituting the diffractive lens structure of Example 1 are determined in consideration of the balance between the diffraction efficiency of the BD and the diffraction efficiency of the CD, and the center plane and the annular surface 2 to The aspheric shape of the annular surface 8 was changed to the aspheric shape shown in Table 12.
  • the center plane on the optical axis is the aspherical shape shown in Table 12 itself.
  • Reference numeral 8 denotes an annular surface in which the aspheric surface shown in Table 12 is displaced in the optical axis direction by an amount corresponding to each step.
  • the phase step 8 is set slightly deeper than the phase steps 1 to 7 so that the phases of the wavefronts passing through the respective regions are aligned.
  • the annular zone surface 9 to the annular zone surface 34 and the outer circumferential surface (region 3) in the outer peripheral portion from the phase step 8 are all planes perpendicular to the optical axis.
  • FIG. 42 schematically shows a sectional view of the diffractive lens structure formed in the diffractive optical element of Example 1, and is a graph showing the sag amount of the surface with respect to the height from the optical axis.
  • the amount of sag is the amount of deflection in the optical axis direction of the surface at height h from the optical axis as shown in Fig.
  • the macroscopic aspheric shapes of the diffractive lens structure 1 (region 1) and the diffractive lens structure 2 (region 2) are convex.
  • the diffractive lens structure 1 all of the ring-shaped surfaces divided by the phase steps are aspherical, and in the diffractive lens structure 2, all are flat surfaces perpendicular to the optical axis.
  • the phase step amount is also different accordingly.
  • phase difference 8 at the boundary between the diffractive lens structure 1 and the diffractive lens structure 2 is a deeper phase in order to match the phase of the wave front passing through both diffractive lens structures in all of BD, DVD and CD.
  • step 44, 45, and 46 show the BD, DVD, and CD wavefront aberrations in the objective lens module that uses the diffractive optical element of Example 1, and all of the BD, DVD, and CD have their effective diameters. It can be seen that the wavefronts passing through each diffractive lens structure are almost in phase.
  • the CD wavefront aberration is not corrected for the height ⁇ (1) / 2 to ⁇ (2) Z 2 from the optical axis, so the calculated aberration value by the phase function method is 0.
  • the wavefront has substantially the same amplitude as the sawtooth wavefront, and can be regarded in the same way as the inner sawtooth wavefront.
  • 47, 48, 49, 50, 51 and 52 are graphs showing wave optical spot shapes calculated using aberrations due to the actual surface shape of the diffractive lens structure. Intensity is shown on the horizontal axis. 47, 48, and 49 show the overall spot shape on BD, DVD, and CD, respectively, and FIGS. 50, 51, and 52 show the side lobes of the spots on B'D, DVD, and CD, respectively.
  • the focused spot of BD is slightly smaller than the case where the main spot is focused by a normal lens, and the side lobe is slightly larger. This is because the apodization effect occurs because the diffraction efficiency of the inner peripheral portion is slightly lowered in the diffractive lens structure 1 (region 1).
  • the intensity of the semiconductor laser used in the semiconductor laser becomes weaker as it goes from the center to the periphery. Therefore, it is preferable to reduce the efficiency of the inner periphery as in Example 1 to generate the apodization effect.
  • the spot shape is calculated with an effective diameter ⁇ (BD) taking into account the light outside the effective diameter of each.
  • BD effective diameter
  • the spot shape is a spot shape that is collected without using a special aperture limiting element, but even if the aperture is not limited, it is almost the same as a normal objective lens for DVD and a CD objective lens. It was found that the same spot shape can be obtained.
  • the change of the spot shape at the time of disc tilt when the lens of this example was used was calculated and compared with a normal lens.
  • the calculation in order to consider the influence of light outside the effective diameter, the calculation was performed for DVD and CD with the effective diameter ⁇ (BD).
  • the half width of the spot and the side lobe intensity shown in Fig. 53 were calculated.
  • the full width at half maximum represents the width of the spot where the intensity is halved when the maximum intensity of the spot is 1, and the side lobe intensity is the side lobe intensity when the maximum intensity of the spot is 1. .
  • Fig. 5 4, Fig. 5 5, 'Fig. 5 6 and Fig. 5 7 are graphs showing the calculation results.
  • Figures 54 and 55 show the change in the half-value width of the spot in DVD and CD, respectively, with the half-value width on the vertical axis and the disc tilt angle on the horizontal axis.
  • Figures 5 6 and 5 7 show changes in side lobe intensity in DVD and CD, respectively.
  • the vertical axis shows the spot side lobe intensity and the horizontal axis shows the disc tilt angle.
  • the second embodiment also enables compatible recording / playback of the first optical information recording medium BD, the second optical information recording medium DVD, and the third optical information recording medium CD.
  • This is a diffractive optical element that is combined with a double-sided aspheric lens for BD.
  • the light source is designed in consideration of the influence of chromatic aberration due to slight wavelength fluctuation of the light source.
  • the wavelength of a light source such as a semiconductor laser used for an optical disk may fluctuate due to temperature changes or power fluctuations during recording and reproduction.
  • the focal length of the objective lens fluctuates and spherical aberration occurs.
  • the amount of wavefront aberration of chromatic aberration associated with wavelength variation increases as the numerical aperture of the lens increases.
  • the spot is defocused for the time until the focus servo follows, and the operation is not performed. It becomes stable.
  • spherical aberration remains after the focus servo follows, it is preferable that the aberration associated with wavelength fluctuation is as small as possible.
  • chromatic aberration is corrected by using a combination lens in which two or more kinds of materials having different refractive index changes due to wavelength changes are combined or by using a diffractive lens structure.
  • the entire wavefront may be discontinuous because the chromatic aberration varies depending on the area.
  • the surface shape of the assembled lens needs to be discontinuous.
  • resin material since it is difficult to process with glass, it is necessary to use a resin material.
  • the refractive index change with wavelength change differs greatly. A combination of types cannot be obtained.
  • the diffractive optical element for correcting this also has discontinuous characteristics.
  • the objective lens for optical discs is configured to track and deviate in the direction perpendicular to the optical axis by the actuator to follow the eccentricity of the optical disc, the above diffractive optical element is also installed in the actuator overnight. It is necessary to bias the tracking together with the objective lens.
  • Example 2 the diffraction lens structure for correcting spherical aberration of DVD and CD and the diffractive lens structure for correcting chromatic aberration are formed in the same optical element.
  • the diffractive optical element and the objective lens constructed in this way By integrating the diffractive optical element and the objective lens constructed in this way and mounting them in an overnight manner, it is possible to realize a configuration in which the optical axis does not deviate even if the objective lens is tracked. Further, it is preferable to integrate the diffractive lens structure for correcting spherical aberration and the diffractive lens structure for correcting chromatic aberration, because the number of parts can be reduced, so that the optical system can be simplified and the cost can be reduced.
  • the second embodiment enables compatible recording / playback of the first optical information recording medium BD, the second optical information recording medium DVD, and the third optical information recording medium CD.
  • a diffractive optical element having a diffractive lens structure A and B and a double-sided aspheric lens for BD are combined.
  • the configuration of the lens system and the design conditions for BD, DVD, and CD are as shown in Table 13 '.
  • a diffractive lens structure A designed to correct spherical aberration between BD, DVD, and CD and limit the aperture is formed on the left side (first side) of Fig. 58.
  • a diffractive lens structure B for correcting chromatic aberration is formed on the right side (second side) of FIG.
  • the diffractive lens structure A corresponds to the diffractive lens structure 1 of Example 1 (region 05017092
  • the inner periphery is composed of a diffractive lens structure A 1 (region 1)
  • the middle periphery is composed of a diffractive lens structure A2 (region 2)
  • the outer periphery is provided with a diffractive lens structure.
  • the diffractive lens structure B is a diffractive lens structure B l that is designed to correct chromatic aberration when the diffractive lens structure A 1 (region 1) and the objective lens are combined on the inner periphery.
  • Diffraction lens structure B 2 designed to correct chromatic aberration when structure A2 (region 2) and objective lens are combined, and diffractive lens structure designed to correct chromatic aberration of object lens at outer periphery Consists of B3.
  • diffractive lens structure A refers to a diffractive lens structure whose main purpose is to correct the difference in spherical aberration that occurs between BD, DVD, and CD
  • diffractive lens structure B is BD.
  • the diffractive lens structure A and the diffractive lens structure B are composed of a plurality of diffractive lenses having different characteristics, and these partial diffractive lens structures are numbered at the end, such as diffractive lens structure A 1 (region 1). It shall be indicated with a mark.
  • FIG. 59 is a schematic cross-sectional view of the diffractive optical element of Example 2.
  • the diffractive lens structure A includes an inner diffractive lens structure A 1 (region 1), an intermediate diffractive lens structure A2 (region 2), and a flat outer peripheral surface (region 3).
  • the diffractive lens structure B includes a diffractive lens structure B 1 (region 1), a diffractive lens structure B 2 (region 2), and a diffractive lens structure B 3 (region 3) in order from the inner periphery.
  • the effective diameter of the diffractive lens structure is shown in Fig. 59.
  • the effective diameters ⁇ ( ⁇ 1) and ⁇ (A 2) of the spherical aberration correcting diffractive lens structure A 1 and the diffractive lens structure A 2 are determined in the same manner as in the first embodiment.
  • diffractive lens structure B 3 region 3
  • ⁇ ( ⁇ 1), ⁇ ( ⁇ 2), and ⁇ ( ⁇ 3) of diffractive lens structure B 3 (region 3) are the diffractive lenses on the surface on which the diffractive lens structure for correcting spherical aberration is applied, respectively. It is determined according to the diameter of the wavefront that has passed through structure A1 (region 1), the wavefront that has passed through diffractive lens structure A2 (region 2), and the wavefront that has passed through the outer periphery without the diffractive lens structure. .
  • the combination of diffraction orders used in the diffractive lens structure A 1 (region 1) and the diffractive lens structure A 2 (region 2) was determined in the same manner as in Example 1.
  • the combination of the columns shown in the structures A 1 and A 2 in Table 14 is to use the second-order diffracted light of BD, the first-order diffracted light by DVD and CD, the third-order diffracted light of BD, and the second-order diffracted light by DVD and CD. .
  • Example 2 Regarding the design of the diffractive lens structure ⁇ , the same procedure as in Example 1 is basically followed. However, when designing using the phase function, the way in which aberrations are generated differs slightly by combining the diffractive lens structure B. It is necessary to design as a whole by combining. Since the diffractive lens structure B for correcting chromatic aberration only corrects chromatic aberration, the aberration due to the macroscopic aspherical shape and the aberration due to the phase step in all BD, DV D and CD.
  • the combinations of the diffraction orders used in the diffractive lens structure B 1 (region 1), the diffractive lens structure B 2 (region 2), and the diffractive lens structure B 3 (region 3) are combinations of columns shown in the structure B in Table 14.
  • BD uses 10th order diffracted light
  • DVD uses 6th order diffracted light
  • CD uses 5th order diffracted light.
  • the chromatic aberration correction is not completely corrected.
  • the BD objective lens used in this example when the wavelength changes from 408 nm to 403 nm, the best image plane position moves by about 5 and a spherical aberration of 0.07 ⁇ rms is generated. To do.
  • the diffractive optical element of Example 2 by adding the diffractive optical element of Example 2, the amount of movement of the best image plane when the wavelength is changed from 408 nm to 403 nm is suppressed to 1.6, and the residual spherical aberration at that time is 0. 01 ⁇ rms or less.
  • the addition of the diffractive optical element of Example 2 enables DVD / CD recording / reproduction and more stable BD recording / reproduction performance.
  • the phase function method is used in the same manner as in Example 1, and the actual surface shape is designed using the diffractive lens function obtained therefrom.
  • Table 15 shows paraxial data, which is a specific design result of Example 2.
  • Table 15 Table 16 shows the aspheric coefficients indicating the macroscopic aspheric shape of the diffractive lens structure A and the diffractive lens structure B in Example 2 and the aspheric shape of the objective lens.
  • Diffractive lens structure A Diffractive lens structure B
  • the actual shape of the diffractive lens structure is obtained using the macroscopic aspherical shape, the phase function coefficient, and the diffraction order as in the above embodiment. Since the method for obtaining the shapes of the diffractive lens structure A 1 (region 1) and the diffractive lens structure A 2 (region 2) for correcting spherical aberration was performed in the same procedure as in Example 1, detailed description thereof will be omitted.
  • Table 19 is a table showing specific shapes of the diffractive lens structure A in Example 2.
  • the diffractive lens structure A of Example 2 is divided by 3 and 4 phase steps. 5 017092
  • the diffractive lens structure 1 (region 1) is obtained in all of BD, DVD, and CD by increasing the eighth phase step.
  • the phase of the wavefront passing through diffractive lens structure 2 (region 2) is matched.
  • the depth of the phase step is determined in consideration of the balance between the diffraction efficiency in the BD and the diffraction efficiency in the CD, and the center plane and the annular surface 2 to
  • the surface shape of the annular surface 8 was an aspherical shape shown in Table 20.
  • the center plane on the optical axis is the aspherical shape shown in Table 20 itself, and the annular surface 2 to the annular surface 8 emit light corresponding to the level difference of each aspherical surface shown in Table 20. It is a ring-shaped surface that is displaced in the axial direction.
  • the annular zone surface 9 to the annular zone surface 34 and the outer circumferential surface (region 3) in the outer peripheral portion from the phase step 8 are all planes perpendicular to the optical axis.
  • FIG. 60 is a schematic diagram of a cross-sectional shape of the diffractive lens structure A in the second embodiment.
  • FIG. 61 is a graph of the diffractive lens function of the diffractive lens structure B1.
  • the height from the optical axis of the plurality of phase steps constituting the diffractive lens structure B is shown in Fig. 61 and Fig. 62.
  • the height from the optical axis where the diffractive lens function is an integer hB 1 to hB7 can be obtained. Since the height hB 7 from the optical axis is the outermost phase step of the diffractive lens structure B 1, the height hB 7 from the optical axis is the height ⁇ (B 1) Becomes / 2.
  • the diffractive lens function of the diffractive lens structure B 1 is monotonically decreasing, the diffractive lens function is blazed in a direction that becomes thinner than the macroscopic aspherical shape from the inner peripheral part to the outer peripheral part of the diffractive lens structure. Height from the optical axis where is an integer h B 1 ⁇ ! ! In B7, a step is formed in the direction in which the lens becomes thicker.
  • the diffractive lens structure B 1 is designed to generate tenth-order light with respect to the BD light source, and is based on the aberration generated by the macroscopic aspherical shape and the aberration generated by the phase step. Designed to be countered at
  • the phase step amount d constituting the diffraction lens structure B is set as shown in FIG. 63
  • the optical path length difference generated at each phase step for the BD light source is 10A BD
  • the diffraction of the 10th order light The efficiency is theoretically 100%.
  • the ring-shaped surfaces divided by the phase difference are all planes perpendicular to the optical axis.
  • the optical path length difference generated by the phase steps constituting the diffractive lens structure B 1 is approximately 6 A DVD for the DVD laser light and approximately 5 ⁇ CD for the CD laser light.
  • the aberration due to the macroscopic aspherical surface and the aberration due to the phase step almost cancel each other, and the theoretical diffraction efficiency of the 6th-order diffracted light for DVD laser light and the 5th-order diffracted light for CD laser light Almost 100%.
  • diffractive lens structure B 2 region 2 and diffractive lens structure B 3 (region 3)
  • the shape is obtained by the same procedure, but when the wavelength variation of the laser beam occurs, a phase difference may occur in the wavefront that has passed through each diffraction lens structure.
  • a constant term d of the diffraction lens function A method of adjusting the value of 0 to shift the phase step as a whole to the inner periphery or the outer periphery, or adjusting by the step amount near the boundary where the phase difference occurs can be considered.
  • Table 21 shows the specific shapes of the diffractive lens structure B in Example 2.
  • the diffractive lens structure B of Example 2 has a total of 36 ring zones and outer circumferential surfaces (region 3) including a phase difference of 37 steps and a central plane divided by the phase difference, ring zone surfaces 2 to 3 7. ).
  • FIG. 64 is a schematic diagram of a cross-sectional shape of the diffractive lens structure B in the second embodiment.
  • Diffractive lens structure B l, Diffractive lens structure B 2 (Region 2) and Diffractive lens structure B 3 (Region The macroscopic aspherical shape in 3) is all concave, and the ring-shaped surfaces divided by the phase steps are all planes perpendicular to the optical axis.
  • Figures 6-5 to 67 show the wavefront aberrations calculated from the actual shape of the diffractive lens structure.
  • B D, D VD and CD the phase of the wavefront inside the effective diameter is aligned.
  • FIGS. 68 to 73 are graphs showing wave optical spot shapes calculated using aberrations due to the actual surface shape of the diffractive lens structure, with the light intensity on the vertical axis and the radial distance on the horizontal axis.
  • FIGS. 68 to 70 show the overall spot shapes in BD, DVD, and CD, respectively
  • FIGS. 71 to 73 show the spots in BD, DVD, and CD, respectively.
  • the BD condensing spot has a main spot slightly smaller than a normal lens and a slightly larger sidelobe. This is because the apodization effect occurs because the diffraction efficiency is slightly lowered in the diffractive lens structure A 1 (region 1).
  • semiconductor lasers used as light sources generally become weaker in intensity from the center to the periphery, so it is more preferable to reduce the efficiency of the inner periphery and generate the apodization effect.
  • the spot shape is calculated taking into account the light outside each effective diameter, but almost the same spot shape as a normal objective lens is obtained.
  • FIGS. 74 to 77 are graphs showing the results of calculating the spot shape change with respect to the disc tilt.
  • Figures 7 and 7 show the changes in the half-value width of spots in DVD and CD, respectively.
  • the vertical axis shows the half-value width and the horizontal axis shows the disc tilt angle.
  • Figures 7 and 7 show changes in the side lobe intensity in DVD and CD, respectively.
  • the vertical axis shows the side lobe intensity of the spot and the horizontal axis shows the disc tilt angle. Since both DVD and CD have almost the same characteristics as ordinary lenses, when the objective lens of this example is used, the conventional DVD and It can be seen that stable reproduction characteristics equivalent to those obtained when a CD objective lens is used can be obtained.
  • FIG. 78 to FIG. 80 show wavefront aberration shapes on the best image plane when wavelength change of the light source occurs in the objective lens module of Example 2. Note that the materials of the diffractive optical element and the objective lens will vary as shown in Table 22 along with the wavelength variation.
  • Fig. 8 1 to Fig. 8 4 are BD spot shapes at wavelengths of 40 3 nm and 4 13 nm 2
  • FIG. 8 It is a graph showing 90 shapes, and for comparison, spot shapes at a design wavelength of 40 8 nm are overlaid.
  • the vertical axis indicates the light intensity, and the horizontal axis indicates the radial distance.
  • Figures 8 1 and 8 2 show the entire spot shape at wavelengths of 40 3 nm and 4 13 nm, respectively.
  • Figures 8 3 and 8 4 show the side lobes of the spots at wavelengths of 40 3 nm and 4 13 nm, respectively. Show.
  • the spot shape hardly deteriorates with respect to the wavelength variation of 5 nm.
  • FIG. 85 is a graph showing the calculation result of the amount of movement of the best image plane with respect to the wavelength variation of the lens using the diffractive optical element of Example 2.
  • the amount of movement of the best image plane position with respect to the wavelength variation is reduced compared to the case of using the objective lens alone, and the performance is more stable against the wavelength variation than when using the objective lens alone. It can be seen that
  • Example 2 two types of spherical aberration correcting diffraction lens structures were formed on the diffractive lens structure A, and three types of chromatic aberration correcting diffractive lens structures were formed on the diffractive lens structure B. It does not matter if they are mixed.
  • FIG. 86 shows a cross-sectional view of a modification of the diffractive optical element of Example 2.
  • the spherical aberration correction diffractive lens structure A 1 (region 1) and the chromatic aberration correction diffractive lens structure B 2 (region) are shown on the first surface.
  • Region 2) was subjected to spherical aberration correcting diffractive lens structure A 2 (region 2) and chromatic aberration correcting diffractive lens structures B 1 and B 3 on the second surface.
  • the structure of the diffractive lens and the diffractive lens structure for correcting chromatic aberration do not necessarily have to be combined on one surface for each function, and by changing these configurations, the shape of the diffractive optical element can be significantly changed. It can be transformed into a shape that is easy to make.
  • the macroscopic surface shapes of the first surface and the second surface are complicated, which is not preferable for processing.
  • the first surface and the second surface all have the same step direction in the respective surfaces, so that the mold can be easily processed and the mold release property at the time of molding. Is also preferable.
  • the third embodiment is also a diffractive optical element for enabling compatible recording / reproduction of BD, DVD, and CD, as in the second embodiment.Furthermore, in this embodiment, chromatic aberration due to slight wavelength variation of the light source is also achieved. Designed with impact in mind.
  • Table 23 shows the configuration of the lens system of the third example and the design conditions for BD, DVD, and CD.
  • Example 2 diffractive lens structures are formed on both sides of the diffractive optical element. In this case, two high-precision molds having fine phase steps are required to form the diffractive lens structures on both sides of the element. Cost. Therefore, as shown in Fig. 87, Example 3 In this case, all diffractive lens structures are concentrated on one side to reduce manufacturing costs.
  • the number of phase steps may increase or the interval between the phase steps may become extremely narrow.
  • the substantial diffraction efficiency decreases as described below, which is not preferable.
  • manufacturing errors such as rounded edges and sagging of the wall surface as shown in the cross-sectional shape of Fig. 88 always occur, which reduces the diffraction efficiency. .
  • Such a decrease in diffraction efficiency due to manufacturing errors is naturally more significant as the number of phase steps increases. Therefore, in designing the diffraction lens structure, it is possible to prevent a substantial decrease in the diffraction efficiency by reducing the number of phase steps.
  • Example 3 by combining the adjacent phase steps of the phase step due to the spherical aberration correcting diffractive lens structure and the phase step due to the color difference correcting diffractive lens structure as a single step, due to manufacturing errors. A reduction in diffraction efficiency is prevented.
  • the design procedure for the diffractive lens structure of Example 3 is as follows. First, the phase function of the diffractive lens structure A for correcting spherical aberration and the phase function of the diffractive lens structure B for correcting chromatic aberration are set on the same surface, and the phase function coefficients thereof are set. Optimize.
  • the diffractive lens structure A for correcting spherical aberration is the diffractive lens structure A 1 for BD, DVD, and CD compatibility within the effective diameter ⁇ (A 1), which is smaller than the effective diameter of the CD, as in Example 1 and Example 2.
  • (Area 1), DV at the outer periphery D Assume a diffractive lens structure A 2 (region 2) that has a spherical aberration correction effect only on DVD inside the effective diameter.
  • the combinations of the diffraction orders used in the diffractive lens structure A 1 (region 1) and the diffractive lens structure A 2 (region 2) are the same as those in the first and second embodiments.
  • the diffractive lens structure B for correcting chromatic aberration is the same as in Example 2, and the diffractive lens structure B designed to correct chromatic aberration when the diffractive lens structure A 1 (region 1) is combined with the objective lens.
  • the diffractive lens structure B 2 (region 2) designed to correct chromatic aberration when a diffractive lens structure A 2 (region 2) and an objective lens are combined in the middle part, and an objective lens in the outer part.
  • the objective lens structure B3 is designed to correct chromatic aberration.
  • the diffractive lens structure A and the diffractive lens structure B are arranged on the surface on the light incident side of the diffractive optical element.
  • Table 24 shows the paraxial design that is the specific design result of Example 3.
  • paraxial data shown in Table 24 shows the lens structure using three surfaces from the first surface to the third surface.
  • the design results of these three surfaces are combined to determine a single surface shape.
  • Table 25 shows a macroscopic view of diffractive lens structure B and diffractive lens structure A in Example 3. The aspherical coefficient showing the aspherical shape and the aspherical shape of the objective lens is shown.
  • the shapes of the diffractive lens structure A and the diffractive lens structure B are obtained individually and geometrically determined. Find the combined shape. Since the shape of each diffractive lens structure can be obtained by the same procedure as in Example 2, detailed description thereof is omitted.
  • FIG. 89 and FIG. 90 are schematic views of cross sections of the diffractive lens structure B and the diffractive lens structure A, which are obtained individually using the macroscopic aspherical shape, the phase function coefficient, and the diffraction order.
  • a diffractive lens structure having a cross-sectional shape as shown in FIG. 91 can be obtained.
  • a diffractive optical element with such a diffractive lens structure formed on the first surface compatible recording / reproduction of BD, DVD, and CD becomes possible, and more stable recording / reproduction performance against wavelength fluctuations is achieved. Obtainable.
  • the interval between the phase steps constituting each diffractive lens structure may become extremely narrow.
  • the interval between the phase steps is extremely narrow, it is not preferable because it becomes difficult to manufacture the mold and the releasability at the time of molding deteriorates. In addition, it is known that the diffraction efficiency is remarkably lowered when the interval of the phase step is about 10 times or less of the wavelength of the light used.
  • the interval between the phase steps is 10 times or more of the longest wavelength of 7 80 nm, that is, 0 0 0 7 It is desirable to secure 8 mm or more.
  • Table 28 shows the shape of the diffractive lens structure obtained by geometrically combining the diffractive lens structure B and the diffractive lens structure A. Table 2 8
  • the data painted in gray are the phase steps that made up the diffractive lens structure B, and the data that did't represent the phase steps that made up the diffractive lens structure A.
  • Table 29 shows data extracted from the above shape data with an annular zone width of 0.078 mm or less indicating the interval between the phase step and the inner phase step. These narrow phase step intervals are not preferable because they make it difficult to manufacture the diffractive lens structure and cause a reduction in diffraction efficiency.
  • the annular zone width is set to be 0.08 78 mm or more by combining two extremely adjacent phase steps as one phase step.
  • a phase step may be formed by adding the two phase step amounts somewhere between the two phase steps to be combined.
  • a phase step may be formed by adding two phase step amounts at the step position, and the other phase step may be eliminated.
  • the phase step that made up the diffractive lens structure B was synthesized at the position of the phase step that made up the diffractive lens structure A that required strict accuracy with respect to the error in the phase step radius. .
  • all the steps that can be combined within the range that does not affect the performance are combined, and the phase steps that required 70 steps can be reduced to 49 steps. We were able to reduce it.
  • Table 30 shows the shape data of the diffractive lens structure in Example 3 obtained by such a design procedure.
  • the data painted in gray indicates the synthesized phase step. It is.
  • the step amount is determined in consideration of the balance of diffraction efficiency of BD and CD within the effective diameter ⁇ (A 1). Accordingly, the center surface and the ring zone surface 2 to the ring zone surface 9 have the aspherical shapes shown in Table 31.
  • the center plane on the optical axis is the aspherical shape shown in Table 31 and the aspheric surfaces shown in Table 31 are divided according to the level difference of the aspheric surfaces 2 to 9. It is a ring-shaped surface that is displaced only in the optical axis direction.
  • the annular zone surface 10 to the annular zone surface 49 and the outer circumferential surface (region 3), which are in the outer peripheral portion from the phase step 9, are all planes perpendicular to the optical axis.
  • phase steps in the opposite direction are combined in this way, minute protrusions and depressions are eliminated from the phase steps.
  • the tip of the processing machine becomes thin, it becomes difficult to process the mold with high precision due to insufficient rigidity.
  • the material tends to remain in the depression during molding. As a result, the diffractive lens structure is not molded and the mold life is shortened.
  • FIGS. 9 2 to 94 are wavefront aberrations calculated from the data of the shape of Example 3.
  • Fig. 95 to Fig. 100 are graphs showing wave optical spot shapes calculated using aberrations due to the actual surface shape of the diffractive lens structure. The vertical axis shows the light intensity and the horizontal axis shows the radial distance.
  • FIGS. 95 to 97 show the entire spot shapes on BD, DVD, and CD, respectively, and FIGS.
  • 98 to 100 show the side lobes of spots on BD, DVD, and CD, respectively.
  • the main spot of the BD condensing spot is slightly smaller than the normal lens, and the side lobe is slightly larger. This is because the apodization effect is generated because the diffraction efficiency is slightly reduced at the inner periphery, but there is no problem in recording / reproduction at this level.
  • semiconductor lasers used as light sources generally become weaker as they go from the center to the periphery, so it is rather preferable to reduce the efficiency of the inner periphery to generate the apodization effect.
  • the spot shape is calculated taking into account the light outside the effective diameter, but the spot shape is almost the same as that of a normal objective lens.
  • FIGS. 10 1 to 10 4 are graphs showing the results of calculating the change in spot shape with respect to the disc tilt.
  • Fig. 101 and Fig. 102 show changes in the half-value width of spots in DVD and CD, respectively, with the half-value width on the vertical axis and the disc tilt angle on the horizontal axis.
  • FIGS. 10 3 and 10 4 show changes in side lobe intensity in DVD and CD, respectively. The vertical axis shows the side lobe intensity of the spot, and the horizontal axis shows the disc tilt angle. Since both DVD and CD have almost the same characteristics as ordinary lenses, when using the objective lens of this example, the conventional DVD and CD can be used without any aperture restriction. It can be seen that a stable reproduction characteristic equivalent to that obtained when using the objective lens is obtained.
  • FIG. 10 to FIG. 10 show the wavefront aberration shapes on the best image plane when the wavelength variation of the light source occurs in the lens of Example 3.
  • Figs. 10 to 11 show a comparison of the spot shapes at wavelengths of 40 3 nm and 4 13 nm with the spot shapes at the design wavelength of 40 8 nm.
  • the spot shape hardly deteriorates with respect to a wavelength variation of ⁇ 5 nm.
  • FIG. 11 shows the calculation result of the movement amount of the best image plane with respect to the wavelength variation of the lens using the diffractive optical element of Example 3.
  • the amount of movement of the best image plane position with respect to wavelength variation is reduced compared to the case of the objective lens alone. It can be seen that more stable performance can be obtained with respect to wavelength fluctuations than when used alone.
  • the fourth embodiment is also a diffractive optical element that enables compatible recording / reproduction of BD, DVD, and CD as in the third embodiment.
  • the influence of chromatic aberration due to slight wavelength fluctuations of the light source is designed in consideration of.
  • the configuration of the lens system is the same as in Example 3, and the design conditions for BD, DVD, and CD are as shown in Table 32.
  • Example 4 as shown in Table 33, the combination of the diffraction orders used in the diffractive lens structure A is different from that in the above example. In addition to providing a higher chromatic aberration correction effect with the number of phase steps, a shape with high productivity is realized.
  • the combination of the diffractive lens structure B and the column shown in structure B of Table 33 is used: 10th order diffracted light at 60, 6th order diffracted light at DVD, and 5th order diffracted light at CD.
  • the design procedure is the same as in Example 3. Table 3 3
  • Table 34 shows paraxial data, which is a specific design result of Example 4.
  • the diffractive lens structure is shown by using three surfaces from the first surface to the third surface.
  • a single surface shape is determined by combining the design results of these three surfaces.
  • Table 35 shows the aspheric coefficients indicating the macroscopic aspheric shape of the diffractive lens structure B and the diffractive lens structure A in Example 4 and the aspheric shape of the objective lens.
  • Table 3 5 shows the aspheric coefficients indicating the macroscopic aspheric shape of the diffractive lens structure B and the diffractive lens structure A in Example 4 and the aspheric shape of the objective lens.
  • FIG. 11 and FIG. 11 show the diffractive lens functions of the diffractive lens structure A 1 (region 1) and the diffractive lens structure A 2 (region 2) in Example 4.
  • the diffractive lens structures A 1 and A 2 of Example 4 are monotonously decreasing in the range of the height from the optical axis where each is formed. Therefore, the actual shape of the diffractive lens structure A is blazed in the direction in which the lens becomes thinner than the macroscopic aspheric surface from the inner periphery to the outer periphery, and from the optical axis where the diffractive lens function is an integer.
  • a step is formed in the direction in which the lens becomes thicker.
  • the depth of the phase step is determined in consideration of the balance of BD and CD diffraction efficiencies as in the above embodiment, and the center plane and the annular plane 2 to
  • the surface shape of the belt surface 9 is the aspherical shape shown in Table 38.
  • the center plane on the optical axis is the aspheric shape shown in Table 38
  • the aspheric surfaces 2 to 8 of the ring zone surface 2 to 8 are light beams corresponding to the respective step amounts. It is a ring-shaped surface that is displaced in the axial direction.
  • Example 4 shows the aspherical shape of the annular zone surface 10 to the annular zone surface 21.
  • the annular zone surface 10 to the annular zone surface 21 are annular zone surfaces in which the aspheric surfaces shown in Table 39 are shifted in the optical axis direction by an amount corresponding to the respective step amounts.
  • the actual surface shape data of diffractive lens structure A can be designed.
  • shape data of the diffractive lens structure B 1 can be designed in the same procedure as in the second and third embodiments, detailed description thereof is omitted.
  • FIG. 1 15 and FIG. 1 16 are schematic views of the cross-sectional shapes of the diffractive lens structure B and the diffractive lens structure A thus obtained.
  • Diffractive lens structure A of Example 4 has chromatic aberration in a direction that cancels out chromatic aberration of the objective lens alone, unlike the above-described example.
  • the absolute amount of chromatic aberration is large, which contributes significantly to correcting chromatic aberration of the objective lens. Therefore, in the diffractive lens structure B, a large number of phase steps are not required in the inner periphery where the diffractive lens structure A is applied.
  • Table 40 shows data representing the shape of the diffractive lens structure obtained by geometrically combining the diffractive lens structure B and the diffractive lens structure A.
  • the data painted in gray are the phase steps that formed the diffractive lens structure B, and the data that did not represent the phase steps that formed the diffractive lens structure A.
  • the phase step that constitutes the diffractive lens structure A and the phase step that constitutes the diffractive lens structure B are appropriately combined to reduce the number of phase steps. Therefore, it is possible to design a diffractive lens structure having a preferable shape for mass production.
  • the data shown in Table 41 is shape data of the diffraction lens structure in Example 4 obtained by such a procedure.
  • the data painted in gray indicates the synthesized phase step. As described above, reduce the number of phase steps by combining the steps as appropriate. As a result, the phase step, which required 4 9 steps, could be reduced to 42 steps.
  • Table 4 1
  • Table 42 shows data representing the center surface of the diffractive lens structure of Example 4 and the aspheric shapes of the annular zone surface 2 to the annular zone surface 10.
  • the center plane on the optical axis is the aspheric shape shown in Table 42
  • the aspheric surfaces shown in Table 42 are divided into the aspheric surfaces shown in Table 42 according to the amount of each step. It is a ring-shaped surface that is displaced only in the optical axis direction.
  • Table 43 shows data representing the aspheric shapes of the annular surface 11 to the annular surface 24.
  • the aspheric surfaces shown in Table 4 3 are divided according to the level difference of the annular surfaces 1 1 to 2 4. It is a ring-shaped surface that is displaced only in the optical axis direction.
  • the annular surface 25 to the annular surface 4 2 and the outer peripheral surface (region 3) outside the phase step 24 are all planes perpendicular to the optical axis.
  • FIG. 1 17 is a schematic diagram of the cross section of the diffractive lens structure in Example 4.
  • the phase steps constituting the diffractive lens structure are all the same in the negative direction, it becomes easier to manufacture the mold.
  • adopting the design method as in Example 4 makes it easy to process the mold with high precision, reduces molding defects, and prolongs the life of the mold. It has a great effect on maintenance and cost reduction.
  • FIG. 1 18 to FIG. 1 20 are wavefront aberrations calculated from the data of the shape of Example 3 (conditions are the same as in the above example). In all of BD, DVD, and CD, the phase of the wave front is aligned inside each effective diameter. There are sawtooth aberrations on the wavefront, but these do not affect the spot shape, so there is no problem.
  • FIG. 1 2 1 to FIG. 1 2 6 are graphs showing wave optical spot shapes calculated using aberrations due to the actual surface shape of the diffractive lens structure (conditions are the same as in the above embodiment).
  • the spot shape is calculated considering the light outside the effective diameter.
  • BD, DVD, and CD are all collected with a normal lens As a result, a good spot shape is obtained.
  • FIG. 1 27 to FIG. 1 30 show the results of calculating the spot shape change with respect to the disc tilt (conditions are the same as in the above example).
  • the conventional DVD and CD are not required even if the aperture is not limited. It can be seen that a stable reproduction characteristic equivalent to that obtained with the objective lens can be obtained.
  • FIG. 1 3 1 to FIG. 1 3 3 are wavefront aberration shapes on the best image plane when the wavelength variation of the light source occurs in the lens of Example 4 (conditions are the same as in the above example).
  • the materials of the diffractive optical element and the objective lens change as shown in Table 22 with the change in wavelength. From these wavefront aberration diagrams, it can be seen that even if a wavelength variation of ⁇ 5 nm occurs, only a slight sawtooth wavefront aberration occurs, and the wavefront shape hardly deteriorates. As described above, the sawtooth wavefront aberration does not adversely affect the spot shape.
  • Fig. 1 3 4 to Fig. 1 3 7 are graphs showing the spot shapes at wavelengths of 40 3 nm and 4 13 nm at the design wavelength of 40 8 nm (conditions are the same as in the above example) .
  • the spot shape hardly deteriorates with respect to the wavelength variation of 5 nm.
  • FIG. 1 38 shows the result of calculating the best image plane displacement with respect to the wavelength variation of the lens using the diffractive optical element of Example 4 (the conditions are the same as in the above example).
  • the amount of movement of the best image plane position with respect to wavelength variation is much reduced compared to the case of using the objective lens alone or the lens of Example 3, and it is possible to cope with wavelength variation. It can be seen that very stable performance can be obtained.
  • the fifth embodiment like the first embodiment, enables compatible recording / playback of the first information recording medium BD, the second information recording medium DVD, and the third information recording medium CD.
  • a diffractive optical element combined with a double-sided aspheric lens for BD.
  • Table 44 shows the design conditions for the lens system components BD, DVD, and CD.
  • the diffractive optical element of Example 5 has a diffractive lens structure formed on one side and a flat side on the other side.
  • FIG. 140 is a schematic cross-sectional view of the diffractive optical element of Example 5.
  • FIG. in the diffractive lens structure a plurality of diffractive lens structures having different characteristics are concentrically formed, and a diffractive lens structure 1 and a diffractive lens structure 3 are combined in a region 1 on the inner periphery.
  • the diffractive lens structure 2 is configured in the peripheral region 2, and the peripheral region 3 is a flat surface.
  • the diffractive optical element of Example 5 does not have a diffractive lens structure for correcting chromatic aberration as in Example 1, but is configured only by a diffractive lens structure for correcting spherical aberration.
  • Region 1 is an inner peripheral region within the fourth effective diameter as shown in FIG. 140, and region 2 is a ring-shaped region having an inner diameter of the fourth effective diameter and an outer diameter of the fifth effective diameter.
  • region 3 is 2005/017092
  • the diffractive lens structure 1 of Example 5 has no aberration correction effect for the BD light source, and the third-order diffracted light by the BD, in order to have the aberration correction effect for the DVD light source and the CD light source.
  • the DVD and CD use 2nd order diffracted light, and are designed to correct aberrations for the CD.
  • the diffractive lens structure 1 also has an aberration correction effect for DVDs, but cannot be completely corrected.
  • the diffractive lens structure 2 of Example 5 has no aberration correction effect on the BD light source and CD light source, but only on the DVD light source.
  • the first-order diffracted light is used for CD and CD, and it is designed to have aberration correction effect for DVD.
  • the diffractive lens structure 3 of Example 5 does not have an aberration correction effect for the BD light source and the CD light source, but has an aberration correction effect only for the DVD light source.
  • the first-order diffracted light, DVD and CD is used to make use of the first-order diffracted light, and it is designed to correct aberrations for DVDs that cannot be completely corrected by diffractive lens structure 1.
  • the effective diameter of the fourth diffractive effective diameter is the same as that in the diffractive optical element. It is possible to set the third diffraction effective diameter smaller than the effective diameter of CD.
  • the effective diameter of the diffractive lens structure 2 is smaller than the second effective diffraction diameter corresponding to the effective diameter of DVD in the diffractive optical element.
  • a device has been devised to enable the fifth effective diffraction diameter.
  • DV VD is positioned so that the longitudinal spherical aberration before correction is zero at some point in region 3 within region 3 and within the DVD effective diameter.
  • the focusing position of the desired diffracted light of the laser beam for the laser beam is set, and region 2 is limited so that the outer diameter is smaller than the effective diameter for DVD.
  • the diffractive lens structure of Example 5 is preferable because the region where the phase step exists is set smaller than the effective diameter of the DVD.
  • Table 46 shows paraxial data of specific design results of Example 5.
  • the diffractive lens structure is shown using 5 surfaces from the 1st surface to the 5th surface.
  • the design results of these five surfaces are combined to determine a single surface shape.
  • Table 47 shows the macroscopic aspherical shape of the diffractive lens structure 1, the diffractive lens structure 2, and the diffractive lens structure 3 in Example 5, and the aspherical shape of the objective lens.
  • the actual shape of the diffractive lens structure can be obtained by first calculating the diffractive lens structure 1, the diffractive lens structure 2 and the diffractive lens structure 3 with the actual shape of each diffractive lens function, the macroscopic aspherical shape, and the diffraction order used. Find using. That is, as in the previous examples, the height from the optical axis where the diffractive lens function is an integer is obtained, and an appropriate direction is generated so that a predetermined diffracted light is generated at that height on the visual aspheric surface. And a phase step of depth. Then, by combining these real shapes geometrically, they are combined into one surface.
  • the method for obtaining the actual shape of the diffractive lens structure 1 is the same as the design result of the diffractive lens structure 1 of Example 1, and therefore the actual shape is obtained in the same manner, and thus detailed description thereof is omitted.
  • Figure 1 4 2 6 is a graph showing a diffractive lens function of a folded lens structure 2;
  • the diffractive lens function of the diffractive lens structure 2 monotonically decreases in the region 2. Therefore, the diffractive lens function is blazed in the direction of becoming thinner than the macroscopic aspherical shape from the inner peripheral part to the outer peripheral part of the diffractive lens structure.
  • the height from the optical axis at which the lens function is an integer; at h 2 0 l to h 2 2 1, a step is formed in the direction in which the lens becomes thicker.
  • the phase step amount is determined so that the diffraction efficiency of the secondary light is 100% in the BD.
  • the plurality of ring-shaped surfaces separated by the phase step are all perpendicular to the optical axis. It becomes a plane.
  • FIG. 14 3 is a graph showing the diffractive lens function of the diffraction lens structure 3.
  • the diffractive lens function of the diffractive lens structure 3 monotonically decreases in the region 1.Therefore, the diffractive lens function is blazed in a direction that becomes thinner than the macroscopic aspherical shape from the inner peripheral part to the outer peripheral part of the diffractive lens structure. Height from the optical axis where the lens function is an integer h 3 0 1 ⁇ ! In 3 2 4, a step is formed in the direction in which the lens becomes thicker.
  • the phase step amount is determined so that the diffraction efficiency of the secondary light is 100% in the BD.
  • the plurality of ring-shaped surfaces separated by the phase step are all perpendicular to the optical axis. It becomes a plane.
  • the diffractive lens structure 1 and the diffractive lens structure 3 are formed in a common region, when these two diffractive lens structures are synthesized, there is no problem in performance as in the case of Example 3 and Example 4.
  • By combining all the steps that can be combined in the range it is possible to realize a diffractive lens structure that does not significantly reduce the diffraction efficiency at all wavelengths.
  • by synthesizing the phase step in this way the interval between the phase steps is widened. Needless to say, it is possible to prevent a substantial decrease in diffraction efficiency due to a manufacturing error of a mold or the like.
  • Table 50 shows diffractive lens structure shape data indicating specific shapes of the diffractive lens structure of Example 5.
  • the data painted in gray are the steps obtained by combining the phase steps constituting the diffractive lens structure 1 and the phase steps constituting the diffractive lens structure 3.
  • the diffractive lens structure of Example 5 is composed of 4 to 9 phase steps and a center plane divided thereby, an annular surface 2 to an annular surface 4 9, and a total of 48 annular regions and outer peripheral surfaces. .
  • the depth of the phase step constituting the diffractive lens structure 1 in Example 5 is +0.0 0 2 5 1 50 mm, but the outermost phase step is BD, DVD, and CD. In order to match the phase of region 1 and region 2, it is set as deep as +0.0.03 875 mm.
  • Phases constituting diffractive lens structure 2 and diffractive lens structure 3 The depths of the steps are both -0.0 0 1 4 9 80 mm.
  • the radius corresponding to the effective diameter of the first region is 1.007 mm, and the steps 1 to 29 are present there.
  • the phase difference constituting the diffractive lens structure 1, the phase difference constituting the diffractive lens structure 3, and the diffractive lens structure 1 and the diffractive lens structure 3 are formed in the region 1.
  • the step 29, which is the outermost phase step in the region 1, is a combined phase step.
  • the phases of the region 1 and the region 2 are aligned with respect to all of the BD, DVD and CD. Therefore, the phase step amount is different from other synthesized phase steps.
  • step 29 is a step deeper in the positive direction than steps 2, 8, and 19 which are other combined phase steps.
  • the signs of the phase steps constituting the diffractive lens structure 1 to be synthesized and the phase steps constituting the diffractive lens structure 3 are opposite.
  • the synthesized phase step becomes shallower. In this case, it is preferable because a substantial decrease in diffraction efficiency due to sagging of the wall surface can be prevented.
  • the phase step amount of diffractive lens structure 1 is set in consideration of the balance between the diffraction efficiency in BD and the diffraction efficiency in CD, and from the center plane and annular surface 2 existing in region 1
  • the surface shape of the annular surface 29 was an aspherical shape shown in Table 51.
  • the center plane on the optical axis is the aspheric shape itself shown in Table 51
  • the ring surface 2 to the ring surface 29 have the aspheric surfaces shown in Table 51 corresponding to the respective step amounts. It is a ring-shaped surface that is displaced in the direction of the optical axis.
  • annular zone surface 30 to annular zone surface 49 and the outer circumferential surface existing in region 2 are all planes perpendicular to the optical axis.
  • FIG. 14 is a graph schematically showing a cross-sectional view of the diffractive lens structure formed in the diffractive optical element of Example 5, and showing the sag amount of the surface with respect to the height from the optical axis.
  • Figure 145, Figure 146, and Figure 147 show the BD, DVD, and CD wavefront aberrations in the objective lens module that uses the diffractive optical element of Example 5.
  • the effective diameters of BD, DV D, and CD are the same. It can be seen that the wavefronts passing through each diffractive lens structure are almost in phase.
  • Fig. 148, Fig. 149, Fig. 150, Fig. 151, Fig. 152, and Fig. 153 are graphs showing wave optical spot shapes calculated using aberrations due to the actual shape of the diffractive lens structure.
  • the horizontal axis represents the radial distance.
  • 148, FIG. 149, and FIG. 150 show the overall spot shapes on BD, DVD, and CD, respectively
  • FIGS. 151, 152, and 153 show the side lobes of the spots on BD, DVD, and CD, respectively.
  • the BD condensing spot is slightly smaller than the main spot collected by a normal lens, and the side lobe is slightly larger.
  • the spot shape is calculated with an effective diameter ⁇ (BD) taking into account the light outside the effective diameter.
  • BD effective diameter
  • the spot shape is a focused spot shape without using a special aperture limiting element, but it is almost the same as an ordinary DVD objective lens or CD objective lens without any aperture limitation. A spot shape is obtained.
  • FIGS. 157 are graphs showing the results of calculating the spot shape change with respect to the disc tilt.
  • Figure 154 and Figure 155 The change in the half-width of the spot on DVD and CD is shown, the half-width on the vertical axis and the disc tilt angle on the horizontal axis.
  • 156 and 157 show changes in side lobe intensity in DVD and CD, respectively.
  • the vertical axis shows the side lobe intensity of the spot
  • the horizontal axis shows the disc tilt angle. Since both DVD and CD exhibit almost the same characteristics as ordinary lenses, when the object lens of this example is used, there is no need to limit the aperture. It can be seen that the same stable reproduction characteristics as when using a CD objective lens are obtained. As described above, according to the lens of Example 5, it can be seen that stable reproduction characteristics equivalent to those obtained by using the conventional objective lens for DVD and CD can be obtained without particularly limiting the aperture.
  • HD—DVD As a next-generation optical disk system using a blue light source other than BD, Hi gh Densit y-DVD (with a transparent protective layer thickness of 0.6 mm, compatible wavelength of 400 to 410 nm, and objective lens numerical aperture of 0.65) HD—DVD) has been proposed. Since HD-DVDs have the same numerical aperture and transparent protective layer thickness as objectives, DVDs can be played back using objectives designed for HD-DVDs. However, since the refractive index of the lens material actually varies depending on the wavelength, spherical aberration occurs in ordinary aspherical lenses designed for HD-DVD, making DVD playback difficult. In the case of CD playback, the thickness of the transparent protective layer is also different. Therefore, in order to perform compatible recording and playback of DVD and CD using an HD-DVD objective lens, the diffractive lens structure is used in the same way as the BD, DVD, CD compatible objective lens module described above. It is necessary to correct the aberration by using it.
  • the standard numerical aperture values of objective lenses for HD—DVD, DVD, and CD are 0.65, 0.60, and 0.45, respectively. Therefore, the effective diameter of the objective lens is the largest in HD-DVD and then decreases in the order of DVD and CD. In other words, it is necessary to limit the opening of different sizes in D V D and CD.
  • the same problems as in the case of the above-mentioned BDZDVDZCD compatible objective lens or the module exist in the HD-DVD / DVDZCD compatible objective lens module. This problem can be solved by using the HD-DVDZDVDZCD compatible objective lens or its module or diffractive optical element of this embodiment.
  • the diffractive lens structure formed in the diffractive optical element is defined at different radial positions according to the effective diameter corresponding to the recording medium of the objective lens provided on at least one side of the substrate as shown in FIG. 158a. It is divided into multiple areas.
  • the diffractive lens structure is formed so as to correct spherical aberration due to the difference in thickness and wavelength of the transmission protective layer.
  • the specific structure of the diffractive lens structure of the HD-DVD / DVD / CD compatible objective lens module is as follows.
  • the first laser beam (HD—DVD laser beam, wavelength 408 nm) has no spherical aberration correction effect
  • the second laser beam (DVD laser beam, wavelength 660).
  • the third laser beam (CD laser beam, wavelength 780 nm).
  • the set of (H D-DVD: 5th order light, DVD: 3rd order light, CD: 2nd or 3rd order light) is for HD-D VD laser light and DVD.
  • the phase differences that occur at the phase steps that make up the diffractive lens structure with laser light are aligned, the spherical aberration that occurs for DVDs is small, so this pair can also be considered as an effective combination.
  • the diffractive lens structure is such that, among the diffracted light generated when the HD-DVD laser light passes through the second diffractive lens structure, the diffraction order that maximizes the diffraction efficiency is an even number excluding multiples of 10. Designed to.
  • the depth of the phase steps that make up the diffractive lens structure may be set to generate an optical path length difference that maximizes the diffraction efficiency of the HD-DVD laser light according to the required specifications.
  • a region 3 on the outer periphery outside the region 2 has a combination of diffracted lights that can realize a diffractive lens structure that does not have a spherical aberration correction effect for all wavelengths (for example, HD-DVD: 10th order light,
  • the third diffractive lens structure (third aberration correction means) is formed so that DVD: sixth-order light, CD: fifth-order light) can be used.
  • Region 3 does not need to form a diffractive lens structure (only zero-order light is transmitted). Therefore, a predetermined HD-DVD numerical aperture of 0.65 is realized.
  • the DVD transmission protective layer (substrate) thickness is 0.6 mm and the CD transmission protective layer (substrate) thickness is 1.2 mm, so the amount of spherical aberration to be corrected is different.
  • a diffractive lens structure designed for HD-D VDZDVD compatibility cannot completely correct spherical aberration for CD.
  • a diffractive lens structure designed to be compatible with HD—DVDZCD cannot completely correct spherical aberration for DVD.
  • the method for realizing this is the same as in the case of the BD / DVD / CD compatible lens module described above. That is, as a first method, in the design of the first diffractive lens structure formed in the region 1 shared by DVDZCD in the configuration as shown in FIG. 158b, spherical aberration to be corrected by DVD and correction by CD It can be designed to correct the amount of spherical aberration in the middle of the amount of spherical aberration to be corrected, and balance the amount of spherical aberration remaining on DVD and CD. As the second method, as shown in FIG.
  • the first diffractive lens structure is first designed to be compatible with HD—DVDZCD.
  • the first diffractive lens structure also has a spherical aberration correction effect for DVD laser light. However, since the correction amount is different from the spherical aberration amount to be corrected, spherical aberration corresponding to the difference remains.
  • the residual aberration is corrected by adding a fourth diffractive lens structure that generates even-order diffracted light to the HD-DVD laser light in the same way as the second diffractive lens structure.
  • the fourth diffractive lens structure has no aberration correction effect for HD-D VD laser light and is designed to generate even-order diffracted light. Have no aberration correction effect. In other words, the addition of the fourth diffractive lens structure has no adverse effect on the CD wavefront. This method makes it possible to design the aberration in region 1 to a sufficiently small value in both DVDZCD.
  • the distance between the phase steps constituting the first diffractive lens structure and the phase steps constituting the fourth diffractive lens structure may be very small.
  • the total number of phase steps can be reduced. That is, a step having a step amount obtained by adding the step amounts of two adjacent phase steps may be arranged at either position where the phase steps are located or somewhere in between. In this way, when the phase steps are combined, each phase step is slightly deviated from the original design value, resulting in a slight performance degradation. Because of the small size, performance degradation is not a problem.
  • the number of phase steps that were required can be reduced to one, which facilitates mold manufacture and improves mold release during molding. Therefore, it is preferable because the mold life is prolonged and the molding defect rate is also reduced.
  • the common design area of D VDZ CD is made smaller than the third diffraction effective diameter corresponding to the effective diameter of CD, and the numerical aperture is reduced. Therefore, it is possible to reduce the amount of remaining spherical aberration that cannot be corrected. For example, when the D VDZC D shared design area is set to about 80%, the remaining spherical power is reduced to about 41%.
  • HD-D VD and DVD have the same transparent protective layer thickness, so the amount of spherical aberration generated by DVD is not so large. Therefore, by narrowing the DVD / CD shared area, it may not be necessary to perform spherical aberration correction for the DVD light source in this area.
  • the aforementioned B DZD VDZC D compatible By setting the condensing position of the CD laser beam as in the case of the module, it is possible to obtain a predetermined numerical aperture for the CD.
  • the region 1 can be narrowed. Become.
  • this design method is preferable because the phase difference constituting the plurality of diffractive lens structures does not coexist in the region 1, and the design without increasing the number of phase difference steps is possible.
  • Figure 1 59 shows the operation of the objective lens module.
  • Fig. 1 59 (B) when the second laser beam of A DVD enters as substantially parallel light, the region within the second diffraction effective diameter corresponding to the effective diameter of DVD in the diffractive optical element 1.
  • the light passing through region 2 is collected by the HD-D VD objective lens 16a, passes through the protective layer for DVD, and is collected on the signal recording surface.
  • light that has passed outside the second diffraction effective diameter in the diffractive optical element is collected by the lens 16a and passes through the DVD protective layer.
  • spherical aberration is not corrected and flare is generated, which contributes to reproduction. do not do.
  • the numerical apertures of objective lenses required for DVD and CD are defined as 0.6 and 0.45 in the standard, respectively, but in actual products, objective lenses with slightly larger numerical apertures are required. In some cases, better performance may be obtained.
  • an objective lens with a numerical aperture of about 0.65 for DVD and a numerical aperture of about 0.5 for CD is often used.
  • the numerical aperture for DVD is 0.65.
  • HD-DVD and DVD have the same numerical aperture, so the effective diameter seems to be the same. In reality, however, the effective diameter (2 X focal length X numerical aperture) of the objective lens also differs because the focal length of the objective lens differs between HD-DVD and DVD due to the different light source wavelengths.
  • the refractive index of a glass material increases as the wavelength of light passing therethrough becomes shorter. Therefore, the focal length of an HD-DVD aspheric objective lens tends to become shorter as the wavelength becomes shorter. Therefore, the focal length of the objective lens is longer in DVD compared to HD DVD, which has a shorter light source wavelength, resulting in a wider effective diameter.
  • the effective diameter of the DVD is the largest in the object lens module, then the effective diameter of the HD-DV D is the largest, and the effective diameter of the CD is the smallest.
  • the effective diameter of the objective lens module is equal to the effective diameter of the DVD, and the diffractive lens structure TJP2005 / 017092
  • Such a function can be realized by an objective lens module that combines a diffractive optical element configured as shown in FIGS. 160a, 160b, and 160d and an objective lens for HD-DVD.
  • an objective lens module that combines a diffractive optical element configured as shown in FIGS. 160a, 160b, and 160d and an objective lens for HD-DVD.
  • each diffractive lens structure may be designed as follows.
  • the first diffractive lens structure in FIGS. 160a, 160b, and 160c has no aberration correction effect for DVD, and has a aberration correction effect for HD-DVD and CD. Configure.
  • the second diffractive lens structure has a diffractive lens structure that has no aberration correction effect for DVD and CD, and has an aberration correction effect only for HD-DVD.
  • the third diffractive lens structure has a combination of diffracted lights that does not have a contrast correction effect on all HD—DVDZDVDZCD (eg, HD—DVD: 10th order light, DVD: 6th order light, CD: 5
  • the third diffractive lens structure can be configured so that the second order light can be used, or the diffractive lens need not be configured (only zero order light is transmitted).
  • the fourth diffractive lens structure in Fig. 160b like the second diffractive lens structure, has no aberration correction effect for DVD and CD, and has a diffraction correction effect only for HD-DVD. Configure the lens structure.
  • each diffractive lens structure is basically the same as that for HD—DVD. It may be determined in the same manner as in the case of using in combination with an object lens.
  • diffractive lens structure 1 ⁇ for example, (HD—DVD: primary light, DVD: primary light, CD: primary light), (HD-DVD: tertiary light, DVD: secondary light, (CD: 2nd order light), (HD-DVD: 5th order light, DVD: 3rd order light, CD: 2nd or 3rd order light), (H D-DVD: 7th order light, DVD: 4th order light, CD: 3 Next-order light), (HD-DVD: 9th-order light, DVD: 5th-order light, CD: 4th-order light) ⁇ can be used, and for diffractive lens structure 2 and diffractive lens structure 4, ⁇
  • diffractive lens structure 2 and diffractive lens structure 4
  • diffractive lens structure 2 and diffractive lens structure 4
  • diffractive lens structure 2 and diffractive lens structure 4
  • diffractive lens structure 2 and diffractive lens structure 4
  • diffractive lens structure 2 and diffractive lens structure 4
  • HD-DVD 8th-order light
  • DVD 5th-order light
  • CD 4th-order light
  • diffractive lens structure 3 for example, HD—DVD:
  • Table 52 shows the diffraction order of HD DVD and CD with respect to the diffraction order of the diffractive lens structure used in DVD and the aberration correction amount due to one phase step (the difference in optical path length generated at the step is subtracted from the diffraction order used). Value) and diffraction efficiency.
  • the diffraction efficiency shown in Table 52 is an example when the diffraction lens structure is blazed so that the diffraction efficiency is 1 with respect to the DVD light source.
  • the phase step amount is By changing it, it is possible to design in consideration of the balance of diffraction efficiency in HD—DVD, DVD and CD. Therefore, the combination of diffraction efficiency of HD-DVD, DVD and CD in an actual diffractive lens structure is not limited to the values in Table 52.
  • the diffractive lens structure 1 needs to have a function of correcting aberrations generated in HD-DVD and aberrations generated in CD when a DVD objective lens is used.
  • the spherical aberration generated in HD-DVD and the spherical aberration generated in CD are generally opposite in sign, so the phase steps constituting diffractive lens structure 1 have opposite signs for HD-DVD and CD, respectively. It is desirable to have an aberration correction amount.
  • the diffractive lens structure 2 corrects aberrations for HD-DVDs and for CDs. It is desirable that has no aberration correction effect or conversely increases the aberration. In this case, it is desirable that the phase steps constituting the diffractive lens structure 2 have the same amount of aberration correction for HD-DVD and CD. By designing a diffractive lens structure that has the effect of correcting aberrations of HD-DVD at such a diffraction order, spherical aberration can be further increased for CD.
  • the diffractive lens structure 3 does not have an aberration correction effect on HD—DVD and CD, or on the contrary, it only needs to have an effect of increasing aberrations. It is desirable not to have an aberration correction effect for both of these, or to have aberration correction amounts with opposite signs for HD-DVD and CD respectively.
  • Light that passes through the diffractive lens structure 3 is unnecessary for both HD—DVD and CD, but since it is originally used in combination with an objective lens for DVD, flare is caused by spherical aberration. Therefore, the same effect as the aperture restriction can be obtained. Furthermore, it is thought that the effect of light passing through this region can be reduced by positively adding aberration in the diffractive lens structure 3. However, if aberration is generated in the diffractive lens structure, it is supposed to be assumed.
  • diffracted light other than the diffracted diffraction order may be generated. In this case, it may be difficult to flare all of the plurality of diffracted lights. For this reason, a diffractive lens structure is not formed in region 3, or a combination of diffraction orders having no aberration correction effect and high diffraction efficiency for all wavelengths (for example, HD-DVD: 10th order). Light, DVD: 6th order light, CD: 5th order light) are desirable.
  • Figure 161 shows the operation of the objective lens module.
  • the first laser beam of A HD _ DVD is diffracted as approximately parallel light.
  • the light passing through the first and second effective diffraction areas corresponding to the HD-DVD effective diameter in the diffractive optical element is reflected by the HD-DVD object lens 16a.
  • the light is collected, passes through the HD-DVD protective layer, and is collected on the signal recording surface.
  • the light that has passed outside the first effective diffraction diameter in the diffractive optical element is collected by the lens 16a and passes through the DVD protective layer, but the spherical aberration is not corrected and flare, so it does not contribute to reproduction.
  • Fig. 161 (B) when the second laser beam of A DVD is incident as substantially parallel light, the light passing through all regions is directly converted into substantially parallel light to the HD-DVD object lens 16a. Led. The light condensed by the objective lens 16a passes through the DVD protective layer and is condensed on the signal recording surface.
  • the third laser beam of A CD when incident as substantially parallel light, it passes through regions 1 and 4 within the third diffraction effective diameter corresponding to the effective diameter of CD.
  • the light to be collected is collected by the HD-DVD objective lens 16a, passes through the CD transmission protective layer, and is collected on the signal recording surface.
  • light that has passed outside the third diffraction effective diameter is collected by the objective lens 16a and passes through the CD transmission protective layer.
  • the spherical aberration is not corrected and flare is generated, contributing to reproduction. do not do.
  • the numerical aperture of the DVD is determined so that the effective diameter of the HD-DVD is equal to the effective diameter of the DVD.
  • the diffractive lens structure has a form as shown in FIGS. 162a, 162b and 162c.
  • FIG. 163 shows the operation of the objective lens module using the diffractive optical element in which the number of apertures of the DVD is determined so that the effective diameter of the HD-DVD is aligned with the effective diameter of the DVD.
  • Fig. 163 (A) when the first laser beam of A HD — DVD enters the diffractive optical element 16 b as substantially parallel light, the light passing through all the regions is converted into substantially parallel light as it is.
  • the objective lens 16a To the objective lens 16a.
  • the light collected by the objective lens 16a passes through the HD-DVD protective layer and is collected on the signal recording surface.
  • the sixth embodiment is a diffractive optical element for enabling compatible recording / playback of HD-DVD as a first information recording medium, DVD as a second information recording medium, and CD as a third information recording medium.
  • HD combined with a double-sided aspheric lens for DVD.
  • Table 53 shows the lens configuration and the design conditions for HD—DVD, DVD, and CD.
  • FIG. 1 65 is a schematic cross-sectional view of the diffractive optical element of Example 6.
  • FIG. 1 65 is a schematic cross-sectional view of the diffractive optical element of Example 6.
  • FIG. 1 65 is a schematic cross-sectional view of the diffractive optical element of Example 6.
  • FIG. 1 65 is a schematic cross-sectional view of the diffractive optical element of Example 6.
  • the diffractive lens structure a plurality of diffractive lens structures having different characteristics are concentrically formed, the diffractive lens structure 1 is configured in the inner peripheral region 1, and the diffractive lens structure 2 is diffracted in the intermediate peripheral region 2.
  • the lens structure 2 is configured, and the outer peripheral region 3 is a flat surface.
  • Region 1 is an inner peripheral region within the fourth effective diameter, as shown in FIG. 1 65, and region 2 is a ring-shaped region having an inner diameter of the fourth effective diameter and an outer diameter of the second effective diameter.
  • Region 3 represents an annular region having an inner diameter of the second effective diameter and an outer diameter of the first effective diameter.
  • DVD aberration correction device [ ⁇ ] +0.4 -0.2 +0.2 -0.4 0 0 +0.4 -0.2 +0.2 -0.4 0 Diffraction efficiency 0.573 0.875 0.875 0.573 1 1 0.4 0.875 0.875 0.573 1 Diffraction order 1 1 2 2 2 3 3 3 4 4 5
  • the diffractive lens structure 2 of Example 6 does not have a difference correction effect for HD—DVD light source and CD light source, but has an aberration correction effect for DVD.
  • the DVD uses 5th-order light and CD uses 4th-order light, and it is designed to correct aberrations for DVD.
  • the size of the fourth effective diameter which is the effective diameter, is the CD in the diffractive optical element.
  • the effective diameter can be set smaller than the third effective diameter. In this way, by setting the effective diameter of the diffractive lens structure 1 to be small, even if this diffractive lens structure does not have an aberration correction effect for the DVD light source, the aberration generated in this region in the DVD is sufficiently small. Is suppressed.
  • Table 55 shows paraxial data of specific design results of Example 6.
  • Table 56 shows macroscopic views of diffractive lens structure 1 and diffractive lens structure 2 in Example 6. A representative aspherical shape and an aspherical shape of the objective lens.
  • Table 5 8 A process for obtaining the shape of the diffractive lens structure will be described below.
  • the actual shape of each of diffractive lens structure 1, diffractive lens structure 2 and diffractive lens structure 3 is changed to the respective diffractive lens function, It is determined using the visual aspheric shape and the diffraction order used. That is, as in the previous examples, the height from the optical axis where the diffractive lens function is an integer is obtained, and an appropriate direction is generated so that a predetermined diffracted light is generated at that height on the visual aspheric surface. And a phase step of depth.
  • Table 59 shows diffractive lens structure shape data indicating the specific shape of the diffractive lens structure in Example 6.
  • the diffractive lens structure of Example 6 includes: 1 phase difference of step and central plane divided thereby, ring zone surface 2 to ring zone surface 1 1 total ring zone surface, and outer peripheral surface (region 3) It is constituted by.
  • the phase steps 1 to 4 constituting the diffractive lens structure of Example 6 are determined in consideration of the balance between the diffraction efficiency of HD—DVD and the diffraction efficiency of CD, and the center plane and annular zone 2 -
  • the spherical surface shape of the annular surface 4 is an aspherical shape shown in Table 60.
  • the center plane on the optical axis is the aspherical surface shown in Table 60
  • the annular surface 2 to annular surface 4 emit light corresponding to the level difference between the aspherical surfaces shown in Table 60. It is a ring-shaped surface that is displaced in the axial direction.
  • Ring zone surface 5 to ring zone surface on the outer periphery from phase step 4 1 1 and the outer peripheral surface (region 3) are all planes perpendicular to the optical axis.
  • the step amount of the phase step 4 located at the outermost periphery among the plurality of phase steps constituting the diffractive lens structure 1 is HD—DVD, DVD, CD.
  • the phase steps 1 to 3 are set slightly deeper.
  • FIG. 166 is a graph showing a cross-sectional view of the diffractive lens structure configured in the optical element of Example 6, showing the sag amount of the surface with respect to the height from the optical axis.
  • ⁇ (1) represents the effective diameter of the diffractive lens structure 1
  • ⁇ (2) represents the effective diameter of the diffractive lens structure 2.
  • the macroscopic aspheric shapes of the diffractive lens structure 1 (region 1) and the diffractive lens structure 2 (region 2) are concave.
  • all of the ring-shaped surfaces divided by the phase steps are aspherical, and in the diffractive lens structure 2, all are flat surfaces perpendicular to the optical axis.
  • the diffractive lens structure 1 and the diffractive lens structure 2 have different diffraction orders used in the HD-DVD, and therefore the phase step amount differs accordingly.
  • the phase step 4 at the boundary between the diffractive lens structure 1 and the diffractive lens structure 2 is a deep phase step to match the phase of the wavefront passing through both diffractive lens structures in all HD DVDs, DVDs, and CDs. Has been given Yes.
  • Fig. 167, Fig. 168 and Fig. 169 show the wavefront aberration of HD—DVD, DVD, CD in the objective lens module using the optical element of Example 6, but for all HD—DVD, DVD, CD, respectively. It can be seen that the phase of the wavefront passing through each diffractive lens structure is substantially aligned within the effective diameter of.
  • Fig. 170, Fig. 171, Fig. 172, Fig. 173, Fig. 174, and Fig. 175 are graphs showing wave optical spot shapes calculated using aberrations due to the actual surface shape of the diffractive lens structure. Light intensity is shown along the horizontal axis.
  • Figure 170, Figure 171 and Figure 172 show the overall spot shape on HD—DVD, DVD and CD, respectively.
  • Figure 173, 174, and 175 show the side lobes of the spot on HD—DVD, DVD, and CD, respectively. Indicates.
  • the focused spot of HD—DVD is slightly smaller than the main spot collected by a normal lens, and the side lobes are slightly larger.
  • the spot shape is calculated with an effective diameter ⁇ (HD-DVD) taking into account the light outside the effective diameter of each.
  • the spot shape is a focused spot shape without using a special aperture limiting element, but it is almost the same spot shape as a normal DVD objective lens or CD objective lens without any aperture limitation. Was found to be obtained.
  • Fig. 176, Fig. 177, Fig. 178 and Fig. 179 are graphs showing the calculation results.
  • Fig. 116 and Fig. 177 show the change in the half width of the spot on DVD and CD, respectively, with the half width on the vertical axis and the disc tilt angle on the horizontal axis.
  • Figures 178 and 179 show the changes in the side lobe intensity for DVD and CD, respectively.
  • the vertical axis shows the side rope strength of the spot and the horizontal axis shows the disc tilt angle. Since both DVD and CD have almost the same characteristics as ordinary lenses, when the objective lens of this example is used, the conventional DVD and CD are not particularly limited. It can be seen that a stable reproduction characteristic equivalent to that obtained when using the objective lens for use is obtained.
  • the seventh embodiment is a diffractive optical element for enabling compatible recording / playback of HD-DVD as a first information recording medium, DVD as a second information recording medium, and CD as a third information recording medium.
  • HD—t Constructed in combination with a double-sided aspheric lens for VD.
  • Table 61 shows the lens configuration and the design conditions for HD—DVD, DVD, and CD.
  • Table 6 1
  • the diffractive optical element of the seventh example has a diffractive lens structure formed on one side, and the other side is flat.
  • FIG. 1 81 is a schematic cross-sectional view of the diffractive optical element of Example 7.
  • the diffractive lens structure a plurality of diffractive lens structures having different characteristics are concentrically formed, the diffractive lens structure 1 is formed in the inner peripheral region, and the diffractive lens in the middle peripheral region 2.
  • Structure 2 is configured, and region 3 which is the outer peripheral portion is an aspherical surface on which no diffractive lens structure is formed.
  • Region 1 is a region within the fourth effective diameter, as shown in FIG. 1 81.
  • Region 2 is a ring-shaped region having an inner diameter of the fourth effective diameter and an outer diameter of the second effective diameter.
  • Region 3 represents a ring-shaped region having an inner diameter of the second effective diameter and an outer diameter of the first effective diameter.
  • DVD aberration correction +0.4 -0.2 +0.2 -0.4 0 0 +0.4 -0.2 +0.2 -0.4 0Diffraction efficiency 0.573 0.875 0.875 0.573 1 1 0.4 0.875 0.875 0.573 1 Diffraction order 1 1 2 2 2 3 3 3 4 4 5
  • the diffractive lens structure 2 of Example 7 does not have a difference correction effect for the HD—DVD light source and the CD light source, but has an aberration correction effect for the DVD.
  • the DVD uses 5th-order light and CD uses 4th-order light, and it is designed to correct aberrations for DVD.
  • the outermost peripheral region 3 has an aspherical shape in which aberration correction is performed so that aberration does not occur in the DVD having the largest effective diameter, and no diffractive lens structure is formed in this region.
  • this area 3 since aberrations remain for the light from the HD-DVD and CD light sources, the light is diffused as flare and does not contribute to reproduction.
  • the size of the fourth effective diameter which is the effective diameter, is the CD in the diffractive optical element.
  • the effective diameter can be set smaller than the third effective diameter. In this way, by setting the effective diameter of the diffractive lens structure 1 to be small, even if this diffractive lens structure does not have an aberration correction effect for the DVD light source, the aberration generated in this region in the DVD is sufficiently small. Is suppressed.
  • Table 63 shows paraxial data of specific design results of Example 6.
  • Table 6 4 shows the macroscopic aspherical shape of diffractive lens structure 1 and diffractive lens structure 2 in Example 7, the aspherical shape of region 3, and the aspherical shape of the objective lens.
  • the design value and effective diameter are the same as in Example 6, so the shape is also the same as in Example 6.
  • the design values are the same as in Example 6, but the actual shape of this part is slightly different because the effective diameter is different and the phase with the region 3 is aligned.
  • Table 67 shows diffractive lens structure shape data indicating the specific shape of the diffractive lens structure in Example 7.
  • the diffractive lens structure of Example 7 is composed of 1 to 3 phase steps and a center plane divided thereby, annulus surface 2 to annulus surface 1 3, a total of 1 to 2 annulus surfaces, and an outer peripheral surface (region 3) By It is configured.
  • phase steps 1 to 4 constituting the diffractive lens structure of Example 7 are determined in consideration of the balance between the diffraction efficiency in HD-DVD and the diffraction efficiency in CD, and the center plane and the annular surface 2 -The aspheric shape of the annular surface 4 was changed to the aspheric shape shown in Table 68.
  • the center plane on the optical axis is the aspherical surface itself shown in Table 68
  • the annular surface 2 to annular surface 4 are the optical axes corresponding to the level difference of the aspherical surfaces shown in Table 68. It is a ring-shaped surface that is displaced in the direction.
  • the annular surface 5 to the annular surface 1 1 are all planes perpendicular to the optical axis.
  • the outer peripheral surface which is region 3 is obtained by shifting the aspherical shape shown in Table 69 to the optical axis direction so that the phase step 13 is a predetermined amount.
  • the step amount of the phase step 4 located at the outermost periphery among the plurality of phase steps constituting the diffractive lens structure 1 is HD—D VD, D VD, CD All through the diffractive lens structure 1 and the diffractive lens structure 2 It was set slightly deeper than Phase Step 1 to Phase Step 3 so that the wavefronts were in phase.
  • phase step 13 located at the outermost periphery among the plurality of phase steps constituting the diffractive lens structure 2 at the boundary between the diffractive lens structure 2 and the region 3 is a wavefront that has passed through the outer peripheral surface with respect to the DVD.
  • the step amount is adjusted so that the phase is aligned with the wavefront that has passed through the diffractive lens structure 1 and the diffractive lens structure 2, and the step amount is set to be different from the steps 5 to 12.
  • FIG. 182 is a graph showing a cross-sectional view of the diffractive lens structure configured in the optical element of Example 7, showing the sag amount of the surface with respect to the height from the optical axis.
  • ⁇ (1) represents the effective diameter of the diffractive lens structure 1
  • ⁇ (2) represents the effective diameter of the diffractive lens structure 2.
  • the macroscopic aspheric shapes of the diffractive lens structure 1 (region 1) and the diffractive lens structure 2 (region 2) are concave.
  • the ring-shaped surfaces divided by the phase steps are all aspherical, and in the diffractive lens structure 2, all are planes perpendicular to the optical axis, and the outer peripheral surface is aspherical. It has a shape.
  • the diffraction orders used in HD-DVD are different, and the phase step amount differs accordingly.
  • the phase step 4 at the boundary between the diffractive lens structure 1 and the diffractive lens structure 2 is a deep phase to match the phase of the wavefront that passes through both diffractive lens structures in all HD DVDs, DVDs, and CDs. There is a step.
  • Figure 183, Figure 184, and Figure 185 show the wavefront aberration of HD—DVD, DVD, CD in the objective lens module using the optical element of Example 7, but for HD—DVD, DVD, CD, respectively.
  • Fig. 186, Fig. 187, Fig. 188, Fig. 189, Fig. 190 and Fig. 191 are graphs showing wave optical spot shapes calculated using aberrations due to the actual surface shape of the diffractive lens structure. Intensity is shown on the horizontal axis.
  • Figure 186, Figure 187, and Figure 188 show the overall spot shape on HD—DVD, DVD, and CD, respectively, and
  • Figure 189, 190, and 191 show the side spots of the spot on HD—DVD, DVD, and CD, respectively. Show The HD—DVD focused spot is slightly smaller than the main spot focused with a regular lens, and the side lobes are slightly larger.
  • the spot shape is calculated with an effective diameter ⁇ (DVD) taking into account the light outside the effective diameter of each.
  • DVD
  • the spot shape is a spot shape that is collected without using a special aperture limiting element, but without special aperture limitation, ordinary HD-DVD object lenses and CD objective lenses are used. It was found that almost the same spot shape was obtained.
  • Fig. 192, Fig. 193, Fig. 194 and Fig. 195 are graphs showing the calculation results.
  • Fig. 192 and Fig. 193 show the change of half-width of spot in HD-DVD and CD, respectively.
  • the vertical axis shows the half-width and the horizontal axis shows the disc tilt angle.
  • Figures 194 and 195 show the changes in side lobe intensity in HD-DVD and CD, respectively.
  • the vertical axis shows the side lobe intensity of the spot, and the horizontal axis shows the disc tilt angle.
  • HD Both DVD and CD exhibit almost the same characteristics as ordinary lenses. Therefore, when using the objective lens of this example, conventional HD is not required even if aperture restriction is not performed. — It can be seen that stable reproduction characteristics equivalent to those obtained with DVD and CD objective lenses can be obtained.
  • the eighth embodiment is an objective lens for enabling compatible recording / playback of HD-DVD as a first information recording medium, DVD as a second information recording medium, and CD as a third information recording medium.
  • This is a modification of the seventh embodiment.
  • a diffractive lens structure is formed on the first surface of the objective lens, and the other surface is aspherical.
  • Table 70 shows the lens system configuration and design conditions for HD—DVD, DVD, and CD.
  • the diffractive lens structure is located slightly away from the objective lens, whereas in Example 8, the diffractive lens structure is directly integrated with the objective lens.
  • FIG. 19 is a schematic cross-sectional view of the objective lens of Example 8.
  • Table 7 2 shows paraxial data of specific design results of Example 8.
  • Table 73 shows the aspheric coefficient and the offset of each annular surface and outer peripheral surface of the specific design results of Example 8.
  • the points that intersect the optical axis when the annular surface 2 to the annular surface 1 3 and the outer peripheral surface of the diffractive lens structure on the first surface are extended on the optical axis are shown from the point where the first surface intersects the optical axis.
  • 7 Shown in 3 Is offset by That is, the offset amount of the annular zone surface 2 to the annular zone surface 13 is o 2 to o 13 shown in FIG. 1 97 and the offset amount of the outer circumferential surface is o 14.
  • the offset amount is measured based on the point on the optical axis of the surface on which the diffractive lens structure is formed, and the position where the annular surface and the extended surface of the outer peripheral surface intersect the optical axis, and the optical axis direction is positive. .
  • Table 74 shows data representing the height from the optical axis of the phase step constituting the diffractive lens structure, that is, the step radius, the zone width, and the step amount.
  • the step radius is hl to h 1 3 shown in Fig. 1 9 7
  • the zone width is w 2 to wl 3 shown in Fig. 1 9 7
  • the step amount is from the inner peripheral surface to the outer peripheral surface of the step
  • the optical axis direction is positive.
  • the diffractive lens structure of Example 8 has a total of 1 phase difference of 3 steps and a center plane divided thereby, ring zone surface 2 to ring zone surface 1 1 2 ring zone surfaces, and outer peripheral surface ( It is composed of area 3).
  • the height of the phase step from the optical axis (step radius) is basically the same value as in Example 7.
  • the position of the phase step 13 that is located on the outermost periphery of the plurality of phase steps and determines the effective diameter of the HD—D VD is Slightly moved to the outer periphery.
  • Fig. 201, Fig. 202, Fig. 203, Fig. 204, Fig. 205 and Fig. 206 are graphs showing wave optical spot shapes calculated using aberrations due to the actual surface shape of the diffractive lens structure. Light intensity is shown along the horizontal axis.
  • Figure 201, Figure 202, and Figure 203 show the overall spot shape on HD—DVD, DVD, and CD, respectively, and
  • Figure 204, 205, and 206 show the side lobe of the spot on HD—DVD, DVD, and CD, respectively.
  • the focus spot of HD—DVD is slightly smaller than the main spot collected by a normal lens, and the side mouth is slightly larger.
  • the spot shape is calculated with an effective diameter ⁇ (DVD) taking into account the light outside the effective diameter of each.
  • DVD
  • the spot shape is a spot that is collected without using a special aperture limiting element.
  • Fig. 207, Fig. 208, Fig. 209 and Fig. 210 are graphs showing the calculation results.
  • Fig. 207 and Fig. 208 show the change in the half-value width of the spot in HD-DVD and CD, respectively, with the half-value width on the vertical axis and the disc tilt angle on the horizontal axis.
  • Fig. 209 and Fig. 210 show the change of side lobe intensity in HD-DVD and CD, respectively.
  • the vertical axis shows the side lobe intensity of the spot, and the horizontal axis shows the disc tilt angle. Since both HD-D VD and CD have almost the same characteristics as ordinary lenses, when using the objective lens of this example, the conventional lens is not particularly limited. It can be seen that stable playback characteristics equivalent to those of HD—DVD and CD objective lenses can be obtained.

Abstract

対応波長の異なる光ディスク又は記録面に対し記録再生可能な小型化に適した対物レンズモジュールを提供する。対物レンズモジュールは、第1波長の第1レーザ光の光路に同軸に配置された集光レンズと、集光レンズへ第1レーザ光の回折光を入射する同軸に配置された透過型の回折光学素子とからなる対物レンズモジュールであって、回折光学素子が、入射面及び射出面と、入射面及び射出面の少なくとも一方の光軸周囲に設けられ、且つ光軸から順に異なる半径距離によって画定された異なる回折角の回折格子からなる第1、第2及び第3領域と、を有し、第1領域が第1レーザ光の奇数次数の回折光を集光レンズへ回折し、第2領域が第1レーザ光の偶数次数の回折光を集光レンズへ回折し、第3領域が第1レーザ光の偶数次数又はゼロ次の回折光を集光レンズへ回折して、集光レンズが第1、第2及び第3領域からの回折光を所定開口数にて集光する。

Description

回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置
技術分野 本発明は、対応波長の異なる光ディスクから情報を記録再生する光情報記録再 生装置における光ピックアップの光学系に関し、特に、異なる波長のレ一ザ光源 を使う複数の光記録媒体への互換性を可能にする光情報記録再生装置、光ピック アップ、 対物レンズモジュール、 回折光学素子に関する。
背景技術 光情報記録再生装置には、光記録媒体の例えば D i g i t a l Ve r s a t i 1 e D i s c (以下 DVDという)、 Comp a c t D i s c (以下 CD という)などの光ディスクから記録情報を読み取りできる光ディスク装置が る。
.■'
DVDと CDから記録情報を読み取りできるコンパチブル光ディスク装置が 知られている。 DVDでは基板厚は 0. 6 mmであり、対応波長は 635 nm〜 655 nm、 対物レンズの開口数 (NA) は 0. 6程度である。 CDでは基板厚 は 1. 2mmであり、対応波長は 760 nm〜800 nm、対物レンズの開口数 は 0. 45程度である。 このコンパチブル光ディスク装置では、 DVD用の波長 660 nm付近レーザ光源と CD用の波長 780 nm付近の λ DVDのレーザ光 を発光するレーザ光源とを搭載する場合がある。 例えば、 D V D / C Dの基板厚みの異なる情報記録媒体に情報の記録再生を可 能とする光ピックアップ装置及びそれに用いる対物レンズ並びに光学素子を提 供する技術が提案されている (特開 2001 - 235676号公報参照)。 回折 輪帯を設けた対物レンズを光ピックァップ装置に用いることにより、開口数が小 さい側の使用状態で所定開口数の外側の光束をフレアとして、厚さの異なる複数 種の情報記録媒体に対して、情報の記録再生を行う光ピックアツプ装置を提案し ている。 かかる回折輪帯を設けた対物レンズは、 回折輪帯をもつ回折面を有し、 回折面の光路差関数を Φ (h) とするとき (hは光軸からの距離)、 所定距離 h の箇所で (h) Zdhが不連続または実質的に不連続な関数であることを特 徴としている。
一方、 B l u— r ay D i s c (以下 BDという) の透過保護層の厚さ (D VDなどの透明基板厚に相当) は 0. 1mmであり、 対応波長は 408 nm、 対 物レンズの開口数は 0. 85程度である。 よって、 BD、 DVD, CDのコンパ チブル光ディスク装置には、 上記コンパチブル光ディスク装置の構成に加えて、 波長 408 nm付近の ABDのレーザ光を発光するレーザ光源、 その光学系を搭 載する必要がある。 また、 BD、 DVD, CDでは全て光ディスク厚みが異なる ため、 3種類の異なる球面収差を補正する手段を有する必要がある。 さらに、 開 口数も全て異なるので、 これに対応する手段も有する必要がある。 しかしながら 前記引用文献では、 'これらの手段に関する具体的な記載はなされていない。すな わち、 BDZDVDZCDといった 3つ以上の異なる光源波長、開口数 (有効径)、 光ディスク厚み(透過保護層の厚さ)の記録媒体互換を従来の単一対物レンズで 実現することが困難である。
そこで、 コンパチブル装置用の光ピックアップの実現方法として、 BD専用対 物レンズと D VD/C D互換対物レンズを使い、波長ごとに切り換える方法が考 えられるが、 2枚の対物レンズを要すので、複雑なレンズ切り替え機構が必要で コストが増大し、 ァクチユエ一夕が大きくなるので小型化に不利である。 また、 他の方法として、対物レンズとコリメータレンズと組み合せる方法が考えられる が、対物レンズに対してコリメ一夕が固定しているため、対物レンズの移動時の 性能を維持することが難しい、 などの問題が発生する。
いずれにしても、 B D、 D VDおよび C Dのコンパチビリティーを確保するた め複数光源を用い専用のプリズム、 レンズなどの光学系を構成すると、光ピック アップ又は光へッド全体が複雑になり、 大型になる傾向がある。 発明の開示
そこで、本発明の解決しょうとする課題には、対応波長の異なる光ディスク又 は記録面に対し記録再生可能な小型化に適した光情報記録再生装置、光ピックァ ップ、 回折光学素子を提供することが一例として挙げられる。
本発明の対物レンズモジュールは、第 1波長の第 1レーザ光の光路に同軸に配 置された集光レンズと、前記集光レンズへ第 1レーザ光の回折光を入射する同軸 に配置された透過型の回折光学素子とからなる対物レンズモジュールであって、 入射面及び射出面と、
前記入射面及び射出面の少なくとも一方の光軸周囲に設けられ、且つ光軸から 順に異なる半径距離によって画定された、異なる回折角の回折格子からなる第 1、 第 2及び第 3領域と、 を有し、
前記第 1領域が第 1レーザ光の奇数次数の回折光を前記集光レンズへ回折し、 P T/JP2005/017092
4 前記第 2領域が第 1レーザ光の偶数次数の回折光を前記集光レンズへ回折し、前 記第 3領域が第 1レーザ光の偶数次数又はゼロ次の回折光を前記集光レンズへ 回折して、前記集光レンズが前記第 1、第 2及び第 3領域からの回折光を所定開 口数にて集光することを特徴とする。
本発明の回折光学素子は、第 1レーザ光を第 1記録媒体上に集光するための対 物レンズを、前記第 1レーザ光とは波長の異なる複数のレーザ光及び該複数のレ —ザ光の夫々に対応する複数の記録媒体で共用するために、前記第 1レーザ光及 び前記複数のレーザ光の光路上に設けられる回折光学素子であって、
前記複数のレーザ光は、第 2記録媒体に対応する第 2レーザ光と第 3記録媒体 に対応する第 3レーザ光とを含み、
前記光軸周囲に設けられ、且つ前記第 1レーザ光と前記第 2及び第 3レーザ光 との波長の差異に基づいて発生する収差を補正する第 1回折レンズ構造と、 前記第 1回折レンズ構造周囲に設けられ、且つ前記第 1レーザ光と前記第 2レ 一ザ光との波長の差異に基づいて発生する収差を補正する第 2回折レンズ構造 とを具備することを特徴とする。
本発明の回折光学素子においては、前記第 1記録媒体は第 1厚さの透過保護層 を介して受光する記録層を有し、前記第 2記録媒体は前記第 1厚さ以上の第 2厚 さの透過保護層を介して受光する記録層を有し、前記第 3記録媒体は前記第 2厚 さより犬なる第 2厚さの透過保護層を介して受光する記録層を有する。
本発明の回折光学素子においては、前記第 1回折レンズ構造は、前記第 1レー ザ光と前記第 2及び第 3レーザ光との波長の差異に加えて前記透過保護層の第 1厚さと前記透過保護層の第 2及び第 3厚さとの差分に基づいて発生する収差 を補正するとともに、前記第 2回折レンズ構造は、前記第 1レーザ光と前記第 2 レーザ光との波長の差異に加えて前記透過保護層の第 1厚さと前記透過保護層 の第 2厚さとの差分に基づいて発生する収差を補正する。
さらに、本発明の回折光学素子においては、前記回折光学素子の入射又は射出 面に設けられ、且つ第 1レーザ光の微小な波長変動により発生する色収差を補正 する第 3回折レンズ構造を具備することを特徴とする。
本発明の光ピックァップは、上記対物レンズモジュール又は回折光学素子を具 備することを特徴とする。 また、本発明の光情報記録再生装置は、 上記光ピック ァップを具備することを特徴とする。
以上のような対物レンズモジュール又は回折光学素子が使用されるピックァ ップの構成では、 回折光学素子に施された工夫により、 B D、 D VD, C D全て を無限系で設計してあるので、ピックアップの光路を簡素化できるため好ましい。 前記 B DZD VDZC D互換における球面収差補正用回折光学素子に、色収差 補正用回折レンズ構造を付加することにより、不連続となっている色収差を補正 することが可能となっている。
球面収差補正用回折レンズ構造と、色収差補正用回折レンズ構造を一体化する ことにより、組み立て調整誤差やトラッキングによるレンズシフトにより不連続 な色収差補正に支障を来すといった問題を解消している。 図面の簡単な説明
図 1は、 本発明による実施形態の光ピックァップ内部の概略構成図である。 図 2は、本発明による他の実施形態の光ピックアツプ内部の概略構成図である。 図 3は、本発明による実施形態の回折光学素子の光軸上から見た正面図である。 図 4は、 本発明による実施形態の回折光学素子の断面図である。
図 5は、本発明による実施形態の回折光学素子を含む対物レンズモジュールに よる C Dに対する縦球面収差を示すグラフを説明する線図である。
図 6は、本発明による実施形態の回折光学素子を含む対物レンズモジュールに よる C Dに対する波面収差を示すグラフを説明する線図である。
図 7は、本発明による実施形態の回折光学素子と対物レンズからなる対物レン ズモジュールの動作を説明するため対物レンズモジュールの概略断面図である。 図 8は、本発明による他の実施形態の回折光学素子と対物レンズからなる対物 レンズモジュールの概略断面図である。
図 9は、 本発明による他の実施形態の回折光学素子の概略断面図である。
図 1 0は、 本発明による他の実施形態の回折光学素子の概略断面図である。 図 1 1は、本発明による他の実施形態の回折光学素子における回折レンズ構造 の合成を説明するための線図である。
図 1 2は、 本発明による他の実施形態の回折光学素子の概略断面図である。 図 1 3は、本発明による他の実施形態の回折光学素子構造を有する複合対物レ ンズの概略断面図である。
図 1 4は、本発明 よる回折光学素子の製造方法に含まれる光学設計に用いる 位相関数法を説明するための線図である。
図 1 5は、本発明による実施例 1の回折光学素子と対物レンズからなる対物レ ンズモジュールの概略断面図である。
図 1 6は、 本発明による実施例 1の回折光学素子の概略断面図である。 図 1 7は、 本発明による実施例 1の回折光学素子の概略断面図である。
図 1 8は、本発明による実施例 1で用いている対物レンズの D VD及び C Dに 対する球面収差を示すグラフである。
図 1 9は、本発明による実施例 1の回折光学素子の回折レンズ構造 1を構成す る位相段差とそれを通過する波面の光路長差を説明するための線図である。 図 2 0は、本発明による実施例 1の回折光学素子と B D用対物レンズを組み合 わせた際の C Dに対する縦球面収差を位相関数法を用いて計算した結果を示す グラフを説明する線図である。
図 2 1は、本発明による実施例 1の回折光学素子と B D用対物レンズを組み合 わせた際の C Dに対する波面収差を位相関数法を用いて計算した結果を示すグ ラフを説明する線図である。
図 2 2は、本発明による実施例 1の回折光学素子と B D用対物レンズを組み合 わせた際の D V Dに対する波面収差形状を位相関数法を用いて計算した結果を 示すグラフである。
図 2 3は、本発明による実施例 1の回折光学素子と B D用対物レンズを組み合 わせた際の C Dに対する波面収差形状を位相関数法を用いて計算した結果を示 すグラフである。
図 2 4は、本発明による実施例 1の回折光学素子における回折レンズ構造 1の 光軸からの高さに対する回折レンズ関数のグラフである。
図 2 5は、本発明による実施例 1の回折光学素子における回折レンズ構造 1を 光軸上から見た正面図である。
図 2 6は、本発明による実施例 1の回折光学素子における回折レンズ構造 1を B D用レーザ光の回折効率が 1 0 0 %となるように製造した回折レンズ構造の 断面図である。
図 2 7は、本発明による実施例 1の回折光学素子における回折レンズ構造 1の B D用レーザ光と C D用レーザ光の回折効率の均衡を考慮して製造した他の実 施例の回折レンズ構造を示す断面図である。
図 2 8は、本発明による実施例 1の回折光学素子における回折レンズ構造 2を 構成する位相段差とそれを通過する波面の光路長差を説明するための線図であ る。
図 2 9は、本発明による実施例 1の回折光学素子を使用した対物レンズモジュ ールの D VDの波面収差を位相関数法を用いて計算した結果示すグラフである。 図 3 0は、本発明による実施例 1の回折光学素子を用いた対物レンズモジユー ルの B Dの波面収差を暫定的な形状のデ一夕により計算した結果を示すグラフ である。
図 3 1は、本発明による実施例 1の回折光学素子を用いた対物レンズモジユー ルの D V Dの波面収差を暫定的な形状のデ一夕により計算した結果を示すダラ フである。
図 3 2は、本発明による実施例 1の回折光学素子を用いた対物レンズモジユー ルの C Dの波面収差を暫定的な形状のデータにより計算した結果を示すグラフ である。
図 3 3は、本発明による実施例 1の回折光学素子を用いた対物レンズモジユー ルの B Dの波面収差を暫定的な形状のデータにより計算した結果を示すグラフ である。 図 3 4は、本発明による実施例 1の回折光学素子の領域の境界の位相段差量で 位相ずれを調整した場合の回折レンズ構造の断面図である。
図 3 5は、本発明による実施例 1の回折光学素子の領域の境界の位相段差量で 位相ずれを調整した場合の対物レンズモジュールの B Dの波面収差を示すダラ フである。
図 3 6は、本発明による実施例 1の回折光学素子の回折レンズ関数の定数項 d 0の値により位相ずれを調整した場合の光軸からの高さに対する回折レンズ構 造 1の回折レンズ関数のグラフである。
図 3 7は、本発明による実施例 1の回折光学素子の回折レンズ構造 1の回折レ ンズ関数の定数項 d 0の値により位相ずれを調整した場合の対物レンズモジュ —ルの B Dの波面収差を示すグラフである。
図 3 8は、本発明による実施例 1の回折光学素子と対物レンズからなる対物レ ンズモジュールの概略断面図である。
図 3 9は、本発明による回折光学素子の製造方法に含まれる光学設計に用いる 非球面形状を説明するための線図である。
図 4 0は、本発明による回折光学素子の設計結果を表す際の段差及び輪帯面番 号を説明するための線図である。
図 4 1は、本発明'による回折光学素子の設計結果を表す際の段差量の段差符号 を説明するための線図である。
図 4 2は、本発明による実施例 1の回折光学素子に形成されている回折レンズ 構造の断面を模式的に示すグラフである。
図 4 3は、本発明による実施例 1の回折光学素子に形成されている回折レンズ 2
10 構造の断面のサグ量を説明するダラフである。
図 4 4は、本発明による実施例 1の回折光学素子を用いた対物レンズモジュ一 ルの B Dの波面収差を実際の形状のデータにより計算した結果を示すグラフで ある。
図 4 5は、本発明による実施例 1の回折光学素子を用いた対物レンズモジユー ルの D V Dの波面収差を実際の形状のデータにより計算した結果を示すグラフ である。
図 4 6は、本発明による実施例 1の回折光学素子を用いた対物レンズモジユー ルの C Dの波面収差を実際の形状のデ一夕により計算した結果を示すグラフで ある。
図 4 7は、本発明による実施例 1の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した B D上のスポット形状を示すグラフである。
図 4 8は、本発明による実施例 1の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した D VD上のスポット形状を示すグラフである。
図 4 9は、本発明による実施例 1の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した C D上のスポット形状を示すグラフである。
図 5 0は、本発明による実施例 1の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した B D上のスポットサイドローブ形状を示すグラフである。 05 017092
11 図 5 1は、本発明による実施例 1の回折光学素子の回折レンズ構造の実際の面 形状デ一夕より対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した D VD上のスポットサイドローブ形状を示すグラフである。
図 5 2は、本発明による実施例 1の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した C D上のスポットサイドローブ形状を示すグラフである。
図 5 3は、スポット形状を表す値である半値幅とサイドロ一ブ強度を示すダラ フである。
図 5 4は、本発明による実施例 1の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示すグ ラフである。 '
図 5 5は、本発明による実施例 1の対物レンズモジュールを用いた場合の C D に対するチルト時のスポット半値幅値とディスクチルト角度と関係を示すダラ フである。
図 5 6は、本発明による実施例 1の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポットサイドローブ強度とディスクチルト角度と関係 を示すグラフである。
図 5 7は、本発明による実施例 1の対物レンズモジュールを用いた場合の C D に対するチルト時のスポットサイドローブ強度とディスクチルト角度と関係を 示すグラフである。
図 5 8は、本発明による実施例 2の回折光学素子と対物レンズからなる対物レ ンズモジュールの概略断面図である。 17092
12 図 5 9は、 本発明による実施例 2の回折光学素子の概略断面図である。
図 6 0は、本発明による実施例 2の回折光学素子に形成されている回折レンズ 構造の断面を模式的に示すグラフである。
図 6 1は、本発明による実施例 2の回折光学素子における回折レンズ構造の光 軸からの高さに対する回折レンズ関数のグラフである。
図 6 2は、本発明による実施例 2の回折光学素子の回折レンズ構造の光軸上か ら見た正面図である。
図 6 3は、本発明による実施例 2の回折光学素子の B D用レーザ光の回折効率 を 1 0 0 %として製造した回折レンズ構造の断面図である。
図 6 4は、本発明による実施例 2の回折光学素子に形成されている回折レンズ 構造 Bの断面を模式的に示すグラフである。
図 6 5は、本発明による実施例 2の回折光学素子を用いた対物レンズモジユー ルの B Dの波面収差を実際の形状のデータにより計算した結果を示すグラフで ある。
図 6 6は、本発明による実施例 2の回折光学素子を用いた対物レンズモジュ一 ルの D VDの波面収差を実際の形状のデータにより計算した結果を示すグラフ である。
図 6 7は、本発明による実施例 2の回折光学素子を用いた対物レンズモジュ一 ルの C Dの波面収差を実際の形状のデータにより計算した結果を示すグラフで ある。
図 6 8は、本発明による実施例 2の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した B D上のスポット形状を示すグラフである。
図 6 9は、本発明による実施例 2の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した D VD上のスポット形状を示すグラフである。
図 7 0は、本発明による実施例 2の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した C D上のスポット形状を示すグラフである。
図 7 1は、本発明による実施例 2の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した B D上のスポットサイドローブ形状を示すグラフである。
図 7 2は、本発明による実施例 2の回折光学素子の回折レンズ構造の実際の面 形状デ一夕より対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した D VD上のスポットサイドローブ形状を示すグラフである。
図 7 3は、本発明による実施例 2の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した C D上のスポットサイドローブ形状を示すグラフである。
図 7 4は、本発明による実施例 2の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示すグ ラフである。
図 7 5は、本発明による実施例 2の対物レンズモジュールを用いた場合の C D に対するチル卜時のスポッ卜半値幅値とディスクチルト角度と関係を示すダラ フである。 図 7 6は、本発明による実施例 2の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポットサイドローブ強度とディスクチルト角度と関係 を示すグラフである。
図 7 7は、本発明による実施例 2の対物レンズモジユールを用いた場合の C D に対するチルト時のスポットサイドロ一ブ強度とディスクチルト角度と関係を 示すグラフである。
図 7 8は、本発明による実施例 2の対物レンズモジュールによる最良像面にお ける B Dの波面収差形状を示すグラフである。
図 7 9は、本発明による実施例 2の対物レンズモジュールによる光源の波長が 4 0 3 n mに変動した場合の最良像面における B Dの波面収差形状を示すグラ フである。
図 8 0は、本発明による実施例 2の対物レンズモジュールによる光源の波長が 4 1 3 n mに変動した場合の最良像面における B Dの波面収差形状を示すダラ フである。
図 8 1は、本発明による実施例 2の対物レンズモジュールの B Dの波長 4 0 3 nmにおけるスポット形状全体を示すグラフである。
図 8 2は、本発明による実施例 2の対物レンズモジュールの B Dの波長 4 1 3 nmにおけるスポット形状全体を示すグラフである。
図 8 3は、本発明による実施例 2の対物レンズモジュールの B Dの波長 4 0 3 n mにおけるスポッ卜のサイドロ一ブを示すグラフである。
図 8 4は、本発明による実施例 2の対物レンズモジュールの B Dの波長 4 1 3 nmにおけるスポットのサイドロ一ブを示すグラフである。 図 8 5は、本発明による実施例 2の回折光学素子を用いたレンズの波長変動に 対する最良像面 (集光点) の移動量を示すグラフである。
図 8 6は、本発明による実施例 2の変形例の回折光学素子の概略断面図である。 図 8 7は、本発明による実施例 3の回折光学素子と対物レンズからなる対物レ ンズモジュールの概略断面図である。
図 8 8は、 回折光学素子の段差の製造誤差を示す部分断面図である。
図 8 9は、本発明による実施例 3の回折光学素子に形成されている回折レンズ 構造 Bの断面を模式的に示すグラフである。
図 9 0は、本発明による実施例 3の回折光学素子に形成されている回折レンズ 構造 Aの断面を模式的に示すグラフである。
図 9 1は、本発明による実施例 3の回折光学素子に形成されている回折レンズ 構造 A及び回折レンズ構造 Bを合成した場合の断面を模式的に示すグラフであ る。
図 9 2は、本発明による実施例 3の回折光学素子を用いた対物レンズモジュ一 ルの B Dの波面収差を実際の形状のデータにより計算した結果を示すグラフで ある。
図 9 3は、本発明による実施例 3の回折光学素子を用いた対物レンズモジユー ルの D V Dの波面収差を実際の形状のデータにより計算した結果を示すグラフ である。
図 9 4は、本発明による実施例 3の回折光学素子を用いた対物レンズモジュ一 ルの C Dの波面収差を実際の形状のデータにより計算した結果を示すグラフで ある。 図 9 5は、本発明による実施例 3の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した B D上のスポット形状を示すグラフである。
図 9 6は、本発明による実施例 3の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した D VD上のスポット形状を示すグラフである。
図 9 7は、本発明による実施例 3の回折光学素子の回折レンズ構造の実際の面 形状デ一夕より対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した C D上のスポット形状を示すグラフである。
図 9 8は、本発明による実施例 3の回折光学素子の回折レンズ構造の実際の面 形状デ一夕より対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した B D上のスポットサイドローブ形状を示すグラフである。
図 9 9は、本発明による実施例 3の回折光学素子の回折レンズ構造の実際の面 形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用い て計算した D V D上のスポットサイドローブ形状を示すグラフである。
図 1 0 0は、本発明による実施例 3の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポットサイドローブ形状を示すグラフである。
図 1 0 1は、本発明による実施例 3の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示す グラフである。
図 1 0 2は、本発明による実施例 3の対物レンズモジュールを用いた場合の C Dに対するチルド時のスポット半値幅値とディスクチルト角度と関係を示すグ ラフである。
図 1 0 3は、本発明による実施例 3の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポットサイドローブ強度とディスクチルト角度と関 係を示すグラフである。
図 1 0 4は、本発明による実施例 3の対物レンズモジュールを用いた場合の C Dに対するチルト時のスポットサイドローブ強度とディスクチルト角度と関係 を示すグラフである。
図 1 0 5は、本発明による実施例 3の対物レンズモジュールによる最良像面に おける B Dの波面収差形状を示すグラフである。
図 1 0 6は、本発明による実施例 3の対物レンズモジュールによる光源の波長 が 4 0 3 n mに変動した場合の最良像面における B Dの波面収差形状を示すグ ラフである。
図 1 0 7は、本発明による実施例 3の対物レンズモジュールによる光源の波長 が 4 1 3 n mに変動した場合の最良像面における B Dの波面収差形状を示すグ ラフである。 .
図 1 0 8は、本発明による実施例 3の対物レンズモジュールの B Dの波長 4 0 3 nmにおけるスポッ卜形状全体を示すグラフである。
図 1 0 9は、本発明による実施例 3の対物レンズモジュ一ルの B Dの波長 4 1 3 n mにおけるスポット形状全体を示すグラフである。
図 1 1 0は、本発明による実施例 3の対物レンズモジュールの B Dの波長 4 0 3 n mにおけるスポットのサイドローブを示すグラフである。 図 1 1 1は、本発明による実施例 3の対物レンズモジュールの B Dの波長 4 1 3 n mにおけるスポッ卜のサイドロ一ブを示すグラフである。
図 1 1 2は、本発明による実施例 3の回折光学素子を用いたレンズの波長変動 に対する最良像面 (集光点) の移動量を示すグラフである。
図 1 1 3は、本発明による実施例 4における回折レンズ構造 A 1の回折レンズ 関数を示すグラフである。
図 1 1 4は、本発明による実施例 4における回折レンズ構造 A 2の回折レンズ 関数を示すグラフである。
図 1 1 5は、本発明による実施例 4の回折光学素子に形成されている回折レン ズ構造 Bの断面を模式的に示すグラフである。
図 1 1 6は、本発明による実施例 4の回折光学素子に形成されている回折レン ズ構造 Aの断面を模式的に示すグラフである。
図 1 1 7は、本発明による実施例 4の回折光学素子に形成されている回折レン ズ構造 A及び回折レンズ構造 Bを合成した場合の断面を模式的に示すグラフで ある。
図 1 1 8は、本発明による実施例 4の回折光学素子を用いた対物レンズモジュ ールの B Dの波面収差を実際の形状のデータにより計算した結果を示すグラフ である。
図 1 1 9は、本発明による実施例 4の回折光学素子を用いた対物レンズモジュ ールの D V Dの波面収差を実際の形状のデータにより計算した結果を示すダラ フである。
図 1 2 0は、本発明による実施例 4の回折光学素子を用いた対物レンズモジュ ールの C Dの波面収差を実際の形状のデータにより計算した結果を示すグラフ である。
図 1 2 1は、本発明による実施例 4の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した B D上のスポット形状を示すグラフである。
図 1 2 2は、本発明による実施例 4の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した D VD上のスポット形状を示すグラフである。
図 1 2 3は、本発明による実施例 4の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポット形状を示すグラフである。
図 1 2 4は、本発明による実施例 4の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した B D上のスポットサイドローブ形状を示すグラフである。
図 1 2 5は、本発明による実施例 4の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した D VD上のスポットサイドローブ形状を示すグラフである。
図 1 2 6は、本発明による実施例 4の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポッ卜サイドローブ形状を示すグラフである。
図 1 2 7は、本発明による実施例 4の対物レンズモジュールを用いた場合の: D V Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示す グラフである。
図 1 2 8は、本発明による実施例 4の対物レンズモジュールを用いた場合の C Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示すグ ラフである。
図 1 2 9は、本発明による実施例 4の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポットサイドロ一ブ強度とディスクチルト角度と関 係を示すグラフである。
図 1 3 0は、本発明による実施例 4の対物レンズモジュールを用いた場合の C Dに対するチルト時のスポットサイドローブ強度とディスクチルト角度と関係 を示すグラフである。
図 1 3 1は、本発明による実施例 4の対物レンズモジュールによる最良像面に おける B Dの波面収差形状を示すグラフである。
図 1 3 2は、本発明による実施例 4の対物レンズモジュールによる光源の波長 が 4 0 3 n mに変動した場合の最良像面における B Dの波面収差形状を示すグ ラフである。
図 1 3 3は、本発明による実施例 4の対物レンズモジュールによる光源の波長 が 4 1 3 n mに変動した場合の最良像面における B Dの波面収差形状を示すグ ラフである。
図 1 3 4は、本発明による実施例 4の対物レンズモジュールの B Dの波長 4 0 3 nmにおけるスポット形状全体を示すグラフである。
図 1 3 5は、本発明による実施例 4の対物レンズモジュールの B Dの波長 4 1 3 n mにおけるスポッ卜形状全体を示すグラフである。 図 1 3 6は、本発明による実施例 4の対物レンズモジュールの B Dの波長 4 0 3 n mにおけるスポッ卜のサイドローブを示すグラフである。
図 1 3 7は、本発明による実施例 4の対物レンズモジュールの B Dの波長 4 1 3 n mにおけるスポットのサイドローブを示すグラフである。
図 1 3 8は、本発明による実施例 4の回折光学素子を用いたレンズの波長変動 に対する最良像面 (集光点) のの移動量を示すグラフである。
図 1 3 9は、本発明による実施例 5の回折光学素子と対物レンズからなる対物 レンズモジュールの概略断面図である。
図 1 4 0は、 本発明による実施例 5の回折光学素子の概略断面図である。 図 1 4 1は、本発明による実施例 5の回折光学素子と B D用対物レンズを組み 合わせた際の D V Dに対する縦球面収差を位相関数法を用いて計算した結果を 示すグラフを説明する線図である。
図 1 4 2は、本発明による実施例 5の回折光学素子における回折レンズ構造 2 の光軸からの高さに対する回折レンズ関数のグラフである。
図 1 4 3は、本発明による実施例 5の回折光学素子における回折レンズ構造 3 の光軸からの高さに対する回折レンズ関数のグラフである。
図 1 4 4は、本発明による実施例 5の回折光学素子に形成されている回折レン ズ構造の断面を模式的に示すグラフである。
図 1 4 5は、本発明による実施例 5の回折光学素子を用いた対物レンズモジュ ールの B Dの波面収差を実際の形状のデータにより計算した結果を示すグラフ である。
図 1 4 6は、本発明による実施例 5の回折光学素子を用いた対物レンズモジュ ールの D V Dの波面収差を実際の形状のデータにより計算した結果を示すダラ フである。
図 1 4 7は、本発明による実施例 5の回折光学素子を用いた対物レンズモジュ —ルの C Dの波面収差を実際の形状のデータにより計算した結果を示すダラフ である。
図 1 4 8は、本発明による実施例 5の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した B D上のスポット形状を示すグラフである。
図 1 4 9は、本発明による実施例 5の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した D VD上のスポット形状を示すグラフである。
図 1 5 0は、本発明による実施例 5の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポッ卜形状を示すグラフである。
図 1 5 1は、本発明による実施例 5の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した B D上のスポットサイドローブ形状を示すグラフである。
図 1 5 2は、本発明による実施例 5の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した D VD上のスポットサイドローブ形状を示すグラフである。
図 1 5 3は、本発明による実施例 5の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポットサイドローブ形状を示すグラフである。
図 1 5 4は、本発明による実施例 5の対物レンズモジュールを用いた場合の D V Dに対するチルド時のスポット半値幅値とディスクチルト角度と関係を示す グラフである。
図 1 5 5は、本発明による実施例 5の対物レンズモジュールを用いた場合の C Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示すグ ラフである。
図 1 5 6は、本発明による実施例 5の対物レンズモジュールを用いた場合の D VDに対するチルト時のスポットサイドロ一ブ強度とディスクチルト角度と関 係を示すグラフである。
図 1 5 7は、本発明による実施例 5の対物レンズモジュールを用いた場合の C Dに対するチルド時のスポットサイドローブ強度とディスクチルト角度と関係 を示すグ.ラフである。
図 1 5 8、 本発明による実施形態の回折光学素子の断面図である。
図 1 5 9は、本発明による実施形態の回折光学素子と対物レンズからなる対物 レンズモジュールの動作を説明するため対物レンズモジュールの概略断面図で ある。
図 1 6 0、 本発明による実施形態の回折光学素子の断面図である。
図 1 6 1は、本発明による実施形態の回折光学素子と対物レンズからなる対物 レンズモジュールの動作を説明するための対物レンズモジュールの概略断面図 である。
図 1 6 2、 本発明による実施形態の回折光学素子の断面図である。 図 1 6 3は、本発明による実施形態の回折光学素子と対物レンズからなる対物 レンズモジュールの動作を説明するため対物レンズモジュールの概略断面図で ある。
図 1 6 4は、本発明による実施例 6の回折光学素子と対物レンズからなる対物 レンズモジュールの概略断面図である。
図 1 6 5は、 本発明による実施例 6の回折光学素子の概略断面図である。 図 1 6 6は、本発明による実施例 6の回折光学素子に形成されている回折レン ズ構造の断面を模式的に示すグラフである。
図 1 6 7は、本発明による実施例 6の回折光学素子を用いた対物レンズモジュ ールの HD— D V Dの波面収差を実際の形状のデータにより計算した結果を示 すグラフである。
図 1 6 8は、本発明による実施例 6の回折光学素子を用いた対物レンズモジュ —ルの D V Dの波面収差を実際の形状のデータにより計算した結果を示すダラ フである。
図 1 6 9は、本発明による実施例 6の回折光学素子を用いた対物レンズモジュ ールの C Dの波面収差を実際の形状のデータにより計算した結果を示すグラフ である。
図 1 7 0は、本発明による実施例 6の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した HD— D VD上のスポット形状を示すグラフである。
図 1 7 1は、本発明による実施例 6の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した D V D上のスポット形状を示すグラフである。
図 1 7 2は、本発明による実施例 6の回折光学素子の回折レンズ構造の実際の 面形状デ一夕より対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポット形状を示すグラフである。
図 1 7 3は、本発明による実施例 6の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した H D— D V D上のスポットサイドロ一ブ形状を示すグラフである。 図 1 7 4は、本発明による実施例 6の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した D V D上のスポットサイドローブ形状を示すグラフである。
図 1 7 5は、本発明による実施例 6の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポットサイドローブ形状を示すグラフである。
図 1 7 6は、本発明による実施例 6の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示す グラフである。
図 1 7 7は、本発明による実施例 6の対物レンズモジュールを用いた場合の C Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示すグ ラフである。
図 1 Ί 8は、本発明による実施例 6の対物レンズモジュールを用いた場合の D V Dに対するチルト時のスポットサイドローブ強度とディスクチルト角度と関 係を示すグラフである。 図 1 7 9は、本発明による実施例 6の対物レンズモジュールを用いた場合の C Dに対するチルト時のスポットサイドロ一プ強度とディスクチルト角度と関係 を示すグラフである。
図 1 8 0は、本発明による実施例 7の回折光学素子と対物レンズからなる対物 レンズモジュールの概略断面図である。
図 1 8 1は、 本発明による実施例 7の回折光学素子の概略断面図である。 図 1 8 2は、本発明による実施例 7の回折光学素子に形成されている回折レン ズ構造の断面を模式的に示すグラフである。
図 1 8 3は、本発明による実施例 7の回折光学素子を用いた対物レンズモジュ ールの HD— D VDの波面収差を実際の形状のデータにより計算した結果を示 すグラフである。
図 1 8 4は、本発明による実施例 7の回折光学素子を用いた対物レンズモジュ ールの D VDの波面収差を実際の形状のデータにより計算した結果を示すダラ フである。
図 1 8 5は、発明による実施例 7の回折光学素子を用いた対物レンズモジユー ルの C Dの波面収差を実際の形状のデータにより計算した結果を示すグラフで ある。
図 1 8 6は、本発明による実施例 7の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した HD— D VD上のスポット形状を示すグラフである。
図 1 8 7は、本発明による実施例 7の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した D VD上のスポット形状を示すグラフである。
図 1 8 8は、本発明による実施例 7の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポット形状を示すグラフである。
図 1 8 9は、本発明による実施例 7の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した HD— D VD上のスポットサイドロ一ブ形状を示すグラフである。 図 1 9 0は、本発明による実施例 7の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した D VD上のスポットサイドローブ形状を示すグラフである。
図 1 9 1は、本発明による実施例 7の回折光学素子の回折レンズ構造の実際の 面形状データより対物レンズモジュールの波面収差を計算し、その波面収差を用 いて計算した C D上のスポットサイドローブ形状を示すグラフである。
図 1 9 2は、本発明による実施例 7の対物レンズモジュールを用いた場合の H D— D V Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係 を示すグラフである。
図 1 9 3は、本発明による実施例 7の対物レンズモジュールを用いた場合の C Dに対するチルト時のスポット半値幅値とディスクチルト角度と関係を示すグ ラフである。
図 1 9 4は、本発明による実施例 7の対物レンズモジュールを用いた場合の H D— D V Dに対するチルト時のスポッ卜サイドロ一ブ強度とディスクチルト角 度と関係を示すグラフである。 図 1 9 5は、本発明による実施例 7の対物レンズモジュールを用いた場合の C Dに対するチル卜時のスポットサイドローブ強度とディスクチルト角度と関係 を示すグラフである。
図 1 9 6は、本発明による実施例 8の回折レンズ構造が施された対物レンズの 概略断面図である。
図 1 9 7は、本発明による実施例 8の回折レンズ構造が施された対物レンズの 概略断面図である。
図 1 9 8は、本発明による実施例 8の回折レンズ構造が施された対物レンズの HD— D V Dの波面収差を実際の形状のデータにより計算した結果を示すダラ フである。
図 1 9 9は、本発明による実施例 8の回折レンズ構造が施された対物レンズの D V Dの波面収差を実際の形状のデータにより計算した結果を示すグラフであ る。
図 2 0 0は、本発明による実施例 8の回折レンズ構造が施された対物レンズの C Dの波面収差を実際の形状のデータにより計算した結果を示すグラフである。 図 2 0 1は、本発明による実施例 8の回折レンズ構造が施された対物レンズの 実際の面形状デ一夕より対物レンズモジュールの波面収差を計算し、その波面収 差を用いて計算しだ HD— D VD上のスポット形状を示すグラフである。
図 2 0 2は、本発明による実施例 8の回折レンズ構造が施された対物レンズの 実際の面形状データより対物レンズモジュールの波面収差を計算し、その波面収 差を用いて計算した D VD上のスポット形状を示すグラフである。
図 2 0 3は、本発明による実施例 8の回折レンズ構造が施された対物レンズの 実際の面形状データより対物レンズモジュールの波面収差を計算し、その波面収 差を用いて計算した C D上のスポット形状を示すグラフである。 .
図 2 0 4は、本発明による実施例 8の回折レンズ構造が施された対物レンズの 実際の面形状データより対物レンズモジュールの波面収差を計算し、その波面収 差を用いて計算した HD— D VD上のスポットサイドローブ形状を示すグラフ である。
図 2 0 5は、本発明による実施例 8の回折レンズ構造が施された対物レンズの 実際の面形状データより対物レンズモジュールの波面収差を計算し、その波面収 差を用いて計算した D VD上のスポットサイドローブ形状を示すグラフである。 図 2 0 6は、本発明による実施例 8の回折レンズ構造が施された対物レンズの 実際の面形状データより対物レンズモジュールの波面収差を計算し、その波面収 差を用いて計算した C D上のスポットサイドローブ形状を示すグラフである。 図 2 0 7は、本発明による実施例 8の回折レンズ構造が施された対物レンズを 用いた場合の H D— D V Dに対するチルト時のスポット半値幅値とディスクチ ルト角度と関係を示すグラフである。
図 2 0 8は、本発明による実施例 8の回折レンズ構造が施された対物レンズを 用いた場合の C Dに対するチルト時のスポット半値幅値とディスクチルト角度 と関係を示すダラフ'である。
図 2 0 9は、本発明による実施例 8の回折レンズ構造が施された対物レンズを 用いた場合の HD—D VDに対するチルト時のスポットサイドロ一ブ強度とデ イスクチルト角度と関係を示すグラフである。
図 2 1 0は、本発明による実施例 8の回折レンズ構造が施された対物レンズを 用いた場合の CDに対するチルト時のスポットサイドローブ強度とディスクチ ルト角度と関係を示すグラフである。 発明を実施するための形態
以下に本発明の実施の形態を図面を参照しつつ説明する。
(光ピックアップ)
図 1は実施形態の光ピックァップの概略を示す。光ピックアツプは、第 1波長 が 400 nm〜410 nm例えば 408 nm付近の短波長の λ BDを射出する B D用半導体レーザ LD 1と、第 1波長より長い第 2波長すなわち 630 nm〜6 70 nm例えば 660 nm付近の D VD用の長波長 λ DVDを射出する D VD用 半導体レーザ LD 2と、第 2波長より長い第 3波長 760 nm〜800 nm例え ば 780 nm付近の CD用の更に長波長の ACDを射出する CD用半導体レ一ザ LD3と、 を備えている。 半導体レーザ LD 1、 LD2及び LD3は BD用、 D VD用及び CD用として択一的に切り換えて点灯される。
さらに光ピックアップは、 これら第 1、 第 2及び第 3レーザ光 ABD、 ADVD 及び λ CDの光路を共通させる光軸結合素子の光軸結合プリズム (色合成プリズ ム) 10を備えている。 この光学系の光軸結合プリズム 10は、 図 1に示すよう に、半導体レーザ LD 1、 LD 2及び LD 3の発散レーザ光を共通の光路となす ように設計され、 3つの光束の光軸を略一致させる機能を有する。光軸結合プリ ズム 10中のそれぞれのダイクロイツクミラーは所望の波長のレ一ザ光を透過 又は反射する特性を有しており且つ、入射角度依存性を持つように多層誘電体薄 膜により形成されている。 また、光軸を合成する光軸結合素子は、光軸結合プリ ズムに限定されることなく、ダイクロイツクミラーに代えて、回折角の波長差を 使った回折格子、液晶コレステリック層などを、光軸結合素子に用いることがで きる。
また、光ピックアップは、光軸結合プリズム 1 0の光軸の下流にビームスプリ ッ夕 1 3、コリメ一夕レンズ 1 4、及び対物レンズモジュール 1 6を備えている。 以上の光照射光学系によって、第 1半導体レーザ L D 1及び第 2半導体レーザ L D 2の少なくとも一方からのレ一ザ光は、光軸結合プリズム 1 0及ぴビ一ムスプ リツ夕 1 3を経て、 コリメ一夕レンズ 1 4で平行レーザ光にされ、 を透過して、 対物レンズモジュール 1 6によって、その焦点付近に置かれている光ディスク 5 に向けて集光され、光ディスク 5の情報記録面のピット列上で光スポットを形成 する。
以上の光照射光学系に加えて、光ピックアツプはさらに検出レンズ 1 7など光 検出光学系を有しており、対物レンズモジュール 1 6、及びビ一ムスプリッ夕 1 3は光検出光学系にも利用されている。 C D、 B D又は D VDの光ディスク 5か らの反射光は、対物レンズモジュール 1 6で集められを介してビームスプリッタ 1 3によって検出用集光レンズ 1 7に向けられる。検出レンズ 1 7で集光された 集束光は、例えば、 シリンドリカルレンズ、 マルチレンズなどの非点収差発生素 子(図示せず) を通過して、 例えば、 直交する 2線分によって 4分割されてなる 4つの受光面を有する 4分割光検出器の受光面 2 0中心付近に光スポットを形 成する。
また、光検出器の受光面 2 0は復調回路 3 0及びエラー検出回路 3 1に接続さ れている。エラ一検出回路 3 1は対物レンズモジュールのトラツキング制御及び 7092
32 フォーカス制御用のァクチユエ一夕 2 6を含む機構を駆動する駆動回路 3 3に 接続されている。
4分割光検出器は、その受光面 2 0中心付近に結像された光スポット像に応じ た電気信号を復調回路 3 0及びエラー検出回路 3 1に供給する。復調回路 3 0は、 その電気信号に基づいて記録信号を生成する。エラー検出回路 3 1は、その電気 信号に基づいてフォーカスエラ一信号や、 トラッキングエラー信号や、その他サ ーポ信号などを生成し、ァクチユエ一夕の駆動回路 3 3を介して各駆動信号を各 ァクチユエ一夕に供給し、これらが各駆動信号に応じて対物レンズモジュール 1 6などをサーポ制御駆動する。
(対物レンズモジュール)
図 1に示すように、 B D用、 D V D用及び C D用のレ一ザ光源 L D 2からのレ 一ザ光を、光軸結合プリズム 1 0によって 1つの光路を共用し、対物レンズモジ ユール 1 6により B D、 D VD又は C Dの光ディスク記録面上に集光させる。 この対物レンズモジュール 1 6は、 レーザ光を記録面へ集光する集光レンズ (基準レンズ) 1 6 aと、透光性の平板上に複数の位相段差からなる回折輪帯 (光 軸を中心とした回転対称体) すなわち回折格子を有する回折光学素子 1 6 b (DOE: diffractive optical element) と、 を組み合せた複合対物レンズの組立体で ある。集光レンズ 1 6 a及び回折光学素子 1 6 bは、ホルダ 1 6 cによって光軸 に同軸に配置され、回折格子を有する回折光学素子 1 6 bは光源側すなわち光軸 結合プリズム 1 0から集光レンズ 1 6 aまでの光路中に位置する。
集光レンズ 1 6 aは、 A B Dの波長範囲 4 0 0 n m〜4 1 0 n m、 透過保護層 の厚さ 0 . 1 mmに対して収差が補正された開口数 0 . 8 5を有する非球面レン ズ (B D用対物レンズ) を用いる。
図 2は他の実施形態の光ピックアツプの概略を示す。上記半導体レーザ L D 1、 L D 2及び L D 3に代えて、光源に第 1、第 2及び第 3波長を発する 3波長レー ザ L D 1 2 3を使用することにより、光軸結合プリズムなどを省略できピックァ ップの光路はさらに簡素化されるため好ましい。
(回折光学素子)
本実施形態の回折光学素子 1 6 bは、 B D用対物レンズと組み合わせて D V D と C Dの記録再生を可能とするものである。
回折光学素子 1 6 bは図 3に示すように、ガラス、プラスチックなどからなる 基板の入射側又は射出側の少なくとも一方の表面に形成された回折格子すなわ ち回折輪帯 1 6 eからなる。回折輪帯 1 6 eは光軸を中心に複数本の同心円に切 削され又はフォトリソグラフィにより積層された環状溝又は凸の輪帯である。な お、上記のような物理的な段差構造以外でも、同心円状に不連続な屈折率分布を 持たせた構造でも同様の効果が得られる。すなわち、 回折輪帯は、 物理的な段差 構造、あるいは同心円状の不連続な屈折率分布により、あるいはその他何らかの 手段により、そこを透過する光の波面の位相に段差を生じさせるものであればよ い。このように、光の波面の位相に、段差を生じさせる構造をまとめて位相段差、 あるいは位相段差構造とよぶ。 また、位相段差量の表記方法に関しては、物理的 な段差構造の寸法で表記したり、屈折率が不連続となる点での屈折率差で表記し たり、そこで発生する光路長差あるいは位相差量などで表記することが可能であ る。一般に、各回折輪帯 1 6 eの断面形状はブレ一ズ形状すなわち鋸歯状、又は、 階段形状となるように形成されることが多い。例えば、鋸歯状断面の回折格子は 回折効率が他より高いので有利である。回折格子断面形状の作成法として、 フォ トリソグラフィ技術を応用する方法と、ダイヤモンドバイトなどで精密切削する 方法とがあり、 これらによって、擬似的にブレーズを形成した多段階ブレーズ又 はブレーズ形状の回折格子ができるが、 いずれの方法でも構わない。 または、 か かる多段階ブレーズ又はブレーズ形状を金型に雛形を形成しておき、射出成形又 はいわゆる 2 P法で透明材料から複数の回折光学素子を複製することもできる。 回折光学素子の回折輪帯 1 6 eは回折レンズ構造を構成する。回折レンズは非 球面レンズの面上に回折面を形成したレンズであり、回折レンズ構造は例えば巨 視的非球面形状上に形成された同心円状の位相段差で構成される。回折レンズ構 造は、 図 4 aに示すように、 少なくとも基板の片面に設けられ、対物レンズの記 録媒体に対応した有効径に応じて異なる半径位置で画定された複数の領域にて 区画されている。回折レンズ構造は、透過保護層の厚さの違いや波長の違いによ る球面収差を補正するように、形成されている。回折レンズ構造の具体的な構造 は以下のとおりである。
最内周の領域 1では、 第 1レーザ光 (B D用レーザ光、 波長 4 0 8 n m) に対 しては球面収差補正効果が無く、第 2レーザ光(D VD用レーザ光、波長 6 6 0 nm) 及び第 3レーザ光(C D用レーザ光、 波長 7 8 0 n m) に対しては球面収 差補正効果がある回折レンズ構造を実現できる回折光の組み合わせ {例えば(B D: 1次光、 D VD: 1次光、 C D: 1次光)、 (B D: 3次光、 D VD: 2次光、 C D: 2次光)、 (B D: 7次光、 D VD: 4次光、 C D: 3次光)、 (B D: 9次 光、 D VD: 5次光、 C D: 4次光) } を利用できるように第 1回折レンズ構造 (第 1収差補正手段) が形成されている。 なお、 (B D: 5次光、 D VD: 3次 05 017092
35 光、 C D : 2又は 3次光) の組は、 B D用レーザ光及び D V D用レーザ光で回折 レンズ構造を構成する位相段差で発生する位相差が揃ってしまうので、除外して もよい。よって、第 1レーザ光が第 1回折レンズ構造を通過した場合に発生する 回折光のうち回折効率が最大となる回折次数が 5の倍数を除く奇数となるよう に設計されている。回折レンズ構造によって発生する回折光の回折効率は、それ を構成する同心円状の位相段差の段差量によって調節することができる。特に領 域 1では B D用レーザ光の回折効率が最大となるように位相段差量を決定して しまうと、 C D用レーザ光の所望とする回折次数における十分な回折効率得るこ とができず、同時に不要な回折光が発生することになるので、 B D用レーザ光の 回折効率と C D用レーザ光の回折効率のバランスを考慮して設計されているこ とが望ましい。 なお、 このように回折効率のパランスを考慮して設計した場合、 位相段差で発生する光路長差が波長の整数倍からずれることに伴い、鋸波状の波 面収差が部分的に発生するが、このことによるスポット形状の劣化はほとんど無 いため問題ない。回折レンズ構造を構成する複数の位相段差の深さは、発生する 光路長差がすべての段差で同一となるように設計するが、最外周の位相段差で発 生する光路長を他の位相段差とは異なるように設計することにより、他の領域を 通過する波面との位相をより正確に合わせることができ、より良好な集光性能が 得られるようになるため、 好ましい。 '
領域 1より外側の中周部にある領域 2には、 B D用レーザ光及び C D用レーザ 光に対しては球面収差補正効果が無く、 D V D用レーザ光に対してのみ球面収差 補正効果がある回折レンズ構造を実現できる回折光の組み合わせ {例えば (B D: 2次光、 D VD: 1次光、 C D: 1次光)、 (B D: 4次光、 D VD: 2次光、 C D: 2次光)、 (B D: 6次光、 D V D: 4次光、 C D: 3次光)、 (B D: 8次 光、 D VD: 5次光、 C D: 4次光) } が利用できるように第 2回折レンズ構造 (第 2収差補正手段)が形成されている。 B Dについて 1 0次回折光の場合、 す ベての媒体の記録及び再生に対応したレーザ光に対して回折レンズ構造を構成 する位相段差で発生する位相差がほぼ揃ってしまい、 D VD用レ一ザ光のみに対 して選択的に収差補正効果を与えられないため B D用レ一ザ光が第 2回折レン ズ構造を通過した場合に発生する回折光のうち回折効率が最大となる回折次数 が 1 0の倍数を除く偶数となるように設計されている。回折レンズ構造を構成す る位相段差の深さに関しては、要求仕様に応じて B D用レーザ光の回折効率が最 大となるような光路長差を発生するように設定してもよいし、 B D用レーザの回 折効率と D V D用レーザの回折効率とのバランスを取ることを考慮してもよい。 また、鋸波状の波面収差が発生する場合は、領域 1の場合と同様に、最外周の位 相段差のみ、発生する光路長差が異なるように設計するとより良好な集光特性が 得られるようになるため、 好ましい。
領域 2より外側の外周部にある領域 3には、全ての波長に対して球面収差補正 効果の無いような回折レンズ構造を実現できる回折光の組み合わせ(例えば、 B D: 1 0次光、 D VD: 6次光、 C D: 5次光) が利用できるように第 3回折レ ンズ構造 (第 3収差'補正手段) が形成されている。 また、 領域 3は回折レンズ構 造を形成しなくともよい(ゼロ次光のみ透過)。よって、所定の B D用開口数 0 . 8 5が実現される。
図 4 aに示す例では、第 1回折レンズ構造、第 2回折レンズ構造及び第 3回折 レンズ構造がすべて同一の面に形成されている。このようにすべての回折レンズ 構造を一つの面に形成することにより、位相段差を成形するための微細構造を有 する金型を複数必要としないため、製造容易となり、同時にコスト面においても 好ましい。また、それぞれの回折レンズ構造における BD用レーザ光の回折次数 や DVDおよび CDの像面位置を適切に設定することにより、図 4 aのように全 ての位相段差の方向を同一にそろえることができる。 ここで、位相段差の方向と は、段差の内周側の面を基準にした外周側の面の移動方向で表すこととする。 こ のように位相段差の方向をすベて同一方向にそろえることにより、面形状は微小 な輪帯状のくぼみや突起の無い、単純な階段形状となるため、金型作製が容易と なり好ましく、さらに離型性の悪化が抑えられることにより金型を長寿命化する とともに、 成形不良率を低減できるため、 好ましい。
このように、本実施形態の回折光学素子は BDZDVDZCDの透過保護層の 厚み違いにより発生する球面収差を補正するため、その少なくとも 1面に微細な 同心円状の位相段差からなる回折レンズ構造が形成されている。 これにより、 B D、 DVD、 CDを全て無限系として球面収差を補正すると同時にそれぞれの光 ディスクの記録再生に必要な開口数へ開口制限することが可能となる。
次に、 回折次数の選択により DVD/CDで異なる開口数(有効径) の制限を 実現する回折レンズ構造の作用を詳細に説明する。
回折レンズ構造ば、光学材料の表面に複数の微少な位相段差で形成されている。 屈折率 Nの光学材料に形成された深さ dの位相段差を波長 λのレーザ光が通過 すると、 段差の部分で波面に {(Ν— 1) d/λ} Χλの光路長差が発生する。 回折レンズ構造を構成する位相段差で発生する光路長差が {(Ν— 1) d/λ} Χλである場合、波長 λの光に対して回折レンズ構造では r ound [(N— 1) d/λ] 次光の回折効率が最大となる。 ただし、 r ound [] は [] 内の数値 を四捨五入して得られる整数である。また、回折レンズ構造を構成する一つの位 相段差で補正できる収差量は [r ound [(N— 1) d/λ] 一 {(N— 1) d /λ}} λである。 つまり、 (Ν— 1) d/λが整数である場合、 すなわち、 位相 段差で発生する光路長差が波長の整数倍である場合、位相段差で補正できる収差 量はゼロとなるが、 回折効率はほぼ 100%となる。 逆に、 (Ν— 1) d/λが 整数からずれるほど、つまり、位相段差で発生する光路長差が波長の整数倍から ずれるほど、一つの位相段差で補正できる収差量は大きくなるが、回折効率は低 下していく。
光学材料の屈折率 Νは一般に波長によって異なり、波長が短くなるほど屈折率 は高くなる。 BD用レーザ光の波長 λΒΙ)は 408 nm程度であり、 CD用レ一 ザ光の波長 ACDは 78 Onm程度であり、 前記のように屈折率が波長によって 異なるため、 これらのレ一ザ光が同一の位相段差を通過した場合の(N— 1) d Ζλの値を比較すると、 ほぼ 2 : 1になる。
このようなことから、 BD用レーザ光に対して 2mABD (mは整数) の光路 長差が発生する位相段差では、 CD用レーザ光に対して発生する光路長差が略 m ACDとなる。 従って、 BD用レーザ光の 2 m次光の回折効率が最大となり、 こ れに対して球面収差補正効果を持たないように回折レンズ構造を設計した場合、 CD用レーザ光では、 m次光の回折効率が最大となり、 これに対しても回折レン ズ構造は球面収差補正効果をほとんど持たないため、 CDに対する球面収差の補 正が不可能となる。
一方、 BD用レーザ光に対して (2m+l) λΒΙ5の光路長差が発生するよう に回折レンズ構造の位相段差量を設定すると、 回折レンズ構造では (2m+ l) 次の奇数次回折光の回折効率が最大となる。 この場合、 CD用レーザ光では、位 相段差で発生する光路長差が略 (m+1/2) ACDとなる。 つまり、 BD用レ 一ザ光と C D用レーザ光では、位相段差で発生する光路長差の波長の整数倍から のずれ量が異なるため、 BD用レーザ光に対しては収差補正効果を持たず、 CD 用レーザ光に対しては収差補正効果を持つ回折レンズ構造を実現することが可 能となる。
さらに、 このような現象を利用して、図 4 bに示すように CD有効径に対応す る第 3回折有効径の領域 1に関しては B D用レーザ光で奇数次の回折光を利用 する第 1回折レンズ構造とすることにより、 BDで球面収差を発生せずに DVD の球面収差を補正するように設計された第 1回折レンズ構造で C Dの収差をあ る程度補正することが可能となる。また、第 3回折有効径外の領域 2に関しては、 B D用レーザ光の偶数次の回折光を利用する第 2回折レンズ構造とすることに より、 B Dで球面収差を発生せずに D V Dの球面収差を補正するように設計され た第 2回折レンズ構造で、 CDの球面収差を補正せずに残留させることが可能と なる。
ただし、これらの回折レンズ構造を構成する位相段差で発生する光路長差が 5 λΒ0となるように設計した場合、 DVD用レ一ザ光では、 位相段差で発生する 光路長差が略 3 ADVDとなるため、 BDで球面収差を発生せずに DVDで球面収 差を補正することは不可能となる。つまり、第 1回折レンズ構造は、 BD用レー ザ光の 5の倍数を除く奇数次の回折光を利用する回折レンズ構造とし、第 2回折 レンズ構造は、 BD用レーザ光の 10の倍数を除く偶数時の回折光を利用する回 折レンズ構造とすればよい。
D V D有効径に対応する第 2回折有効径外の領域 3に関しては、 D V D及び C Dの両方に対して球面収差を補正しなければ、 B Dに対しては収差を発生させず に D V D及び C Dの両方に対して光をフレアとして拡散させることができる。さ らに、第 2回折有効径内で且つ第 3有効径外の領域 2では、 C Dに対してのみ球 面収差が存在するので、 C Dに対してのみ光をフレアとして拡散させることがで さる。
このように、使用される複数の光源波長のうち最も短い波長のレーザ光を入射 した場合に発生する回折光のうち、回折効率が最大となる回折次数が、領域 1に 形成された回折レンズ構造では奇数 (5の倍数を除く)、 最外周と最内周の領域 の間の領域 2に形成された回折レンズ構造では偶数(1 0の倍数を除く) となる ようにすることにより、 3つの異なる開口数に対応した有効径内の光に対しての み球面収差を補正し、有効径外の光は球面収差を補正しないことによりフレアと して拡散させることができる。
よって、光軸を中心とする 2つの円にて分割された 3つの領域に分割し、 これ らのうち少なくとも 2つの領域には同心円状の微細な位相段差にて構成される 回折レンズ構造は、開口数の違う B DZD VDZC Dのそれぞれの光に対して最 適な開口数を付与することができる。
なお、このような構成を利用せずに B D D V D C Dのそれぞれの光に対し て最適な開口数を付与する方法として、同心円状に波長選択性の透過率特性を有 する膜を施す方法も考えられるが、 この場合、膜を部分的に施すことが困難であ り、 製造工程が複雑化するため好ましくない。 次に、 DVD/CDで異なる量の球面収差を補正する手段を詳述する。
DVDの透過保護層 (基板) 厚みは 0. 6 mmで CDの透過保護層 (基板) 厚 みは 1. 2 mmであるため、 補正すべき球面収差量が異なる。 つまり、 BDZD VD互換用に設計された回折レンズ構造では、 CDに対して球面収差を完全に補 正することはできない。同様に、 BDZCD互換用に設計された回折レンズ構造 では、 DVDに対して球面収差を完全に補正することはできない。 これは、 回折 レンズ構造を構成する一つの位相段差で補正できる収差量 [r ound [(N— 1) Xd/λ] 一 {(N- 1) Xd/λ}] λの値の比率を、 DVDと CDの補正 すべき球面収差量の比率と同じ値にすることができないからである。このような 場合、 DVDもしくは CDのどちらかの入射光を発散光もしくは収束光にするこ とにより、回折レンズ構造にて補正しきれなかつた球面収差を補正することが可 能である。 しかしながら、 たとえば BDZDVDを平行光入射とし、 CDのみ発 散光もしくは収束光とした場合、ピックアツプの構成が複雑になつてしまうとい つた問題があり、このような観点から B D D V D / C Dの全てが平行光入射で あることが望ましい。
これを実現する方法としては、 以下に示す 3つの方法が考えられる。
第 1の方法としては、図 4 bのような構成における DVD/CDで共用される 領域 1に形成される第 1回折レンズ構造の設計において、 DVDで補正すべき球 面収差量と C Dで補正すべき球面収差量の中間の量の球面収差を補正するよう に設計し、 D V Dと C Dで残留する球面収差量のバランスをとる方法が考えられ る。 この方法では、 DVDと CDの双方において収差が 0. 07A rms以下と なるような設計を得ることができる。 P T/JP2005/017092
42 第 2の方法としては、図 4 cに示すように領域 1に第 1回折レンズ構造と B D 用レーザ光に対して 1 0を除く偶数次の回折光を発生する第 4回折レンズ構造 を混在させる方法が考えられる。 この方法では、 まず第 1回折レンズ構造を B D ZC D互換用に設計する。第 1回折レンズ構造は、 D VD用レーザ光に対しても 球面収差補正効果を有するが、その補正量が補正すべき球面収差量と異なるため、 それらの差分に相当する球面収差が残留する。この D VDにおける残留球面収差 を補正すべく第 2回折レンズ構造と同様に B D用レーザ光に対して偶数次の回 折光を発生する第 4回折レンズ構造を追加して残留収差を補正する。第 4回折レ ンズ構造は B D用レーザ光に対して収差補正効果を持たず、且つ偶数次の回折光 を発生するように設計されているので、 C D用レーザ光に対しても収差補正効果 を持たない。つまり、第 4回折レンズ構造を追加したことによる C Dの波面に対 する悪影響はない。 この方法では、 D VDZ C Dの双方において領域 1における 収差を十分小さい値に抑える設計が可能となる。なお、設計結果によっては、第 1回折レンズ構造を構成する位相段差と第 4回折レンズ構造を構成する位相段 差の間隔が非常に小さくなる場合があるが、その場合はそれら 2つの位相段差を 合成して 1つの位相段差とすることにより位相段差の総数を減らすことが可能 となる。すなわち、 2つの隣接する位相段差の段差量を足し合わせた段差量の段 差を、それらの位相段差があったどちらかの位置あるいはその間のどこかに配置 すればよい。 このように、位相段差を合成した場合、それぞれの位相段差が本来 の設計値からわずかにずれるため、若干の性能劣化が発生するが、合成する 2つ の位相段差が近接している場合、そのずれは小さいため、性能劣化は問題となら ない。このように 2つの位相段差を合成することにより 2つ必要であった位相段 差の数を一つに減らすことができるため、金型製造が容易となり好ましく、成型 時の離型性が向上するため、金型寿命が長寿命化し、 さらに成形不良率も低減さ れるので好ましい。
第 3の方法として、発明者は上記の 2つ方法とは違つた設計手法により B DZ DVD/CDの全てが平行光入射となるような設計を見いだした。以下にその詳 細を示す。
球面収差は、 レンズの開口数の 4乗に比例する。従って、 図 4dに示すように DVD/CDの共用設計領域である領域 1を C Dの有効径に対応する第 3回折 有効径より小さくし、開口数を減らすことによって、補正しきれず残留する球面 収差量を減らすことができる。たとえば、 DVD/CD共用設計領域を 80%程 度にした場合、残留する球面収差量は 41 %程度まで低減される。しかしながら、 単に共用設計領域を減らすと、 CDに対する開口数が小さくなつてしまうため、 CDの記録及び再生に支障を来す。そこで、発明者は領域 1を通過した CD用レ 一ザ光の集光位置に注目した。図 5は、 CDに対する縦球面収差を表す図であり、 縦軸は光軸を基準とした光軸と垂直な方向の距離、すなわち光軸からの高さを表 しており、横軸は光軸方向の位置を表している。 ここで示す例では、領域 1の回 折レンズ構造は C Dに対して収差が補正されるように設計されている。図 5に示 すように、補正前の縦球面収差が領域 2内で且つ C D有効径内側のどこか 1点で ゼロとなるような位置に、 CD用レーザ光の所望とする回折光の集光位置を設定 し、 CD有効径より狭くなるように領域 1を制限することにより、 DVDにおい て領域 1に残留する球面収差を低減することを提案する。すなわち、図 4 dに示 すように、領域 2内で且つ C Dの有効径に相当する第 3回折有効径の中にある領 域 4を考慮することによって、 C D有効径ょり狭くなるように領域 1を制限する。 また、 図 6は C Dに対する波面収差を表す図であり、 横軸は光軸からの高さを、 縦軸は収差量を表している。 ここで示すように、縦球面収差がゼロとなる光軸か らの高さ hにおいて波面の傾斜はゼロとなり、その周辺においても波面の傾斜は 比較的緩いため、この領域だけ取り出して考えると収差はそれほど大きくならな い。つまり、 h近傍の領域 4の波面は、領域 1を通る波面と位相を合わせること によって、球面収差を補正していないにもかかわらず C Dの再生に利用すること ができる。以上のように、第 1回折レンズ構造を設計する際に、 C Dにおける第 4領域のどこかに縦球面収差がゼロとなるような像面位置を設定することによ り、領域 1の狭小化が可能となる。 このように設計された回折光学素子を用いた 場合、 D VDでは領域 1にて若干の収差が残留することになるが、その収差量は わずかであり、 実質的に問題とはならない。 また、 この設計方法では、 領域 1に 複数の回折レンズ構造を構成する位相段差が混在しないので、位相段差数の増加 を伴わない設計が可能となるため好ましい。 さらに、 前述の通り、特に領域 1で は B D用レーザ光との回折効率のバランスを考慮する必要があるが、領域 1の面 積が狭小化されているため、 C D用レーザ光の回折効率を考慮して B Dの回折効 率を落としたとしても、その影響は狭小化しない場合に比べて小さく抑えること ができるので好ましい。
以上、 B DZD VDZC Dの回折効率が最大となる回折次数と球面収差補正お よび開口制限効果とを勘案'すると、各領域で利用する B D用レーザ光の回折次数 の組み合わせを表 1の示すように、 まとめることができる。 表 1
Figure imgf000047_0001
(対物レンズモジュールの動作)
図 7は、 対物レンズモジュールの動作を示す。
図 7 (A) に示すように、 A B Dの第 1レーザ光が略平行光として回折光学素 子 1 6 bに入射するとき、全ての領域を通る光はそのまま略平行光として対物レ ンズ 1 6 aへ導かれる。対物レンズ 1 6 aにより集光された光は、 B D用保護層 を通過し、 信号記録面上に集光される。
また、 図 7 (B ) に示すように、 A DVDの第 2レーザ光が略平行光として入射 するとき、回折光学素子における D VDの有効径に対応する第 2回折有効径内の 領域 1、領域 2を通過する光は、対物レンズ 1 6 aにより集光され、 D VD用保 護層を通過し、 信号記録面上に集光される。一方、 回折光学素子における第 2回 折有効径外を通過した光は、レンズ 1 6 aによって集光され D VD保護層を通過 するが、 球面収差が補正されず、 フレアとなるので再生に寄与しない。
さらに、 図 7 ( C) に示すように、 A C Dの第 3レーザ光が略平行光として入 射するとき、 C Dの有効径に相当する第 3回折有効径内の領域 1及び領域 4を通 過する光は、対物レンズ 1 6 aにより集光され、 C D用透過保護層を通過し、 信 号記録面上に集光される。一方、第 3回折有効径外を通過した光は、対物レンズ 1 6 aにより集光され、 C D用透過保護層を通過するが、球面収差が補正されず、 フレアとなるので再生に寄与しない。
(色収差補正)
回折光学素子に色収差補正機能を持たせた場合は、球面収差補正用回折レンズ 構造を追加したことにより不連続となっていた色収差を補正し、レーザの波長変 動時にも安定した動作を実現できる。
B Dでは、対応する対物レンズの開口数が 0 . 8 5と非常に大きく、 且つ使用 する光源の波長が短いので、 焦点深度が浅くなる。従って、 色収差を補正するこ とが望ましい。通常、 色収差を補正するには、屈折率の異なるガラスを使ったレ ンズを組み合わせて、それらの色収差を相殺させて補正するか、回折光学素子を 別途用いてそれにより発生する色収差と相殺させて補正する。
本実施形態の場合、 D V Dや C Dの球面収差補正と開口制限を同時に行うため、 部分的に異なる特性の回折レンズ構造からなる回折光学素子を採用しているた め、色収差が領域ごとに異なる特性となる。そのような場合、波長分散の異なる 材料を用いた球面レンズ 2枚を組み合わせた一般的な組レンズでは収差補正が 煩雑となる。発明者は、そのような不連続な色収差を補正するため、 回折レンズ 構造による補正、すなわち、領域 1及び領域 2における色収差が不連続とならな いように前記球面収差補正用回折レンズ構造を設計し、それに対してさらに領域 3の色収差も不連続とならないように領域 3に色収差補正用の回折レンズ構造 を形成することとする。
本実施形態においては、すでに説明した B D、 D VD , C D互換用の回折レン ズ構造にて球面収差が補正されているので、 B D、 D VD, C D全てに対して色 収差補正以外の余計な収差を発生してはならない。本実施形態における第 3回折 レンズ構造は、色収差補正用回折レンズ構造として、全てに対して色収差補正以 外の余計な収差を発生しない、 例えば B D: 1 0次光、 D V D: 6次光、 C D: 5次光の回折次数の組み合わせで利用できる。 この場合、第 1レーザ光が第 3回 T JP2005/017092
47 折レンズ構造を通過した場合に発生する回折光のうち回折効率が最大となる回 折次数が 1 0の倍数となるように設計されている。
領域 1及び領域 2に形成された第 1及び第 2回折レンズ構造 (球面収差補正 用) による不連続な色収差を補正すると共に、対物レンズ自体が有する色収差を 補正する場合は、第 3回折レンズ構造(色収差補正用手段)を B D有効径全面(D VD , C D有効径を含む) に形成する必要がある。 この場合、 球面収差補正用回 折レンズ構造と色収差補正用回折レンズ構造に光軸ずれが発生することは望ま しくないので、球面収差補正用回折レンズ構造と色収差補正用回折レンズ構造は 1つの回折光学素子に構成することが望ましい。図 8に示すように、色収差補正 用の第 3回折レンズ構造を、球面収差補正用の第 1及び第 2回折レンズ構造とは 異なる面に形成して一つの回折光学素子に構成することにより、従来のように色 収差補正用光学素子を別途使用した場合に比べて部品点数が減少するため、ピッ クアツプの小型化やコストダウンに多大な効果をもたらす。
その他に、第 1回折レンズ構造は、第 2回折レンズ構造及び第 3回折レンズ構 造とは異なる面に形成されていてもよい。 また、第 2回折レンズ構造は、第 1回 折レンズ構造及び第 3回折レンズ構造とは異なる面に形成されていてもよい。第 1回折レンズ構造、第 2回折レンズ構造及び第 3回折レンズ構造がいずれかの面 に形成されており、各々の面に形成されている位相段差の方向(深さ方向)が全 て同一であることが好ましい。
これらの回折レンズ構造を一つの回折光学素子に構成する場合、図 9に示すよ うに、回折レンズ構造を両面分けて、それぞれの面において回折レンズ構造の位 相段差の方向が揃うように構成することにより、回折レンズ構造の断面形状は単 純な階段形状となるため、 金型加工が容易になるとともに、 成形不良を低減し、 金型が長寿命化するため、回折光学素子の高品位維持及びコストダウンに多大な 効果をもたらす。
なお、第 3回折レンズ構造を構成する位相段差と第 1及び第 2回折レンズ構造 のいずれを構成する位相段差とでは、段差で発生する光路長差が異なることが好 ましい。 また、第 3回折レンズ構造を構成する位相段差のうち、領域間の位相を 合わせるために、第 1、第 2及び第 4回折有効径近傍にある位相段差のいずれか、 あるいはそれら全てにおいて他の位相段差とは異なる光路長差が発生するよう に設定した方が好ましい場合がある。
さらに、複数の回折レンズ構造を有する回折光学素子において、図 1 0に示す ように、それらの回折レンズ構造をすベて片面に集約することにより、製造の難 しい微細段差を有する金型を 2面製造する必要が無くなるため、回折光学素子の コストダウンに多大な効果をもたらす。すなわち、回折光学素子の入射又は射出 面における第 3回折有効径内の領域に、第 1回折レンズ構造を構成する位相段差 全てと、第 2回折レンズ構造を構成する位相段差の一部と第 3回折レンズ構造を 構成する位相段差の一部が混在するようにしてもよい。さらに、回折光学素子の 入射又は射出面における第 4回折有効径から第 2回折有効径の間の領域に、第 2 回折レンズ構造の一部と第 3回折レンズ構造の位相段差の一部が混在するよう にしてもよい。
■回折レンズ構造を片面に'集約すベぐ複数の回折レンズ構造を同一面同一領域 に形成する際に、隣接する 2つの位相段差が近接している場合、 これら 2つの位 相段差を一つの位相段差として合成し、段差数を減らすことによって、金型の製 17092
49 造が容易になるとともに、 離型性が向上することにより成型不良を削減できる。 これも回折光学素子の高品位維持及びコストダウンに多大な効果をもたらす。ま た、段差のエッジの丸みや段差壁面のダレなどの製造誤差による光量ロスは、段 差の数に応じて増加するため、段差数を減らすことは光量ロスを低減するうえで さらに好ましい。
合成する位相段差に、図 1 1に示すように、位相段差の方向が異なるものを組 み合わせることによって、深い段差の数を減らすことができる。 この場合、特に 段差が垂直でなくなる壁面のダレような製造誤差に対する光量ロスが低減され るため好ましい。 さらに、 図のように微細な突起形状や窪みが無く (破線) なる ため、金型加工が容易となり、成型時の離型性が向上することにより成形不良を 削減でき、金型の微細な窪みに材料が残留することによる金型の短寿命化を防ぐ ことができるので、回折光学素子の高品位維持及びコストダウンに多大な効果を もたらす。 この場合、回折光学素子の第 4回折有効径内に第 1回折レンズ構造を 構成する位相段差の段差量と第 3回折レンズ構造を構成する位相段差の段差量 を足し合わせた深さの位相段差が少なくとも一つ以上存在する。また、回折光学 素子の第 4回折有効径から第 2回折有効径の間の領域に第 2回折レンズ構造を 構成する位相段差の段差量と第 3回折レンズ構造を構成する位相段差の段差量 を足し合わせた深さの位相段差が少なくとも一つ以上存在する。
合成する複数の回折レンズ構造で利用する回折次数を適切に選択することに より、図 1 2に示すように:片面側ですベての位相段差を同一方向に揃えること ができる。 これにより、 金型形状が単純になるため加工が容易となり、成型時の 離型性が向上することにより成形不良を削減でき、金型の微細な窪みに材料が残 留することによる金型の短寿命化を防ぐことができる。よって、回折光学素子の 高品位維持及びコストダウンに多大な効果をもたらす。
また、上記の説明では回折レンズ構造を有する回折光学素子と対物レンズとを 別体の光学素子として説明しているが、図 1 3のように、対物レンズに直接回折 レンズ構造を形成することも可能であり、 この場合、 さらに部品点数が少なくて 済み好ましい。
以上、表 2の示すように、各領域で利用する回折次数の組み合わせを具体的に まとめることができる。
表 2は、 B Dで利用する回折レンズ構造の回折次数に対する D V D及び C Dの 回折次数、一つの位相段差による収差補正量(利用する回折次数から段差で発生 する光路長差を差し引いた値)及び回折効率を示す。 なお、表 2に示す回折効率 は、 B D用光源に対して回折効率が 1となるように回折レンズ構造をブレーズ化 した場合の一例であり、実際の設計においては、位相段差量を変えることによつ て、 B D、 D VDおよび C Dにおける回折効率の均衡を考慮した設計が可能であ る。従って、 実際の回折レンズ構造における B D、 D V Dおよび C Dの回折効率 の組み合わせ A〜Dは表 2の数値に限定されるものではない。
表 2
A B A B D B A B A C
回折次数 1 2 3 4 5 6 7 8 9 10
BD
回折効率 1 1 1 1 1 1 1 1 1 1 回折次数 1 1 2 2 3 4 4 5 5 6
DVD 収差補正量 [ス] +0.4 -0.2 +0.2 -0.4 0 +0.4 - 0.2 +0.2 -0.4 0 回折効率 0.573 0.875 0.875 0.573 1 0.4 0.875 0.875 0.573 1 回折次数 1 1 2 2 2 3 3 3 4 4 5
CD 収差補正量 [ス] +0.5 0 +0.5 0 -0.5 +0.5 0 -0.5 0 -0.5 0 回折効率 0.405 1 0.405 1 0.405 0.405 1 0.405 1 0.405 1 P T/JP2005/017092
51
*A : CDと DVDの両方に対して球面収差を補正できる (領域 1で利用)。
B: DVDに対してのみに球面収差を補正できる (領域 2で利用)。
C:色収差補正用だけを補正できる (領域 3で利用)。
D: CDに対してのみに球面収差を補正できる。 一般に、 屈折率 Nの材料に形成されている段差で発生する光路長差△は Δ = (Ν— 1) dとなる。 ただし、 dは段差すなわち隣接段差面間の距離である。従 つて、 BD、 DVD及び CD用レーザ光の波長 ABD、 ADVD及び ACDに対する 屈折率がそれぞれ NBD、 NDVD及び NCDである材料に形成されている回折レン ズ構造の段差 dにて発生する光路長差 Δ BD、 Δ DVD及び△ CDはそれぞれ、
(NBD - 1) d (1)
△DVD— (NDVD一 1) d (2)
CD= (NCD- 1) d (3)
となる。
(1) 式、 (2) 式および (3) 式において、 dは回折レンズ構造を構成する 位相段差の物理的な寸法で共通な値であるから、 (1) 式および (2) 式から ά = ΑΒΌ/ (NBD— 1) =Δονο/ (NDVD- 1)
なる関係が導き出さ tl、 この式をさらに変形すると光路長差 ADVD
DVD= (NDVD- 1) / (NBD- 1) ΧΔΒϋ (4)
となる。
ここで、回折レンズ構造を構成する位相段差で発生する光路長差が B D用レー ザ光に対して F B D X λ B D ( F B Dは整数で B D用レーザ光の回折光の回折次数) である場合、 すなわち、
Figure imgf000054_0001
ABD (5)
である場合、 BD用レーザ光に対しては FBD次光の回折効率が理論上 100% となる。このとき、 DVD用光源に対して位相段差が発生する光路長差 ADVDは、 (4) 式および (5) 式から、
DVD= (NDVD— 1) / (NBD— 1) XFBDXABD
が得られ、 これを変形すると、
△DVD= { λ BD/ (NBD— 1) ん (NDVD一 1) /λ DVD ^ F BD^ , DVD
(6) となる。よって、 このような回折レンズ構造にて発生する DVD用レーザ光の回 折光のうち、 最も回折効率の高い回折次数 FDVDは、
FDVD=ROUND [λΒΟ/ (NBD- 1) X (NDVD— 1) /ADVDXFBD]
(7) である。 ただし、 ROUND [] は [] 内の値を小数点以下で四捨五入して整数 を得る、 いわゆる丸めるための関数である。 従って、 回折レンズ構造設計時に、 B D用レーザ光の F BD次光を利用する場合は、 上記式を満たす D VD用レーザ 光の FDVD次光を利用するのが好ましい。 従って、 DVDの記録再生には FDVD 次光を利用するのが妥当である。
一方、 CD用光源に対しては、 上記 (1) 式および (3) 式から
d = ABD/ (NBD- 1) =AGD/ (NCD- 1)
なる関係が導き出され、 光路長差 ACD
CD= (NCD— 1) / (NBD- 1) ΧΔΒΟ P T/JP2005/017092
53
(8) となる。 これに、 上記 (5) 式を代入すると、 位相段差が CD用光源に対して発 生する光路長差は、
CD= (NCD- 1) / (NBD- 1) X FBDX ABD
つまり、
CD= UBD, (Nbd- 1) X (NCD— 1) /ACDX FBD} X ACD
(9) となる。 BD用光源の波長および CD用光源の波長はそれぞれ 408 nm、 78 0 nmであり、 光学材料の屈折率は波長が短くなるほど一般に大きくなるので、 一般的に用いられる光学材料においては、 以下のような関係が成り立つ。
Figure imgf000055_0001
(10) すなわち、 位相段差で発生する光路長差の比は BD用光源と CD用光源でほぼ 2 : 1となる。 従って、 BDの回折次数 FBDが偶数の場合、 CD用光源に対し て発生する光路長差もほぼ整数となるので、 CD用光源に対して収差補正効果を 持たない回折レンズ構造が設計できる。 この場合、 CDの回折次数 FCDは以下 の式、
FCD = ROUND [ABD/ (NBD— 1) X (NCD— 1) /ACDXFBD]
= FBD/2
(1 1) によって決定される。
BDの回折次数 FBDが奇数の場合、 CD用光源に対して発生する光路長差は 整数では無くなるので、 C Dに対しても収差補正効果を有する回折レンズ構造が 設計できる。 D VDや C Dは、どちらも B Dに比べてレーザ光透過層が厚いため、 BD用対物レンズに対して補正すべき球面収差の符号は同符号となる。 従って、 回折レンズ構造に D VDと C Dの両方に対して収差補正効果を持たせようとし た場合、 位相段差が有する球面収差補正効果を同符号にする必要がある。
つまり、 上記条件で求めた D V Dで利用する回折次数 F D VD
FDVD> BD/ (NBD - 1) X (NDVD— 1) /λ請 XFBD
(12) である場合は、
FDVD = ROUND [λΰΏ/ (NBD— 1) X (NDVD— 1) /ADVDXFBD] =CE I L [λΒοκ (NBD— 1〉 X (NDVD— 1) /ADVDXFBD]
(13) であり、 D V D用レーザ光に対しては位相段差による収差補正量がブラスとなる ので、 CD用レーザ光に対しても位相段差による収差補正量がプラスとなるよう
FCD=CE I L [λΒ0/ (NBD— 1) X (NCD— 1) /ACDXFBD]
(14) で求められる FCD次光を利用する。 ただし、 CE I L [] は、 口 内の値の小数 点以下を切り上げて整数を得る関数である。
また、 FDVDく λΒ] ( BD- 1) X (NDVD— 1) /ADVDXFBD
(15) である場合は、 FDVD = ROUND [λΒノ (NBD-1) X (N 1) /ADVDXFBD] = FLOOR [え BD/ (NBD— 1) X (NDVD- 1) /ADVDXFBD]
(16) であり、 D V D用レーザ光に対する位相段差による収差補正量がマイナスとなる ので、 CD用レーザ光に対しても位相段差による収差補正量がマイナスとなるよ うに、
FCD=FL〇OR [λΒΟ/ (NBD— 1) X (NCD- 1) / CDXFBD]
(17) で求められる F CD次光を利用する。 ただし、 FLOOR [] は、 [] 内の値の小 数点以下を切り捨てて整数を得る関数である。 この場合、
FCD = ROUND [λΒノ (NBD - 1) X (NCD— 1) /ACDXFBD]
(18) の関係が成り立たない場合もある。 つまり、 FBDが奇数の場合は CD用レーザ 光の F eD次光は、 D V Dの場合と同符号の球面収差補正効果がある回折光の中 では最も回折効率が高くなるが、発生するすべての回折光の中で回折効率が最も 高くなるとは限らない。
このようにして、表 2に示す BD DVD及び CD用の回折次数の組み合わせ を得ることができる。 80の1 1次以上の回折次数に関しては、 この表 2の組み 合わせが繰り返されることになる。
なお、表 2は、最適な回折次数の組み合わせや一つの位相段差による収差補正 量を直感的に理解できるよう、 BD用レーザ光に対して理論上 100%の回折効 率を有するといった特定の設計条件に関して記述したが、実際の回折レンズ構造 における収差補正量は、回折レンズ構造を構成する複数の位相段差の分布と巨視 的非球面形状のみで決定されるので、 実際は B D用レーザ光の回折効率が 1 0 0 %とならないように位相段差量を設計した場合でも、 B Dに対して収差補正効 果を持たないように設計されている回折レンズ構造であれば、それを構成する位 相段差は D VD用レーザ光および C D用レーザ光に対して表 2に示す収差補正 量を有する。すなわち、位相段差量のみを変化させた場合に表 2において変化す る値は B DZD VDZ C Dの回折効率のみである。また、表 2に記載されている 収差補正量や回折効率は、あくまで利用する回折次数を決定する上での参考とな る例としてあげた概略値である。実際の回折レンズ構造を構成する位相段差の分 布、すなわちそれぞれの位相段差の光軸から高さは、位相関数法などの設計手法 を利用して設計されている。また、使用される材料の屈折率と波長の関係により、 B Dノ D VDZC Dの回折効率も微妙に異なるので、正確な回折効率を見積もる ためには実際に使用する材料の屈折率特性を考慮する必要がある。
(実施例 1 )
通常、光ディスクに用いられている回折レンズ構造は、同心円上の複数の微細 な位相段差によって構成されており、その位相段差による光の回折を利用して光 の波面を制御している。このような回折レンズ構造を設計する手法の一つとして、 位相関数法が用いられる。位相関数法では、回折レンズ構造を形成する面に無限 に薄い位相物体を想定し、 光軸からの距離(高さ) hを通る光線に対して、 下記 式に示す位相関数 Ψ ( ) より与えられる位相を付加して収差の計算を行う。 た だし、 d o rは回折次数、 λ。は設計波長である。
Figure imgf000059_0001
ここで、 位相関数 (h) を下記式のように置き、 Δ (h) を回折レンズ関数 とする。
Figure imgf000059_0002
Figure imgf000059_0003
回折レンズ構造を構成する複数の位相段差の光軸からの高さは、回折レンズ関 数が整数となる hを求めることにより得られる。
第 1実施例は、 図 15のように、第 1光情報記録媒体である BD、第 2光情報 記録媒体である D V D、第 3光情報記録媒体である C Dの互換記録再生を可能に する回折光学素子と BD用両面非球面レンズと組み合わせて構成される。レンズ 系の構成及び BD、 DVD, CDに対する設計条件は表 3のとおりである。 表 3
Figure imgf000059_0004
実施例 1の回折光学素子は、図 16に示すように片面に回折レンズ構造が形成 されており、 もう片面は平面となっている。実施例 1の回折レンズ構造は、 異な る特性を有する複数の回折レンズ構造が同心円状に構成されており、内周部より 回折レンズ構造 1 (領域 1)、 回折レンズ構造 2 (領域 2) 及び平面である外周 面 (領域 3) により構成されている。
回折光学素子で発生する収差は、回折レンズ構造が形成されている巨視的非球 面形状により発生する収差と、そこに形成された位相段差により発生する収差を 足し合わせたものである。本実施例では、回折光学素子と BD用対物レンズを組 み合わせているので、 BD用レーザ光に対しては回折光学素子で収差が発生しな いように、巨視的非球面形状による収差と位相段差による収差が相殺されるよう な設計となっている。
回折レンズ構造 1 (領域 1) 及び回折レンズ構造 2 (領域 2) を構成する位相 段差のうち、 それぞれの最外周の位相段差の径を回折レンズ構造の有効径とし、 図 17に示すようにそれぞれ Φ (1) 及び Φ (2) (第 4回折有効径及び第 2回 折有効径) とする。 回折レンズ構造 1の有効径 Φ (1) (第 4回折有効径) は、 回折光学素子における CD有効径 φ (CD) (第 3回折有効径) より小さく、 回 折レンズ構造 2の有効径 φ (2) (第 2回折有効径) は、 回折光学素子における DVD有効径 Φ (DVD) と同じ値である。 BD有効径 Φ (BD) (第 1回折有 効径) は最大である。 具体的数値 (mm) を表 4に示す。 なお、 φ (DOE 1 ) は φ (1) を、 Φ (DOE 2) は φ (2) を示す。
表 4
0(BD) 0(DVD) 0(CD) I 0(DOE1) 0(DOE2)
4.000 3.248 2.540 1 2.014 3.248 回折レンズ構造 1と回折レンズ構造 2では B Dにおいて利用する回折次数が異 なる。回折レンズ構造 1は、 DVDと CDの両方に対して球面収差補正効果を持 ち、 回折レンズ構造 2は、 DVDに対してのみ球面収差補正効果を持ち、 CDに 対しては球面収差補正効果を持たない。
以下に、 各回折レンズ構造に関して詳しく説明する。
(回折レンズ構造 1 (領域 1) について)
回折レンズ構造 1 (領域 1) は、 DVDと CDの両方に対して球面収差補正を 行う。実施例 1で用いている対物レンズで DVD及び CDを再生しょうとした際 に発生する球面収差の比率は、径が同一である場合は、図 18の DVD及び CD に対する球面収差のグラフに示すとおり、 CDの収差を 1とした場合、 DVDの 収差は 0. 63である。 つまり、 回折レンズ構造で補正される球面収差量の比率 が DVDと CDで 0. 63 : 1 = 3 : 5であれば、 両者において球面収差がゼロ となるような回折レンズ構造を実現できる。 しかし、実際にはそのような球面収 差補正量の比率を有する回折レンズ構造は実現できない。 このような場合、例え ば CDの倍率を変更し、有限系とすることにより球面収差を補正できる。 しかし ながら、 CD有限系にすることにより、光ディスクからの信号を含んだ光を受光 する受光素子を BD、 DVD, CDで共用することが困難となり、 ピックアップ の構成が複雑化するため、 好ましくない、
表 5は、 BDで利用する回折レンズ構造の回折次数に対する DVD及び CDの 回折次数、 位相段差による収差補正量及び回折効率を示す。 表 5
Figure imgf000062_0001
なお、表 5に示す回折効率は、 BD用光源に対して回折効率が 1となるように 回折レンズ構造をブレーズ化した場合の一例である。実際の設計では、後述の通 り位相段差量を変えることにより BD、 DVDおよび CD間での回折効率の均衡 を考慮した設計が可能であるので、回折レンズ構造の回折効率は表 5の数値に限 定されるものではない。
DVDの回折次数は、 BDの回折効率が 100%となるようにブレーズ化した 場合に、 DVD用レ一ザ光に対する回折効率が最も高くなる次数を選択している。
CDの回折次数は、 DVDの場合と同符号の球面収差補正効果があり、その中 で最も回折効率が高い回折次数を選択している。 D V Dの収差補正量と C Dの収 差補正量の符号を合わせた理由は、 BD対物レンズを用いた場合に補正すべき球 面収差の符号が同じだからである。
収差補正量は、回折レンズ構造を構成する位相段差で区切られた隣接する輪帯 状の面の間で発生する位相差を光路長差に置き換えたものである。 BDの 11次 以上の回折次数に関しては、 この表 5の組み合わせが繰り返されることになる。 この表 5からもわかるとおり、 DVDと CDで収差補正効果が 3: 5となる組 み合わせは存在しないので、それに近い球面収差補正量の組み合わせ組み合わせ を有し、且つ DVDの回折効率の高さを考慮して、表 5の構造 1に示すコラムの 組み合わせ B Dの 3次回折光、 DVDと CDで 2次回折光を利用することとした。 以下に、 回折レンズ構造 1 (領域 1) による収差補正の様子を説明する。
回折レンズ構造 1は、 B Dで 3次回折光、 DVDと CDで 2次回折光を利用し、 B Dの波面収差にはほとんど影響を与えることなく C Dに対して球面収差がほ ぼゼロとなるように設計されている。
図 19に示すように B D用レーザ光に対して 3次回折光の回折効率を高くす るためには、位相段差によって区切られた隣接する輪帯状の面を通過する波面に 3 λの光路長差を与えるように位相段差量を設定する。
このように設定された回折レンズ構造において DVD用レーザ光を用いた場 合は、図 19に示すように光の波長が長くなるとともに材料の屈折率が低くなる ので、 隣接する輪帯状の面の間で発生する光路長差が約 1. 8λとなる。光の波 動的性質上、光は隣接する面の間での光路長差が波長の整数倍となる方向にしか 進行しないので、 +0. 2 λの光路長差がさらに付加された 2次回折光と一 0. 8 λの光路長差がさらに付加された 1次回折光が発生することとなる。本実施例 では、 DVDで 2次回折光を用いているが、 この場合、 一つの位相段差で +0. 2 λの光路長差に相当する収差が発生することになる。
CD用レーザ光を用いた場合は、図 19に示すようにさらに光の波長が長くな るとともに材料の屈折率が低くなるので、隣接する輪帯状の面の間で発生する光 路長差は 1. 5λとなる。 この場合、 +0. 5 λの光路長差がさらに付加された + 2次回折光と一 0 . 5 λの光路長差がさらに付加された 1次回折光が発生する こととなる。本実施例では、 C Dで 2次回折光を用いているので、 一つの位相段 差で + 0 . 5 λの光路長差に相当する収差が発生することになる。
このように、回折レンズ構造の隣接する輪帯間で発生する光路長差が波長によ つて異り、それに伴って付加される光路長差の違いを利用して球面収差を補正す ることが可能となる。
本実施例における回折レンズ構造 1 (領域 1 ) は、 B Dと C Dの球面収差がゼ 口となるように回折レンズ構造を設計したので、 D VDに関しては若干の収差が 残留することになる。 ところで、透過保護層 (基板) の厚さの違いにより発生す る球面収差量は、開口数の 4乗に比例して大きくなる。 このようなことを考える と、補正すべき有効径を小さくし、開口数を小さくすることができれば D VDで 残留する球面収差を小さくすることができる。 しかしながら、単に有効径を小さ くした場合、 C Dに対する開口数が不足するため、 支障を来すので、 通常は、 こ のような回折レンズ構造 1は、補正すべき有効径全面に施す必要がある。 ところ が、本実施例では回折レンズ構造 1を設計する際の C D用レーザ光の像面位置を 以下に示す条件にて決定することにより、 C D有効径全面に回折レンズ構造 1を 施す必要のない構成を実現した。
図 2 0は、本実施例の回折光学素子と B D用対物レンズを組み合わせたときの C Dに対する縦球面収差図である。比較対象のため、回折レンズ構造による補正 を行う前の縦球面収差図を薄い細い線で記述した。図からもわかるとおり、入射 光の光軸からの高さ Φ ( 1 ) / 2まで領域を通る光線は回折レンズ構造 1 (領域 1 ) により球面収差が補正されているため、 像面に集光されている。 また、光軸 からの高さ φ (1) /2から φ (CD) / 2を通る光線は、 収差補正がなされな いため球面収差がそのまま残留しているが、回折レンズ構造 1を設計する際の像 面位置がこの領域の 1点 hを通る光線が集光する位置に設定されているため、こ の領域を通る光線に関しては、 若干の収差を有するものの、 像面に集光する。光 軸からの高さ Φ (CD) /2より高い位置を通る光線は、 像面位置に集光せず、 フレアとして拡散される。
図 21は、 図 20のような縦球面収差特性を示すレンズの波面収差図である。 光軸からの高さ Ψ (1) /2までの領域の波面は、 回折レンズ構造 1 (領域 1) により球面収差が補正されているため、フラッ卜で良好な波面形状である。一方、 光軸からの高さ Ψ (1) 2から φ (CD)ノ2を通る波面は、 回折レンズ構造 2 (領域 2) を通過するが、 この回折レンズ構造 2は CD用レ一ザ光に対する球 面収差補正効果を持たないため、 球面収差がそのまま残留する。 しかしながら、 縦球面収差がゼロとなる位置において、波面は極大値をとり、その周辺の傾斜は 緩いため集光に寄与する。 一方 CD有効径に相当する光軸からの高さ Φ (CD) /2より外側を通る波面は、 傾斜がきついため集光に寄与しない。
以上のような構成で回折レンズ構造 1 (領域 1)を設計することにより、 回折 レンズ構造 1の有効径を最小限にとどめられ、 B Dと C Dに対して最適ィ匕された 回折レンズ構造 1を用いた場合に DVDで残留する球面収差を低減することが 可能となる。実際に回折レンズ構造 1の有効径 Φ (1)は、 CD有効径 φ (CD) の 79 %程度なので、残留する球面収差量は有効径全面に回折レンズ構造 1を施 した場合と比べて 39 %程度まで低減できることになる。
図 22及び図 23は実施例 1の回折光学素子と BD用対物レンズを組み合わ 図 2 4は、回折レンズ構造 1の回折レンズ関数のグラフである。回折レンズ構 造 1の有効径内側において回折レンズ関数は図 2 4から明らかなように、単調増 加となっている。回折レンズ構造 1を構成する複数の位相段差の光軸からの高さ は、図 2 4と図 2 5に示すように、かかる回折レンズ関数が整数となる光軸から の高さ h l〜h 8として求めることができる。なお、光軸からの高さ h 8は回折 レンズ構造 1の最外周の位相段差になるので、光軸からの高さ h 8が有効径に相 当する光軸からの高さ Φ ( 1 ) Z 2になる。
次に、 回折レンズ構造の微視的形状の設計に関して説明する。
回折レンズ構造 1 (領域 1 ) の回折レンズ関数は単調増加となっているので、 回折レンズ構造の内周部から外周部にいくに従って巨視的非球面形状より厚く なる方向にブレーズ化していき、回折レンズ関数が整数となる光軸からの高さ h l〜h 8において、 レンズが薄くなる方向に段差を形成する。
B D用レーザ光に対しては、回折レンズ構造の巨視的非球面形状による収差と 位相段差による収差が打ち消し合うように設計されている。よって、 h 1〜! 1 8 に形成する段差を図 2 6に示すように B D用レーザ光の波長の 3波長分の光路 長差が発生するように設定する。 位相段差量 (深さ) dは d = 3 A BDノ (NB D 一 1 ) である (λ Β0は B D用レーザ光の波長、 NBDは段差数を示す)。 この場合 は、 位相段差によって分割された輪帯状の面はすべて光軸に垂直な平面となる。 また、 このようにした場合、 B D用レーザ光に対する 3次回折光の回折効率は理 論上 1 0 0 %となる。
しかしながら、このようにした場合は C D用レ一ザ光に対する 2次回折光の回 折効率は 4 0 %程度しか得られず、さらに迷光となる 1次回折光が 4 0 %程度発 生するため好ましくない。
ところで、回折レンズ構造の収差補正特性は、回折レンズ構造の巨視的非球面 形状と位相段差が形成される光軸からの高さのみで決定される。そして、 これら を変化させずに位相段差量のみを変化させることによって、レンズとしての特性 を変えずに回折効率を調整することが可能である。更なる実施例においては、 C Dの回折効率を向上させつつ迷光を低減するため、位相段差 dの値を図 2 6の式 で与えられる深さより深くしている。図 2 7は、更なる実施例の構造の断面図を 示す。 これにより C D用レ一ザ光に対する 2次回折光の回折効率が向上するが、 B D用レーザ光の 3次回折光の回折効率は低下するので、実施例 1では両者の回 折効率が均衡するよう考慮して段差量を決定した。このように段差量を変えた場 合は、位相段差で分割された輪帯状の面は光軸に垂直な平面ではなく、巨視的非 球面形状と位相段差の半径を変えずに段差量だけが変わるように傾斜させた円 錐面もしくは非球面となる。本実施例においては、 これらの輪帯状の面を非球面 として表している。
回折レンズ構造 1の有効径 Φ ( 1 ) は、 D VDにおいて残留する球面収差を低 減するために C D有効径 φ (C D)よりさらに小さくなるよう工夫されているこ とはすでに述べたとおりであるが、上記のように回折レンズ構造 1で B Dにおけ る回折効率が低減す'る場合に、回折レンズ構造 1の占める割合が小さくなってい ることにより、 全体としての効率低減を小さく抑えられる。つまり、 回折レンズ 構造 1の有効径 Φ ( 1 ) を小さくすることにより、 回折効率の均衡を図ったこと による B Dの光利用効率の低下を抑えられるといった副次的効果を得ることが でさた。 (回折レンズ構造 2 (領域 2) について)
回折レンズ構造 2 (領域 2)では、下記の表 6の構造 2に示すコラムの組み合 わせ、 BDで 2次回折光、 DVDと CDで 1次回折光を利用することにより、 B Dと CDの波面収差にはほとんど影響を与えることなく DVDに対して球面収 差がほぼゼ口となるような設計を実現している。
表 6
Figure imgf000068_0001
回折レンズ構造 2 (領域 2) における収差補正の様子を以下に説明する。 図 28に示すように B D用レーザ光に対して 2次回折光の回折効率を高くす るためには、位相段差によって区切られた、隣接する輪帯状の面を通過する波面 に 2 λの光路長差を与えるように位相段差量を設定する。
このように設定された回折レンズ構造において DVD用レーザ光を用いた場 合は、光の波長が長くなるとともに材料の屈折率が低くなることので、図 28に 示すように隣接する輪帯状の面の間で発生する光路長差は約 1. 2 λとなる。光 の波動的性質上、光は隣接する面の間での光路長差が波長の整数倍となる方向に しか進行しないので、 +0. 8 λの光路長差がさらに付加された 2次回折光と— 0. 2 λの光路長差がさらに付加された 1次回折光が発生することとなる。本実 施例では、 DVDで 1次回折光を用いているが、 この場合、 一つの位相段差で— 0. 2 λの光路長差に相当する収差が発生することとなる。
図 28に示すように C D用レーザ光を用いた場合は、さらに光の波長が長くな るとともに材料の屈折率が低くなるので、隣接する輪帯状の面の間で発生する光 路長差は約 1 λとなる。 この場合、隣接する輪帯間で発生する光路長差が波長の 整数倍となっているので、さらに光路長差が付加されることなく 1次回折光が発 生する。
このように、 回折レンズ構造 2 (領域 2)では、 DVD用レ一ザ光に対しての み位相段差で光路長差が追加され、 B D用レ一ザ光と C D用レーザ光に対しては 新たに光路長差が付加されることはない。つまり、 回折レンズ構造 2では、 DV D用レーザ光に対してのみ収差補正効果を持たせることが可能となる。
回折レンズ構造 2 (領域 2)を設計する際の DVD用レーザ光の最良像面位置 は、 回折レンズ構造 1 (領域 1)の有効径内側を通る光の最良像面位置に設定す る。
以上のような条件を元に回折レンズ構造 2 (領域 2)を設計した場合の DVD の波面収差を図 29に示す。光軸からの高さ Φ (1) Ζ2より内周部を通る波面 は回折レンズ構造 1 (領域 1)を通過するため、若干量の球面収差が残存してお り、 高さ φ (1) Ζ2〜φ (2) Ζ2においては、 回折レンズ構造 2 (領域 2) によって完全に球面収差が補正されるため、フラットで良好な波面形状となって いる。なお、実施例として提示されている位相関数係数を用いて収差を計算する と、 高さ φ (1) Ζ2より内周の波面と高さ φ (1) Ζ2より外周の波面で位相 ずれが生じるが、回折レンズ関数から実形状を求めるときに、位相関数の定数項 の値や境界部周辺の段差量を微調整することで修正できるので問題ない。このよ うな補正が可能であることを考慮して、図 29の収差計算時には回折レンズ構造 1 (領域 1) の位相関数の定数項 d 0 = 1. 4563050 E-05と暫定的に おき計算している。実際の回折レンズ構造の形状を求める際には、 これらの d 0 の値は用いない。
つづいて、 回折レンズ構造 2 (領域 2) の位相関数係数から実際の回折レンズ 構造 2の形状を求める課程を説明する。
回折レンズ構造 2の形状も回折レンズ構造 1 (領域 1)の場合と同様の求め方 で得られるが、回折レンズ構造 1を透過した波面と位相が合うように修正しなが ら形状を設計する必要がある。まずは、回折レンズ構造 1及び回折レンズ構造 2 の暫定的な形状を、実施例として提示してある巨視的非球面形状と位相関数係数 を用いて求める。 このようにして形状を求め、 BD、 DVD, CDの波面収差を 計算するとそれぞれ図 30、 図 31、 図 32のようになる。 なお、 図 30、 図 3 1、 図 32の波面収差は、実形状の波面収差を計算し、光学的に無視できる波長 の整数倍のシフト分を差し引いて記述している。
B D及び C Dの波面収差において、回折レンズ構造 1 (領域 1 )の有効径 Ψ ( 1 ) 内に鋸波状の波面収差が存在している。これは B Dと C Dの回折効率の均衡を考 慮したことにより、位相段差で発生する光路長差がそれぞれの波長の整数倍から 若干ずれており、そのずれ分が波面収差の段差として現れているからである。同 様に、 DVDの波面収差にて、 回折レンズ構造 2 (領域 2) が施されている光軸 からの高さ Φ (1) /2力 ^ら φ (2) 2の間を通過する波面に鋸波状の波面収 差が存在しているが、 これは、位相段差で発生する光路長差が DVD用レーザ光 では 1 . 2 λと 1 λよりやや多いため、そのずれ分が波面収差の段差として現れ ている。
実際には、 このような鋸波状の波面収差が存在していても、.スポット形状に対 する悪影響はほどんど無ぐわずかな不要回折光を発生するだけであるので問題 はない。 ただし、 各領域の位相を合わせるといった観点では注意が必要である。 すなわち、鋸波状の波面と位相を合わせるためには、波面の平均値に対して位相 を合わせる必要がある。
図 3 3に示すように B Dの波面収差を見ると、内周部の鋸波状の波面の平均値 と外周部の波面に位相のずれが生じていることがわかる。
このような位相のずれは、境界近傍の位相段差量を調節して位相を合わせるこ とができる。回折レンズ関数の定数項 d 0の値はゼロのままで、図 3 4に示すよ うに、構造の内周から数えて第 8段目の位相段差量を 0 . 0 0 2 5 1 5 mmから 0 . 0 0 3 8 7 5 mmへと変更(破線)することで修正し、図 3 5に示すように、 外周部の波面をマイナス方向へシフト (破線) させた。
なお、位相のずれは、 図 3 6に示すように、 回折レンズ関数の定数項 d 0の値 を調整して (破線)、 図 3 7に示すように、 位相段差全体を内周側もしくは外周 側にシフト (破線) させて位相を合わせることも可能である。
表 7は、 実施例 1の具体的な設計結果の近軸データである。 測定した光軸からの高さ hおける光軸方向のサグ量を表し、光軸方向を正とする。 表 9及び表 1 0は、回折レンズ構造の位相関数係数及び利用する回折次数で ある (λ。 = 4 0 8 nm) o
表 9
Figure imgf000072_0002
表 1 0
Figure imgf000072_0003
位相関数は下記式で表す。
Figure imgf000072_0001
ただし、 hは光軸からの高さ、 Ψ (h) は回折レンズ構造が施されている面の光 軸からの高さ hを通る光線に与えられる位相量、 d o rは利用する回折次数、 λ 。は設計波長であり、 A Q = 4 0 8 nmである。
表 1 1は、 回折レンズ構造 1 (領域 1 ) 及び回折レンズ構造 2 (領域 2 ) の巨 視的非球面データと回折レンズ関数から求めた実施例 1における回折レンズ構 造の具体的な形状を示す回折レンズ構造形状データである。
表 1 1
Figure imgf000073_0001
実施例 1の回折レンズ構造は、 3 4段の位相段差とそれにより分割された中心 面、 輪帯面 2〜輪帯面 3 4の合計 3 3の輪帯面、 及び外周面(領域 3 ) によって 構成されている。
図 4 0並びに図 4 1は、段差及び輪帯面番号並びに段差符号の定義を示す。図 4 0に示すように、位相段差の番号は光軸から順番に数えており、位相段差によ つて分割された輪帯面の番号はそれぞれ光軸から外周部に向かって順番に数え る。輪帯幅は、輪帯の内周及び外周にある位相段差の段差半径の差分を表す。段 差量は、図 4 1に示すように内周側の面から外周側の面に対して測定し、光軸方 向を正とする。
実施例 1の回折レンズ構造を構成する位相段差 1〜位相段差 7は、 B Dにおけ る回折効率と C Dにおける回折効率の均衡を考慮して深さを決定し、中心面及び 輪帯面 2〜輪帯面 8の非球面形状を表 1 2に示す非球面形状とした。つまり、光 軸上にある中心面は表 1 2に示す非球面形状そのものであり、輪帯面 2〜輪帯面 P2005/017092
74
8は表 1 2に示す非球面がそれぞれの段差量に応じた分だけ光軸方向にずれて いる輪帯状の面である。
表 1 2
Figure imgf000074_0001
位相段差 8は、それぞれの領域を通る波面の位相が揃うように、位相段差 1〜 位相段差 7よりやや深めに設定されている。位相段差 8より外周部にある、輪帯 面 9から輪帯面 3 4及び外周面 (領域 3 ) は,すべて光軸に垂直な平面である。 図 4 2は、実施例 1の回折光学素子に形成されている回折レンズ構造の断面図 を模式化したもので、 光軸からの高さに対する面のサグ量を表すグラフである。 サグ量は、図 4 3のとおり光軸からの高さ hにおける面の光軸方向のたわみ量で、 面の光軸上の点を基準として光軸方向を正として測定する。これら図からもわか るとおり、 回折レンズ構造 1 (領域 1 ) 及び回折レンズ構造 2 (領域 2 ) の巨視 的非球面形状は凸面となっている。 位相段差によって分割された輪帯状の面は、 回折レンズ構造 1においてはすべて非球面形状をしており、回折レンズ構造 2に おいては全て光軸に垂直な平面となっている。回折レンズ構造 1と回折レンズ構 造 2では、 B Dで利用する回折次数が異なるので、位相段差量もそれに応じて異 なっている。また、回折レンズ構造 1と回折レンズ構造 2の境界線にある位相段 差 8は、 B D、 D VD , C Dの全てにおいて両方の回折レンズ構造を通過する波 面の位相を合わせるために深めの位相段差が施されている。 図 44、図 45及び図 46は、実施例 1の回折光学素子を用いた対物レンズモ ジュールにおける BD、 DVD、 CDの波面収差であるが、 BD、 DVD、 CD の全てにおいて、それぞれの有効径内において各回折レンズ構造を通過する波面 の位相がほぼ揃っていることがわかる。また、前述のとおり CDの波面収差は光 軸からの高さ φ (1) /2から φ (2) Z 2においては収差補正されていないた め、位相関数法による計算上の収差値は 0. 052 λ rmsとやや大きめであつ たが、 実際の形状から求めた波面収差をみると、 光軸からの高さ Φ (1) Z2か ら Φ (2) Z2の波面形状は、 内周部の鋸波状の波面とほぼ同等の振幅の波面と なっており、内側の鋸波状の波面と同様に見なせるため、実質上の収差はほぼゼ 口であると考えてよい。
実際に、 この波面収差をもとに、光ディスク盤面上の波動光学的スポット形状 を計算した場合、通常の無収差のレンズで形成されるスポットとほぼ同等の良好 なスポット形状が得られている。
図 47、 図 48、 図 49、 図 50、 図 51及び図 52は、 回折レンズ構造の実 際の面形状による収差を用いて計算した波動光学的スポット形状を示すグラフ であり、縦軸に光強度を横軸に半径距離を示す。 図 47、 図 48及び図 49はそ れぞれ BD、 DVD及び CDにおけるスポット形状全体を、 図 50、 図 51及び 図 52はそれぞれ B'D、DVD及び CDにおけるスポットのサイドローブを示す。 BDの集光スポットは、メインのスポットが通常のレンズで集光した場合よりや や小さく、 サイドローブがやや大きい。 これは回折レンズ構造 1 (領域 1) で内 周部の回折効率を若干落としたために、アポディゼーシヨン効果が発生している からであるが、 この程度であれば記録再生においては問題ない。 また、光源とし て利用される半導体レーザは、一般に中心から周辺に行くに従って強度が弱くな つてくるので、実施例 1のように内周部の効率を落としてアポディゼ一ション効 果を発生させた方がむしろ好ましい場合もある。 D VDや C Dに関しては、それ ぞれの有効径外側の光も考慮して有効径 Φ (B D)にてスポット形状を計算して いる。すなわち、 スポット形状は、特別な開口制限素子を使用せずに集光したス ポット形状になるのだが、特に開口制限を行わなくとも、通常の D VD用対物レ ンズゃ C D用対物レンズとほぼ同じスポット形状が得られることがわかった。 また、 D V D及び C D有効径外側の光が集光に影響を与えている場合、例えば ディスクチルトによってコマ収差が発生すると、サイドローブの変化が通常の場 合に比べてより顕著となり、 安定した再生性能を得ることができない。 そこで、 本実施例のレンズを用いた場合のディスクチルト時のスポット形状の変化を計 算し、通常のレンズと比較を行った。スポット形状変化の計算においては、有効 径外側の光の影響も考慮するため、 D VD及び C Dに対しても有効径 Φ (B D) にて計算を行った。スポット形状を表す値としては図 5 3に示すスポッ卜の半値 幅とサイドローブ強度を計算した。半値幅とは、スポットの最大強度を 1とした 場合に、強度が半分になる位置のスポットの幅を表し、サイドローブ強度はスポ ッ卜の最大強度を 1とした場合のサイドローブ強度を表す。
図 5 4、 図 5 5、 '図 5 6及び図 5 7は、 その計算結果を示すグラフである。 図 5 4及び図 5 5はそれぞれ D VD及び C Dにおけるスポットの半値幅の変化を 示しており、縦軸に半値幅を横軸にディスクチルト角度を示す。図 5 6及び図 5 7はそれぞれ D VD及び C Dにおけるサイドローブ強度の変化を示しており、縦 軸にスポットのサイドローブ強度を横軸にディスクチルト角度を示す。 D VD及 び C Dのいずれに対しても通常のレンズとほぼ同等の特性を示していることか ら、本実施例の対物レンズを用いた場合、特に開口制限を行わなくても従来の D V D用及び C D用の対物レンズを用いた場合と同等の安定した再生特性が得ら れることがわかる。
(実施例 2 )
第 2実施例も、第 1実施例と同様に第 1光情報記録媒体である B D、第 2光情 報記録媒体である D V D、第 3光情報記録媒体である C Dの互換記録再生を可能 とするための回折光学素子で、 B D用両面非球面レンズと組み合わせて構成され る。 さらに、本実施例では、光源のわずかな波長変動による色収差の影響を考慮 して設計されている。
通常、光ディスクに用いられている半導体レーザなどの光源は、温度変化や記 録再生時のパワーの変動により波長が変動する場合がある。 これにより、対物レ ンズの焦点距離が変動したり、球面収差が発生したりする。 このような、波長変 動に伴う色収差の波面収差量は、 レンズの開口数が大きいほど大きくなる。 ピッ クアップにおいて、特に記録から再生、 もしくは再生から記録への動作変化によ り急激に波長が変動した場合、フォーカスサーポが追従するまでの時間はスポッ トがデフォーカスした状態となり、動作が不安定となる。 また、 フォーカスサー ポが追従した後も球面収差は残留することになるので、波長変動に伴う収差は小 さければ小さいほど好ましい。
通常、色収差を補正するには、波長変化に伴う屈折率変化が異なる 2種類以上 の材料を組み合わせた組レンズを用いるか、回折レンズ構造を用いて補正してい る。 P2005/017092
78 実施例 1のように領域によって異なる特性の回折レンズ構造を用いている場 合は、 領域によって色収差が異なるため、 波面全体が不連続になる場合があり、 これを組レンズで補正しょうとした場合は、組レンズの面形状を不連続とする必 要がある。 この場合、 ガラスでは加工が難しいため、樹脂材料を使用する必要が あるが、光ディスク用光学部品として使用できる樹脂材料はガラスに比べて種類 が少ないため、波長変化に伴う屈折率変化が大きく異なる 2種類の組み合わせが 得られない。
従って、実施例 1の回折光学素子を含んだ対物レンズの色収差を補正するため には、 回折光学素子を用いることが望ましい。 なお、 実施例 1の回折光学素子を 含んだ対物レンズの色収差は不連続となるので、これを補正するための回折光学 素子も不連続な特性となる。
このように、 色収差が不連続となる 2つの光学素子を光学系に組み込む場合、 両者の間に光軸ずれが発生すると不連続な収差特性がうまく組み合わせられな くなり収差補正に支障を来す。従って、 これらの回折光学素子の光軸ずれは極力 小さくする必要がある。また、実施例 1の球面収差補正用回折光学素子と B D用 対物レンズ間に光軸ずれが発生した場合には、 D V D及び C Dに対して大量のコ マ収差が発生してしまうため、球面収差補正用回折光学素子と B D用対物レンズ 間の光軸ずれも極力小さくする必要がある。つまり、球面収差補正用回折光学素 子、色収差補正用回折光学素子及び対物レンズの 3つの部品は光軸ずれが十分抑 えられるよう配置する必要がある。光ディスク用の対物レンズは、光ディスクの 偏芯に追従するためにァクチユエ一夕により光軸と垂直な方向にトラッキング 偏倚する構成になっているので、上記の回折光学素子もァクチユエ一夕に搭載し て対物レンズと一緒にトラツキング偏倚させる必要がある。
以上のことを考慮して、実施例 2では D VDや C Dの球面収差補正用の回折レ ンズ構造と色収差補正用回折レンズ構造を同一の光学素子に形成している。この ように構成した回折光学素子と対物レンズを一体化してァクチユエ一夕に搭載 することにより、対物レンズがトラツキング偏倚をしても光軸ずれが発生しない 構成が実現できる。また、球面収差補正用の回折レンズ構造と色収差補正用回折 レンズ構造を一体化することにより、部品点数が削減できるため、光学系の簡素 化及びコストダウンが可能となるため好ましい。
実施例 2は、 図 5 8のように、第 1光情報記録媒体である B D、第 2光情報記 録媒体である D V D、第 3光情報記録媒体である C Dの互換記録再生を可能にす る回折レンズ構造 A及び Bを備えた回折光学素子と B D用両面非球面レンズと 組み合わせて構成される。 レンズ系の構成及び B D、 D VD , C Dに対する設計 条件は表 1 3の'とおりである。
表 1 3
Figure imgf000079_0001
回折光学素子は、 図 5 8の左側の面(第 1面) に B D、 D VD、 C D間で発生 する球面収差の補正と開口制限をするように設計された回折レンズ構造 Aが形 成されており、 図 5 8の右側の面(第 2面) には色収差補正用の回折レンズ構造 Bが形成されている。 回折レンズ構造 Aは、実施例 1の回折レンズ構造 1 (領域 05017092
80
1) と同様に、 内周部に回折レンズ構造 A 1 (領域 1)、 中周部に回折レンズ構 造 A2 (領域 2) により構成されており、外周部には回折レンズ構造が施されて いない。 回折レンズ構造 Bは、 内周部に回折レンズ構造 A 1 (領域 1) と対物レ ンズを組み合わせた場合の色収差を補正するように設計されている回折レンズ 構造 B l、 中周部に回折レンズ構造 A2 (領域 2) と対物レンズを組み合わせた 場合の色収差を補正するように設計されている回折レンズ構造 B 2、外周部に対 物レンズの色収差を補正するように設計されている回折レンズ構造 B 3により 構成されている。なお、本実施例及び以後の実施例において回折レンズ構造 Aは BD、 DVD、 CD間で発生する球面収差の違いを補正することを主目的とした 回折レンズ構造を指し、回折レンズ構造 Bは B Dにおける色収差を低減すること を主目的とした回折レンズ構造を指す。回折レンズ構造 A及び回折レンズ構造 B は、複数の異なる特性を有する回折レンズにて構成されており、それらの部分的 な回折レンズ構造を回折レンズ構造 A 1 (領域 1) というように語尾に番号を付 けて表記することとする。
図 59は、実施例 2の回折光学素子の模式断面図である。回折レンズ構造 Aは、 内周部の回折レンズ構造 A 1 (領域 1)、 中周部の回折レンズ構造 A2 (領域 2) 及び平坦な外周面(領域 3) にて構成されている。 回折レンズ構造 Bは、 内周部 から順番に回折レンズ構造 B 1 (領域 1)、 回折レンズ構造 B 2 (領域 2)、 回折 レンズ構造 B 3 (領域 3) にて構成されている。 回折レンズ構造の有効径は図 5 9に示すとおりである。球面収差補正用回折レンズ構造 A 1及び回折レンズ構造 A 2の有効径 φ (Α1)、 φ (A 2) は、 実施例 1と同様の方法で決定する。 色収差補正用の回折レンズ構造 B 1 (領域 1)、 回折レンズ構造 B 2 (領域 2) TJP2005/017092
81 及び回折レンズ構造 B 3 (領域 3) の有効径 φ (Β 1)、 φ (Β 2)、 φ (Β3) は、それぞれ、球面収差補正用回折レンズ構造が施されている面の回折レンズ構 造 A1 (領域 1) を透過した波面、 回折レンズ構造 A 2 (領域 2) を透過した波 面、及び回折レンズ構造が施されていない外周部を通過した波面の径に対応して 決定する。
回折レンズ構造 A 1 (領域 1) 及び回折レンズ構造 A 2 (領域 2) で利用する 回折次数の組み合わせは、実施例 1の場合と同様に決定した。すなわち、表 14 の構造 A 1並びに A 2に示すコラムの組み合わせ B Dの 2次回折光、 D VDと C Dで 1次回折光並びに B Dの 3次回折光、 DVDと CDで 2次回折光を利用する こととした。
表 14
Figure imgf000081_0001
回折レンズ構造 Αの設計に関しては、 基本的に実施例 1と同様の手順を踏むが、 位相関数を用いた設計時には、回折レンズ構造 Bが組み合わされることで収差の 出方が若干異なるので、 これらを組み合わせて全体で設計する必要がある。 色収差補正用の回折レンズ構造 Bは、 色収差補正のみを行うため、 BD、 DV D及び CDの全てにおいて、巨視的非球面形状による収差と位相段差による収差 が相殺されるような設計とする必要がある。従って、 回折レンズ構造 B 1 (領域 1)、 回折レンズ構造 B 2 (領域 2)、 回折レンズ構造 B 3 (領域 3) で利用する 回折次数の組み合わせは、表 14の構造 Bに示すコラムの組み合わせ、 BDで 1 0次回折光、 DVDで 6次回折光、 CDで 5次回折光を利用することとした。 こ のような回折次数の組み合わせを利用すると、 B Dにおける色収差を補正しつつ、 BD、DVD及び CDの全てにおいて収差補正効果のない回折レンズ構造を実現 することができる。 また、 色収差は小さければ小さいほど好ましいが、それによ り位相段差の段数がたくさん必要となり、製造上困難となる。 このようなことか •ら、本実施例では、 色収差補正を完全には補正していない。本実施例で用いられ ている BD用対物レンズ単体で用いた場合、波長が 408 nmから 403 nmに 変化すると、 最良像面位置が約 5 移動し、 0. 07 λ r m sの球面収差が発 生する。 これに対して、実施例 2の回折光学素子を追加したことにより 408 n mから 403 nmに波長が変化した場合の最良像面の移動量は 1.6 に抑え られ、 そのときの残留球面収差は 0. 01 λ rms以下に抑えられている。つま り、実施例 2の回折光学素子を追加したことにより、 DVDや CDの記録再生が 可能になるとともに、 B Dの記録再生性能をより安定して行うことができる。 これらの回折レンズ構造の設計においては、実施例 1と同様に位相関数法を用 いて設計し、そこから求められる回折レンズ関数を利用して実際の面形状を設計 することとなる。
表 15は、 実施例 2の具体的な設計結果である近軸データである。 表 1 5
Figure imgf000083_0001
表 1 6は、実施例 2における回折レンズ構造 A及び回折レンズ構造 Bの巨視的 非球面形状及び対物レンズの非球面形状を表す非球面係数を示す。
表 1 7及び表 1 8は、回折レンズ構造 A及び回折レンズ構造 Bの位相関数係数 及び利用する回折次数である (A Q = 4 0 8 nm)。 表 1 6
Figure imgf000083_0002
表 1 7
回折レンズ構造 A 回折レンズ構造 B
第 1面 (ίη) 第 1面 (mid) 第 1面 (out) 第 2面 (W 第 2面 (mid) 第 2面 (out) 係数名
DOE A1 DOE A2 (平面) DOE B1 DOE B2 DOE B3
(0<h≤ 1.007) (1.007<h≤1'.628) (h>1.628) (0<h≤ 1.007) (1.007く h≤1.628) (h>1.628) d0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 2.856000E-04 O.OOOOOOE+00 d2 4.740800E-03 - 5.312800E- 03 0.000000E+00 -3.300600E-03 -8.078900E-04 -1.878300E-03 d4 -1.290600E-03 1.769600E-03 0.000000E+00 2.603800E-04 -5.012600E-04 -1.241700E- 04 d6 -1.970000E-04 4.854000E-04 0.000000E+00 2.551900E-05 -1.135500E-04 -3.669300E-05 d8 -5.714100E-06 -2.467900E-05 0.000000E+00 8.783200E-06 7.745500E-06 8.240400E-06 d10 -4.447200E-06 8.936400E-06 0.000000E+00一 6.596500E- 07 -3.653100E-06 -2.132700E-06 表 1 8
Figure imgf000084_0001
回折レンズ構造の実際の形状は、上記実施例と同様に巨視的非球面形状、位相 関数係数及び回折次数を用いて求める。 球面収差補正用の回折レンズ構造 A 1 (領域 1 ) と回折レンズ構造 A 2 (領域 2 ) の形状の求め方は、 実施例 1と同様 の手順で行ったので、 詳細な説明は省略する。
表 1 9は、実施例 2における回折レンズ構造 Aの具体的な形状を示すデ一夕で ある。
表 1 9
Figure imgf000084_0002
実施例 2の回折レンズ構造 Aは、 3 4段の位相段差と、それにより分割された 5 017092
85 中心面、 輪帯面 2〜輪帯面 3 4の合計 3 3の輪帯面及び外周面(領域 3 ) にて構 成されている。
実施例 2の回折レンズ構造 Aにおいても、実施例 1の場合と同様に、 8番目の 位相段差を深めにすることにより、 B D、 D VD、 C Dの全てにおいて回折レン ズ構造 1 (領域 1 ) を通る波面と回折レンズ構造 2 (領域 2 ) を通る波面の位相 を合わせている。
また、 回折レンズ構造 A 1 (領域 1 ) では、 B Dにおける回折効率と C Dにお ける回折効率の均衡を考慮して、位相段差の深さを決定するとともに、 中心面及 び輪帯面 2〜輪帯面 8の面形状を表 2 0に示す非球面形状とした。つまり、光軸 上にある中心面は表 2 0に示す非球面形状そのものであり、輪帯面 2〜輪帯面 8 は表 2 0に示す非球面がそれぞれの段差量に応じた分だけ光軸方向にずれてい る輪帯状の面である。位相段差 8より外周部にある、輪帯面 9から輪帯面 3 4及 び外周面 (領域 3 ) はすべて光軸に垂直な平面である。
表 2 0
Figure imgf000085_0001
図 6 0は、 実施例 2における回折レンズ構造 Aの断面形状の模式図である。 つづいて、 色収差補正用の回折レンズ構造 Bの形状を求める課程を説明する。 図 6 1は、回折レンズ構造 B 1の回折レンズ関数のグラフである。回折レンズ 構造 Bを構成する複数の位相段差の光軸からの高さは、図 6 1と図 6 2に示すよ うに、かかる回折レンズ関数が整数となる光軸からの高さ hB l〜hB7として 求めることができる。なお、光軸からの高さ hB 7は回折レンズ構造 B 1の最外 周の位相段差になるので、光軸からの高さ hB 7が有効径に相当する光軸からの 高さ Φ (B 1) /2になる。
次に、 回折レンズ構造の微視的形状の設計に関して説明する。
回折レンズ構造 B 1の回折レンズ関数は単調減少となっているので、回折レン ズ構造の内周部から外周部にいくに従って巨視的非球面形状より薄くなる方向 にブレーズ化していき、回折レンズ関数が整数となる光軸からの高さ h B 1〜!! B 7において、 レンズが厚くなる方向に段差を形成する。
回折レンズ構造 B 1は、 BD用光源に対して 10次光を発生するように設計さ れており、且つ巨視的非球面形状により発生する収差と位相段差によって発生す る収差が基準となる波長において打ち消されるように設計されている。回折レン ズ構造 Bを構成する位相段差量 dを図 63に示すように設定した場合、 B D用光 源に対してそれぞれの位相段差で発生する光路長差は 10ABDとなり、 10次 光の回折効率は理論上 100%となる。 この場合、 図 63に示すように、 位相段 差によつて分割された輪帯状の面はすべて光軸に垂直な平面となる。
また、 この回折レンズ構造 B 1を構成する位相段差で発生する光路長差は、 D VD用レーザ光でば約 6 ADVD、 CD用レ一ザ光では約 5 λ CDの光路長差が発生 するため、 BDの場合と同様に巨視的非球面による収差と位相段差による収差が ほぼ打ち消し合い、 DVD用レーザ光では 6次回折光、 CD用レーザ光では 5次 回折光の理論上の回折効率がほぼ 100%となる。
回折レンズ構造 B 2 (領域 2) 及び回折レンズ構造 B 3 (領域 3) に関しても 同様の手順で形状を求めるが、 レーザ光の波長変動が発生した際に、各回折レン ズ構造を通過した波面に位相差が発生する場合があり、その場合は回折レンズ関 数の定数項 d 0の値を調整して位相段差を全体的に内周もしくは外周にシフト させるか、位相差が発生する境界近傍の段差量で調整する方法が考えられる。実 施例 2の色収差補正用回折レンズ構造 Bにおいては、回折レンズ構造 B 2 (領域 2 ) の定数項を d 0 = 0 . 0 0 0 2 8 5 6のとすることで調整した。
表 2 1は、実施例 2における回折レンズ構造 Bの具体的な形状を示すデ一夕で ある。
実施例 2の回折レンズ構造 Bは、 3 7段の位相段差と、それにより分割された 中心面、輪帯面 2〜輪帯面 3 7の合計 3 6の輪帯面及び外周面(領域 3 ) にて構 成されている。
表 2 1
Figure imgf000087_0001
図 6 4は実施例 2における回折レンズ構造 Bの断面形状の模式図である。回折 レンズ構造 B l、 回折レンズ構造 B 2 (領域 2 ) 及び回折レンズ構造 B 3 (領域 3 )の巨視的非球面形状は全て凹面となり、位相段差によって分割された輪帯状 の面は全て光軸に垂直な平面となっている。
図 6 5〜図 6 7は、回折レンズ構造の実際の形状のデ一夕により計算した波面 収差である。 B D、 D VD及び C Dの全てにおいて、 有効径内側の波面の位相は 揃っている。 実施例 1の場合と同様に、 波面に鋸波状の収差が存在しているが、 これらはスポット形状に悪影響を及ぼさないので、 問題ない。
図 6 8〜図 7 3は、回折レンズ構造の実際の面形状による収差を用いて計算し た波動光学的スポット形状を示すグラフであり、縦軸に光強度を横軸に半径距離 を示す。図 6 8〜図 7 0はそれぞれ B D、 D VD及び C Dにおけるスポット形状 全体を、図 7 1〜図 7 3はそれぞれ B D、 D VD及び C Dにおけるスポットのサ ィドロ一ブを示す。 B Dの集光スポッ卜は、 メインのスポッ卜が通常のレンズよ りやや小さく、サイドローブがやや大きい。これは回折レンズ構造 A 1 (領域 1 ) で回折効率を若干落としたために、アポディゼーシヨン効果が発生しているから であるが、 この程度であれば記録再生においては問題ない。 また、光源として利 用される半導体レーザは、一般に中心から周辺に行くに従って強度が弱くなつて くるので、内周部の効率を落としてアポディゼーシヨン効果を発生させた方がむ しろ好ましい場合もある。 D VDや C Dに関しては、それぞれの有効径外側の光 も考慮してスポット'形状を計算しているが、通常の対物レンズとほぼ同じスポッ ト形状が得られている。
図 7 4〜図 7 7は、ディスクチルトに対するスポット形状の変化を計算した結 果を示すグラフである。図 7 4及び図 7 5はそれぞれ D VD及び C Dにおけるス ポットの半値幅の変化を示しており、縦軸に半値幅を横軸にディスクチルト角度 を示す。図 7 6及び図 7 7はそれぞれ D VD及び C Dにおけるサイドローブ強度 の変化を示しており、縦軸にスポッ卜のサイドロ一ブ強度を横軸にディスクチル ト角度を示す。 D VD及び C Dのいずれに対しても通常のレンズとほぼ同等の特 性を示していることから、本実施例の対物レンズを用いた場合、特に開口制限を 行わなくても従来の D V D用及び C D用の対物レンズを用いた場合と同等の安 定した再生特性が得られることがわかる。
図 7 8〜図 8 0は、実施例 2の対物レンズモジュールにおいて、光源の波長変 動が発生した場合の最良像面における波面収差形状である。なお、回折光学素子 および対物レンズの材料は、波長変動に伴い、表 2 2に示すように変動するもの とする。
表 2 2
Figure imgf000089_0001
これらの波面収差図から、 ± 5 n mの波長変動が発生しても、若干の鋸波状の波 面収差が発生するだけで、波面形状はほとんど悪化していないことがわかる。前 述したとおり、 鋸波状の波面収差は、 スポット形状に悪影響を与えない。
図 8 1〜図 8 4は、波長 4 0 3 nm及び 4 1 3 n mにおける B Dのスポット形 2
90 状を示すグラフであり、比較のために設計波長 4 0 8 n mにおけるスポット形状 を重ねて示してある。縦軸に光強度を横軸に半径距離を示す。図 8 1及び図 8 2 はそれぞれ波長 4 0 3 n m及び 4 1 3 n mにおけるスポット形状全体を、図 8 3 及び図 8 4はそれぞれ波長 4 0 3 nm及び 4 1 3 n mにおけるスポットのサイ ドローブを示す。図からもわかるとおり、実施例 2の回折光学素子を用いたレン ズによれば、土 5 n mの波長変動に対してスポット形状はほとんど劣化しないこ とがわかる。
図 8 5は、実施例 2の回折光学素子を用いたレンズの波長変動に対する最良像 面の移動量を計算した結果を示すグラフである。実施例 2のレンズでは波長変動 に対する最良像面位置の移動量が対物レンズ単体の場合に比べて軽減しており、 対物レンズ単体で用いた場合に比べて、波長変動に対してより安定した性能が得 られることがわかる。
以上のように、 実施例 2のレンズによれば、 B D、 D VD > C Dの互換記録再 生が可能であるとともに、 B D用対物レンズ単体で使用した場合に比べて波長変 動に対してより安定した性能が得られる。
なお、実施例 2においては、回折レンズ構造 Aに 2種類の球面収差補正用の回 折レンズ構造、回折レンズ構造 Bに 3種類の色収差補正用回折レンズ構造を形成 したが、 これらは、 'どちらの面に混在してもかまわない。
図 8 6は、実施例 2の回折光学素子の変形例の断面図を示し、第 1面に球面収 差補正用回折レンズ構造 A 1 (領域 1 ) と色収差補正用回折レンズ構造 B 2 (領 域 2 ) を、 第 2面に球面収差補正用回折レンズ構造 A 2 (領域 2 ) と色収差補正 用回折レンズ構造 B 1及び B 3を施した。 このように、球面収差補正用回折レン 05 017092
91 ズ構造と色収差補正用回折レンズ構造は必ずしもそれぞれの機能ごとに一つの 面にまとめる必要はなく、 これらの構成を変更することによって、 回折光学素子 の形状を大幅に変えることができるので、適宜作りやすい形に変形することが可 能となる。
なお、図 8 6に示すの変形例では、第 1面及び第 2面の巨視的面形状が複雑に なるため加工上好ましくない。一方、実施例 2の回折光学素子では、第 1面及び 第 2面ともにそれぞれの面内における段差の方向が全て揃つているため、金型の 加工が容易であり、 且つ成型時の離型性も良好となるため好ましい。
(実施例 3 )
第 3実施例も、第 2実施例と同様に B D、 D VD、 C Dの互換記録再生を可能 とするための回折光学素子で、 さらに、本実施例では、光源のわずかな波長変動 による色収差の影響を考慮して設計されている。
第 3実施例のレンズ系の構成及び、 B D、 D VD、 C Dに対する設計条件は表 2 3のとおりである。
表 2 3
Figure imgf000091_0001
実施例 2では、回折光学素子の両面に回折レンズ構造を形成したが、この場合、 回折レンズ構造を素子の両面に形成するため、微細な位相段差を有する高精度な 金型が 2つ必要となるためコストがかかる。そこで、 図 8 7のように、 実施例 3 では回折レンズ構造をすベて片面に集約することにより、製造コストの低減をし ている。
このような構成を実現するためには、単純に球面収差補正用回折レンズ構造の 実際の形状と、色収差補正用回折レンズ構造の実際の形状を求め、それらを幾何 学的に足し合わせた形状とすればよい。
ところ力 このように同一面に複数の回折レンズ構造を重ねる場合、位相段差 の数が多くなつたり、位相段差の間隔が極端に狭くなる場合がある。位相段差の 数が多くなると、以下に述べるとおり、実質的な回折効率が低下するので好まし くない。すなわち、 回折レンズ構造を構成する位相段差を製造する場合、 図 8 8 の断面形状に示すようなエッジの丸みだとか壁面のダレといった製造誤差が必 ず発生するため、 それにより回折効率が低下する。 このような、 製造誤差による 回折効率の低下は、 当然ながら位相段差の数が多いほど著しい。従って、 回折レ ンズ構造を設計する上で、位相段差の数を削減することにより、実質的な回折効 率の低下を防ぐことができる。
そこで、実施例 3では、球面収差補正用回折レンズ構造による位相段差と色収 差補正用回折レンズ構造による位相段差のうち、隣接しているものを一つの段差 として合成することにより、 製造誤差による回折効率の低下を防いでいる。 実施例 3の回折レンズ構造の設計手順は、まず同一面に球面収差補正用の回折 レンズ構造 Aの位相関数と色収差補正用の回折レンズ構造 Bの位相関数を設定 し、それらの位相関数係数を最適化する。球面収差補正用の回折レンズ構造 Aは、 実施例 1や実施例 2と同様に C D有効径よりさらに小さい有効径 Φ (A 1 )内に B D、 D VD, C D互換用の回折レンズ構造 A 1 (領域 1 )、 その外周部で D V D有効径内側に D V Dに対してのみ球面収差補正効果のある回折レンズ構造 A 2 (領域 2 ) を想定する。 回折レンズ構造 A 1 (領域 1 ) 及び回折レンズ構造 A 2 (領域 2 )で利用する回折次数の組み合わせは、実施例 1及び実施例 2と同様 とする。 また、 色収差補正用回折レンズ構造 Bは、 実施例 2と同様に、 回折レン ズ構造 A 1 (領域 1 ) と対物レンズを組み合わせた場合の色収差を補正するよう に設計されている回折レンズ構造 B 1、 中周部に回折レンズ構造 A 2 (領域 2 ) と対物レンズを組み合わせた場合の色収差を補正するように設計されている回 折レンズ構造 B 2 (領域 2 )、 外周部に対物レンズの色収差を補正するように設 計されている対物レンズ構造 B 3が施されている。
回折レンズ構造 Aと回折レンズ構造 Bは、回折光学素子の光が入射する側の面 に配置した。
表 2 4は、 実施例 3の具体的な設計結果である近軸デ一夕である。
表 2 4
Figure imgf000093_0001
なお、表 2 4に示す近軸データでは、第 1面から第 3面までの 3面を用いて回 折レンズ構造を示しているが、 これはあくまで設計上の表記によるものであり、 実際の面形状を求める際には、これら 3つの面の設計結果を合成して一つの面形 状を求める。
表 2 5は、実施例 3における回折レンズ構造 B及び回折レンズ構造 Aの巨視的 非球面形状及び対物レンズの非球面形状を表す非球面係数を示す。
表 2 5
Figure imgf000094_0001
表 2 6及び表 2 7は、回折レンズ構造 B及び回折レンズ構造 Aの位相関数係数 及び利用する回折次数である (λ。= 4 0 8 ηπι)。
表 2 6
Figure imgf000094_0002
表 2 7
Figure imgf000094_0003
実際の回折レンズ構造の形状を求めるに当たっては、まず、回折レンズ構造 A と回折レンズ構造 Bの形状をそれぞれ個別に求めて、それらの形状を幾何学的に 足し合わせた形状を求める。それぞれの回折レンズ構造の形状は、実施例 2と同 様の手順で求めることができるので、 詳細な説明は省略する。
図 8 9及び図 9 0は、巨視的非球面形状、位相関数係数及び回折次数を用いて 個別に求めた回折レンズ構造 B及び回折レンズ構造 Aの断面の模式図である。 これら回折レンズ構造を合成すると図 9 1のような断面形状の回折レンズ構 造を得ることができる。このような回折レンズ構造を第 1面に形成した回折光学 素子を利用することにより、 B D、 D VD , C Dの互換記録再生が可能になると ともに、 波長変動に対してより安定した記録再生性能を得ることができる。 しかしながら、このように 2種類以上の回折レンズ構造を重ね合わせるような 形で合成する場合、それぞれの回折レンズ構造を構成する位相段差の間隔が極端 に狭くなつてしまう場合がある。位相段差の間隔が極端に狭くなると、金型の製 造が難しくなり、 成型時の離型性も悪くなるため好ましくない。 また、位相段差 の間隔が、使用する光の波長の 1 0倍以下程度になった場合、回折効率が著しく 低下することが知られている。 実施例 3においては、 4 0 8 nm、 6 6 0 nm、 7 8 O nmの光源を用いているので、位相段差の間隔は、最も波長の長い 7 8 0 nmの 1 0倍以上、 つまり 0 . 0 0 7 8 mm以上確保することが望ましい。 表 2 8は、回折レンズ構造 Bと回折レンズ構造 Aを幾何学的に合成した回折レ ンズ構造の形状を表すデ一夕である。 表 2 8
Figure imgf000096_0001
デ一夕中、灰色で塗られているデータは、回折レンズ構造 Bを構成していた位 相段差で、そうでないデータは回折レンズ構造 Aを構成していた位相段差を表す。 表 2 9は、上記の形状データから、当該位相段差とその 内側の位相段差の 間隔を示す輪帯幅が 0 . 0 0 7 8 mm以下のものを抜き出したデータを示す。 こ れらの狭い位相段差間隔は、回折レンズ構造の製造を難しくするとともに、回折 効率の低下の原因となるので好ましくない。 表 2 9
Figure imgf000097_0001
そこで、実施例 3においては、 このように極端に隣接する 2つの位相段差を一 つの位相段差として合成することにより、輪帯幅を 0 . 0 0 7 8 mm以上確保す ることとした。
なお、 2つの位相段差を合成する方法としては、合成する 2つの位相段差の間 のどこかに 2つの位相段差量を足し合わせた位相段差を形成してもよいし、どち らかの位相段差の位置に 2つの位相段差量を足し合わせた位相段差を形成し、も う片方の位相段差を消去してもよい。実施例 3においては、位相段差半径の誤差 に対して要求精度が厳しい回折レンズ構造 Aを構成していた位相段差の位置に、 回折レンズ構造 Bを構成していた位相段差を合成することとした。また、上記の ように極端に狭い間隔の位相段差以外にも、性能に支障が出ない範囲で合成でき る段差を全て合成することにより、 7 0段必要であった位相段差を 4 9段まで削 減することができた。
表 3 0は、このような設計手順で得られた実施例 3における回折レンズ構造の 形状データである。灰色で塗られているデータは、合成された位相段差を示すも のである。
表 3 0
Figure imgf000098_0002
なお、実施例 3の回折レンズ構造においても、実施例 1及び実施例 2と同様に、 有効径 Φ (A 1 ) 内においては、 B Dと C Dの回折効率の均衡を考慮して段差量 が決定されており、それに応じて、 中心面及び輪帯面 2〜輪帯面 9を表 3 1に示 す非球面形状とした。つまり、光軸上にある中心面は表 3 1に示す非球面形状そ のものであり、輪帯面 2〜輪帯面 9は表 3 1に示す非球面がそれぞれの段差量に 応じた分だけ光軸方向にずれている輪帯状の面である。
表 3 1
Figure imgf000098_0001
2
99
位相段差 9より外周部にある、 輪帯面 1 0から輪帯面 4 9及び外周面 (領域 3 ) はすべて光軸に垂直な平面である。
このように、位相段差を合成することにより、実施例 3における回折レンズ構 造を構成する位相段差の間隔は最も狭いものでも 0 . 0 0 9 mm確保されており、 全ての波長において大幅な回折効率の低下のない回折レンズ構造を実現するこ とができた。
また、 このように位相段差を合成することにより、位相段差の間隔が広がるの みならず、位相段差の数が少なくなるため、金型などの製造誤差による実質的な 回折効率の低下を最小限に抑えている。特に、壁面のダレに関しては、 段差が深 いほど回折効率が低下するが、実施例 3においては、回折レンズ構造 Aと回折レ ンズ構造 Bの段差の符号が逆なので、特に段差量の大きい回折レンズ構造 Bの位 相段差量を浅くすることができる。その結果、形状データで灰色に塗られている 2 1段の位相段差は、合成前の深い方の位相段差にくらベて浅くなつているので、 好ましい。
さらに、 このように逆方向の位相段差を合成すると、位相段差に微小な突起や 窪み形状が無くなることになる。 このような、微小な突起や窪みを成形するため の金型を製造する際には、その細かさに応じて加工機の先端を細くする必要があ る。 ところが、 加工機の先端が細くなると、 剛性不足により高精度に金型を加工 することが困難となる。 また、金型が窪みとなるような形状の場合、成型時に材 料が窪みに残留しやすくなる。その結果、回折レンズ構造の成型不良を起こすと ともに、金型の寿命が短くつてしまう。位相段差合成前の回折レンズ構造にはこ のような欠点があつたが、本実施例のように深さ方向の異なる位相段差を合成し て回折レンズ構造を設計することにより、このような欠点を回避することができ る。つまり、実施例 3のような設計方法を採用することにより、 金型を高精度に 加工することが容易となり、成型不良が減少し、金型が長寿命化するため、 回折 光学素子の高品質維持及びコストダウンに多大な効果をもたらす。
図 9 2〜図 9 4は、 実施例 3の形状のデータにより計算した波面収差である。 B D、 D VD及び C Dの全てにおいて、それぞれの有効径内側における波面の位 相は揃っている。実施例 1や実施例 2の場合と同様に、波面に鋸波状の収差が存 在しているが、 これらはスポット形状に悪影響を及ぼさないので、 問題ない。 図 9 5〜図 1 0 0は、回折レンズ構造の実際の面形状による収差を用いて計算 した波動光学的スポット形状を示すグラフであり、縦軸に光強度を横軸に半径距 離を示す。図 9 5〜図 9 7はそれぞれ B D、 D VD及び C Dにおけるスポット形 状全体を、図 9 8〜図 1 0 0はそれぞれ B D、 D VD及び C Dにおけるスポット のサイドローブを示す。 B Dの集光スポットは、メインのスポットが通常のレン ズよりやや小さく、サイドローブがやや大きい。 これは内周部で回折効率を若干 落としたために、アポディゼーシヨン効果が発生しているからであるが、 この程 度であれば記録再生においては問題ない。また、光源として利用される半導体レ —ザは、一般に中心から周辺に行くに従って強度が弱くなつてくるので、内周部 の効率を落としてアポディゼーシヨン効果を発生させた方がむしろ好ましい場 合もある。 D VDや C Dに関しては、それぞれの有効径外側の光も考慮してスポ ット形状を計算しているが、通常の対物レンズとほぼ同じスポット形状が得られ ている。 図 1 0 1〜図 1 0 4は、ディスクチルトに対するスポット形状の変化を計算し た結果を示すグラフである。図 1 0 1及び図 1 0 2はそれぞれ D VD及び C Dに おけるスポットの半値幅の変化を示しており、縦軸に半値幅を横軸にディスクチ ルト角度を示す。図 1 0 3及び図 1 0 4はそれぞれ D VD及び C Dにおけるサイ ドローブ強度の変化を示しており、縦軸にスポットのサイドロ一ブ強度を横軸に ディスクチルト角度を示す。 D V D及び C Dのいずれに対しても通常のレンズと ほぼ同等の特性を示していることから、本実施例の対物レンズを用いた場合、特 に開口制限を行わなくても従来の D V D用及び C D用の対物レンズを用いた場 合と同等の安定した再生特性が得られることがわかる。
図 1 0 5〜図 1 0 7は、実施例 3のレンズにおいて、光源の波長変動が発生し た場合の最良像面における波面収差形状である。なお、回折光学素子および対物 レンズの材料は、 波長変動に伴い、表 2 2に示すように変動するものとする。 こ れらの波面収差図から、 土 5 nmの波長変動が発生しても、若干の鋸波状の波面 収差が発生するだけで、波面形状はほとんど悪化していないことがわかる。前述 したとおり、 鋸波状の波面収差は、 スポット形状に悪影響を与えない。
図 1 0 8〜図 1 1 1は、波長 4 0 3 n m及び 4 1 3 n mにおけるスポット形状 を設計波長である 4 0 8 nmにおけるスポット形状と比較したものである。図か らもわかるとおり、矣施例 3の回折光学素子を用いたレンズによれば、 ± 5 nm の波長変動に対してスポット形状はほとんど劣化しないことがわかる。
図 1 1 2は、実施例 3の回折光学素子を用いたレンズの波長変動に対する最良 像面の移動量を計算した結果である。実施例 3のレンズでは波長変動に対する最 良像面位置の移動量が対物レンズ単体の場合に比べて軽減しており、対物レンズ 単体で用いた場合に比べて、波長変動に対してより安定した性能が得られること がわかる。
(実施例 4)
第 4実施例も、実施例 3と同様に BD、 DVD, CDの互換記録再生を可能と するための回折光学素子で、 さらに、本実施例では、光源のわずかな波長変動に よる色収差の影響を考慮して設計されている。
レンズ系の構成は実施例 3と同様で、 BD、 DVD、 CDに対する設計条件は 表 32のとおりである。
表 32
Figure imgf000102_0001
実施例 4では、表 3 3に示すように回折レンズ構造 Aで使用する回折次数の組 み合わせを上記の実施例と異なるものとすることにより、実施例 3と同様の効果 を有するとともに、少ない位相段差数でより高い色収差補正効果を持たせるとと もに、量産性のよい形状を実現している。回折レンズ構造 Aで表 33の構造 A 1 並びに A 2に示すコラムの組み合わせ B Dの 7次回折光、 D VDの 4次回折光、 CDの 3次回折光並びに BDの 6次回折光、 DVDの 4次回折光、 CDの 3次回 折光を利用することとした。回折レンズ構造 Bで表 33の構造 Bに示すコラムの 組み合わせ、 :60で10次回折光、 DVDで 6次回折光、 CDで 5次回折光を利 用することとした。 設計手順は、 実施例 3と同様である。 表 3 3
Figure imgf000103_0001
表 3 4は、 実施例 4の具体的な設計結果である近軸データである。 なお、表 3 に示す近軸デ一夕では、第 1面から第 3面までの 3面を用いて回折レンズ構 造を示しているが、 これはあくまで設計上の表記によるものであり、実際の面形 状を求める際には、これら 3つの面の設計結果を合成して一つの面形状を求める。 表 3 4
Figure imgf000103_0002
表 3 5は、実施例 4における回折レンズ構造 B及び回折レンズ構造 Aの巨視的 非球面形状及び対物レンズの非球面形状を表す非球面係数である。 表 3 5
Figure imgf000104_0001
表 3 6及び表 3 7は、回折レンズ構造 B及び回折レンズ構造 Aの位相関数とそ の回折次数である。 (λ。 = 4 0 8 ηπι)
表 3 6
Figure imgf000104_0002
表 3 7
Figure imgf000104_0003
図 1 1 3及び図 1 1 4は、 実施例 4における回折レンズ構造 A 1 (領域 1 )及 び回折レンズ構造 A 2 (領域 2 ) の回折レンズ関数である。 実施例 4の回折レンズ構造 A 1及び A 2は、それぞれが形成される光軸からの 高さの範囲において単調減少となっている。従って、回折レンズ構造 Aの実際の 形状は、内周部から外周部にいくに従つて巨視的非球面よりレンズが薄くなる方 向にブレーズ化していき、回折レンズ関数が整数となる光軸からの高さ h l〜h 2 1において、 レンズが厚くなる方向に段差を形成することになる。
回折レンズ構造 A 1 (領域 1 ) については、 上記の実施例と同様に B Dと C D の回折効率の均衡を考慮して位相段差の深さを決定するとともに、中心面及び輪 帯面 2〜輪帯面 9の面形状を表 3 8に示す非球面形状とした。つまり、光軸上に ある中心面は表 3 8に示す非球面形状そのものであり、輪帯面 2〜輪帯面 8は表 3 8に示す非球面がそれぞれの段差量に応じた分だけ光軸方向にずれている輪 帯状の面である。
表 3 8
Figure imgf000105_0001
また、実施例 4における回折レンズ構造 A 2 (領域 2 )で採用した回折次数組 み合わせでは、上記め実施例と同様に B Dに対する回折効率が 1 0 0 %となるよ うにブレーズ化すると、 D VDに対する回折効率が 5 7 . 3 %と低くなつてしま う。 そこで、 実施例 4では回折レンズ構造 A 2 (領域 2 ) においても回折レンズ 構造 A 1 (領域 1 ) と同様に段差量と面形状を変更して B Dに対する回折効率と D V Dに対する回折効率の均衡を考慮した。 表 3 9は、 輪帯面 1 0〜輪帯面 2 1の非球面形状デ一夕である。つまり、輪帯 面 1 0〜輪帯面 2 1は表 3 9に示す非球面がそれぞれの段差量に応じた分だけ 光軸方向にずれている輪帯状の面である。
表 3 9
Figure imgf000106_0001
さらに、 回折レンズ構造 A 1 (領域 1 ) を通る波面、 回折レンズ構造 A 2 (領 域 2 )を通る波面及び回折レンズ構造が施されていない領域を通る波面の全ての 位相を揃えるため、それぞれの境界に存在する位相段差 9と位相段差 2 1の深さ を調整し、 回折レンズ構造 Aの実際の面形状データが設計できる。
回折レンズ構造 B 1の形状データは、実施例 2及び実施例 3と同様の手順で設 計できるので詳細な説明は省略する。
図 1 1 5及び図 1 1 6は、このようにして求めた回折レンズ構造 B及び回折レ ンズ構造 Aの断面形状の模式図である。実施例 4の回折レンズ構造 Aは、上記の 実施例と異なり、対物レンズ単体が有する色収差を相殺する方向の色収差を有す る。 また、 使用している回折次数が高いことから、 その色収差の絶対量も多いた め、対物レンズの色収差補正にかなり貢献している。従って、 回折レンズ構造 B においては、回折レンズ構造 Aが施される内周部にそれほど多くの位相段差を必 要としなかった。
このようにして求めた回折レンズ構造 Bと回折レンズ構造 Aの形状を合成す 7092
107 ることにより、 実施例 4の回折レンズ構造の形状を求めることができる。
表 4 0は、回折レンズ構造 Bと回折レンズ構造 Aを幾何学的に合成した回折レ ンズ構造の形状を表すデータである。
表 4 0
Figure imgf000107_0001
灰色で塗られているデータは、 回折レンズ構造 Bを構成していた位相段差で、 そうでないものは回折レンズ構造 Aを構成していた位相段差のデ一タを表す。 実施例 3の場合と同様に、回折レンズ構造 Aを構成していた位相段差と回折レン ズ構造 Bを構成していた位相段差を適宜合成して位相段差数を減らすことによ り、実質的な回折効率の低下を防ぐとともに、量産上好ましい形状の回折レンズ 構造を設計できる。
表 4 1に示すデータは、このような手順で得られた実施例 4における回折レン ズ構造の形状データである。灰色で塗られているデータは、合成された位相段差 を示すものである。上記のように、段差を適宜合成して位相段差数を減らすこと により、 4 9段必要であった位相段差を 4 2段まで削減することができた。 表 4 1
Figure imgf000108_0001
表 4 2は、実施例 4の回折レンズ構造の中心面及び輪帯面 2〜輪帯面 1 0の非 球面形状を表すデータである。つまり、光軸上にある中心面は表 4 2に示す非球 面形状そのものであり、輪帯面 2〜輪帯面 1 0は表 4 2に示す非球面がそれぞれ の段差量に応じた分だけ光軸方向にずれている輪帯状の面である。
表 4 2
Figure imgf000108_0002
表 4 3は、輪帯面 1 1〜輪帯面 2 4の非球面形状を表すデータである。つまり、 輪帯面 1 1〜輪帯面 2 4は表 4 3に示す非球面がそれぞれの段差量に応じた分 だけ光軸方向にずれている輪帯状の面である。
表 4 3
Figure imgf000109_0001
位相段差 2 4より外側にある輪帯面 2 5から輪帯面 4 2及び外周面 (領域 3 ) は、 全て光軸に垂直な平面である。
図 1 1 7は、実施例 4における回折レンズ構造断面の模式図であるが、回折レ ンズ構造を構成する位相段差は全てマイナス方向で同一なため、金型の製造が容 易となり、金型に材料が残留しにくいため成形不良を起こしにくくなるとともに 金型が長寿命化する。つまり、実施例 4のような設計方法を採用することにより、 金型を高精度に加工することが容易となり、成型不良が減少し、金型が長寿命化 するため、回折光学素子の高品質維持及びコストダウンに多大な効果をもたらす。 図 1 1 8〜図 1 2 0は、実施例 3の形状のデータにより計算した波面収差であ る (条件は上記実施例と同様)。 B D、 D VD及び C Dの全てにおいて、 それぞ れの有効径内側における波面の位相は揃っている。波面に鋸波状の収差が存在し ているが、 これらはスポット形状に悪影響を及ぼさないので、 問題ない。
図 1 2 1〜図 1 2 6は、回折レンズ構造の実際の面形状による収差を用いて計 算した波動光学的スポッ卜形状を示すグラフである(条件は上記実施例と同様)。 D V Dや C Dに関しては、それぞれの有効径外側の光も考慮してスポット形状を 計算している。 B D、 D VD , C D全てにおいて、 通常のレンズで集光した場合 とほぼ同等の良好なスポット形状が得られている。
図 1 2 7〜図 1 3 0は、ディスクチルトに対するスポット形状の変化を計算し た結果である (条件は上記実施例と同様)。 D VD及び C Dのいずれに対しても 通常のレンズの特性との差はわずかであり、本実施例の対物レンズを用いた場合、 特に開口制限を行わなくても従来の D VD用及び C D用の対物レンズを用いた 場合と同等の安定した再生特性が得られることがわかる。
図 1 3 1〜図 1 3 3は、実施例 4のレンズにおいて、光源の波長変動が発生し た場合の最良像面における波面収差形状である (条件は上記実施例と同様)。 な お、 回折光学素子および対物レンズの材料は、波長変動に伴い、 表 2 2に示すよ うに変動するものとする。 これらの波面収差図から、 ± 5 nmの波長変動が発生 しても、若干の鋸波状の波面収差が発生するだけで、波面形状はほとんど悪化し ていないことがわかる。前述したとおり、鋸波状の波面収差は、 スポット形状に 悪影響を与えない。
図 1 3 4〜図 1 3 7は、波長 4 0 3 nm及び 4 1 3 nmにおけるスポット形状 を設計波長である 4 0 8 nmにおけるスポット形状を示すグラフである(条件は 上記実施例と同様)。 図からもわかるとおり、 実施例 4の回折光学素子を用いた レンズによれば、士 5 nmの波長変動に対してスポッ卜形状はほとんど劣化しな いことがわかる。 '
図 1 3 8は、実施例 4の回折光学素子を用いたレンズの波長変動に対する最良 像面の移動量を計算した結果である (条件は上記実施例と同様)。 実施例 4のレ ンズでは波長変動に対する最良像面位置の移動量が、対物レンズ単体の場合や実 施例 3のレンズを用いた場合に比べてはるかに軽減しており、波長変動に対して 非常に安定した性能が得られることがわかる。
(実施例 5 )
第 5実施例は、第 1実施例と同様に第 1情報記録媒体である B D、第 2情報記 録媒体である D V D、第 3情報記録媒体である C Dの互換記録再生を可能とする ための回折光学素子で、 B D用両面非球面レンズと組み合わせて構成される。 レ ンズ系の構成おょぴ B D、 D VD , C Dに対する設計条件は表 4 4に示すとおり である。
表 4 4
Figure imgf000111_0001
実施例 5の回折光学素子は、図 1 3 9に示すように、片面に回折レンズ構造が 形成されており、 もう片面は平面となっている。 図 1 4 0は、実施例 5の回折光 学素子の模式断面図である。回折レンズ構造は、異なる特性を有する複数の回折 レンズ構造が同心円状に構成されており、内周部の領域 1には回折レンズ構造 1 および回折レンズ構造 3が合成されて構成されており、中周部の領域 2には回折 レンズ構造 2が構成されており、 外周部である領域 3は平面である。
なお、 本実施例 5の回折光学素子は、 実施例 1の場合と同様に色収差補正用の 回折レンズ構造を持たず、球面収差補正用回折レンズ構造のみで構成されている。 領域 1は、図 1 4 0に示すように第 4有効径内の内周部の領域であり、領域 2 は、内径が第 4有効径で外径が第 5有効径である輪帯状の領域であり、領域 3は 2005/017092
112 内径が第 4有効径で外径が第 1有効径である輪帯状の領域を表す。
回折レンズ構造 1、回折レンズ構造 2および回折レンズ構造 3で利用する回折 次数の組み合わせは、表 45の構造 1、構造 2及び構造 3に示すコラムのとおり である。
表 45
Figure imgf000112_0001
実施例 5の回折レンズ構造 1は、 BD用光源に対しては収差補正効果を持たず、 D VD用光源と C D用光源には収差捕正効果を持たせるため、 B Dで 3次回折光、. DVDと CDで 2次回折光を利用することとし、 C Dに対して収差補正がなされ るように設計されている。回折レンズ構造 1は、 DVDに対しても収差補正効果 を有しているが、 完全に補正することはできない。
実施例 5の回折レンズ構造 2は、 B D用光源と C D用光源に対して収差補正効 果を持たず、 DVD用光源に対してのみ収差補正効果を持たせるため、 BDで 2 次回折光、 DVDと CDで 1次回折光を利用することとし、 DVDに対して収差 補正効果がなされるように設計されている。
実施例 5の回折レンズ構造 3は、 BD用光源と CD用光源に対して収差補正効 果を持たず、 DVD用光源に対してのみ収差補正効果を持たせるため、 BDで 2 次回折光、 D VDと C Dで 1次回折光を利用することとし、回折レンズ構造 1で 完全に補正しきれなかった D V Dに対する収差を補正するように設計されてい る。
回折レンズ構造 1を設計する際の C Dの像面位置は、実施例 1の場合と同様に 設定されているので、その有効径である第 4回折有効径の大きさは、回折光学素 子における C Dの有効径に対応する第 3回折有効径ょり小さく設定することが 可能となっている。
実施例 5の回折レンズ構造 2の設計においては、 これまでの実施例と異なり、 '回折レンズ構造 2の有効径を、回折光学素子における D V Dの有効径に対応する 第 2回折有効径ょり小なる第 5回折有効径とすることを可能とするための工夫 がなされている。すなわち、 図 1 4 1に示すように、修正前の縦球面収差が領域 3内で、且つ D V D有効径内である領域 5内のどこか 1点でゼロとなるような位 置に、 D VD用レーザ光の所望とする回折光の集光位置を設定し、 D VD用有効 径より外径が小さくなるように領域 2を制限している。位相段差の 1周の長さは、 外周に行くほど長くなるため、外周に行くほど位相段差の製造誤差による光量損 失は大きくなり好ましくない。 このような観点から、実施例 5の回折レンズ構造 では、位相段差の存在する領域が、 D VDの有効径より小さく設定されているた め、 好ましい。
表 4 6は、 実施例 5の具体的な設計結果の近軸データである。 表 4 6
Figure imgf000114_0001
なお、表 4 6に示す近軸デ一夕では、第 1面から第 5面までの 5面を用いて 回折レンズ構造を示しているが、これはあくまで設計上の表記によるものであり、 実際の面形状を求める際には、これら 5つの面の設計結果を合成して一つの面形 状を求める。表 4 7は、実施例 5における回折レンズ構造 1、 回折レンズ構造 2 および回折レンズ構造 3の巨視的非球面形状および対物レンズの非球面形状を 表す。
表 4 7
Figure imgf000114_0002
表 4 8および表 4 9は、回折レンズ構造 1、回折レンズ構造 2および回折レン ズ構造 3の位相関数係数および利用する回折次数である (λ。= 4 0 8 nm)。 表 4 8
Figure imgf000115_0001
表 4 9
Figure imgf000115_0002
以下に回折レンズ構造の形状を求める課程を説明する。
回折レンズ構造の実形状の求め方は、 まず、 回折レンズ構造 1、 回折レンズ構 造 2および回折レンズ構造 3それぞれの実形状をそれぞれの回折レンズ関数、巨 視的非球面形状および使用する回折次数を用いて求める。すなわち、 これまでの 実施例と同様に、回折レンズ関数が整数となる光軸からの高さを求め、視的非球 面上のその高さに所定の回折光が発生するよう、適切な方向及び深さの位相段差 を形成する。 つづいて、 これらの実形状を幾何学的に足し合わせることにより、 それらを一つの面に合成する。
以下にその具体的な課程を説明する。
回折レンズ構造 1の実形状の求め方に関しては、実施例 1の回折レンズ構造 1 と設計結果が同じであるので、実形状も同様にして求められるため、詳細な説明 は省略する。
次に、 回折レンズ構造 2の実形状の求め方に関して説明する。 図 1 4 2は、 回 折レンズ構造 2の回折レンズ関数を表すグラフである。回折レンズ構造 2の回折 レンズ関数は、領域 2において単調減少となっているので、 回折レンズ構造の内 周部から外周部に行くに従って巨視的非球面形状より薄くなる方向にブレーズ 化していき、回折レンズ関数が整数となる光軸からの高さ; h 2 0 l〜h 2 2 1に おいて、 レンズが厚くなる方向に段差を形成する。位相段差量は、 B Dにおいて 2次光の回折効率が 1 0 0 %となるように決定するが、 この場合、位相段差で区 切られた複数の輪帯状の面は、 全て光軸と垂直な平面となる。
次に、 回折レンズ構造 3の実形状の求め方に関して説明する。 図 1 4 3は、 回 折レンズ構造 3の回折レンズ関数を表すグラフである。回折レンズ構造 3の回折 レンズ関数は、領域 1において単調減少となっているので、回折レンズ構造の内 周部から外周部にいくに従って巨視的非球面形状より薄くなる方向にブレーズ 化していき、回折レンズ関数が整数となる光軸からの高さ h 3 0 1〜! 3 2 4に おいて、 レンズが厚くなる方向に段差を形成する。位相段差量は、 B Dにおいて 2次光の回折効率が 1 0 0 %となるように決定するが、 この場合、位相段差で区 切られた複数の輪帯状の面は、 全て光軸と垂直な平面となる。
以上のようにして、回折レンズ構造 1、回折レンズ構造 2および回折レンズ構 造 3の具体的な形状がそれぞれ求まったら、それらを一つの面に合成する。特に 回折レンズ構造 1ど回折レンズ構造 3は共通の 域に形成されるので、これら 2 つの回折レンズ構造を合成する際に、実施例 3や実施例 4の場合と同様に、性能 に支障のでない範囲で合成できる段差を全て合成することにより、全ての波長に おいて大幅な回折効率の低下のない回折レンズ構造を実現することができる。 また、 このように位相段差を合成することにより、位相段差の間隔が広がるの みならず、金型などの製造誤差による実質的な回折効率の低下を防ぐことができ るため好ましい。
表 5 0は、実施例 5の回折レンズ構造の具体的な形状を示す回折レンズ構造形 状データである。表 5 0で、 灰色に塗られているデータは、 回折レンズ構造 1を 構成する位相段差と回折レンズ構造 3を構成する位相段差を合成した段差であ る。
表 5 0
Figure imgf000117_0001
実施例 5の回折レンズ構造は、 4 9段の位相段差とそれにより分割された中心 面、輪帯面 2〜輪帯面 4 9の合計 4 8の輪帯面および外周面によって構成されて いる。 実施例 5における回折レンズ構造 1を構成する位相段差の深さは、 + 0. 0 0 2 5 1 5 0 mmであるが、最外周の位相段差は、 B D、 D VDおよび C Dの 全てに対して領域 1と領域 2の位相を合わせるため + 0 . 0 0 3 8 7 5 mmと深 めに設定されている。回折レンズ構造 2および回折レンズ構造 3を構成する位相 段差の深さは、 どちらも— 0 . 0 0 1 4 9 8 0 mmである。
実施例 5の回折レンズ構造 1では、第 1領域の有効径に対応する半径は 1 . 0 0 7 mmであり、そこには段差 1から段差 2 9が存在する。表 5 0からも明らか なように、 領域 1内には、 回折レンズ構造 1を構成する位相段差、 回折レンズ構 造 3を構成する位相段差および回折レンズ構造 1と回折レンズ構造 3を構成す る位相段差を足し合わせた深さの位相段差が存在する。また、領域 1の最外周の 位相段差である段差 2 9は、 合成された位相段差であるが、 上記の通り、 B D、 D VDおよび C Dの全てに対して領域 1と領域 2の位相をそろえるように深め に設定されているので、他の合成された位相段差とは位相段差量が異なる。つま り、 段差 2 9は、 他の合成された位相段差である、 段差 2、 段差 8、 段差 1 9よ りプラス方向に深い段差としている。
これにより、領域 1内には、 4種類の異なる深さの位相段差が 2 9段存在する こととなる。
また、実施例 5の回折光学素子においては、合成される回折レンズ構造 1を構 成する位相段差と、回折レンズ構造 3を構成する位相段差の符号が逆なので、 こ れらを合成することにより、合成された位相段差は浅くなる。 この場合、壁面の ダレによる実質的な回折効率の低下を防ぐことができるため好ましい。
すなわち、 このように逆符号の位相段差を合成すると、位相段差に微小な突起 やくぼみ形状が無くなる。一般に、微小な突起や窪みを成形するための金型を製 造する場合、その細かさに応じて加工機の先端を細くする必要があるが、加工機 の先端が細くなると、剛性不足により高精度に金型を加工することが困難となる。 また、金型が窪みとなるような形状の場合、成型時に材料が窪みに残留しやすく ため、回折レンズ構造の成形不良を起こすとともに、金型の寿命が短くなつてし まう。位相段差合成前の回折レンズ構造にはこのような欠点があつたが、本実施 例のように深さ方向の異なる位相段差を合成して回折レンズ構造を設計するこ とにより、 このような欠点を回避することができる。つまり、 実施例 5のような 設計方法を採用することにより、金型を高精度に加工することが容易となり、成 型不良が減少し、金型が長寿命化するため、回折光学素子の高品質維持及びコス トダウンに多大な効果をもたらす。
領域 1においては、 B Dにおける回折効率と C Dにおける回折効率の均衡を考 慮して回折レンズ構造 1の位相段差量が設定されており、領域 1内に存在する中 心面および輪帯面 2から輪帯面 2 9の面形状は表 5 1に示す非球面形状とした。 つまり、光軸上にある中心面は表 5 1に示す非球面形状そのものであり、輪帯面 2〜輪帯面 2 9は表 5 1に示す非球面がそれぞれの段差量に応じた分だけ光軸 方向にずれている輪帯状の面である。
表 5 1
Figure imgf000119_0001
領域 2に存在する輪帯面 3 0から輪帯面 4 9および外周面はすべて光軸に垂 直な平面である。
図 1 4 4は、実施例 5の回折光学素子に形成されている回折レンズ構造の断面 図を模式化したもので、光軸からの高さに対する面のサグ量を表すグラフである。 図 145、図 146および図 147は、実施例 5の回折光学素子を用いた対物 レンズモジュールにおける BD、 DVD、 CDの波面収差であるが、 BD、 DV D、 CDの全てにおいて、それぞれの有効径内において各回折レンズ構造を通過 する波面の位相がほぼ揃っていることがわかる。
図 148、 図 149、 図 150、 図 151、 図 152および図 153は、 回折 レンズ構造の実際の形状による収差を用いて計算した波動光学的スポット形状 を表すグラフであり、縦軸に光強度を横軸に半径距離を表す。 図 148、 図 14 9および図 150は、それぞれ BD、 DVD及び CDにおけるスポット形状全体 を、 図 151、 図 152および図 153はそれぞれ BD、 DVD及び CDにおけ るスポットのサイドロ一ブを示す。 BDの集光スポットは、メインのスポットが 通常のレンズで集光した場合よりやや小さく、サイドローブがやや大きい。 これ は領域 1で内周部の回折効率を若干落としたために、アポディゼーション効果が 発生しているからであるが、 この程度であれば記録再生においては問題ない。ま た、光源として利用される半導体レーザは、一般に中心から周辺に行くに従って 強度が弱くなつてくるので、実施例 5のように内周部の効率を落としてアポディ ゼーション効果を発生させた方がむしろ好ましい場合もある。 DVDや CDに関 しては、それぞれの有効径外側の光も考慮して有効径 Φ (BD) にてスポット形 状を計算している。すなわち、 スポッ卜形状は、特別な開口制限素子を使用せず に集光したスポット形状になるのだが、特に開口制限を行わなくとも、通常の D VD用対物レンズや CD用対物レンズとほぼ同じスポット形状が得られている。 図 154、 図 155、 図 156および図 157は、 ディスクチルトに対するス ポット形状の変化を計算した結果を示すグラフである。図 154及び図 155は それぞれ D V D及び C Dにおけるスポットの半値幅の変化を示しており、縦軸に 半値幅を横軸にディスクチルト角度を示す。図 156及び図 157はそれぞれ D VD及び CDにおけるサイドロ一ブ強度の変化を示しており、縦軸にスポットの サイドローブ強度を横軸にディスクチルト角度を示す。 D V D及び C Dのいずれ に対しても通常のレンズとほぼ同等の特性を示していることから、本実施例の対 物レンズを用いた場合、特に開口制限を行わなくても従来の DVD用及ぴ CD用 の対物レンズを用いた場合と同等の安定した再生特性が得られることがわかる。 以上のように、実施例 5のレンズによれば、特に開口制限を行わなくても従来 の DVD用及び CD用の対物レンズを用いた場合と同等の安定した再生特性が 得られることがわかる。
(H D— D V D用対物レンズへの応用例)
B D以外の青色光源を利用した次世代光ディスクシステムとして、透過保護層 厚さ 0. 6mm、 対応波長 400〜410 nm、 対物レンズの開口数が 0. 65 である H i gh D e n s i t y-DVD (以下 HD— DVDという)が提案さ れている。 HD— DVDは、対物レンズの開口数や透過保護層の厚さが DVDと 同じ値であるため、 HD— DVD用に設計された対物レンズを用いれば D V Dの 再生も可能なように思われる。 しかしながら、実際はレンズ材料の屈折率が波長 によって異なるため、 HD— DVD用に設計された通常の非球面レンズでは、球 面収差が発生し、 DVDの再生が困難となる。 CD再生の場合は、 さらに透過保 護層の厚みも異なるので、 やはりそのままでは再生が困難となる。従って、 HD 一 DVD用対物レンズを用いて DVDや CDの互換記録再生を行うためには、前 述の BD、 DVD, CD互換対物レンズモジュールと同様に、 回折レンズ構造を 用いて収差を補正する必要がある。
HD— DVD、 DVD、 CDにおける対物レンズの開口数の規格値は、 それぞ れ 0. 65、 0. 60, 0. 45である。 従って、 対物レンズの有効径は HD— DVDで最も大きくなり、ついで DVD、 CDと言う順番で小さくなる。つまり、 D V Dや C Dにおいてそれぞれ異なる大きさの開口制限を行う必要がある。この ように、 HD— DVD/DVDZCD互換対物レンズモジュールにおいても、前 述の BDZDVDZCD互換対物レンズ又はそのモジュールの場合と同様の課 題が存在する。その課題は本実施形態の HD— DVDZDVDZCD互換対物レ ンズ又はそのモジュール或いは回折光学素子を用いることで解決することがで きる。 つまり、 回折光学素子に形成された回折レンズ構造は、 図 158 aに示す ように、少なくとも基板の片面に設けられ且つ対物レンズの記録媒体に対応した 有効径に応じて異なる半径位置で画定された複数の領域にて、 区画されている。 回折レンズ構造は、透過保護層の厚さの違いや波長の違いによる球面収差を補正 するように、 形成されている。
HD-DVD/DVD/C D互換対物レンズモジュールの回折レンズ構造の 具体的な構造は以下のとおりである。
最内周の領域 1では、第 1レーザ光(HD— DVD用レーザ光、波長 408 n m) に対しては球面収差補正効果が無く、 第 2レ一ザ光(DVD用レーザ光、 波 長 660 nm) 及び第 3レ一ザ光 (CD用レーザ光、 波長 780 nm) に対して は球面収差補正効果がある回折レンズ構造を実現できる回折光の組み合わせ {例 えば(HD— DVD: 1次光、 DVD: 1次光、 CD: 1次光)、 (HD-DVD: 3次光、 DVD: 2次光、 CD: 2次光)、 (HD-DVD: 7次光、 DVD: 4 次光、 CD: 3次光)、 (HD-DVD: 9次光、 DVD: 5次光、 CD: 4次光) } を利用できるように第 1回折レンズ構造 (第 1収差補正手段)が形成されている。 なお、 HD— DVDZDVDZCD互換対物レンズモジュールにおいては、 (H D-DVD: 5次光、 DVD: 3次光、 CD: 2又は 3次光) の組は、 HD— D VD用レーザ光及び DVD用レーザ光で回折レンズ構造を構成する位相段差で 発生する位相差が揃つてしまうが、 D V Dに対して発生する球面収差が小さいの で、 この組も有効な組み合わせとして考えることができる。
領域 1より外側の中周部にある領域 2には、 HD— D VD用レ一ザ光及び C D 用レーザ光に対しては球面収差補正効果が無く、 D VD用レ一ザ光に対してのみ 球面収差補正効果がある回折レンズ構造を実現できる回折光の組み合わせ {例え ば (HD-DVD: 2次光、 DVD: 1次光、 CD: 1次光)、 (HD—DVD: 4次光、 DVD: 2次光、 CD: 2次光)、 (HD-DVD: 6次光、 DVD: 4 次光、 CD: 3次光)、 (HD-DVD: 8次光、 DVD: 5次光、 CD: 4次光) } が利用できるように第 2回折レンズ構造 (第 2収差補正手段)が形成されている。 HD— D VDについて 10次回折光の場合、すべての媒体の記録及び再生に対応 したレーザ光に対して回折レンズ構造を構成する位相段差で発生する位相差が ほぼ揃ってしまい、 DVD用レーザ光のみに対して選択的に収差補正効果を与え られない。 よって、 回折レンズ構造は、 HD— DVD用レーザ光が第 2回折レン ズ構造を通過した場合に発生する回折光のうち、回折効率が最大となる回折次数 が 10の倍数を除く偶数となるように設計されている。回折レンズ構造を構成す る位相段差の深さに関しては、要求仕様に応じて HD— DVD用レーザ光の回折 効率が最大となるような光路長差を発生するように設定してもよいし、 HD— D VD用レーザの回折効率と DVD用レーザの回折効率とのバランスを取ること を考慮してもよい。 また、鋸波状の波面収差が発生する場合は、 領域 1の場合と 同様に、最外周の位相段差のみ、発生する光路長差が異なるように設計するとよ り良好な集光特性が得られるようになるため、 好ましい。
領域 2より外側の外周部にある領域 3には、全ての波長に対して球面収差補正 効果の無いような回折レンズ構造を実現できる回折光の組み合わせ(例えば、 H D-DVD: 10次光、 DVD: 6次光、 CD: 5次光) が利用できるように第 3回折レンズ構造(第 3収差補正手段)が形成されている。 また、 領域 3は回折 レンズ構造を形成しなくともよい (ゼロ次光のみ透過)。 よって、 所定の HD— DVD用開口数 0. 65が実現される。
次に、 DVD/CDで異なる量の球面収差を補正する手段に関して説明を行う。 DVDの透過保護層 (基板)厚みは 0. 6mmで CDの透過保護層 (基板) 厚 みは 1. 2 mmであるため、 補正すべき球面収差量が異なる。 つまり、 HD— D VDZDVD互換用に設計された回折レンズ構造では、 CDに対して球面収差を 完全に補正することはできない。同様に、 HD— DVDZCD互換用に設計され た回折レンズ構造では、 DVDに対して球面収差を完全に補正することはできな い。 これは、 回折レンズ構造を構成する一つの位相段差で補正できる収差量 [r ound [(Ν—1〉 Χά/λ] 一 {(Ν- 1) Xd/λ}] λの値の比率を、 D VDと C Dの補正すべき球面収差量の比率と同じ値にすることができないから である。 このような場合、 DVDもしくは CDのどちらかの入射光を発散光もし くは収束光にすることにより、回折レンズ構造にて補正しきれなかった球面収差 を補正することが可能である。 しかしながら、たとえば HD— DVDZDVDを 平行光入射とし、 CDのみ発散光もしくは収束光とした場合、 ピックアップの構 成が複雑になつてしまうといつた問題があり、このような観点から H D— D V D /DVD/CDの全てが平行光入射であることが望ましい。
これを実現する方法は、前述の BD/DVD/CD互換レンズモジュールの場 合と同じである。すなわち、第 1の方法としては、 図 158 bのような構成にお ける DVDZCDで共用される領域 1に形成される第 1回折レンズ構造の設計 において、 DVDで補正すべき球面収差と CDで補正すべき球面収差量の中間の 量の球面収差を補正するように設計し、 D V Dと C Dで残留する球面収差量のバ ランスをとる方法が考えられる。 また、第 2の方法としては、 図 158 cに示す ように領域 1に第 1回折レンズ構造と HD— DVD用レーザ光に対して 10を 除く偶数次の回折光を発生する第 4回折レンズ構造を混在させる方法が考えら れる。 この方法では、 まず第 1回折レンズ構造を HD— DVDZCD互換用に設 計する。第 1回折レンズ構造は、 DVD用レーザ光に対しても球面収差補正効果 を有するが、その補正量が補正すべき球面収差量と異なるため、それらの差分に 相当する球面収差が残留する。この DVDにおける残留する球面収差を補正すベ く第 2回折レンズ構造と同様に H D— D V D用レーザ光に対して偶数次の回折 光を発生する第 4回折レンズ構造を追加して残留収差を補正する。第 4回折レン ズ構造は HD— D VD用レーザ光に対して収差補正効果を持たず、且つ偶数次の 回折光を発生するように設計されているので、 CD用レ一ザ光に対しても収差補 正効果を持たない。つまり、第 4回折レンズ構造を追加したことによる CDの波 面に対する悪影響はない。 この方法では、 DVDZCDの双方において領域 1に おける収差を十分小さい値に抑える設計が可能となる。なお、設計結果によって は、第 1回折レンズ構造を構成する位相段差と第 4回折レンズ構造を構成する位 相段差の間隔が非常に小さくなる場合があるが、その場合はそれら 2つの位相段 差を合成して 1つの位相段差とすることにより位相段差の総数を減らすことが 可能となる。すなわち、 2つの隣接する位相段差の段差量を足し合わせた段差量 の段差を、それらの位相段差があったどちらかの位置あるいはその間のどこかに 配置すればよい。 このように、 位相段差を合成した場合、 それぞれの位相段差が 本来の設計値からわずかにずれるため、若干の性能劣化が発生するが、合成する 2つの位相段差が近接している場合、そのずれは小さいため、性能劣化は問題と ならない。 ί1のように 2つの位相段差を合成することにより 2つ必要であった位 相段差の数を一つに減らすことができるため、 金型製造が容易となり好ましく、 成型時の離型性が向上するため、金型寿命が長寿命化し、 さらに成形不良率も低 減されるので好ましい。
第 3の方法としては、図 1 5 8 dに示すように、 D VDZ C Dの共用設計領域 である領域 1を C Dの有効径に対応する第 3回折有効径より小さくし、開口数を 減らすことによって、 補正しきれず残留する球面収差量を減らすことができる。 たとえば、 D VDZC D共用設計領域を 8 0 %程度にした場合、残留する球面収 差量は 4 1 %程度まで低減される。特に、 HD— D VDと DVDは、透過保護層 の厚さが等しいため、 DVDで発生する球面収差量はそれほど大きくない。従つ て、 D VD/C D共用領域を狭くすることによって、 この領域においては、 DV D用光源に対しては球面収差補正を行う必要が無くなる場合もある。なお、単に 共用設計領域を減らすと、 C Dに対する開口数が小さくなつてしまうため、 C D の記録及び再生に支障を来す。 しかしながら、前述の B DZD VDZC D互換レ ンズモジュールの場合と同様に C D用レーザ光の集光位置を設定することによ り、 C Dに対しても所定の開口数を得ることができる。すなわち、第 1回折レン ズ構造を設計する際に、 C Dにおける第 4領域のどこかに縦球面収差がゼロとな るような像面位置を設定することにより、 領域 1の狭小化が可能となる。 また、 この設計方法では、領域 1に複数の回折レンズ構造を構成する位相段差が混在し ないので、位相段差数の増加を伴わない設計が可能となるため好ましい。さらに、 前述の通り、特に領域 1では HD— D V D用レーザ光との回折効率のバランスを 考慮する必要があるが、領域 1の面積が狭小化されているため、 C D用レーザ光 の回折効率を考慮して HD— D VDの回折効率を落としたとしても、その影響は 狭小化しない場合に比べて小さく抑えることができるので好ましい。
図 1 5 9は、 対物レンズモジュールの動作を示す。
図 1 5 9 (A) に示すように A HD_DVDの第 1レーザ光が略平行光として回折 光学素子 1 6 bに入射するとき、全ての領域を通る光はそのまま略平行光として HD— D VD用対物レンズ 1 6 aへ導かれる。対物レンズ 1 6 aにより集光され た光は、 HD— D VD用保護層を通過し、 信号記録面上に集光される。
また、 図 1 5 9 (B) に示すように、 A DVDの第 2レーザ光が略平行光として 入射するとき、回折光学素子における D VDの有効径に対応する第 2回折有効径 内の領域 1、領域 2を通過する光は、 HD— D VD用対物レンズ 1 6 aにより集 光され、 D V D用保護層を通過し、 信号記録面上に集光される。 一方、 回折光学 素子における第 2回折有効径外を通過した光は、レンズ 1 6 aによって集光され D VD保護層を通過するが、球面収差が補正されず、フレアとなるので再生に寄 与しない。 さらに、 図 159 (C) に示すように、 λ CDの第 3レーザ光が略平行光とし て入射するとき、 CDの有効径に相当する第 3回折有効径内の領域 1及び領域 4 を通過する光は、 HD— DVD用対物レンズ 16 aにより集光され、 CD用透過 保護層を通過し、信号記録面上に集光される。一方、第 3回折有効径外を通過し た光は、対物レンズ 16 aにより集光され、 CD用透過保護層を通過するが、球 面収差が補正されず、 フレアとなるので再生に寄与しない。
また、 DVDおよび CDで要求される対物レンズの開口数は、規格ではそれぞ れ 0. 6および 0. 45と規定されているが、 実際の製品では、 それらよりやや 大きめの開口数の対物レンズを用いた方が良い性能が得られる場合がある。特に 記録を考慮した場合、 DVDにおいては開口数 0. 65程度、 CDにおいては開 口数 0. 5程度の対物レンズが用いられる場合が多レ^例えば、 DVDに対する 開口数を 0. 65、 とした場合、 HD— DVDと DVDは開口数が同じになるの で、 有効径も同じになるように思われる。 しかしながら、 実際は、 HD— DVD と DVDでは、光源波長が異なることにより、対物レンズの焦点距離が異なるた め、 対物レンズにおける有効径(2 X焦点距離 X開口数) も異なってくる。 一般 に、硝材の屈折率は、そこを透過する光の波長が短くなるほどなるほど高くなる ため、 HD— DVD用非球面対物レンズの焦点距離は短波長になるほど短くなる 傾向にある。 よって、光源波長の短い HD— DVDに比べて、 DVDでは対物レ ンズの焦点距離が長くなり、 その結果、 有効径は広くなる。 このような場合、 対 物レンズモジュールでは、 DVDの有効径が最も大きくなり、次いで HD— DV Dの有効径が大きく、 CDの有効径が最も小さくなる。つまり、対物レンズモジ ユールの有効径は、 DVDの有効径と等しくなり、 回折レンズ構造によって HD TJP2005/017092
129
— D V Dと C Dに対して異なる大きさの開口制限を行うことになる。
このような機能は、 図 160 a、 図 160 b、 および図 160 dのような構成 の回折光学素子と HD— DVD用の対物レンズを組み合わせた対物レンズモジ ユールにて実現できる。 ここで、 図 160 a、 図 160 b、 および図 160 cに 示す光学素子の領域 3では、 D V Dに対してのみ収差補正効果を有するように面 形状を設定する必要がある。
また、前記光学素子と組み合わせて使用される対物レンズ 16 aに DVD用対 物レンズを用いる場合は、以下のようにそれぞれの回折レンズ構造を設計すれば よい。
すなわち、図 160 a、図 160 bおよび図 160 cにおける第 1回折レンズ 構造には、 DVDに対しては収差補正効果が無く、 HD— DVDと CDに対して は収差補正効果を有する回折レンズ構造を構成する。
また、第 2回折レンズ構造には、 DVDと CDに対しては収差補正効果が無く、 HD— DVDに対してのみ収差補正効果を有する回折レンズ構造を構成する。 また、第 3回折レンズ構造には、 HD— DVDZDVDZCD全てに対して収 差補正効果を持たないような回折光の組み合わせ(例えば、 HD— DVD: 10 次光、 DVD: 6次光、 CD: 5次光) が利用できるように第 3回折レンズ構造 を構成するか、あるいは、回折レンズを構成しなくとも良い(ゼロ次光のみ透過)。 また、図 160 bにおける第 4回折レンズ構造には、第 2回折レンズ構造と同 様に、 DVDと CDに対しては収差補正効果が無く、 HD— DVDに対してのみ 収差補正効果を有する回折レンズ構造を構成する。
それぞれの回折レンズ構造で使用する回折次数は、基本的に H D— D V D用対 物レンズと組み合わせて使用する場合と同様に決定して良い。
例えば、 回折レンズ構造 1に関しては、 {例えば、 (HD— DVD : 1次光、 D VD: 1次光、 CD: 1次光)、 (HD-DVD: 3次光、 DVD: 2次光、 CD: 2次光)、 (HD-DVD: 5次光、 DVD: 3次光、 CD: 2又は 3次光)、 (H D-DVD: 7次光、 DVD: 4次光、 CD: 3次光)、 (HD-DVD: 9次光、 DVD: 5次光、 CD: 4次光) } を利用できるように設計すればよいし、 回折 レンズ構造 2および回折レンズ構造 4に関しては、 {例えば、 (HD— DVD: 2 次光、 DVD: 1次光、 CD: 1次光)、 (HD-DVD: 4次光、 DVD: 2次 光、 CD: 2次光)、 (HD-DVD: 6次光、 DVD: 4次光、 CD: 3次光) }、
{(HD-DVD: 8次光、 DVD: 5次光、 CD: 4次光) }が利用できるよう に設計すればよいし、 回折レンズ構造 3に関しては、 (例えば、 HD— DVD :
10次光、 DVD: 6次光、 CD: 5次光)が利用できるように設計すればよい。 すなわち、前述の BDZDVDノ CD互換レンズモジュールの場合と同様に、 B Dを HD— DVDに代えて上記数式 (1) 〜 (18) により、 HD— DVD、 D VD及び CD用の回折次数の組み合わせを得ることができる。上記回折次数を発 生する回折レンズ構造であれば、所望とする機能を有する回折光学素子の設計が 可能となるが、それらの中でさらに好ましい組み合わせを以下の表 52から求め ることができる。 表 52
Figure imgf000131_0001
表 52は、 D V Dで利用する回折レンズ構造の回折次数に対する H D-DVD および CDの回折次数、一つの位相段差による収差補正量(利用する回折次数か ら段差で発生する光路長差を差し引いた値)および回折効率を示す。なお、表 5 2に示す回折効率は、 DVD用光源に対して回折効率が 1となるように回折レン ズ構造をブレーズ化した場合の 1例であり、実際の設計においては、位相段差量 を変えることによって、 HD— DVD、 DVDおよび CDにおける回折効率の均 衡を考慮した設計が可能である。従って、実際の回折レンズ構造における HD— DVD、DVDおよび CDの回折効率の組み合わせは表 52の数値に限定される ものではない。
回折レンズ構造 1は、 DVD用対物レンズを用いた際に、 HD— DVDで発生 する収差と CDで発生する収差を補正する機能を有する必要がある。 この場合、 HD— DVDで発生する球面収差と CDで発生する球面収差は、一般に逆符号に なるので、回折レンズ構造 1を構成する位相段差は、 HD— DVDと CDに対し てそれぞれ逆符号の収差補正量を有することが望ましい。
回折レンズ構造 2は、 HD— DVDに対しては収差補正を行い、 CDに対して は収差補正効果を持たないか、逆に収差をより増大させる効果を有することが望 ましい。 この場合、 回折レンズ構造 2を構成する位相段差は、 HD— DVDと C Dに対してそれぞれ同符号の収差補正量を有することが望ましい。このような回 折次数で H D -DVDの収差補正効果がある回折レンズ構造を設計すると、 C D に対しては球面収差をより増大させることができる。
回折レンズ構造 3は、 HD— DVDおよび CDに対して収差補正効果を持たな い、 あるいは、逆に収差を増大する効果があればよいので、 これを構成する位相 段差は、 HD— DVDと CDの両方に対して収差補正効果を持たない、 あるいは HD— DVDと CDに対してそれぞれ逆符号の収差補正量を有することが望ま しい。回折レンズ構造 3を通過する光は、 HD— DVDと CDの両方にとって不 要な光となるが、もともと D V D用対物レンズと組み合わせて使用しているため、 何もしなくとも球面収差によりフレアとなるので、開口制限をしたのと同様の効 果が得られる。 さらに、 回折レンズ構造 3にて、積極的に収差を付加することに よって、 この領域を通る光の影響を低減できると考えられるが、回折レンズ構造 にて収差を発生させた場合、本来想定している回折次数以外の回折光が発生する 場合があり、 この場合、複数の回折光全てをフレアとすることが困難となる恐れ がある。 このようなことから、 領域 3には回折レンズ構造を形成しないか、 又は 全ての波長に対して収差補正効果が無く且つ回折効率が高い回折次数の組み合 わせ (例えば、 HD— DVD: 10次光、 DVD: 6次光、 CD: 5次光) を適 用することが望ましい。
図 161は、 対物レンズモジュールの動作を示す。
図 161 (A) に示すように AHD_DVDの第 1レーザ光が略平行光として回折 光学素子 16 bに入射するとき、回折光学素子における HD— DVDの有効径に 対応する第 1回折有効径内の領域 1、領域 2を通過する光は、 HD— DVD用対 物レンズ 16 aにより集光され、 HD— DVD用保護層を通過し、信号記録面上 に集光される。 一方、 回折光学素子における第 1回折有効径外を通過した光は、 レンズ 16 aによって集光され DVD保護層を通過するが、球面収差が補正され ず、 フレアとなるので再生に寄与しない。
また、 図 161 (B) に示すように、 ADVDの第 2レーザ光が略平行光として 入射するとき、全ての領域を通る光はそのまま略平行光として HD— DVD用対 物レンズ 16 aへ導かれる。対物レンズ 16 aにより集光された光は、 DVD用 保護層を通過し、 信号記録面上に集光される。
さらに、 図 161 (C) に示すように、 ACDの第 3レーザ光が略平行光とし て入射するとき、 CDの有効径に相当する第 3回折有効径内の領域 1及び領域 4 を通過する光は、 HD— DVD用対物レンズ 16 aにより集光され、 CD用透過 保護層を通過し、信号記録面上に集光される。一方、第 3回折有効径外を通過し た光は、 対物レンズ 16 aにより集光され、 CD用透過保護層を通過す ¾が、球 面収差が補正されず、 フレアとなるので再生に寄与しない。
また、 HD— DVDの有効径と DVDの有効径が揃うように DVDの開口数を 決定した設計例も可能である。 この場合、開口制限は CDに対してのみ行えばよ く、これまで例示してきた回折レンズ構造から最外周の領域 3を排除した形態で HD— DVD DVDZCD互換が実現できるため好ましい。
この場合、回折レンズ構造は図 162 a、図 162 bおよび図 162 cに示す ような形態になる。 図 163は、 HD— DVDの有効径と DVDの有効径が揃うように DVDの開 口数を決定した回折光学素子を用いた対物レンズモジュールの動作を示す。 図 163 (A) に示すように AHDDVDの第 1レ一ザ光が略平行光として回折 光学素子 16 bに入射するとき、全ての領域を通る光はそのまま略平行光として HD— DVD用対物レンズ 16 aへ導かれる。対物レンズ 16 aにより集光され た光は、 HD— DVD用保護層を通過し、 信号記録面上に集光される。
また、 図 163 (B) に示すように、 ADVDの第 1レーザ光が略平行光として 回折光学素子 16 bに入射するとき、全ての領域を通る光はそのまま略平行光と して HD— DVD用対物レンズ 16 aへ導かれる。対物レンズ 16 aにより集光 された光は、 DVD用保護層を通過し、 信号記録面上に集光される。
さらに、 図 163 (C) に示すように、 ACDの第 3レ一ザ光が略平行光とし て入射するとき、 CDの有効径に相当する第 3回折有効径内の領域 1及び領域 4 を通過する光は、 HD— DVD用対物レンズ 16 aにより集光され、 CD用透過 保護層を通過し、 信号記録面上に集光される。一方、第 3回折有効径外を通過し た光は、対物レンズ 16 aにより集光され、 CD用透過保護層を通過するが、球 面収差が補正されず、 フレアとなるので再生に寄与しない。
(実施例 6)
第 6実施例は、第 1情報記録媒体である HD— DVD、第 2情報記録媒体であ る D VD、第 3情報記録媒体である C Dの互換記録再生を可能とするための回折 光学素子で、 HD— DVD用両面非球面レンズと組み合わせて構成される。 レン ズ系の構成および HD— DVD、 DVD、 C Dに対する設計条件は表 53に示す とおりである。 P T/JP2005/017092
135 表 5 3
Figure imgf000135_0001
実施例 6の回折光学素子は、図 1 6 4に示すように、片面に回折レンズ構造が 形成されており、 もう片方は平面となっている。 図 1 6 5は、実施例 6の回折光 学素子の模式断面図である。回折レンズ構造は、異なる特性を有する複数の回折 レンズ構造が同心円状に構成されており、内周部の領域 1には回折レンズ構造 1 が構成されており、 中周部の領域 2には回折レンズ構造 2が構成されており、外 周部である領域 3は平面である。
領域 1は、図 1 6 5に示すように第 4有効径内の内周部の領域であり、領域 2 は、内径が第 4有効径で外径が第 2有効径である輪帯状の領域であり、領域 3は 内径が第 2有効径で外径が第 1有効径である輪帯状の領域を表す。回折レンズ構 造 1および回折レンズ構造 2で利用する回折次数の組み合わせは、表 5 4の構造 1および構造 2に示すコラムの通りである。
表 5 4
構造 1 構造 2
回折次数 1 2 3 4 5 5 6 7 8 Θ 10
HD-DVD
回折効率 1 1 1 1 1 1 1 1 1 1 1 回折次数 1 1 2 2 3 3 4 4 5 5 6
DVD 収差補正置 [λ ] +0.4 -0.2 +0.2 -0.4 0 0 +0.4 -0.2 +0.2 -0.4 0 回折効率 0.573 0.875 0.875 0.573 1 1 0.4 0.875 0.875 0.573 1 回折次数 1 1 2 2 2 3 3 3 4 4 5
CD 収差補正量 [λ ] +0.5 0 +0.5 0 -0.5 +0.5 0 -0.5 0 -0.5 0 回折効率 0.405 1 0.405 1 0.405 0.405 1 0.405 1 0.405 1 実施例 6の回折レンズ構造 1は、 HD— DVD用光源と DVD用光源に対して は収差補正効果を持たず、 CD用光源には収差補正効果を持たせるため、 HD— DVDで 5次光、 DVDで 3次光、 CDで 2次光を利用することとし、 CDに対 して収差補正がなされるように設計されている。
実施例 6の回折レンズ構造 2は、 HD— DVD用光源と CD用光源に対して収 差補正効果を持たず、 DVDに対して収差補正効果を持たせるため、 HD— DV Dで 8次光、 DVDで 5次光、 CDで 4次光を利用することとし、 DVDに対し て収差補正がなされるように設計されている。
回折レンズ構造 1を設計する際の CDの像面位置は、実施例 1の場合と同様に 設定されているので、その有効径である第 4有効径の大きさは、回折光学素子に おける C Dの有効径に対応する第 3有効径ょり小さく設定することが可能とな つている。このように、回折レンズ構造 1の有効径を小さく設定することにより、 この回折レンズ構造が D V D用光源に対して収差補正効果を持たなくても、 D V Dにおいてこの領域で発生する収差は十分小さい値に抑えられている。
表 55は、 実施例 6の具体的な設計結果の近軸データである。
表 55
Figure imgf000136_0001
表 56は実施例 6における回折レンズ構造 1および回折レンズ構造 2の巨視 的非球面形状および対物レンズの非球面形状を表す。
表 5 6
Figure imgf000137_0001
表 5 7および表 5 8は、回折レンズ構造 1および回折レンズ構造 2の位相関数係 数と利用する回折次数である (λ。= 4 0 8 η πι)。
表 5 7
Figure imgf000137_0002
表 5 8
Figure imgf000137_0003
以下に回折レンズ構造の形状を求める課程を説明する。
回折レンズ構造の実形状の求め方は、 まず、 回折レンズ構造 1、 回折レンズ構 造 2および回折レンズ構造 3それぞれの実形状をそれぞれの回折レンズ関数、巨 視的非球面形状および使用する回折次数を用いて求める。すなわち、 これまでの 実施例と同様に、回折レンズ関数が整数となる光軸からの高さを求め、視的非球 面上のその高さに所定の回折光が発生するよう、適切な方向及び深さの位相段差 を形成する。
表 5 9は、実施例 6における回折レンズ構造の具体的な形状を示す回折レンズ 構造形状データである。
表 5 9
Figure imgf000138_0001
実施例 6の回折レンズ構造は、 1 1段の位相段差とそれにより分割された中心 面、 輪帯面 2〜輪帯面 1 1の合計 1 0の輪帯面、 及び外周面 (領域 3 ) によって 構成されている。
実施例 6の回折レンズ構造を構成する位相段差 1〜位相段差 4は、 HD— D V Dにおける回折効率と C Dにおける回折効率の均衡を考慮して深さを決定し、中 心面及び輪帯面 2〜輪帯面 4の菲球面形状を表 6 0に示す非球面形状とした。つ まり、光軸上にある中心面は表 6 0に示す非球面そのものであり、輪帯面 2〜輪 帯面 4は表 6 0に示す非球面がそれぞれの段差量に応じた分だけ光軸方向にず れている輪帯状の面である。位相段差 4より外周部にある、輪帯面 5から輪帯面 1 1および外周面 (領域 3) は全て光軸に垂直な平面である。
表 60
Figure imgf000139_0001
また、回折レンズ構造 1と回折レンズ構造 2の境界にあり、回折レンズ構造 1 を構成する複数の位相段差のなかで最外周に位置する位相段差 4の段差量は、 H D— DVD、 DVD、 CDの全てに対して回折レンズ構造 1と回折レンズ構造 2 を通る波面の位相が揃うようにするため、位相段差 1〜位相段差 3よりやや深め に設定した。
図 166は、実施例 6の光学素子に構成された回折レンズ構造の断面図を表す グラフで、 光軸からの高さに対する面のサグ量を表している。 図中の φ (1) は 回折レンズ構造 1の有効径を示し、 Φ (2) は回折レンズ構造 2の有効径を表す グラフである。 回折レンズ構造 1 (領域 1) 及び回折レンズ構造 2 (領域 2) の 巨視的非球面形状は凹面となっている。位相段差によって分割された輪帯状の面 は、回折レンズ構造 1においては全て非球面形状をしており、回折レンズ構造 2 においては全て光軸に垂直な平面となっている。回折レンズ構造 1と回折レンズ 構造 2では、 HD— DVDで使用する回折次数が異なるので、位相段差量もそれ に応じて異なっている。また、回折レンズ構造 1と回折レンズ構造 2の境界線に ある位相段差 4は、 HD— DVD、 DVDおよび CDの全てにおいて両方の回折 レンズ構造を通過する波面の位相を合わせるために深めの位相段差が施されて いる。
図 167、図 168および図 169は、実施例 6の光学素子を用いた対物レン ズモジュールにおける HD— DVD、 DVD、 CDの波面収差であるが、 HD— DVD、 DVD, CDの全てで、それぞれの有効径内において各回折レンズ構造 を通過する波面の位相がほぼ揃っていることがわかる。
図 170、 図 171、 図 172、 図 173、 図 174、 および図 175は、 回 折レンズ構造の実際の面形状による収差を用いて計算した波動光学的スポット 形状を示すグラフであり、 縦軸に光強度を、 横軸に半径距離を示す。 図 170、 図 171および図 172はそれぞれ HD— DVD、DVDおよび CDにおけるス ポット形状全体を、 図 173、 図 174、 および図 175はぞれぞれ HD— D V D、 DVDおよび CDにおけるスポットのサイドローブを示す。 HD— DVDの 集光スポットは、メインのスポットが通常のレンズで集光した場合よりやや小さ く、 サイドローブがやや大きい。 これは回折レンズ構造 1 (領域 1) で内周部の 回折効率を若干落としたために、アポディゼ一シヨン効果が発生しているからで あるが、 この程度であれば記録再生においては問題ない。 また、光源として利用 される半導体レーザは、一般に中心から周辺に行くに従つて強度が弱くなつてく るので、実施例 1のように内周部の効率を落としてアポディゼーション効果を発 生させた方がむしろ好ましい場合もある。 DVDや CDに関しては、それぞれの 有効径外側の光も考慮して有効径 Φ (HD-DVD)にてスポット形状を計算し ている。すなわち、 スポット形状は、 特別な開口制限素子を使用せずに集光した スポット形状になるのだが、特に開口制限を行わなくとも、通常の DVD用対物 レンズや CD用対物レンズとほぼ同じスポット形状が得られることがわかった。 また、 DVD及び CD有効径外側の光が集光に影響を与えている場合、例えば ディスクチルトによってコマ収差が発生すると、サイドローブの変化が通常の場 合に比べてより顕著となり、 安定した再生性能を得ることができない。 そこで、 本実施例のレンズを用いた場合におけるディスクチルト時のスポット形状の変 化を計算し、 通常のレンズと比較を行った。
図 176、 図 177、 図 178および図 179は、その計算結果を示すグラフ である。図 116および図 177はそれぞれ DVDおよび CDにおけるスポット の半値幅の変化を示しており、縦軸に半値幅を、横軸にディスクチルト角を示す。 図 178および図 179はそれぞれ DVD及び CDにおけるサイドローブ強度 の変化を示しており、縦軸にスポッ卜のサイドロープ強度を横軸にディスクチル ト角度を示す。 DVD及び CDのいずれに対しても通常のレンズとほぼ同等の特 性を示していることから、本実施例の対物レンズを用いた場合、特に開口制限を 行わなくても従来の DVD用及び CD用の対物レンズを用いた場合と同等の安 定した再生特性が得られることがわかる。
(実施例 7 )
第 7実施例は、第 1情報記録媒体である HD— DVD、第 2情報記録媒体であ る D V D、第 3情報記録媒体である C Dの互換記録再生を可能とするための回折 光学素子で、 HD— t)VD用両面非球面レンズと組み合わせて構成される。 レン ズ系の構成および HD— DVD、 DVD, C Dに対する設計条件は表 61に示す とおりである。 表 6 1
Figure imgf000142_0001
第 7実施例の回折光学素子は、図 1 8 0に示すように、片面に回折レンズ構造が 形成されており、 もう片方は平面となっている。 図 1 8 1は、実施例 7の回折光 学素子の模式断面図である。回折レンズ構造は、異なる特性を有する複数の回折 レンズ構造が同心円状に構成されており、内周部の領域には回折レンズ構造 1が 構成されており、中周部の領域 2には回折レンズ構造 2が構成されており、外周 部である領域 3は回折レンズ構造が形成されていない非球面である。
領域 1は、 図 1 8 1に示すように第 4有効径内の領域であり、領域 2は、 内径 が第 4有効径で外径が第 2有効径である輪帯状の領域であり、頜域 3は内径が第 2有効径で外径が第 1有効径である輪帯状の領域を表す。回折レンズ構造 1およ び回折レンズ構造 2で利用する回折次数の組み合わせは、表 6 2 (表 5 4と同一) の構造 1および構造 2に示すコラムの通りである。
表 6 2
構造 1 構造 2
回折次数 1 2 3 4 5 5 6 7 8 9 10
HD-DVD
回折効率 1 1 1 1 1 1 1 1 1 1 1 回折次数 1 1 2 2 3 3 4 4 5 5 6
DVD 収差補正 +0.4 -0.2 +0.2 -0.4 0 0 +0.4 -0.2 +0.2 -0.4 0 回折効率 0.573 0.875 0.875 0.573 1 1 0.4 0.875 0.875 0.573 1 回折次数 1 1 2 2 2 3 3 3 4 4 5
CD 収差補正量 [λ ] +0.5 0 +0.5 0 -0.5 +0.5 0 -0.5 0 -0.5 0 回折効率 0.405 1 0.405 1 0.405 0.405 1 0.405 1 0.405 1 実施例 7の回折レンズ構造 1は、 H D— D V D用光源と D V D用光源に対して は収差補正効果を持たず、 CD用光源には収差補正効果を持たせるため、 HD— DVDで 5次光、 DVDで 3次光、 CDで 2次光を利用することとし、 CDに対 して収差補正がなされるように設計されている。
実施例 7の回折レンズ構造 2は、 H D— D V D用光源と C D用光源に対して収 差補正効果を持たず、 DVDに対して収差補正効果を持たせるため、 HD— DV Dで 8次光、 DVDで 5次光、 CDで 4次光を利用することとし、 DVDに対し て収差補正がなされるように設計されている。
最外周の領域 3は、最も有効径が大きい DVDで収差が発生しないように収差 補正がなされた非球面形状であり、この領域には回折レンズ構造は構成されてい ない。 この領域 3では、 HD— DVDおよび CD用光源の光に対しては収差が残 留するため、 光はフレアとして拡散され、 再生に寄与しない。
回折レンズ構造 1を設計する際の CDの像面位置は、実施例 1の場合と同様に 設定されているので、その有効径である第 4有効径の大きさは、回折光学素子に おける C Dの有効径に対応する第 3有効径ょり小さく設定することが可能とな つている。このように、回折レンズ構造 1の有効径を小さく設定することにより、 この回折レンズ構造が D V D用光源に対して収差補正効果を持たなくても、 D V Dにおいてこの領域で発生する収差は十分小さい値に抑えられている。
表 63は、 実施例 6の具体的な設計結果の近軸データである。 表 6 3
Figure imgf000144_0001
表 6 4は実施例 7における回折レンズ構造 1および回折レンズ構造 2の巨視 的非球面形状、 領域 3の非球面形状、 及び対物レンズの非球面形状を表す。 表 6 4
Figure imgf000144_0002
表 6 5および表 6 6は、回折レンズ構造 1および回折レンズ構造 2の位相関数 係数と利用する回折次数である (λ。= 4 0 8 ηπι)。
表 6 5
第 1面 (in) 第 1 ta(mid) ¾ 1面 (out)
係数名
(0<h≤0.8735) (0.8735く h≤ 1 ,513) (h>1.513)
d0 0.000000E+00 0.000000E+00 0.000000E+00
d2 -2.980600E-03 1.441000E-04 0.000000E+00
d4 1.002300E-03 -5.020100E-04 0.000000E+00
d6 9.839200E-05 -8.510200E-05 0.000000E+00
d8 4.694000E - 05 9.416300E-07 0.000000E+00
d10 -3.739300E-06 -5.899100E-06 0.000000E+00 表 6 6
Figure imgf000145_0001
以下に回折レンズ構造の形状を求める課程を説明する。
回折レンズ構造 1および回折レンズ構造 2の巨視的非球面形状、位相関数係数 および使用する回折次数を用いて求める。回折レンズ構造 1に関しては、設計値 や有効径が実施例 6と同様であるので、形状も実施例 6と同様になる。回折レン ズ構造 2に関しても、設計値は実施例 6と同様であるが、有効径が異なることと、 領域 3との位相をそろえるため、 この部分の実形状はやや異なる。
表 6 7は、実施例 7における回折レンズ構造の具体的な形状を示す回折レンズ 構造形状データである。
表 6 7
Figure imgf000145_0002
実施例 7の回折レンズ構造は、 1 3段の位相段差とそれにより分割された中心 面、 輪帯面 2〜輪帯面 1 3の合計 1 2の輪帯面、 及び外周面(領域 3 ) によって 構成されている。
実施例 7の回折レンズ構造を構成する位相段差 1〜位相段差 4は、 HD - D V Dにおける回折効率と C Dにおける回折効率の均衡を考慮して深さを決定し、中 心面及び輪帯面 2〜輪帯面 4の非球面形状を表 6 8に示す非球面形状とした。 表 6 8
Figure imgf000146_0001
つまり、光軸上にある中心面は表 6 8に示す非球面そのものであり、輪帯面 2 〜輪帯面 4は表 6 8に示す非球面がそれぞれの段差量に応じた分だけ光軸方向 にずれている輪帯状の面である。位相段差 4より外周部にある、輪帯面 5から輪 帯面 1 1全て光軸に垂直な平面である。領域 3である外周面は、表 6 9に示す非 球面形状を位相段差 1 3が所定量となるように光軸方向にずらしたものである。 表 6 9
Figure imgf000146_0002
回折レンズ構造 1と回折レンズ構造 2の境界にあり、回折レンズ構造 1を構成 する複数の位相段差のなかで最外周に位置する位相段差 4の段差量は、 HD— D VD、 D VD , C Dの全てに対して回折レンズ構造 1と回折レンズ構造 2を通る 波面の位相が揃うようにするため、位相段差 1〜位相段差 3よりやや深めに設定 した。
また、回折レンズ構造 2と領域 3の境界にあり、回折レンズ構造 2を構成する 複数の位相段差のなかで最外周に位置する位相段差 13は、 DVDに対して、外 周面を通過した波面が回折レンズ構造 1および回折レンズ構造 2を通過した波 面と位相が揃うように段差量が調節されており、段差 5〜段差 12とは異なる段 差量に設定されている。
図 182は、実施例 7の光学素子に構成された回折レンズ構造の断面図を表す グラフで、 光軸からの高さに対する面のサグ量を表している。 図中の φ (1) は 回折レンズ構造 1の有効径を示し、 Φ (2) は回折レンズ構造 2の有効径を表す グラフである。 回折レンズ構造 1 (領域 1) 及び回折レンズ構造 2 (領域 2) の 巨視的非球面形状は凹面となっている。位相段差によって分割された輪帯状の面 は、回折レンズ構造 1においては全て非球面形状をしており、回折レンズ構造 2 においては全て光軸に垂直な平面となっており、外周面は非球面形状をしている。 回折レンズ構造 1と回折レンズ構造 2では、 H D— D V Dで使用する回折次数が 異なるので、位相段差量もそれに応じて異なっている。 また、 回折レンズ構造 1 と回折レンズ構造 2の境界線にある位相段差 4は、 HD— DVD、 DVDおよび CDの全てにおいて両方の回折レンズ構造を通過する波面の位相を合わせるた めに深めの位相段差が施されている。
図 183、図 184および図 185は、実施例 7の光学素子を用いた対物レン ズモジュールにおける HD— DVD、 DVD, CDの波面収差であるが、 HD— DVD、 DVD, CDの全で、 それぞれの有効径内において各回折レンズ構造を 通過する波面の位相がほぼ揃っていることがわかる。
図 186、 図 187、 図 188、 図 189、 図 190および図 191は、 回折 レンズ構造の実際の面形状による収差を用いて計算した波動光学的スポット形 状を示すグラフであり、 縦軸に光強度を、 横軸に半径距離を示す。 図 186、 図 187および図 188はそれぞれ HD— DVD、DVDおよび CDにおけるスポ ット形状全体を、 図 189、 図 190および図 191はぞれぞれ HD— DVD、 DVDおよび CDにおけるスポットのサイドロ一ブを示す。 HD— DVDの集光 スポットは、 メインのスポットが通常のレンズで集光した場合よりやや小さく、 サイドローブがやや大きい。 これは回折レンズ構造 1 (領域 1)で内周部の回折 効率を若干落としたために、アポディゼーシヨン効果が発生しているからである が、 この程度であれば記録再生においては問題ない。 また、光源として利用され る半導体レーザは、一般に中心から周辺に行くに従つて強度が弱くなつてくるの で、実施例 1のように内周部の効率を落としてアポディゼーション効果を発生さ せた方がむしろ好ましい場合もある。 HD— DVDや CDに関しては、それぞれ の有効径外側の光も考慮して有効径 Φ (DVD)にてスポット形状を計算してい る。すなわち、 スポット形状は、特別な開口制限素子を使用せずに集光したスポ ット形状になるのだが、特に開口制限を行わなくとも、通常の HD— DVD用対 物レンズや CD用対物レンズとほぼ同じスポット形状が得られることがわかつ た。
また、 HD— DVD及び CD有効径外側の光が集光に影響を与えている場合、 例えばディスクチルトによってコマ収差が発生すると、サイドロ一ブの変化が通 常の場合に比べてより顕著となり、安定した再生性能を得ることができない。そ こで、本実施例のレンズを用いた場合のディスクチルト時のスポット形状の変化 を計算し、 通常のレンズと比較を行った。
図 192、 図 193、 図 194および図 195は、 その計算結果を示すグラフ である。図 192および図 193はそれぞれ HD— DVDおよび CDにおけるス ポットの半値幅の変化を示しており、縦軸に半値幅を、横軸にディスクチルト角 を示す。図 194および図 195はそれぞれ HD— DVD及び CDにおけるサイ ドローブ強度の変化を示しており、縦軸にスポッ卜のサイドロ一ブ強度を横軸に ディスクチルト角度を示す。 HD— DVD及び CDのいずれに対しても通常のレ ンズとほぼ同等の特性を示していることから、本実施例の対物レンズを用いた場 合、特に開口制限を行わなくても従来の HD— DVD用及び CD用の対物レンズ を用いた場合と同等の安定した再生特性が得られることがわかる。
(実施例 8 )
第 8実施例は、第 1情報記録媒体である HD— DVD、第 2情報記録媒体であ る D V D、第 3情報記録媒体である C Dの互換記録再生を可能とするための対物 レンズで、第 7実施例からの変形例である。実施例 8の光学素子は、 図 196に 示すように、対物レンズの第 1面に回折レンズ構造が形成されており、 もう片面 は非球面となっている。 レンズ系の構成および HD— DVD、 DVD、 CDに対 する設計条件は表 70に示す通りである。なお、実施例 7の場合は回折レンズ構 造が対物レンズからやや離れた位置にあるのに対して、実施例 8の場合は回折レ ンズ構造が対物レンズに一体的に直接構成されているため、それに伴い、 HD— DVD、 DVD, CDの有効径がやや大きくなつている。 表 7 0
Figure imgf000150_0001
図 1 9 7は、 実施例 8の対物レンズの模式断面図である。
表 7 2は、 実施例 8の具体的な設計結果の近軸データである。
Figure imgf000150_0002
表 7 3は、実施例 8の具体的な設計結果の非球面係数および各輪帯面や外周面 のオフセットを表す。
表 7 3
Figure imgf000150_0003
第 1面の回折レンズ構造を構成する輪帯面 2〜輪帯面 1 3および外周面を光 軸上に延長した際の光軸と交わる点は、第 1面が光軸と交わる点から表 7 3に示 す量だけオフセットしている。すなわち、輪帯面 2〜輪帯面 1 3のオフセット量 は図 1 9 7に示す o 2〜 o 1 3で、外周面のオフセット量は o 1 4である。オフ セット量は、回折レンズ構造が形成されている面の光軸上の点を基準に、輪帯面 および外周面の延長面が光軸と交わる位置を測定し、 光軸方向を正とする。 表 7 4は、回折レンズ構造を構成する位相段差の光軸からの高さ、すなわち段 差半径、輪帯幅および段差量を表すデータである。段差半径は図 1 9 7に示す h l〜 h 1 3、 輪帯幅は図 1 9 7に示す w 2〜w l 3、 そして、 段差量は、 段差の 内周側の面から外周側の面に対して測定し、 光軸方向を正とする。
表 7 4
Figure imgf000151_0001
実施例 8の回折レンズ構造は、 1 3段の位相段差と、それにより分割された中 心面、 輪帯面 2〜輪帯面 1 3の合計 1 2面の輪帯面、 及び外周面(領域 3 ) によ つて構成されている。位相段差の光軸からの高さ (段差半径) は、基本的に実施 例 7と同じ値である。ただし、回折レンズ構造の位置の移動に伴う開口数の変化 に対応するため、複数の位相段差のうち、 最外周に位置し、 HD— D VDの有効 径を決定する位相段差 1 3の位置はやや外周側に移動されている。また、 これま での実施例 1〜実施例 7とは異なり、段差を対物レンズに直接形成する場合、内 周部と外周部では光の屈折角が大きく異なるため、同じの光路長差を発生させる のに必要とされる物理的な段差量が光軸からの高さによって異なってくる。 図 198、図 199および図 200は、実施例 7の光学素子を用いた対物レン ズモジュールにおける HD— DVD、 DVD、 CDの波面収差であるが、 HD— DVD、 DVD、 CDの全てにおいて、それぞれの有効径内において各回折レン ズ構造を通過する波面の位相がほぼ揃っていることがわかる。
図 201、 図 202、 図 203、 図 204、 図 205および図 206は、 回折 レンズ構造の実際の面形状による収差を用いて計算した波動光学的スポッ卜形 状を示すグラフであり、 縦軸に光強度を、 横軸に半径距離を示す。 図 201、 図 202および図 203はそれぞれ HD— DVD、DVDおよび CDにおけるスポ ット形状全体を、 図 204、 図 205および図 206はぞれぞれ HD— DVD、 DVDおよび CDにおけるスポットのサイドローブを示す。 HD— DVDの集光 スポットは、 メインのスポットが通常のレンズで集光した場合よりやや小さく、 サイド口一ブがやや大きい。 これは回折レンズ構造 1 (領域 1)で内周部の回折 効率を若干落としたために、アポディゼーシヨン効果が発生しているからである が、 この程度であれば記録再生においては問題ない。 また、光源として利用され る半導体レーザは、一般に中心から周辺に行くに従って強度が弱くなつてくるの で、実施例 1のように内周部の効率を落としてアポディゼ一ション効果を発生さ せた方がむしろ好ましい場合もある。 HD— DVDや CDに関しては、それぞれ の有効径外側の光も考慮して有効径 Φ (DVD)にてスポット形状を計算してい る。すなわち、 スポット形状は、特別な開口制限素子を使用せずに集光したスポ ット形状になるのだが、特に開口制限を行わなくとも、通常の HD— DVD用対 物レンズや CD用対物レンズとほぼ同じスポット形状が得られることがわかつ た。
また、 HD— DVD及び CD有効径外側の光が集光に影響を与えている場合、 例えばディスクチルトによってコマ収差が発生すると、サイドローブの変化が通 常の場合に比べてより顕著となり、安定した再生性能を得ることができない。そ こで、本実施例のレンズを用いた場合のディスクチルト時のスポット形状の変化 を計算し、 通常のレンズと比較を行った。
図 207、 図 208、 図 209および図 210は、 その計算結果を示すグラフ である。図 207および図 208はそれぞれ HD— DVDおよび CDにおけるス ポットの半値幅の変化を示しており、縦軸に半値幅を、横軸にディスクチルト角 を示す。図 209および図 210はそれぞれ HD— DVD及び CDにおけるサイ ドローブ強度の変化を示しており、縦軸にスポットのサイドローブ強度を横軸に ディスクチルト角度を示す。 HD-D V D及び C Dのいずれに対しても通常のレ ンズとほぼ同等の特性を示していることから、本実施例の対物レンズを用いた場 合、特に開口制限を行わなくても従来の HD— DVD用及び CD用の対物レンズ を用いた場合と同等の安定した再生特性が得られることがわかる。

Claims

請求の範囲
1 . 第 1波長の第 1レーザ光の光路に同軸に配置された集光レンズと、前記 集光レンズへ第 1レーザ光の回折光を入射する同軸に配置された透過型の回折 光学素子とからなる対物レンズモジュールであって、 前記回折光学素子が、 入射面及び射出面 、
前記入射面及び射出面の少なくとも一方の光軸周囲に設けられ、且つ光軸から 順に異なる半径距離によって画定された異なる回折角の回折格子からなる第 1、 第 2及び第 3領域と、 を有し、
前記第 1領域が前記第 1レーザ光の奇数次数の回折光を前記集光レンズへ回 折し、前記第 2領域が前記第 1レーザ光の偶数次数の回折光を前記集光レンズへ 回折し、前記第 3領域が前記第 1レーザ光の偶数次数又はゼロ次の回折光を前記 集光レンズへ回折して、前記集光レンズが前記第 1、第 2及び第 3領域からの回 折光を所定開口数にて集光することを特徴とする対物レンズモジュール。
2 . 前記第 1領域は、前記第 1波長より長い第 2波長の第 2レーザ光と前記 第 2波長より長い第 3波長の第 3レーザ光とが前記光路に沿ってそれぞれ前記 第 1、第 2及び第 3領域へ入射された場合、前記第 1レーザ光の回折光の奇数又 は偶数次数以下の回折次数の前記第 1及び 2レーザ光の回折光を前記集光レン ズへ回折して、前記集光レンズが前記第 1領域からの回折光を前記所定開口数よ り小さい第 2開口数にて集光することを特徴とする請求項 1項に記載の対物レ ンズモジュール。
3 . 前記第 2領域は、前記第 2レーザ光と前記第 3レーザ光とが前記光路に 沿ってそれぞれ前記第 1、第 2及び第 3領域へ入射された場合でも、前記第 1レ —ザ光の回折光の奇数又は偶数次数以下の回折次数の前記第 2レーザ光のうち の特定の回折光のみを前記集光レンズへ回折して、前記集光レンズが前記第 2領 域からの回折光を前記所定開口数及び前記第 2開口数の間の値の第 3開口数に て集光することを特徴とする請求項 2項に記載の対物レンズモジュール。
4. 前記第 1、 第 2及び第 3領域は、 次式、
F1≥F2≥F3
F 2 GROUND [λノ (Ν「 1) X (Ν2 - 1) /A2XFJ
=C曰 L [λ (Nx- 1) X (N2- 1) /λ aXFj, 及び
F3=C曰 L iX (Ni- 1) X (N3- 1) /AaXF ,
の組み合わせ、 又は
F1≥F2≥F3,
F2 = ROUND ίλ,/ (N「 1) X (N2— 1) /A2XFJ,
= FLOOR [λ,/ (Ni- 1) X (N2- 1) / λ 2 ¥ 及び
F3 = FLOOR [λ / (N 1) X (N3— l) AgXFj,
の組み合わせ、 又は
Fx≥F2≥F3
F2 = ROUND λ / (Nx - 1) X (N2— 1) /A2XFJ, 及び
F3 = ROUND [λ1Ζ (Nx- 1) X (N3— 1) AgXFj,
(式中、 ェは前記第 1波長を、 λ2は前記第 2波長を、 λ3は前記第 3波長を、 は前記第 1波長に対する前記回折光学素子に使用されている材料の屈折率 を、 N2は前記第 2波長に対する前記回折光学素子に使用されている材料の屈折 率を、 N 3は前記第 3波長に対する前記回折光学素子に使用されている材料の屈 折率を、 エは前記第 1レーザ光の回折光の回折次数を、 F 2は前記第 2レーザ 光の回折光の回折次数を、 F 3は前記第 3レーザ光の回折光の回折次数を、 ROUND [] は □ 内の値を小数点以下で四捨五入して整数を得る関数を、 C曰し []は、 []内の値の小数点以下を切り上げて整数を得る関数を、 FLOOR []は、 []内の値の小数点以下を切り捨てて整数を得る関数を示す)の組み合わせのい ずれかを満たす回折次数の回折光を生ぜしめる複数の位相段差からなり、 且つ 前記第 1レーザ光が前記第 1領域を通過した場合に発生する回折光のうち回 折次数が奇数となるように前記第 1領域が形成されていることを特徴とする請 求項 1から 3のいずれか 1項に記載の対物レンズモジュール。
5 . 前記第 1レーザ一光が前記第 1領域を通過した場合に発生する回折光の うち回折効率が最大となる回折次数が 5の倍数を除く奇数となるように前記第 1領域が形成されていることを特徴とする請求項 4に記載の対物レンズモジュ ール。
6 . 前記第 1レーザ光が前記第 2領域を通過した場合に発生する回折光のう ち回折効率が最大となる回折次数が 1 0の倍数を除く偶数となるように前記第 2領域が形成されていることを特徴とする請求項 5に記載の対物レンズモジュ ール。 .
7 . 前記第 1領域及び第 2領域を通過する前記第 3レーザ光の像面位置にお ける湾曲した球面収差波面が極大となる前記回折光学素子の半径距離が、前記第 2領域内に存在するよう設定されていることを特徴とする請求項 1から 6のい ずれか 1項に記載の対物レンズモジュール。
8 . 前記回折光学素子は、前記集光レンズと一体として設けられることを特 徵とする請求項 1力 ら 7のいずれか 1項に記載の対物レンズモジュール。
9 . 前記回折光学素子の前記入射又は射出面に設けられ、且つ前記第 1レー ザ光の微小な波長変動により発生する色収差を補正するための色収差補正用回 折レンズ構造を具備することを特徴とする請求項 1から 8のいずれか 1項に記 載の対物レンズモジュール。
1 0 . 第 1レ一ザ光を第 1記録媒体上に集光するための対物レンズを、前記 第 1レーザ光とは波長の異なる複数のレーザ光及び該複数のレーザ光の夫々に
'対応する複数の記録媒体で共用するために、前記第 1レーザ光及び前記複数のレ 一ザ光の光路上に設けられる回折光学素子であって、
前記複数のレーザ光は、第 2記録媒体に対応する第 2レーザ光と第 3記録媒体 に対応する第 3レ一ザ光とを含み、
前記光軸周囲に設けられ、且つ前記第 1レーザ光と前記第 2及び第 3レーザ光 との波長の差異に基づいて発生する収差を補正する第 1回折レンズ構造と、 前記第 1回折レンズ構造周囲に設けられ、且つ前記第 1レーザ光と前記第 2レ 一ザ光との波長の差異に基づいて発生する収差を補正する第 2回折レンズ構造 とを具備することを特徴とする回折光学素子。
1 1 . 前記対物レンズに入射する際に前記第 1、第 2及び第 3記録媒体の記 録及び再生に必要な前記第 1、第 2及び第 3レーザ光の有効径に対応する回折光 学素子の入射又は射出面における回折面の径は、夫々第 1回折有効径、前記第 1 回折有効径ょり小なる第 2回折有効径、及び前記第 2回折有効径ょり小なる第 3 回折有効径であることを特徴とする請求項 1 0に記載の回折光学素子。
1 2 . 前記対物レンズに入射する際に前記第 1、第 2及び第 3記録媒体の記 録及び再生に必要な前記第 1、第 2及び第 3レーザ光の有効径に対応する回折光 学素子の入射又は射出面における回折面の径は、夫々第 1回折有効径、前記第 1 回折有効径以上の第 2回折有効径、及び前記第 1回折有効径ょり小なる第 3回折 有効径であることを特徴とする請求項 1 0に記載の回折光学素子。
1 3 . 前記第 1回折レンズ構造は、前記回折光学素子の入射又は射出面にお ける前記第 3回折有効径ょりさらに小なる第 4回折有効径内に形成され、前記第 2回折レンズ構造は前記回折光学素子の入射又は射出面における前記第 2回折 有効径内に形成され、前記第 4回折有効径において前記第 3レーザ光による縦球 面収差がゼロとなるような像面位置が設定されていることを特徴とする請求項 1 0から 1 2のいずれか 1項に記載の回折光学素子。
1 4. 前記第 2回折レンズ構造は、前記回折光学素子の入射又は射出面にお ける前記第 2回折有効径ょりさらに小で且つ前記第 3回折有効径ょり犬なる第 5回折有効径内に形成され、前記第 5回折有効径において前記第 2レーザ光によ る縦球面収差がゼロとなるような像面位置が設定されていることを特徴とする 請求項 1 3に記載の回折光学素子。
1 5 . 前記第 1記録媒体は第 1厚さの第 1透過保護層を介して受光する記録 層を有し、前記第 2記録媒体は前記第 1厚さ以上の第 2厚さの第 2透過保護層を 介して受光する記録層を有し、前記第 3記録媒体は前記第 2厚さより大なる第 3 厚さの第 3透過保護層を介して受光する記録層を有することを特徴とする請求 項 1 0から 1 4のいずれか 1項に記載の回折光学素子。
1 6 . 前記第 1回折レンズ構造は、前記第 1レーザ光と前記第 2及び第 3レ 一ザ光との波長の差異に加えて前記第 1透過保護層と前記第 2及び第 3透過保 護層との差分に基づいて発生する収差を補正するとともに、前記第 2回折レンズ 構造は、前記第 1レーザ光と前記第 2レーザ光との波長の差異に加えて前記第 1 透過保護層と前記第 2透過保護層との差分に基づいて発生する収差を補正する ことを特徴とする請求項 1 5に記載の回折光学素子。
1 7 . 前記第 1回折レンズ構造及び前記第 2回折レンズ構造は、前記入射面 又は射出面のどちらか一方の同一面に形成されていることを特徴とする請求項 1 0から 1 6のいずれか 1項に記載の回折光学素子。
1 8 . 前記第 1回折レンズ構造及び前記第 2回折レンズ構造は、前記入射又 は射出面における相異なる領域に作り込まれており、同心円状且つ輪帯状に形成 されてなることを特徴とする請求項 1 7に記載の回折光学素子。
1 9 . 前記回折光学素子の前記入射又は射出面において前記第 4回折有効径 内の領域を通過した前記第 3レーザ光が前記第 3記録媒体に集光する集光位置 は、前記回折光学素子の前記第 4回折有効径ょり外側で光軸に最も近い光軸から の高さを通過する当該レーザ光が光軸と交わる位置と前記回折光学素子の前記 第 3記録媒体に必要とされる前記第 3回折有効径に相当する光軸からの高さを 通過する当該レーザ光が光軸と交わる位置との間に位置していることを特徴と する請求項 1 3から' 1 8のいずれか 1項に記載の回折光学素子。
2 0 . 前記第 1及び第 2回折レンズ構造は、複数の同心円状の位相段差によ つて構成された回折レンズ構造であることを特徴とする請求項 1 0から 1 9の いずれか 1項に記載の回折光学素子。
2 1 . 前記第 1回折レンズ構造は、前記第 4回折有効径を外径とする円内に 形成されており、 前記第 2回折レンズ構造は、 前記入射面又は射出面において、 前記第 2回折有効径を外径とする円内に形成されてなることを特徴とする請求 項 1 3から 2 0のいずれか 1項に記載の回折光学素子。
2 2 . 前記第 2回折レンズ構造は、内径として前記第 4回折有効径を有する 輪帯状に形成されてなることを特徴とする請求項 2 1に記載の回折光学素子。
2 3 . 前記第 1回折レンズ構造を構成する位相段差と前記第 2回折レンズ構 造を構成する位相段差では、段差で発生する光路長差が同一波長において異なる ことを特徴とする請求項 1 0から 2 2のいずれか 1項に記載の回折光学素子。
2 4. 前記第 1回折レンズ構造を構成する位相段差のうち、最外周の位相段 差で発生する光路長差とそれ以外の位相段差で発生する光路長差が同一波長に おいて異なることを特徴とする請求項 1 0から 2 3のいずれか 1項に記載の回 折光学素子。
2 5 . 前記第 2回折レンズ構造を構成する位相段差のうち、最外周の位相段 差で発生する光路長差とそれ以外の位相段差で発生する光路長差が同一波長に おいて異なることを特徴とする請求項 1 0から 2 4のいずれか 1項に記載の回 折光学素子。
2 6 . 前記回折光学素子の前記入射又は射出面における前記第 3回折有効径 内の領域に、前記第 1回折レンズ構造を構成する位相段差全てと、前記第 2回折 レンズ構造を構成する位相段差の一部が混在していることを特徴とする請求項 1 0から 2 5のいずれか 1項に記載の回折光学素子。
2 7 . 前記回折光学素子の前記入射又は射出面における前記第 3回折有効径 内の領域に、前記第 1回折レンズ構造を構成する位相段差の段差量と前記第 2回 折レンズ構造を構成する位相段差の段差量を足し合わせた深さの位相段差が少 なくとも一つ以上存在することを特徴とする請求項 10から 26のいずれか 1 項に記載の回折光学素子。
28. 前記第 1回折レンズ構造を構成する位相段差の方向と前記第 2回折レ ンズ構造を構成する位相段差の方向がすべて等しいことを特徴とする請求項 1 0から 27のいずれか 1項に記載の回折光学素子。
29. 前記第 1回折レンズ構造は、前記第 1レーザ光が前記第 1回折レンズ 構造を通過した場合に発生する回折光のうち回折効率が最大となる回折次数が 奇数であることを特徴とする請求項 1 0から 28のいずれか 1項に記載の回折 光学素子。
30. 前記第 1回折レンズ構造は、前記第 1レーザ光が前記第 1回折レンズ 構造を通過した場合に発生する回折光のうち回折効率が最大となる回折次数が 5の倍数を除く奇数であることを特徴とする請求項 29に記載の回折光学素子。
31. 前記第 2回折レンズ構造は、前記第 1レーザ光が前記第 2回折レンズ 構造を通過した場合に発生する回折光のうち回折効率が最大となる回折次数が 10の倍数を除く偶数であることを特徴とする請求項 10から 30のいずれか 1項に記載の回折光学素子。
32. 前記回折'レンズ構造は、 波長が; I iである前記第 1レーザ光が通過し た場合に発生する回折光のうち回折効率が最大となる回折次数が である時 に、 次式、
F1≥F2≥F3,
F2=ROUND [λノ (Νχ- 1) X (Ν2 - 1) AaXFj, 162
=CEIL [λノ (N「 1) X (N2— 1) Ζλ 2XFJ 及び
F3=C曰し [λノ (N「 l) X (Ν3- 1) λ3ΧΈ,],
の組み合わせ、 又は
F2=ROUND [λ x/ (N「 l) X (N2 - 1) ZA2XFj、
= FLOOR [λノ (N「 1) X (N2- 1) /A2XF1] 及び
F3 = FLOOR [λノ ( 一 1) X (N3 - 1) XA3XFJ,
の組み合わせ、 又は
F1≥F2≥F3,
F2 = ROUND [λ x/ (N1 - 1) X (N2- 1) /λ2Υ. 及び
F3 = ROUND [λ x/ (Nx- 1) X (N3— 1) Ζλ 3X FJ、
(式中、 λ2は前記第 2波長を、 λ3は前記第 3波長を、 は前記第 1波長に対 する前記回折光学素子に使用されている材料の屈折率を、 N2は前記第 2波長に 対する前記回折光学素子に使用されている材料の屈折率を、 N 3は前記第 3波長 に対する前記回折光学素子に使用されている材料の屈折率を、 F2は前記第 2レ 一ザ光の回折光の回折次数を、 F 3は前記第 3レーザ光の回折光の回折次数を、 ROUND [] は [] 内の値を小数点以下で四捨五入して整数を得る関数を、 C曰し []は、 口内の値の小数点以下を切り上げて整数を得る関数を、 FLOOR []は、 []内の値の小数点以下を切り捨てて整数を得る関数を示す)の組み合わせのい ずれかを満たす回折次数の回折光を生ぜしめることを特徴とする請求項 1 0か ら 31のいずれか 1項に記載の回折光学素子。
33. 前記回折光学素子の入射又は射出面における前記第 1回折有効径内に 設けられ、且つ前記第 1レーザ光の微小な波長変動により発生する色収差を補正 する第 3回折レンズ構造をさらに具備することを特徴とする請求項 1 0力、ら 3 2のいずれか 1項に記載の回折光学素子。
3 4 . 前記第 3回折レンズ構造は、前記回折光学素子の前記入射面又は出射 面における、前記第 1回折レンズ構造及び前記第 2回折レンズ構造とは異なる面 に形成されていることを特徴とする請求項 3 3に記載の回折光学素子。
3 5 . 前記第 3回折レンズ構造は、前記回折光学素子の前記入射面又は出射 面における、前記第 1回折レンズ構造及び前記第 2回折レンズ構造と同一の面に 形成されていることを特徴とする請求項 3 3に記載の回折光学素子。
3 6 . 前記第 2回折レンズ構造は、前記回折光学素子の前記入射面又は出射 面における、前記第 1回折レンズ構造とは異なる面に形成されていることを特徴 とする請求項 3 3に記載の回折光学素子。
3 7 . 前記第 3回折レンズ構造は、前記回折光学素子の前記入射面又は出射 面における、前記第 1回折レンズ構造と同一の面に形成されていることを特徴と する請求項 3 6に記載の回折光学素子。
3 8 . 前記第 3回折レンズ構造は、前記回折光学素子の前記入射面又は出射 面における、前記第 2回折レンズ構造と同一の面に形成されていることを特徴と する請求項 3 6に記載の回折光学素子。
3 9 . 前記第 1回折レンズ構造を構成する位相段差と前記第 3回折レンズ構 造を構成する位相段差では、段差で発生する光路長差が同一波長において異なる ことを特徴とする請求項 3 3から 3 8のいずれか 1項に記載の回折光学素子。
4 0 . 前記第 2回折レンズ構造を構成する位相段差と前記第 3回折レンズ構 造を構成する位相段差では、段差で発生する光路長差が同一波長において異なる ことを特徴とする請求項 3 3から 3 8のいずれか 1項に記載の回折光学素子。
4 1 . 前記第 1回折レンズ構造を構成する位相段差、前記第 2回折レンズ構 造を構成する位相段差及び前記第 3回折レンズ構造を構成する位相段差は、段差 で発生する光路長差が同一波長において互いに異なることを特徴とする請求項 3 3から 3 8のいずれか 1項に記載の回折光学素子。
4 2 . 前記第 3回折レンズ構造を構成する位相段差のうち、前記第 4回折有 効径近傍の位相段差で発生する光路長差とそれ以外の位相段差で発生する光路 長差が同一波長において異なることを特徴とする請求項 3 3から 4 1のいずれ か 1項に記載の回折光学素子。
4 3 . 前記第 3回折レンズ構造を構成する位相段差のうち、前記第 2回折有 効径近傍の位相段差で発生する光路長差とそれ以外の位相段差で発生する光路 長差が同一波長において異なることを特徴とする請求項 3 3から 4 1のいずれ か 1項に記載の回折光学素子。
4 4. 前記回折光学素子の入射又は射出面における前記第 3回折有効径内の 領域に、前記第 1回折レンズ構造を構成する位相段差全てと、前記第 2回折レン ズ構造を構成する位相段差の一部と前記第 3回折レンズ構造を構成する位相段 差の一部が混在することを特徴とする請求項 3 3から 4 3のいずれか 1項に記 載の回折光学素子。
4 5 . 前記回折光学素子の入射又は射出面における前記第 4回折有効径内の 領域に、前記第 1回折レンズ構造を構成する位相段差全てと、前記第 3回折レン ズ構造を構成する位相段差の一部が混在することを特徴とする請求項 3 3から 4 4のいずれか 1項に記載の回折光学素子。
4 6 . 前記回折光学素子の前記第 4回折有効径内に前記第 1回折レンズ構造 を構成する位相段差の段差量と第 3回折レンズ構造を構成する位相段差の段差 量を足し合わせた深さの位相段差が少なくとも一つ以上存在することを特徴と する請求項 3 3から 4 5のいずれか 1項に記載の回折光学素子。
4 7 . 前記回折光学素子の前記第 3回折有効径内に前記第 1回折レンズ構造 を構成する位相段差の段差量と前記第 2回折レンズ構造を構成する位相段差の 段差量と前記第 3回折レンズ構造を構成する位相段差の段差量を足し合わせた 深さの位相段差が少なくとも一つ以上存在することを特徴とする請求項 2 8か ら 4 5のいずれか 1項に記載の回折光学素子。
4 8 . 前記第 1回折レンズ構造を構成する位相段差の方向と前記第 3回折レ ンズ構造を構成する位相段差の方向が異なることを特徴とする請求項 3 3から 4 7のいずれか 1項に記載の回折光学素子。
4 9 . 前記回折光学素子の入射文は射出面における前記第 4回折有効径から 前記第 2回折有効径の間の領域に、前記第 2回折レンズ構造の一部もしくは全部 と前記第 3回折レンズ構造の位相段差の一部が混在していることを特徴とする 請求項 3 3から 4 8のいずれか 1項に記載の回折光学素子。
5 0 . 前記回折光学素子の前記第 4回折有効径から前記第 2回折有効径の間 の領域に前記第 2回折レンズ構造を構成する位相段差の段差量と前記第 3回折 レンズ構造を構成する位相段差の段差量を足し合わせた深さの位相段差が少な くとも一つ以上存在することを特徴とする請求項 3 3から 4 9のいずれか 1項 に記載の回折光学素子。
5 1 . 前記第 4回折有効径から前記第 2回折有効径の間の領域において前記 第 2回折レンズ構造を構成する位相段差の方向と前記第 3回折レンズ構造を構 成する位相段差の方向が異なることを特徴とする請求項 3 3から 5 0のいずれ か 1項に記載の回折光学素子。
5 2 . 前記回折光学素子の前記入射面又は出射面における、同一の面に前記 第 1回折レンズ構造、前記第 2回折レンズ構造及び前記第 3回折レンズ構造が形 成されており、前記第 1、第 2及び第 3回折レンズ構造の位相段差の方向が全て 同一であることを特徴とする請求項 3 3から 5 0のいずれか 1項に記載の回折 光学素子。
5 3 . 前記第 3レンズ構造は、前記第 1レーザ光が前記第 3回折レンズ構造 を通過した場合に発生する回折光のうち回折効率が最大となる回折次数が 1 0 の倍数であることを特徴とする請求項 3 3から 5 2のいずれか 1項に記載の回 折光学素子。
5 4. 前記回折光学素子に入射される前記第 1、第 2及び第 3レーザ光は略 平行光であることを特徴とする請求項 1 0から 5 3のいずれか 1項に記載の回 折光学素子。
5 5 . 前記回折光学素子は、前記対物レンズと一体として設けられることを 特徴とする請求項 1 0から 5 4のいずれか 1項に記載の回折光学素子。
5 6 . 前記第 1、第 2及び第 3レーザ光はそれぞれ第 1、 第 2及び第 3波長 を有し、前記第 2波長が前記第 1波長より長く且つ前記第 3波長が前記第 2波長 より長いことを特徴とする請求項 1 0から 5 5のいずれか 1項に記載の回折光 学素子。
5 7 . 請求項 1から 9のいずれか 1項に記載の対物レンズモジュール又は請 求項 1 0から 5 6のいずれか 1項に記載の回折光学素子を具備することを特徴 とする光ピックアップ。
5 8 . 請求項 5 7に記載の光ピックアップを具備することを特徴とする光情 報記録再生装置。
PCT/JP2005/017092 2004-10-08 2005-09-09 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置 WO2006040902A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006540856A JP4340690B2 (ja) 2004-10-08 2005-09-09 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置
EP05783583A EP1801798B1 (en) 2004-10-08 2005-09-09 Diffraction optical element, objective lens module, optical pickup, and optical information recording/reproducing apparatus
DE602005018801T DE602005018801D1 (de) 2004-10-08 2005-09-09 Optisches brechungselement, objektivlinsenmodul, optischer abnehmer, und optische informaitonsaufzeichnungs-/-wiedergabevorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-296983 2004-10-08
JP2004296983 2004-10-08

Publications (2)

Publication Number Publication Date
WO2006040902A1 true WO2006040902A1 (ja) 2006-04-20
WO2006040902A9 WO2006040902A9 (ja) 2007-05-18

Family

ID=36148202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017092 WO2006040902A1 (ja) 2004-10-08 2005-09-09 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置

Country Status (6)

Country Link
US (1) US7227704B2 (ja)
EP (1) EP1801798B1 (ja)
JP (1) JP4340690B2 (ja)
CN (1) CN100580781C (ja)
DE (1) DE602005018801D1 (ja)
WO (1) WO2006040902A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164498A (ja) * 2004-12-02 2006-06-22 Konica Minolta Opto Inc 対物光学系、光ピックアップ装置及び光情報記録再生装置
JP2007317295A (ja) * 2006-05-25 2007-12-06 Pentax Corp 光情報記録再生装置用光学素子、光情報記録再生装置および光情報記録再生装置用光学素子の設計方法
JP2007334952A (ja) * 2006-06-13 2007-12-27 Pentax Corp 光情報記録再生装置用対物レンズ
WO2008146675A1 (ja) * 2007-05-31 2008-12-04 Konica Minolta Opto, Inc. 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
WO2009016847A1 (ja) * 2007-08-02 2009-02-05 Panasonic Corporation 複合対物レンズ、回折素子、光ヘッド装置、光情報装置、対物レンズ駆動方法および制御装置
WO2009098846A1 (ja) * 2008-02-06 2009-08-13 Panasonic Corporation 回折光学素子およびその製造方法
JP2009245575A (ja) * 2007-07-30 2009-10-22 Sony Corp 対物レンズ、光ピックアップ及び光ディスク装置

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100651325B1 (ko) * 2004-11-05 2006-11-29 삼성전기주식회사 색수차 보정소자 및 그것을 이용한 광픽업장치
US8116187B2 (en) * 2004-12-01 2012-02-14 Hoya Corporation Design method of optical element and optical element through which a plurality of light beams having different design wavelengths pass
CN101228580B (zh) * 2005-07-28 2011-05-11 松下电器产业株式会社 光学头及光盘装置
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
JP2007213708A (ja) * 2006-02-09 2007-08-23 Pulstec Industrial Co Ltd 多層光ディスク用光ピックアップ装置
JP2007273013A (ja) * 2006-03-31 2007-10-18 Sony Corp 回折素子の設計方法並びに回折素子、対物レンズユニット、光ピックアップ及び光ディスク装置
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
CN101421787A (zh) * 2006-04-21 2009-04-29 柯尼卡美能达精密光学株式会社 光拾取装置、光学元件、光信息记录再生装置、光学元件的设计方法
JP5049508B2 (ja) * 2006-05-01 2012-10-17 パナソニック株式会社 回折光学素子、それを備えた対物光学系、及びそれを備えた光ピックアップ装置
US7952979B2 (en) * 2006-06-20 2011-05-31 Panasonic Corporation Coupling lens, optical head and optical disc device
US20070297313A1 (en) * 2006-06-23 2007-12-27 Nobuhiro Konuma Optical pickup
CN101123100B (zh) * 2006-07-14 2011-05-11 柯尼卡美能达精密光学株式会社 光拾取装置、对物光学元件和光信息记录重放装置
WO2008007553A1 (fr) * 2006-07-14 2008-01-17 Konica Minolta Opto, Inc. Dispositif de lecture optique, élément optique à objectif et dispositif de reproduction/enregistrement d'informations optique
US20080019232A1 (en) * 2006-07-21 2008-01-24 Samsung Electronics Co., Ltd. Object lens and optical pick-up device having the same
US7688491B2 (en) * 2006-09-15 2010-03-30 Ricoh Company, Ltd. Diffractive-optical element, scanning optical system, optical scanner, and image forming apparatus
US8014050B2 (en) * 2007-04-02 2011-09-06 Vuzix Corporation Agile holographic optical phased array device and applications
JP5071883B2 (ja) * 2007-04-27 2012-11-14 コニカミノルタアドバンストレイヤー株式会社 光ピックアップ装置及び対物光学素子
CN101439431A (zh) * 2007-11-21 2009-05-27 新科实业有限公司 多束激光接合机及接合方法
DE102008022493A1 (de) 2008-05-07 2009-11-12 Carl Zeiss Microlmaging Gmbh Vorrichtung und Verfahren zum evaneszenten Beleuchten einer Probe
JP4650529B2 (ja) * 2008-07-04 2011-03-16 ソニー株式会社 光ピックアップ及びこれを用いた光ディスク装置
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2011033785A1 (ja) * 2009-09-17 2011-03-24 パナソニック株式会社 光学素子及びそれを用いた光ピックアップ装置
JP2011100522A (ja) * 2009-11-09 2011-05-19 Sanyo Electric Co Ltd 光ピックアップ装置
JP5647547B2 (ja) * 2010-03-19 2014-12-24 Hoya株式会社 光情報記録再生装置用対物光学系、及び光情報記録再生装置
CN102193194B (zh) * 2010-03-19 2013-07-03 瑞昱半导体股份有限公司 间距计算装置与应用其的透镜修正系统及方法
JP2013033576A (ja) * 2010-09-29 2013-02-14 Panasonic Corp 対物レンズ素子、光ピックアップ装置
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2013027004A1 (en) * 2011-08-24 2013-02-28 Milan Momcilo Popovich Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
JP5799686B2 (ja) * 2011-09-07 2015-10-28 ソニー株式会社 対物レンズ、光ピックアップ装置、及び光ディスク装置
WO2013080552A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 撮像装置及び撮像システム
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
EP2842003B1 (en) 2012-04-25 2019-02-27 Rockwell Collins, Inc. Holographic wide angle display
WO2013167864A1 (en) 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9565782B2 (en) 2013-02-15 2017-02-07 Ecosense Lighting Inc. Field replaceable power supply cartridge
KR20140106055A (ko) * 2013-02-25 2014-09-03 도시바삼성스토리지테크놀러지코리아 주식회사 광픽업 및 이를 채용한 광정보저장매체 시스템
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
EP3198192A1 (en) 2014-09-26 2017-08-02 Milan Momcilo Popovich Holographic waveguide opticaltracker
CN109163805B (zh) * 2014-11-19 2022-03-22 松下知识产权经营株式会社 分光系统
EP3245444B1 (en) 2015-01-12 2021-09-08 DigiLens Inc. Environmentally isolated waveguide display
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
EP3248026B1 (en) 2015-01-20 2019-09-04 DigiLens Inc. Holographic waveguide lidar
US9869450B2 (en) 2015-02-09 2018-01-16 Ecosense Lighting Inc. Lighting systems having a truncated parabolic- or hyperbolic-conical light reflector, or a total internal reflection lens; and having another light reflector
US11306897B2 (en) 2015-02-09 2022-04-19 Ecosense Lighting Inc. Lighting systems generating partially-collimated light emissions
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US9651227B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Low-profile lighting system having pivotable lighting enclosure
US9568665B2 (en) 2015-03-03 2017-02-14 Ecosense Lighting Inc. Lighting systems including lens modules for selectable light distribution
US9746159B1 (en) 2015-03-03 2017-08-29 Ecosense Lighting Inc. Lighting system having a sealing system
US9651216B2 (en) 2015-03-03 2017-05-16 Ecosense Lighting Inc. Lighting systems including asymmetric lens modules for selectable light distribution
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
USD785218S1 (en) 2015-07-06 2017-04-25 Ecosense Lighting Inc. LED luminaire having a mounting system
US9651232B1 (en) 2015-08-03 2017-05-16 Ecosense Lighting Inc. Lighting system having a mounting device
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
WO2017131719A1 (en) * 2016-01-28 2017-08-03 Ecosense Lighting Inc. Zoned optical cup
EP3398007A1 (en) 2016-02-04 2018-11-07 DigiLens, Inc. Holographic waveguide optical tracker
JP6895451B2 (ja) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
JP6734933B2 (ja) 2016-04-11 2020-08-05 ディジレンズ インコーポレイテッド 構造化光投影のためのホログラフィック導波管装置
WO2017212522A1 (ja) * 2016-06-06 2017-12-14 株式会社島津製作所 回折格子及び分光装置
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
JP7399084B2 (ja) 2017-10-16 2023-12-15 ディジレンズ インコーポレイテッド ピクセル化されたディスプレイの画像分解能を倍増させるためのシステムおよび方法
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
CN111566571B (zh) 2018-01-08 2022-05-13 迪吉伦斯公司 波导单元格中全息光栅高吞吐量记录的系统和方法
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
JP2022520472A (ja) 2019-02-15 2022-03-30 ディジレンズ インコーポレイテッド 統合された格子を使用してホログラフィック導波管ディスプレイを提供するための方法および装置
US20200292745A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic Waveguide Backlight and Related Methods of Manufacturing
JP2022535460A (ja) 2019-06-07 2022-08-08 ディジレンズ インコーポレイテッド 透過格子および反射格子を組み込んだ導波路、ならびに関連する製造方法
JP2022543571A (ja) 2019-07-29 2022-10-13 ディジレンズ インコーポレイテッド 画素化されたディスプレイの画像解像度および視野を乗算するための方法および装置
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US20220011585A1 (en) * 2020-07-10 2022-01-13 Sumitomo Electric Hardmetal Corp. Diffractive optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026103A1 (fr) * 1999-10-06 2001-04-12 Sony Corporation Lentille d'objectif et capteur optique
WO2003091764A1 (en) * 2002-04-18 2003-11-06 Matsushita Electric Industrial Co., Ltd. Optical element, optical head, optical information recording/reproduction device, computer, video recording device, video reproduction device, server, and car navigation system
JP2004071134A (ja) * 2002-06-10 2004-03-04 Matsushita Electric Ind Co Ltd 複合対物レンズ、光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー、光ディスクサーバー
JP2004219977A (ja) * 2002-07-31 2004-08-05 Asahi Glass Co Ltd 位相補正素子および光ヘッド装置
JP2005032411A (ja) * 2003-06-17 2005-02-03 Pentax Corp 光ピックアップ用対物レンズおよび光ピックアップ装置
JP2005209321A (ja) * 2003-06-18 2005-08-04 Konica Minolta Opto Inc 光ピックアップ装置用の光学素子、光ピックアップ装置用の収差補正素子、光ピックアップ装置用の集光素子、対物光学系、光ピックアップ装置、及び光情報記録再生装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905748B2 (ja) 2000-02-24 2012-03-28 コニカミノルタホールディングス株式会社 対物レンズ及び光ピックアップ装置
US7206276B2 (en) * 2001-10-12 2007-04-17 Konica Corporation Objective lens, optical element, optical pick-up apparatus and optical information recording and/or reproducing apparatus equipped therewith
JP2004005943A (ja) * 2002-04-26 2004-01-08 Konica Minolta Holdings Inc 記録再生用光学系、対物レンズ、収差補正用光学素子、光ピックアップ装置、及び記録再生装置
EP1465170A3 (en) * 2003-03-31 2007-05-16 Konica Minolta Holdings, Inc. Converging optical system of optical pickup device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026103A1 (fr) * 1999-10-06 2001-04-12 Sony Corporation Lentille d'objectif et capteur optique
WO2003091764A1 (en) * 2002-04-18 2003-11-06 Matsushita Electric Industrial Co., Ltd. Optical element, optical head, optical information recording/reproduction device, computer, video recording device, video reproduction device, server, and car navigation system
JP2004071134A (ja) * 2002-06-10 2004-03-04 Matsushita Electric Ind Co Ltd 複合対物レンズ、光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー、光ディスクサーバー
JP2004219977A (ja) * 2002-07-31 2004-08-05 Asahi Glass Co Ltd 位相補正素子および光ヘッド装置
JP2005032411A (ja) * 2003-06-17 2005-02-03 Pentax Corp 光ピックアップ用対物レンズおよび光ピックアップ装置
JP2005209321A (ja) * 2003-06-18 2005-08-04 Konica Minolta Opto Inc 光ピックアップ装置用の光学素子、光ピックアップ装置用の収差補正素子、光ピックアップ装置用の集光素子、対物光学系、光ピックアップ装置、及び光情報記録再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1801798A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164498A (ja) * 2004-12-02 2006-06-22 Konica Minolta Opto Inc 対物光学系、光ピックアップ装置及び光情報記録再生装置
JP2007317295A (ja) * 2006-05-25 2007-12-06 Pentax Corp 光情報記録再生装置用光学素子、光情報記録再生装置および光情報記録再生装置用光学素子の設計方法
JP2007334952A (ja) * 2006-06-13 2007-12-27 Pentax Corp 光情報記録再生装置用対物レンズ
WO2008146675A1 (ja) * 2007-05-31 2008-12-04 Konica Minolta Opto, Inc. 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
JPWO2008146675A1 (ja) * 2007-05-31 2010-08-19 コニカミノルタオプト株式会社 光ピックアップ装置用の対物光学素子及び光ピックアップ装置
JP2009245575A (ja) * 2007-07-30 2009-10-22 Sony Corp 対物レンズ、光ピックアップ及び光ディスク装置
JP2010170694A (ja) * 2007-07-30 2010-08-05 Sony Corp 対物レンズ、光ピックアップ及び光ディスク装置
US7924684B2 (en) 2007-07-30 2011-04-12 Sony Corporation Object lens, optical pickup, and optical disc device
US8102749B2 (en) 2007-07-30 2012-01-24 Sony Corporation Object lens, optical pickup, and optical disc device
WO2009016847A1 (ja) * 2007-08-02 2009-02-05 Panasonic Corporation 複合対物レンズ、回折素子、光ヘッド装置、光情報装置、対物レンズ駆動方法および制御装置
JP4745442B2 (ja) * 2007-08-02 2011-08-10 パナソニック株式会社 複合対物レンズ、回折素子、光ヘッド装置、光情報装置、対物レンズ駆動方法および制御装置
US8254239B2 (en) 2007-08-02 2012-08-28 Panasonic Corporation Complex objective lens including saw-tooth diffractive element for using on blue, red and infrared lights
US8441907B2 (en) 2007-08-02 2013-05-14 Panasonic Corporation Complex objective lens including saw-tooth diffractive element for using on blue, red and infrared lights
WO2009098846A1 (ja) * 2008-02-06 2009-08-13 Panasonic Corporation 回折光学素子およびその製造方法
US8149510B2 (en) 2008-02-06 2012-04-03 Panasonic Corporation Diffractive optical element and method of making the same

Also Published As

Publication number Publication date
DE602005018801D1 (de) 2010-02-25
EP1801798A4 (en) 2008-08-27
US7227704B2 (en) 2007-06-05
JPWO2006040902A1 (ja) 2008-05-15
EP1801798B1 (en) 2010-01-06
CN100580781C (zh) 2010-01-13
EP1801798A1 (en) 2007-06-27
WO2006040902A9 (ja) 2007-05-18
US20060146422A1 (en) 2006-07-06
CN101073114A (zh) 2007-11-14
JP4340690B2 (ja) 2009-10-07

Similar Documents

Publication Publication Date Title
WO2006040902A1 (ja) 回折光学素子、対物レンズモジュール、光ピックアップ及び光情報記録再生装置
JP3886313B2 (ja) 光ピックアップ
KR100918330B1 (ko) 대물 렌즈, 집광 광학계, 광 픽업 장치 및 기록 재생 장치
JP5322040B2 (ja) 対物レンズ、光ピックアップ装置及び記録・再生装置
US7593307B2 (en) Objective optical system for optical pickup apparatus, optical pickup apparatus, driving apparatus for optical information recording medium, condenser lens and optical path compounding element
KR101464757B1 (ko) 대물렌즈, 광픽업 및 광디스크 장치
JP4775422B2 (ja) 集光光学デバイス、光ピックアップ及び光ディスク装置
KR20040091553A (ko) 광 픽업 장치, 광 정보 기록 재생 장치, 익스팬더 렌즈,커플링 렌즈 및 색수차 보정용 광학 소자
JP2001093179A (ja) 光ピックアップ
US7177089B2 (en) Objective, optical pickup apparatus and optical information recording and/or reproducing apparatus
JPH09311271A (ja) 対物レンズ及び光学ピックアップ装置
US8385181B2 (en) Objective lens and optical pickup apparatus
JP4787060B2 (ja) 光ピックアップおよび光情報処理装置
KR20060037234A (ko) 광픽업용 렌즈장치 및 이를 이용한 정보기록 재생장치
JP4833797B2 (ja) 光ピックアップおよび光情報処理装置
US7564764B2 (en) Optical element, optical pickup device and optical information recording and reproducing apparatus
US20070253310A1 (en) Coupling Lens and Optical Pickup Apparatus
WO2007123112A1 (ja) 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法
JP2008090994A (ja) 光ピックアップおよび光情報処理装置
WO2009147827A1 (ja) 光ピックアップおよび光ディスク装置、コンピュータ、光ディスクプレーヤ、光ディスクレコーダ
JP4585513B2 (ja) 光学素子、光ピックアップ及び光情報記録再生装置
JP4596938B2 (ja) 光ピックアップ、光情報処理装置
WO2011033791A1 (ja) 対物レンズ素子
JP2007328885A (ja) 波長検出装置、光ピックアップ装置及び光情報記録媒体記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006540856

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005783583

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580042313.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005783583

Country of ref document: EP