WO2006035582A1 - カメラモジュール及びこのカメラモジュールを用いた携帯端末 - Google Patents

カメラモジュール及びこのカメラモジュールを用いた携帯端末 Download PDF

Info

Publication number
WO2006035582A1
WO2006035582A1 PCT/JP2005/016540 JP2005016540W WO2006035582A1 WO 2006035582 A1 WO2006035582 A1 WO 2006035582A1 JP 2005016540 W JP2005016540 W JP 2005016540W WO 2006035582 A1 WO2006035582 A1 WO 2006035582A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens holding
camera module
shaft member
piezo element
Prior art date
Application number
PCT/JP2005/016540
Other languages
English (en)
French (fr)
Inventor
Masahiro Shirono
Hirokazu Kobayashi
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004283186A external-priority patent/JP2006098594A/ja
Priority claimed from JP2004283187A external-priority patent/JP2006098595A/ja
Priority claimed from JP2004283041A external-priority patent/JP3775747B2/ja
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US11/575,866 priority Critical patent/US7777969B2/en
Priority to KR1020077007035A priority patent/KR101229207B1/ko
Priority to EP05782313A priority patent/EP1795934A1/en
Publication of WO2006035582A1 publication Critical patent/WO2006035582A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to a camera module and a portable terminal including the camera module, and more particularly to a small and lightweight camera module and a portable terminal including the camera module.
  • Camera modules used in mobile terminals such as recent cellular phones are equipped with high-speed, high-precision autofocus (similar to ordinary electronic cameras (digital cameras)) as the image sensor (CCD) increases in pixel count.
  • AF focal length change
  • zoom focal length change
  • a cylindrical cam is arranged on the side of the optical system, and a cylindrical cam bearing and a lens frame bearing are arranged on the front cover (fixed frame) and driven by a motor.
  • the zoom lens frame and the AF lens frame In addition, the solid-state image sensor (CCD) is directly arranged in the housing (case), and the rotation angle of the cylindrical cam is detected by the cam and the mechanical-canore switch for detecting the rotation angle provided on the side of the cylindrical cam. Some are designed to detect.
  • a cylindrical cam in which a variable magnification shooting cam area and a macro shooting cam area are continuously formed is disposed adjacent to the lens frame.
  • a step motor arranged on the side of the cylindrical cam and the photographic optical system is moved in the optical axis direction, so-called tele and macro switching can be performed.
  • a lead screw is integrally provided in the stepping motor, the lead screw is held by the holding member independently with the stepping motor, and an attachment member for attaching the holding member to the box that is the Kagamitsuki base is provided. Only on one side of the lead screw
  • the lens frame for zoom and AF is driven by two lead screws, the guide support part of the lens frame is provided in the housing, and the CCD is arranged at the lower part of the housing .
  • a focus motor and a zoom motor for driving the photographing lens and a shutter motor and an aperture motor for driving the internal mechanism, and a plane perpendicular to the optical axis of the photographing lens is perpendicular to the optical axis.
  • these motors are arranged in the first to fourth quadrants divided by the first axis and the second axis that are orthogonal to each other, and the center axis of rotation of the focus motor and the zoom motor is provided at the base of the shirt unit. Some have a notch to pass through.
  • a bearing portion that rotatably holds two screw shafts and two lens frame guide shafts in the apparatus main body is integrally formed on the upper housing by a plurality of slide molds having different sliding directions, and the screw
  • the movable lens frame of the zoom and AF lens is driven in the direction of the optical axis by the shaft, and the CCD is held in the lower housing.
  • an electromagnetic motor having a rotor is generally used as a drive source.
  • Force An electromagnetic motor using such a rotor requires an electromagnet or permanent magnet around the rotor, and even if the axial length is shortened, the cylindrical part is indispensable, so the camera module is small. It becomes a bottleneck in making it easier, and noise is also generated.
  • a piezo element that conventionally generates mechanical distortion in response to changes in an electric field or a magnetic field as a drive source for moving the lens frame in the optical axis direction.
  • a frictional drive type drive source is used in which a mechanical vibrator is composed of piezoelectric elements such as ( ⁇ ), and the rotor slider is brought into contact with the mechanical vibrator and the vibration of the mechanical vibrator can be extracted as an output. ing.
  • Such a friction drive type drive source is low speed but has high torque, excellent responsiveness and controllability, enables fine positioning, has a holding torque (or holding force) when not energized, and is quiet. It has the advantages of being excellent, small and lightweight.
  • Patent Document 2 fixes one end of a multilayer piezoelectric body to a protrusion on the outer peripheral surface of a lens holding frame and a piezoelectric body. The other end of the bimorph piezoelectric body is fixed to the other end of the bimorph, and another bimorph piezoelectric body is fixed to the opposite side of the protrusion.
  • the stacked piezoelectric element When the clamp on the inner surface of the lens barrel is removed and the stacked piezoelectric element expands when the voltage is turned on, and the nanomorph piezoelectric element returns to its original shape when the voltage is turned off, it clamps on the lens barrel and the stacked piezoelectric element is turned off when the voltage is turned off By returning to the length, the non-morph piezoelectric bodies are alternately clamped and the laminated piezoelectric body is expanded and restored, and the lens is advanced and retracted.
  • Patent Document 3 shows that a piezoelectric element is disposed close to a rotary feed member for feeding a lens holding frame, and that the piezoelectric feed element gives an incremental rotation to the rotary feed member.
  • the piezoelectric element is disposed in contact with the end circumference of the feed screw for driving the lens frame.
  • Patent Document 4 two types of piezoelectric elements are integrally attached to a guide member that guides the lens holding frame, and these piezoelectric elements are alternately expanded and contracted to intermittently feed the guide member.
  • the piezoelectric element is arranged at the end of the feed screw for driving the lens holding frame.
  • an electromechanical energy conversion element (piezoelectric element) that vibrates when an electric signal is applied is brought into contact with an output member having a screw portion, and a moving member is attached to the screw portion of the output member.
  • the output member is rotated by the vibration of the conversion element, and the moving member is moved in the axial direction of the output member as the screw portion rotates.
  • Piezoelectric elements are arranged around the cylindrical part of this part.
  • a sleeve portion integrated with a lens barrel is slidably fitted to a guide bar, and a linear drive type vibration wave actuator is mounted on the outer peripheral surface of the sleeve portion. It is shown that the lens barrel is moved along the optical axis by applying axial thrust to the sleeve by applying two alternating voltages with a predetermined phase difference to the piezoelectric element by pressure welding [0015]
  • one ceramic vibrator is arranged for each moving lens frame, either in the moving lens frame or in the fixed portion (lens barrel) of the lens device, and no ceramic vibrator is arranged. In some cases, a ceramic vibrator is pressed against a part of either the moving lens frame or the fixed portion, and the lens is driven by an elliptical motion of the ceramic vibrator.
  • the lens holding frame 1 is screwed into the screw portion 3 of the drive shaft 2 provided so as to be rotatable around the axis, thereby driving the vibrating body 4 including the piezoelectric element.
  • the lens holding frame 1 is moved forward and backward along the axial direction of the drive shaft 2 by contacting the peripheral surface of the shaft 2 and rotating the drive shaft 2 by the vibration of the vibrating body 4.
  • the piezoelectric vibrator 5 is pressed against the guide member 8 by the plate panel 6, and the piezoelectric vibrator 5 is accommodated in the sleeve portion of the movable lens holding member 7, so that the rotational motion of the motor is linearly adjusted.
  • Patent Document 7 includes at least one rectangular piezoelectric plate having a long edge portion, a short edge portion, and first and second surfaces. Attaching an electrode to the second surface and attaching a ceramic spacer to the center of the first edge at the edge, applying elastic force to the center at the second edge opposite to the first edge Then, a ceramic spacer is pressed against an object and either an alternating current or an asymmetric single polarity pulse voltage is applied to the electrode.
  • Patent Document 8 discloses that the first and second long sides, the first and second short sides, the front and back surfaces surrounded by the long and short sides, A first piezoelectric plate having a plurality of electrodes connected to the front surface and a counter electrode connected to the back surface is provided, and is surrounded by the first and second long sides, the first and second short sides, and the long and short sides. And a second piezoelectric plate having a plurality of electrodes connected to the front surface and a counter electrode connected to the back surface, and the first spacer is connected to the first short side of the first piezoelectric plate.
  • Patent Document 9 discloses a piezoelectric source having a spacer attached to one of two long edge portions, two short edge portions, and the long edge portion, as a drive source similarly using a piezo element.
  • At least one arm that is rotatable about an axial center.
  • the arm is provided with first and second ends provided at both ends thereof spaced apart from the axial center.
  • a lead Z write head attached to the end and a rigid member on the second end are provided, and the spacer of the piezoelectric plate is inertially biased by the rigid member, so that the piezoelectric plate is centered on the axis. What is made movable is disclosed.
  • Patent Document 10 as a drive source using a piezo element, a plurality of electrodes are provided on one surface of the piezoelectric plate, a counter electrode is provided on the other surface, and one end of an arm that can pivot about an axis is provided. And a rigid body provided at the other end of the arm to elastically bias the piezoelectric plate against the rigid body.
  • Patent Document 11 also discloses that the piezo element moves in the first direction when a voltage is applied between the first electrode group and the common electrode.
  • a voltage is applied between the two electrode groups and the common electrode, movement is caused in the second direction, and the first and second electrode groups are connected to a low voltage by a switch and the first or second electrode group is connected.
  • the one that selectively moves in the two directions is disclosed.
  • Patent Document 11 discloses that a vibrator has a rectangular parallelepiped shape formed of a plurality of thin layers made of a piezoelectric material. With two identical relatively large square principal surfaces, this principal surface also defines long and short edge forces, the layers are stacked and the principal surfaces are bonded together so that the electrodes are on the layer surface.
  • a method is disclosed in which a voltage is applied to an electrode in order to excite vibration in the contact region by disposing the contact region on one or more end faces of the layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-63970
  • Patent Document 2 JP-A-5-107440
  • Patent Document 3 Japanese Patent Laid-Open No. 4-212913
  • Patent Document 4 Japanese Patent Laid-Open No. 4-212910
  • Patent Document 5 JP-A-8-47273
  • Patent Document 6 JP-A-7-104166
  • Patent Document 7 Japanese Patent Laid-Open No. 7-184382
  • Patent Document 8 Japanese Patent No. 2980541
  • Patent Document 9 JP-A-9-37575
  • Patent Document 10 JP 2000-40313 A
  • Patent Document 11 Special Table 2002-529037
  • Patent Document 12 Special Table 2003-501988
  • Patent Documents 2 to 5 are mechanisms for driving a camera lens of a normal size, and camera modules used in mobile terminals such as mobile phones are always downsized. Therefore, even if a piezo element is used, the lens holding member and the piezo element exist independently, and the lens holding member is a slider or the like. Therefore, there is a problem that it is difficult to make it compact and the force becomes complicated.
  • an object of the present invention is to provide a camera module that can be configured to be small and lightweight even when an autofocus (AF) function or a zoom function is incorporated, and a portable terminal including the camera module.
  • AF autofocus
  • a portable terminal including the camera module.
  • a camera module according to the present invention includes:
  • a lens holding portion that holds at least one optical lens and includes a first bearing portion
  • a first shaft member that is inserted into the first bearing portion and disposed substantially parallel to the optical axis; and an operating portion that contacts the first shaft member at an end, and the lens holding portion Including arranged piezo elements,
  • the first shaft member has different surface treatments at a first portion that contacts the operating portion and a second portion that slides on the first bearing portion.
  • the surface of the second portion that slides with the first bearing portion is defined as the operating portion.
  • the surface of the first part that is in contact with the first working part is processed more smoothly than the surface of the first part that is in contact with the first bearing part.
  • the friction coefficient between the first bearing portion and the first shaft member is processed to be lower than the friction coefficient between the operating portion and the first shaft member, or the first sliding portion slides on the first bearing portion.
  • Lubricating treatment is applied to the surface of two places, and the lubricating treatment is omitted from the surface of the first place that comes into contact with the operating portion.
  • the surface processing of the surface of the first shaft member that contacts the operating portion of the piezo element and the surface that slides with the first bearing portion are different, and the friction coefficient is set on the side that the operating portion contacts.
  • the driving force by the piezo element can be efficiently transmitted to the shaft member and the lens holding part is smooth
  • the camera module can be moved, and the camera module when the auto focus (AF) function and zoom function are incorporated can be configured to be small and lightweight.
  • the first bearing portion has a substantially V-shaped cross section, the V-shaped cross section and the first shaft member slide, and the first shaft portion further includes
  • the bearing portion has two V-shaped cross sections in the axial direction of the first shaft member, and the operating portion is positioned between the two V-shaped cross sections.
  • the contact surface of the first bearing section on which the first shaft member slides becomes a line contact, resulting in very low resistance, and the operating section must be positioned between two V-shaped cross sections.
  • the pressing force for pressing the first bearing portion via the first shaft member by the operating portion is equal to the two V-shaped cross sections, and the lens holding portion can be moved more smoothly. It becomes like this.
  • the second bearing portion disposed in the lens holding portion, the second bearing portion, and the first shaft member and the optical axis are inserted in the second bearing portion and substantially parallel to the optical axis.
  • a second shaft member disposed at a position substantially symmetrical with respect to the second shaft member, and the second shaft member slides on the surface of the second shaft member with the first bearing portion.
  • a camera module according to the present invention includes:
  • a lens holder that holds at least one optical lens and includes a first bearing portion. Holding part,
  • a first shaft member that is inserted into the first bearing portion and disposed substantially parallel to the optical axis; and an operating portion that contacts the first shaft member at an end, and the lens holding portion A piezo element arranged to move the lens holding part;
  • An electrical signal for driving the piezo element can be supplied from at least the first shaft member or the second shaft member.
  • the piezo element has a low speed but a high torque, excellent responsiveness and controllability, and can be positioned very finely.
  • the lens holding part moves up and down by driving the piezo element to perform zooming and focusing.
  • the power camera module with auto focus (AF) function and zoom function can be made small and lightweight.
  • power signals to the motor, drive signals, grounding, and other electrical signals in such a camera module are generally used with a flexible board or cable. If a flexible substrate or flexible cable is used, the weight increases, and it becomes necessary to secure a flexible substrate or flexible cable movement area accompanying the movement of the motor, which increases the power module.
  • the camera module can be made compact accordingly. This is particularly advantageous when the moving distance of the lens holding portion that holds the drive member is increased.
  • the present invention provides a first piezo element having a first lens holding part and a second lens holding part each provided with the piezo element, and housed in the first lens holding part. Can be driven by a first frequency signal, and the second piezo element housed in the second lens holding portion can be driven by a second frequency signal, and the first frequency signal can be driven by the first frequency signal. And supplying the second frequency signal to the second piezo element. It has a common signal supply member to supply to!
  • the first signal supply means capable of selectively supplying the signal of the first frequency and the signal of the second frequency to the signal supply member is provided with two single signal supply means.
  • a second signal supply means capable of supplying a signal having a first frequency and a signal having the second frequency superimposed on the signal supply member; Supply member force: First filter means for obtaining the first frequency signal from the supplied signal; and second filter means for obtaining the second frequency signal from the signal supplied from the signal supply member.
  • the output of the first filter means is supplied to the first piezo element and the output of the second filter means can be supplied to the second piezo element.
  • the first and second frequencies from the measured electrical signal Signal can simultaneously drive both piezoelectric element is taken out, it is possible to provide a camera module that can perform zooming and focusing to quickly.
  • the lens holding portion includes a second bearing portion that contacts the second shaft member, and supplies the electric signal via the first, second, or both bearing portions.
  • the lens holding portion can be a sliding member that is slidably in contact with the shaft member.
  • the electric signal is supplied through the sliding member, or the sliding member surrounds the shaft member and abuts the piezo element on the shaft member.
  • the sliding member can also serve as an urging member for the shaft member of the drive member, so that the number of parts can be reduced and the camera module can be made compact and easy to assemble. Can be configured well.
  • an urging means is further provided for urging the piezo element in a direction in which the operating portion abuts on the first shaft member while being disposed on the lens holding portion.
  • a lens holding portion that holds at least one optical lens and includes a first bearing portion
  • a first shaft member that is inserted into the first bearing portion and disposed substantially parallel to the optical axis; and an operating portion that contacts the first shaft member at an end, and the lens holding portion Including arranged piezo elements,
  • the first shaft member includes a camera module having different surface treatments at a first portion that contacts the operating portion and a second portion that slides with the first bearing portion, and
  • An operation member a display member, a battery, a communication unit,
  • a portable terminal characterized by including a housing that houses the camera module, the display member, the battery, and the communication unit and that has a thickness dimension substantially limited to the height of the camera module.
  • a lens holding unit for holding at least one optical lens
  • a camera module that supplies at least an electric signal for driving the driving member from the shaft member or the guide shaft member;
  • An operation member a display member, a battery, a communication unit,
  • a portable terminal characterized by including a housing that houses the camera module, the display member, the battery, and the communication unit and that has a thickness dimension substantially limited to the height of the camera module.
  • a lens holding portion that holds at least one optical lens and includes a first bearing portion
  • a first shaft member that is inserted into the first bearing portion and disposed substantially parallel to the optical axis; and an operating portion that contacts the first shaft member at an end, and the lens holding portion An arranged piezo element;
  • the first shaft member has different surface treatments at a first location contacting the operating portion and a second location sliding on the first bearing portion, and at least the first shaft member or the above-described
  • a camera module configured to supply an electric signal for driving the piezo element from a second shaft member
  • An operation member a display member, a battery, a communication unit,
  • a portable terminal characterized by including a housing that houses the camera module, the display member, the battery, and the communication unit and that has a thickness dimension substantially limited to the height of the camera module.
  • the camera module includes a first lens holding unit and a second lens holding unit each including the piezo element, and the first piezo housed in the first lens holding unit.
  • the element can be driven with a signal of the first frequency
  • the second piezo element housed in the second lens holding unit can be driven with a signal of the second frequency
  • the signal of the first frequency is
  • a common signal supply member for supplying a signal of the second frequency to the second piezo element as well as supplying the first piezo element.
  • a camera module and a portable terminal including the camera module can be configured to be small and light. is there.
  • FIG. 1 is a perspective view showing a state in which an optical lens is attached to a lens holder (second lens holder) used in Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view showing a lens assembly (second lens assembly) used in Example 1 of the present invention.
  • FIG. 3 is a diagram for explaining the piezo element used in Example 1 of the present invention, (a) is a perspective view showing the piezo element, and (b) and (c) are for explaining the operation principle.
  • FIG. 3 is a diagram for explaining the piezo element used in Example 1 of the present invention, (a) is a perspective view showing the piezo element, and (b) and (c) are for explaining the operation principle.
  • FIG. 4 is a perspective view showing a state where an RF plate is attached to the lens assembly shown in FIG.
  • FIG. 5 is a perspective view showing a lens assembly (second lens assembly) used in Example 1 of the present invention, and (a) and (b) are perspective views showing different angular forces. .
  • FIG. 6 is an exploded perspective view showing a lens assembly (first lens assembly) used in Example 1 of the present invention.
  • FIG. 7 is a perspective view showing the external appearance of the camera module according to Embodiment 1 of the present invention in an upside down state.
  • FIG. 8 is a perspective view showing an appearance of a camera module according to Embodiment 1 of the present invention.
  • FIG. 9 is an exploded perspective view showing an example of a CCD assembly used in the camera module according to Embodiment 1 of the present invention.
  • FIG. 10 is a perspective view showing a state in which the optical lens, the guide shaft, and the drive shaft are mounted on the case.
  • FIG. 11 is a perspective view showing a state in which the electrical component is mounted on the case.
  • FIG. 12 is a perspective view showing a state where the second lens assembly is mounted on the guide shaft and the drive shaft.
  • FIG. 13 is a perspective view showing a state in which the first lens assembly is mounted on the guide shaft and the drive shaft.
  • FIG. 14 is a plan view showing a state in which the second lens assembly is mounted on the guide shaft and the drive shaft.
  • FIG. 15 is a cross-sectional view of FIG.
  • FIG. 16 is a perspective view showing a state where the bottom cover is attached.
  • FIG. 17 is a perspective view showing a state in which the side cover is attached.
  • FIG. 18 is a perspective view showing a state where the CCD assembly is mounted.
  • FIG. 19 A state in which the lens constituting the optical system in the camera module of the embodiment is on the wide angle (wide) side (A) and a state on the telephoto (tele) side (B), and a telephoto (tele) side and wide angle
  • FIG. 8C is a diagram (C) for explaining a moving range of the focusing lens on the wide side.
  • ⁇ 20 In the perspective view of the camera module of the embodiment, (A) shows the state in which the focal length changing lens is on the telephoto (tele) side, and (B) shows the focal length changing lens in the wide angle (wide) side. This indicates the state.
  • FIG. 6 is a perspective view showing a lens holding portion, a shaft member for moving up and down the first lens holding portion, a guide shaft member, and a part of a mechanism for moving the second lens holding portion.
  • FIG. 22 is a plan view of a third lens holding unit.
  • FIG. 23 is a view (A) of the piezo element holder in the third lens holder seen from the outside of the camera module and a view (B) seen from the lens side.
  • FIG. 24 is a perspective view showing a latch mechanism for moving and fixing the lens group that changes the focal length in the camera module of the embodiment.
  • FIG. 25 is a diagram for explaining a mechanism for changing a focal length and a lens moving state at the time of auto focus in the camera module of the embodiment.
  • FIG. 26 is a plan view of a modification of the first lens holding unit.
  • FIG. 27 is a perspective view showing another example of moving the lens holder for changing the focal length.
  • FIG. 28 is a perspective view showing Example 3 of the camera module according to the embodiment.
  • FIG. 29 is a plan view of a lens holding unit configured to be able to move up and down while holding a lens and a piezoelectric element in Example 3.
  • FIG. 30 is a diagram in which two rollers with a flat surface with respect to the guide shaft at the guide contact portion of the lens holder are arranged in a V shape, (a) is a cross-sectional view, and (b) is a cross-sectional view. The side view which also looked at the guide shaft side force, (c) is a perspective view.
  • FIG. 31 is a plan view (A) in another embodiment of a lens holding portion configured to be able to move up and down while holding a lens and a piezo element, and a side view (B) showing a piezo element side force.
  • FIG. 32 is a diagram showing an embodiment for taking a shaft member force piezo element drive current in the camera module of Embodiment 4;
  • FIG. 33 is a perspective view (A) of the camera module of Example 5 and a cross-sectional view (B) showing a piezo element portion.
  • FIG. 34 is an example of a control circuit for driving a plurality of piezo elements having different movable resonance frequencies.
  • FIG. 35 is a diagram schematically showing an example of a mobile phone incorporating a camera module according to the present invention.
  • FIG. 36 is a diagram showing an example of a conventional camera module.
  • FIG. 37 is a diagram showing another example of a conventional camera module.
  • FIG. 7 and FIG. 8 show the external appearance of the camera module 21 in the embodiment of Example 1 in which the first lens ⁇ a projecting body io and the second lens ⁇ a projecting body 15 described below are incorporated.
  • FIG. 7 is a perspective view showing the CCD assembly 30 side, which is an image sensor, facing up.
  • FIG. 8 is a perspective view showing the holder 24a side incorporating the optical lens 23 on the subject side.
  • 24 is a case
  • 28 is a side cover (shading cover), and these cases 2
  • FIG. 5 first lens assembly 10
  • FIG. 6 second lens assembly 15
  • the details of the first lens ⁇ 1_ ridge 10 are shown in Figs. 1, 2, and 4, and Fig. 3 shows the operating principle of the piezo element 20 incorporated in each lens assembly 10, 15. It is a figure for demonstrating.
  • FIGS. 9 to 18 are perspective views showing the respective components sequentially disassembled.
  • FIG. 9 is an exploded view of an example of the CCD assembly 30.
  • FIG. 10 is a perspective view showing a state in which the optical lens 23, the guide shaft 26, and the drive shaft 27 are attached to the case 24.
  • FIG. 11 is a perspective view showing a state in which electrical components are attached to the case 24.
  • FIG. Fig. 13 is a perspective view showing a state where the first lens assembly 10 is mounted on the guide shaft 26 and the drive shaft 27, and Fig. 13 shows a state where the second lens assembly 15 is mounted on the guide shaft 26 and the drive shaft 27.
  • FIG. 9 is an exploded view of an example of the CCD assembly 30.
  • FIG. 10 is a perspective view showing a state in which the optical lens 23, the guide shaft 26, and the drive shaft 27 are attached to the case 24.
  • FIG. 11 is a perspective view showing a state in which electrical components are attached to the case 24.
  • FIG. Fig. 13 is
  • FIG. 14 is a plan view showing a state in which the first lens assembly 10 is mounted on the guide shaft 26 and the drive shaft 27, and
  • FIG. 15 is a schematic view of the piezoelectric element 20 and the drive shaft 27 in FIG. Cross-sectional view
  • Fig. 16 shows the bottom cover (lower cover) 25 attached
  • FIG. 17 is a perspective view showing a mounting state of the side covers 28 and 28c
  • FIG. 18 is a perspective view showing a mounting state of the CCD assembly 30.
  • FIG. 19 shows a camera module 2 according to an embodiment that is the first embodiment shown in FIGS. 1, the lens 12 incorporated in the first lens assembly 10, the lens 17 incorporated in the second lens assembly 15, the lens 23 incorporated in the holder 24a on the subject side, the CCD 30a that is an image sensor, and
  • the first lens group 32 held by the third lens holding portion 41 on the subject side, and the second lens held by the second lens holding portion 42 are used.
  • the lens groups 12 and 33 and the lens groups 17 and 34 for focusing (focusing) are arranged as shown in Figs. 19 (A) and 19 (B).
  • lens groups 23 and 32 each of which is composed of at least one optical lens and fixed in position, the lens groups 12 and 33 and lens groups 17 and 34 as shown in FIG.
  • the lens groups 12, 33, and the lens groups 17, 34 are moved to the lens groups 12, 32 side. Wide angle.
  • FIG. 19C shows the position of each lens group and the movement range for focusing, corresponding to the lens group positions shown in FIGS. 19A and 19B.
  • the lens groups 17 and 34 have a range indicated by 36 in FIG. 19 (C) in the case of the wide angle side in FIG.
  • For the telephoto side move the area indicated by 37 in Fig. 19 (C) and focus (focus).
  • the camera module of each embodiment shown in Figs. 7, 8, 20, 27, 31, and 33 has the piezoelectric element 20 as shown in Fig. 3 in accordance with this movement of the accommodated lens group.
  • FIG. 3 (A) is a perspective view of a piezo element used in the camera module according to the embodiment, (B) is a configuration of the piezo element, and (C) is for explaining an operation principle.
  • FIG. As described in detail in Patent Documents 6 to 11, the piezoelectric element 20 used here is a piezoelectric ceramic (piezo element) 20 formed in a substantially rectangular plate-like outer shape in FIG. As shown in Fig.
  • Electrodes 20n, 20p, 20q, and 20r are placed on the first surface 20b formed in the longitudinal direction and the short direction, and the second surface 20c that is the opposite face J One electric on the entire surface There are poles.
  • the electrodes 20n, 20p, 20q, and 20r on the first surface 20b are formed by the electrodes 20n, 20p, and 20q, 20r arranged in the diagonal direction by the wires 20s and 20t arranged in the vicinity of the connecting portions of the respective electrodes. It is preferable to be electrically connected and the electrode on the second surface 20c be grounded!
  • this piezoelectric ceramic (piezoelectric element) 20 includes a pair of support bodies 20f and 20g fixed around and a support body 20h, 20k, and 20m with a spring, Supported to be deformable.
  • the piezoelectric ceramic (piezo element) 20 When a positive voltage is applied to the electrodes 20n and 20r and a negative voltage is applied to the electrodes 20p and 20q in the piezoelectric ceramic (piezo element) 20 configured as described above, the piezoelectric ceramic (piezo element) 20 is 3 As shown exaggeratedly in (C), the left side of the figure is longer than the right side, and because it can be deformed by being supported by paneled supports 20h, 20k, 20m, the spacer 20e is engaged. Move to the right of the mating object 20v. When the voltage is no longer applied, the piezoelectric ceramic (piezo element) 20 returns to its original force.
  • the piezoelectric ceramic When the pulse falls, the spacer 20e returns to the starting position while the spacer 20e and the object 20v are engaged. Therefore, the spacer 20e and the object 20v move relatively by the amount of displacement at the rising edge of the pulse. If the voltage is applied in the reverse direction, the piezoelectric ceramic (piezo element) 20 is deformed in the opposite direction, and therefore the spacer 20e and the object 20v move in the opposite directions.
  • the piezoelectric ceramic (piezo element) 20 continuously applies a signal voltage that causes deformation as shown in Fig. 3 (C), so that the space between the spacer 20e and the object 20v is reduced.
  • the relative position with the object 20v is displaced by the friction of the object, so that the torque is low, but the torque is high, the response is excellent, the controllability is small, the positioning is fine, and the holding torque (
  • the drive source has advantages such as having a holding force), excellent quietness, small size and light weight.
  • FIG. 1 is a perspective view showing a lens holder (first lens holding portion) used in the camera module according to Embodiment 1 of the present invention together with an optical lens.
  • An optical lens storage space is defined in the (first lens holding portion), and at least one optical lens 12 is held in the optical lens storage space.
  • the lens holder 11 is formed in a substantially square shape when viewed from above, and 1 la and the first bearing portion, which are first bearing portions facing upward from the lower side in the figure, at a pair of opposite corner portions, respectively.
  • the guide bearing portion 11b is formed.
  • a drive element portion holding portion (piezo holding portion) 11c into which a drive element portion 14 described later is inserted is formed along the side on the bearing portion 11a side.
  • the piezo holding portion 11c is formed with a through portion (hole) communicating with the bearing portion 11a.
  • drive element unit 14 is arranged in piezo holding unit 1 lc.
  • the drive element unit 14 includes the substantially rectangular plate-like piezo element 20 described in FIG. 3, and the piezo element 20 is the first surface 20b formed in the longitudinal direction and the transverse direction, and is on the opposite side.
  • An electrode (not shown) is provided on the second surface 20c, and a spacer (actuating portion) 20e that is engaged with an object to be moved relative to the third surface 20d in the short direction is provided.
  • a reciprocating motion is generated in the actuator 20e by applying a sinusoidal voltage to the electrodes on 20b and the second surface 20c, thereby realizing relative movement with respect to the object with which the actuator 20e is engaged. To do.
  • a bifurcated plate panel member 14 a is disposed on the upper surface of the piezo element 20, and a wiring material (flexible wiring) 14 b is connected to the piezo element 20.
  • the wiring member 14b is folded at a folded portion indicated by reference numeral 14c, and the folded portion 14c is positioned on the subject side of the lens holder 11 as will be described later.
  • the piezo holding portion 11c As shown in FIGS. 1 and 2, in the piezo holding portion 11c, the surface on the opposite side to the bearing portion 11a is opened and the upper surface side is also opened, and the partition portion that divides the opposite surface from the upper surface l id is provided. As shown by the solid line arrow in FIG. 2, when the piezo element 20 is also inserted into the piezo holding part 1 lc, the piezo element 20 is moved to the piezo holding part with the plate panel member 14a straddling the partition part 1 Id. Inserted into 11c. Then, the operating part 20e faces the bearing part 11a through the insertion part.
  • the fixing member 13 is attached to the lens holder 11 from the direction indicated by the solid line arrow in FIG.
  • the fixing member 13 has an elastic force and includes a ring-shaped main body portion 13a. It has a first presser portion 13b, a locking piece portion 13c, and a second presser portion 13d extending in an arm shape.
  • the plate panel member 14a is pressed downward by the first pressing portion 13b, and the rear end of the piezoelectric element 20 (the operating portion 20e) is pressed by the second pressing portion 13d. The opposite end) is pressed toward the bearing portion 11a.
  • the fixing member 13 prevents the optical lens 12 attached to the lens holder 11 from coming off.
  • the fixing member 13 may be formed of a conductive material, and the insulating member 13e may be disposed at a position facing the side surface of the piezo element 20.
  • FIGS. 5 (a) and 5 (b) are perspective views showing the lens assembly 10 after mounting the RF plate l lq from different angles, and the lens holder 11 has a groove portion 1 lp for positioning the wiring material 14b. A part of the wiring material 14b is accommodated in the groove l ip, and the wiring material 14b is positioned. A sensor tape (not shown) as a position detection member is attached to the lens holder 11.
  • FIG. 6 is an exploded perspective view showing a lens assembly (second lens assembly) 15, and this lens assembly 15 includes a lens holder 16 (second lens).
  • the lens holder 16 has the same structure as the lens holder 15 except for the standing part 16e. That is, the lens holder 16 defines an optical lens storage space, and at least one optical lens 17 is held in the optical lens storage space.
  • a pair of opposite corners of the lens holder 16 are respectively formed with a bearing portion 16a and a guide bearing portion 16b in which the downward force in the drawing also faces upward.
  • a drive element portion holding portion (piezo holding portion) 16c into which a later-described drive element portion 19 is inserted is formed along the side on the bearing portion 16a side.
  • the piezo holding portion 16c is formed with a through portion communicating with the bearing portion 16a.
  • the drive element unit 19 is disposed on the piezoelectric holding unit 16c.
  • the drive element section 19 has a piezo element 20a similar to the piezo element 20, and a bifurcated plate panel member 3 is formed on the upper surface of the piezo element 20a. 0 is arranged, and a wiring material (flexible wiring) 19b is connected to the piezo element 20a.
  • the wiring member 19b is folded back at a folded portion indicated by reference numeral 19c, and the folded portion 19c is positioned on the image forming side of the lens holder 16 as will be described later.
  • the fixing member 18 is attached to the lens holder 16 from the direction indicated by the solid line arrow in FIG.
  • the fixing member 18 has a structure similar to that of the fixing member 13, and includes a ring-shaped main body portion 18a.
  • the main body portion 18a includes a first presser portion 18b, a locking piece portion 18c, and an arm shape.
  • the second presser portion 18d extends.
  • the fixing member 18 prevents the optical lens 17 attached to the lens holder 16 from coming off.
  • the lens holder 16 is formed with an upright portion 16e, and a sensor tape 16f for position detection is attached to the upright portion 16e.
  • the fixing member 18 may be formed of a conductive material, and the insulating member 18e may be disposed at a position facing the side surface of the piezo element 20a.
  • FIGS. 7 and 8 show the appearance of the camera module according to the first embodiment of the present invention in which the first lens assembly 10 and the second lens assembly 15 configured as described above are incorporated.
  • 7 is a perspective view showing the CCD assembly 30 side of the camera module 21 facing upward
  • FIG. 8 is a perspective view showing the holder portion 24a side incorporating the optical lens 23 facing upward. is there.
  • the imaging side is the upper side, and the wiring material 14b in the first lens assembly 10 and the wiring material 19b in the second lens assembly 15 and the CCD assembly 3 are arranged.
  • the ASIC (third wiring material) 29 connecting to 0 is arranged on the side surface of the camera module housing 22 (this ASIC 29 is also connected to position detection sensors 24k and 24m, which will be described later).
  • 24 is a case
  • 28 is a side cover (light-shielding cover).
  • FIG. 9 is an exploded perspective view showing an example of the image sensor assembly (imaging unit) used in the camera module according to Embodiment 1 of the present invention.
  • the CCD 30a that is an image sensor is shown in FIG. It is mounted on one surface of the CCD substrate 30b, and a digital signal processor (DSP) 30c is mounted on the other surface side of the CCD substrate 30b so as to face the CCD3 Oa.
  • the CCD substrate 30b is covered with a CCD cover 30d from the CCD 30a side, and an infrared (IR) blocking filter 30e is attached to the opening surface of the CCD cover 30d, and an image sensor assembly (hereinafter referred to as a CCD assembly) 30 It becomes.
  • IR infrared
  • FIG. 10 is a perspective view showing a case (upper case) 24 of the camera module, and the case 24 has a holder portion 24a located on the subject side on the lower side,
  • the optical lens 23 is arranged in the lens storage space formed in the holder portion 24a as indicated by the solid line arrow.
  • Bearing portions 24b and 24c into which the guide shaft 26 and the drive shaft 27 are inserted are formed on the upper surface of the holder portion 24a, and one ends of the guide shaft 26 and the drive shaft 27 are inserted into the bearing portions 24b and 24c, respectively.
  • the case 24 has an upright wall 24d formed integrally with the holder portion 24a, and a sensor tape 24f is attached to the upright wall 24d.
  • capacitors 24g are attached to the side surface of the holder portion 24a (two of the capacitors 24g are used for driving the piezo element 20 and the remaining two One is used to drive the piezo element 20a), and a notch 24e is formed on one side of the standing wall 24d, and four inductors 24h are mounted on the standing wall 24d (inductor 2 4h). 2 are used to drive the piezo element 20 and the remaining two are used to drive the piezo element 20a), a position detection sensor 24k for the lens assembly 10 and a position detection sensor 24m for the lens assembly 15. Is installed. That is, the standing wall 24d is formed with a storage portion for storing the electric element.
  • FIG. 12 is a view showing a state in which the first lens assembly 10 is inserted into the drive shaft 27 and the guide shaft 26, and the mounting of the second lens assembly 15 is performed following the mounting of the lens assembly 10. Then, the wiring members 14b and 19b are positioned in the notch 24e (see also FIG. 16).
  • FIG. 14 is a plan view after the first lens assembly 10 is mounted, and FIG. 15 is a sectional view thereof.
  • the facing surface of the operating portion 20e of the piezo element 20 has a V-groove shape ie, and the drive shaft 27 is in contact with the V-groove shape. That is, the outer peripheral surface of the drive shaft 27 abuts against the operating portion 20e of the piezo element 20 at the first location, and abuts against the V groove l ie at the second location. Is slid.
  • the left and right side surfaces (upper and lower side surfaces in FIG.
  • the surface treatment of the first and second locations is different, for example, the surface of the second location is treated more smoothly than the surface of the first location (that is, the first location). Is rougher than the second surface).
  • the friction coefficient at the second location is smaller than the friction coefficient at the first location.
  • the lubrication treatment may be performed only on the surface of the second portion.
  • the above-mentioned V-groove l ie is formed in two vertical directions as indicated by l lg and l lh in FIG. 15, and the actuating part 20e is placed between the two V-grooves and the drive shaft 27. You may make it contact
  • the guide shaft 26 may be subjected to the same surface treatment as the drive shaft 27.
  • the operating portion 20e comes into contact with the outer peripheral surface of the drive shaft 27, and the drive shaft 27 has a V groove l ie. Abut.
  • a pair of projections l lf are formed at predetermined intervals on the fixed wall (upper surface and lower surface in the figure) of the piezo holding portion 11c, and the first wall is provided via the panel panel 14a.
  • the piezo element 20 is pressed downward in the figure by the one pressing portion 13b and is sandwiched between the protruding portions 1 If.
  • the rear end of the piezo element 20 is pressed toward the drive shaft 27 by the second pressing portion 13d, and the operating portion 20e contacts the outer peripheral surface of the drive shaft 27. That is, as shown in FIG. 15, the upper and lower side surfaces of the piezo element 20 in the figure are deformably pressed and held by the protrusions 1 If formed at two locations, respectively, and are opposite to the operation part 20e of the piezo element 20.
  • the end portion is pressed against the drive shaft 27 by the second pressing portion 13d as the biasing means.
  • the protruding portion l lf is formed at a position where the vibration node portion of the piezo element 20 is pressed.
  • the drive shaft 27 abuts on an abutment body 11m having a first abutment portion llg and a second abutment portion llh, and the abutment body 11m is contacted by the abutment portion Ilk. l Holds against ln.
  • the operating portion 20e of the piezo element 20 comes into contact with the drive shaft 27. Thereafter, as shown in FIG. 13, the second lens assembly 15 is turned so that the folded portion 19c faces the image forming side (that is, the side opposite to the holder portion 24a), and the bearing portion 16a is connected to the drive shaft 27. Insert the bearing 16 b into the guide shaft 26.
  • the bearing portion 16a is configured in the same manner as the bearing portion 11a described above.
  • the surface of the bearing portion 11a that contacts the drive shaft 27 is formed into a V shape, and the bearing l ib has a shape corresponding to the outer shape of the guide shaft 26.
  • the force of the bearing portion 11a may be configured by using a V-shaped roller.
  • the flat rollers 54d and 54e having the shape may be configured to be accommodated in the bearing portion so as to be V-shaped with respect to the guide shaft 26 (in FIGS. 30 (a) to (c), 1 lb of the bearing part is represented by a bearing part 54a, and the guide shaft 26 is represented by a shaft member 46).
  • FIG. 30 (a) is a plan view of the bearing portion 54a
  • FIGS. 30 (b) and 30 (c) are a side view and a perspective view of the bearing portion 54a, and flat rollers 54d and 54e. Is held in a V-shaped notch 54f provided in the bearing portion 54a so as to be V-shaped with respect to the shaft member 46 by a bearing 54b provided in a U-shape.
  • the bottom force bar (lower cover) 25 is mounted on the case 24 as well as the imaging side force, as shown in FIG.
  • the bottom cover 25 is formed with a bearing portion (not shown) into which the guide shaft 26 and the drive shaft 27 are inserted.
  • side covers (light-shielding covers) 28 and 28c are attached to the case 24 to constitute a camera module housing 22.
  • the piezo elements 20 and 19 are positioned on the one side 28a (hereinafter referred to as the first side surface) side of the side cover 28 constituting the camera module housing 22.
  • the first side surface the side surface adjacent to the first side surface 28a
  • the sensor tape 24f and the position detection sensors 24k and 24m are disposed on the second side surface 28b side. Will be placed.
  • the first and second wiring members 14b and 19b are respectively disposed on the first side face 28a side.
  • the CCD assembly 30 is mounted on the camera module housing 22 to obtain the camera module 21 shown in FIG.
  • the imaging side is the upper side
  • an ASIC (third wiring material) 29 that connects the wiring material 14b and wiring material 19b to the CCD assembly 30 is arranged on the side surface of the camera module housing 22 (see FIG. 7).
  • This ASIC29 is also connected to position detection sensors 24k and 24m).
  • the wiring space of the wiring members 14b and 19b is positioned in the vicinity of the first side surface 28a of the second side surface 28b, and the connecting portion for connecting the wiring members 14b and 19b and the third wiring member is the second side. Located on side 28b.
  • the camera module 21 is completed with the subject side as the upper side.
  • the inductor 24h shown in FIG. 17 is positioned on the second side surface 28b side.
  • the force inductor 24h may be positioned on the first side surface 28a side.
  • the capacitor 24g may position the force capacitor 24g to be positioned on the first side face 28a side on the second side face 28b side.
  • the standing wall 24d in which the above-mentioned electric element is accommodated may be provided on the lower cover 25 which is not required to be provided on the case 24.
  • the case 24 and the lower cover 25 may be joined by, for example, an engaging member and an engaged member, or the case 24 and the lower cover 25 may be bonded using an adhesive. You can join them.
  • the camera module 21 has a substantially cubic case body having four side surfaces parallel to the optical axis, and the piezoelectric elements 20 and 20a are positioned on one side surface of the case body. It is The drive shaft 27 is disposed in the vicinity of a corner defined by the one side surface and the side surface adjacent to the one side surface, and the guide shaft 26 is disposed at a corner portion facing the corner portion. Yes.
  • the optical lens 23 is fixedly arranged, and the lens assemblies 10 and 15 are movably supported by the guide shaft 26 and the drive shaft 27. ing.
  • the lens assembly 15 moves to the optical lens 23 side, a telephoto state is established, and the lens assembly 10 also moves to the optical lens 23 side following the movement of the lens assembly 15. .
  • the lens assembly 15 is returned to the lens assembly 10 side, a wide-angle state is established, and the lens assembly 10 also moves following the movement of the lens assembly 15.
  • the sensor tape is detected by the position detection sensors 24k and 24m, and the position detection sensors 24k and 24m detect the reference position of the lens assemblies 15 and 10 and the amount of movement from the reference position. .
  • the cross section of the bearing portion into which the drive shaft is inserted is substantially V-shaped, the sliding area is reduced, and as a result, the friction coefficient can be kept low, and the driving force of the piezo element is improved. Can be made.
  • two V-shaped grooves corresponding to the upper and lower sides of the operating part of the piezo element Therefore, when driving the piezo element, the driving load can be evenly distributed, and the driving of the piezo element can be stabilized.
  • FIG. 20 is a perspective view of the camera module 40 in the embodiment.
  • FIG. 20A is a telephoto (tele) telephoto lens.
  • (B) shows a state where the focal length changing lens is on the wide angle side.
  • FIG. 21 shows the third lens group by removing the third lens holding unit 41 that holds the first lens group 32 on the subject side and the second lens holding unit 42 that holds the second lens group 33 in FIG.
  • a part of a mechanism for moving a first lens holding part 44 for holding 34, a shaft member 45 for moving the first lens holding part 44 up and down, a guide shaft member 46, and a second lens holding part 42 are shown.
  • 22 is a plan view of the first lens holding portion 44, and FIG.
  • FIG. 23 is a view (A) of the piezo element holding portion 44b of the first lens holding portion 44 as viewed from the outside of the camera module.
  • FIG. 24 is a perspective view schematically showing a mechanism for moving and fixing the lens group that changes the focal length in the camera module 40 of the embodiment.
  • FIG. 25 is a perspective view schematically showing the embodiment. Mechanism for changing the focal length of the camera module 40
  • FIG. 26 is a plan view of a modified example of the first lens holding portion 44, and FIG. 27 shows another embodiment for moving the focal length changing lens holding portion.
  • FIG. 24 is a perspective view schematically showing a mechanism for moving and fixing the lens group that changes the focal length in the camera module 40 of the embodiment.
  • FIG. 25 is a perspective view schematically showing the embodiment. Mechanism for changing the focal length of the camera module 40
  • FIG. 26 is a plan view of a modified example of the first lens holding portion 44
  • FIG. 27 shows another embodiment for moving the focal length changing lens holding portion.
  • the camera module 40 of the embodiment shown in FIG. 20 includes the first lens group 32 on the object side, and the second lens arranged on the imaging element 35 side. 21 and a third lens group 34 (not shown in FIG. 20) arranged on the image sensor 35 side, as shown in FIG. 21, and each lens group is a first lens group.
  • 32 holds the third lens holding portion 41, the cylindrical second lens holding portion 42 holding the second lens group 33, and the third lens group 34, which will be described in detail later with reference to FIGS. 22 and 23.
  • the camera module 40 in the embodiment shown in FIG. 20 is described as a bifocal camera module that switches the focal length between the telephoto (tele) side and the wide-angle (wide) side as an example.
  • the focal length can be changed continuously with just the 2-focus type.
  • the present invention can also be applied to a normal zoom lens.
  • support arms provided on the second lens holding portion 42 are provided at substantially corners of the third lens holding portion 41 and a base 48 for holding an image pickup device 35 such as a CCD (not shown).
  • 42a is inserted and guided, and has a substantially rectangular plate-like outer shape.
  • the drive member is disposed in the first lens holding portion 44 in a direction substantially perpendicular to the optical axis and described in detail in FIG.
  • the spacer 20e which is the working portion of the piezo element 20, into contact with each other, it is preferably substantially symmetrical about the optical axis.
  • a shaft member 45 and a guide shaft member 46 arranged in parallel with each other are provided.
  • the shaft member 45 may be constituted by a lead screw or the like.
  • FIG. 24 a schematic configuration for movement is shown in FIG. 24 in order to fix the position of the second lens group 33 held by the second lens holding unit 42 to the wide angle side and the telephoto side.
  • a latching arm 47 as a latching portion is suspended, and a groove 42b as a latched portion for latching the latching arm 47 is provided above and below the outer periphery of the second lens holding portion 42. 42c is provided.
  • the first lens holding portion 44 is provided with a convex portion on the outer peripheral side as shown in FIG. 21 when the second lens holding portion 42 is moved up and down to change the focal distance.
  • the second lens holding part moving member 43 and the first lens having an engaging part for moving the second lens holding part 42 together with an unlocking part for releasing the latch of the latching arm 47 with respect to the lens holding part 42
  • the V-shaped roller 44e which is a roller member, is provided at two locations on the right and left sides of the first lens holder 44 in the upper and lower sides, and only one is provided on the left side so that the lens can be moved. It has been. The details of the mechanism for moving the second lens holding portion 42 for changing the focal length will be described later in detail with reference to FIGS. 24 and 25.
  • FIG. 22 is a plan view of the first lens holding unit 44 that holds the third lens group 34
  • FIG. 23 shows the holding unit of the piezo element in the first lens holding unit from the outside of the camera module.
  • the first lens holding portion 44 holding the third lens group 34 moves the second lens holding portion 42 holding the second lens group 33 up and down, as shown in FIG.
  • the second lens holding part moving member 43 having the latch releasing part and the engaging part constituting the latch mechanism shown in FIG.
  • the third lens group 34 is held at the center.
  • the first lens holding portion 44 is opposed to a central portion 44a where the third lens group 34 is disposed via a slit 44c formed substantially symmetrically about the optical axis, and is connected by a thin portion 44d.
  • the holding portion 44b of the piezo element 20 that is substantially perpendicular to the optical axis is provided and divided into three parts. Further, the rotationally symmetrical position with respect to the central optical axis of the lens group 34 is shown in FIG.
  • the V-shaped roller 44e which is a roller member that moves the first lens holding portion 44 up and down while preventing rotation, is provided with bearing portions that are respectively disposed at two upper and lower portions.
  • the holding portion 44 of the piezo element 20 on the opposite side across the optical axis is a bearing portion provided with only one V-type roller 44e for balancing.
  • the holding portion 44b of the piezo element 20 in the first lens holding portion 44 is provided with a holding portion 44g force S for holding the important point in the piezo element 20 by opening the left side in the figure as shown in FIG.
  • a space for inserting and holding the piezo element 20 is provided, and the piezo element 20 can be deformed as shown in FIG. 3 (B) is provided with members corresponding to the support shown by 20f and 20g and the support with panel shown by 20h and 20k (the support with 2 Om is compatible with the coil panel 44f).
  • the guide shafts are arranged at two locations on the upper and lower sides so that the holding portion 44g can move up and down smoothly.
  • the member 46 is provided with a V-shaped roller 44e which is a roller member with which the V-shaped portion abuts.
  • the spacer 20e in the piezo element 20 arranged in the holding portion 44b is connected to the shaft member 45.
  • the coil panel 44f is disposed at a position corresponding to the position where the V-shaped roller 44e is provided, and the central portion where the holding portion 44b of the piezo element 20 and the second lens group 33 are disposed. Get the power to move 44a apart! /
  • the coil panel 44f has, for example, a hole for receiving the coil spring 44f on the central portion 44a side where the third lens group 34 is disposed, and on the holding portion 44b side of the piezo element 20 opposed via the slit 44c. Then, a hole with a female screw cut inside is formed through the outer wall of the holding portion 44b, the coil panel 44f is inserted into the hole on the central portion 44a side through this hole, and then the male screw is inserted to close the hole. At the same time, it is provided so that the pressure contact force of the coil panel 44f can be adjusted, or the central part 44a where the third lens group 34 is arranged and the holding part 44b side of the piezo element 20 are separately created, and the coil panel 44f is inserted.
  • the coil panel 44f After the coil panel 44f is inserted with holes provided on both sides, they are provided so as to be connected to each other in the vicinity of the thin portion 44d by screwing, welding or the like.
  • the thin-walled portion 44d is composed of a panel member, and the holding portion 44b of the piezo element 20 is opened from the central portion 44a where the second lens group 33 is arranged by utilizing the panel property, and the holes provided in these portions are opened.
  • the coil panel 44f may be loaded.
  • the degree of freedom in the circumferential direction of the third lens group 34 held by the slit 44c is increased in the optical axis direction.
  • the first lens holding portion 44 whose force in the direction of rotation about the optical axis with respect to the shaft member 45 due to the pressing force, is rotated by the V-shaped roller 44e that comes into contact with the guide shaft member 46. This is stopped by applying a signal voltage that causes the deformation as shown in FIG. 3C to the piezo element 20 continuously, and this frictional force between the spacer 20e and the shaft member 45 causes this first step. 1
  • the lens holding part 44 can move up and down.
  • the second lens holding portion 42 that holds the second lens group 33 is supported by a support arm 42a that extends in the direction of the shaft member 45 and passes through the shaft member 45, as shown in FIG.
  • the latch mechanism shown in FIGS. 24 and 25 is positioned at the telephoto (tele) side in FIG. 20 (A) and the wide-angle (wide) side in FIG. 20 (B) as the first lens holder 44 is moved up and down. Is latched on.
  • FIG. 24 schematically shows components constituting the latch mechanism
  • FIG. 25 shows a second lens holding portion for holding the second lens group 33 by the latch mechanism schematically shown
  • FIG. 14 is a schematic diagram showing how 42 is moved and fixed by the movement of the first lens holding portion 44 that holds the third lens group 34.
  • reference numeral 42 denotes a part of the second lens holding portion 42 that holds the second lens group 33 indicated by 42 in FIG. 20, and is a locked portion provided above and below the second lens holding portion 42.
  • the grooves 42b and 42c are latch grooves for latching by the latch portion 47a, which is a locking portion provided on the latch arm shown by 47 in FIG. 20, and 42d is 43 in FIG. 20, FIG. 21, and FIG.
  • the engaged portion 43f engages and moves the second lens holding portion 42 holding the second lens group 33 downward in the figure.
  • the portion bent in a mountain shape on the lens holding portion 42 side is a latch portion as a locking portion
  • 47b is a latch release portion for releasing the latch of the latch portion 47a in the latch arm 47
  • 43b, 43c, 43 d is an inclined part (43b, 43d) and a top part (43c) which are unlocking parts for releasing the latch of the latch part 47a
  • the latch release part 47b in the latch arm 47 is on the top
  • 43a, 43e are As described above, the flat portion where the latch is performed, 43f is the first engaging portion, and 43g is the second engaging portion that engages with the engaged portion 424.
  • FIG. 25 (A) is a wide-angle state in which the second lens group 33 and the third lens group 34 shown in FIG. 19 (A) are separated from the first lens group 32.
  • FIG. 25 (H) shows the telephoto state shown in FIG. 19 (B) in which the second lens group 33 and the third lens group 34 are close to the first lens group 32.
  • (G) is an intermediate state.
  • FIG. 25 (P) shows a wide-angle state in which the second lens group 33 and the third lens group 34 are separated from the first lens group 32.
  • From FIG. 25 (K) ( N) is an intermediate state.
  • 43h shows the range in which the third lens group 34 on the wide-angle side indicated by 36 in FIG. 19 (C) moves for focusing.
  • 25 (H) 43k is the range in which the third lens group 34 on the telephoto side moves for focusing.
  • the latch portion 47a of the latch arm 47 suspended from the lens holding portion 41 latches the latch groove 42b in the second lens holding portion 42 and fixes it at the wide angle position, and is provided in the first lens holding portion 44.
  • the second lens holding portion moving member 43 is provided with the engaged portion 42d in the second lens holding portion 42 between the first engaging portion 43f and the second engaging portion 43g. Even if the first lens holding portion 44 is driven by the piezo element 20 for focusing (focusing) and moves within the range indicated by reference numeral 43h, it moves without contacting the engaged portion 42d. can do.
  • the second lens holding portion moving member 43 provided in the first lens holding portion 44 includes the first engaging portion 43f and the second engaging portion 43g. Since the engaged portion 42d of the second lens holding portion 42 is provided between the first lens holding portion 44 and the second lens holding portion 42, the first lens holding portion 44 is driven by the piezo element 20 for focusing (focusing). Even if it moves within the range indicated by 43k, it can move without contacting the engaged portion 42d.
  • the first lens holding portion 44 is moved downward in the figure by the piezo element 20.
  • the second lens holding portion moving member 43 descends, and the inclined portion 43b pushes up the latch release portion 47b of the latch arm 47.
  • the latch release portion 47b reaches the top 43c of the second lens holding portion moving member 43, the latch groove 47c of the second lens holding portion 42 is latched by the latch portion 47a. 25 and further descends to the state shown in FIG.
  • the spacer 20e is applied to the piezo element 20 by a control circuit (not shown) so that the spacer 20e has a driving signal force as described above.
  • the reciprocating motion is excited by vibration, and the first lens holding portion 44 holding the piezo element 20 moves upward or downward in FIG. Therefore, for example, as shown in FIG.
  • the second lens holding portion 42 is in the telephoto position (state (H) in FIG. 25), and the camera module 40 is aligned by a control circuit (not shown).
  • the first lens holding unit 44 can be moved within the range indicated by 37 in FIG. 19C to focus on the image sensor indicated by 35 in FIG. 19B. .
  • This state force is also controlled by a control circuit (not shown) when the camera module 40 is set to the wide-angle side shown in FIG. 20B (the state (P) or (A) in FIG. 25).
  • the piezo element 20 is subjected to a driving current that moves the first lens holding portion 44 downward. Then, the first lens holding portion 44 descends, and accordingly, the latch release portion 47b of the latch arm 47 shown in FIG. 24 rides on the inclined portion 43b of the second lens holding portion moving member 43, and the latch portion 47a. Is disengaged from the latching groove 42c provided in the second lens holding portion 42.
  • the latch portion 47a of the latching arm 47 is applied to the latching groove 42b, and the second lens holding portion 42 is in the state shown in FIG. 20B.
  • the image sensor indicated by 35 in FIG. 19A can be brought into focus.
  • the movement range indicated by 36 and 37 in FIG. 19C where the first lens holding portion 44 moves for focusing is the first engagement portion of the second lens holding portion moving member 43 in FIG. 43f and the second engaging portion 43g are in a range where they can move without contacting the engaged portion 42d. Note that when the wide-angle side force is also moved to the telephoto side, it is omitted as it has been described with reference to FIG.
  • the camera module 40 By configuring the camera module 40 in this way, it is possible to perform autofocus (AF) and change in focal length simply by applying a signal current to the piezo element 20, and the piezo element 20 As described above, it has the advantages of low speed but high torque, excellent response and controllability, small positioning, small size, and light weight.
  • a camera module can be provided. Note that the configuration of the first lens holding portion 44 shown in FIG. 22 that holds the third lens group 34 and the configuration of the latch mechanism shown in FIG. The lens holder 44 has a configuration as shown in FIG. 26, and the latch arm 47 is also suspended from the third lens holder 41 holding the first lens group 32 as shown in FIG. As shown in Fig. 27, it may be in the form of an arm 50 that stands up from the base 26! /. In the first lens holding portion shown in FIG. 26, the same components as those used in the first lens holding portion 44 shown in FIG.
  • the piezo element 20 is brought into contact with the shaft member 45 in the first lens holding portion 44 shown in FIG.
  • the point that the roller 44e is brought into contact is the same.
  • the central portion 44a in which the third lens group 34 is arranged by the slit 44c and the holding portion 44b of the piezo element 20 are separated, and the coil panel is interposed therebetween.
  • the shaft holding member 48 of the V-shaped roller 44e is bent and the urging member 49 is provided.
  • the latch mechanism shown in FIG. 27 stands from the base 26 that is not the one that the latching arm 47 shown in FIG. 20 is suspended from the third lens holding portion 41 that holds the first lens group 32. Since the upper arm 50 is used, and other operations are the same as those described in FIGS. 24 and 25, the description is omitted.
  • the first lens holding unit 44 is provided with the piezo element 20, and the piezo element 20 moves the first lens holding unit 44 up and down to move the second lens holding unit 42.
  • the second lens holding portion 42 may be provided with a piezo element so that it can be driven independently.
  • FIG. 28 is a perspective view showing Example 3 of the camera module according to the embodiment
  • FIG. 29 is a plan view of a lens holding unit configured to be vertically movable holding the lens and the piezoelectric element in Example 3.
  • FIG. 31 is a plan view (A) of another embodiment of a lens holding portion configured to be able to move up and down by holding a lens and a piezo element, a side view (B) of a piezo element side force, and Side view (C), perspective view (D), and Fig. 32 of the roller abutting the guide shaft of the lens holding unit are examples of the shaft member force in the camera module of Example 4 for taking the drive current of the piezo element.
  • Fig. 32 of the roller abutting the guide shaft of the lens holding unit are examples of the shaft member force in the camera module of Example 4 for taking the drive current of the piezo element.
  • Fig. 34 is a control for driving a plurality of piezo elements having different movable resonance frequencies. It is an example of a circuit. In the figure, the same number is attached
  • the camera module 51 shown in FIG. 28 omits the second lens holding portion 42 in the first embodiment, the third lens holding portion 41 is 55, and the base 26 is for explanation. It is indicated by 56.
  • 34 is a third lens group
  • 20 is a piezo element
  • 20e is a spacer
  • 44a is a third lens unit.
  • 44b is a holding portion for the piezo element 20
  • 44c is a slit
  • 224 is a thin portion
  • 44f is a coil panel
  • 45 is a shaft member
  • 46 is a guide shaft member.
  • the camera module 40 of the second embodiment has a force that uses two V-shaped rollers 44e to stop the rotation of the first lens holding portion 44. If the V-shaped roller 44e does not contact the guide shaft member 46 accurately, both V-shaped rollers 44e try to contact the guide shaft member 46 due to the presence of the coil panel 44f and hold the third lens. The optical axis of group 34 will start to fluctuate.
  • the roller that contacts one guide shaft member 46 is the same as the V-type in the first embodiment.
  • the roller 52a and the roller 52b that is in contact with the other guide shaft member 46 are ordinary cylindrical flat rollers. In this way, since the flat roller 52b is simply in contact with the guide shaft 46, the contact position can be freely moved, and even if a manufacturing error occurs, the V-type roller 52a holds the first lens.
  • the optical axis position of the third lens group 34 held by the part 51 is defined, and the optical axis of the third lens group 34 does not fluctuate following the other flat roller 52b.
  • Other configurations and operations are the same as those in the first embodiment, and a description thereof will be omitted.
  • FIG. 31 shows a first lens holding portion 5 configured to hold the lens and the piezo element and move up and down.
  • 4 is a plan view (A) in another embodiment and a side view (B) viewed from the piezoelectric element 20 side.
  • FIG. 31 is a side view of the first lens holding portion 44 in which the piezo element 20 side force is also viewed. As described in FIGS.
  • the flat roller The rollers 54d and 54e are held in a V-shaped notch 54f provided in the roller module 54a so as to be V-shaped by a bearing 54g provided in a U-shape.
  • the V-type roller indicated by 52a in FIG. 29 may have a backlash in the thrust direction due to a manufacturing error, and the optical axis of the third lens group 34 held by the first lens holding portion may fluctuate. There is power.
  • the roller in contact with the guide shaft member 46 in this way, there is no thrust error when the V-type roller 52a is used, and even if a manufacturing error occurs, the flat roller 54d.
  • the thrust backlash of the flat rollers 54d and 54e affects the optical axis of the third lens group 34. No wobbling.
  • Other configurations and operations are the same as those in the second embodiment, and a description thereof is omitted.
  • the coil panel 44f is a force for bringing the spacer 20e in the piezo element 20 into contact with the shaft member 45 with a predetermined pressing force.
  • the V-shaped rollers 44e and 52a shown in Fig. 22 and Fig. 29 and the cylindrical flat rollers 54d and 54e shown in Fig. 31 can be used.
  • the roller that is in contact with the guide shaft member 46 so as to be V-shaped is pressed in the thrust direction with a force corresponding to the difference in strength between the coil springs 44f with different strengths.
  • the roller pressed by the coil panel 44f contacts the shaft member 46, and the optical axis of the held third lens group 34 fluctuates. That will disappear.
  • a force that is a method of supplying power using the guide shaft member 46 The V-type roller 44e in FIG. 22, the V-type roller 52a in FIG. 29, the cylindrical flat roller 52b, and the guide in FIG.
  • the cylindrical flat rollers 54d, 54e, etc. held by the roller module 54a so as to be V-shaped with respect to the main shaft member 46 are made of metal, and the guide shaft member 46 is also made of metal.
  • the guide shaft member 46 and the roller are part of an electric signal supply line that supplies an electric signal for driving the piezo element 20, and a power source that supplies driving electric power is connected to the guide shaft member 46. Further, wiring for supplying an electric signal to the piezo element 20 is performed from the roller.
  • the shaft member indicated by 45 in FIG. 29 is made of metal, and a power source for supplying an electric signal for driving is connected to the shaft member 45 and the first lens is connected.
  • a rubbing brush as indicated by 57 in FIG. 29 is provided on the holding portion 44b of the piezoelectric element 20 of the holding portion 44, and the rubbing brush 57 is connected to the piezoelectric element 20 to supply power.
  • the rubbing brush 57 is not provided only in one direction as shown in FIG. 29, but as shown in FIG. 32A, the shaft member 45 is sandwiched from the holding portion 44b of the piezoelectric element 20.
  • the two rubbing brushes 67 and 68 are provided to enable efficient current collection, and as shown in FIG. 32 (B), the shaft member 45 is surrounded by the rubbing brush 69, and
  • the sliding brush 69 may have a panel property so that the operating portion 20e of the piezo element 20 can be biased so as to be pressed against the shaft member 45.
  • a conductive material such as a metal foil or the like that can be energized is attached to an appropriate location of the housing of the camera module 40 that only requires the use of the guide shaft member 46 or the shaft member 45, or is etched in advance.
  • a conductor may be formed by using a rubbing brush and the power may be supplied thereto.
  • the second lens holding portion 42 is moved by the first lens holding portion 44 and fixed at the telephoto (tele) and wide angle (wide) positions.
  • the force described in the case of the focus-type camera module as an example is also arranged with a piezo element so that it can be moved independently, and only the camera module as the 2-focus type can be used. It is also possible to configure as a normal zoom lens that can continuously change the focal length, and FIG. 33 shows an embodiment in that case.
  • FIG. 33 (A) is a perspective view of the camera module, and (B) is a cross-sectional view showing a piezo element portion.
  • 32 is the first lens group
  • 33 is the second lens group
  • 34 is the third lens group
  • 35 is the imaging element.
  • 61 a first lens holding unit holding the third lens group 34
  • 62 a second lens holding unit holding the second lens group 33
  • 63 a third lens holding the first lens group 32.
  • Lens holding part 61a is a first piezo element having an operating part 61b
  • 62a is a second piezo element having an operating part 62b
  • 64 is a shaft member that abuts the operating parts 61b and 62b of the piezo elements 61a and 62a.
  • 65 and 66 are guide shaft members
  • 61c and 62c are urging members
  • 61d and 62d are guide portions that guide the first lens holding portion 61 and the second lens holding portion 62 through the shaft member 64.
  • the moving amounts of the lens holding units 61 and 62 are different each time due to a change in focal length or focusing (focusing). For this reason, it is common to use a flexible substrate or flexible cable to send separate drive electrical signals to the piezo elements 6 la and 62a arranged in the lens holding portions 61 and 62, respectively.
  • a space is required so that the flexible substrate can follow the movement range of the lens holding portions 61 and 62 without buffering, and the control circuit is separately provided. Will be needed.
  • the piezo elements 61a and 62a so that the movable resonance frequencies of the piezo elements 61a and 62a are made different.
  • the piezo element 61a is the first frequency
  • the piezo element 62a is the second frequency
  • the piezo elements 6 la and 62 a incorporated in the plurality of lens holding portions 61 and 62 can be separately driven by a single drive circuit.
  • the piezoelectric elements 61a and 62a generate a driving force only at a specific resonance frequency depending on their shapes. For this reason, as described above, the piezo elements 6 la and 62 a incorporated in the respective lens holding portions 61 and 62 are made different in shape so that they can be driven at different resonance frequencies, and the focal length change and focusing (combined) can be achieved.
  • a driving electric signal having a resonance frequency corresponding to the piezo elements 61a and 62a held by the lens holding parts 61 and 62 to be powered is sent. It is what.
  • a separate lens holding unit is driven by a single drive circuit.
  • a drive current having a resonance frequency corresponding to the piezoelectric element 20 accommodated in each lens holding portion is sent in a time-sharing manner. If it is included, quick zooming becomes possible.
  • FIG. 34 is an example of a piezo element drive control circuit for performing such control.
  • reference numeral 70 denotes a lens holding part position sensor for detecting the current position of each lens holding part
  • reference numeral 71 denotes a zooming instruction button for issuing an instruction signal to the telephoto side and the wide angle side.
  • Reference numeral 72 denotes a focal length calculation unit for autofocus.
  • 73 is a resonance frequency storage unit that stores the resonance frequencies of the piezo elements 6 la and 62a stored in the lens holding units 61 and 62
  • 74 is a control unit that controls the entire camera module, and performs zooming and focusing.
  • a signal having a resonance frequency corresponding to the piezo elements 61a and 62a accommodated in the lens holding portions 61 and 62 is sent to the piezo element driver 75.
  • 61a, 62a,... Are piezo elements 61a, 62a housed in the lens holding portions 61, 62.
  • the drive current sent from the piezo element driver 75 is sent to all the piezo elements 6 la, 62a,... Via a single signal line.
  • the lens holding unit position sensor 70 sends each lens holding unit 61. 62 are sent to the control unit 74.
  • the control unit 74 refers to the signal from the lens holding unit position sensor 70 to determine which lens holding unit 61, Calculate how much power to power 62.
  • the piezo element driver 75 generates a drive current for the piezo element with the transmitted frequency signal, and sends it to the signal line connected to the piezo elements 61a, 62a,. Then, the piezo elements 6 la, 62a,... Housed in the respective lens holding portions matched with themselves. It is driven only when a driving current having a resonance frequency is sent, and the lens holding portions 61 and 62 are moved to predetermined positions. When focusing with the autofocus function, the piezo elements 62, 63,... Housed in the necessary lens holding unit are driven in accordance with the focusing operation instructed by the focal length calculation unit 72.
  • the drive control circuit for the piezo element is configured, and as described above, the power supply is provided on the guide shaft member 65, 66, the shaft member 64, the housing, or the like. As described above, it is not necessary to wire each piezo element directly with a flexible substrate, and it is possible to drive a separate piezo element with a single drive control circuit. It can be made compact and lightweight.
  • the resonance frequencies corresponding to the respective piezoelectric elements are driven at different times.
  • the plurality of resonance frequencies are superimposed and separated by the filter means.
  • filter means is provided in the piezo element or the lens holding unit
  • the control signal 74 shown in FIG. 34 is used to superimpose the drive signals of the plurality of frequencies
  • the piezo element driver 75 supplies power as described above. It sends out as a drive signal, an electrical signal composed of ground, etc., and extracts only the drive signal of the frequency necessary for driving each piezo element by the filter means provided in each piezo element or lens holding part.
  • FIG. 35 is a plan view showing a mobile phone 80, which is an example of a mobile terminal, in a state where the operation unit (operation member) 81 and the display (display member) 82 are visible (open state).
  • the first case part 83 on which 81 is mounted and the second case part 84 on which the display 82 is mounted are connected by a hinge mechanism 85, and the first and second case parts 83 and 84 are arranged around the hinge mechanism 85. Can be rotated.
  • the first and second case parts 83 and 84 constitute a case body.
  • the second case 84 incorporates the camera module 86 of the first to fifth embodiments described above, as indicated by a broken double circle in the figure.
  • a predetermined button of the operation unit 81 When a predetermined button of the operation unit 81 is operated, Images captured by the camera module 86 and captured by the camera module 86 The image is displayed on the display 82, for example.
  • the camera module 86 is directed to the outside of the upper case J (optical lenses 23, 32 ⁇ 1) and the second case rod 84 shown in FIGS. 8, 20, 27, 28, 33, and the like. That is, the second case portion 84 is formed with an opening for exposing the optical lenses 23 and 32 of the camera module 86.
  • the first case part 83 houses a battery, a communication part, and the like, and the thickness dimension of the second case part 84 is substantially regulated to the height of the camera module 86. .
  • the piezoelectric element is incorporated in each of the two lens holders and driven in the optical axis direction, the structure of the lens moving mechanism when driving the optical lens system becomes extremely simple. Even if the auto focus (AF) function and zoom function are incorporated, the camera module can be made small and light.
  • a camera module incorporating an autofocus (AF) function or zoom function can be configured to be small and lightweight, making it ideal as a camera module for various small portable terminals.

Abstract

 1つ以上の光学レンズを保持したレンズホルダ11を光軸方向に移動可能とし、オートフォーカス機能及びズーム機能を組み込んだカメラモジュールを小型化・軽量化できるようにするため、レンズホルダ11に軸受部11aを形成して駆動軸27を挿通させ、ピエゾ素子20の作動部20eを駆動軸27と当接させると共に、駆動軸27における作動部20eと当接する第1箇所と軸受部11aと摺動する第2箇所との表面加工を異ならせた。

Description

明 細 書
カメラモジュール及びこのカメラモジュールを用いた携帯端末
技術分野
[0001] 本発明は、カメラモジュール及びこのカメラモジュールを備えた携帯端末に関し、特 に、小型軽量に構成したカメラモジュール及びこのカメラモジュールを備えた携帯端 末に関するものである。
背景技術
[0002] 最近の携帯電話などの携帯端末に使われるカメラモジュールは、撮像素子 (CCD) の高画素化に伴ない、通常の電子カメラ (デジカメ)と同様な、高速、高精度なオート フォーカス (AF)機能や焦点距離の変化 (ズーム)機能が要求され、さらに携帯端末 そのものの小型化、軽量ィ匕によって、必然的にカメラモジュールも小型化、軽量化が 望まれている。
[0003] このようなカメラモジュールに於けるオートフォーカスや焦点距離の変化 (ズーム)の ためには、レンズ群を光軸方向に移動させることが必要であり、そのため従来では、 例えば特許文献 1に示されているように、光学系の側面に円筒カムを配置すると共に 前面カバー(固定枠)に円筒カムの軸受け及びレンズ枠の軸受けを配置してモータ で駆動し、ズームレンズ枠と AFレンズ枠とを駆動すると共に、ハウジング(ケース)に 固体撮像素子 (CCD)を直接配設し、円筒カムの側面に設けた回動角度を検出する ためのカムとメカ-カノレスイッチによって円筒カムの回動角度を検出するようにしたも のがある。
[0004] さらに、 AFレンズ枠とズームレンズ枠とを駆動すると共に、変倍撮影用カム領域と マクロ撮影用カム領域とを連続して形成した円筒カムをレンズ枠に隣接して配置し、 このカムを円筒カム側面側に配置したステップモータで駆動して撮影光学系を光軸 方向に移動させる際、所謂テレとマクロの 2点切替できるようにしたものなどもある。
[0005] また、ステッピングモータにリードスクリューを一体的に設け、リードスクリューをステ ッビングモータと共に独立的に保持部材で保持すると共に、これら保持部材を鏡月同 基体である函体へ取り付ける取り付け部材を、リードスクリューに対して片側だけに配 設するようにしたものがあり、ここでは、 2本のリードスクリューによってズーム及び AF 用レンズ枠を駆動し、ハウジングにレンズ枠のガイド支持部を設けて、ハウジング下 部に CCDを配置している。
[0006] 加えて、撮影レンズを駆動するためのフォーカスモータ及びズームモータと内部機 構を駆動するシャツタモータ及び絞りモータとを備え、撮影レンズの光軸と直交する 平面を、光軸と直交し且つ、相直交する第一軸と第二軸とにより分割した第 1〜第 4 象限に、これらのモータをそれぞれ配置して、シャツタユニットのベースにフォーカス モータとズームモータとの回転中心軸を通過させるための切り欠き部を設けるようにし たものがある。
[0007] また、 2本のスクリュー軸と 2つのレンズ枠ガイドシャフトを装置本体に回転可能に保 持する軸受け部を上部ハウジングに、互いにスライド方向が異なる複数のスライド型 成形により一体形成し、スクリュー軸によってズーム及び AF用レンズの可動レンズ枠 を光軸方向に駆動すると共に、下部ハウジングに CCDを保持するようにしたものもあ る。
[0008] し力しながら、こういった円筒カム、リードスクリュー、へリコイドなどを用いた従来の カメラモジュールでは、その駆動源として一般的に回転子を有する電磁モータゃパ ルスモータが用いられている力 こういった回転子を用いた電磁モータは、回転子と その周囲に電磁石や永久磁石が必要であって軸方向長さを短くしたとしても、円柱 形状部分が不可欠であるからカメラモジュールを小型化する上でのネックとなり、さら に騒音なども発生する。
[0009] そこで、こういった電磁モータに於ける欠点を解決するため従来から、レンズ枠を光 軸方向へ移動させる駆動源として、電界や磁界の変化に応じて機械的歪みを発生 するピエゾ素子 (ρζτ)等の圧電素子で機械振動子を構成し、ロータゃスライダをこ の機械振動子に接触させて機械振動子の振動を出力として取り出せるようにした摩 擦駆動型の駆動源が用いられている。このような摩擦駆動型の駆動源は、低速であ るが高トルクで応答性 ·制御性に優れ、微小な位置決めが可能、無通電時に保持ト ルク(または保持力)を有する、静粛性に優れる、小型 '軽量であるなどの利点を有し ている。 [0010] そのため、駆動源として、ピエゾ素子を用いることが提案されており、例えば特許文 献 2には、レンズ保持枠の外周面の突起に積層型圧電体の一端を固定すると共に圧 電体の他端にバイモルフ圧電体の一端を固定し、さらに、突起の反対側には別のバ ィモルフ圧電体を固定して、これらバイモルフ圧電体が電圧のオンで湾曲して先端 の係合部材と鏡筒内面とのクランプを外すと共に積層型圧電素子は電圧オンで伸長 し、ノ ィモルフ圧電体が電圧オフで元の形に戻ると鏡筒にクランプすると共に積層型 圧電素子が電圧オフで元の長さに戻ることで、ノ モルフ圧電体を交互にクランプさ せると共に積層圧電体を伸長及び復元させ、レンズを前進及び後退させるようにした ものが示されている。
[0011] また、特許文献 3にはレンズ保持枠を送るための回転送り部材に圧電素子を近接し て配置し、この圧電素子によって回転送り部材に歩進的回転を与えるようにしたもの が示され、ここでは圧電素子をレンズ枠駆動用の送りネジの端部円周に接触配置し ている。
[0012] さらに特許文献 4には、レンズ保持枠を案内する案内部材に二種の圧電素子を一 体的に取り付け、これら圧電素子に交互に伸縮動作を行わせて案内部材に間欠的 送り動作を生じさせるようにしたものが示され、ここでは、圧電素子がレンズ保持枠を 駆動するための送りネジの端部に配置している。
[0013] また特許文献 5には、電気信号を印加することにより振動する電気 機械工ネルギ 一変換素子 (圧電素子)をネジ部を有する出力部材に接触させ、出力部材のネジ部 に移動部材を当接させてこの出力部材を変換素子の振動によって回転させることで 、ネジ部の回転に伴って移動部材を出力部材の軸方向に移動させるようにしたもの が示され、ここでは、送りネジ端部の円筒形状部分の周囲に圧電素子を配置してい る。
[0014] 加えて特許文献 6には、鏡筒と一体のスリーブ部をガイドバーに摺動可能に嵌合す ると共に、スリーブ部の外周面にリニア駆動式振動波ァクチユエータの振動子を板ば ねで圧接し、圧電素子に所定の位相差の二つの交流電圧を印加することでスリーブ 部に軸方向推力を加え、鏡筒を光軸に沿って移動するようにしたものが示されている [0015] また、一つの移動レンズ枠に対してそれぞれ 1個のセラミック振動子を移動レンズ枠 又はレンズ装置の固定部 (鏡筒)の何れかに配置し、セラミック振動子が配置されて いない方の移動レンズ枠又は固定部の何れかの一部にセラミック振動子を圧接して 、セラミック振動子の楕円運動によってレンズ駆動を行うようにしたものがある。
[0016] さらに、図 36に示すように、軸回りに回転自在に設けられた駆動軸 2のネジ部 3にレ ンズ保持枠 1を螺合して、圧電素子を備えた振動体 4を駆動軸 2の周面に当接させ、 駆動軸 2を振動体 4の振動によって回転運動させて、レンズ保持枠 1を駆動軸 2の軸 方向に沿って進退駆動するようにしたものがある。
[0017] 力!]えて、図 37に示すように、圧電振動子 5を板パネ 6でガイド部材 8に押圧し、圧電 振動子 5を可動レンズ保持部材 7のスリーブ部に収納して、モータの回転運動を直線 運動に変換するための伝達部材を無くしてスペース効率を向上させ、レンズ駆動装 置を小型にするようにしたものがある。
[0018] なお、ピエゾ素子を用いた駆動源としては例えば特許文献 7に、長縁部及び短縁 部と第一及び第二の面とを有する少なくとも一つの矩形の圧電板を備え、第一及び 第二の面に電極を取り付けると共に、縁部における第一の縁部の中心にセラミックス ぺーサを取り付け、弾性力を第一の縁部とは反対の第二の縁部における中心に付 与してセラミックスぺーサを物体に押し付け、電極に交流又は非対称の単一極性パ ルス電圧の何れかを印加するようにしたものが開示されて ヽる。
[0019] また、同じくピエゾ素子を用いた駆動源として特許文献 8には、第 1及び第 2長辺、 第 1及び第 2短辺、長辺と短辺で囲まれた前面及び裏面、この前面に接続された複 数の電極と裏面に接続された対向電極を有する第 1圧電プレートを備えると共に、第 1及び第 2長辺、第 1及び第 2短辺、長辺と短辺で囲まれた前面及び裏面、前面に接 続された複数の電極と裏面に接続された対向電極を有する第 2圧電プレートとを備 え、第 1スぺーサを第 1圧電プレートの第 1短辺の近傍の一端で第 1長辺に取り付け て物体の表面に係合させ、第 2スぺーサを第 2圧電プレートの第 1短辺の近傍の一端 で第 1長辺に取り付けて物体の表面に係合させて各スぺーサを物体の表面に押圧し 、複数の電極に励起電圧を印加するようにして、第 1圧電プレートの第 1短辺を第 2圧 電プレートの第 1短辺にほぼ平行でかつ近接させるようにしたものが開示されている [0020] さらに、同じくピエゾ素子を用いた駆動源として特許文献 9には、 2つの長エッジ部 、 2つの短エッジ部、及び長エッジ部の 1つに取り付けたスぺーサを有する圧電プレ ートを備えると共に、軸心を中心として回動自在とした少なくとも 1つのアームを設け、 該アームに、軸心から離間してその両端に設けた第 1と第 2の端部、アームの第 1端 部に取り付けたリード Zライトヘッド、及び第 2端部上に剛性の部材を設け、圧電プレ 一トのスぺーサが剛性部材に弹性的に付勢されて、圧電プレートを、軸心に対して 可動とするようにしたものが開示されている。
[0021] 同様に、ピエゾ素子を用いた駆動源として特許文献 10には、圧電プレートの一面 に複数の電極を設けると共に他面に対向電極を設け、さらに、軸回りに旋回可能な アームの一端にヘッドを設けると共にアームの他端に剛体を設け、圧電プレートを剛 体に弾性的に付勢するようにしたものが開示されている。
[0022] さらに、同じくピエゾ素子を用いた駆動源として特許文献 11には、ピエゾ素子が第 1の電極グループと共通電極の間に電圧が印加されると第 1の方向に運動を起こし、 第 2の電極グループと共通電極の間に電圧が印加されると第 2の方向に運動を起こ すようにし、スィッチによって第 1及び第 2の電極グループを低電圧に接続して第 1又 は第 2の方向に選択的に運動を起こすようにしたものが開示されて 、る。
[0023] カロえて、同じくピエゾ素子を用いた駆動源として特許文献 11には、バイブレータが 圧電性材料からなる複数の薄い層から形成された直方体の形状を有し、この層は第 1及び第 2の同一の比較的大きな四角い主面を備えてこの主面が長い端面及び短 い端面力も規定され、層が積層されると共に、主面が互いに接着されて電極が層の 面上に存在し、接触領域が層の 1以上の端面に配置されることで、接触領域に振動 を励起するために電極に電圧を印加するようにしたものが開示されて 、る。
[0024] 特許文献 1 :特開平 7— 63970号公報
特許文献 2 :特開平 5— 107440号公報
特許文献 3:特開平 4 - 212913号公報
特許文献 4:特開平 4 - 212910号公報
特許文献 5 :特開平 8— 47273号公報 特許文献 6:特開平 7— 104166号公報
特許文献 7 :特開平 7— 184382号公報
特許文献 8 :特許第 2980541号公報
特許文献 9:特開平 9— 37575号公報
特許文献 10 :特開 2000— 40313公報
特許文献 11:特表 2002— 529037公報
特許文献 12:特表 2003 - 501988公報
発明の開示
発明が解決しょうとする課題
[0025] し力しながら、特許文献 2乃至特許文献 5に示された技術は通常の大きさのカメラレ ンズを駆動する機構であり、携帯電話などの携帯端末に使われるカメラモジュールは 常に小型化を要求されているので、こういった携帯端末に適用するには大きすぎると 共に、ピエゾ素子を用いたとしても、レンズ保持部材とピエゾ素子とが独立的に存在 し、レンズ保持部材はスライダなどで移動させるようにして 、るため小型に構成するこ とが難しぐし力もその構成が複雑になってしまうという課題がある。
[0026] そのため本発明は、オートフォーカス (AF)機能やズーム機能を組み込んでも、小 型で軽量に構成できるカメラモジュール及びこのカメラモジュールを備えた携帯端末 を提供することが課題である。
課題を解決するための手段
[0027] 上記課題を解決するため、本発明におけるカメラモジュールは、
少なくとも 1つ以上の光学レンズを保持すると共に、第 1の軸受部を備えるレンズ保 持部と、
前記第 1の軸受部に挿入されると共に光軸と略平行に配置された第 1の軸部材と、 端部に前記第 1の軸部材と当接する作動部を備えると共に、前記レンズ保持部に 配置したピエゾ素子とを含み、
前記第 1の軸部材は、前記作動部と当接する第 1箇所と前記第 1の軸受部と摺動す る第 2箇所の表面加工を異ならしめて 、る。
[0028] そして本発明では、前記第 1の軸受部と摺動する第 2箇所の表面を前記作動部と 当接する第 1箇所の表面より滑らかに処理するか又は前記作動部と当接する第 1箇 所の表面を前記第 1の軸受部と摺動する第 2箇所の表面より荒く処理しており、前記 第 1の軸受部と前記第 1の軸部材との摩擦係数を前記作動部と前記第 1の軸部材と の摩擦係数より低く処理するか、または、前記第 1の軸受部と摺動する第 2箇所の表 面に潤滑処理を施し、前記作動部と当接する第 1箇所の表面に前記潤滑処理を省 いている。
[0029] このように、第 1の軸部材におけるピエゾ素子の作動部が当接する面と第 1の軸受 部と摺動する面の表面加工を異ならせ、作動部が当接する側を摩擦係数を高ぐま たは潤滑処理を省き、軸受けと摺動する側は摩擦係数を小さぐまたは潤滑処理す ることで、ピエゾ素子による駆動力を軸部材に効率的に伝達できると共にレンズ保持 部はスムーズに移動することができ、オートフォーカス (AF)機能及びズーム機能を 組み込んだ際のカメラモジュールを小型で軽量に構成することができる。
[0030] また、前記第 1の軸受部は、略 V字状の断面を有すると共に、該 V字状の断面と前 記第 1の軸部材とが摺動するようにし、さらに、前記第 1の軸受部は、前記第 1の軸部 材の軸方向に 2箇所の前記 V字状の断面を有し、前記作動部を前記 2箇所の前記 V 字状の断面間に位置付けすることで、第 1の軸部材が摺動する第 1の軸受部におけ る当接面は線接触となって非常に抵抗が少なくなり、さらに作動部を 2箇所の V字状 の断面間に位置させることで、作動部による第 1の軸部材を介した第 1の軸受部を押 圧する押圧力は、 2箇所の V字状の断面に対して均等となってレンズ保持部の移動 がよりスムーズに行えるようになる。
[0031] さらに本発明では、前記レンズ保持部に配置された第 2の軸受部と、前記第 2の軸 受部に挿入されると共に光軸と略平行且つ前記第 1の軸部材と光軸に対して略対称 な位置に配置された第 2の軸部材とをさらに含み、前記第 2の軸部材の表面を、前記 第 1の軸受部と摺動する前記第 1の軸部材における第 2箇所の表面と略同一の表面 加工を施すことで、第 2の軸部材と第 2の軸受部との抵抗も少なくなり、レンズ保持部 の移動がよりスムーズに行えるようになる。
[0032] また、上記課題を解決するため本発明におけるカメラモジュールは、
少なくとも 1つ以上の光学レンズを保持すると共に、第 1の軸受部を備えるレンズ保 持部と、
前記第 1の軸受部に挿入されると共に光軸と略平行に配置された第 1の軸部材と、 端部に前記第 1の軸部材と当接する作動部を備えると共に、前記レンズ保持部に 配置されて前記レンズ保持部を移動させるピエゾ素子と、
前記レンズ保持部をガイドする第 2の軸部材と、を備え、
少なくとも前記第 1の軸部材または前記第 2の軸部材から、前記ピエゾ素子の駆動 を行うための電気信号を供給できるよう構成してある。
[0033] このようにカメラモジュールを構成することにより、ピエゾ素子は、低速であるが高ト ルクで応答性 ·制御性に優れ、微小な位置決めが可能、無通電時にも保持トルク (ま たは保持力)を有する、静粛性に優れる、小型 '軽量であるなどの利点を有している から、ピエゾ素子を駆動することでレンズ保持部が上下に移動させることでズーミング や焦点合わせを行うことができ、オートフォーカス (AF)機能やズーム機能を有する力 メラモジュールを小型で軽量に構成できる。
[0034] 従来こういったカメラモジュールにおけるモータへの電源電力、駆動信号、アース 等の電気信号は、一般的にフレキシブル基板やフレキシブルケーブルが用いられて V、たが、小型軽量のカメラモジュールにこう 、つたフレキシブル基板やフレキシブル ケーブルを用いると、それだけ重量が増えると共にモータの移動などに伴なうフレキ シブル基板やフレキシブルケーブルの移動領域を確保する必要が生じ、それだけ力 メラモジュールが大きくなつてしまう。
[0035] し力しこのように、電気信号を第 1の軸部材または第 2の軸部材力 供給することに より、こう!/ヽつたフレキシブル基板やフレキシブルケーブルの移動領域を確保する必 要がなくなり、それだけカメラモジュールを小型に構成できる。これは特に、駆動部材 を保持するレンズ保持部の移動距離が大きくなつたときにメリットが大きくなる。
[0036] そして本発明は、前記ピエゾ素子をそれぞれ備えた第 1のレンズ保持部と第 2のレ ンズ保持部とを有し、前記第 1のレンズ保持部に収納された第 1のピエゾ素子は第 1 周波数の信号で駆動可能であると共に、前記第 2のレンズ保持部に収納された第 2 のピエゾ素子は第 2周波数の信号で駆動可能であり、前記第 1周波数の信号を前記 第 1のピエゾ素子に供給すると共に、前記第 2周波数の信号を前記第 2のピエゾ素子 に供給する共通の信号供給部材を備えて!/、る。
[0037] このように、レンズ保持部本体に設けられたピエゾ素子の駆動周波数をレンズ保持 部毎に異ならせることで、供給する電源電力、駆動信号、アース等の (電気)信号の 周波数を、動かした ヽレンズ保持部が保持して!/ヽるピエゾ素子に合わせるだけで複 数のレンズ保持部を夫々独立して上下に移動させることができ、ピエゾ素子の制御 回路も簡単化できる。そのため、このようにカメラモジュールを構成することにより、ピ ェゾ素子を別々に駆動すれば、複数のレンズ保持部が夫々独立して上下に移動す ることができ、ズーミングや焦点合わせを行うことができるから、オートフォーカス (AF) 機能やズーム機能を有するカメラモジュールを小型で軽量に構成できる。
[0038] さらに、前記信号供給部材に前記第 1周波数の信号と前記第 2周波数の信号とを 選択的に供給可能な第 1の信号供給手段を備えることで単一の信号供給手段で 2つ の周波数の信号を供給することができ、また、前記信号供給部材に前記第 1周波数 の信号と前記第 2周波数の信号とを重畳して供給可能な第 2の信号供給手段と、前 記信号供給部材力 供給される信号より前記第 1周波数の信号を取得する第 1のフ ィルタ手段と、前記信号供給部材から供給される信号より前記第 2周波数の信号を取 得する第 2のフィルタ手段と、を更に備え、前記第 1のフィルタ手段の出力を前記第 1 のピエゾ素子に供給すると共に前記第 2のフィルタ手段の出力を前記第 2のピエゾ素 子に供給できるようにすることで、重畳した電気信号から第 1と第 2の周波数の信号を 取り出して両ピエゾ素子を同時に駆動することができ、ズーミングや焦点合わせを迅 速におこなうことのできるカメラモジュールを提供することができる。
[0039] また、前記レンズ保持部は、前記第 2の軸部材に当接する第 2の軸受部を備え、前 記第 1または第 2、若しくは両軸受部を介して前記電気信号の供給を行うことで、駆 動部材の直近力 電気信号を供給することができるからそれだけリード線などを短く 構成でき、さらに、前記レンズ保持部は、前記軸部材と摺動可能に接触する摺動部 材を備え、前記摺動部材を介して前記電気信号の供給を行うようにするか、若しくは 、前記摺動部材は、前記軸部材を囲繞して前記ピエゾ素子を前記軸部材に当接す るよう付勢するようにすることで、摺動部材が駆動部材の軸部材への付勢部材を兼ね ることができ、それだけ部品点数を減らしてカメラモジュールを小型に、組み立て性 良く構成することができる。
[0040] また本発明では、前記レンズ保持部に配置すると共に、前記ピエゾ素子を前記作 動部が前記第 1の軸部材に当接する方向に付勢する付勢手段をさらに備えるように する。
[0041] そして、前記課題を解決するため本発明によれば、
少なくとも 1つ以上の光学レンズを保持すると共に、第 1の軸受部を備えるレンズ保 持部と、
前記第 1の軸受部に挿入されると共に光軸と略平行に配置された第 1の軸部材と、 端部に前記第 1の軸部材と当接する作動部を備えると共に、前記レンズ保持部に 配置したピエゾ素子とを含み、
前記第 1の軸部材は、前記作動部と当接する第 1箇所と前記第 1の軸受部と摺動す る第 2箇所の表面加工を異ならしめたカメラモジュールと、
操作部材と、表示部材と、バッテリーと、通信部と、
前記カメラモジュール、前記表示部材、前記バッテリー及び前記通信部を収納する と共に厚さ寸法を略前記カメラモジュールの高さに制限した筐体と、を含むことを特 徴とする携帯端末が得られる。
[0042] また、同様に、
少なくとも 1以上の光学レンズを保持するレンズ保持部と、
前記レンズ保持部を移動可能に駆動する駆動部材と、
前記レンズ保持部をガイドするガイド軸部材、または前記駆動部材により前記レン ズ保持部に駆動力を伝達する軸部材と、
を備え、
前記駆動部材の駆動を行うための電気信号を少なくとも前記軸部材または前記ガ イド軸部材より供給するカメラモジュールを含み、
操作部材と、表示部材と、バッテリーと、通信部と、
前記カメラモジュール、前記表示部材、前記バッテリー及び前記通信部を収納する と共に厚さ寸法を略前記カメラモジュールの高さに制限した筐体と、を含むことを特 徴とする携帯端末が得られる。 [0043] さらに、同様に、
少なくとも 1つ以上の光学レンズを保持すると共に、第 1の軸受部を備えるレンズ保 持部と、
前記第 1の軸受部に挿入されると共に光軸と略平行に配置された第 1の軸部材と、 端部に前記第 1の軸部材と当接する作動部を備えると共に、前記レンズ保持部に 配置したピエゾ素子と、
前記レンズ保持部をガイドする第 2の軸部材とを含み、
前記第 1の軸部材は、前記作動部と当接する第 1箇所と前記第 1の軸受部と摺動す る第 2箇所の表面加工を異ならしめると共に、少なくとも前記第 1の軸部材または前 記第 2の軸部材から、前記ピエゾ素子の駆動を行うための電気信号を供給できるよう 構成したカメラモジュールと、
操作部材と、表示部材と、バッテリーと、通信部と、
前記カメラモジュール、前記表示部材、前記バッテリー及び前記通信部を収納する と共に厚さ寸法を略前記カメラモジュールの高さに制限した筐体と、を含むことを特 徴とする携帯端末が得られる。
[0044] また、前記カメラモジュールは、前記ピエゾ素子をそれぞれ備えた第 1のレンズ保持 部と第 2のレンズ保持部とを有し、前記第 1のレンズ保持部に収納された第 1のピエゾ 素子は第 1周波数の信号で駆動可能であると共に、前記第 2のレンズ保持部に収納 された第 2のピエゾ素子は第 2周波数の信号で駆動可能であり、前記第 1周波数の 信号を前記第 1のピエゾ素子に供給すると共に、前記第 2周波数の信号を前記第 2 のピエゾ素子に供給する共通の信号供給部材と、を含んで 、る。 発明の効果
[0045] 以上のように本発明によればオートフォーカス (AF)機能及びズーム機能を組み込 んでも、カメラモジュール及びこのカメラモジュールを備えた携帯端末を小型で軽量 に構成できると 、う効果がある。
図面の簡単な説明
[0046] [図 1]本発明の実施例 1で用いられるレンズホルダ(第 2のレンズホルダ)に光学レン ズを装着する状態を示す斜視図である。 [図 2]本発明の実施例 1で用いられるレンズ組み立て体 (第 2のレンズ組み立て体)を 分解して示す斜視図である。
圆 3]本発明の実施例 1で用いられるピエゾ素子を説明するための図であり、 (a)はピ ェゾ素子を示す斜視図、(b)及び (c)は動作原理を説明するための図である。
圆 4]図 2に示すレンズ組み立て体に RFプレートを装着する状態を示す斜視図であ る。
[図 5]本発明の実施例 1で用いられるレンズ組み立て体 (第 2のレンズ組み立て体)を 示す斜視図であり、(a)及び (b)はそれぞれ別の角度力も見た斜視図である。
[図 6]本発明の実施例 1で用いられるレンズ組み立て体 (第 1のレンズ組み立て体)を 分解して示す斜視図である。
[図 7]本発明の実施例 1によるカメラモジュールを逆さまの状態でその外観を示す斜 視図である。
[図 8]本発明の実施例 1によるカメラモジュールの外観を示す斜視図である。
[図 9]本発明の実施例 1によるカメラモジュールで用いられる CCD組み立て体の一例 を分解して示す斜視図である。
圆 10]ケースに光学レンズ、ガイド軸及び駆動軸を装着する状態を示す斜視図であ る。
圆 11]ケースに電装部品を装着する状態を示す斜視図である。
圆 12]ガイド軸及び駆動軸に第 2のレンズ組み立て体を装着する状態を示す斜視図 である。
圆 13]ガイド軸及び駆動軸に第 1のレンズ組み立て体を装着する状態を示す斜視図 である。
圆 14]ガイド軸及び駆動軸に第 2のレンズ組み立て体を装着した状態を示す平面図 である。
[図 15]図 14の断面図である。
圆 16]ボトムカバーを装着する状態を示す斜視図である。
圆 17]サイドカバーを装着する状態を示す斜視図である。
圆 18]CCD組み立て体を装着する状態を示す斜視図である。 [図 19]実施形態のカメラモジュールにおける光学系を構成するレンズが広角(ワイド) 側にある状態 (A)と望遠 (テレ)側に有る状態 (B)、及び望遠 (テレ)側と広角(ワイド) 側における合焦用レンズの移動範囲を説明するための図(C)である。
圆 20]実施形態のカメラモジュールの斜視図で、(A)は焦点距離変化用レンズが望 遠 (テレ)側にある状態を、 (B)は同じく焦点距離変化用レンズが広角(ワイド)側に有 る状態を示している。
圆 21]図 20における被写体側となる第 1のレンズ群を保持する第 3レンズ保持部と第 2のレンズ群を保持する第 2レンズ保持部を取り除き、第 3のレンズ群を保持する第 1 レンズ保持部と、該第 1レンズ保持部を上下させるための軸部材とガイド軸部材、及 び第 2レンズ保持部を移動させる機構の一部を示した斜視図である。
[図 22]第 3のレンズ保持部の平面図である。
[図 23]第 3のレンズ保持部に於けるピエゾ素子の保持部をカメラモジュールの外側か ら見た図(A)と、レンズ側から見た図(B)である。
圆 24]実施形態のカメラモジュールにおける焦点距離を変化させるレンズ群の移動と 固定のためのラッチ機構を示した斜視図である。
圆 25]実施形態のカメラモジュールにおける焦点距離を変化させるメカニズムとォー トフォーカス時のレンズ移動状態を説明するための図である。
[図 26]第 1のレンズ保持部における変形例の平面図である。
圆 27]焦点距離変化用レンズ保持部を移動させる他の実施例を示した斜視図である 圆 28]実施形態になるカメラモジュールの実施例 3を示す斜視図である。
圆 29]実施例 3に於けるレンズとピエゾ素子とを保持して上下可能に構成されたレン ズ保持部の平面図である。
[図 30]レンズホルダのガイド用当接部におけるガイド軸に対する面が平型であるロー ラ 2つを V型に配して構成した図であり、(a)は断面図、(b)はガイド軸側力も見た側 面図、(c)は斜視図である。
[図 31]レンズとピエゾ素子とを保持して上下可能に構成されたレンズ保持部の他の実 施形態における平面図 (A)と、ピエゾ素子側力も見た側面図(B)である。 [図 32]実施例 4のカメラモジュールにおける軸部材力 ピエゾ素子の駆動電流を取る ための実施例を示した図である。
[図 33]実施例 5のカメラモジュールの斜視図 (A)とピエゾ素子部分を示す断面図(B) である。
[図 34]複数の可動共振周波数の異なるピエゾ素子を駆動する制御回路の一例であ る。
[図 35]本発明によるカメラモジュールが組み込まれた携帯電話機の一例を概略的に 示す図である。
[図 36]従来のカメラモジュールの一例を示す図である。
[図 37]従来のカメラモジュールの他の例を示す図である。
符号の説明
[0047] 10、 15 レンズ組み立て体
11、 16 レンズホノレダ
l la、 l lb、 16a、 16b 軸受け部
l lc、 16c ピエゾ素子保持部
13、 18 固定部材
14bゝ 19b 配線材
20、 20a ピエゾ素子
24g コンデンサ
24h インダクタ
24k、 24m 位置検出センサ
26 ガイド軸
27 駆動軸
30 CCD組み立て体
発明を実施するための最良の形態
[0048] 以下、図面を参照して実施形態の好適な実施例を例示的に詳しく説明する。但しこ の実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特 に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなぐ単 なる説明例に過ぎない。
実施例 1
[0049] 図 7、図 8は、以下に説明する第 1のレンズ^ aみ立て体 io、第 2のレンズ^ aみ立て 体 15を組み込んだ実施例 1の実施形態におけるカメラモジュール 21の外観を示す 斜視図で、図 7は撮像素子である CCD組み立て体 30側を上にして示した斜視図、 図 8は被写体側となる光学レンズ 23を組み込んだホルダ部 24a側を上にして示した 斜視図であり、図中 24はケース、 28はサイドカバー(遮光カバー)で、これらケース 2
4やサイドカバー 28の中には、第 1のレンズ^ aみ立て体 io、第 2のレンズ^ aみ立て体
15を組み込んだカメラモジュール筐体 22 (図 8)が設けられ、さらに、これら第 1のレ ンズ組み立て体 10、第 2のレンズ組み立て体 15と CCD組み立て体 30とを結ぶ ASI C (第 3の配線材) 29が設けられて 、る。
[0050] 第 1のレンズ組み立て体 10、第 2のレンズ組み立て体 15は、それぞれ図 5 (第 1のレ ンズ組み立て体 10)、図 6 (第 2のレンズ組み立て体 15)にその構成が示され、さらに 第 1のレンズ^ 1_み立て体 10の詳細が図 1、図 2、図 4に示されていて、図 3はそれぞれ のレンズ組み立て体 10、 15に組み込むピエゾ素子 20の動作原理を説明するための 図である。
[0051] さらにこのカメラモジュール 21の構成を説明するため、それぞれの構成要素を順次 分解して示した斜視図が図 9乃至図 18に示され、図 9は CCD組み立て体 30の一例 を分解して示す斜視図、図 10はケース 24に光学レンズ 23、ガイド軸 26及び駆動軸 27を装着する状態を示す斜視図、図 11はケース 24に電装部品を装着する状態を 示す斜視図、図 12はガイド軸 26及び駆動軸 27に第 1のレンズ組み立て体 10を装着 する状態を示す斜視図、図 13はガイド軸 26、及び駆動軸 27に第 2のレンズ組み立 て体 15を装着する状態を示す斜視図、図 14はガイド軸 26及び駆動軸 27に第 1のレ ンズ組み立て体 10を装着した状態を示す平面図、図 15は図 14におけるピエゾ素子 20と駆動軸 27の略中心部分の断面図、図 16はボトムカバー(下カバー) 25を装着 する状態を示す斜視図、図 17はサイドカバー 28、 28cの装着状態を示す斜視図、図 18は CCD組み立て体 30の装着状態を示す斜視図である。
[0052] また図 19は、図 1乃至図 18に示した実施例 1になる実施形態のカメラモジュール 2 1における第 1のレンズ組み立て体 10に組み込まれるレンズ 12、同じく第 2のレンズ 組み立て体 15に組み込まれるレンズ 17、被写体側となるホルダ部 24aに組み込まれ たレンズ 23、撮像素子である CCD30a、及び図 20乃至図 33に示した実施例 2から 実施例 5における、被写体側となる第 3レンズ保持部 41に保持された第 1のレンズ群 32、第 2レンズ保持部 42に保持された第 2のレンズ群 33、第 1レンズ保持部 44に保 持された第 3のレンズ群 34、及び撮像素子 35などで構成される光学系が広角(ワイド M則にある状態 (A)と望遠 (テレ)側に有る状態 (B)、及び望遠 (テレ)側と広角(ワイド M則における合焦用レンズの移動範囲を説明するための図(C)であり、前記した被写 体側となるレンズ群 23、 32、その撮像素子 30a、 35側に配された焦点距離変化用の レンズ群 12、 33、さらに撮像素子 35側に配された焦点距離を変化させると共に焦点 合わせ (合焦)のためのレンズ群 17、 34は、図 19 (A)、 (B)に示したように、それぞ れ少なくとも 1枚以上の光学レンズで構成され、位置が固定されたレンズ群 23、 32に 対し、図 19 (A)のよう〖こレンズ群 12、 33、レンズ群 17、 34が CCDなどを用いた撮像 素子 30a、 35側に移動したときは望遠 (テレ)となり、図 19 (B)のようにレンズ群 12、 3 3、レンズ群 17、 34がレンズ群 12、 32側に寄ったときは広角(ワイド)となる。
[0053] そして、この図 19 (A)、図 19 (B)に示したレンズ群位置に対応させ、各レンズ群の 位置と合焦のための移動範囲を示した図 19 (C)に示したように、レンズ群 17、 34は 、合焦のために例えば図 19 (A)の広角(ワイド)側の場合は図 19 (C)に 36で示した 範囲を、図 19 (B)の望遠 (テレ)側の場合は図 19 (C)に 37で示した範囲を移動して ピント合わせ (合焦)をおこなう。
[0054] 図 7、図 8、図 20、図 27、図 31、図 33に示した各実施形態のカメラモジュールは、 収容したレンズ群のこの移動を図 3に示したようなピエゾ素子 20を用いて実現するも のであり、この図 3は、(A)が実施形態になるカメラモジュールに用いるピエゾ素子の 斜視図、(B)がピエゾ素子の構成、(C)が動作原理を説明するための図である。ここ で用いられるピエゾ素子 20は、前記特許文献 6乃至 11に詳細に述べられて 、るよう に、図 3 (A)における略長方形の板状外形に形成された圧電セラミック (ピエゾ素子) 20の長手方向と短手方向で形成される第 1面 20bに、図 3 (B)に示したように 4つの 電極 20n、 20p、及び 20q、 20rを、その反対佃 Jとなる第 2面 20cの全面に一つの電 極を設けてある。そして、第 1面 20bの電極 20n、 20p、 20q、 20rは、対角線方向に 配置された電極 20n、 20p、及び 20q、 20rが、それぞれの電極の連結部分近傍に 配置されたワイヤ 20s及び 20tによって電気的に接続され、第 2面 20c上の電極は接 地されて!、ることが好まし!/、。
[0055] また、短手方向の第 3面 20dには、比較的堅いセラミックの作動部であるスぺーサ 2 Oeが例えば接合剤により、好ましくはその辺の中央付近に取り付けられて、相対的に 移動させる物体 20vに係合するようになつている。さらにこの圧電セラミック (ピエゾ素 子) 20は、図 3 (B)に示したように、周囲に固定された一対の支持体 20f、 20gと、バ ネ付きの支持体 20h、 20k、 20mにより、変形可能に支持される。
[0056] このように構成された圧電セラミック(ピエゾ素子) 20における、電極 20n、 20rに正 の電圧を、電極 20p、 20qに負の電圧を印加すると、圧電セラミック(ピエゾ素子) 20 は、図 3 (C)に誇張して示したように図上左側が右側より長くなり、パネ付きの支持体 20h、 20k、 20mで支持されていることで変形が可能なため、スぺーサ 20eが係合し ている物体 20vの右方向に移動する。そして、電圧が印加されなくなると圧電セラミツ ク(ピエゾ素子) 20は元に戻る力 このとき、例えば立ち下がり時間が立ち上がり時間 より少なくとも 4倍程度長い、非対称の電圧パルスを電極に印加すると、圧電セラミツ ク(ピエゾ素子) 20〖こおけるスぺーサ 20eと物体 20vの摩擦〖こより、パルスの立ち下が り時にスぺーサ 20eと物体 20vが係合したままスぺーサ 20eが出発位置に戻り、その ため、パルスの立ち上がり時の変位分、スぺーサ 20eと物体 20vが相対的に移動す る。なお、上記電圧を逆に掛けると、この圧電セラミック (ピエゾ素子) 20は逆の方に 変形し、従って、スぺーサ 20eと物体 20vとは相対的に逆の方向に移動する。
[0057] このように圧電セラミック(ピエゾ素子) 20は、連続的に図 3 (C)に示したような変形 が生じるような信号電圧を与えることで、スぺーサ 20eと物体 20vとの間の摩擦によつ て物体 20vとの相対的な位置を変位させて 、くため、低速ではあるが高トルクで応答 性'制御性に優れ、微小な位置決めが可能で、無通電時に保持トルク (または保持 力)を有する、静粛性に優れる、小型 ·軽量であるなどの利点を有する駆動源となる。
[0058] 図 1は本発明の実施例 1によるカメラモジュールで用いられるレンズホルダ(第 1の レンズ保持部)を光学レンズと共に示す斜視図であり、図示のように、レンズホルダ 11 (第 1のレンズ保持部)には光学レンズ収納空間が規定され、この光学レンズ収納空 間に少なくとも 1枚の光学レンズ 12が保持される。レンズホルダ 11は上方から見て略 正方形状に形成されており、互いに対向する一対の隅部にはそれぞれ図中下方か ら上方に向う第 1の軸受け部である 1 la及び第 1の軸受け部であるガイド軸受け部 11 bが形成されている。また、軸受け部 11a側の辺に沿って後述する駆動素子部 14が 挿入される駆動素子部保持部 (ピエゾ保持部) 11cが形成されている。そして、図 1に は示されていないが、このピエゾ保持部 11cには軸受け部 11aに連通する揷通部( 穴)が形成されている。
[0059] 図 2を参照して、前述のようにして、レンズホルダ 11に光学レンズ 12を装着した後、 ピエゾ保持部 1 lcに駆動素子部 14が配置される。駆動素子部 14は前記図 3で説明 した略長方形の板状ピエゾ素子 20を有しており、このピエゾ素子 20は長手方向と短 手方向で形成される第 1面 20b、その反対側となる第 2面 20cに電極(図示せず)を 設けると共に、短手方向の第 3面 20dに相対的に移動させる物体に係合させるスぺ ーサ (作動部) 20eを設けて、第 1面 20bと第 2面 20cに設けた電極にサイン波形状の 電圧を印加することによって作動部 20eに往復運動を生成し、それによつて、作動部 20eが係合した物体に対する相対的な移動を実現するものである。
[0060] ピエゾ素子 20の上面には二股状の板パネ部材 14aが配置され、さらにピエゾ素子 20には配線材 (フレキシブル配線) 14bが接続されている。そして、この配線材 14b には符号 14cで示す折り返し部で折り返され、この折り返し部 14cは後述するように、 レンズホルダ 11の被写体側に位置付けられる。
[0061] 図 1及び図 2に示すように、ピエゾ保持部 11cにおいて、軸受け部 11aと反対側の 面は開口されると共に上面側も開口されており、この反対面と上面とを区切る仕切部 l idが設けられている。図 2に実線矢印で示すように、作動部 20e側力もピエゾ素子 20をピエゾ保持部 1 lcに挿入すると、板パネ部材 14aが仕切部 1 Idを跨ぐ状態でピ ェゾ素子 20がピエゾ保持部 11cに挿入される。そして、作動部 20eは挿入部を通つ て軸受け部 11a内に臨む。
[0062] 続いて、図 2に実線矢印で示す方向から固定部材 13をレンズホルダ 11に装着する 。この固定部材 13は弾性力を有し、リング状の本体部 13aを備え、この本体部には 第 1の押え部 13b、係止片部 13c、及びアーム状に延びる第 2の押え部 13dを有して いる。そして、固定部材 13をレンズホルダ 11に装着すると、第 1の押え部 13bによつ て板パネ部材 14aが下方に押圧され、第 2の押え部 13dによってピエゾ素子 20の後 端 (作動部 20eと反対側端)が軸受け部 11a側に押圧される。そして、係止片部 13c がレンズホルダ 11に係止されて本体部 13aがレンズホルダ 11に係止される。この際 、固定部材 13によって、レンズホルダ 11に装着された光学レンズ 12の抜け止めが行 われる。なお、固定部材 13は、導電性の材料で成形して、ピエゾ素子 20の側面と対 向する位置に絶縁部材 13eを配置するようにしてもょ 、。
[0063] 図 4を参照すると、図 2で説明したようにしてレンズ組み立て体 (第 1のレンズ組み立 て体) 10を組み立てた後、 RFプレート l lqをレンズホルダ 11に装着する。図 5 (a)及 び (b)はそれぞれ RFプレート l lqを装着後のレンズ組み立て体 10を別の角度から 示す斜視図であり、レンズホルダ 11には配線材 14bの位置決めを行う溝部 1 lpが形 成されており、この溝部 l ipに配線材 14bの一部が収納されて、配線材 14bの位置 決めが行われる。なお、レンズホルダ 11には位置検出用部材であるセンサテープ( 図示せず)が貼付される。
[0064] 図 6を参照して、図 6はレンズ組み立て体(第 2のレンズ組み立て体) 15を分解して 示す斜視図であり、このレンズ組み立て体 15は、レンズホルダ 16 (第 2のレンズ保持 部)を有しており、このレンズホルダ 16は、起立部 16eを除いてレンズホルダ 15と同 様の構造を有している。つまり、レンズホルダ 16には光学レンズ収納空間が規定され 、この光学レンズ収納空間に少なくとも 1枚の光学レンズ 17が保持される。そして、レ ンズホルダ 16の互いに対向する一対の隅部にはそれぞれ図中下方力も上方に向う 軸受け部 16a及びガイド軸受け部 16bが形成されている。また、軸受け部 16a側の辺 に沿って後述する駆動素子部 19が挿入される駆動素子部保持部 (ピエゾ保持部) 1 6cが形成されている。そして、図 6には示されていないが、このピエゾ保持部 16cに は軸受け部 16aに連通する揷通部が形成されている。
[0065] 図 1及び図 2で説明したように、レンズホルダ 16に光学レンズ 17を装着した後、ピエ ゾ保持部 16cに駆動素子部 19が配置される。駆動素子部 19は、ピエゾ素子 20と同 様のピエゾ素子 20aを有しており、ピエゾ素子 20aの上面には二股状の板パネ部材 3 0が配置され、さらにピエゾ素子 20aには配線材 (フレキシブル配線) 19bが接続され ている。そして、この配線材 19bは符号 19cで示す折り返し部で折り返され、この折り 返し部 19cは後述するように、レンズホルダ 16の結像側に位置付けられる。
[0066] 図 6に示すように、ピエゾ保持部 16cにおいて、軸受け部 16aと反対側の面は開口 されると共に上面側も開口されており、この反対面と上面とを区切る仕切部 16dが設 けられている。図 6に実線矢印で示すように、作動部 20e側力もピエゾ素子 20aをピ ェゾ保持部 16cに挿入すると、板パネ部材 19aが仕切部 16dを跨ぐ状態でピエゾ素 子 20aがピエゾ保持部 16cに挿入される。そして、作動部 20eは揷通部を通って軸受 け部 16a内に臨む。
[0067] 続いて、図 6に実線矢印で示す方向から固定部材 18をレンズホルダ 16に装着する 。この固定部材 18は固定部材 13と同様の構造を有しており、リング状の本体部 18a を備え、この本体部 18aには第 1の押え部 18b、係止片部 18c、及びアーム状に延び る第 2の押え部 18dを有している。そして、固定部材 18をレンズホルダ 16に装着する と、第 1の押え部 18bによって板パネ部材 19aが下方に押圧され、第 2の押え部 18d によってピエゾ素子 20aの後端 (作動部 20eと反対側端)が軸受け部 16a側に押圧さ れる。そして、係止片部 18cがレンズホルダ 16に係止されて本体部 18aがレンズホル ダ 16に係止される。この際、固定部材 18によって、レンズホルダ 16に装着された光 学レンズ 17の抜け止めが行われる。レンズホルダ 16には起立部 16eが形成され、こ の起立部 16eには位置検出用のセンサテープ 16fが貼付される。なお、固定部材 18 は、導電性の材料で成形して、ピエゾ素子 20aの側面と対向する位置に絶縁部材 18 eを配置するようにしてもょ 、。
[0068] 図 7、図 8は、前記したようにこのように構成したレンズ第 1のレンズ組み立て体 10、 第 2のレンズ組み立て体 15を組み込んだ本発明の実施例 1によるカメラモジュール の外観を示す斜視図で、図 7はこのカメラモジュール 21における CCD組み立て体 3 0側を上にして示した斜視図、図 8は光学レンズ 23を組み込んだホルダ部 24a側を 上にして示した斜視図である。
[0069] 図 7にお 、ては結像側が上側となっており、第 1のレンズ組み立て体 10における配 線材 14b、及び第 2のレンズ組み立て体 15における配線材 19bと CCD組み立て体 3 0とを結ぶ ASIC (第 3の配線材) 29を、図 8に示したようにカメラモジュール筐体 22の 側面に配置する(この ASIC29には後述する位置検出用センサ 24k及び 24mも接続 される)。図中 24はケース、 28はサイドカバー (遮光カバー)である。
[0070] 図 9は、本発明の実施例 1によるカメラモジュールで用いられる撮像素子組み立て 体 (撮像部)の一例を分解して示す斜視図であり、図示のように撮像素子である CCD 30aは CCD基板 30bの一面上に搭載され、この CCD基板 30bの他面側には CCD3 Oaと対向してデジタルシグナルプロセッサ(DSP) 30cが搭載されている。 CCD基板 30bには CCD30a側から CCDカバー 30dが被せられて、 CCDカバー 30dの開口面 には赤外線 (IR)遮断フィルタ 30eが装着され、撮像素子組み立て体 (以下 CCD組 み立て体と呼ぶ) 30となる。
[0071] 図 10を参照して、図 10はカメラモジュールのケース(上ケース) 24を示す斜視図で あり、ケース 24は被写体側に位置するホルダ部 24aが下側となるようにされて、ホル ダ部 24aに形成されたレンズ収納空間に光学レンズ 23が実線矢印で示すように配置 される。ホルダ部 24aの上面にはガイド軸 26及び駆動軸 27が挿入される軸受け部 2 4b及び 24cが形成されており、これら軸受け部 24b及び 24cにそれぞれガイド軸 26 及び駆動軸 27の一端が挿入される。なお、ケース 24はホルダ部 24aに一体に形成 された起立壁 24dを有しており、この起立壁 24dにはセンサテープ 24fが貼付される
[0072] 図 11を参照して、図示のように、ホルダ部 24aの側面には四個のコンデンサ 24gが 装着され (コンデンサ 24gの内 2つはピエゾ素子 20の駆動に用いられ、残りの 2つは ピエゾ素子 20aの駆動に用いられる)、起立壁 24dの一辺側には切り欠き部 24eが形 成されており、起立壁 24dには四個のインダクタ 24hが装着されると共に (インダクタ 2 4hの内 2つはピエゾ素子 20の駆動に用いられ、残りの 2つはピエゾ素子 20aの駆動 に用いられる)、レンズ組み立て体 10用の位置検出センサ 24k及びレンズ組み立て 体 15用の位置検出センサ 24mが装着される。つまり、起立壁 24dには電気素子を収 納する収納部が形成されていることになる。
[0073] 続いて図 12を参照して、第 1のレンズ組み立て体 10を折り返し部 14cが被写体側、 つまり、ホルダ部 24a側を向くようにして軸受け部 11aを駆動軸 27に挿入し、軸受け 部 l ib (図示せず)をガイド軸 26に挿入する。図 13は第 1のレンズ組み立て体 10を 駆動軸 27及びガイド軸 26に挿入した状態を示す図であり、レンズ組み立て体 10の 装着に続いて第 2のレンズ組み立て体 15の装着が行われる。そして、切り欠き部 24e には配線材 14b及び 19bが位置付けられる(図 16も参照)。
[0074] 図 14及び図 15を参照すると、図 14は第 1のレンズ組み立て体 10を装着した後の 平面図であり、図 15はその断面図である。図 14に示すように、軸受け部 11aにおい てピエゾ素子 20の作動部 20eの対向面は V溝状 l ieとなっており、駆動軸 27はこの V溝 l ieに当接している。つまり、駆動軸 27の外周面は第 1の箇所でピエゾ素子 20 の作動部 20eに当接すると共に、第 2の箇所で V溝 l ieに当接し、この第 2の箇所に おいて駆動軸 27は摺動される。この際、ピエゾ素子 20の左右側面(図 14において 上下の側面)は、ピエゾ保持部 11cの一対の固定壁 l lrによってガイドされる。そして 、前記第 1及び第 2の箇所ではその表面加工を異ならせて、例えば、第 2の箇所の表 面を第 1の箇所の表面よりも滑らかに処理している(つまり、第 1の箇所の表面を第 2 の箇所の表面よりも荒く処理している)。また、その結果、第 2の箇所における摩擦係 数は第 1の箇所における摩擦係数よりも小さくなる。さらに、第 2の箇所の表面にのみ 潤滑処理を施すようにしてもよい。なお、前述の V溝 l ieを図 15に l lg、 l lhで示し たように上下方向に 2箇所形成し、作動部 20eをこの 2個の V溝の中間にお 、て駆動 軸 27に当接させるようにしてもよい。また、ガイド軸 26にも駆動軸 27と同一の表面処 理を施すようにしてもよい。
[0075] 前述のように、第 2の押さえ部 13dによってピエゾ素子 20の後端が押圧される結果 、作動部 20eは駆動軸 27の外周面に当接して、駆動軸 27は V溝 l ieに当接する。 図 15に示すように、ピエゾ保持部 11cの固定壁(図上、上面及び下面)には所定の 間隔をおいてそれぞれ一対の突起部 l lfが形成されており、板パネ 14aを介して第 1 の押え部 13bによってピエゾ素子 20は図中下方に押圧され、突起部 1 If間に挟持さ れる。一方、前述のように、ピエゾ素子 20の後端は第 2の押さえ部 13dによって駆動 軸 27側に押圧され、作動部 20eが駆動軸 27の外周面に当接する。つまり、図 15に 示すように、図中ピエゾ素子 20の上下側面はそれぞれ 2箇所に形成された突起部 1 Ifによって変形可能に押圧されて保持され、ピエゾ素子 20の作動部 20eと反対側の 端部が付勢手段たる第 2の押さえ部 13dによって駆動軸 27に押圧されている。なお 、前述の突出部 l lfはピエゾ素子 20の振動節部分を押圧する位置に形成される。そ して、駆動軸 27は第 1の当接部 l lg及び第 2の当接部 l lhを有する当接体 11mに 当接し、この当接体 11mは当接部 I lkによって当接体 l lnに当接して保持されてい る。
[0076] 上述のようにしてレンズ組み立て体 10を駆動軸 27及びガイド軸 26に装着すると、 ピエゾ素子 20の作動部 20eが駆動軸 27に当接することになる。その後、図 13に示 すようにして、第 2のレンズ組み立て体 15を折り返し部 19cが結像側(つまり、ホルダ 部 24aと反対側)を向くようにして、軸受け部 16aを駆動軸 27に挿入し、軸受け部 16 bをガイド軸 26に挿入する。なお、軸受け部 16aは前述した軸受け部 11aと同様に構 成されており、第 2のレンズ組み立て体 15を駆動軸 27及びガイド軸 26に装着すると 、ピエゾ素子 19の作動部 20eが駆動軸 27に当接することになる。
[0077] なお、上述の例では、軸受け部 11aの駆動軸 27と接する面を V字形状に成形し、 軸受け l ibをガイド軸 26の外形に対応した形状としている力 例えば、軸受け部 11a の駆動軸 27と接する面及び軸受け l ibを V字型形状としたローラを用いて構成する ようにしてもよぐこの場合の例である図 30 (a)〜(c)に示すように、円筒形状の平型 ローラ 54d、 54eをガイド軸 26に対して V型となるように軸受け部に収容するようにし て構成してもよ 、(図 30 (a)〜(c)にお 、ては、軸受け部 1 lbを軸受け部 54aで表し ており、ガイド軸 26を軸部材 46で表している)。
[0078] 図 30 (a)は、この軸受け部 54aの平面図であり、図 30 (b)及び (c)は、軸受け部 54 aの側面図及び斜視図であ、平型ローラ 54d及び 54eは、この軸受け部 54aに設けら れた V型の切れこみ 54fの内部に、 U字型に設けられた軸受 54bで軸部材 46に対し て V型となるように保持されている。このように軸受部 54aを構成することにより、第 1 及び第 2のレンズホルダに製造上の誤差が生じ、直交した平型ローラ 54d及び 54e の各々にスラストガタにより、軸受け部の位置が正規の位置とずれても、平型ローラ 5 4d及び 54eを直交させたときに形成される V字型の谷間に軸部材 46を当接させるこ とで、平型ローラ 54d及び 54eのスラストガタは、第 1及び第 2のレンズホルダの光軸 に影響を与えなくなる。 [0079] 前述のようにして、レンズ組み立て体 15を装着した後、図 16に示すように、ボトム力 バー(下カバー) 25が結像側力もケース 24に装着される。このボトムカバー 25にはガ イド軸 26及び駆動軸 27が挿入される軸受け部(図示せず)が形成されている。さらに 、図 17に示すように、サイドカバー (遮光カバー) 28及び 28cをケース 24に装着して 、カメラモジュール筐体 22を構成する。その結果、ピエゾ素子 20及び 19はカメラモジ ユール筐体 22を構成するサイドカバー 28の一面 28a (以下第 1の側面と呼ぶ)側に 位置付けられることになる。そして、第 1の側面 28aに隣接する側面を第 2の側面 28b と呼ぶことにすると、センサテープ 24f及び位置検出用センサ 24k及び 24m (図 10、 図 11参照)は第 2の側面 28b側に配置されることになる。また、第 1及び第 2の配線材 14b及び 19bはそれぞれ第 1の側面 28a側に配置されることになる。
[0080] そして図 18に示すようにして、 CCD組み立て体 30をカメラモジュール筐体 22に装 着して、図 7に示すカメラモジュール 21とする。図 7においては、結像側が上側となつ ており、配線材 14b及び配線材 19bと CCD組み立て体 30とを結ぶ ASIC (第 3の配 線材) 29をカメラモジュール筐体 22の側面に配置する(この ASIC29には位置検出 用センサ 24k及び 24mも接続される)。この際、配線材 14b及び 19bの配線スペース が第 2の側面 28bにおける第 1の側面 28a近傍に位置付けられるとともに、配線材 14 b及び 19bと第 3の配線材とを連結する接続部が第 2の側面 28bに位置付けられる。 そして、図 8に示すように、被写体側を上側としてカメラモジュール 21が完成する。
[0081] なお、図 17に示したインダクタ 24hは第 2の側面 28b側に位置付けられることになる 力 インダクタ 24hを第 1の側面 28a側に位置付けるようにしてもよい。同様に、コンデ ンサ 24gは第 1の側面 28a側に位置付けられることになる力 コンデンサ 24gを第 2の 側面 28b側に位置付けるようにしてもよい。また、前述の電気素子が収納される起立 壁 24dはケース 24に設ける必要はなぐ下カバー 25に起立壁を設けるようにしてもよ い。さらに、ケース 24と下カバー 25との接合は、例えば、係合部材と被係合部材とに よって接合するようにしてもよぐさらには、接着剤を用いてケース 24と下カバー 25と を接合するようにしてもよ 、。
[0082] 上述のように、カメラモジュール 21は光軸と平行な 4つの側面を有する略立方体形 状のケース体を有しており、ピエゾ素子 20及び 20aはケース体の一側面側に位置付 けられている。また、駆動軸 27は上記の一側面とこの一側面と隣り合う側面とによつ て規定される角部近傍に配置され、ガイド軸 26はこの角部と対向する角部に配置さ れている。
[0083] 実施例 1の図 8に示すカメラモジュール 21では、光学レンズ 23は固定的に配置さ れており、レンズ組み立て体 10及び 15はガイド軸 26及び駆動軸 27に移動可能に支 持されている。レンズ組み立て体 15が前記図 19で説明したように、光学レンズ 23側 に移動すると、望遠状態となり、レンズ組み立て体 15の移動に追従して、レンズ組み 立て体 10も光学レンズ 23側に移動する。一方、レンズ組み立て体 15をレンズ組み 立て体 10側へ戻すと、広角状態となって、レンズ組み立て体 15の移動に追従して、 レンズ組み立て体 10も移動する。
[0084] また、前述の位置検出用センサ 24k及び 24mによってセンサテープが検出されて 、これら位置検出センサ 24k及び 24mによってレンズ組み立て体 15及び 10の基準 位置及び基準位置からの移動量が検出される。
[0085] ところで、ピエゾ素子 20を励振させると、作動部 20eに高次の曲げ振動が生じて進 行波が生じる。そして、作動部 20eが圧接された駆動軸 27の外周面と作動部 20eと の間に摩擦力が生じ、この摩擦力によってピエゾ素子 20が搭載されたレンズ組み立 て体 10が駆動軸 27に沿って移動する (例えば、特許文献 8又は特許文献 11参照)。 つまり、ピエゾ素子 20を励振すると、ピエゾ素子 20は屈曲運動を行い、この屈曲運 動によって駆動軸 37と作動部 20eとの間に生じる摩擦力によって、レンズ組み立て 体 10が駆動軸 27に沿って移動することになる。なお、レンズ組み立て体 15も同様に して移動すること〖こなる。
[0086] 上述の説明から明らかなように、駆動軸の表面加工を異ならせたので、ピエゾ素子 の作動部が当接する側は高い摩擦係数とし、軸受け部と当接する側は低い摩擦係 数として、ピエゾ素子の駆動力を効率的に伝達できる結果、カメラモジュールを小型 化できる。
[0087] さらに、駆動軸が挿入される軸受け部の断面を略 V字形状としたので、摺動面積が 少なくなり、その結果、摩擦係数を低く抑えることができ、ピエゾ素子の駆動力を向上 させることができる。また、ピエゾ素子の作動部の上下に対応付けて 2つの V字状溝 を形成したので、ピエゾ素子を駆動する際、駆動負荷を均等に分散させることができ 、ピエゾ素子の駆動を安定ィ匕することができる。
実施例 2
[0088] 図 20乃至図 27は実施例 2のカメラモジュール 40に関する図で、まず図 20は実施 形態におけるカメラモジュール 40の斜視図であり、 (A)は焦点距離変化用レンズが 望遠 (テレ)側にある状態を、 (B)は同じく焦点距離変化用レンズが広角(ワイド)側に 有る状態を示している。図 21は、図 20における被写体側となる第 1のレンズ群 32を 保持する第 3レンズ保持部 41と第 2のレンズ群 33を保持する第 2レンズ保持部 42を 取り除き、第 3のレンズ群 34を保持する第 1のレンズ保持部 44と、該第 1レンズ保持 部 44を上下させるための軸部材 45とガイド軸部材 46、及び第 2レンズ保持部 42を 移動させる機構の一部を示した斜視図、図 22は第 1のレンズ保持部 44の平面図、図 23は第 1のレンズ保持部 44に於けるピエゾ素子の保持部 44bをカメラモジュールの 外側から見た図 (A)と、レンズ側力 見た図(B)、図 24は実施形態のカメラモジユー ル 40における焦点距離を変化させるレンズ群の移動と固定のための機構を模式的 に示した斜視図、図 25は実施形態のカメラモジュール 40における焦点距離を変化さ せるメカニズムとオートフォーカス時のレンズ移動状態を説明するための図、図 26は 第 1のレンズ保持部 44における変形例の平面図、図 27は焦点距離変化用レンズ保 持部を移動させる他の実施例を示した斜視図である。
[0089] 図 20に示した実施形態のカメラモジュール 40は、前記図 19で説明したように、被 写体側となる第 1のレンズ群 32、その撮像素子 35側に配された第 2のレンズ群 33、 さらに図 21に示したように、撮像素子 35側に配された第 3のレンズ群 34 (図 20には 図示せず)を有し、それぞれのレンズ群は、第 1のレンズ群 32を保持する第 3レンズ 保持部 41、第 2のレンズ群 33を保持する円筒状の第 2レンズ保持部 42、図 22、図 2 3で詳細に後述する第 3のレンズ群 34を保持する第 1レンズ保持部 44に保持される
[0090] なお、この図 20に示した実施形態におけるカメラモジュール 40は、一例として焦点 距離を望遠 (テレ)側と広角(ワイド)側に切り替える 2焦点型のカメラモジュールとして 説明するが、本発明は 2焦点型だけでなぐ連続して焦点距離を変化させることがで きる通常のズームレンズにも適用可能である。
[0091] そして、第 3レンズ保持部 41と、図示していない CCDなどの撮像素子 35を保持す る基台 48とにおける略隅部には、第 2レンズ保持部 42に設けられた支持腕 42aを挿 通させてガイドすると共に、略長方形の板状外形を有し、光軸に対し略直行する方向 であって第 1レンズ保持部 44に配され、図 3で詳細を説明した駆動部材たるピエゾ素 子 20における作動部であるスぺーサ 20eを当接させて、これら第 2レンズ保持部 42と 第 1レンズ保持部 44を上下に移動させるため、好ましくは光軸を中心に略対称的か つ平行に配置した軸部材 45、及びガイド軸部材 46が設けられている。なお、軸部材 45は、リードスクリューなどで構成したものでも良い。
[0092] また、第 3レンズ保持部 41からは、第 2レンズ保持部 42が保持した第 2レンズ群 33 を広角側と望遠側に位置固定するため、図 24に移動のための概略構成を示して後 記するように、係止部たるラッチ用アーム 47が垂下され、第 2レンズ保持部 42の外周 における上下には、このラッチ用アーム 47をラッチさせるための被係止部たる溝 42b 、 42cが設けられている。さらに第 1レンズ保持部 44には、第 2レンズ保持部 42を焦 点距離変化のために上下させる際、図 21に示されているように、外周側に凸部が設 けられ、第 2レンズ保持部 42に対するラッチ用アーム 47のラッチを解除させる係止解 除部と共に、第 2レンズ保持部 42を移動させる係合部を有した第 2レンズ保持部移動 部材 43、及び、第 1レンズ保持部 44の上下動がスムーズに行われるよう、ローラ部材 たる V型ローラ 44eが第 1レンズ保持部 44の図上右側には上下 2個所に、左側には ノ ランスを取るため 1つだけ設けられている。なお、この第 2レンズ保持部 42を焦点 距離変化のために移動させる機構の詳細については、図 24、図 25に基づいて詳細 に後述する。
[0093] 図 22は、第 3のレンズ群 34を保持した第 1レンズ保持部 44における平面図、図 23 は、第 1のレンズ保持部に於けるピエゾ素子の保持部をカメラモジュールの外側から 見た図(A)と、レンズ側から見た図(B)である。第 3のレンズ群 34を保持した第 1レン ズ保持部 44は、第 2のレンズ群 33を保持する第 2レンズ保持部 42を上下させるため 、図 21に示したように、後記する図 24に示したラッチ機構を構成する係止解除部と 係合部を有する第 2レンズ保持部移動部材 43が光軸に対して対称に 2つ設けられ、 さらに図 22の平面図に示したように、中心には前記した第 3のレンズ群 34が保持さ れている。また第 1レンズ保持部 44は、この第 3のレンズ群 34を配した中心部分 44a に光軸を中心に略対称的に形成されているスリット 44cを介して相対し、薄肉部 44d で接続されて、光軸に対し略直行する方向としたピエゾ素子 20の保持部 44bが設け られて 3部分に分割され、さらにレンズ群 34の中心光軸に対して回転対称の位置に 、図 23に示したように、この第 1レンズ保持部 44を回転止めしながら上下させるロー ラ部材たる V型ローラ 44eが、それぞれ上下 2個所に配された軸受部が設けられて 、 る。なお、前記したように、光軸をはさんで逆側のピエゾ素子 20の保持部 44は、バラ ンスを取るためこの V型ローラ 44eを 1つだけ設けた軸受部となっている。
[0094] この第 1レンズ保持部 44におけるピエゾ素子 20の保持部 44bは、図 23に示したよ うに図上左側が開かれてピエゾ素子 20における要所を保持するための保持部 44g 力 S設けられ、内部にピエゾ素子 20を入れて保持するための空間が設けられていると 共に、その内部でピエゾ素子 20が前記図 3 (C)に示したような変形が可能なように、 前記図 3 (B)に 20f、 20gで示した支持体や 20h、 20kで示したパネ付きの支持体(2 Omのパネ付き支持体にはコイルパネ 44fが対応)に相当する部材が設けられている
[0095] また、この図 23 (B)に示したように、この保持部 44gにおける図上右側には、前記し たようにこの保持部 44gがスムーズに上下できるよう、上下 2個所にガイド軸部材 46 に V型部が当接するローラ部材たる V型ローラ 44eが設けられている。
[0096] 一方、このピエゾ素子 20の保持部 44bと第 2のレンズ群 33を配した中心部分 44aと の間には、保持部 44bに配したピエゾ素子 20におけるスぺーサ 20eを軸部材 45に 所定の押圧力で押しつけるため、 V型ローラ 44eが設けられた位置と対応する位置 にコイルパネ 44fが配されて、ピエゾ素子 20の保持部 44bと第 2のレンズ群 33を配し た中心部分 44aを互 、に離間させる方向の力をカ卩えて!/、る。
[0097] このコイルパネ 44fは、例えば、第 3のレンズ群 34を配した中心部分 44a側にはコィ ルバネ 44fを受ける孔を、スリット 44cを介して相対したピエゾ素子 20の保持部 44b 側には、この保持部 44bの外壁まで通じて内部に雌ネジを切った孔を設け、この孔を 通して中心部分 44a側の孔にコイルパネ 44fを挿入した後、雄ネジを挿入して穴をふ さぐと共にコイルパネ 44fの圧接力を調節できるようにして設けたり、第 3のレンズ群 3 4を配した中心部分 44aとピエゾ素子 20の保持部 44b側を別々に作成し、コイルバ ネ 44fを挿入する孔を両者に設けてコイルパネ 44fを挿入した後、薄肉部 44d近辺で 互いを螺合、溶接などで接続するようにしたりして設ける。また、薄肉部 44dをパネ部 材で構成し、そのパネ性を利用して第 2のレンズ群 33を配した中心部分 44aからピエ ゾ素子 20の保持部 44bを開き、これらに設けた孔にコイルパネ 44fを装填するように しても良い。
[0098] このように第 1レンズ保持部 44に、スリット 44c、コイルパネ 44fを設けることにより、ス リット 44cによって保持した第 3のレンズ群 34の円周方向には自由度を、光軸方向に は剛性を持たせることができ、さらにコイルパネ 44fによって保持部 44bに配したピエ ゾ素子 20におけるスぺーサ 20eを、軸部材 45に所定の押圧力で押しつけることがで きる。そしてその押圧力によって軸部材 45に対し、光軸を中心に回転する方向の力 をカロえられた第 1レンズ保持部 44は、ガイド軸部材 46に当接して ヽる V型ローラ 44e によって回転が止められ、ピエゾ素子 20に前記図 3 (C)に示したような変形が連続的 に生じる信号電圧を与えることで、スぺーサ 20eと軸部材 45との間の摩擦力によって 、この第 1レンズ保持部 44が上下に移動することができる。
[0099] 一方、第 2のレンズ群 33を保持する第 2レンズ保持部 42は、図 20に示したように、 軸部材 45方向に延びてこの軸部材 45を挿通した支持腕 42aによって支持され、第 1 レンズ保持部 44の上下に伴って、図 20 (A)の望遠 (テレ)側と図 20 (B)の広角(ワイ ド)側の位置に図 24、図 25に示したラッチメカニズムでラッチされる。
[0100] 図 24はこのラッチメカニズムを構成する部品を模式的に示したもので、図 25は、こ の模式的に示したラッチメカニズムにより第 2のレンズ群 33を保持する第 2レンズ保持 部 42が、第 3のレンズ群 34を保持する第 1レンズ保持部 44の動きによってどのように 移動し、どのように固定されるかを示した模式図である。図中 42は、図 20に 42で示し た第 2のレンズ群 33を保持する第 2レンズ保持部 42の一部で、その第 2レンズ保持 部 42の上下に設けられた被係止部たる溝 42b、 42cは、図 20に 47で示したラッチ用 アームに設けられた係止部たるラッチ部 47aがラッチするためのラッチ用溝、 42dは 前記図 20、図 21、図 22に 43で示した第 2レンズ保持部移動部材における第 1の係 合部 43fが係合し、第 2のレンズ群 33を保持する第 2レンズ保持部 42を図上、下側 に移動させるための被係合部、 47aで示したラッチ用アーム 47に於けるレンズ保持 部 42側に山型に屈曲した部位は係止部たるラッチ部であり、 47bはラッチ用アーム 4 7におけるラッチ部 47aのラッチを解除するためのラッチ解除用部位、 43b、 43c、 43 dはこのラッチ用アーム 47におけるラッチ解除用部位 47bが乗り上げ、ラッチ部 47a のラッチを解除するための係止解除部たる傾斜部 (43b、 43d)と頂部 (43c)であり、 43a、 43eはラッチが行われる平坦部、 43fは前記したように第 1の係合部、 43gは被 係合部 424と係合する第 2の係合部である。
[0101] 図 25において(A)は、前記図 19 (A)に示した第 2のレンズ群 33と第 3のレンズ群 3 4が第 1のレンズ群 32から離れた広角の状態であり、図 25 (H)は第 2のレンズ群 33と 第 3のレンズ群 34が第 1のレンズ群 32に近寄っている前記図 19 (B)に示した望遠の 状態で、図 25 (B)から (G)はその中間の状態である。また同様に図 25 (P)は、第 2の レンズ群 33と第 3のレンズ群 34が第 1のレンズ群 32から離れた広角の状態であり、こ の間の図 25 (K)から(N)はその中間の状態である。また、図 25 (A)に 43hで示した のは、前記図 19 (C)に 36で示した広角側に於ける第 3のレンズ群 34が焦点合わせ のために動く範囲であり、同じく図 25 (H)の 43kは、望遠側に於ける第 3のレンズ群 3 4が焦点合わせのために動く範囲である。
[0102] 図 25 (A)の第 2のレンズ群 33と第 3のレンズ群 34が第 1のレンズ群 32から離れた 広角の状態では、図 20 (B)にも示したように、第 3レンズ保持部 41から垂下されたラ ツチ用アーム 47におけるラッチ部 47aが第 2レンズ保持部 42におけるラッチ用溝 42b をラッチしてこれを広角位置で固定し、第 1レンズ保持部 44に設けられた第 2レンズ 保持部移動部材 43は、第 1の係合部 43fと第 2の係合部 43gとの間に第 2レンズ保 持部 42における被係合部 42dが設けられているから、第 1レンズ保持部 44が焦点合 わせ (合焦)のために前記ピエゾ素子 20によって駆動されて符号 43hで示した範囲 を移動しても、この被係合部 42dと接触することなく移動することができる。
[0103] この状態から前記図 19 (B)に示した望遠の状態へ移行するときは、図 25 (B)に示 したように、第 1レンズ保持部 44が前記ピエゾ素子 20によって図上上方に駆動され、 第 2レンズ保持部移動部材 43が上昇して、その傾斜部 43dがラッチ用アーム 47にお けるラッチ解除用部位 47bを押し上げる。そして図 25 (C)に示したように、ラッチ解除 用部位 47bが第 2レンズ保持部移動部材 43における頂部 43cに達すると、第 2レン ズ保持部 42におけるラッチ用溝 42bのラッチ部 47aによるラッチが外れ、更に上昇し て図 25 (D)の状態になり、ラッチ解除用部位 47bが第 2レンズ保持部移動部材 43に おける頂部 43cに乗り上げると、ラッチ部 47aは第 2レンズ保持部 42と接触しなくなる と同時に、被係合部 42dと第 2の係合部 43gが接触し、第 2レンズ保持部 42を押し上 げる。
[0104] そして図 25 (E)、図 25 (F)、図 25 (G)のように第 2レンズ保持部 42が押し上げられ 、図 25 (H)の状態に達すると、今度はラッチ用アーム 47におけるラッチ部 47aが第 2 レンズ保持部 42におけるラッチ用溝 42cをラッチし、これを望遠位置で固定する。そ のため、前記図 25 (A)の場合と同様、第 1レンズ保持部 44に設けられた第 2レンズ 保持部移動部材 43は、第 1の係合部 43fと第 2の係合部 43gとの間に第 2レンズ保 持部 42における被係合部 42dが設けられているから、第 1レンズ保持部 44が焦点合 わせ (合焦)のために前記ピエゾ素子 20によって駆動されて符号 43kで示した範囲 を移動しても、この被係合部 42dと接触することなく移動することができる。
[0105] この状態から、前記図 25 (A)に示した状態に戻るには、図 25 (K)に示したように、 第 1レンズ保持部 44が前記ピエゾ素子 20によって図上、下方に駆動され、第 2レン ズ保持部移動部材 43が下降して、その傾斜部 43bがラッチ用アーム 47におけるラッ チ解除用部位 47bを押し上げる。そして図 25 (L)に示したように、ラッチ解除用部位 47bが第 2レンズ保持部移動部材 43における頂部 43cに達すると、第 2レンズ保持 部 42におけるラッチ用溝 42cのラッチ部 47aによるラッチが外れ、更に下降して図 25 (M)の状態になり、ラッチ解除用部位 47bが第 2レンズ保持部移動部材 43における 頂部 43cに乗り上げると、ラッチ部 47aは第 2レンズ保持部 42と接触しなくなると同時 に、被係合部 42dと第 1の係合部 43fが接触し、第 2レンズ保持部 42を押し下げる。
[0106] そして図 25 (N)のように第 2レンズ保持部 42が押し下げられ、図 25 (P)の状態に 達すると、今度はラッチ用アーム 47におけるラッチ部 47aが第 2レンズ保持部 42にお けるラッチ用溝 42bをラッチし、これを広角位置で固定して、前記図 25 (A)の状態に 戻る。 [0107] このように構成した実施形態のカメラモジュール 40は、図示していない制御回路に よってピエゾ素子 20に駆動信号力もなる駆動電流を印加するすることで、前記したよ うにスぺーサ 20eが振動して往復運動が励起され、このピエゾ素子 20を保持した第 1 レンズ保持部 44が、図 20における上方または下方に移動する。そのため、例えば図 20 (A)のように第 2レンズ保持部 42が望遠の位置(図 25にお 、ては(H)の状態)に あり、図示していない制御回路によってカメラモジュール 40の合焦を行う場合は、第 1レンズ保持部 44を図 19 (C)における 37で示した範囲を移動させることで、図 19 (B )における 35で示した撮像素子へのピントを合わせることができる。
[0108] そしてこの状態力もカメラモジュール 40を、図 20 (B)に示した広角側(図 25におけ る(P)または (A)の状態)にする場合は、図示していない制御回路によってピエゾ素 子 20に、第 1レンズ保持部 44を下方に移動させる駆動電流を印カロさせる。するとこの 第 1レンズ保持部 44が下降し、それに伴って図 24に示したラッチ用アーム 47のラッ チ解除用部位 47bが第 2レンズ保持部移動部材 43の傾斜部 43bに乗り上げ、ラッチ 部 47aが第 2レンズ保持部 42に設けられたラッチ用溝 42cから外れる。
[0109] そして、そのまま第 1レンズ保持部 44を下方に移動させると、ラッチ用アーム 47に おけるラッチ部 47aがラッチ用溝 42bに力かって第 2レンズ保持部 42が図 20 (B)の 状態で固定され、第 1レンズ保持部 44を、図 19 (C)における 36で示した範囲を移動 させることで、図 19 (A)における 35で示した撮像素子へのピントを合わせることがで きる。従って、第 1レンズ保持部 44が合焦のために移動する図 19 (C)に 36、 37で示 した移動範囲は、図 24における第 2レンズ保持部移動部材 43の第 1の係合部 43fと 第 2の係合部 43gとが、被係合部 42dと接触せずに動ける範囲となる。なお、広角側 力も望遠側に移動させるときは、前記図 25に基づいて説明したとおりなので省略す る。
[0110] このようにカメラモジュール 40を構成することにより、ピエゾ素子 20に信号電流を印 加するだけでオートフォーカス (AF)や焦点距離の変化を行うことができ、しかもピエ ゾ素子 20は、前記したように低速ではあるが高トルクで応答性 ·制御性に優れ、微小 な位置決めが可能で小型,軽量であるなどの利点を有するから、小型で軽量、焦点 距離変化やピント合わせを短時間で行えるカメラモジュールを提供することができる。 [0111] なお、第 3のレンズ群 34を保持する図 22に示した第 1レンズ保持部 44の形態や、 図 24に示したラッチメカニズムの構成は、図示のものだけに限らず、例えば第 1レン ズ保持部 44は図 26に示したような形態や、ラッチ用アーム 47も図 20に示したように 第 1のレンズ群 32を保持する第 3レンズ保持部 41から垂下したものでなぐ図 27に示 したように基台 26から立ち上がるようにしたアーム 50のような形態のものでもよ!/、。図 26に示した第 1レンズ保持部は、前記図 22に示した第 1レンズ保持部 44に用いてい るのと同じ構成要素には、同一番号を付してある。
[0112] まず、図 26に示した第 1レンズ保持部は、図 22に示した第 1レンズ保持部 44にお ける軸部材 45にピエゾ素子 20を当接させ、ガイド軸部材 46に V型ローラ 44eを当接 させる点は同じである。しかし、ピエゾ素子 20を軸部材 45に押圧させるのに、図 22の 実施形態ではスリット 44cによって第 3のレンズ群 34を配した中心部分 44aとピエゾ 素子 20の保持部 44bをわけ、その間にコイルパネ 44fを入れることで行っていたが、 この図 26の実施形態では、 V型ローラ 44eの軸保持用部材 48を屈曲させて付勢部 材 49を設けたもので、このようにすることにより、コイルパネ 44fを第 3のレンズ群 34を 配した中心部分 44aとピエゾ素子 20の保持部 44bとの間に入れる必要がないから、 それだけ組立が容易になる。この場合の動作や効果は前記図 22に示した実施形態 と同様である。
[0113] また、図 27に示したラッチ機構は、図 20に示したラッチ用アーム 47を第 1のレンズ 群 32を保持する第 3レンズ保持部 41から垂下したものでなぐ基台 26から立ち上が つたアーム 50としたもので、他の動作は、前記図 24、図 25で説明したものと同じであ るので、説明は割愛する。
[0114] なお、以上の説明では第 1レンズ保持部 44にピエゾ素子 20を設け、このピエゾ素 子 20によって第 1レンズ保持部 44を上下させて第 2レンズ保持部 42を移動するよう 説明してきたが、第 2レンズ保持部 42にもピエゾ素子を設け、夫々独立に駆動できる ようにしても良い。
実施例 3
[0115] 図 28は実施形態になるカメラモジュールの実施例 3を示す斜視図、図 29は実施例 3に於けるレンズとピエゾ素子とを保持して上下可能に構成されたレンズ保持部の平 面図、図 31はレンズとピエゾ素子とを保持して上下可能に構成されたレンズ保持部 の他の実施形態における平面図 (A)と、ピエゾ素子側力 見た側面図(B)、及びレ ンズ保持部の案内シャフトに当接するローラの側面図 (C)と斜視図 (D)、図 32は実 施例 4のカメラモジュールにおける軸部材力 ピエゾ素子の駆動電流を取るための実 施例を示した図、図 33は実施例 5のカメラモジュールの斜視図 (A)とピエゾ素子部 分を示す断面図(B)、図 34は複数の可動共振周波数の異なるピエゾ素子を駆動す る制御回路の一例である。図中、同一構成要素には同一番号が付してある。
[0116] なお、図 28に示したカメラモジュール 51は、説明のため、前記実施例 1における第 2レンズ保持部 42が省略され、また、第 3レンズ保持部 41は 55で、基台 26は 56で示 してある。図中、前記実施例 1と同様の構成要素には同一番号が付してあり、図 29に おいて 34は第 3のレンズ群、 20はピエゾ素子、 20eはスぺーサ、 44aは第 3のレンズ 群 34を配した中心部分、 44bはピエゾ素子 20の保持部、 44cはスリット、 224は薄肉 部、 44fはコイルパネ、 45は軸部材、 46はガイド軸部材である。
[0117] 前記実施例 2のカメラモジュール 40は、図 22に示したように第 1レンズ保持部 44の 回転止めのため、 V型ローラ 44eを 2つ用いていた力 例えば製造誤差によっていず れかの V型ローラ 44eが正確にガイド軸部材 46に当接しなくなった場合、コイルパネ 44fの存在によってどちらの V型ローラ 44eも自分がガイド軸部材 46に当接しようとし 、保持した第 3のレンズ群 34の光軸がふらつくようになってしまう。
[0118] そのため、この図 28に示した実施例 3のカメラモジュール 51における図 29に示した 第 1レンズ保持部 51では、一方のガイド軸部材 46に当接するローラを実施例 1と同じ V型ローラ 52aとし、他方のガイド軸部材 46に当接するローラ 52bを通常の円筒形型 平型ローラとしたものである。このようにすると、平型ローラ 52bは単にガイド軸 46に 当接しているだけであるから当接位置を自由に動かすことができ、製造誤差が生じて も、 V型ローラ 52aによって第 1レンズ保持部 51に保持された第 3のレンズ群 34の光 軸位置が規定され、他方の平型ローラ 52bはそれに追随して第 3のレンズ群 34の光 軸がふらつくことが無い。その他の構成や動作は前記実施例 1と同様であり、説明は 省略する。
[0119] 図 31はレンズとピエゾ素子とを保持して上下可能に構成された第 1レンズ保持部 5 4の他の実施形態における平面図 (A)と、ピエゾ素子 20側から見た側面図(B)であ る。
[0120] この図 31に示した実施形態では、図 31 (A)のピエゾ素子 20を保持して上下可能 に構成されたレンズ保持部 54の平面図から明らかなように、ガイド軸部材 46に当接 する一方のローラ 54bは、前記図 29に示したローラ 52bと同様円筒形型平型ローラと し、他方のガイド軸部材 46に当接するローラは、円筒形状の平型ローラ 54d、 54eを ガイド軸部材 46に対して V型となるようにローラモジュール 54aに収容して構成してあ る。図 31 (B)は、この第 1レンズ保持部 44をピエゾ素子 20側力も見た側面図であり、 前記図 30 (a)、 (b)、 (c)で説明したように、平型ローラローラ 54d、 54eは、このロー ラモジュール 54aに設けられた V型の切れこみ 54fの内部に、 U字型に設けられた軸 受け 54gで V型となるように保持されて 、る。
[0121] すなわち、前記図 29に 52aで示した V型ローラは、製造誤差でスラスト方向にガタ が生じることがあり、第 1レンズ保持部が保持した第 3レンズ群 34の光軸がふらつくこ と力ある。しかし、このようにガイド軸部材 46に当接するローラを構成することで、 V型 ローラ 52aを用いた場合のスラスト誤差が生じることが無ぐまた、製造誤差が生じて も、平型ローラ 54d、 54eを直交させたときに形成される V字型の谷間にガイド軸部材 46を当接させることで、平型ローラ 54d、 54eのスラストガタが第 3のレンズ群 34の光 軸に影響を与えてふらつくということが無くなる。その他の構成や動作は前記実施例 2と同様であり、説明は省略する。
[0122] また、図 22に示した 2つの V型ローラ 44eを用いたときに製造誤差で生じる第 3レン ズ群 34の光軸のふらつきを、これら図 29、図 30、図 31に示した方法では、第 1レン ズ保持部 51、 54の回転止めのためにガイド軸部材 46に当接させるローラを、 V型口 ーラ 52a、または平型ローラ 54d、 54eを V型となるよう配して用いる、等の方法で防 いできたが、これ以外にも、第 1レンズ保持部 44における第 3のレンズ群 34を配した 中心部分 44aとピエゾ素子 20の保持部 44bとを離間させる方向に付勢する、それぞ れのスリット 44cに配した 2つのコイルパネ 44fの強さを異ならせても良い。
[0123] すなわちこのコイルパネ 44fは、ピエゾ素子 20におけるスぺーサ 20eを軸部材 45 に所定の押圧力で当接させるためのものである力 この当接力は一定範囲で異なら せることが可能であり、 2つのコイルパネ 44fの強さを異ならせることで、図 22、図 29 に示した V型ローラ 44e、 52a、図 31に示した円筒形状の平型ローラ 54d、 54eをガ イド軸部材 46に対して V型となるよう当接させたローラは、強さを異ならせたコイルバ ネ 44fの強さの差に応じた力でスラスト方向に押しつけられ、例え製造誤差で両者が 正規の位置でガイド軸部材 46に当接しなくても、強さの強!ヽコイルパネ 44fで押圧さ れるローラが軸部材 46に当接し、保持した第 3のレンズ群 34の光軸がふらつくという ことが無くなる。
実施例 4
[0124] 以上の説明ではピエゾ素子 20への配線については言及してこなかった力 このよう にピエゾ素子 20がそれを保持して ヽる第 1レンズ保持部 44自体を動かすような場合 、通常はフレキシブル基板やフレキシブルケーブルなどを用い、電源電力、駆動信 号、アース等の (電気)信号を供給する。しかし本実施形態のように小型、軽量を目指 しているカメラモジュールにおいては、モジュールそのものが小さいため、フレキシブ ル基板やフレキシブルケーブルを用いると、第 1レンズ保持部 44の移動範囲にその フレキシブル基板が追従できるよう、ある程度の空間を確保しなければならない。そ のため、実施形態のカメラモジュールにおいては、この電源の供給を、ガイド軸部材 46、または軸部材 45、若しくはハウジングなどに設けた電源供給用電極などで行うよ うにした。
[0125] まずガイド軸部材 46を用いて給電する方法である力 前記図 22における V型ロー ラ 44e、図 29に於ける V型ローラ 52a、円筒形状平型ローラ 52b、図 31に於けるガイ ド軸部材 46に対して V型となるようにローラモジュール 54aで保持した円筒形状の平 型ローラ 54d、 54e等のローラをいずれも金属製とし、かつ、ガイド軸部材 46も金属 製として、このガイド軸部材 46とローラをピエゾ素子 20の駆動用電気信号を供給す る電気信号供給ラインの一部とし、ガイド軸部材 46に駆動用電力を供給する電源を 接続する。また、前記ローラからは、ピエゾ素子 20に電気信号を供給するための配 線を行う。
[0126] また、軸部材 45を用いる方法は、例えば図 29に 45で示した軸部材を金属で構成 し、この軸部材 45に駆動用電気信号を供給する電源を接続すると共に、第 1レンズ 保持部 44のピエゾ素子 20の保持部 44bに、図 29に 57で示したような摺擦ブラシを 設け、この摺擦ブラシ 57をピエゾ素子 20に接続して給電する。この場合摺擦ブラシ 5 7は、図 29に示したように一方向だけに設けるのではなぐ図 32 (A)に示すように、ピ ェゾ素子 20の保持部 44bから軸部材 45を挟むように 2つの摺擦ブラシ 67、 68を設 け、効率良く集電できるようにしたり、図 32 (B)に示したように、摺擦ブラシ 69によつ て軸部材 45を囲繞し、かつ、摺擦ブラシ 69にパネ性を持たせてピエゾ素子 20の作 動部 20eが軸部材 45に圧接されるよう付勢できるようにしても良い。
[0127] さらに、このようなガイド軸部材 46や軸部材 45を用いるだけでなぐカメラモジユー ル 40のハウジングの適当な場所に、通電可能にした金属箔ゃ導電材などを貼り付け たり、予めエッチングなどで導体を形成しておき、それに摺擦ブラシを当接させて給 電するようにしても良い。このよう〖こすること〖こより、フレキシブル基板を用いた場合に 必要な、第 1レンズ保持部 44の移動範囲におけるフレキシブル基板が追従できるよう にする空間が不用となり、ガイド軸部材 46や軸部材 45が長くなつても問題なく給電 が可能となるから、カメラモジュール 40をより小さく構成できる。
実施例 5
[0128] また以上の説明では、図 20に示したように、第 2レンズ保持部 42を第 1レンズ保持 部 44によって移動させて望遠 (テレ)と広角(ワイド)の位置に固定する、 2焦点型カメ ラモジュールの場合を例に説明してきた力 前記したように第 2レンズ保持部にもピエ ゾ素子を配して独立に移動可能に構成し、 2焦点型としてのカメラモジュールだけで なぐ連続して焦点距離を変化させることができる通常のズームレンズとして構成する ことも可能であり、その場合の実施形態を示したのが図 33である。
[0129] この図 33において、(A)はカメラモジュールの斜視図で(B)はピエゾ素子部分を示 す断面図である。図中、前記図 20における構成要素と同一要素には同一番号が付 してあり、 32は第 1のレンズ群、 33は第 2のレンズ群、 34は第 3のレンズ群、 35は撮 像素子、 61は第 3のレンズ群 34を保持した第 1のレンズ保持部、 62は第 2のレンズ 群 33を保持する第 2レンズ保持部、 63は第 1のレンズ群 32を保持する第 3レンズ保 持部、 61aは作動部 61bを有する第 1のピエゾ素子、 62aは作動部 62bを有する第 2 のピエゾ素子、 64はピエゾ素子 61a、 62aの作動部 61b、 62bを当接させる軸部材、 65、 66はガイド軸部材、 61c、 62cは付勢部材、 61d、 62dは軸部材 64を揷通して 第 1レンズ保持部 61、第 2レンズ保持部 62をガイドするガイド部である。
[0130] このようにカメラモジュールを構成した場合、それぞれのレンズ保持部 61、 62は、 焦点距離の変化やピント合わせ (合焦)によってその移動量がその都度、異なってく る。そのため通常は、フレキシブル基板やフレキシブルケーブルを用い、それぞれの レンズ保持部 61、 62に配されたピエゾ素子 6 la、 62aへ、別々に駆動用電気信号を 送るようにするのが一般的である力 この方法では、前記実施例 4で述べたように、レ ンズ保持部 61、 62の移動範囲にフレキシブル基板が緩衝しな ヽよう追従できるよう にする空間が必要であり、また、制御回路も別々に必要になる。
[0131] そのためこの実施形態では、それぞれのレンズ保持部 61、 62に組み込まれるピエ ゾ素子 61a、 62aにおける、図 3に 20bで示した長手方向と短手方向で形成される第 1面の形状をピエゾ素子 61a、 62a毎に異ならせ、それによつてピエゾ素子 61a、 62a の可動共振周波数を異ならせて、例えばピエゾ素子 61aを第 1の周波数、ピエゾ素 子 62aを第 2の周波数という具合に、単一の駆動回路で複数のレンズ保持部 61、 62 に組み込まれたピエゾ素子 6 la、 62aを別々に駆動できるようにしたものである。
[0132] すなわち前記特許文献 6乃至 11に述べられているように、ピエゾ素子 61a、 62aは 、その形状によって特定の共振周波数の場合にだけ駆動力が生じる。そのため、前 記したようにそれぞれのレンズ保持部 61、 62に組み込まれるピエゾ素子 6 la、 62aの 形状を異ならせることで、異なった共振周波数で駆動できるようにし、焦点距離変化 やピント合わせ (合焦)に際し、動力したいレンズ保持部 61、 62に保持されているピ ェゾ素子 61a、 62aに対応する共振周波数の駆動電気信号を送り込み、それによつ て必要なレンズ群のみを動力せるようにしたものである。
[0133] このようにすると、前記図 29、図 31で説明したガイド軸部材 46や軸部材 45を用い てピエゾ素子 20に給電する場合でも、単一の駆動回路で別個のレンズ保持部を駆 動することができ、例えばズーミングで複数のレンズ保持部を移動する必要がある場 合は、それぞれのレンズ保持部に収容されたピエゾ素子 20に対応した共振周波数 の駆動電流を、時分割で送り込めば迅速なズーミングが可能となる。
[0134] 図 34は、このような制御をおこなうためのピエゾ素子駆動制御回路の一例であり、 図中 70はそれぞれのレンズ保持部の現在位置を検出するレンズ保持部位置センサ 、 71はズーミングの指示ボタンで、望遠側、広角側への指示信号が発せられる。 72 はオートフォーカスのための焦点距離算出部で、カメラモジュールに撮像指示が送ら れて来ると、合焦のための指示を制御部 74に送る。 73はレンズ保持部 61、 62に収 容されているピエゾ素子 6 la、 62aの共振周波数を記憶している共振周波数記憶部 、 74はカメラモジュール全体の制御をおこなう制御部で、ズーミングやフォーカシング 行う場合は、レンズ保持部 61、 62に収容されたピエゾ素子 61a、 62aに対応した共 振周波数の信号をピエゾ素子ドライバ 75に送る。 61a, 62a,……はレンズ保持部 6 1、 62に収容されたピエゾ素子 61a、 62aである。前記したように実施形態のピエゾ素 子駆動制御回路では、ピエゾ素子ドライバ 75から送られる駆動電流は、単一の信号 線で全てのピエゾ素子 6 la、 62a、……に送られる。
[0135] この図 34に示したピエゾ素子駆動制御回路の動作を説明すると、カメラモジュール の電源がオンされて撮像指示が送られると、レンズ保持部位置センサ 70からそれぞ れのレンズ保持部 61、 62の現在位置が制御部 74に送られる。そしてズーム指示ボ タン 71の望遠側、または広角側が押されるとその信号も制御部 74に送られ、制御部 74は、レンズ保持部位置センサ 70からの信号を参照してどのレンズ保持部 61、 62 をどの程度動力したら良いかの演算を行う。
[0136] そして、共振周波数記憶部 73から、移動させるレンズ保持部 61、 62に収容されて いるピエゾ素子 61a、 62aの共振周波数を読み出し、複数のレンズ保持部 61、 62を 移動する場合は、それぞれに対応した共振周波数を取得する。そしてレンズ保持部 61、 62を移動させる順序を決め、別個に移動させる場合は、動かすレンズ保持部の ピエゾ素子に対応した共振周波数の信号を生成し、ピエゾ素子ドライバ 75に送る。ま た、複数のレンズ保持部を移動させる場合は、移動させる順番を決め、互いが緩衝し な 、ようにして時分割で、それぞれのピエゾ素子に対応した周波数の信号をピエゾ 素子ドライバ 75に送る。
[0137] するとピエゾ素子ドライバ 75は、送られてきた周波数の信号でピエゾ素子の駆動電 流を生成し、ピエゾ素子 61a、 62a,……に接続された信号線に送り出す。すると、そ れぞれのレンズ保持部に収容されたピエゾ素子 6 la、 62a,……は、自分に合致した 共振周波数の駆動電流が送られてきたときだけ駆動され、レンズ保持部 61、 62が所 定位置に移動される。また、オートフォーカス機能で焦点を合わせる場合は、焦点距 離算出部 72が指示する合焦動作に合わせて必要なレンズ保持部に収容されたピエ ゾ素子 62、 63……が駆動される。
[0138] このようにピエゾ素子の駆動制御回路を構成し、かつ、前記したように電源の供給 を、ガイド軸部材 65、 66、または軸部材 64、若しくはハウジングなどに設けた電源供 給用電極などで行うようにすることにより、前記したようにそれぞれのピエゾ素子へ直 接フレキシブル基板で配線する必要が無ぐしかも、単一の駆動制御回路で別個の ピエゾ素子を駆動できるから、カメラモジュールを小型に、軽量に構成することができ る。
[0139] なお、以上の説明では、それぞれのピエゾ素子に対応した共振周波数を別々の時 間で駆動するよう説明したが、前記複数の共振周波数を重畳し、それをフィルタ手段 で分離してそれぞれのピエゾ素子に送るようにしても良い。この場合は、ピエゾ素子、 またはレンズ保持部にフィルタ手段を設け、図 34に示した制御部 74でこの複数の周 波数の駆動信号を重畳し、ピエゾ素子ドライバー 75で前記したように電源電力、駆 動信号、アース等で構成される電気信号として送り出すと共に、それぞれのピエゾ素 子、またはレンズ保持部に設けたフィルタ手段により、それぞれのピエゾ素子の駆動 に必要な周波数の駆動信号のみを取り出して動作させるようにすればよ!、。
[0140] 以上説明してきた実施例 1乃至 5のカメラモジュールは、例えば、携帯端末に組み 込まれる。図 35は、携帯端末の一例である携帯電話機 80を操作部 (操作部材) 81 及びディスプレイ (表示部材) 82が見える状態(開状態)で示す平面図であり、図示の 携帯電話機 80は操作部 81が搭載された第 1のケース部 83とディスプレイ 82が搭載 された第 2のケース部 84とがヒンジ機構 85によって連結され、第 1及び第 2のケース 部 83及び 84はヒンジ機構 85の回りに回動可能となっている。なお、第 1及び第 2の ケース部 83及び 84はケース体を構成する。
[0141] 第 2のケース 84には図中破線二重丸で示すように、前述した実施例 1乃至 5のカメ ラモジュール 86が組み込まれており、操作部 81の所定のボタンを操作すると、カメラ モジュール 86によって撮像が行われて、カメラモジュール 86によって撮像された画 像は、例えば、ディスプレイ 82上に表示される。なお、カメラモジュール 86は図 8、図 20、図 27、図 28、図 33などに示す上佃 J (光学レンズ 23、 32佃1)カ第2のケース咅 84 の外側に向けられている。つまり、第 2のケース部 84にはカメラモジュール 86の光学 レンズ 23、 32を露出させる開口部が形成されていることになる。また、図示はしない 力 第 1のケース部 83にはバッテリー及び通信部等が収納されており、さらに、第 2の ケース部 84の厚さ寸法は略カメラモジュール 86の高さに規制されている。
[0142] このように、 2つのレンズホルダのそれぞれにピエゾ素子を組み込み、光軸方向に 駆動するようにしたので、光学レンズ系を駆動する際のレンズ移動機構の構造が極 めて簡単となり、オートフォーカス (AF)機能及びズーム機能を組み込んでも、カメラ モジュールを小型'軽量ィ匕できるという効果がある。
産業上の利用可能性
[0143] オートフォーカス (AF)機能やズーム機能を組み込んだカメラモジュールを、小型で 軽量に構成することが可能となり、各種の小型携帯端末におけるカメラモジュールと して最適である。

Claims

請求の範囲
[1] 少なくとも 1つ以上の光学レンズを保持すると共に、第 1の軸受部を備えるレンズ保 持部と、
前記第 1の軸受部に挿入されると共に光軸と略平行に配置された第 1の軸部材と、 端部に前記第 1の軸部材と当接する作動部を備えると共に、前記レンズ保持部に 配置したピエゾ素子とを含み、
前記第 1の軸部材は、前記作動部と当接する第 1箇所と前記第 1の軸受部と摺動す る第 2箇所の表面加工を異ならしめたことを特徴とするカメラモジュール。
[2] 前記第 1の軸受部と摺動する第 2箇所の表面を前記作動部と当接する第 1箇所の 表面より滑らかに処理するか又は前記作動部と当接する第 1箇所の表面を前記第 1 の軸受部と摺動する第 2箇所の表面より荒く処理したことを特徴とする請求項 1に記 載のカメラモジュール。
[3] 前記第 1の軸受部と前記第 1の軸部材との摩擦係数を前記作動部と前記第 1の軸 部材との摩擦係数より低く処理するか、または、前記第 1の軸受部と摺動する第 2箇 所の表面に潤滑処理を施し、前記作動部と当接する第 1箇所の表面に前記潤滑処 理を省いたことを特徴とする請求項 1または 2に記載のカメラモジュール。
[4] 前記第 1の軸受部は、略 V字状の断面を有すると共に、該 V字状の断面と前記第 1 の軸部材とが摺動することを特徴とする請求項 1乃至 3のいずれかに記載のカメラモ ジュール。
[5] 前記第 1の軸受部は、前記第 1の軸部材の軸方向に 2箇所の前記 V字状の断面を 有し、
前記作動部を前記 2箇所の前記 V字状の断面間に位置付けたことを特徴とする請 求項 4に記載のカメラモジュール。
[6] 前記レンズ保持部に配置された第 2の軸受部と、
前記第 2の軸受部に挿入されると共に光軸と略平行且つ前記第 1の軸部材と光軸 に対して略対称な位置に配置された第 2の軸部材とをさらに含み、
前記第 2の軸部材の表面を、前記第 1の軸受部と摺動する前記第 1の軸部材にお ける第 2箇所の表面と略同一の表面加工を施したことを特徴とする請求項 1乃至 5の V、ずれかに記載のカメラモジュール。
[7] 少なくとも 1つ以上の光学レンズを保持すると共に、第 1の軸受部を備えるレンズ保 持部と、
前記第 1の軸受部に挿入されると共に光軸と略平行に配置された第 1の軸部材と、 端部に前記第 1の軸部材と当接する作動部を備えると共に、前記レンズ保持部に 配置されて前記レンズ保持部を移動させるピエゾ素子と、
前記レンズ保持部をガイドする第 2の軸部材と、を備え、
少なくとも前記第 1の軸部材または前記第 2の軸部材から、前記ピエゾ素子の駆動 を行うための電気信号を供給できるよう構成したことを特徴とするカメラモジュール。
[8] 前記ピエゾ素子をそれぞれ備えた第 1のレンズ保持部と第 2のレンズ保持部とを有 し、
前記第 1のレンズ保持部に収納された第 1のピエゾ素子は第 1周波数の信号で駆 動可能であると共に、
前記第 2のレンズ保持部に収納された第 2のピエゾ素子は第 2周波数の信号で駆 動可能であり、
前記第 1周波数の信号を前記第 1のピエゾ素子に供給すると共に、前記第 2周波 数の信号を前記第 2のピエゾ素子に供給する共通の信号供給部材を備えることを特 徴とする請求項 1乃至 7のいずれかに記載したカメラモジュール。
[9] 前記信号供給部材に前記第 1周波数の信号と前記第 2周波数の信号とを選択的 に供給可能な第 1の信号供給手段を備えることを特徴とする請求項 8に記載のカメラ モジユーノレ。
[10] 前記信号供給部材に前記第 1周波数の信号と前記第 2周波数の信号とを重畳して 供給可能な第 2の信号供給手段と、
前記信号供給部材から供給される信号より前記第 1周波数の信号を取得する第 1 のフィルタ手段と、
前記信号供給部材から供給される信号より前記第 2周波数の信号を取得する第 2 のフィルタ手段と、を更に備え、
前記第 1のフィルタ手段の出力を前記第 1のピエゾ素子に供給すると共に前記第 2 のフィルタ手段の出力を前記第 2のピエゾ素子に供給することを特徴とする請求項 8 に記載のカメラモジュール。
[11] 前記レンズ保持部は、前記第 2の軸部材に当接する第 2の軸受部を備え、
前記第 1または第 2、若しくは両軸受部を介して前記電気信号の供給を行うことを特 徴とする請求項 7乃至 10のいずれかに記載のカメラモジュール。
[12] 前記レンズ保持部は、前記軸部材と摺動可能に接触する摺動部材を備え、
前記摺動部材を介して前記電気信号の供給を行うことを特徴とする請求項 7乃至 1
1のいずれかに記載のカメラモジュール。
[13] 前記摺動部材は、前記軸部材を囲繞して前記ピヱゾ素子を前記軸部材に当接す るよう付勢することを特徴とする請求項 12に記載のカメラモジュール。
[14] 前記レンズ保持部に配置すると共に、前記ピエゾ素子を前記作動部が前記第 1の 軸部材に当接する方向に付勢する付勢手段をさらに備えたことを特徴とする請求項
1乃至 13のいずれかに記載のカメラモジュール。
[15] 少なくとも 1つ以上の光学レンズを保持すると共に、第 1の軸受部を備えるレンズ保 持部と、
前記第 1の軸受部に挿入されると共に光軸と略平行に配置された第 1の軸部材と、 端部に前記第 1の軸部材と当接する作動部を備えると共に、前記レンズ保持部に 配置したピエゾ素子とを含み、
前記第 1の軸部材は、前記作動部と当接する第 1箇所と前記第 1の軸受部と摺動す る第 2箇所の表面加工を異ならしめたカメラモジュールと、
操作部材と、表示部材と、バッテリーと、通信部と、
前記カメラモジュール、前記表示部材、前記バッテリー及び前記通信部を収納する と共に厚さ寸法を略前記カメラモジュールの高さに制限した筐体と、を含むことを特 徴とする携帯端末。
[16] 少なくとも 1以上の光学レンズを保持するレンズ保持部と、
前記レンズ保持部を移動可能に駆動する駆動部材と、
前記レンズ保持部をガイドするガイド軸部材、または前記駆動部材により前記レン ズ保持部に駆動力を伝達する軸部材と、 を備え、
前記駆動部材の駆動を行うための電気信号を少なくとも前記軸部材または前記ガ イド軸部材より供給するカメラモジュールを含み、
操作部材と、表示部材と、バッテリーと、通信部と、
前記カメラモジュール、前記表示部材、前記バッテリー及び前記通信部を収納する と共に厚さ寸法を略前記カメラモジュールの高さに制限した筐体と、を含むことを特 徴とする携帯端末。
[17] 少なくとも 1つ以上の光学レンズを保持すると共に、第 1の軸受部を備えるレンズ保 持部と、
前記第 1の軸受部に挿入されると共に光軸と略平行に配置された第 1の軸部材と、 端部に前記第 1の軸部材と当接する作動部を備えると共に、前記レンズ保持部に 配置したピエゾ素子と、
前記レンズ保持部をガイドする第 2の軸部材とを含み、
前記第 1の軸部材は、前記作動部と当接する第 1箇所と前記第 1の軸受部と摺動す る第 2箇所の表面加工を異ならしめると共に、少なくとも前記第 1の軸部材または前 記第 2の軸部材から、前記ピエゾ素子の駆動を行うための電気信号を供給できるよう 構成したカメラモジュールと、
操作部材と、表示部材と、バッテリーと、通信部と、
前記カメラモジュール、前記表示部材、前記バッテリー及び前記通信部を収納する と共に厚さ寸法を略前記カメラモジュールの高さに制限した筐体と、を含むことを特 徴とする携帯端末。
[18] 前記カメラモジュールは、
前記ピエゾ素子をそれぞれ備えた第 1のレンズ保持部と第 2のレンズ保持部とを有 し、
前記第 1のレンズ保持部に収納された第 1のピエゾ素子は第 1周波数の信号で駆 動可能であると共に、前記第 2のレンズ保持部に収納された第 2のピエゾ素子は第 2 周波数の信号で駆動可能であり、
前記第 1周波数の信号を前記第 1のピエゾ素子に供給すると共に、前記第 2周波 数の信号を前記第 2のピエゾ素子に供給する共通の信号供給部材と、を含むことを 特徴とする請求項 15乃至 17のいずれかに記載した携帯端末。
PCT/JP2005/016540 2004-09-29 2005-09-08 カメラモジュール及びこのカメラモジュールを用いた携帯端末 WO2006035582A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/575,866 US7777969B2 (en) 2004-09-29 2005-09-08 Camera module and portable terminal employing the same
KR1020077007035A KR101229207B1 (ko) 2004-09-29 2005-09-08 카메라 모듈 및 이 카메라 모듈을 이용한 휴대 단말기
EP05782313A EP1795934A1 (en) 2004-09-29 2005-09-08 Camera module and portable terminal employing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004283186A JP2006098594A (ja) 2004-09-29 2004-09-29 カメラモジュール及びこのカメラモジュールを備えた携帯端末
JP2004-283187 2004-09-29
JP2004283187A JP2006098595A (ja) 2004-09-29 2004-09-29 カメラモジュール及びこのカメラモジュールを備えた携帯端末
JP2004283041A JP3775747B2 (ja) 2004-09-29 2004-09-29 カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP2004-283041 2004-09-29
JP2004-283186 2004-09-29

Publications (1)

Publication Number Publication Date
WO2006035582A1 true WO2006035582A1 (ja) 2006-04-06

Family

ID=36118735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016540 WO2006035582A1 (ja) 2004-09-29 2005-09-08 カメラモジュール及びこのカメラモジュールを用いた携帯端末

Country Status (4)

Country Link
US (1) US7777969B2 (ja)
EP (1) EP1795934A1 (ja)
KR (1) KR101229207B1 (ja)
WO (1) WO2006035582A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718101A (zh) * 2011-07-29 2014-04-09 罗伯特·博世有限公司 后焦点调节模块和具有后焦点调节模块的摄像机
WO2020230703A1 (ja) * 2019-05-10 2020-11-19 ミニスイス・ソシエテ・アノニム レンズ駆動装置、カメラモジュール、及びカメラ搭載装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799867B1 (ko) * 2006-02-20 2008-01-31 삼성전기주식회사 렌즈 이송장치
DE102007012589B4 (de) 2007-03-13 2009-03-19 Schwab, Martin, Dipl.-Ing. Optikbaueinheit
JP4991497B2 (ja) * 2007-11-28 2012-08-01 三星電子株式会社 像ぶれ補正装置
CN101620309B (zh) * 2008-06-30 2011-03-23 鸿富锦精密工业(深圳)有限公司 夹持装置及具有该夹持装置的变焦装置
DE102008039614B3 (de) * 2008-08-25 2010-02-18 Minebea Co., Ltd. Vorrichtung zum Einstellen eines optischen Systems
KR100952084B1 (ko) * 2008-08-26 2010-04-13 주식회사 하이소닉 압전소자를 이용한 소형카메라 구동장치
WO2010058985A2 (ko) * 2008-11-19 2010-05-27 (주)하이소닉 다층 압전소자와 압전소자를 이용한 구동체와 이를 이용한 소형카메라 구동장치
KR101104192B1 (ko) * 2009-11-13 2012-01-09 주식회사 하이소닉 압전소자가 장착된 구동체
KR101005774B1 (ko) * 2008-11-19 2011-01-06 주식회사 하이소닉 압전소자를 이용한 소형카메라 구동장치
KR101039684B1 (ko) * 2009-07-02 2011-06-08 주식회사 하이소닉 다층 압전소자모듈 및 이를 이용한 소형카메라 구동장치
KR101046238B1 (ko) * 2009-05-20 2011-07-04 주식회사 하이소닉 압전소자가 장착된 구동체
TWM370109U (en) * 2009-07-28 2009-12-01 E Pin Internat Tech Co Ltd A compact auto focus lens module with piezoelectric driving actuator
CN102035427B (zh) * 2009-09-25 2014-04-23 鸿富锦精密工业(深圳)有限公司 致动器、相机模组及便携式电子装置
EP2572240B1 (en) * 2010-05-20 2018-11-14 LG Innotek Co., Ltd. Camera module having mems actuator
USD681742S1 (en) 2011-07-21 2013-05-07 Mattel, Inc. Toy vehicle
US9028291B2 (en) 2010-08-26 2015-05-12 Mattel, Inc. Image capturing toy
USD685862S1 (en) 2011-07-21 2013-07-09 Mattel, Inc. Toy vehicle housing
TWI491161B (zh) * 2010-12-09 2015-07-01 Hon Hai Prec Ind Co Ltd 致動器及具有該致動器之相機模組
JP5903858B2 (ja) 2011-12-06 2016-04-13 セイコーエプソン株式会社 電子部品搬送装置及び電子部品検査装置
KR102166232B1 (ko) * 2013-07-04 2020-10-15 삼성전자 주식회사 카메라 모듈의 틸트 보정 방법 및 이를 지원하는 장치
WO2015068061A2 (en) * 2013-11-06 2015-05-14 Corephotonics Ltd. Inductance-based position sensing in a digital camera actuator
KR20200130965A (ko) 2019-05-13 2020-11-23 엘지이노텍 주식회사 카메라 모듈 및 이를 포함하는 카메라 장치
CN112492130B (zh) * 2019-09-12 2021-10-01 华为技术有限公司 摄像模组及移动终端
KR20210125767A (ko) * 2020-04-09 2021-10-19 엘지이노텍 주식회사 카메라 액추에이터 및 이를 포함하는 카메라 모듈
JP7439707B2 (ja) * 2020-09-11 2024-02-28 Tdk株式会社 光学駆動装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212909A (ja) * 1990-12-06 1992-08-04 Canon Inc レンズ内蔵機器
JPH08179184A (ja) * 1994-12-27 1996-07-12 Canon Inc レンズ駆動装置
JPH1090584A (ja) * 1996-01-26 1998-04-10 Konica Corp レンズ装置
JPH11160599A (ja) * 1997-11-25 1999-06-18 Konica Corp レンズ駆動装置
JP2001045777A (ja) * 1999-08-03 2001-02-16 Sony Corp 移動機構
JP2003015014A (ja) * 2001-06-29 2003-01-15 Nidec Copal Corp レンズ駆動装置
JP2004007914A (ja) * 2002-05-31 2004-01-08 Fuji Photo Film Co Ltd 光学機器
JP2004264809A (ja) * 2003-03-03 2004-09-24 Samsung Electro Mech Co Ltd 移送装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225941A (en) * 1990-07-03 1993-07-06 Canon Kabushiki Kaisha Driving device
JPH05107440A (ja) 1991-10-14 1993-04-30 Canon Inc 光学機器
JPH04212910A (ja) 1990-12-06 1992-08-04 Canon Inc レンズ内蔵機器
JPH04212913A (ja) 1990-12-06 1992-08-04 Canon Inc レンズ移動装置
JPH0589498A (ja) * 1991-09-30 1993-04-09 Matsushita Electric Ind Co Ltd レンズアクチユータ
EP0633616B1 (en) 1993-07-09 2002-01-30 Nanomotion Ltd Ceramic motor
IL114656A0 (en) 1995-07-18 1995-11-27 Nanomotion Ltd Ceramic motor
JPH0763970A (ja) 1993-08-23 1995-03-10 Fuji Photo Optical Co Ltd ズームレンズ装置
JPH07104166A (ja) 1993-10-06 1995-04-21 Canon Inc 光学機器
JP2980541B2 (ja) 1994-06-28 1999-11-22 ナノモーション・リミテッド マイクロモータ
JP3869162B2 (ja) 1994-06-28 2007-01-17 ナノモーション・リミテッド ディスクドライブ
US5786941A (en) * 1994-07-08 1998-07-28 Minolta C., Ltd. Zoom lens system
JPH0847273A (ja) 1994-08-01 1996-02-16 Canon Inc 駆動装置
EP1131853B1 (en) 1998-10-25 2008-01-09 Nanomotion Ltd Driver for piezoelectric motors
WO2000074153A1 (en) 1999-05-31 2000-12-07 Nanomotion Ltd. Multilayer piezoelectric motor
JP3530952B2 (ja) * 2000-12-19 2004-05-24 ミノルタ株式会社 レンズ駆動装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212909A (ja) * 1990-12-06 1992-08-04 Canon Inc レンズ内蔵機器
JPH08179184A (ja) * 1994-12-27 1996-07-12 Canon Inc レンズ駆動装置
JPH1090584A (ja) * 1996-01-26 1998-04-10 Konica Corp レンズ装置
JPH11160599A (ja) * 1997-11-25 1999-06-18 Konica Corp レンズ駆動装置
JP2001045777A (ja) * 1999-08-03 2001-02-16 Sony Corp 移動機構
JP2003015014A (ja) * 2001-06-29 2003-01-15 Nidec Copal Corp レンズ駆動装置
JP2004007914A (ja) * 2002-05-31 2004-01-08 Fuji Photo Film Co Ltd 光学機器
JP2004264809A (ja) * 2003-03-03 2004-09-24 Samsung Electro Mech Co Ltd 移送装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718101A (zh) * 2011-07-29 2014-04-09 罗伯特·博世有限公司 后焦点调节模块和具有后焦点调节模块的摄像机
WO2020230703A1 (ja) * 2019-05-10 2020-11-19 ミニスイス・ソシエテ・アノニム レンズ駆動装置、カメラモジュール、及びカメラ搭載装置
JP7436469B2 (ja) 2019-05-10 2024-02-21 ミニスイス・ソシエテ・アノニム レンズ駆動装置、カメラモジュール、及びカメラ搭載装置

Also Published As

Publication number Publication date
KR101229207B1 (ko) 2013-02-01
US20080192363A1 (en) 2008-08-14
KR20070050492A (ko) 2007-05-15
US7777969B2 (en) 2010-08-17
EP1795934A1 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
WO2006035582A1 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
WO2006035581A1 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
US7725014B2 (en) Actuator for linear motion and tilting motion
US7747149B2 (en) Optical apparatus having image-blur correction/reduction system
CN112578608A (zh) 光学防抖模块及包括该光学防抖模块的相机模块
JP3784405B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP4317508B2 (ja) カメラモジュール及びこのカメラモジュールを備えた携帯端末
JP3854302B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP3796264B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP3770556B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP2006098595A (ja) カメラモジュール及びこのカメラモジュールを備えた携帯端末
JP3810429B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP3808496B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP2006101611A (ja) カメラモジュールとその駆動用ピエゾ素子モジュール及びこのカメラモジュールを備えた携帯端末
JP3775747B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP4623714B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP2006098579A (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP2006098593A (ja) カメラモジュール及びこのカメラモジュールを備えた携帯端末
JP2006098578A (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP2006098580A (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP2006098581A (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP4623713B2 (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
CN115695956A (zh) 转动机构及其摄像模组
JP2006098587A (ja) カメラモジュール及びこのカメラモジュールを用いた携帯端末
JP2006098597A (ja) カメラモジュールとそのレンズ保持枠及びこのカメラモジュールを備えた携帯端末

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005782313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11575866

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077007035

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005782313

Country of ref document: EP