WO2006030723A1 - 半導体ウェーハの評価方法及び半導体ウェーハの評価装置 - Google Patents

半導体ウェーハの評価方法及び半導体ウェーハの評価装置 Download PDF

Info

Publication number
WO2006030723A1
WO2006030723A1 PCT/JP2005/016707 JP2005016707W WO2006030723A1 WO 2006030723 A1 WO2006030723 A1 WO 2006030723A1 JP 2005016707 W JP2005016707 W JP 2005016707W WO 2006030723 A1 WO2006030723 A1 WO 2006030723A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
wafer
measured
chuck
soi
Prior art date
Application number
PCT/JP2005/016707
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Ohtsuki
Hideki Sato
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to JP2006535866A priority Critical patent/JP4379627B2/ja
Priority to EP05782361A priority patent/EP1796157A4/en
Priority to US11/661,276 priority patent/US7633305B2/en
Publication of WO2006030723A1 publication Critical patent/WO2006030723A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Definitions

  • the present invention relates to an evaluation method and an evaluation apparatus for measuring semiconductor electrical characteristics by measuring electrical characteristics of a semiconductor wafer, and more particularly, when evaluating a semiconductor wafer, a semiconductor is used.
  • the present invention relates to a semiconductor wafer evaluation method and an evaluation apparatus capable of evaluating semiconductor wafers with high accuracy by improving a wafer chuck that holds a wafer and forms a mercury electrode. Background art
  • Semiconductor wafers currently in use include, for example, silicon wafer, epoxy (EP), silicon on insulator (SOI) wafer, etc., and by forming a device on these wafers, a semiconductor device is formed. Manufactured. In recent years, miniaturization, high integration, high speed, high yield, etc. are required for semiconductor devices. Among them, it is said that the performance and yield of the formed semiconductor device reflect the quality of the wafer.
  • the quality of a thermal oxide film formed by thermally oxidizing a semiconductor wafer which is one of the most important qualities in semiconductor wafers, depends on whether the oxide film formation conditions are good and the crystal quality of the surface of the semiconductor wafer. Etc. are reflected.
  • the electrical characteristics of Metal Insulator Semiconductor (MIS) capacitors reflect the quality of the insulating film formed on the semiconductor wafer, especially the surface of the semiconductor wafer and the vicinity of the surface in addition to the quality of the insulating film itself. It also reflects the crystal quality. In the future, it will become increasingly important to provide high-quality semiconductor wafers so that the electrical characteristics of insulating films formed on semiconductor wafers can be evaluated with higher sensitivity and higher accuracy.
  • Japanese Patent Application Laid-Open No. 2001-60676 or Japanese Patent Application Laid-Open No. 2001-267384 A method of piercing and contacting a needle-like probe as an electrode is disclosed.
  • a needle-like probe there is a problem if the contact resistance increases because the tip of the needle is distorted or rubbing debris adheres to the object to be measured.
  • the contact area between the wafer and the mercury electrode is reduced. It causes changes, and acts as a leak source or insulator depending on the type of impurities. As a result, the electrical conductivity becomes unstable, and the measured electrical characteristics may be abnormal.
  • an object of the present invention is to evaluate a semiconductor wafer by measuring electrical characteristics of the semiconductor wafer using a silver silver electrode. By making the holding surface of the wafer chuck smaller than the surface of the semiconductor wafer to be measured, the semiconductor wafer can be evaluated with high accuracy and efficiency.
  • the object of the present invention is to provide an evaluation apparatus and evaluation method.
  • the semiconductor wafer evaluation method of the present invention is a method for evaluating a semiconductor wafer by measuring the electrical characteristics of the semiconductor wafer using a mercury electrode.
  • a semiconductor wafer is held on a wafer chuck having a mercury electrode formed in the holding surface with the measured surface side of the wafer chuck side
  • the diameter constituting the outermost periphery of the holding surface of the wafer chuck is It is smaller than the diameter constituting the outermost circumference of the surface to be measured of the semiconductor wafer, held on a wafer chuck, and the electrical characteristics are measured by bringing the mercury electrode into contact with the surface to be measured of the wafer.
  • the diameter constituting the outermost periphery of the holding surface of the wafer chuck is set to a semiconductor wafer held by the wafer chuck.
  • the diameter By making the diameter smaller than the diameter that forms the outermost circumference of the surface to be measured, the current leaking through the side surface of the semiconductor wafer to the opposite side (back side) can be suppressed, and a very small current of 10 A or less As a result, the electrical properties of semiconductor wafers can be determined accurately.
  • the semiconductor wafer is an SOI wafer, and a MESA portion in which an SOI layer that provides the measurement surface is partially left is formed on the measurement surface side of the SOI wafer.
  • the semiconductor wafer is an SOI wafer, and the MESA part in which the SOI layer of the SOI wafer is partially left is used, and the surface of the SOI layer of the MESA part is used as a measurement surface. Since the peripheral area of the surface to be measured can be a BOX film (buried acid film) that is an insulating film, the current leaking to the opposite side through the side surface of the semiconductor wafer can be further suppressed.
  • the diameter constituting the outermost periphery of the holding surface of the wafer chuck is 0.5 times or more and less than 1.0 times the diameter constituting the outermost periphery of the surface to be measured of the semiconductor wafer. Is preferred.
  • the diameter constituting the outermost circumference of the holding surface of the wafer chuck is set to be not less than 0.5 times and less than 1.0 times the diameter constituting the outermost circumference of the surface to be measured of the semiconductor wafer. It is possible to reliably suppress the current leaking to the opposite side (back side) through the side face.
  • the relative humidity of the atmosphere When measuring the electrical characteristics of the semiconductor wafer, it is preferable to adjust the relative humidity of the atmosphere to less than 50%. Thus, when measuring the electrical characteristics of a semiconductor wafer, the current leaking to the opposite side through the side surface of the semiconductor wafer is further suppressed by making the relative humidity of the atmosphere less than 50%. be able to.
  • the humidity of the room in which the measuring device is placed may be controlled by air conditioning so that the relative humidity of the room itself is less than 50%, or the measuring device is covered with a sealed box, for example.
  • -It may be configured to blow dry air or nitrogen through a purifier near the hachach.
  • the semiconductor wafer evaluation apparatus of the present invention is an apparatus for measuring a semiconductor wafer by measuring electrical characteristics of the semiconductor wafer using a mercury electrode, and at least the semiconductor wafer is evaluated.
  • a wafer chuck that holds the measured surface side of the wafer chuck with a holding surface, and a probe part that forms a mercury electrode in the holding surface of the wafer chuck.
  • the diameter constituting the outermost circumference of the holding surface is smaller than the diameter constituting the outermost circumference of the surface to be measured of the semiconductor wafer.
  • the diameter constituting the outermost periphery of the holding surface of the wafer chuck is set to By reducing the diameter of the outer circumference of the measurement surface of the semiconductor wafer held by the wafer chuck, the current flowing through the semiconductor wafer side to the opposite side (back side) can be suppressed. can be, also enables measurements following micro current 10- 7 a, the binding As a result, the electrical property values of the semiconductor wafer can be accurately obtained.
  • the diameter force constituting the outermost circumference of the holding surface of the wafer chuck must be 0.5 times or more and less than 1.0 times the diameter constituting the outermost circumference of the measured surface of the semiconductor wafer. preferable. In this way, by setting the diameter constituting the outermost periphery of the holding surface of the wafer chuck to be not less than 0.5 times and less than 1.0 times the diameter constituting the outermost circumference of the surface to be measured of the semiconductor wafer, It is possible to reliably suppress the current leaking to the opposite side (back side) through the side face.
  • the diameter force that constitutes the outermost circumference of the holding surface of the wafer chuck If the diameter is less than 0.5 times the diameter that constitutes the outermost circumference of the measurement surface of the semiconductor wafer, the held semiconductor wafer may become unstable. On the other hand, if it becomes 1.0 times or more, the current leaking to the opposite side through the side surface of the semiconductor wafer cannot be suppressed.
  • the semiconductor wafer is an SOI wafer, and a MESA portion is formed on the surface to be measured of the SOI wafer.
  • the MESA portion is formed by partially leaving the SOI layer that provides the surface to be measured. I like it.
  • the semiconductor wafer is an SOI wafer, and the SOI layer of the SOI wafer is left as a MESA part, and the surface of the SOI layer of the MESA part is used as the measurement surface. Since the region can be a BOX film that is an insulating film, the current leaking to the opposite side through the side surface of the semiconductor wafer can be more reliably suppressed.
  • an air conditioner that includes at least a chamber that hermetically encloses the wafer chuck and the semiconductor wafer held by the wafer chuck, and controls the relative humidity of the atmosphere in the chamber to less than 50%. It is preferable that a machine is provided. As described above, the air conditioner is provided with the chamber that hermetically encloses the semiconductor wafer held by the wafer chuck and controls the relative humidity of the atmosphere in the chamber to less than 50%. When measuring the electrical characteristics of a semiconductor wafer, the current leaking to the opposite side through the side surface of the semiconductor wafer can be more reliably suppressed by making the relative humidity of the atmosphere less than 50%.
  • the size of the wafer chuck is made smaller than the surface to be measured of the semiconductor wafer, it is opposite to the semiconductor wafer that is the object to be measured. can reduce the leakage current to the side, the lower measurement limit current value of the minute current region from 10- 7 Alpha to 10- U a It is possible to measure up to pA level. This improves the accuracy of Dit (interface state density), which also calculates the tilt force of the IV curve in the subthreshold region, and provides a more reliable and stable measurement result. It can also contribute to improving the quality of semiconductor wafers.
  • Dit interface state density
  • FIG. 1 is a schematic sectional view of an evaluation apparatus according to the present invention.
  • FIG. 2 is a perspective view of the upper side of FIG. 1 along the A—A gland of FIG.
  • FIG. 3 is an Id-Vg curve of an example.
  • FIG. 5 is an Ig-Vg curve of Examples and Comparative Examples.
  • FIG. 7 is a schematic cross-sectional view for explaining a Pseudo-MOSFET measurement method.
  • FIG. 8 is an explanatory diagram of a method for calculating the interface state density from the Pdudo-MOSFET Id-Vg curve.
  • Figure 7 illustrates the Pseudo-MOSFET measurement method using a mercury electrode disclosed in HJ Hovel, "bi film electrical characterization in Sul substrates by HgFE T technique", Solid-State Electronics, 47, 1311 (2003). It is a figure for doing.
  • a metal electrode 3 is provided on the back surface of the base wafer 2 of the SOI wafer 1 to serve as a gate electrode, while a mercury electrode 6 serving as a source electrode and a drain electrode is provided on the surface of the SOI layer 5 on the BOX film 4. Touch.
  • the interface between the SOI layer and ZBOX film is evaluated by measuring the current flowing between the source electrode and the drain electrode when the gate voltage is changed.
  • the interface state density (Dit) is evaluated by plotting the drain current Id (A) when the gate voltage Vg (V) is changed on a log scale as shown in Fig. 8, and in the subthreshold region.
  • the drain current is measured from several tens of pA for stable measurement. It must be possible.
  • the present invention is that the lower limit of the drain current measurement is in the 1E-7A range due to leakage to the gate due to the wafer chuck, and accurate current measurement between the source electrode and the drain electrode cannot be performed. They paid attention and completed the present invention.
  • the semiconductor wafer evaluation method includes a MESA structure (mesa structure) when a semiconductor wafer, particularly an SOI wafer 1, is subjected to Pseudo-MOS evaluation as shown in FIG. 1 and FIG.
  • a wafer chuck 7 whose area is necessarily smaller than that of the MESA portion (silicon island) 5a where a part of the SOI layer 5 is left is used. That is, the SOI wafer 1 is placed and held on the wafer chuck 7 supported by the wafer chuck support portion 8 with the surface side of the MESA portion 5a facing the wafer chuck 7, and the holding surface of the wafer chuck 7 is held.
  • a ring-shaped drain electrode and a silver electrode 6 serving as a source electrode located at the center of the ring-shaped drain electrode are formed inside, and a metal electrode is provided on the back surface of the base wafer 2 of the SOI wafer 1 to form a gate.
  • the outermost periphery of the holding surface of the wafer chuck 7 is used. Is made smaller than the diameter constituting the outermost periphery of the surface (surface to be measured) of the MESA portion 5a of the SOI wafer 1.
  • An evaluation apparatus for carrying out this evaluation method includes at least a wafer chuck 7 and a probe unit 9 for forming the mercury electrode 6.
  • At least a chamber 10 that hermetically encloses the wafer chuck 7 and the SOI wafer 1 and an air conditioner 11 that can control the relative humidity of the atmosphere in the chamber 10 to less than 50% are provided.
  • the MESA unit 5a or later of SOI wafer 1 is used.
  • the outside is completely insulated by air, and leakage current to the gate side can be suppressed
  • the MESA structure is fabricated, the SOI layer 5 around the mercury electrode 6 is removed, the BOX film 4 is exposed, and unnecessary current flowing on the surface of the SOI wafer 1 is eliminated.
  • the SOI wafer 1 periphery is not in contact with the wafer chuck 7 and air is passed through to eliminate leaks from the SOI wafer 1 end force to the wafer chuck 7 and the periphery, thereby enabling stable measurement. .
  • the diameter constituting the outermost circumference of the holding surface of the woofer chuck 7 should be not less than 0.5 times and less than 1.0 times the diameter constituting the outermost circumference of the surface of the MESA part 5a of the SOI wafer 1. Is more preferably 0.5 times or more and less than 0.98.
  • an SOI wafer manufactured using a silicon single crystal wafer having a P-type, a diameter of 200 mm, and a crystal orientation of 100> was used.
  • the dopant for this P-type wafer is boron.
  • the SOI layer / BOX film thickness is about 100/145 nm.
  • a 10 mm square sample was cut from this SO I wafer, and the SOI layer was etched with 5% TMAH (Tetra Methyl Ammonium Hydroxide) solution to produce a MESA structure. After that, after treatment with 1% HF for 1 minute, rinse with pure water, and then remove moisture with dry air. Left.
  • TMAH Tetra Methyl Ammonium Hydroxide
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is merely an example, and has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical idea of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 水銀電極を用いて半導体ウェーハの電気特性を測定して半導体ウェーハの評価を行う方法であって、保持面内に水銀電極を形成したウェーハチャックに、半導体ウェーハをその被測定面側を前記ウェーハチャック側にして保持する時、前記ウェーハチャックの保持面の最外周を構成する直径が、前記半導体ウェーハの被測定面の最外周を構成する直径よりも小さいウェーハチャックに保持して、前記水銀電極を前記ウェーハの被測定面に接触させて電気特性を測定することを特徴とする半導体ウェーハの評価方法及び評価装置。これにより、水銀電極を用いて半導体ウェーハの電気特性を測定して半導体ウェーハの評価を行う際に、ウェーハチャックの保持面を被測定物である半導体ウェーハの被測定面の大きさよりも小さくすることで、半導体ウェーハの評価を高精度にかつ効率的に行うことのできる半導体ウェーハの評価方法及び評価装置が提供される。

Description

明 細 書
半導体ゥ ーハの評価方法及び半導体ゥエーハの評価装置
技術分野
[0001] 本発明は、半導体ゥ ーハの電気特性を測定して半導体ゥ ーハの評価を行う評 価方法及び評価装置に関し、更に詳しくは、半導体ゥ ハを評価する際に、半導 体ゥヱーハを保持し水銀電極を形成するゥヱ チャックを改良することにより、高精 度に半導体ゥ ーハを評価することのできる半導体ゥ ハの評価方法及び評価装 置に関する。 背景技術
[0002] 現在使用されている半導体ゥエーハとして、例えばシリコンゥエーハ、ェピタキシャ ル(EP)ゥ Silicon on Insulator (SOI)ゥ ハ等があり、これらのゥ ハ上にデバイスを形成することにより半導体デバイスが製造される。近年、半導体デ バイスには微細化、高集積化、高速化、高歩留まり化等が求められている。その中に おいて、形成された半導体デバイスの性能や歩留まりは前記ゥ ーハの品質が反映 すると言われている。
[0003] 例えば、半導体ゥ ハにおいて特に重要な品質の一つである半導体ゥ ハを 熱酸化して形成させた熱酸化膜の品質は、酸化膜形成条件の良否や半導体ゥ 表面部の結晶品質等を反映している。また、 Metal Insulator Semiconductor (MIS)キャパシタの電気特性は、半導体ゥ ハ上に形成された絶縁膜の品質を反 映するものである力 特に絶縁膜の品質そのもの以外に半導体ゥ ハ表面及び表 面近傍の結晶品質を反映するものでもある。そして、半導体ゥ ハに形成した絶縁 膜の電気特性をより高感度に、また高精度に評価できるようにして、高品質の半導体 ゥ ハを提供することが今後ますます重要となってきている。
[0004] しカゝしながら、半導体ゥ ハを評価するために MISキャパシタを形成する場合、 MISキャパシタの形成工程は、大掛力りな装置と多数の工程を必要とし、コスト面で の大きな負担や迅速性に欠ける等の不具合があった。 [0005] そこで、利便性に優れた水銀を電極とした半導体ゥエーハの評価方法が開発され、 半導体ゥヱーハと酸ィヒ膜界面の界面準位、半導体ゥヱーハにおけるバルタのドーパ ント濃度等を測定する C—V法や、 SOIゥヱーハを評価するための Pseudo MOS FET法が提案されている(例えば特開 2001— 60676号公報、特開 2001— 26738 4号公報及び S. し ristoloveanu et al., A Review of the Pseudo— MOS Transistor in SOI Wafers: Operation, Parameter Extraction, and Applications lEEE Trans. Electr on Dev, 47, 1018 (2000).、 H. J. Hovel, "Si film electrical characterization in SOI su bstrates by HgFET technique", Solid— State Electronics, 47, 1311 (2003).参照)。 しカゝしながら、これらのような評価方法では、 C— V特性や FET特性を取得する上 で、半導体ゥエーハと電極とのコンタクト状態が非常に重要である。
[0006] f列え ί 特開 2001— 60676号公報又 ίま特開 2001— 267384号公報【こお!ヽて ίま、 電極として針状のプローブを突刺して接触させる方法を開示して 、るが、針状のプロ ーブでは針の先端が歪んだり被測定物の擦れクズが付着したりするなどして接触抵 抗が大きくなると 、う問題がある。
[0007] 一方、 ¾. し ristoloveanu et al., A Review of the Pseudo— MOS iransistor in SOI W afers: Operation, Parameter Extraction, and Applications" IEEE Trans. Electron De v, 47, 1018 (2000).又は H. J. Hovel, "Si film electrical characterization in SOI substr ates by HgFET technique , Solid— State Electronics, 47, 1311 (2003).においては、 電極として水銀プローブが用いられて 、る。このような電極として用いられる水銀は、 半導体ゥエーハを評価する際にゴミ等の異物が混入してしまうことがある。水銀電極 は、半導体ゥエーハと直接接触して電気特性を測定するため、水銀の汚れに対して 非常に敏感であり、ゴミ等の異物が水銀に混入しているとゥヱーハと水銀電極の接触 面積の変化を引き起こしたり、また不純物の種類によりリーク源や絶縁体として働い たりする。そのため、電気伝導性が不安定になり、測定された電気特性に異常が見ら れる場合があった。
[0008] このような水銀への異物の混入による半導体ゥ ーハ評価の問題を解消するため に、例えば特開平 6— 140478号公報では、プローブヘッドの高さ調整用の圧力室 および水銀押圧用の圧力室の圧力を所定の設定値に確実に保ち、圧力設定作業や その調整作業の手間を軽減し、精度の高 、検査ができる接触式検査装置を開示し ている。
発明の開示
[0009] ところが、たとえ水銀中の異物を完全に取り除いたとしても、測定される微少電流が およそ 10—このところで、それよりも微少な電流を測定することができな力つた。
[0010] そこで、本発明は上記問題点に鑑みてなされたものであって、本発明の目的は、水 銀電極を用いて半導体ゥエーハの電気特性を測定して半導体ゥエーハの評価を行う 際に、ゥ ーハチャックの保持面を被測定物である半導体ゥ ーハの被測定面の大 きさよりも小さくすることで、半導体ゥ ーハの評価を高精度にかつ効率的に行うこと のできる半導体ゥ ーハの評価装置及び評価方法を提供することにある。
[0011] 上記課題を解決するために、本発明の半導体ゥエーハの評価方法は、水銀電極を 用いて半導体ゥ ーハの電気特性を測定して半導体ゥ ーハの評価を行う方法であ つて、保持面内に水銀電極を形成したゥエーハチャックに、半導体ゥエーハをその被 測定面側を前記ゥエーハチャック側にして保持する時、前記ゥ ーハチャックの保持 面の最外周を構成する直径が、前記半導体ゥ ーハの被測定面の最外周を構成す る直径よりも小さ 、ゥエーハチャックに保持して、前記水銀電極を前記ゥエーハの被 測定面に接触させて電気特性を測定することを特徴とする。
[0012] このように、水銀を使った電極で半導体ゥエーハの電気特性を測定する際に、ゥェ ーハチャックの保持面の最外周を構成する直径を、ゥエーハチャックに保持される半 導体ゥ ーハの被測定面の最外周を構成する直径よりも小さくすることで、半導体ゥ エーハの側面を通って反対面側 (裏面側)へリークする電流を抑えることができ、 10 A以下の微少電流も測定可能となり、その結果、半導体ゥヱーハの電気的物性値を 正確に求めることができるようになる。
[0013] この場合、半導体ゥエーハを SOIゥエーハとし、 SOIゥエーハの被測定面側には被 測定面を提供する SOI層を部分的に残した MESA部が形成されていることが好まし い。このように、半導体ゥエーハが SOIゥエーハであり、 SOIゥエーハの SOI層を部分 的に残した MESA部とし、この MESA部の SOI層の表面を被測定面とすることで、 被測定面の周辺領域が絶縁膜である BOX膜 (埋め込み酸ィヒ膜)とできるので、半導 体ゥエーハの側面を通って反対面側へリークする電流をより抑えることができる。
[0014] このとき、前記ゥエーハチャックの保持面の最外周を構成する直径を、前記半導体 ゥエーハの被測定面の最外周を構成する直径の 0. 5倍以上 1. 0倍未満とするのが 好ましい。このように、ゥエーハチャックの保持面の最外周を構成する直径を、半導体 ゥエーハの被測定面の最外周を構成する直径の 0. 5倍以上 1. 0倍未満とすることで 、半導体ゥエーハの側面を通って反対面側 (裏面側)へリークする電流を確実に抑え ることがでさる。
[0015] そして、前記半導体ゥ ーハの電気特性を測定する際に、雰囲気の相対湿度を 50 %未満に調整するのが好ましい。このように、半導体ゥ ーハの電気特性を測定する 際に、雰囲気の相対湿度を 50%未満とすることで、半導体ゥ ーハの側面を通って 反対側へリークする電流をさらに確実に抑えることができる。
尚、この場合、測定装置が置かれた部屋の湿度を空調により制御して、部屋自体の 相対湿度を 50%未満にしてもよいし、測定装置を例えば密閉型の箱で覆って、ゥェ ーハチャック近傍に精製器を通した乾燥した空気や窒素を吹き付けるような構成にし てもよい。
[0016] また、本発明の半導体ゥエーハの評価装置は、水銀電極を用いて半導体ゥ ーハ の電気特性を測定して半導体ゥ ーハの評価を行う装置であって、少なくとも、前記 半導体ゥ ーハをその被測定面側をゥ ーハチャック側にして保持面で保持するゥェ ーハチャックと、前記ゥ ーハチャックの保持面内に水銀電極を形成するプローブ部 とを備えるものであり、前記ゥエーハチャックの保持面の最外周を構成する直径が、 前記半導体ゥ ーハの被測定面の最外周を構成する直径よりも小さいものであること ことを特徴とする。
[0017] このように、水銀を使った電極で半導体ゥ ーハの電気特性を測定して半導体ゥ ーハの評価を行う装置において、ゥエーハチャックの保持面の最外周を構成する直 径を、ゥエーハチャックに保持される半導体ゥエーハの被測定面の最外周を構成する 直径よりも小さくすることで、半導体ゥヱーハの側面を通って反対面側 (裏面側)ヘリ ークする電流を抑えることができ、 10— 7A以下の微少電流も測定可能となり、その結 果、半導体ゥヱーハの電気的物性値を正確に求めることができるようになる。
[0018] この場合、ゥエーハチャックの保持面の最外周を構成する直径力 半導体ゥエーハ の被測定面の最外周を構成する直径の 0. 5倍以上 1. 0倍未満のものであることが 好ましい。このように、ゥエーハチャックの保持面の最外周を構成する直径を、半導体 ゥエーハの被測定面の最外周を構成する直径の 0. 5倍以上 1. 0倍未満とすることで 、半導体ゥエーハの側面を通って反対面側 (裏面側)へリークする電流を確実に抑え ることがでさる。
尚、ゥヱーハチャックの保持面の最外周を構成する直径力 半導体ゥヱーハの被測 定面の最外周を構成する直径の 0. 5倍未満になると、保持する半導体ゥエーハが安 定しなくなる恐れがあり、一方、 1. 0倍以上になると、半導体ゥ ーハの側面を通って 反対面側へリークする電流を抑えることができなくなる。
[0019] さらに、半導体ゥ ーハは SOIゥ ーハであって、 SOIゥ ーハの被測定面側には 被測定面を提供する SOI層を部分的に残した MESA部が形成されていることが好ま しい。このように、半導体ゥエーハが SOIゥエーハであり、 SOIゥエーハの SOI層を部 分的に残した MESA部とし、この MESA部の SOI層の表面を被測定面とすることで 、被測定面の周辺領域が絶縁膜である BOX膜とできるので、半導体ゥヱーハの側面 を通って反対面側へリークする電流をより確実に抑えることができる。
[0020] また、少なくとも、前記ゥエーハチャックと、該ゥヱーハチャックに保持された半導体 ゥエーハとを密閉して囲うチャンバ一を具備し、該チャンバ一内の雰囲気の相対湿度 を 50%未満に制御する空調機を備えたものであることが好ましい。このように、ゥエー ハチャックに保持された半導体ゥエーハとを密閉して囲うチャンバ一を具備し、該チヤ ンバー内の雰囲気の相対湿度を 50%未満に制御する空調機を備えたものであるた め、半導体ゥ ーハの電気特性を測定する際に、雰囲気の相対湿度を 50%未満と することで、半導体ゥヱーハの側面を通って反対側へリークする電流をさらに確実に 抑えることができる。
[0021] 以上説明してきたように、本発明によれば、ゥ ーハチャックの大きさを半導体ゥ 一ハの被測定面よりも小さくして 、るので、被測定物である半導体ゥ ーハの反対側 へのリーク電流を低減でき、微少電流領域の測定下限電流値が 10—7Αから 10—UAへ と向上し、 pAレベルにまで測定可能となる。これにより、サブスレツショルド領域の I V曲線の傾き力も算出される Dit (界面準位密度)の精度が向上し、より信頼性が高く 、かつ安定した測定結果が得られるようになり、引いては半導体ゥ ーハの品質改善 にも寄与することが出来る。 図面の簡単な説明
[0022] [図 1]本発明に係る評価装置の概略断面図である。
[図 2]図 1の A— A腺に沿って図 1の上側を見た透視図である。
[図 3]実施例の Id— Vg曲線である。
[図 4]比較例の Id— Vg曲線である。
[図 5]実施例及び比較例の Ig— Vg曲線である。
[図 6]比較例における Id— VgZls— VgZlg— Vg曲線である。
[図 7]Pseudo— MOSFET測定方法を説明するための概略断面図である。
[図 8]Pseudo— MOSFETの Id— Vg曲線より界面準位密度を算出する方法の説明 図である。
発明を実施するための最良の形態
[0023] 以下、本発明の実施の形態について具体的に説明する力 本発明はこれらに限定 されるものではない。
図 7は、 H. J. Hovel, "bi film electrical characterization in Sul substrates by HgFE T technique", Solid- State Electronics, 47, 1311 (2003).に開示されている水銀電極 を用いた Pseudo— MOSFET測定方法を説明するための図である。この方法は、 S OIゥヱーハ 1のべ一スウェーハ 2の裏面に金属電極 3を設けてゲート電極とする一方 、 BOX膜 4上の SOI層 5の表面にソース電極及びドレイン電極となる水銀電極 6を接 触させる。そして、ゲート電圧を変化させた際の、ソース電極 Zドレイン電極間に流れ る電流を測定することで、 SOI層 ZBOX膜間の界面の評価を行う。特に界面準位密 度 (Dit)の評価は、図 8に示すように、ゲート電圧 Vg(V)を変化させたときのドレイン 電流 Id (A)を logスケールでプロットし、サブスレツショルド領域での Vg— Idカーブの 傾き(SSL)力 算出するために、安定した測定にはドレイン電流が数十 pAから測定 できることが必要である。
[0024] 実際に水銀プローブで水銀電極を形成する場合には、リング状水銀 (ドレイン)の中 心部にも水銀 (ソース)を SOIゥエーハ(サンプルゥエーノ、)に接触させる必要があり、 SOI層表面をゥエーハチャック側に置く必要がある。このため、いくらゥエーハチャック に絶縁性の材質のものを用い、かつ、 SOIゥエーハに MESA構造を採用して BOX 膜を露出させ、 SOIゥ ーハ表面を流れる電流を絶縁しても、 SOIゥ ーハ周辺 (端 部)から裏面のゲート側へのリークが発生しやすい。
このように、ゥエーハチャックに起因するゲート側へのリークが原因で、ドレイン電流 の測定下限が 1E-7A台となり、ソース電極 Zドレイン電極間の正確な電流測定ができ ないという点に本発明者らは着目し、本発明を完成させた。
[0025] 本発明に係る半導体ゥエーハの評価方法は、図 1および図 2に示すように、半導体 ゥエーハ、特に SOIゥヱーハ 1を Pseudo-MOS評価する際に、 MESA構造 (メサ構造) を作製し、この SOI層 5の一部を残した MESA部(シリコン島) 5aよりも面積が必ず小 さくなるようなゥエーハチャック 7を用いるものである。すなわち、ゥエーハチャック支持 部 8に支持されたゥエーハチャック 7に、 SOIゥエーハ 1を MESA部 5aの表面側をゥ エーハチャック 7側にして載置して保持し、ゥエーハチャック 7の保持面内に、リング状 ドレイン電極およびこのリング状ドレイン電極の中心部に位置するソース電極となる水 銀電極 6を形成する一方、 SOIゥエーハ 1のべ一スウェーハ 2の裏面に金属電極を設 けてゲート電極とし、ゲート電圧を変化させた際の、ソース電極 Zドレイン電極間に流 れる電流を測定して、 SOI層 ZBOX膜間の界面の評価を行う方法において、ゥエー ハチャック 7の保持面の最外周を構成する直径が、 SOIゥヱーハ 1の MESA部 5aの 表面 (被測定面)の最外周を構成する直径よりも小さくしたものである。
そして、この評価方法を実施するための評価装置は、少なくとも、ゥエーハチャック 7 と、水銀電極 6を形成するプローブ部 9とを備えて 、る。
また、少なくとも、ゥエーハチャック 7と SOIゥエーハ 1とを密閉して囲うチャンバ一 10 と、チャンバ一 10内の雰囲気の相対湿度を 50%未満に制御することのできる空調機 11を備えている。
[0026] このような評価方法および評価装置においては、 SOIゥエーハ 1の MESA部 5a以 外は空気により完全に絶縁状態になり、ゲート側へのリーク電流を抑えることができる
。すなわち、まず、 MESA構造を作製することで、水銀電極 6周辺部の SOI層 5を除 去し、 BOX膜 4を露出させて、 SOIゥエーハ 1表面を流れる余計な電流を排除する。 さらに、 SOIゥエーハ 1周辺をゥエーハチャック 7と非接触とし空気を介することで SOI ゥエーハ 1端部力らゥエーハチャック 7及び周辺へのリークを除去し、これにより安定し た測定が可能になる。
[0027] ゥ ーハチャック 7の保持面の最外周を構成する直径は、 SOIゥ ーハ 1の MESA 部 5aの表面の最外周を構成する直径の 0. 5倍以上 1. 0倍未満であることが好ましく 、 0. 5倍以上 0. 98未満であればより好ましい。
また、 SOIゥエーノ、 1周辺部(図 1では BOX膜 4)には何も接触させないことが望まし く、ゥヱーハチャック支持部 8と被測定面、即ち MESA部 5aとの空気の入る空隙 Xは 最低でも: L mは必要である(図 1参照)。これよりも間隔が小さいと、 SOIゥヱーハ 1 の傾きや平坦度の影響によりゥエーハチャック支持部 8と SOIゥエーハ 1が接触し安 定した測定が不可能になる。一方、この空隙の上限はなぐ完全に分離できる構造で あればより望ましい。
なお、空気を介することから、測定中の環境、特に湿度が影響するが、クリーンルー ム環境として 50%以下の湿度であれば、絶縁性が確実に保たれるので、より好まし い。
[0028] 以下に本発明の実施例を挙げて、本発明を詳細に説明するが、これらは本発明を 限定するものではない。
<実施例 >
本実施例の試料には、 P型、直径 200mm、結晶方位く 100>のシリコン単結晶ゥ エーハを用いて作製された SOIゥエーハを用いた。なお、この P型ゥエーハのドーパン トはボロンである。また、 SOI層/ BOX膜厚さは、 100/145nm程度のものである。本 SO Iゥエーハより 10mm角にサンプルを切り出し、 5%TMAH (Tetra Methyl Ammoniu m Hydroxide)溶液により SOI層のエッチングを行い MESA構造を作製した。その 後、 1%HFにて 1分間処理後、純水にてリンスを行い、その後乾燥空気にて水分を除 去した。このサンプノレを用 ヽて、 H. J. Hovel, "Si film electrical characterization in S 01 substrates by HgFET technique", Solid— State Electronics, 47, 13丄丄 (2003).【こ ci 載されている Pseudo-MOS FET測定を、図 1および図 2に記載の評価装置で行った。 その Id— Vg特性を図 3に示す。この図から、サブスレツショルド領域での電流がスム ーズに立ち上がつていることが分かる。また、 BOX膜の Vbd (ブレイクダウン電圧)を 測定したところ、図 5に示すように、 pAレベル力 測定が可能となっている。
[0029] <比較例 >
本比較例では、実施例と同様の試料を用いて、同様の処理をして、同様のサンプ ルを作成し、このサンプルを用いて、 H. J. Hovel, "Si film electrical characterization i n SOI substrates by HgFET technique , Solid- State Electronics, 47, 1311 (2003).に 記載されている Pseudo-MOS FET測定を行った。本比較例は、水銀プローブとしてゥ エーハ全面が吸着されるゥヱーハチャックのタイプの評価装置を用いた点、即ち、ゥ エーハチャックの保持面の最外周を構成する直径がゥエーハの被測定面の最外周を 構成する直径より大きい点が実施例と異なる。その Id— Vg特性を図 4に示す。この図 から、 Vgがマイナス側にて Id— Vgカーブにゆがみを生じていることが分かる。また、 Vgが 2. 5Vのところで最小電流値が 1E-7Aレベルしか測定されていない。実際にゲ ート側へ流れている電流値を確認すると、図 6に示すように、ゲート側へリークしてい ることが分かる。また、 BOX膜の Vbdを測定したところ、図 5に示すように、実施例で は pAレベルの測定が可能であるのに対し、ゥエーハチャックからサンプル裏面側へ サンプル外周側面部を通して電流が流れてしまうため、比較例では 0. 1 Aレベル でしか測定を行うことができな 、。
[0030] 尚、本発明は上記実施形態に限定されるものではな 、。上記実施形態は単なる例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的 思想に包含される。

Claims

請求の範囲
[1] 水銀電極を用いて半導体ゥ ーハの電気特性を測定して半導体ゥ ーハの評価を 行う方法であって、保持面内に水銀電極を形成したゥヱーハチャックに、半導体ゥヱ ーハをその被測定面側を前記ゥヱーハチャック側にして保持する時、前記ゥヱーハ チャックの保持面の最外周を構成する直径が、前記半導体ゥ ーハの被測定面の最 外周を構成する直径よりも小さいゥエーハチャックに保持して、前記水銀電極を前記 ゥエーハの被測定面に接触させて電気特性を測定することを特徴とする半導体ゥェ ーハの評価方法。
[2] 前記半導体ゥ ーハを SOIゥ ーハとし、該 SOIゥ ーハの被測定面側には被測 定面を提供する SOI層を部分的に残した MESA部を形成することを特徴とする請求 項 1に記載の半導体ゥ ーハの評価方法。
[3] 前記ゥエーハチャックの保持面の最外周を構成する直径を、前記半導体ゥエーハ の被測定面の最外周を構成する直径の 0. 5倍以上 1. 0倍未満とすることを特徴とす る請求項 1又は請求項 2に記載の半導体ゥエーハの評価方法。
[4] 前記半導体ゥ ーハの電気特性を測定する際に、雰囲気の相対湿度を 50%未満 に調整することを特徴とする請求項 1乃至請求項 3のいずれか一項に記載の半導体 ゥエーハの評価方法。
[5] 水銀電極を用いて半導体ゥ ーハの電気特性を測定して半導体ゥ ーハの評価を 行う装置であって、少なくとも、前記半導体ゥエーハをその被測定面側をゥエーハチ ャック側にして保持面で保持するゥヱーハチャックと、前記ゥヱーハチャックの保持面 内に水銀電極を形成するプローブ部とを備えるものであり、前記ゥヱーハチャックの 保持面の最外周を構成する直径が、前記半導体ゥ ーハの被測定面の最外周を構 成する直径よりも小さいものであることを特徴とする半導体ゥエーハの評価装置。
[6] 前記ゥエーハチャックの保持面の最外周を構成する直径が、前記半導体ゥエーハ の被測定面の最外周を構成する直径の 0. 5倍以上 1. 0倍未満のものであることを特 徴とする請求項 5に記載の半導体ゥ ーハの評価装置。
[7] 前記半導体ゥエーハは SOIゥエーハであって、該 SOIゥエーハの被測定面側には 被測定面を提供する SOI層を部分的に残した MESA部が形成されていることを特徴 とする請求項 5又は請求項 6に記載の半導体ゥエーハの評価装置。
[8] 少なくとも、前記ゥエーハチャックと、該ゥエーハチャックに保持された半導体ゥエー ノ、とを密閉して囲うチャンバ一を具備し、該チャンバ一内の雰囲気の相対湿度を 50 %未満に制御する空調機を備えたものであることを特徴とする請求項 5乃至請求項 7 のいずれか一項に記載の半導体ゥ ーハの評価装置。
PCT/JP2005/016707 2004-09-13 2005-09-12 半導体ウェーハの評価方法及び半導体ウェーハの評価装置 WO2006030723A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006535866A JP4379627B2 (ja) 2004-09-13 2005-09-12 半導体ウェーハの評価方法及び半導体ウェーハの評価装置
EP05782361A EP1796157A4 (en) 2004-09-13 2005-09-12 METHOD AND DEVICE FOR EVALUATING A SEMICONDUCTOR WAFER
US11/661,276 US7633305B2 (en) 2004-09-13 2005-09-12 Method for evaluating semiconductor wafer and apparatus for evaluating semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004265800 2004-09-13
JP2004-265800 2004-09-13

Publications (1)

Publication Number Publication Date
WO2006030723A1 true WO2006030723A1 (ja) 2006-03-23

Family

ID=36059976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016707 WO2006030723A1 (ja) 2004-09-13 2005-09-12 半導体ウェーハの評価方法及び半導体ウェーハの評価装置

Country Status (4)

Country Link
US (1) US7633305B2 (ja)
EP (1) EP1796157A4 (ja)
JP (1) JP4379627B2 (ja)
WO (1) WO2006030723A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311564A (ja) * 2006-05-18 2007-11-29 Shin Etsu Handotai Co Ltd 半導体基板の評価方法
JP2008016773A (ja) * 2006-07-10 2008-01-24 Shin Etsu Handotai Co Ltd Soiウエーハの評価方法
JP2008300468A (ja) * 2007-05-30 2008-12-11 Sumco Corp シリコンウェーハの評価方法およびシリコンウェーハの製造方法
JP2020113642A (ja) * 2019-01-11 2020-07-27 株式会社Sumco 高抵抗材料の抵抗率測定方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140789B1 (ko) * 2014-02-17 2020-08-03 삼성전자주식회사 결정 품질 평가장치, 및 그것을 포함한 반도체 발광소자의 제조 장치 및 제조 방법
US11555791B2 (en) * 2019-12-03 2023-01-17 Corning Incorporated Chamber for vibrational and environmental isolation of thin wafers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159748A (ja) * 1985-01-08 1986-07-19 Oki Electric Ind Co Ltd トラツプ分布測定方法
JPH06140478A (ja) * 1990-05-23 1994-05-20 Solid State Measurements Inc 半導体ウェーハ本体の電気的特性の測定のための装置
JP2000068344A (ja) * 1998-06-10 2000-03-03 Matsushita Electronics Industry Corp 半導体基板の評価方法及び半導体装置の製造工程の管理方法
JP2001244309A (ja) * 2000-02-28 2001-09-07 Sony Corp 接触式検査装置
JP2002176081A (ja) * 2000-12-11 2002-06-21 Nec Corp 半導体測定装置および半導体測定方法
JP2003031633A (ja) * 2001-07-19 2003-01-31 Shin Etsu Handotai Co Ltd シリコンウエーハの評価装置及び評価方法
JP2003100831A (ja) * 2001-09-26 2003-04-04 Shin Etsu Handotai Co Ltd シリコンウエーハの評価方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521730A (en) * 1981-01-19 1985-06-04 Msi Electronics Inc. Mercury probes
US4360964A (en) * 1981-03-04 1982-11-30 Western Electric Co., Inc. Nondestructive testing of semiconductor materials
US4409547A (en) * 1981-03-17 1983-10-11 Msi Electronics Inc. Mercury-probe apparatus
US5585736A (en) * 1994-11-29 1996-12-17 Fwu-Iuan Hshieh Contact probe utilizing conductive meltable probing material
US6244121B1 (en) * 1998-03-06 2001-06-12 Applied Materials, Inc. Sensor device for non-intrusive diagnosis of a semiconductor processing system
US6744268B2 (en) * 1998-08-27 2004-06-01 The Micromanipulator Company, Inc. High resolution analytical probe station
JP2001060676A (ja) 1999-08-20 2001-03-06 Mitsubishi Materials Silicon Corp 界面準位密度の算出方法
DE60029483T2 (de) * 1999-10-19 2007-02-15 Solid State Measurements, Inc. Nicht-invasive elektrische messung von halbleiterscheiben
JP2001267384A (ja) 2000-03-15 2001-09-28 Mitsubishi Materials Silicon Corp 擬似mosfetの測定方法
JP4658458B2 (ja) * 2002-07-22 2011-03-23 大日本スクリーン製造株式会社 膜厚測定方法、比誘電率測定方法、膜厚測定装置、および比誘電率測定装置
JP3731569B2 (ja) * 2002-07-24 2006-01-05 住友電気工業株式会社 インジウム含有ウエハの製造方法
US7750654B2 (en) * 2002-09-02 2010-07-06 Octec Inc. Probe method, prober, and electrode reducing/plasma-etching processing mechanism
US20040079289A1 (en) * 2002-10-23 2004-04-29 Kellerman Peter L. Electrostatic chuck wafer port and top plate with edge shielding and gas scavenging
WO2005086786A2 (en) * 2004-03-08 2005-09-22 Sioptical, Inc. Wafer-level opto-electronic testing apparatus and method
KR100665191B1 (ko) * 2005-07-20 2007-01-09 삼성전자주식회사 반도체 소자 테스트 설비 및 테스트 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159748A (ja) * 1985-01-08 1986-07-19 Oki Electric Ind Co Ltd トラツプ分布測定方法
JPH06140478A (ja) * 1990-05-23 1994-05-20 Solid State Measurements Inc 半導体ウェーハ本体の電気的特性の測定のための装置
JP2000068344A (ja) * 1998-06-10 2000-03-03 Matsushita Electronics Industry Corp 半導体基板の評価方法及び半導体装置の製造工程の管理方法
JP2001244309A (ja) * 2000-02-28 2001-09-07 Sony Corp 接触式検査装置
JP2002176081A (ja) * 2000-12-11 2002-06-21 Nec Corp 半導体測定装置および半導体測定方法
JP2003031633A (ja) * 2001-07-19 2003-01-31 Shin Etsu Handotai Co Ltd シリコンウエーハの評価装置及び評価方法
JP2003100831A (ja) * 2001-09-26 2003-04-04 Shin Etsu Handotai Co Ltd シリコンウエーハの評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1796157A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311564A (ja) * 2006-05-18 2007-11-29 Shin Etsu Handotai Co Ltd 半導体基板の評価方法
JP2008016773A (ja) * 2006-07-10 2008-01-24 Shin Etsu Handotai Co Ltd Soiウエーハの評価方法
JP2008300468A (ja) * 2007-05-30 2008-12-11 Sumco Corp シリコンウェーハの評価方法およびシリコンウェーハの製造方法
JP2020113642A (ja) * 2019-01-11 2020-07-27 株式会社Sumco 高抵抗材料の抵抗率測定方法
JP7036043B2 (ja) 2019-01-11 2022-03-15 株式会社Sumco 高抵抗材料の抵抗率測定方法

Also Published As

Publication number Publication date
US20070279080A1 (en) 2007-12-06
EP1796157A4 (en) 2010-10-06
JPWO2006030723A1 (ja) 2008-05-15
EP1796157A1 (en) 2007-06-13
JP4379627B2 (ja) 2009-12-09
US7633305B2 (en) 2009-12-15

Similar Documents

Publication Publication Date Title
US6395437B1 (en) Junction profiling using a scanning voltage micrograph
WO2006030723A1 (ja) 半導体ウェーハの評価方法及び半導体ウェーハの評価装置
JP2005045216A (ja) フレキシブルメンブレインプローブおよびその使用方法
JP2008103598A (ja) 半導体ウエーハの評価方法
CN112151403A (zh) 基于无结型晶体管的表征方法
US7335969B2 (en) Method of monitoring introduction of interfacial species
US7745236B2 (en) Floating gate process methodology
US6905890B2 (en) Poly gate silicide inspection by back end etching and by enhanced gas etching
TWI550746B (zh) Evaluation method of semiconductor wafers
JP2001267384A (ja) 擬似mosfetの測定方法
US8089274B2 (en) Method for evaluating SOI wafer
JP5561245B2 (ja) 半導体基板の評価方法
JP5003322B2 (ja) Soiウェーハの評価方法
JP4640204B2 (ja) Soiウエーハの評価方法
JP4419712B2 (ja) Soiウエーハの評価方法
JP5003288B2 (ja) シリコンウェーハの評価方法およびシリコンウェーハの製造方法
JP6172102B2 (ja) Soi基板の評価方法
JP4379597B2 (ja) Soiウエーハの評価方法
TWI269396B (en) An evaluative method for the electrostatic damage to the silicon wafer causing by the cleaning process
JP4419710B2 (ja) Soiウエーハの評価方法
Chiang et al. Sensing characteristics of ISFET based on AlN thin film
JP7176483B2 (ja) 半導体基板の評価方法および評価用半導体基板
JPH07174800A (ja) 表面計測装置
JP2003100831A (ja) シリコンウエーハの評価方法
TW451377B (en) Reliability testing device and its testing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535866

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11661276

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005782361

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005782361

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661276

Country of ref document: US