WO2006030621A1 - コイル負荷駆動回路及びそれを備えた光ディスク装置 - Google Patents

コイル負荷駆動回路及びそれを備えた光ディスク装置 Download PDF

Info

Publication number
WO2006030621A1
WO2006030621A1 PCT/JP2005/015616 JP2005015616W WO2006030621A1 WO 2006030621 A1 WO2006030621 A1 WO 2006030621A1 JP 2005015616 W JP2005015616 W JP 2005015616W WO 2006030621 A1 WO2006030621 A1 WO 2006030621A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
transistor
voltage
drive transistor
overcurrent detection
Prior art date
Application number
PCT/JP2005/015616
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yoshikawa
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to US11/659,778 priority Critical patent/US20070253129A1/en
Publication of WO2006030621A1 publication Critical patent/WO2006030621A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • H02P25/034Voice coil motors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0925Electromechanical actuators for lens positioning
    • G11B7/0935Details of the moving parts

Definitions

  • the present invention relates to a coil load drive circuit having an overcurrent protection circuit, and an optical disc apparatus provided with the coil load drive circuit.
  • Fig. 8 shows driving transistors Q and hpl connected in an H-bridge type to drive a coil load L.
  • control signals from the pre-drivers PI and P2 are shifted due to delays, etc., and the drive transistors Q and Q on the power supply side and ground side
  • overcurrent detection resistor R To detect the current flowing through Q, overcurrent detection resistor R and overcurrent detection comparator C hp2 d
  • driving transistors Q and Q are on, and driving transistors Q and Q are off h l 1 ⁇ 2 hp2 lnl
  • the overcurrent detection comparator CMPl has a non-inverting input terminal.
  • the voltage input to the inverting input terminal is lower than the input reference voltage V ref
  • Overcurrent detection comparator CMPl detects this, and drives pretransistors Pl and P2 to drive transistors Q, Q, Q, Q
  • h l lnl hp2 Transmits a signal to make 1 ⁇ 2.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-236797
  • Patent Document 1 Japanese Patent Laid-Open No. 5-236797
  • the above-described coil load drive circuit 100 has a relatively large current flowing through the drive transistors Q 1, Q 2, Q 3, Q h l lnl hp2 1 and the coil load L even in a steady state.
  • the overcurrent detection resistor R is usually smaller than 1 ⁇ .
  • the printed circuit board on which d is mounted becomes larger.
  • the present invention has been made in view of the above-described reasons, and an object thereof is to provide a coil load drive circuit that does not require an external resistor as an overcurrent detection resistor. Means to solve
  • a coil load driving circuit is an intermediate point between a power supply side drive transistor and a ground side drive transistor provided in series between a power supply voltage and a ground potential.
  • the output terminal force is a coil load drive circuit that drives one end of a coil load and turns it off when an overcurrent flows in the drive transistor, and the control voltage of the drive transistor on the power source side or
  • the overcurrent detection transistor to which the control voltage of the ground side drive transistor is input, the constant current source that generates a reference voltage by passing a constant current through the overcurrent detection transistor, and the output terminal voltage and reference voltage And an overcurrent detection comparator for detecting overcurrent by comparison.
  • Another coil load drive circuit is an intermediate point between a first power supply side drive transistor and a first ground side drive transistor that are provided in series between a power supply voltage and a ground potential.
  • a first output terminal and a second output terminal that is an intermediate point between the second power supply side drive transistor and the second ground side drive transistor provided in series between the power supply voltage and the ground potential; Is a coil load drive circuit that drives both ends of the coil load from the power source and turns them off when an overcurrent flows between these drive transistors.
  • the control voltage of the drive transistor on the first power supply side or The first overcurrent detection transistor to which the control voltage of the first ground side drive transistor is input and the control voltage or second voltage of the second power source side drive transistor A constant voltage is selectively passed through the second overcurrent detection transistor to which the control voltage of the drive transistor on the ground side is input and the first or second overcurrent detection transistor to generate a reference voltage.
  • a constant current source for detecting the overcurrent by selectively comparing the voltage at the first or second output terminal with the reference voltage.
  • Still another coil load drive circuit is a midpoint between a first power supply side drive transistor and a first ground side drive transistor provided in series between a power supply voltage and a ground potential.
  • a second output terminal that is an intermediate point between the second power supply side drive transistor and the second ground side drive transistor provided in series between the power supply voltage and the ground potential.
  • a three-phase coil load from the third output terminal which is the midpoint between the third power supply side drive transistor and the third ground side drive transistor provided in series between the power supply voltage and the ground potential.
  • the third overcurrent detection transistor and the first, second, or third overcurrent detection transistor to which the control voltage of the drive transistor on the power source side or the control voltage of the third ground side drive transistor is input Overcurrent is detected by selectively comparing the reference voltage with the constant current source that generates a reference voltage by selectively supplying a constant current to the first, second, or third output terminal. And an overcurrent detection comparator.
  • the coil load driving circuit includes means for controlling an input timing of a voltage to be compared by the overcurrent detection comparator.
  • the means for controlling the input timing of the voltage compared by the overcurrent detection comparator is the control voltage of the drive transistor on the power supply side or the control voltage of the drive transistor on the ground side. And a control voltage for controlling the control voltage of the overcurrent detection transistor.
  • An optical disc apparatus includes the coil load drive circuit described above. Features.
  • a coil load drive circuit according to the present invention is provided with an overcurrent detection transistor.
  • Overcurrent is detected by comparing the output voltage with the output terminal voltage, eliminating the need for an external resistor as an overcurrent detection resistor and reducing costs. Since the current value to be judged is not affected by temperature, accurate overcurrent detection is possible. Further, the optical disk apparatus according to the present invention provided with this coil load drive circuit can reduce costs and can be miniaturized.
  • FIG. 1 is a circuit diagram of a first embodiment of a coil load drive circuit according to the present invention.
  • FIG. 2 is a circuit diagram of a second embodiment of a coil load drive circuit according to the present invention.
  • FIG. 3 is a circuit diagram of a third embodiment of a coil load drive circuit according to the present invention.
  • FIG. 4 is a circuit diagram of a fourth embodiment of a coil load drive circuit according to the present invention.
  • FIG. 5 is a circuit diagram of a fifth embodiment of a coil load drive circuit according to the present invention.
  • FIG. 6 is a circuit diagram of a sixth embodiment of a coil load drive circuit according to the present invention.
  • FIG. 7 is a configuration diagram of an optical disc device.
  • FIG. 8 is a circuit diagram of a conventional coil load driving circuit.
  • FIG. 1 relates to the present invention.
  • 1 is a first embodiment of a coil load driving circuit.
  • This coil load drive circuit 1 (and coil load drive circuits 2 to 5 described later) is applied to, for example, a coil load drive circuit that drives a coil load of an optical pick-up thread motor constituting an optical disc apparatus.
  • Driving transistor Q of coil load driving circuit 1 (and coil load driving circuits 2 to 5 described later)
  • the drive transistor Q on the first power source side which is a P-type MOS transistor and an N-type MOS transistor
  • the drive transistor Q on the first ground side which is a transistor, is between the power supply voltage Vcc and the ground potential.
  • the pre-driver P1 outputs a high-level or low-level voltage based on the comparison result between the control signal input via the input terminal IN1 and the first overcurrent detection comparator CMP1, which will be described later.
  • Drive transistor Q on the first power supply side and ground side,
  • Q of the P-type MOS transistor is a first overcurrent detection transistor
  • the control voltage is input in common.
  • dp is about 1/20 to 1/2000 compared to the drive transistor Q on the first power supply side.
  • the first overcurrent detection transistor Q is a drive transistor Q on the first power supply side.
  • a first constant current source I for generating a source voltage is provided.
  • the drain of the drive transistor Q on the first power supply side that is, the voltage of the first output terminal T1 is input to the non-inverting input terminal, and the inverting input
  • the voltage of the drain of the first overcurrent detection transistor Q is the voltage of the drain of the first overcurrent detection transistor Q.
  • the comparison results are output to the pre-driver P1. If this comparison result indicates an overcurrent, the pre-driver P1 outputs a high-level or low-level voltage that turns off the drive transistors Q and Q on the first power supply side and the ground side.
  • the second overcurrent detection comparator CMP2, and the second constant current source I are connected to the input terminal IN 1
  • Pre-driver Pl first power supply side drive transistor Q, first ground side drive transistor
  • the voltage to the gates of the drive transistors Q and Q on the first power supply side and ground side is low, and the second power supply side and connection
  • the driving transistor Q on the first power supply side and the driving transistor Q on the second ground side are identical to the driving transistor Q on the first power supply side and the driving transistor Q on the second ground side.
  • the drive transistor Q on the first power supply side drives the drive transistor on the second ground side.
  • the drain voltage of the driving transistor Q on the first power supply side is equal to the power supply voltage Vcc.
  • the drain voltage of the first overcurrent detection transistor Q that is, the reference voltage is derived from the power supply voltage Vcc.
  • the voltage drop due to the resistance increases, the magnitude of the voltage at the non-inverting input terminal of the first overcurrent detection comparator CMP1 and the voltage at the inverting input terminal is inverted, and the output of the first overcurrent detection comparator CMP1 Will be reversed.
  • the on-resistance of the first overcurrent detection transistor Q is R and the first constant current source I is
  • Vcc- (I XR;)) is input.
  • the current value I of the first constant current source I is set to 1ZN, which is a current value determined to be an overcurrent.
  • the output of the first overcurrent detection comparator CMP1 is inverted when the amount of current I flowing through the coil L becomes more than that.
  • the current flowing through the coil L is in the reverse direction, and the second power source side drive transistor Q and the first ground side drive transistor Q
  • the outputs of the first and second overcurrent detection comparators CMP1 and CMP2 are transmitted to the pre-drivers Pl and P2, and the drive transistors Q and Q on the power supply side or the drive transistors on the ground side are transmitted.
  • the overcurrent detection transistor is provided to generate the reference voltage, and this is compared with the voltage at the output terminals Tl and l2, so that the overcurrent is detected. Since an external resistor as a current detection resistor is not required, the cost can be reduced.
  • the temperature characteristic of ON is canceled out, and the first and second constant current sources I, 1 current value I, current proportional to 1 (N times) is related to temperature.
  • the overcurrent detection resistor R which is an external resistor
  • FIG. 2 shows a second embodiment of the coil load drive circuit according to the present invention.
  • the drive transistors Q 1, Q 2, 1 the drive transistors Q 1, Q 2, 1
  • Second ground side drive transistor Q 1, Q 2 first and second output terminals T 1, T 2, coil
  • the connection is the same as the coil load drive circuit 1.
  • the first or second overpower A constant current is selectively applied to the current detection transistors Q and Q to generate a reference voltage.
  • the first overcurrent detection transistor Q or the second overcurrent detection transistor Q includes
  • the first and second power supply side drive transistors Q and Q are selectively linked with the on / off of the transistors
  • Overcurrent detection comparator CMP1 is a non-inverting input pin
  • Voltage is selectively input via the analog switches ASW1 and ASW2, and the drain voltage of the first overcurrent detection transistor Q or the second overcurrent detection is applied to the inverting input terminal.
  • the drain voltage of the transistor Q is selectively input as the reference voltage.
  • overcurrent detection comparator CMP1 is transmitted to pre-drivers P1 and P2, and the drive transistors Q and Q on the power supply side or ground side
  • analog switch ASW1 indicates that the drive transistor Q on the first power supply side is on.
  • the drive transistor Q on the first power supply side is the drive transistor Q on the first power supply side
  • the analog switch ASW1 When the control voltage of h l is low level, the analog switch ASW1 becomes conductive. Similarly, in the analog switch ASW2, the driving transistor Q on the second power supply side is turned on.
  • the control voltage of the first power supply side and ground side drive transistors Q and Q is low level, and the second power supply side and ground side drive transistors h l lnl
  • Analog switch ASW1 is on when Q and Q control voltage is high level hp2 1 ⁇ 2
  • the non-inverting input terminal of the overcurrent detection comparator CMP 1 has the drain voltage of the drive transistor Q on the first power supply side, and the inverting input terminal has the first overcurrent detection transistor.
  • the drain voltage of the star Q is input.
  • the coil load drive circuit 2 eliminates the need for an external resistor as an overcurrent detection resistor and can reduce the cost. Accurate overcurrent detection is possible. In addition, the circuit area can be reduced by the amount of comparator power that occupies a larger area than the coil load drive circuit 1. The power of increasing the number of analog switches by two is small. Also, only one constant current source is required, so standby Power consumption with less current is reduced.
  • the coil load drive circuit 3 includes first and second ground side drive transistors Q,
  • First and second overcurrent detection transistors that are N-type MOS transistors in parallel with Q
  • the constant current source I also supplies the current on the power source side to the first or second excess dnl dn2 01
  • the overcurrent detection transistors Q and Q are selectively supplied to these overcurrent detection transistors.
  • the reference voltage generated by registers Q and Q is the non-dnl dn2 of comparator CMP1 for overcurrent detection.
  • Overcurrent detection comparator CMP 1 has its inverting input terminal connected to the voltage of the drains of the first and second grounded transistors Q and Q (first or second output terminal).
  • the coil load driving circuits 1 to 3 are the first and second power source side driving transistors, which are power MOS transistors. These are N-type MOS transistors that occupy a small area with the same current driving capability. Thus, the circuit scale can be reduced.
  • FIG. 4 shows a fourth embodiment of the present invention.
  • This coil load drive circuit 4 is different from the coil load drive circuit 1 described above in that each of the drive transistors Q 1 and Q on the power source side.
  • timing control circuits Ll and L2 for timing control are inserted.
  • the timing control circuits L1 and L2 are used when the overcurrent detection transistors Q and Q are on.
  • the timing control circuits Ll and L2 include delay elements (DELAY) that delay the rise and fall of the output voltages of the pre-drivers P1 and P2, an AND circuit, and an OR circuit. And can be realized.
  • DELAY delay elements
  • the coil load drive circuit 4 is obtained by modifying the coil load drive circuit 1, but the same modification can also be performed in the coil load drive circuits 2 and 3.
  • the first power supply side drive transistor Q and the first ground side drive transistor Q are connected to the power supply voltage Vc.
  • the first output terminal T Connected in series between c and ground potential, the first output terminal T, which is the middle point,
  • the driving transistor Q is connected in series between the power supply voltage Vcc and the ground potential,
  • the second output terminal T which is the point, is connected to the V-phase coil load V and driven on the third power supply side.
  • Transistor Q and the third ground side drive transistor Q are power supply voltage Vcc and ground potential.
  • Driving transistors Q 1, Q 2 and Q on the power supply side are P-type MOS transistors and are grounded
  • the driving transistors Q, Q, Q on the side are N-type MOS transistors.
  • P-type MOS transistors Q, Q, and Q are used for the first, second, and third overcurrent detection, respectively.
  • the same control voltage is input to each common gate.
  • the analog switch ASW1 is a transistor Q on the first power supply side, an analog switch AS
  • W2 is the transistor Q on the second power supply side
  • analog switch ASW3 is the transistor on the third power supply side.
  • the second overcurrent detection transistor Q and the third overcurrent detection transistor Q are constant current
  • a constant current is selectively applied by the source I to generate a reference voltage.
  • the inverting input terminal of the overcurrent detection comparator CMP1 has a drive transistor Q on the first, second, or third power supply side.
  • Voltage is selectively input via analog switches ASW1, ASW2, and ASW3.
  • the overcurrent detection operation of the coil load drive circuit 5 will be described.
  • the driving transistor Q on the first power supply side is ON, and the driving transistor Q on the second and third power supply sides is on.
  • the analog switch ASW1 is on, the analog switches ASW2 and ASW3 are off, and the voltage of the drain of the drive transistor Q on the first power supply side is applied to the inverting input terminal of the overcurrent detection comparator CMP1. Is input and the non-inverting input terminal is for the first overcurrent detection
  • the drain voltage of transistor Q is input as the reference voltage.
  • FIG. 6 shows a sixth embodiment of the present invention.
  • This coil load drive circuit 6 includes an N-type MOS transistor in parallel with the first, second and third ground side drive transistors Q 1, Q 2 and Q 3.
  • the first, second, and third overcurrent detection transistors Q 1, Q 2, and Q 3 are provided.
  • the constant current source I supplies current from the power supply side to the first, second, or third overcurrent detection transistor.
  • Overcurrent detection comparator CMP1's inverting input terminal has the drain voltage of the first, second, or third ground side drive transistor Q, Q, Q (first, second, or third output)
  • Terminal voltage is selectively input.
  • the currents of the driving transistors Q 1, Q 2, and Q 3 on the first, second, or third ground side are the currents of the driving transistors Q 1, Q 2, and Q 3 on the first, second, or third ground side.
  • the overcurrent detection comparator CMP1 causes the voltage at the inverting input terminal to become greater than the reference voltage input to the non-inverting input terminal when the overcurrent flows, and the output Is inverted and output to the pre-driver P1.
  • the coil load drive circuits 5 and 6 are obtained by modifying the coil load drive circuits 2 and 3, respectively, the coil load drive circuit 1 can be modified.
  • the coil load drive circuits 5 and 6 are such that the drive transistors on the first, second, and third power supply sides are P-type MOS transistors, and these are N-type MOS transistors that occupy a small area with the same current drive capability.
  • the circuit scale can be reduced.
  • a timing control circuit can be provided in the coil load drive circuits 5 and 6 to prevent an instantaneous malfunction of the pre-driver P1.
  • a semiconductor device including the coil load driving circuit is mounted on a printed circuit board of an electronic device such as an optical disk device. Since this semiconductor device does not require an external resistor, the size of the printed circuit board can be reduced. Note that the drive transistor may be a separate semiconductor device. Of course, this semiconductor device can include not only a coil load drive circuit but also circuits having other functions.
  • This optical disc apparatus includes an optical pickup 102, an RF amplifier 103, an error amplifier 104, an encoder Z decoder 105, a servo circuit 106, a spindle motor 107, a thread mode. Data detector 108, microcomputer 110, and position detector 111.
  • the above coil load drive circuit is included in the servo circuit 106.
  • the spindle motor 107 rotates the optical disc 101, and the optical pickup 102 reads a signal from the optical disc 101, and this signal is transmitted to the RF amplifier 103 and the error amplifier 104.
  • the output signal of the RF amplifier 103 is transmitted to the encoder Z decoder 105, and the output signal of the error amplifier 104 is transmitted to the servo circuit 106.
  • the microcomputer 110 receives the signal from the position detector 111 and controls the servo circuit 106. For example, when the rotation of the optical disk 101 is blocked, the rotational speed detected by the position detector 111 falls, so the microcomputer 110 transmits a signal for increasing the rotational speed to keep the rotational speed constant to the servo circuit 106.
  • the coil load drive circuit included in the servo circuit 106 drives to increase the current flowing through the coil load of the spindle motor 107.
  • the overcurrent flows, it does not continue to flow. Control is performed as follows. Similarly, when the movement of the optical pickup 102 is blocked, control is performed so that it does not continue to flow if an overcurrent flows.
  • the optical disc apparatus provided with the coil load drive circuit does not require an external resistor! Therefore, it is possible to reduce the size of the printed circuit board, thereby enabling downsizing and cost reduction.
  • the present invention is not limited to those described in the embodiments, but within the scope of the matters described in the claims.
  • Various design changes are possible.
  • the polarity of the inverting input terminal and the non-inverting input terminal can be reversed by using an inverting circuit or the like in the preceding stage.
  • the control terminals of analog switches ASW1 and ASW2 shown in FIG. 2 are not limited to the connections shown in FIG.

Abstract

 このコイル負荷駆動回路(1)は、電源電圧(Vcc)と接地電位の間に直列に設けられた電源側の駆動トランジスタ(Qhp1)と接地側の駆動トランジスタ(Qln1)の中間点である出力端子からコイル負荷(L)の一端を駆動し、これらの駆動トランジスタのいずれかに過電流が流れるとそれをオフするものであって、電源側の駆動トランジスタ(Qhp1)の制御電圧又は接地側の駆動トランジスタの制御電圧(Qln1)が入力される過電流検出用トランジスタ(Qdp1)と、過電流検出用トランジスタ(Qdp1)に一定の電流を流し、リファレンス電圧を生成する定電流源(I01)と、出力端子の電圧とリファレンス電圧を比較して過電流を検出する過電流検出用比較器(CMP1)とを備える。

Description

コイル負荷駆動回路及びそれを備えた光ディスク装置
技術分野
[0001] 本発明は、過電流保護回路を有するコイル負荷駆動回路、及びそのコイル負荷駆 動回路を備えた光ディスク装置に関する。
背景技術
[0002] 図 8にコイル負荷 Lを駆動するよう Hブリッジ型に接続された駆動トランジスタ Q 、 hpl
Q 、Q 、Q を有し、過電流保護回路を備えた従来のコイル負荷駆動回路 100を lnl hp2 1η2
示す。同図においてプリドライバ PI、 P2からの制御信号に遅延等によるずれが生じ て電源側及び接地側の駆動トランジスタ Q 、Q
hpl lnl又は Q 、Q
hp2 1η2に貫通電流が発 生した場合、それらの駆動トランジスタ Q 、Q 、Q 、Q
h l lnl hp2 1η2に大電流(以下、過電 流)が流れる。また、異物などにより、出力端子 T101、 T102間がショートしたときや 過負荷の状態のときなどにも同様に駆動トランジスタ Q 、Q 、Q 、Q
h l lnl hp2 1η2に過電流 が流れる。この過電流により駆動トランジスタ Q 、Q 、Q 、Q
h l lnl hp2 1η2力 S破壊されること 力 Sあるので過電流を防止する過電流保護回路として、電源側の駆動トランジスタ Q h l
、 Q に流れる電流を検出するために過電流検出抵抗 Rと過電流検出用比較器 C hp2 d
MP1とが設けてある。
[0003] 例えば、駆動トランジスタ Q 、Q がオン、駆動トランジスタ Q 、Q がオフの状 h l 1η2 hp2 lnl
態であって同図に示す矢印の方向に過電流が流れた場合、過電流検出抵抗 Rによ d つて降下する電圧が大きくなるため、過電流検出用比較器 CMPlの非反転入力端 子に入力されるリファレンス電圧 V よりも反転入力端子に入力される電圧が低くなる ref
。過電流検出用比較器 CMPlはこれを検出して、プリドライバ Pl、 P2に駆動トランジ スタ Q 、Q 、Q 、Q
h l lnl hp2 1η2を才フするよう信号を伝達する。
[0004] このような技術を記載したものとしては以下の特開平 5— 236797号公報 (特許文 献 1)が挙げられる。
特許文献 1:特開平 5 - 236797号公報
発明の開示 発明が解決しょうとする課題
[0005] しかし、上述したコイル負荷駆動回路 100は、駆動トランジスタ Q 、Q 、Q 、Q h l lnl hp2 1 及びコイル負荷 Lに流れる電流が定常時においても比較的大きいので、出力電圧 n2
のダイナミックレンジを確保するためには過電流検出抵抗 Rは通常 1 Ωよりも小さくか d
つ高精度にする必要がある。そのため、過電流検出抵抗 R
dとして高精度の外付け抵 抗が用いられることが多ぐこのことがコストの増大を招いていた。また、このようなコィ ル負荷駆動回路を用いた光ディスク装置などの電子機器にあっては、過電流検出抵 抗 R
dを搭載するプリント基板が大型化する。
[0006] 本発明は、上記事由に鑑みてなされたもので、その目的とするところは、過電流検 出抵抗としての外付け抵抗を必要としないコイル負荷駆動回路を提供することにある 課題を解決するための手段
[0007] 上記目的を達成するために、本発明に係るコイル負荷駆動回路は、電源電圧と接 地電位の間に直列に設けられた電源側の駆動トランジスタと接地側の駆動トランジス タの中間点である出力端子力 コイル負荷の一端を駆動し、これらの駆動トランジス タの 、ずれかに過電流が流れるとそれをオフするコイル負荷駆動回路であって、電 源側の駆動トランジスタの制御電圧又は接地側の駆動トランジスタの制御電圧が入 力される過電流検出用トランジスタと、過電流検出用トランジスタに一定の電流を流し 、リファレンス電圧を生成する定電流源と、出力端子の電圧とリファレンス電圧を比較 して過電流を検出する過電流検出用比較器とを備えることを特徴とする。
[0008] 本発明に係る別のコイル負荷駆動回路は、電源電圧と接地電位の間に直列に設 けられた第 1の電源側の駆動トランジスタと第 1の接地側の駆動トランジスタの中間点 である第 1の出力端子と、電源電圧と接地電位の間に直列に設けられた第 2の電源 側の駆動トランジスタと第 2の接地側の駆動トランジスタの中間点である第 2の出力端 子とからコイル負荷の両端を駆動し、これらの駆動トランジスタの!/、ずれかに過電流 が流れるとそれをオフするコイル負荷駆動回路であって、第 1の電源側の駆動トラン ジスタの制御電圧又は第 1の接地側の駆動トランジスタの制御電圧が入力される第 1 の過電流検出用トランジスタと、第 2の電源側の駆動トランジスタの制御電圧又は第 2 の接地側の駆動トランジスタの制御電圧が入力される第 2の過電流検出用トランジス タと、第 1又は第 2の過電流検出用トランジスタに選択的に一定の電流を流し、リファ レンス電圧を生成する定電流源と、第 1又は第 2の出力端子の電圧とリファレンス電 圧を選択的に比較して過電流を検出する過電流検出用比較器とを備えることを特徴 とする。
[0009] 本発明に係るさらに別のコイル負荷駆動回路は、電源電圧と接地電位の間に直列 に設けられた第 1の電源側の駆動トランジスタと第 1の接地側の駆動トランジスタの中 間点である第 1の出力端子と、電源電圧と接地電位の間に直列に設けられた第 2の 電源側の駆動トランジスタと第 2の接地側の駆動トランジスタの中間点である第 2の出 力端子と、電源電圧と接地電位の間に直列に設けられた第 3の電源側の駆動トラン ジスタと第 3の接地側の駆動トランジスタの中間点である第 3の出力端子とから 3相の コイル負荷を駆動し、これらの駆動トランジスタの 、ずれかに過電流が流れるとそれ をオフするコイル負荷駆動回路であって、第 1の電源側の駆動トランジスタの制御電 圧又は第 1の接地側の駆動トランジスタの制御電圧が入力される第 1の過電流検出 用トランジスタと、第 2の電源側の駆動トランジスタの制御電圧又は第 2の接地側の駆 動トランジスタの制御電圧が入力される第 2の過電流検出用トランジスタと、第 3の電 源側の駆動トランジスタの制御電圧又は第 3の接地側の駆動トランジスタの制御電圧 が入力される第 3の過電流検出用トランジスタと、第 1、第 2又は第 3の過電流検出用 トランジスタに選択的に一定の電流を流し、リファレンス電圧を生成する定電流源と、 第 1、第 2、又は第 3の出力端子の電圧とリファレンス電圧とを選択的に比較して過電 流を検出する過電流検出用比較器とを備えることを特徴とする。
[0010] 好ましくは、コイル負荷駆動回路は、過電流検出用比較器で比較される電圧の入 力タイミングを制御する手段を備えたことを特徴とする。
[0011] 特に、コイル負荷駆動回路は、過電流検出用比較器で比較される電圧の入力タイ ミングを制御する手段が、電源側の駆動トランジスタの制御電圧又は接地側の駆動ト ランジスタの制御電圧と過電流検出用トランジスタの制御電圧とのタイミングを制御す るタイミング制御回路であることを特徴とする。
[0012] 本発明に係る光ディスク装置は、上記に記載のコイル負荷駆動回路を備えることを 特徴とする。
発明の効果
[0013] 本発明に係るコイル負荷駆動回路は、過電流検出用トランジスタを設けてリ
ス電圧を生成し、これと出力端子の電圧を比較して過電流を検出するようにしたので 、過電流検出抵抗としての外付け抵抗が不要となってコストの低減が図れ、しかも過 電流と判定される電流値が温度の影響を受けな 、ので、正確な過電流検出が可能 になる。また、このコイル負荷駆動回路を備えた本発明に係る光ディスク装置は、コス トの低減が図れる上に小型化も図れる。
図面の簡単な説明
[0014] [図 1]本発明に係わるコイル負荷駆動回路の第 1の実施形態の回路図である。
[図 2]本発明に係わるコイル負荷駆動回路の第 2の実施形態の回路図である。
[図 3]本発明に係わるコイル負荷駆動回路の第 3の実施形態の回路図である。
[図 4]本発明に係わるコイル負荷駆動回路の第 4の実施形態の回路図である。
[図 5]本発明に係わるコイル負荷駆動回路の第 5の実施形態の回路図である。
[図 6]本発明に係わるコイル負荷駆動回路の第 6の実施形態の回路図である。
[図 7]光ディスク装置の構成図である。
[図 8]従来のコイル負荷駆動回路の回路図である。
符号の説明
[0015] 1〜7 コイル負荷駆動回路、 L, U , V , W コイル負荷、 Tl, T2, Τ , Τ , T
L L L U V W
出力端子、 Q , Q , Q , Q , Q
h l hp2 UHP VHP WHP 電源側の駆動トランジスタ、 Q , Q , lnl ln2
Q , Q , Q 接地側の駆動トランジスタ、 Q , Q , Q , Q , Q Q Q
UL VL WL d i dp 2 dup dvp dwp, dun dv
、Q 過電流検出用トランジスタ、 I , I , I 定電流源、 CMP1, CMP2 過電 n dwn 01 02 11
流検出用比較器、 LI, L2 タイミング制御回路。
発明を実施するための最良の形態
[0016] 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同 一または相当部分には同一符号を付し、その説明は繰返さない。
[0017] 以下、本発明を実施するための最良な形態について説明する。図 1は本発明に係 るコイル負荷駆動回路の第 1の実施形態である。このコイル負荷駆動回路 1 (及び後 述のコイル負荷駆動回路 2乃至 5)は、例えば光ディスク装置を構成する光ピックアツ プゃスレッドモータのコイル負荷を駆動するコイル負荷駆動回路に適用される。コィ ル負荷駆動回路 1 (及び後述のコイル負荷駆動回路 2乃至 5)の駆動トランジスタ Q
hpl
、Q 、Q 、Q はコイル負荷 Lを介して Hブリッジ接続されている。
lnl hp2 1η2
[0018] P型 MOSトランジスタである第 1の電源側の駆動トランジスタ Q と N型 MOSトラン
h l
ジスタである第 1の接地側の駆動トランジスタ Q とは電源電圧 Vccと接地電位との間
lnl
に直列に接続され、その中間点である第 1の出力端子 T1からコイル負荷 Lの一端を 駆動している。プリドライバ P1は、外部力も入力端子 IN1を介して入力される制御信 号と後述する第 1の過電流検出用比較器 CMP1との比較結果に基づき、ハイレベル 又はローレベルの電圧を出力して第 1の電源側及び接地側の駆動トランジスタ Q 、
h l
Q のオン ·オフを制御する。
lnl
[0019] P型 MOSトランジスタの Q は、第 1の過電流検出用トランジスタであり、第 1の電
dpi
源側の駆動トランジスタ Q よりも面積力 、さく(例えば約 100分の 1)、それとゲート
hpl
を共通にして制御電圧が入力されている。なお、第 1の過電流検出用トランジスタ Q
dp は、第 1の電源側の駆動トランジスタ Q と比較して、 20分の 1〜2000分の 1程度
1 h l
の大きさであっても以下に説明する目的を達成できる。
[0020] また、第 1の過電流検出用トランジスタ Q は、第 1の電源側の駆動トランジスタ Q
d i hp とゲート長を共通にした同一形状のものとして整合性を良くすることが望ましい。第 1 の過電流検出用トランジスタ Q のドレインにはそれに一定の電流を流し、リファレン
d i
ス電圧を生成する第 1の定電流源 I が設けられている。
01
[0021] 第 1の過電流検出用比較器 CMP1は、非反転入力端子に第 1の電源側の駆動トラ ンジスタ Q のドレイン、すなわち第 1の出力端子 T1の電圧が入力され、反転入力
h l
端子に第 1の過電流検出用トランジスタ Q のドレインの電圧がリファレンス電圧とし
dpi
て入力され、それらの比較結果をプリドライバ P1に出力する。この比較結果が過電流 を示すものである場合、プリドライバ P1は第 1の電源側及び接地側の駆動トランジス タ Q 、Q をオフするハイレベル又はローレベルの電圧を出力する。
h l lnl
[0022] 入力端子 IN2、プリドライバ P2、第 2の電源側の駆動トランジスタ Q 、第 2の接地
hp2 側の駆動トランジスタ Q 、第 2の出力端子 T2、第 2の過電流検出用トランジスタ Q
ln2 dp2
、第 2の過電流検出用比較器 CMP2、第 2の定電流源 I は、それぞれ入力端子 IN 1
02
、プリドライバ Pl、第 1の電源側の駆動トランジスタ Q 、第 1の接地側の駆動トランジ
h l
スタ Q 、第 1の出力端子 T1、第 1の過電流検出用トランジスタ Q 、第 1の過電流検 lnl dpi
出用比較器 CMP1、第 1の定電流源 I に対応し、それらの間は同じ接続関係である
01
ため詳 ヽ説明は省略する。
[0023] 次に、コイル負荷駆動回路 1の動作について説明する。第 1の電源側及び接地側 の駆動トランジスタ Q 、 Q のゲートへの電圧がローレベル、第 2の電源側及び接
hpl lnl
地側の駆動トランジスタ Q 、 Q へのゲートへの電圧がハイレベルであるとき、すな
hp2 1η2
わち第 1の電源側の駆動トランジスタ Q と第 2の接地側の駆動トランジスタ Q とが
h l 1η2 オン、第 1の接地側の駆動トランジスタ Q と第 2の電源側の駆動トランジスタ Q とが
lnl hp2 オフであるときは、第 1の電源側の駆動トランジスタ Q から第 2の接地側の駆動トラ
h l
ンジスタ Q へ(同図に長破線で示す矢印の方向へ)と電流が流れる。
1η2
[0024] その結果、第 1の電源側の駆動トランジスタ Q のドレインの電圧は、電源電圧 Vcc
h l
力 そのオン抵抗と流れる電流との積の分だけ降下したものとなり、第 1の過電流検 出用比較器 CMP1の非反転入力端子に入力される。一方、第 1の過電流検出用トラ ンジスタ Q のドレインの電圧、すなわちリファレンス電圧は、電源電圧 Vccからその
d i
オン抵抗と第 1の定電流源 I
01の定電流の積の分だけ降下したものであり、第 1の過電 流検出用比較器 CMP1の反転入力端子に入力される。
[0025] ここで、第 1の電源側の駆動トランジスタ Q に過電流が流れた場合、そのオン抵
h l
抗による降下電圧が大きくなり、第 1の過電流検出用比較器 CMP1の非反転入力端 子と反転入力端子の電圧との大きさが反転し、第 1の過電流検出用比較器 CMP1の 出力ち反転することとなる。
[0026] 例えば、第 1の過電流検出用トランジスタ Q のオン抵抗を R 、第 1の定電流源 I
dpi ON 0 の電流値を I とすると、第 1の過電流検出用比較器 CMP1の反転入力端子には(
1 01A
Vcc- (I XR ;) )の電圧が入力される。第 1の電源側の駆動トランジスタ Q の面
01 A ON hpl 積が第 1の過電流検出用トランジスタ Q の N倍とすると、第 1の電源側の駆動トラン
dpi
ジスタ Q のオン抵抗は R ZNとなるので、コイル Lに流れる電流量を Iとすると、非 h l ON 反転入力端子には (Vcc— (I XR ZN) )の電圧が入力される。
ON
[0027] 従って、第 1の定電流源 I の電流値 I を過電流と判定される電流値の 1ZNに設
01 01A
定しておけば、コイル Lに流れる電流量 Iがそれ以上になったとき、第 1の過電流検出 用比較器 CMP1の出力が反転することになる。また、コイル Lに流れる電流が逆方向 で、第 2の電源側の駆動トランジスタ Q 及び第 1の接地側の駆動トランジスタ Q に
hp2 lnl 過電流が流れた場合も同様に、第 2の過電流検出用比較器 CMP2の出力が反転す る。なお、この過電流と判定される電流値は、駆動トランジスタ Q 、Q 、Q 、Q
hpl hp2 lnl ln2 の許容電流から決められる。
[0028] そして、第 1及び第 2の過電流検出用比較器 CMP1、 CMP2の出力がプリドライバ Pl、 P2へと伝達され、電源側の駆動トランジスタ Q 、 Q 又は接地側の駆動トラン
h l hp2
ジスタ Q 、Q がオフの状態になるように制御される。こうして、過電流が流れ続ける lnl 1η2
ことが防止されるのである。
[0029] 従って、この実施形態によると、過電流検出用トランジスタを設けてリファレンス電圧 を生成し、これと出力端子 Tl、 Τ2の電圧を比較して過電流を検出するようにしたの で、過電流検出抵抗としての外付け抵抗が不要となってコストの低減が図ることがで きる。
[0030] また、電源側の駆動トランジスタ Q 、Q のオン抵抗 (R ZN)の温度特性と過
h l hp2 ON
電流検出用トランジスタ Q 、Q
dpi dp2のオン抵抗 (R )
ONの温度特性は相殺され、第 1及 び第 2の定電流源 I 、1 の電流値 I 、1 に比例した (N倍の)電流が温度に係わ
01 02 01A 02A
らず過電流と判定されるため、正確な過電流検出が可能になる。なお、上述の従来 のコイル負荷駆動回路では、外付け抵抗である過電流検出抵抗 Rの
d 温度特性はリ ファレンス電圧 V と相殺されないので、過電流の検出は温度変化の影響を受け易
ref
い。
[0031] 図 2に本発明に係るコイル負荷駆動回路の第 2の実施形態を示す。このコイル負荷 駆動回路 2において、第 1及び第 2の電源側の駆動トランジスタ Q 、Q 、第 1及び
hpl hp2
第 2の接地側の駆動トランジスタ Q 、Q 、第 1及び第 2の出力端子 T1、T2、コイル
lnl 1η2
負荷 L、プリドライバ PI、P2、第 1及び第 2の過電流検出用トランジスタ Q 、Q は
dpi dp2 コイル負荷駆動回路 1と同様の接続関係になっている。そして、第 1又は第 2の過電 流検出用トランジスタ Q 、Q に選択的に一定の電流を流し、リファレンス電圧を生
dpi dp2
成する定電流源 I
01が設けられている。
[0032] 第 1の過電流検出用トランジスタ Q 又は第 2の過電流検出用トランジスタ Q には
dpi dp2
、第 1及び第 2の電源側の駆動トランジスタ Q 、Q のオン'オフに連動して選択的
h l hp2
に定電流源 I の電流が流れる。過電流検出用比較器 CMP1は、非反転入力端子
01
に第 1の電源側の駆動トランジスタ Q のドレインの電圧 (第 1の出力端子 T1の電圧
hpl
)又は第 2の電源側の駆動トランジスタ Q のドレインの電圧 (第 2の出力端子 T2の
hp2
電圧)がアナログスィッチ ASW1及び ASW2を介して選択的に入力され、反転入力 端子に第 1の過電流検出用トランジスタ Q のドレインの電圧又は第 2の過電流検出
dpi
用トランジスタ Q のドレインの電圧が選択的にリファレンス電圧として入力され、そ
dp2
れらを比較することにより過電流を検出する。過電流検出用比較器 CMP1の出力は プリドライバ P1、P2へと伝達され、電源側の駆動トランジスタ Q 、Q 又は接地側
h l hp2
の駆動トランジスタ Q 、Q がオフの
lnl 1η2 状態になるように制御される。
[0033] ここで、アナログスィッチ ASW1は、第 1の電源側の駆動トランジスタ Q がオンのと
h l
きに連動してオンの状態となるので、例えば、第 1の電源側の駆動トランジスタ Q
h lの 制御電圧がローレベルであるときはアナログスィッチ ASW1は導通した状態となる。 同様に、アナログスィッチ ASW2も、第 2の電源側の駆動トランジスタ Q がオンする
hp2
ときに連動してオンの状態となる。従って、第 1の電源側及び接地側の駆動トランジス タ Q 、 Q の制御電圧がローレベル、第 2の電源側及び接地側の駆動トランジスタ h l lnl
Q 、 Q の制御電圧がハイレベルであるときはアナログスィッチ ASW1はオンの状 hp2 1η2
態であり、過電流検出用比較器 CMP 1の非反転入力端子には第 1の電源側の駆動 トランジスタ Q のドレインの電圧が、反転入力端子には第 1の過電流検出用トランジ
h l
スタ Q のドレインの電圧が入力される。
dpi
[0034] このコイル負荷駆動回路 2は、コイル負荷駆動回路 1と同様に、過電流検出抵抗と しての外付け抵抗が不要となってコストの低減が図ることができ、温度に係わらず正 確な過電流検出が可能になる。その上、コイル負荷駆動回路 1と比較して占有面積 が大きな比較器力^つでよいのでその分回路規模が縮小できる。なお、アナログスィ ツチが 2つ増えている力 その影響は少ない。また、定電流源も 1つでよいので待機 電流が少なぐ消費電力が低減される。
[0035] 次に、本発明に係るコイル負荷駆動回路の第 3の実施形態を図 3に基づいて説明 する。このコイル負荷駆動回路 3は、第 1及び第 2の接地側の駆動トランジスタ Q 、
lnl
Q に並列に N型 MOSトランジスタである第 1及び第 2の過電流検出用トランジスタ
1η2
Q 、Q を設けた構成である。定電流源 I は電源側力も電流を第 1又は第 2の過 dnl dn2 01
電流検出用トランジスタ Q 、Q に選択的に供給し、これらの過電流検出用トラン
dnl dn2
ジスタ Q 、 Q で生成されたリファレンス電圧が過電流検出用比較器 CMP1の非 dnl dn2
反転入力端子に入力される。過電流検出用比較器 CMP 1の反転入力端子には第 1 又は第 2の接地側のトランジスタ Q 、Q のドレインの電圧 (第 1又は第 2の出力端
lnl 1η2
子 Τ1、 Τ2の電圧)が選択的に入力される。
[0036] ここで、第 1又は第 2の接地側のトランジスタ Q 、 Q の電流が増加するとそれらの
lnl 1η2
オン抵抗により生じる電圧が大きくなり、過電流検出用比較器 CMP1は、過電流が 流れると反転入力端子の電圧が非反転入力端子に入力されるリファレンス電圧より 大きくなるので、その出力を反転させてプリドライバ Pl、 P2に出力する。
[0037] なお、上記のコイル負荷駆動回路 1〜3は第 1及び第 2の電源側の駆動トランジスタ 力 型 MOSトランジスタである力 これらを同一電流駆動能力では占有面積が小さ い N型 MOSトランジスタにして、回路規模を小さくすることも可能である。
[0038] 次に、図 4に本発明の第 4の実施形態を示す。このコイル負荷駆動回路 4は、上記 のコイル負荷駆動回路 1に比較して電源側の駆動トランジスタ Q 、Q のそれぞれ
h l hp2
のゲートに過電流検出用トランジスタ Q 、Q のそれぞれのゲートを直接に接続せ
dpi dp2
ず、タイミング制御のためのタイミング制御回路 Ll、 L2を挿入した点が異なる。すな わち、タイミング制御回路 L1、L2は、過電流検出用トランジスタ Q 、Q のオン時
dpi dp2
間が電源側の駆動トランジスタ Q 、Q のオン時間を完全に含むようにタイミングを
h l hp2
制御するタイミング制御回路であり、延いては過電流検出用比較器 CMP1、 CMP2 で比較される電圧の入力タイミングを制御して 、る。
[0039] これは、電源側の駆動トランジスタ Q 、Q と過電流検出用トランジスタ Q 、Q
hpl hp 2 d i dp とが同時に過渡動作を行い、電源側の駆動トランジスタ Q 、Q のドレイン電圧が
2 h l hp2
ノイズ等により瞬間的にリファレンス電圧より下がり、過電流検出用比較器 CMP1、 C MP2の出力が反転し、プリドライバ Pl、 P2が瞬間的な誤動作をするのを抑制するた めである。具体的には、このタイミング制御回路 Ll、 L2は、図 4に示すように、プリドラ ィバ P1、 P2の出力電圧の立ち上がりと立ち下がりを遅らせる遅延素子(DELAY)と 、 AND回路と、 OR回路とで実現できる。
[0040] なお、このコイル負荷駆動回路 4はコイル負荷駆動回路 1を変形して改良したもの であるが、同様の変形はコイル負荷駆動回路 2、 3においても行うことができる。
[0041] 次に、本発明を例えば光ディスクを構成するスピンドルモータの 3相のコイル負荷を 駆動するコイル負荷駆動回路に適用したものを説明する。以下、コイル負荷駆動回 路 2、 3をそれぞれ変形したコイル負荷駆動回路 5、 6を説明する。
[0042] 図 5に示す本発明の第 5の実施形態であるコイル負荷駆動回路 5において、第 1の 電源側の駆動トランジスタ Q と第 1の接地側の駆動トランジスタ Q は電源電圧 Vc
UHP UL
cと接地電位との間に直列に接続され、その中間点である第 1の出力端子 Tが U相
U
のコイル負荷 Uに接続され、第 2の電源側の駆動トランジスタ Q と第 2の接地側の
し VHP
駆動トランジスタ Q は電源電圧 Vccと接地電位との間に直列に接続され、その中間
VL
点である第 2の出力端子 Tが V相のコイル負荷 Vに接続され、第 3の電源側の駆動
V L
トランジスタ Q と第 3の接地側の駆動トランジスタ Q は電源電圧 Vccと接地電位
WHP WL
との間に直列に接続され、その中間点である第 3の出力端子 T が W相のコイル負荷
W
wに接続されている。
[0043] 電源側の駆動トランジスタ Q 、 Q 、 Q は P型 MOSトランジスタであり、接地
UHP VHP WHP
側の駆動トランジスタ Q 、 Q 、 Q は N型 MOSトランジスタである。プリドライバ PI
UL VL WL
は、外部力 入力端子 INIを介して入力される制御信号に基づ 、て電源側及び接 地側の駆動トランジスタ Q 、 Q 、 Q 、 Q 、 Q 、 Q のオン ·オフを制御する
UHP VHP WHP UL VL WL
。 P型 MOSトランジスタ Q 、 Q 、 Q はそれぞれ第 1、第 2、第 3の過電流検出用
dup dvp dwp
トランジスタであり、第 1、第 2、第 3の電源側の駆動トランジスタ Q 、 Q 、 Q と
UHP VHP WHP
それぞれゲートを共通にして同じ制御電圧が入力されている。
[0044] アナログスィッチ ASW1は第 1の電源側のトランジスタ Q 、アナログスィッチ AS
UHP
W2は第 2の電源側のトランジスタ Q 、アナログスィッチ ASW3は第 3の電源側のト
VHP
ランジスタ Q に連動してオン'オフする。第 1の過電流検出用トランジスタ Q 、第
WHP dup 2の過電流検出用トランジスタ Q 、第 3の過電流検出用トランジスタ Q は、定電流
dvp awp
源 I により一定の電流が選択的に流され、リファレンス電圧が生成される。リファレン
11
ス電圧は、定電流源 I の電流値と第 1、第 2、又は第 3の過電流検出用トランジスタ Q
11
、 Q 、 Q のオン抵抗との積の分だけ電源電圧 Vccから降下したものであり、過 dup dvp dwp
電流検出用比較器 CMP 1の非反転入力端子へ入力される。過電流検出用比較器 CMP1の反転入力端子には、第 1、第 2、又は第 3の電源側の駆動トランジスタ Q
UHP
、 Q 、 Q に流れる電流とそのオン抵抗との積の分だけ電源電圧 Vccから降下し
VHP WHP
た電圧がアナログスィッチ ASW1、 ASW2、 ASW3を介して選択的に入力される。
[0045] このコイル負荷駆動回路 5の過電流検出の動作について説明する。例えば、第 1の 電源側の駆動トランジスタ Q がオン、第 2及び第 3の電源側の駆動トランジスタ Q
UHP V
、Q がオフ、第 1及び第 2の接地側の駆動トランジスタ Q 、Q がオフ、第 3の
HP WHP UL VL
接地側の駆動トランジスタ Q がオンとすると、図 5に長破線で示す矢印の方向、す
WL
なわち第 1の電源側の駆動トランジスタ Q
UHPから、 U相のコイル負荷 U、 W
L 相のコィ ル負荷 W、第 3の接地側の駆動トランジスタ Q を経て電流が流れる。
L WL
[0046] このとき、アナログスィッチ ASW1はオン、アナログスィッチ ASW2、 ASW3はオフ であり、過電流検出用比較器 CMP1の反転入力端子には第 1の電源側の駆動トラン ジスタ Q のドレインの電圧が入力され、非反転入力端子には第 1の過電流検出用
UHP
トランジスタ Q のドレインの電圧がリファレンス電圧として入力される。第 1の電源側
dup
の駆動トランジスタ Q
UHPに過電流が流れてそのドレインの電圧がリファレンス電圧より も下がると、過電流検出用比較器 CMP1の出力が反転する。そして、過電流検出用 比較器 CMP1の出力がプリドライバ P1へと伝達され、第 1の電源側の駆動トランジス タ Q がオフの状態になるように制御される。こうして、過電流が流れ続けることが防
UHP
止されるのである。以上の動作は他の電源側の駆動トランジスタ Q 、 Q がオン
VHP WHP
してそれらに過電流が流れた場合も同様である。
[0047] このように、 3相のコイル負荷を駆動するコイル負荷駆動回路 5も、上記の Hブリッジ 接続のコイル負荷駆動回路と同様に、過電流検出抵抗としての外付け抵抗が不要と なってコストの低減が図ることができ、過電流の判定値が温度に係わらず一定なので 、正確な過電流検出が可能になる。 [0048] 次に、図 6に本発明の第 6の実施形態を示す。このコイル負荷駆動回路 6は、第 1、 第 2、第 3の接地側の駆動トランジスタ Q 、Q 、Q に並列に N型 MOSトランジス
UL VL WL
タである第 1、第 2、第 3の過電流検出用トランジスタ Q 、Q 、Q を設けた構成で
dun dvn dwn
ある。定電流源 I は電源側から電流を第 1、第 2、又は第 3の過電流検出用トランジ
11
スタ Q 、Q 、Q
dun dvn dwnに選択的に供給し、これらのトランジスタ Q 、Q 、Q
dun dvn dwnで生 成されたリファレンス電圧が過電流検出用比較器 CMP 1の非反転入力端子に入力 される。過電流検出用比較器 CMP1の反転入力端子には第 1、第 2、又は第 3の接 地側の駆動トランジスタ Q 、Q 、Q のドレインの電圧 (第 1、第 2又は第 3の出力
UL VL WL
端子の電圧)が選択的に入力される。
[0049] ここで、第 1、第 2、又は第 3の接地側の駆動トランジスタ Q 、Q 、Q の電流が
UL VL WL
増加するとそれらのオン抵抗により生じる電圧が大きくなり、過電流検出用比較器 C MP1は、過電流が流れると反転入力端子の電圧が非反転入力端子に入力されるリ ファレンス電圧より大きくなり、出力を反転させてプリドライバ P1に出力する。
[0050] なお、コイル負荷駆動回路 5、 6はコイル負荷駆動回路 2、 3をそれぞれ変形したも のであるが、コイル負荷駆動回路 1を変形することも可能である。また、コイル負荷駆 動回路 5、 6は、第 1、第 2、第 3の電源側の駆動トランジスタが P型 MOSトランジスタ である力 これらを同一電流駆動能力では占有面積が小さい N型 MOSトランジスタ にして、回路規模を小さくすることも可能である。また、上記のコイル負荷駆動回路 4 のように、コイル負荷駆動回路 5、 6にタイミング制御回路を設けてプリドライバ P1の 瞬間的な誤動作を防止することもできる。
[0051] また、上記のコイル負荷駆動回路を備える半導体装置は、光ディスク装置などの電 子機器のプリント基板に搭載される。この半導体装置は、外付け抵抗を必要としない のでプリント基板の大きさを縮小することができる。なお、駆動トランジスタは別個の半 導体装置とされる場合もある。また、この半導体装置は、コイル負荷駆動回路のみな らず他の機能の回路を備えることができるのは勿論である。
[0052] 次に、上記のコイル負荷駆動回路を搭載した光ディスク装置を図 7に基づいて説明 する。この光ディスク装置は、光ピックアップ 102、 RFアンプ 103、エラーアンプ 104 、エンコーダ Zデコーダ 105、サーボ回路 106、スピンドルモータ 107、スレッドモー タ 108、マイコン 110、位置検出器 111から構成されている。上記のコイル負荷駆動 回路はサーボ回路 106に含まれる。
[0053] スピンドルモータ 107が光ディスク 101を回転させ、光ピックアップ 102が光ディスク 101からの信号を読み取り、この信号が RFアンプ 103とエラーアンプ 104へ伝達さ れる。 RFアンプ 103の出力信号はエンコーダ Zデコーダ 105へ伝達され、エラーァ ンプ 104の出力信号はサーボ回路 106に伝達される。マイコン 110は位置検出器 11 1からの信号を受けサーボ回路 106を制御している。例えば光ディスク 101の回転が 阻まれたときなど、位置検出器 111で検出する回転数が落ちることから、マイコン 110 は回転数を一定に保つべく回転数を上げる信号をサーボ回路 106に伝達する。それ に従ってサーボ回路 106に含まれるコイル負荷駆動回路はスピンドルモータ 107の コイル負荷に流れる電流を増加するよう駆動するが、上記の実施形態で説明したよう に、過電流が流れるとそれが流れ続けないように制御を行うのである。また、光ピック アップ 102の動きが阻止されたときも同様に、過電流が流れるとそれが流れ続けない ように制御を行う。
[0054] 上記コイル負荷駆動回路を備える光ディスク装置は、外付けの抵抗を必要としな!/ヽ のでプリント基板の大きさを縮小することができ、もって小型化及びコストの低減化が 可會 になる。
[0055] 以上、本発明の実施形態であるコイル負荷駆動回路及び光ディスク装置について 説明したが、本発明は実施形態に記載されたものに限られることなぐ請求の範囲に 記載した事項の範囲内での様々な設計変更が可能である。例えば過電流検出用比 較器 CMP1、 CMP2は、その前段に反転回路等を用いて反転入力端子と非反転入 力端子の極性を反対にすることもできる。また、アナログスィッチについては、例えば 図 2に示すアナログスィッチ ASW1、ASW2の制御端子は同図に示す接続に限られ ず、接地側の駆動トランジスタ Q 、Q
lnl 1η2のゲートに接続されていたり、プリドライバ PI
、 P2に独立に接続されていたりしても良い。
[0056] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。

Claims

請求の範囲
[1] 電源電圧と接地電位との間に直列に設けられた電源側の駆動トランジスタ (Q , h l
Q )と接地側の駆動トランジスタ (Q , Q )との中間点である出力端子 (Tl, T2) hp2 lnl 1η2
力 コイル負荷の一端を駆動し、これらの駆動トランジスタの 、ずれかに過電流が流 れるとそれをオフするコイル負荷駆動回路(1)であって、
前記電源側の駆動トランジスタの制御電圧又は接地側の駆動トランジスタの制御電 圧が入力される過電流検出用トランジスタ (Q )
dpi と、
過電流検出用トランジスタに一定の電流を流し、リファレンス電圧を生成する定電流 源 (I , I )
01 02と、
前記出力端子の電圧と前記リファレンス電圧とを比較して過電流を検出する過電流 検出用比較器 (CMPl, CMP2)とを備える、コイル負荷駆動回路。
[2] 電源電圧と接地電位との間に直列に設けられた第 1の電源側の駆動トランジスタ( Q )と第 1の接地側の駆動トランジスタ (Q )との中間点である第 1の出力端子 (T1 h l lnl
)と、前記電源電圧と前記接地電位との間に直列に設けられた第 2の電源側の駆動ト ランジスタ (Q )と第 2の接地側の駆動トランジスタ (Q )との中間点である第 2の出
hp2 1η2
力端子 (T2)と、力 コイル負荷 (L)の両端を駆動し、これらの駆動トランジスタのい ずれかに過電流が流れるとそれをオフするコイル負荷駆動回路(2, 3, 4)であって、 前記第 1の電源側の駆動トランジスタの制御電圧又は第 1の接地側の駆動トランジ スタの制御電圧が入力される第 1の過電流検出用トランジスタ (Q )と、
dpi
前記第 2の電源側の駆動トランジスタの制御電圧又は第 2の接地側の駆動トランジ スタの制御電圧が入力される第 2の過電流検出用トランジスタ (Q )と、
dp2
前記第 1又は第 2の過電流検出用トランジスタに選択的に一定の電流を流し、リファ レンス電圧を生成する定電流源 (I )と、
01
前記第 1又は第 2の出力端子の電圧と前記リファレンス電圧を選択的に比較して過 電流を検出する過電流検出用比較器 (CMPl, CMP2)とを備える、コイル負荷駆動 回路。
[3] 電源電圧と接地電位との間に直列に設けられた第 1の電源側の駆動トランジスタ( Q )と第 1の接地側の駆動トランジスタ (Q )との中間点である第 1の出力端子 (T )と、電源電圧と接地電位との間に直列に設けられた第 2の電源側の駆動トランジスタ (Q )と第 2の接地側の駆動トランジスタ (Q )との中間点である第 2の出力端子 (T
VHP VL
)と、電源電圧と接地電位との間に直列に設けられた第 3の電源側の駆動トランジス
V
タ (Q )と第 3の接地側の駆動トランジスタ (Q )との中間点である第 3の出力端子
WHP WL
(T )と、力 3相のコイル負荷(U、 V, W )を駆動し、これらの駆動トランジスタの
W L L L
いずれかに過電流が流れるとそれをオフするコイル負荷駆動回路(5, 6)であって、 前記第 1の電源側の駆動トランジスタの制御電圧又は第 1の接地側の駆動トランジ スタの制御電圧が入力される第 1の過電流検出用トランジスタ (Q , Q )と、
dup un
前記第 2の電源側の駆動トランジスタの制御電圧又は第 2の接地側の駆動トランジ スタの制御電圧が入力される第 2の過電流検出用トランジスタ (Q , Q )と、
dvp dvn
前記第 3の電源側の駆動トランジスタの制御電圧又は第 3の接地側の駆動トランジ スタの制御電圧が入力される第 3の過電流検出用トランジスタ (Q , Q )と、
dwp dwn
前記第 1、第 2、又は第 3の過電流検出用トランジスタに選択的に一定の電流を流 し、リファレンス電圧を生成する定電流源 (I )
11 と、
前記第 1、第 2、又は第 3の出力端子の電圧と前記リファレンス電圧を選択的に比較 して過電流を検出する過電流検出用比較器 (CMP1)とを備える、コイル負荷駆動回 路。
[4] 前記過電流検出用比較器で比較される電圧の入力タイミングを制御する手段を備 える、請求項 1〜3のいずれか一項に記載のコイル負荷駆動回路。
[5] 前記過電流検出用比較器で比較される電圧の入力タイミングを制御する手段が、 前記電源側の駆動トランジスタの制御電圧又は接地側の駆動トランジスタの制御電 圧と前記過電流検出用トランジスタの制御電圧のタイミングを制御するタイミング制御 回路 (LI, L2)である、請求項 4に記載のコイル負荷駆動回路。
[6] コイル負荷駆動回路(1)を備え、
前記コイル負荷駆動回路は、電源電圧と接地電位との間に直列に設けられた電源 側の駆動トランジスタ (Q , Q )
hpl hp2と接地側の駆動トランジスタ (Q , Q )
lnl 1η2との中間 点である出力端子 (Tl, T2)力もコイル負荷の一端を駆動し、これらの駆動トランジス タのいずれかに過電流が流れるとそれをオフするコイル負荷駆動回路(1)であって、 前記電源側の駆動トランジスタの制御電圧又は接地側の駆動トランジスタの制御電 圧が入力される過電流検出用トランジスタ (Q )
dpi と、
過電流検出用トランジスタに一定の電流を流し、リファレンス電圧を生成する定電流 源 (I , I )
01 02と、
前記出力端子の電圧と前記リファレンス電圧とを比較して過電流を検出する過電流 検出用比較器 (CMPl, CMP2)とを含む、光ディスク装置。
[7] コイル負荷駆動回路 (2, 3, 4)を備え、
前記コイル負荷駆動回路は、電源電圧と接地電位との間に直列に設けられた第 1 の電源側の駆動トランジスタ (Q )
h l と第 1の接地側の駆動トランジスタ (Q )
lnl との中間 点である第 1の出力端子 (T1)と、前記電源電圧と前記接地電位との間に直列に設 けられた第 2の電源側の駆動トランジスタ (Q )と第 2の接地側の駆動トランジスタ(
hp2
Q )との中間点である第 2の出力端子 (T2)と、力 コイル負荷 (L)の両端を駆動し、
1η2
これらの駆動トランジスタのいずれかに過電流が流れるとそれをオフするコイル負荷 駆動回路であって、
前記第 1の電源側の駆動トランジスタの制御電圧又は第 1の接地側の駆動トランジ スタの制御電圧が入力される第 1の過電流検出用トランジスタ (Q )
dpi と、
前記第 2の電源側の駆動トランジスタの制御電圧又は第 2の接地側の駆動トランジ スタの制御電圧が入力される第 2の過電流検出用トランジスタ (Q )と、
dp2
前記第 1又は第 2の過電流検出用トランジスタに選択的に一定の電流を流し、リファ レンス電圧を生成する定電流源 (I )と、
01
前記第 1又は第 2の出力端子の電圧と前記リファレンス電圧を選択的に比較して過 電流を検出する過電流検出用比較器 (CMPl, CMP2)とを含む、光ディスク装置。
[8] コイル負荷駆動回路 (5, 6)を備え、
前記コイル負荷駆動回路は、電源電圧と接地電位との間に直列に設けられた第 1 の電源側の駆動トランジスタ (Q ) 1
UHPと第 の接地側の駆動トランジスタ (Q )
ULとの中 間点である第 1の出力端子 (T )と、電源電圧と接地電位との間に直列に設けられた u
第 2の電源側の駆動トランジスタ (Q )と第 2の接地側の駆動トランジスタ (Q )との
VHP VL
中間点である第 2の出力端子 (T )と、電源電圧と接地電位との間に直列に設けられ た第 3の電源側の駆動トランジスタ (Q )と第 3の接地側の駆動トランジスタ (Q )と
WHP WL
の中間点である第 3の出力端子 (T )と、力 3相のコイル負荷 (U、 V , W )を駆動
W L L L
し、これらの駆動トランジスタの ヽずれかに過電流が流れるとそれをオフするコイル負 荷駆動回路であって、
前記第 1の電源側の駆動トランジスタの制御電圧又は第 1の接地側の駆動トランジ スタの制御電圧が入力される第 1の過電流検出用トランジスタ (Q , Q )と、
dup dun
前記第 2の電源側の駆動トランジスタの制御電圧又は第 2の接地側の駆動トランジ スタの制御電圧が入力される第 2の過電流検出用トランジスタ (Q , Q )と、
dvp dvn
前記第 3の電源側の駆動トランジスタの制御電圧又は第 3の接地側の駆動トランジ スタの制御電圧が入力される第 3の過電流検出用トランジスタ (Q , Q )と、
dwp dwn
前記第 1、第 2、又は第 3の過電流検出用トランジスタに選択的に一定の電流を流 し、リファレンス電圧を生成する定電流源 (I )
11 と、
前記第 1、第 2、又は第 3の出力端子の電圧と前記リファレンス電圧を選択的に比較 して過電流を検出する過電流検出用比較器 (CMP1)とを含む、光ディスク装置。
PCT/JP2005/015616 2004-09-13 2005-08-29 コイル負荷駆動回路及びそれを備えた光ディスク装置 WO2006030621A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/659,778 US20070253129A1 (en) 2004-09-13 2005-08-29 Coil Load Drive Circuit and Optical Disk Device Having the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-265062 2004-09-13
JP2004265062A JP2006081363A (ja) 2004-09-13 2004-09-13 コイル負荷駆動回路及びそれを備えた光ディスク装置

Publications (1)

Publication Number Publication Date
WO2006030621A1 true WO2006030621A1 (ja) 2006-03-23

Family

ID=36059876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015616 WO2006030621A1 (ja) 2004-09-13 2005-08-29 コイル負荷駆動回路及びそれを備えた光ディスク装置

Country Status (6)

Country Link
US (1) US20070253129A1 (ja)
JP (1) JP2006081363A (ja)
KR (1) KR20070065377A (ja)
CN (1) CN101019306A (ja)
TW (1) TW200613745A (ja)
WO (1) WO2006030621A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104079A (ja) * 2008-10-21 2010-05-06 Tokai Rika Co Ltd 負荷駆動装置
JP6017822B2 (ja) * 2012-04-23 2016-11-02 ローム株式会社 過電流保護回路、負荷駆動装置、光ディスク装置、カーオーディオ機器
CN104883162B (zh) * 2014-02-27 2019-03-12 快捷半导体(苏州)有限公司 过电流检测电路、方法、负载开关及便携式设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236797A (ja) * 1992-02-20 1993-09-10 Japan Servo Co Ltd ステッピングモータの駆動回路
JP2003047284A (ja) * 2001-07-30 2003-02-14 Nikon Corp スイッチング素子異常検出装置、pwm増幅器、モータ駆動装置、ステージ装置、露光装置、この露光装置により製造したデバイスおよびデバイスの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237262A (en) * 1991-10-24 1993-08-17 International Business Machines Corporation Temperature compensated circuit for controlling load current
ATE338377T1 (de) * 2001-09-26 2006-09-15 Dialog Semiconductor Gmbh Mos-stromerfassungsschaltung
JP3681374B2 (ja) * 2002-12-19 2005-08-10 株式会社日立製作所 電流検出装置及びそれを用いたpwmインバータ
JP4468316B2 (ja) * 2006-02-15 2010-05-26 株式会社日立製作所 電源装置の過電流検出回路及び過電流検出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236797A (ja) * 1992-02-20 1993-09-10 Japan Servo Co Ltd ステッピングモータの駆動回路
JP2003047284A (ja) * 2001-07-30 2003-02-14 Nikon Corp スイッチング素子異常検出装置、pwm増幅器、モータ駆動装置、ステージ装置、露光装置、この露光装置により製造したデバイスおよびデバイスの製造方法

Also Published As

Publication number Publication date
CN101019306A (zh) 2007-08-15
KR20070065377A (ko) 2007-06-22
TW200613745A (en) 2006-05-01
JP2006081363A (ja) 2006-03-23
US20070253129A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
US8766671B2 (en) Load driving apparatus
JP5537272B2 (ja) 負荷駆動回路装置及びこれを用いた電気機器
JP4589966B2 (ja) 電力供給制御装置及び半導体装置
JP4235561B2 (ja) 半ブリッジ駆動回路とその駆動回路を備える電力変換システム
WO2005085879A1 (ja) 電流検出回路、負荷駆動装置、及び記憶装置
JP2011188271A (ja) ゲート駆動回路
JP5060750B2 (ja) モータ駆動回路およびそれを用いた電子機器
JP7271933B2 (ja) 絶縁ゲート型デバイス駆動装置
JP4034279B2 (ja) 電流検出回路、負荷駆動回路、及び記憶装置
US7405614B2 (en) Circuit arrangement having an amplifier arrangement and an offset compensation arrangement
JP2011061337A (ja) ヒステリシスコンパレータ
JP4531500B2 (ja) 半導体装置および半導体装置モジュール
JP4882710B2 (ja) 負荷駆動装置の故障検出装置および負荷駆動用ic
JPH07163177A (ja) モータ制御装置とモータ制御方法
WO2006030621A1 (ja) コイル負荷駆動回路及びそれを備えた光ディスク装置
US20090108877A1 (en) Logic Gate and Semiconductor Integrated Circuit Device Using the Logic Gate
US5889415A (en) Internal voltage referenced output driver
JP6831346B2 (ja) モータ装置及びモータの駆動制御方法
JP6710188B2 (ja) モータ駆動制御装置及びモータの駆動制御方法
WO2022249244A1 (ja) 定電圧発生回路
JP2001177380A (ja) 比較回路及びこれを用いた発振回路
JPH11252909A (ja) 電流検出回路
KR100948479B1 (ko) 스큐 제어 회로를 구비한 구동기 및 그 제어 신호를설정하는 방법
US20230308037A1 (en) Semiconductor device and motor drive system
JP5677572B2 (ja) アナログスイッチ回路及びこれを用いたモータ駆動装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11659778

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580030763.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077008480

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11659778

Country of ref document: US