WO2006018991A1 - 光学活性α-フルオロカルボン酸エステル誘導体の製造方法 - Google Patents

光学活性α-フルオロカルボン酸エステル誘導体の製造方法 Download PDF

Info

Publication number
WO2006018991A1
WO2006018991A1 PCT/JP2005/014426 JP2005014426W WO2006018991A1 WO 2006018991 A1 WO2006018991 A1 WO 2006018991A1 JP 2005014426 W JP2005014426 W JP 2005014426W WO 2006018991 A1 WO2006018991 A1 WO 2006018991A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
optically active
chemical
derivative represented
Prior art date
Application number
PCT/JP2005/014426
Other languages
English (en)
French (fr)
Inventor
Akihiro Ishii
Hideyuki Tsuruta
Takashi Ootsuka
Yokusu Kuriyama
Manabu Yasumoto
Kenjin Inomiya
Koji Ueda
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Priority to US11/597,105 priority Critical patent/US7462734B2/en
Priority to CN200580021638.2A priority patent/CN1976891B/zh
Priority to EP05768858A priority patent/EP1780194A4/en
Publication of WO2006018991A1 publication Critical patent/WO2006018991A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/307Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a process for producing an optically active fluorocarbonic acid ester derivative which is an important intermediate between pharmaceuticals and optical materials.
  • Non-patent Document 1 Deaminofluorination of optically active ⁇ -amino acid derivatives in hydrogen fluoride'pyridine complex
  • Non-patent Document 2 Asymmetric hydrolysis of racemic ⁇ -fluorocarboxylic acid ester derivatives (2) and 3) a method for dehydroxyfluorination of an optically active hydroxycarboxylate derivative by various methods.
  • the production method of 3) is related to the present invention, and 3-l) DAST [(C H) NS
  • Non-patent Document 3 Fluoroalkylamine reagent method (Non-Patent Document 4), and 3-3) Hydroxyl group by converting hydroxyl group to sulfonate group ( There is a method of substituting with F—) (Non-patent Document 5).
  • Non-patent Documents 6 and 7 Methods for dehydroxyfluorination with perfluorobutanesulfonyl fluoride in the presence of a fluorinating agent such as [(CH 3) N ′ 3HF] (Non-patent Documents 6 and 7) are disclosed.
  • Patent Document 1 US Patent No. 5760255
  • Patent Document 2 US Patent No. 6248889
  • Non-Patent Document 1 Tetrahedron Letters (UK), 1993, 34th, No. 2, p. 293-296
  • Non-patent literature 2 Organic Syntheses (USA), 1990, 69th, p. 10-18
  • Non-specific afternoon literature 3 Journal oi te Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972- 1999) (UK), 1980, No. 9, p. 2029-2032
  • Non-Patent Document 4 Journal of Chemical Society of Japan (Japan), 1983, No. 9, p. 1363-1368
  • Non-Patent Document 5 Tetrahedron; Asymmetry (UK), 1994, 5th, 6th, ⁇ ⁇ 98
  • Non-Patent Document 6 Organic Letters (USA), 2004, No. 6, No. 9, p. 1465—146 8
  • Non-Patent Document 7 227th ACS Spring National Meeting Abstracts, March 28-April 1, 2004, ORGN 198, D. Zarkowsky et al. (Merck;
  • An object of the present invention is to provide an industrial process for producing an optically active monofluorocarboxylic acid ester derivative which is an important intermediate between pharmaceuticals and optical materials.
  • Non-Patent Document 1 and Non-Patent Document 4 With the production methods of Non-Patent Document 1 and Non-Patent Document 4, it was not possible to obtain a monofluorocarboxylic acid ester derivative with high optical purity. In the production method of Non-Patent Document 2, the yield did not exceed 50% due to the optical resolution of the racemate. In the production method of Non-Patent Document 3, it was necessary to use DAST, which is very expensive and dangerous to handle in large quantities. In the production method of Non-Patent Document 5, it was necessary to separately perform the step of converting a hydroxyl group into a sulfonate group and the step of substituting with a fluorine anion (F—).
  • F— fluorine anion
  • optical purity of the optically active ⁇ -hydroxycarboxylic acid ester derivative used as a substrate is the optical purity of the optically active ⁇ -fluorocarboxylic acid ester derivative.
  • Patent Document 1 Patent Document 2, Non-Patent Document 6, and Non-Patent Document 7, Dehydroxy fluorination reactions using perfluoroalkanesulfonyl fluoride as a substrate having a thiol group have been widely disclosed, and a hydroxyl group is converted to a sulfonate group (perfluoroalkane sulfonate group). It has the merit that the process of converting to Fluorine and the process of substituting with fluorine anion (F—) can be performed continuously in one reactor.
  • Patent Document 1 In addition, in the dehydroxyfluorination reactions of Patent Document 1, Patent Document 2, Non-Patent Document 6, and Non-Patent Document 7, perfluoroalkanesulfonyl fluoride perfluorinated alkanesulfonyl and subsequently continues.
  • Perfluoroalkanesulfonate anion Rf SO—; Rf is a perfluoroalkyl group in a substitution reaction with fluorine anion (F—).
  • the nitridation reaction was not specifically disclosed. Furthermore, in the dehydroxyfluorination reaction consisting of trifluoromethanesulfonic anhydride-triethylamine 'hydrogen trifluoride complex-triethylamine system in Non-Patent Document 7, gaseous (boiling point _ 21 ° C) trifluoromethane is used in the reaction system. In combination with (64 ° C) perfluorobutanesulfonyl fluoride (perfluorobutanesulfonyl), sulfonyl fluoride is generated, and the hydroxyl group of the substrate cannot be efficiently trifluoromethanesulfonylated.
  • Patent Document 1 As a suitable substrate for the dehydroxyfluorination reaction of Patent Document 1, Patent Document 2, Non-Patent Document 6, and Non-Patent Document 7, the optically active hyhydroxycarboxylic acid ester targeted in the present invention is used. No derivative was disclosed, and it was also not disclosed that the dehydroxyfluorination reaction could be applied to a method for producing an optically active monofluorocarboxylic acid ester derivative having high optical purity.
  • optically active ⁇ - hydroxycarboxylic acid ester derivatives are industrially inexpensive and widely used organic bases such as triethylamine. It was clarified that optically active ⁇ -fluorocarboxylic acid ester derivatives can be produced by reacting with trifluoromethanesulfonyl fluoride in the presence of.
  • the optically active ⁇ -hydroxycarboxylic acid ester derivative trifluoromethanesulfonylated trifluoromethanesulfonyl fluoride proceeds more favorably and the subsequent fluorine substitution reaction.
  • trifluoromethanesulfonyl chloride it proceeds well only with a hydrogen fluoride salt or complex of organic base such as triethylamine produced as an by-product in the reaction system.
  • a substrate on which the dehydroxyfluorination reaction proceeds favorably under such reaction conditions has not yet been disclosed in public literature, and is due to the substrate specificity of the optically active hydroxycarboxylate derivative.
  • R represents a linear or branched alkyl group having 1 to 12 carbon atoms, and an aromatic hydrocarbon group or an unsaturated hydrocarbon on any carbon atom of the alkyl group.
  • a protected group of a carboxyl group a protected body of an amino group or a protected group of a hydroxyl group may be substituted by one or in any combination.
  • R 1 represents a linear or branched alkyl group having 1 to 8 carbon atoms. Arbitrary carbon atoms of R and R 1 alkyl groups may form a covalent bond. * Represents asymmetric carbon] Detailed explanation
  • the production method of the present invention is the most industrially inexpensive means of producing optically active nitrofluorocarboxylic acid ester derivatives disclosed in known literatures. The advantages of the manufacturing method of the present invention over the prior art will be described below.
  • Non-Patent Document 1 and Non-Patent Document 4 an optically active hydroxycarboxylic acid ester derivative in which the optical purity of the optically active ⁇ _fluorocarboxylic acid ester derivative as the target product is used as a substrate. High optical purity because it is reflected in the optical purity of By using a substrate, a target product having high optical purity can be obtained.
  • Non-Patent Document 2 the yield is limited to 50% due to the conversion of an optically active hydroxycarboxylate derivative to an optically active fluorocarboxylate derivative by dehydroxyfluorination reaction. I will not be.
  • Non-Patent Document 3 it is not necessary to use a reagent that is very expensive and dangerous to handle in large quantities, such as DAST.
  • Non-Patent Document 5 the process of converting a hydroxyl group into a sulfonate group and the process of substituting with a fluorine anion (F—) can be carried out continuously in one reactor.
  • the optical purity of the optically active ⁇ -hydroxycarboxylic acid ester derivative used as the substrate is the optically active ⁇ -fluorocarboxylic acid that is the target product. This is reflected in the optical purity of the ester derivative.
  • Patent Document 1 Patent Document 2, Non-Patent Document 6 and Non-Patent Document 7, long-chain perfluoroalkane sulfone having long-term environmental persistence and toxicity is a problem.
  • Fluoromethanesulfonyl fluoride which has the highest atomic economy of fluorine, can be used without the need to use rufluoride.
  • Patent Document 1 and Patent Document 2 it is not necessary to use an expensive and special organic base in industrial use such as DBU, and for Non-Patent Document 6 and Non-Patent Document 7,
  • a fluorinating agent such as triethylamine 'hydrogen trifluoride complex
  • the fluorine substitution reaction is carried out in an equivalent amount in the reaction system in trifluoromethanesulfonyl chloride. It progresses well only with the hydrogen fluoride salt or complex of organic base such as tritylamine produced.
  • DBU is classified as an organic base with a strong basicity compared to triethylamine, and due to this strong basicity, carboxylic acid ester groups It is considered that side reactions such as hydrolysis of perfluoroalkanesulfonic acid ester and perfluoroalkanesulfonic acid are eliminated to produce unsaturated compounds as by-products. Therefore, in the dehydroxyfluorination reaction of perfluoroalkanesulfonyl fluoride of the optically active hyhydroxycarboxylic acid ester derivative targeted in the present invention, it is better to use a weak organic base compared to DBU such as triethylamine. The combination with the organic base is largely due to the substrate specificity of the optically active hydroxyhydroxyester ester derivative.
  • the dehydroxyfluorination reaction having the characteristics disclosed in the present invention includes conventional dehydroxyfluorination reaction using perfluoroalkanesulfonyl fluoride, Patent Document 1, Patent Document 2, Non-Patent Document 6, and Non-Patent Document. It was not disclosed in Document 7, and it was also not disclosed that it can be suitably applied to a method for producing an optically active ⁇ -fluorocarboxylic acid ester derivative targeted by the present invention.
  • the production method of the present invention is highly useful for industrial production of optically active ⁇ -fluorocarboxylic acid ester derivatives because it has high selectivity and hardly produces impurities that are difficult to separate.
  • This production method comprises reacting the optically active hydroxycarboxylate derivative represented by the formula [1] with trifluoromethanesulfonyl fluoride in the presence of an organic base. Further, the obtained optically active monofluorocarboxylic acid ester derivative may be reacted with a hydride reducing agent (Scheme 1).
  • the fluorination is preferably carried out without using a fluorinating agent (such as triethylamine 'hydrogen trifluoride complex) in addition to trifluoromethanesulfonyl fluoride.
  • a fluorinating agent such as triethylamine 'hydrogen trifluoride complex
  • the stereochemistry at the ⁇ - position is retained, and in the subsequent fluorine substitution reaction, the stereochemistry at the ⁇ -position is reversed. Therefore, the ⁇ -position R form of the optically active ⁇ -fluorocarboxylic acid ester derivative is obtained from the ⁇ -position R form of the optically active ⁇ -hydroxycarboxylic acid ester derivative, and similarly the ⁇ -position R form is obtained from the ⁇ -position S form.
  • R in the optically active ⁇ -hydroxycarboxylic acid ester derivative represented by the formula [1] includes methyl group, ethyl group, propyl group, butyl group, amyl group, hexyl group, heptyl group, octyl group, nonyl group, Examples include a decyl group, an undecyl group, and a lauryl group, and an alkyl group having 3 or more carbon atoms can be linear or branched.
  • an aromatic hydrocarbon group such as a phenyl group or a naphthyl group
  • an unsaturated hydrocarbon group such as a vinyl group, a linear or branched alkoxy group having 1 to 6 carbon atoms
  • aryloxy groups such as phenoxy group, halogen atom (fluorine, chlorine, bromine, iodine), carboxynole group protector, amino group protector or hydroxynore group protector. It can also be replaced.
  • Protective groups described in Protective Groups in Organic Synthesis, Third Edition, 1999, John Wiley & Sons, Inc. can be used as specific protecting groups for carboxyl, amino and hydroxyl groups.
  • Examples of the protecting group for the carboxyl group include an ester group and the like, and examples of the protecting group for the amino group include a benzyl group, a acyl group (acetyl group, chloroacetyl group, benzoyl group, 4-methylolene benzoyl group, etc.), phthaloyl group, etc.
  • Protecting groups for hydroxyl groups include benzyl group, 2-tetrahydropyranyl group, acyl group (acetyl group, chloroacetyl group, benzoyl group, 4-methylbenzoyl group, etc.), silyl group (trialkylsilyl group).
  • Alkylary examples of the protective group for 1,2-dihydroxyl include a protective group for forming 2,2-dimethyl-1,3-dioxolane.
  • the production method targeted by the present invention is such that the optically active hyhydroxycarboxylate derivative represented by the formula [1] has an aromatic hydrocarbon group (optically active carbon (C *) of the compound). It can also be used when the aromatic ring is directly bonded to the ring. For example, a phenyl group, a tolyl group, etc.) ”. However, in this case, the optical purity of the optically active fluorocarboxylate derivative represented by the formula [2], which is the target product, is significantly higher than when R is an alkyl group or the above-described substituted alkyl group. To drop.
  • the optically active fluorocarboxylate derivative represented by the formula [2] which is the target product
  • an alkyl group or the above-described substituted alkyl group is suitable as R in the optically active hyhydroxycarboxylate derivative represented by the formula [1] (an optically active mandelate derivative is used as a substrate).
  • an optically active mandelate derivative is used as a substrate.
  • the same phenomenon is also disclosed in Non-Patent Document 5 when the desired product fluorinated product is obtained as a racemate.
  • R 1 of the optically active ⁇ -hydroxycarboxylic acid ester derivative represented by the formula [1] methinole group, ethyl group, propyl group, butyl group, amyl group, hexyl group, heptyl group, octyl group And an alkyl group having 3 or more carbon atoms can be linear or branched. Furthermore, Rataton can be obtained by forming a covalent bond between any carbon atoms of the alkyl group of R and R 1 of the optically active monohydroxycarboxylic acid ester derivative represented by the formula [1].
  • the R configuration or the S configuration can be adopted, and the enantiomeric excess (% ee) is: in particular restriction away, but Yogu usually is more preferably equal to or greater than the preferred instrument, especially 97 ° / 0 ee or 95% ee using more than ee 90%.
  • optically active monohydroxycarboxylic acid ester derivative represented by the formula [1] see Synthetic Communications (USA), 1991, No. 21, Vol. 21, p. 2165-2170 It can be similarly produced from various optically active single amino acids that are commercially available
  • the amount of trifluoromethanesulfonyl fluoride used is not particularly limited, but it is sufficient to use 1 mol or more per 1 mol of the optically active hydroxyhydroxyester derivative represented by the formula [1]. Usually 1 to 10 mol is preferred, and 1 to 5 mol is more preferred. As described above, the present invention is good only with a hydrogen fluoride salt or a complex of an organic base such as triethylamine produced as a by-product in the reaction system when the subsequent fluorine substitution reaction is performed in a trifluoromethanesulfonyl group.
  • the amount of trifluoromethanesulfonyl fluoride used is optical. A small excess of 1-3 moles is more preferred with respect to 1 mole of the active ⁇ -hydroxycarboxylic acid ester derivative.
  • Examples of the organic base include trimethylamine, triethylamine, diisopropylethylamine, tri-eta-propinoleamine, and hy. Lysine, 2, 3-Noretidine, 2, 4-Noretidine, 2,5-Noretidine, 2,6-Noretidine, 3,4-Noretidine, 3,5-Noretidine, 2, 3, 4-Colidine, 2, 4, Examples include 5-collidine, 2, 5, 6-collidine, 2, 4, 6-collidine, 3, 4, 5-collidine, and 3, 5, 6-collidine. Among them, triethylamine, diisopropylethylamine, tri ⁇ _prohi.
  • Noretyomin, Pyridine, 2, 3-Noretidine, 2, 4-Noretidine, 2, 6-Noretidine, 3, 4-Lutidine, 3, 5-Lutidine, 2, 4, 6-Colidine and 3, 5, 6- Collidine is preferred, and in particular, trietinoreamine, diisopropinoreethinoleamine, pyridine, 2,4-noretidine, 2,6-lutidine, 3,5-lutidine and 2,4,6-collidine are more preferred.
  • the amount of the organic base used is not particularly limited, but it is sufficient to use 1 mol or more per 1 mol of the optically active hydroxycarboxylic acid ester derivative represented by the formula [1]. Usually 1 to 10 mol is preferred, and 1 to 5 mol is more preferred.
  • the reaction solvent includes aliphatic hydrocarbons such as ⁇ -hexane, cyclohexane, and ⁇ -heptane, aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene, methyl chloride, and black mouth.
  • aliphatic hydrocarbons such as ⁇ -hexane, cyclohexane, and ⁇ -heptane
  • aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene, methyl chloride, and black mouth.
  • Form halogenated hydrocarbons such as 1,2-dichloroethane, etc.
  • Amides, acetonitriles, nitriles such as propionitrile, dimethyl sulfoxide and the like are preferred, especially toluene, mesitylene, methylene chloride, tetrahydrofuran, ethyl acetate, N , N dimethylformamide and acetonitrile are more preferred.
  • reaction solvents can be used alone or in combination.
  • the amount of the reaction solvent used is not particularly limited, but 0.1 L (liter) or more is used per 1 mol of the optically active ⁇ -hydroxycarboxylic acid ester derivative represented by the formula [1]. Usually, 0 ⁇ :! ⁇ 20L force S is preferable, especially 0.1 ⁇ : 10L is more preferable.
  • the temperature condition is 100 to + 100 ° C, and usually -80 to + 80 ° C is preferable, and 60 to + 60 ° C is more preferable.
  • a pressure resistant reactor can be used.
  • the reaction time is 0.:! To 48 hours, but it varies depending on the substrate and reaction conditions. Therefore, the progress of the reaction is traced by an analytical means such as gas chromatography, liquid chromatography, NMR, etc. It is preferable that the end point is the time when almost disappears.
  • the post-treatment is not particularly limited, but usually the reaction-terminated solution is an aqueous solution of an alkali metal inorganic base (for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, or carbonated lithium).
  • the crude organic product is obtained by washing with water, washing the collected organic layer with water, washing with an aqueous solution of inorganic acid (eg, hydrogen chloride, hydrogen bromide, nitric acid or sulfuric acid) or an aqueous solution of calcium chloride, and direct fractional distillation. Can do.
  • the optically active monofluorocarboxylic acid ester derivative represented by the formula [2] can be obtained with high chemical purity.
  • the optically active fluorocarboxylic acid ester derivative represented by the formula [2] obtained by the fluorination in the first step is reacted with a hydride reducing agent to obtain the formula.
  • the optically active 2 fluoroalcohol derivative shown in [7] is given. .
  • the stereochemistry of the carbon atom substituted with a fluorine atom is retained, and the optically active 2-fluoroalcohol derivative 2-position R-form is obtained from the optically active monofluorocarboxylic acid ester derivative-position R-form.
  • the 2nd S-form is obtained from the S-form.
  • This hydride reduction can be carried out in the same manner with reference to known methods, for example, Japanese Patent No. 2879456.
  • Aluminum hydride system such as diborane, BH 'tetrahydrofuran, BH-S (CH),
  • Examples thereof include boron hydride systems such as BH 2 -N (CH 2) 3, NaBH, and LiBH (representing i-Butt isobutyl group). Among them (i—Bu) A1H, LiAlH, NaAlH (OCH CH ⁇ C
  • the amount of the idide reducing agent used is not particularly limited, but 0.5 mol or more is used per 1 mol of the optically active ⁇ -fluorocarboxylic acid ester derivative represented by the formula [2]. Slightly good, usually ⁇ 0 ⁇ 5-5 Monoreka S, especially preferred, 0.5-3 Monoreca S.
  • reaction solvent examples include aliphatic hydrocarbons such as ⁇ -hexane, cyclohexane, and ⁇ -heptane, aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene, methyl chloride, chlorophenol, Halogenated hydrocarbons such as 1,2-dichloroethane, jetyl ether, tetrahydrofuran, tert-butinolemethino oleate, 1, 4_dioxane, etc., methanol, ethanol, n-propanol, i-propanol, etc. And the like.
  • aliphatic hydrocarbons such as ⁇ -hexane, cyclohexane, and ⁇ -heptane
  • aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene
  • methyl chloride chlorophenol
  • Halogenated hydrocarbons such as 1,2-dichlor
  • n-heptane, toluene, mesitylene, methylene chloride, gethinoreatenore, tetrahydrofuran, tert-butinolemethinoleatenore, 1,4-dioxane, methanoleol, ethanol and i-propanol are particularly preferred, especially toluene, mesitylene, tetrahydrofuran Tert-butyl methyl ether, methanol and ethanol are more preferred.
  • These reaction solvents can be used alone or in combination.
  • the amount of the reaction solvent used is not particularly limited, but 0.1 L (liter) or more may be used per 1 mol of the optically active fluorocarboxylic acid ester derivative represented by the formula [2]. Usually, 0 ⁇ :! to 20 L force S is preferable, and 0.1 to 10 L is particularly preferable. [0045]
  • the temperature condition is _100 to + 100 ° C, and usually _80 to + 80 ° C is preferred, particularly 60 to +60. It is better than C power.
  • the reaction time is from 0.:! To 24 hours, but it varies depending on the substrate and reaction conditions. Therefore, the progress of the reaction is traced by analytical means such as gas chromatography, liquid chromatography, NMR, etc. It is preferable that the end point is the time when almost disappears.
  • the post-treatment is not particularly limited, but usually, water, sodium sulfate 'hydrate, methanol or ethanol is added to the reaction completion solution, and the excess hydride reducing agent is dissolved.
  • the crude product can be obtained by filtering the inorganic substance and fractionally distilling the filtrate. By subjecting to precision distillation as necessary, the optically active 2-fluoroalcohol derivative represented by the formula [7], which is the target product, can be obtained with high chemical purity.
  • the conversion rate of the reaction was 99.8% as measured by gas chromatography.
  • the reaction completed solution separated into two layers was poured into 1200 ml of 10% aqueous potassium carbonate solution, and the organic layer was washed.
  • the recovered organic layer consists of 1400 ml of 1N aqueous hydrogen chloride, followed by 10% calcium chloride. Washed with 400 ml aqueous solution, dried over 50 g anhydrous sodium sulfate, filtered,
  • Tetrahydrofuran solution containing OOeq (tetrahydrofuran usage 160ml) was gradually added under ice-cooling while controlling the internal temperature to 10 ° C or less, and at that temperature for 20 minutes. The mixture was stirred and further stirred at room temperature for 2 hours and 10 minutes. The conversion rate of the reaction was 100% as measured by gas chromatography. Sodium sulfate decahydrate was added to the reaction mixture under ice-cooling and gradually controlled while controlling the internal temperature to 12 ° C or lower, and the excessively used lithium aluminum hydride was roughly decomposed. The mixture was stirred at 50-60 ° C.
  • the optical purity of the main distillate was 98.0% ee (R form) as determined by gas chromatography after deriving from Mosher acid ester.
  • the 1 H-NMR spectrum and 19 F-NMR spectrum of the optically active 2-fluoroalcohol derivative are shown below.
  • Optically active trihydroxycarboxylic acid ester derivatives represented by 2.00 g (9.60 mmol, 1.00 eq, optical purity 99.2% ee), Tonolen 10 ml and Liechinoreamine 2.00 g (19.76 mmol, 2.06 eq) ), Soak the reaction vessel in dry ice Z acetone bath at _78 ° C, blow trifluoromethanesulfonyl fluoride 3.00 g (19. 73 mmol, 2. 06 eq) from the cylinder, and immediately bath in ice And stirred for 1 hour. The conversion rate of the reaction was measured by gas chromatography and found to be 100%. The reaction completed solution was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with toluene. The recovered organic layer is dried over anhydrous sodium sulfate, filtered, and the following formula
  • Optically active ⁇ -hydroxycarboxylic acid ester derivative represented by 1.00 g (4.80 mmol, 1.00 eq, optical purity 99.2% ee), Toluene 20 ml and DBU 2.20 g (14. 45 mmol, 3. Oleq) were added. Then, the reaction vessel was immersed in an ice bath at 0 ° C., 2.15 g (7.12 mmol, 1.48 eq) of perfluorobutanesulfonyl fluoride was added, and the mixture was stirred at the same temperature for 1 hour. The conversion rate of the reaction was measured by gas chromatography and found to be 100%.
  • the reaction-terminated liquid was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with toluene. The recovered organic layer is dried over anhydrous sodium sulfate, filtered,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、光学活性α-ヒドロキシカルボン酸エステル誘導体を有機塩基の存在下にトリフルオロメタンスルホニルフルオリド(CF3SO2F)と反応させることにより、式[2] [式[2]において、Rは炭素数1から12の直鎖または分岐鎖のアルキル基を表し、アルキル基の任意の炭素原子上に、芳香族炭化水素基、不飽和炭化水素基、炭素数1から6の直鎖または分枝のアルコキシ基、アリールオキシ基、ハロゲン原子(フッ素、塩素、臭素、ヨウ素)、カルボキシル基の保護体、アミノ基の保護体またはヒドロキシル基の保護体が一つまたは任意の組み合わせで二つ置換することもできる。R1は炭素数1から8の直鎖または分岐鎖のアルキル基を表す。RとR1のアルキル基の任意の炭素原子同士が共有結合を形成してもよい。*は不斉炭素を表す]で示される光学活性α-フルオロカルボン酸エステル誘導体を製造する方法に関する。

Description

明 細 書
光学活性 a 一フルォロカルボン酸エステル誘導体の製造方法
技術分野
[0001] 本発明は、医薬および光学材料の重要中間体である光学活性ひ 一フルォロカルボ ン酸エステル誘導体の製造方法に関する。 発明の背景
[0002] 本発明で対象とする光学活性 α —フルォロカルボン酸エステル誘導体の従来の製 造方法は、次の三つに大別でき、それぞれ代表的な文献を引用する。
[0003] 1)光学活性 α —アミノ酸誘導体をフッ化水素'ピリジン錯体中で脱ァミノフッ素化す る方法(非特許文献 1)、 2)ラセミの α—フルォロカルボン酸エステル誘導体を酵素 による不斉加水分解で光学分割する方法 (非特許文献 2)と、 3)光学活性ひーヒドロ キシカルボン酸エステル誘導体を種々の手法で脱ヒドロキシフッ素化する方法が開 示されている。 3)の製造方法は、本発明と関連しており、 3- l) DAST[ (C H ) NS
F ]による方法 (非特許文献 3)、 3— 2)フルォロアルキルアミン試薬による方法 (非特 許文献 4)と、 3— 3)ヒドロキシル基をスルホン酸エステル基に変換してフッ素ァニォ ン (F— )で置換する方法 (非特許文献 5)がある。
[0004] またパーフルォロアルカンスルホニルフルオリドを使用する脱ヒドロキシフッ素化反 応として、 4)ヒドロキシル基を有する基質を DBU (1, 8—ジァザビシクロ [5. 4. 0]ゥ ンデセ _ 7 _ェン)等の特殊な有機塩基の存在下にパーフルォロブタンスルホニル フルオリド(C F SO F)等のパーフルォロアルカンスルホニルフルオリド(RfS〇 F ;R fはパーフルォロアルキル基を表す)で脱ヒドロキシフッ素化する方法(特許文献 1、 特許文献 2)と、 5)ヒドロキシル基を有する基質をトリエチルァミン [ (C H ) N]等の有 機塩基とトリェチルァミン'三フッ化水素錯体 [ (C H ) N' 3HF]等のフッ素化剤の存 在下にパーフルォロブタンスルホニルフルオリドで脱ヒドロキシフッ素化する方法(非 特許文献 6、非特許文献 7)が開示されている。
特許文献 1 :米国特許第 5760255号明細書
特許文献 2:米国特許第 6248889号明細書 非特許文献 1 : Tetrahedron Letters (英国), 1993年,第 34卷,第 2号, p. 293 - 296
非特許文献 2: Organic Syntheses (米国), 1990年,第 69卷, p. 10— 18 非特霄午文献 3: Journal oi t e Chemical Society, Perkin Transactions 1 : Organic and Bio - Organic Chemistry (1972— 1999) (英国), 1980年, 第 9号, p. 2029 - 2032
非特許文献 4 :日本化学会誌(日本), 1983年,第 9号, p. 1363 - 1368
非特許文献 5 : Tetrahedron ; Asymmetry (英国), 1994年,第 5卷,第 6号, ρ· 98
1 - 986
非特許文献 6: Organic Letters (米国), 2004年,第 6卷,第 9号, p. 1465— 146 8
非特許文献 7 :第 227回 米国化学会 春季年会要旨集(227th ACS Spring N ational Meeting Abstracts) , 2004年 3月 28日〜 4月 1日, ORGN 198, D. Zarkowsky他 (Merck;
発明の概要
[0005] 本発明の目的は、医薬および光学材料の重要中間体である光学活性ひ一フルォ ロカルボン酸エステル誘導体の工業的な製造方法を提供することにある。
[0006] 非特許文献 1および非特許文献 4の製造方法では、光学純度の高いひ一フルォロ カルボン酸エステル誘導体を得ることができなかった。非特許文献 2の製造方法では 、ラセミ体の光学分割であるために収率が 50%を超えることがなかった。非特許文献 3の製造方法では、非常に高価で且つ大量の取り扱いが危険な DASTを使用する 必要があった。非特許文献 5の製造方法では、ヒドロキシノレ基をスルホン酸エステル 基に変換する工程とフッ素ァニオン (F—)で置換する工程を別々に行う必要があった 。また該ニ工程を通して光学純度の低下が有意に認められ、基質として使用した光 学活性 α—ヒドロキシカルボン酸エステル誘導体の光学純度が目的生成物である光 学活性 α—フルォロカルボン酸エステル誘導体の光学純度に反映されないという問 題点があった。
[0007] 特許文献 1、特許文献 2、非特許文献 6および非特許文献 7においては、ヒドロキシ ル基を有する基質のパーフルォロアルカンスルホニルフルオリドを使用する脱ヒドロ キシフッ素化反応が広く開示されており、ヒドロキシノレ基をスルホン酸エステル基 (パ 一フルォロアルカンスルホン酸エステル基)に変換する工程とフッ素ァニオン(F— )で 置換する工程を一つの反応器内で連続的に行えるというメリットを有している。しかし ながら、環境への長期残留性と毒性が指摘され工業的な使用が制限されている炭素 数 4以上のパーフルォロアルカンスルホニルフルオリドを使用しており [例えば、パー フルォロオクタンスルホン酸誘導体の環境への長期残留性と毒性にっレ、ては、ファ ルマシア Vol. 40 No. 2 2004を参照]、さらに特許文献 1および特許文献 2の製 造方法では、工業的な使用において高価な DBU等の特殊な有機塩基を使用する 必要があり、また非特許文献 6および非特許文献 7の製造方法では、トリェチルァミン '三フッ化水素錯体等のフッ素化剤をパーフルォロブタンスルホニルフルオリドの他 に別途加える必要があった。
また特許文献 1、特許文献 2、非特許文献 6および非特許文献 7の脱ヒドロキシフッ 素化反応では、パーフルォロアルカンスルホニルフルオリドは基質のヒドロキシル基 をパーフルォロアルカンスルホニル化し、引き続くフッ素ァニオン(F—)との置換反応 においてパーフルォロアルカンスルホネートァニオン(Rf SO—; Rfはパーフルォロア
3
ルキル基を表す)として脱離するため、フッ素の原子経済性の観点から言及すれば、 充分なスルホニル化能と脱離能を有するものであれば、炭素鎖が短い方が工業的な 使用においてより有利であるがレ、。一フルォロオクタンスルホニルフルオリド(C F S
8 17
〇 F)くパーフルォロブタンスルホニルフルオリド<トリフルォロメタンスルホニルフル
2
オリド(CF S〇 F) ]、トリフルォロメタンスルホニルフルオリドを使用する脱ヒドロキシフ
3 2
ッ素化反応は具体的には開示されていなかった。さらに非特許文献 7のトリフルォロメ タンスルホン酸無水物—トリェチルアミン'三フッ化水素錯体—トリエチルァミン系から なる脱ヒドロキシフッ素化反応では、反応系中でガス状 (沸点 _ 21°C)のトリフルォロ メタンスルホニルフルオリドを生成し、基質のヒドロキシル基が効率的にトリフルォロメ タンスルホニル化できず、沸点の高レ、 (64°C)パーフルォロブタンスルホニルフルオリ ドとの組み合わせ(パーフルォロブタンスルホニルフルオリド―トリエチルァミン '三フ ッ化水素錯体ートリエチルァミン系)が好適であると開示されており、脱ヒドロキシフッ 素化剤のパーフルォロアルカンスルホニルフルオリドとして沸点の低レ、トリフルォロメ タンスルホニルフルオリドは好適でないことが明示されていた。
[0009] さらに特許文献 1、特許文献 2、非特許文献 6および非特許文献 7の脱ヒドロキシフ ッ素化反応の好適な基質として、本発明で対象とする光学活性ひーヒドロキシカルボ ン酸エステル誘導体は開示されておらず、該脱ヒドロキシフッ素化反応が光学純度の 高い光学活性ひ一フルォロカルボン酸エステル誘導体の製造方法に適応できること も開示されていな力つた。
[0010] この様に光学活性 α—フルォロカルボン酸エステル誘導体を工業的に製造できる 方法が強く望まれていた。
[0011] 本発明者らは上記の課題を解決するために鋭意検討した結果、光学活性 α—ヒド ロキシカルボン酸エステル誘導体をトリエチルァミン等の工業的に安価で且つ汎用さ れている有機塩基の存在下にトリフルォロメタンスルホニルフルオリドと反応させること により光学活性 α—フルォロカルボン酸エステル誘導体が製造できることを明らかに した。
[0012] 本製造方法の特徴は、光学活性 α—ヒドロキシカルボン酸エステル誘導体のトリフ ルォロメタンスルホ二ル化カ Sトリフルォロメタンスルホニルフルオリドを使用することに より良好に進行し、引き続くフッ素置換反応がトリフルォロメタンスルホ二ルイ匕におい て反応系内で等量副生したトリェチルァミン等の有機塩基のフッ化水素塩または錯 体だけで良好に進行することにある。この様な反応条件で脱ヒドロキシフッ素化反応 が良好に進行する基質は未だ公知文献に開示されておらず、光学活性ひーヒドロキ シカルボン酸エステル誘導体の基質特異性によるものである。また該脱ヒドロキシフッ 素化の反応条件では、光学純度の低下が殆ど認められず、基質として使用した光学 活性ひーヒドロキシカルボン酸エステル誘導体の光学純度が目的生成物である光学 活性ひ一フルォロカルボン酸エステル誘導体の光学純度に反映されることを明らか にした。
[0013] 本発明に依れば、式 [ 1]
[化 1]
Figure imgf000006_0001
で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体を有機塩基の存在下 にトリフルォロメタンスルホニルフルオリド(CF SO F)と反応させることにより、式 [2]
[化 2]
Figure imgf000006_0002
で示される光学活性ひ一フルォロカルボン酸エステル誘導体を製造する方法が提供 される。
[式 [1]及び [2]において、 Rは炭素数 1から 12の直鎖または分岐鎖のアルキル基を 表し、アルキル基の任意の炭素原子上に、芳香族炭化水素基、不飽和炭化水素基 、炭素数 1から 6の直鎖または分枝のアルコキシ基、ァリールォキシ基、ハロゲン原子
(フッ素、塩素、臭素、ヨウ素)、カルボキシル基の保護体、ァミノ基の保護体またはヒ ドロキシル基の保護体が一つまたは任意の組み合わせで二つ置換することもできる。
R1は炭素数 1から 8の直鎖または分岐鎖のアルキル基を表す。 Rと R1のアルキル基の 任意の炭素原子同士が共有結合を形成してもよい。 *は不斉炭素を表す] 詳細な説明
[0014] 本発明の製造方法は、現在までに公知文献に開示されている光学活性ひ—フノレ ォロカルボン酸エステル誘導体の製造方法の中で工業的に最も安価に実施できる 手段である。本発明の製造方法が従来の技術に比べて有利な点を以下に述べる。
[0015] 非特許文献 1および非特許文献 4に対しては、 目的生成物である光学活性 α _フ ルォロカルボン酸エステル誘導体の光学純度が基質として使用した光学活性ひーヒ ドロキシカルボン酸エステル誘導体の光学純度に反映されるため、光学純度の高い 基質を使用することにより光学純度の高い目的生成物を得ることができる。
[0016] 非特許文献 2に対しては、光学活性ひ—ヒドロキシカルボン酸エステル誘導体の脱 ヒドロキシフッ素化反応による光学活性ひ一フルォロカルボン酸エステル誘導体への 変換であるために収率が 50%に制限されなレ、。
[0017] 非特許文献 3に対しては、 DASTの様な非常に高価で且つ大量の取り扱いが危険 な試薬を使用する必要がない。
[0018] 非特許文献 5に対しては、ヒドロキシル基をスルホン酸エステル基に変換する工程と フッ素ァニオン (F—)で置換する工程を一つの反応器内で連続的に行うことができ、ま た該脱ヒドロキシフッ素化の反応条件では、光学純度の低下が殆ど認められず、基 質として使用した光学活性 α—ヒドロキシカルボン酸エステル誘導体の光学純度が 目的生成物である光学活性 α—フルォロカルボン酸エステル誘導体の光学純度に 反映される。
[0019] 特許文献 1、特許文献 2、非特許文献 6および非特許文献 7に対しては、環境への 長期残留性と毒性が問題となっている炭素鎖が長いパーフルォロアルカンスルホ二 ルフルオリドを使用する必要がなぐフッ素の原子経済性が最も高いトリフルォロメタ ンスルホニルフルオリドが使用できる。さらに特許文献 1および特許文献 2に対しては 、 DBU等の様な工業的な使用において高価で特殊な有機塩基を使用する必要がな ぐまた非特許文献 6および非特許文献 7に対しては、トリェチルァミン'三フッ化水素 錯体等のフッ素化剤を反応系内に別途加える必要がなぐ本発明の製造方法ではフ ッ素置換反応がトリフルォロメタンスルホ二ルイ匕において反応系内で等量副生したトリ ェチルァミン等の有機塩基のフッ化水素塩または錯体だけで良好に進行する。
[0020] また本発明で対象とする光学活性ひーヒドロキシカルボン酸エステル誘導体のパ 一フルォロアルカンスルホニルフルオリドによる脱ヒドロキシフッ素化反応では、特許 文献 1および特許文献 2で好適な有機塩基として開示された DBUを使用すると、 目 的生成物である光学活性ひ一フルォロカルボン酸エステル誘導体が収率良く得られ ず、本発明で開示したトリェチルァミンの使用が好適であるという新たな発明の効果 を見出した(実施例 3 vs.比較例 1、比較例 2)。 DBUはトリェチルァミンに比べて塩 基性が強い有機塩基に分類され、この強い塩基性に起因してカルボン酸エステル基 の加水分解や、パーフルォロアルカンスルホン酸エステル体力 パーフルォロアルカ ンスルホン酸が脱離して不飽和化合物を副生する等の副反応が起こっているものと 考えられる。従って本発明で対象とする光学活性ひーヒドロキシカルボン酸エステル 誘導体のパーフルォロアルカンスルホニルフルオリドによる脱ヒドロキシフッ素化反応 では、トリェチルァミン等の様な DBUに比べて弱い有機塩基を使用する方が優れて おり、該有機塩基との好適な組み合わせは光学活性ひ—ヒドロキシカルボン酸エス テル誘導体の基質特異性によるところが大きい。
[0021] 本発明で開示した特徴を有する脱ヒドロキシフッ素化反応は、従来のパーフルォロ アルカンスルホニルフルオリドを使用する脱ヒドロキシフッ素化反応の特許文献 1、特 許文献 2、非特許文献 6および非特許文献 7では開示されておらず、また本発明で対 象とする光学活性 α—フルォロカルボン酸エステル誘導体の製造方法に好適に適 応できることも開示されていな力つた。
[0022] 本発明の製造方法は選択性が高く分離の難しい不純物を殆ど副生しないため、光 学活性 α —フルォロカルボン酸エステル誘導体を工業的に製造するための極めて 有用な方法である。
[0023] 以下、本発明の光学活性 α—フルォロカルボン酸エステル誘導体の製造方法に ついて詳細に説明する。
[0024] 本製造方法は、式 [1]で示される光学活性ひ—ヒドロキシカルボン酸エステル誘導 体を有機塩基の存在下にトリフルォロメタンスルホニルフルオリドと反応させることによ りなる。さらに得られた光学活性ひ一フルォロカルボン酸エステル誘導体をハイドライ ド還元剤と反応させてもよい(スキーム 1)。
[0025] [化 3] スキ一ム 1
Figure imgf000008_0001
初めに第一工程のフッ素化では、先ず式 [1]で示される光学活性ひ—ヒドロキシカ ルボン酸エステル誘導体のトリフルォロメタンスルホニル化が進行し、引き続いて反 応系内で副生した有機塩基のフッ化水素塩または錯体によりフッ素置換反応が進行 し、 目的生成物である式 [2]で示される光学活性ひ—フルォロカルボン酸エステル 誘導体を与える。本フッ素化では、引き続くフッ素置換反応がトリフルォロメタンスル ホニル化において反応系内で等量副生したトリェチルァミン等の有機塩基のフツイ匕 水素塩または錯体だけで良好に進行することが重要な特徴である。このため該フッ 素化ではトリフルォロメタンスルホニルフルオリドの他にフッ素化剤(トリエチルァミン' 三フッ化水素錯体等)を併用することなく実施することが好ましい。トリフルォロメタン スルホニル化では α位の立体化学は保持され、引き続くフッ素置換反応では α位の 立体化学は反転する。従って光学活性 α—ヒドロキシカルボン酸エステル誘導体の α位 R体からは光学活性 α フルォロカルボン酸エステル誘導体の α位 S体が得ら れ、同様に α位 S体からは α位 R体が得られる。
式 [ 1]で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体の Rとしては、 メチル基、ェチル基、プロピル基、ブチル基、アミル基、へキシル基、ヘプチル基、ォ クチル基、ノニル基、デシル基、ゥンデシル基、ラウリル基が挙げられ、炭素数 3以上 のアルキル基は直鎖または分枝を採ることができる。またアルキル基の任意の炭素原 子上に、フエニル基、ナフチル基等の芳香族炭化水素基、ビニル基等の不飽和炭化 水素基、炭素数 1から 6の直鎖または分枝のアルコキシ基、フヱノキシ基等のァリール ォキシ基、ハロゲン原子(フッ素、塩素、臭素、ヨウ素)、カルボキシノレ基の保護体、了 ミノ基の保護体またはヒドロキシノレ基の保護体が一つまたは任意の組み合わせで二 つ置換することもできる。カルボキシル基、アミノ基およびヒドロキシル基の保護基とし て ίま、 Protective Groups in Organic Synthesis, Third Edition, 1999, J ohn Wiley & Sons, Inc.に記載された保護基を使用することができ、具体的に カルボキシル基の保護基としてはエステル基等が挙げられ、ァミノ基の保護基として はべンジル基、ァシル基(ァセチル基、クロロアセチル基、ベンゾィル基、 4—メチノレ ベンゾィル基等)、フタロイル基等が挙げられ、ヒドロキシル基の保護基としてはベン ジル基、 2—テトラヒドロピラニル基、ァシル基(ァセチル基、クロロアセチル基、ベンゾ ィル基、 4 メチルベンゾィル基等)、シリル基(トリアルキルシリル基、アルキルァリー ルシリル基等)等が挙げられ、特に 1, 2—ジヒドロキシル基の保護基としては 2, 2 - ジメチル— 1, 3—ジォキソランを形成する保護基等が挙げられる。
[0027] 本発明で対象とする製造方法は、式 [1]で示される光学活性ひーヒドロキシカルボ ン酸エステル誘導体の尺が「芳香族炭化水素基(当化合物の光学活性炭素 (C * )に 直接、芳香族環が結合するものをいう。例えば、フエニル基、トリル基など)」である場 合にも採用はできる。しかし、この場合、 Rがアルキル基もしくは、上述の置換された アルキル基の場合に比べて、 目的生成物である式 [2]で示される光学活性ひ —フル ォロカルボン酸エステル誘導体の光学純度が有意に低下する。このため、式 [ 1]で 示される光学活性ひーヒドロキシカルボン酸エステル誘導体の Rとしては、アルキル 基もしくは上述の置換されたアルキル基が好適である(基質として光学活性マンデル 酸エステル誘導体を使用した場合に目的生成物であるフッ素化物がラセミ体として得 られるとレ、う同様の現象が非特許文献 5におレ、ても開示されてレ、る)。
[0028] なお、不斉炭素 (C * )に直接、芳香族炭化水素基が結合する場合には、光学純度 が有意に低下するが、アルキル炭素を 1原子以上介して、その置換基として芳香族 炭化水素基が存在する場合 (すなわち、置換されたアルキル基)(例えば、実施例 3 に示される Ph— CH CH基)には、そのような光学純度の低下は起こらない。
[0029] 式 [ 1]で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体の R1としては、 メチノレ基、ェチル基、プロピル基、ブチル基、アミル基、へキシル基、ヘプチル基、ォ クチル基が挙げられ、炭素数 3以上のアルキル基は直鎖または分枝を採ることができ る。 さらに式 [ 1]で示される光学活性ひ一ヒドロキシカルボン酸エステル誘導体の R と R1のアルキル基の任意の炭素原子同士が共有結合を形成してラタトンを採ることも できる。
[0030] 式 [ 1]で示される光学活性ひ一ヒドロキシカルボン酸エステル誘導体の不斉炭素の 立体化学としては、 R配置または S配置を採ることができ、ェナンチォマー過剰率(% ee)としては、特に制限はなレ、が、 90%ee以上のものを使用すればよぐ通常は 95 %ee以上が好ましぐ特に 97°/0ee以上がより好ましい。
[0031] 式 [ 1]で示される光学活性ひ一ヒドロキシカルボン酸エステル誘導体は、 Syntheti c Communications (米国), 1991年,第 21卷,第 21号, p. 2165— 2170を参考 にして市販されている種々の光学活性ひ 一アミノ酸から同様に製造することができる
。また実施例および比較例で使用した(S)—乳酸ェチルエステルと (R) _4—フエ二 ノレ _ 2—ヒドロキシブタン酸ェチルエステルは市販品を利用した。
[0032] トリフルォロメタンスルホニルフルオリドの使用量としては、特に制限はないが、式 [1 ]で示される光学活性ひ—ヒドロキシカルボン酸エステル誘導体 1モルに対して 1モル 以上を使用すればよ 通常は 1〜: 10モルが好ましぐ特に 1〜5モルがより好ましい 。上記の様に、本発明は引き続くフッ素置換反応がトリフルォロメタンスルホ二ルイ匕に ぉレ、て反応系内で等量副生したトリェチルァミン等の有機塩基のフッ化水素塩また は錯体だけで良好に進行することが重要な特徴であり、トリフルォロメタンスルホニル フルオリドの他にフッ素化剤を併用することなく実施するという利点を生かすためには 、トリフルォロメタンスルホニルフルオリドの使用量としては、光学活性 α—ヒドロキシ カルボン酸エステル誘導体 1モルに対して等モル力ら小過剰の 1〜3モルがさらに好 ましい。
[0033] 有機塩基としては、トリメチルァミン、トリェチルァミン、ジイソプロピルェチルァミン、 トリ η—プロピノレアミン、ヒ。リジン、 2, 3—ノレチジン、 2, 4—ノレチジン、 2, 5—ノレチジン 、 2, 6—ノレチジン、 3, 4—ノレチジン、 3, 5—ノレチジン、 2, 3, 4—コリジン、 2, 4, 5— コリジン、 2, 5, 6—コリジン、 2, 4, 6—コリジン、 3, 4, 5—コリジン、 3, 5, 6—コリジ ン等が挙げられる。その中でもトリエチルァミン、ジイソプロピルェチルァミン、トリ η_ プロヒ。ノレ了ミン、ピリジン、 2, 3—ノレチジン、 2, 4一ノレチジン、 2, 6—ノレチジン、 3, 4 —ルチジン、 3, 5—ルチジン、 2, 4, 6—コリジンおよび 3, 5, 6—コリジンが好ましく 、特にトリェチノレアミン、ジイソプロピノレエチノレアミン、ピリジン、 2, 4 _ノレチジン、 2, 6 —ルチジン、 3, 5—ルチジンおよび 2, 4, 6—コリジンがより好ましい。
[0034] 有機塩基の使用量としては、特に制限はないが、式 [1]で示される光学活性ひ一ヒ ドロキシカルボン酸エステル誘導体 1モルに対して 1モル以上を使用すればよぐ通 常は 1〜: 10モルが好ましぐ特に 1〜5モルがより好ましい。
[0035] 反応溶媒としては、 η—へキサン、シクロへキサン、 η—ヘプタン等の脂肪族炭化水 素系、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレ ン、クロ口ホルム、 1 , 2—ジクロロェタン等のハロゲン化炭化水素系、ジェチルエーテ ノレ、テトラヒドロフラン、 tert ブチルメチルエーテル等のエーテル系、酢酸ェチル、 酢酸 n_ブチル等のエステル系、 N, N—ジメチルホルムアミド、 N, N ジメチルァセ トアミド、 1, 3—ジメチル一 2_イミダゾリジノン等のアミド系、ァセトニトリル、プロピオ 二トリル等の二トリル系、ジメチルスルホキシド等が挙げられる。その中でも n—ヘプタ ン、トルエン、キシレン、メシチレン、塩化メチレン、テトラヒドロフラン、酢酸ェチル、 N , N—ジメチルホルムアミド、ァセトニトリルおよびジメチルスルホキシドが好まし 特 にトルエン、メシチレン、塩化メチレン、テトラヒドロフラン、酢酸ェチル、 N, N ジメチ ルホルムアミドおよびァセトニトリルがより好ましレ、。これらの反応溶媒は単独または組 み合わせて使用することができる。
[0036] 反応溶媒の使用量としては、特に制限はないが、式 [1]で示される光学活性 α—ヒ ドロキシカルボン酸エステル誘導体 1モルに対して 0. 1L (リットル)以上を使用すれ ばよぐ通常は 0·:!〜 20L力 S好ましく、特に 0. 1〜: 10Lがより好ましい。
[0037] 温度条件としては、 100〜 + 100°Cであり、通常は— 80〜 + 80°Cが好ましぐ特 に 60〜 + 60°Cがより好ましレ、。トリフルォロメタンスルホニルフルオリドの沸点以上 の温度条件で反応を行う場合には耐圧反応容器を使用することができる。
[0038] 反応時間としては、 0.:!〜 48時間であるが、基質および反応条件により異なるため 、ガスクロマトグラフィー、液体クロマトグラフィー、 NMR等の分析手段により反応の 進行状況を追跡して原料が殆ど消失した時点を終点とすることが好ましい。
[0039] 後処理としては、特に制限はなレ、が、通常は反応終了液をアルカリ金属の無機塩 基 (例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウムまたは炭酸力リウ ム等)の水溶液に注ぎ込み、回収有機層を水洗、無機酸 (例えば、塩化水素、臭化 水素、硝酸または硫酸等)の水溶液または塩化カルシウムの水溶液で洗浄し、直接、 分別蒸留することにより粗生成物を得ることができる。必要に応じて精密蒸留すること により、 目的生成物である式 [2]で示される光学活性ひ 一フルォロカルボン酸エステ ル誘導体を高レ、ィ匕学純度で得ることができる。
[0040] 次に第二工程のハイドライド還元では、第一工程のフッ素化で得られた式 [2]で示 される光学活性ひ—フルォロカルボン酸エステル誘導体をハイドライド還元剤と反応 させることにより、式 [7]で示される光学活性 2 フルォロアルコール誘導体を与える 。本ハイドライド還元ではフッ素原子が置換した炭素原子の立体化学は保持され、光 学活性ひ一フルォロカルボン酸エステル誘導体のひ位 R体からは光学活性 2—フル ォロアルコール誘導体の 2位 R体が得られ、同様にひ位 S体からは 2位 S体が得られ る。本ハイドライド還元は公知の方法、例えば日本国特許第 2879456号明細書を参 考にして同様に行うことができる。
[0041] ハイドライド還元剤としては、(i_Bu) A1H、 LiAlH、 NaAlH (OCH CH OCH )
等のアルミニウムハイドライド系、ジボラン、 BH 'テトラヒドロフラン、 BH - S (CH ) 、
BH -N (CH ) 、 NaBH、 LiBH等のホウ素ハイドライド系等が挙げられる(i— Butt イソブチル基を表す)。その中でも(i— Bu) A1H、 LiAlH、 NaAlH (OCH CH〇C
H ) 、ジボラン、 BH .テトラヒドロフラン、 NaBHおよび LiBHが好ましぐ特に(i— B u) A1H、 LiAlHおよび NaAlH (OCH CH OCH ) がより好ましい。これらのハイド ライド還元剤は各種の無機塩の存在下に使用することもできる。
[0042] ノ、イドライド還元剤の使用量としては、特に制限はなレ、が、式 [2]で示される光学活 性 α—フルォロカルボン酸エステル誘導体 1モルに対して 0. 5モル以上を使用すれ ίまよく、通常 ίま 0· 5〜5モノレカ S好ましく、特に 0. 5〜3モノレカ Sより好ましレ、。
[0043] 反応溶媒としては、 η—へキサン、シクロへキサン、 η—ヘプタン等の脂肪族炭化水 素系、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素系、塩化メチレ ン、クロロホノレム、 1 , 2—ジクロロェタン等のハロゲン化炭化水素系、ジェチルエーテ ノレ、テトラヒドロフラン、 tert—ブチノレメチノレエーテノレ、 1 , 4 _ジォキサン等のエーテ ノレ系、メタノーノレ、エタノーノレ、 n—プロパノーノレ、 i—プロパノーノレ等のァノレコーノレ系 等が挙げられる。その中でも n—ヘプタン、トルエン、メシチレン、塩化メチレン、ジェ チノレエーテノレ、テトラヒドロフラン、 tert—ブチノレメチノレエーテノレ、 1, 4 _ジォキサン、 メタノーノレ、エタノールおよび i—プロパノールが好ましぐ特にトルエン、メシチレン、 テトラヒドロフラン、 tert—ブチルメチルエーテル、メタノールおよびエタノールがより 好ましい。これらの反応溶媒は単独または組み合わせて使用することができる。
[0044] 反応溶媒の使用量としては、特に制限はないが、式 [2]で示される光学活性ひ—フ ルォロカルボン酸エステル誘導体 1モルに対して 0. 1L (リットル)以上を使用すれば よぐ通常は 0·:!〜 20L力 S好ましく、特に 0. 1〜: 10Lがより好ましい。 [0045] 温度条件としては、 _ 100〜 + 100°Cであり、通常は _80〜 + 80°Cが好ましぐ特 に一 60〜 + 60。C力より好ましレヽ。
[0046] 反応時間としては、 0.:!〜 24時間であるが、基質および反応条件により異なるため 、ガスクロマトグラフィー、液体クロマトグラフィー、 NMR等の分析手段により反応の 進行状況を追跡して原料が殆ど消失した時点を終点とすることが好ましい。
[0047] 後処理としては、特に制限はなレ、が、通常は反応終了液に水、硫酸ナトリウム '水 和物、メタノールまたはエタノール等をカ卩え、過剰に使用したハイドライド還元剤を分 解し、無機物を濾過し、濾液を分別蒸留することにより粗生成物を得ることができる。 必要に応じて精密蒸留することにより、 目的生成物である式 [7]で示される光学活性 2—フルォロアルコール誘導体を高い化学純度で得ることができる。
実施例
[0048] 以下、実施例と比較例により本発明の実施の形態を具体的に説明するが、本発明 はこれらの実施例に限定されるものではない。
[実施例 1]
ステンレス鋼 (SUS)製耐圧反応容器に、下記式
[0049] [化 4]
Figure imgf000014_0001
で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体 137. 00g (1159. 74 mmol、 1. OOeq、光学純度 98. 5%ee)、メシチレン 380mlとトリエチノレアミン 120. 1 0g (1186. 88mmol、 1. 02eq)をカロえ、内温を 40oC付近に冷却してトリフノレ才ロ メタンスノレホニノレフノレ才リド 208. 80g (1373. 05mmol、 1. 18eq)をボンベより吹さ 込んだ。攪拌しながら約 4時間かけて室温に戻し、さらに室温で約 15時間攪拌した。 反応の変換率をガスクロマトグラフィーにより測定したところ 99. 8%であった。二層に 分離した反応終了液を 10%炭酸カリウム水溶液 1200mlに注ぎ込み、有機層を洗浄 した。回収有機層は、 1N塩化水素水溶液 1400ml、引き続いて 10%塩化カルシゥ ム水溶液 400mlで洗浄し、無水硫酸ナトリウム 50gで乾燥し、濾過し、下記式
[0050] [化 5]
Figure imgf000015_0001
で示される光学活性 α—フルォロカルボン酸エステル誘導体の粗生成物のメシチレ ン溶液 410. 40gを得た。得られた粗生成物のメシチレン溶液全量を分別蒸留し、本 留として 99. 63g (沸点 120〜127°C/常圧)を回収した。本留の1 H— NMRスぺタト ルよりメシチレンが 3. 7%含まれていることが分かり、トータル収率は 69% (後留と釜 残を併せたトータル収率は 72%)であった。本留のガスクロマトグラフィー純度は 100 . 0% (メシチレンを除く)であった。光学活性 α—フルォロカルボン酸エステル誘導 体の1 Η— NMRスペクトルと19 F— NMRスペクトルを下に示す。
ifi— NMR (基準物質:(CH ) Si,重溶媒: CDC1 )、 δ ppm : l . 32 (t, 7. 2Hz,
3H), 1. 58 (dd, 23. 6Hz, 6. 9Hz, 3H), 4. 26 (q, 7. 2Hz, 2H) , 5. 00 (dq, 4 9. 0Hz, 6. 9Hz, 1H) . 19F_NMR (基準物質: C F,重溶媒: CDC1 )、 δ ppm :
- 21. 88 (dq, 48. 9Hz, 24. 4Hz, IF) .
[実施例 2]
水素ィ匕リチウムァノレミニゥム 22. 70g (598. 00mmol、 0. 76eq)を含むテトラヒドロ フラン溶液 (テトラヒドロフラン使用量 630ml)に、下記式
[0051] [化 6]
Figure imgf000015_0002
で示される光学活性ひ—フルォロカルボン酸エステル誘導体 97. 97g (化学純度 96 . 3%、 785. 42mmolとする、 1. OOeq)を含むテトラヒドロフラン溶液(テトラヒドロフラ ン使用量 160ml)を氷冷下、内温を 10°C以下に制御しながら徐々に加え、同温度で 20分間攪拌し、さらに室温で 2時間 10分攪拌した。反応の変換率をガスクロマトダラ フィ一により測定したところ 100%であった。反応終了液に硫酸ナトリウム · 10水和物 を氷冷下、内温を 12°C以下に制御しながら徐々にカ卩え、過剰に使用した水素化リチ ゥムアルミニウムを粗方分解し、さらに 50〜60°Cで硫酸ナトリウム · 10水和物をカロえ ながら約 1時間攪拌した。硫酸ナトリウム · 10水和物はトータルで 149. 40g (463. 6 3mmol、 0. 59eq)を加えた。室温に降温した後、さらに無水硫酸ナトリウム 65. 00g (457. 62mmol、 0. 58eq)を加えて乾燥し、無機物を濾過し、無機物をテトラヒドロ フラン 80mlで 2回洗浄し、下記式
[化 7]
Figure imgf000016_0001
で示される光学活性 2—フルォロアルコール誘導体の粗生成物のテトラヒドロフラン 溶液を得た。得られた粗生成物のテトラヒドロフラン溶液全量を分別蒸留し、本留とし て 36· 77g (沸点 108〜110°C/常圧)を回収した。本留の1 H— NMRスペクトルより メシチレンが 5. 0%含まれていることが分かり、トータル収率は 57% (初留と釜残を併 せたトータル収率は 75%)であった。本留のガスクロマトグラフィー純度は 99. 8% (メ シチレンを除く)であった。本留の光学純度は Mosher酸エステルに誘導してガスクロ マトグラフィ一により決定したところ 98. 0%ee (R体)であった。光学活性 2—フルォロ アルコール誘導体の1 H— NMRスぺクトノレと19 F— NMRスペクトルを下に示す。
— NMR (基準物質:(CH ) Si,重溶媒: CDC1 )、 δ ppm : l . 33 (dd, 23. 6H z, 6. 4Hz, 3H) , 2. 00 (br, 1H) , 3. 50— 3. 85 (m X 2, 2H) , 4. 76 (dm, 49. 6Hz, 1H) .
19F_NMR (基準物質: C F,重溶媒: CDC1 )、 δ ppm :—21. 40 (d/sextet, 4
8. 9Hz, 24. 4Hz, IF) . [実施例 3]
ステンレス鋼 (SUS)製耐圧反応容器に、下記式
[0053] [化 8]
OH
R
しし? 。 Ης
で示される光学活性ひ—ヒドロキシカルボン酸エステル誘導体 2. 00g (9. 60mmol 、 1. 00eq、光学純度 99. 2%ee)、トノレェン 10mlと卜リエチノレアミン 2. 00g (19. 76 mmol、 2. 06eq)をカロえ、反応容器を _ 78°Cのドライアイス Zアセトン浴に浸けてトリ フルォロメタンスルホニルフルオリド 3. 00g (19. 73mmol、 2. 06eq)をボンベより吹 き込み、直ちに氷浴に移して 1時間攪拌した。反応の変換率をガスクロマトグラフィー により測定したところ 100%であった。反応終了液を飽和炭酸水素ナトリウム水溶液 に注ぎ込み、トルエンで抽出した。回収有機層は、無水硫酸ナトリウムで乾燥し、濾 過し、下記式
[0054] [化 9]
Figure imgf000017_0001
で示される光学活性ひ—フルォロカルボン酸エステル誘導体の粗生成物 2. 18gを 得た。粗生成物の19 F— NMRスペクトルによる内部標準法(内部標準物質; C F )で 含量を算出したところ、上記式で示される光学活性ひ一フルォロカルボン酸エステル 誘導体が 1. 52g含まれており、収率は 75%であった。得られた光学活性ひ —フルォ ロカルボン酸エステル誘導体の光学純度はキラル液体クロマトグラフィーにより決定 したところ 99. 2%ee (S体)であった。光学活性 α—フルォロカルボン酸エステル誘 導体の1 H
- NMRスペクトルと19 F - NMRスペクトルを下に示す。
ifi— NMR (基準物質:(CH ) Si,重溶媒: CDC1)、 δ ppm:l.30 (t, 7.2Hz,
3H), 2. 10-2.30(mX2, 2H) , 2.70— 2.85(mX2, 2H) , 4.23 (q, 7.2Hz , 2H), 4.88 (dt, 48.8Hz, 6.2Hz, 1H), 7.20— 7.40(Ar— H, 5H) .
19F_NMR (基準物質: C F,重溶媒: CDC1 )、 δ ppm:—31.38 (dt, 48.9Hz
, 27.4Hz, IF).
[比較例 1]
ステンレス鋼(sus)製耐圧反応容器に、下記式
[0055] [化 10]
Figure imgf000018_0001
で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体 1.00g(4.80mmol 、 1.00eq、光学純度 99.2%ee)、トノレェン 20mlと DBU2.20g(14.45mmol、 3. Oleq)を加え、反応容器を— 78°Cのドライアイス/アセトン浴に浸けてトリフルォロメ タンスルホニルフルオリド 1· 10g(7.23mmol、 1.51eq)をボンベより吹き込み、直 ちに氷浴に移して 1時間攪拌した。反応の変換率をガスクロマトグラフィーにより測定 したところ 100%であった。反応終了液を飽和炭酸水素ナトリウム水溶液に注ぎ込み 、トルエンで抽出した。回収有機層は、無水硫酸ナトリウムで乾燥し、濾過し、下記式
[0056] [化 11]
Figure imgf000018_0002
で示される光学活性ひ—フルォロカルボン酸エステル誘導体の粗生成物 0. 86gを 得た。粗生成物の19 F— NMRスペクトルによる内部標準法(内部標準物質; C F )で 含量を算出したところ、上記式で示される光学活性ひ一フルォロカルボン酸エステル 誘導体が 0. 32g含まれており、収率は 32%であった。得られた光学活性ひ —フルォ ロカルボン酸エステル誘導体の光学純度はキラル液体クロマトグラフィーにより決定 したところ 99. 2%ee (S体)であった。光学活性ひ—フルォロカルボン酸エステル誘 導体の1 H - NMRスペクトルと19 F - NMRスペクトルは実施例 3で得られたものと同 様であった。
[比較例 2]
ガラス性反応容器に、下記式
[0057] [化 12]
Figure imgf000019_0001
で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体 1. 00g (4. 80mmol 、 1. 00eq、光学純度 99. 2%ee)、 トノレェン 20mlと DBU2. 20g (14. 45mmol、 3. Oleq)を加え、反応容器を 0°Cの氷浴に浸けてパーフルォロブタンスルホニルフルォ リド 2. 15g (7. 12mmol、 1. 48eq)を加え、同温度で 1時間攪拌した。反応の変換 率をガスクロマトグラフィーにより測定したところ 100%であった。反応終了液を飽和 炭酸水素ナトリウム水溶液に注ぎ込み、トルエンで抽出した。回収有機層は、無水硫 酸ナトリウムで乾燥し、濾過し、下記式
[0058] [化 13]
Figure imgf000019_0002
で示される光学活性ひ—フルォロカルボン酸エステル誘導体の粗生成物 1. 17gを 得た。粗生成物の19 F— NMRスペクトルによる内部標準法(内部標準物質; C F )で 含量を算出したところ、上記式で示される光学活性ひ一フルォロカルボン酸エステル 誘導体が 0. 42g含まれており、収率は 42%であった。得られた光学活性ひ —フルォ ロカルボン酸エステル誘導体の光学純度はキラル液体クロマトグラフィーにより決定 したところ 98. 7%ee (S体)であった。光学活性ひ—フルォロカルボン酸エステル誘 導体の1 H - NMRスペクトルと19 F - NMRスペクトルは実施例 3で得られたものと同 様であった。

Claims

請求の範囲
[1] 式 [1]
[化 14]
Figure imgf000021_0001
で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体を有機塩基の存在下 にトリフルォロメタンスルホニルフルオリド(CF SO F)と反応させることにより、式 [2]
[化 15]
Figure imgf000021_0002
で示される光学活性ひ一フルォロカルボン酸エステル誘導体を製造する方法。
[式 [1]及び [2]において、 Rは炭素数 1から 12の直鎖または分岐鎖のアルキル基を 表し、アルキル基の任意の炭素原子上に、芳香族炭化水素基、不飽和炭化水素基 、炭素数 1から 6の直鎖または分枝のアルコキシ基、ァリールォキシ基、ハロゲン原子
(フッ素、塩素、臭素、ヨウ素)、カルボキシル基の保護体、ァミノ基の保護体またはヒ ドロキシル基の保護体が一つまたは任意の組み合わせで二つ置換することもできる。
R1は炭素数 1から 8の直鎖または分岐鎖のアルキル基を表す。 Rと R1のアルキル基の 任意の炭素原子同士が共有結合を形成してもよい。 *は不斉炭素を表す] 式 [3]
[化 16]
Figure imgf000022_0001
[式中、 R2はメチル基、ェチル基またはイソプロピル基を表し、 *は不斉炭素を表す] で示される光学活性ひ—ヒドロキシカルボン酸エステル誘導体をトリェチルアミン[ (C H ) N]の存在下にトリフルォロメタンスルホニルフルオリド(CF SO F)と反応させる ことにより、式 [4]
[化 17]
Figure imgf000022_0002
[式中、 R2はメチル基、ェチル基ま 基を表し、 *は不斉炭素を表す] で示される光学活性 α—フルォロカルボン酸 誘導体を製造する方法。
[3] 式 [5]
[化 18]
Figure imgf000022_0003
で示される光学活性 α—ヒドロキシカルボン酸エステル誘導体をトリェチルアミン[ (C Η ) Ν]の存在下にトリフルォロメタンスルホニルフルオリド(CF SO F)と反応させる ことにより、式 [6]
[化 19]
Figure imgf000023_0001
で示される光学活性 α—フルォロカルボン酸エステル誘導体を製造する方法。
[4] 請求項 1及至請求項 3の何れかにおいて、トリフルォロメタンスルホニルフルオリド(C F SO F)のみをフッ素化剤として使用し、他のフッ素化剤を併用しないことを特徴と する、請求項 1及至請求項 3の何れかに記載した製造方法。
[5] 請求項 1に記載の方法で製造した、式 [2]
[化 20]
Figure imgf000023_0002
で示される光学活性ひ—フルォロカルボン酸エステル誘導体をハイドライド還元剤と 反応させることにより、式 [7]
[化 21]
Figure imgf000023_0003
で示される光学活性 2—フルォロアルコール誘導体を製造する方法。
[式 [2]及び [7]において、 Rは炭素数 1から 12の直鎖または分岐鎖のアルキル基を 表し、アルキル基の任意の炭素原子上に、芳香族炭化水素基、不飽和炭化水素基 、炭素数 1から 6の直鎖または分枝のアルコキシ基、ァリールォキシ基、ハロゲン原子
(フッ素、塩素、臭素、ヨウ素)、カルボキシル基の保護体、ァミノ基の保護体またはヒ ドロキシル基の保護体が一つまたは任意の組み合わせで二つ置換することもできる。 R1は炭素数 1から 8の直鎖または分岐鎖のアルキル基を表す。 Rと R1のアルキル基の 任意の炭素原子同士が共有結合を形成してもよい。 *は不斉炭素を表す] 請求項 2に記載の方法で製造した、式 [4]
[化 22]
Figure imgf000024_0001
[式中、 R2はメチル基、ェチル基またはイソプロピル基を表し、 *は不斉炭素を表す] で示される光学活性 α—フルォロカルボン酸エステル誘導体をハイドライド還元剤と 反応させることにより、式 [8]
[化 23]
Figure imgf000024_0002
[式中、 *は不斉炭素を表す]で示される光学活性 2—フルォロアルコール誘導体を 製造する方法。
請求項 3に記載の方法で製造した、式 [6]
[化 24]
Figure imgf000024_0003
で示される光学活性ひ—フルォロカルボン酸エステル誘導体をハイドライド還元剤と 反応させることにより、式 [9]
[化 25]
Figure imgf000025_0001
で示される光学活性 2—フルォロアルコール誘導体を製造する方法。
PCT/JP2005/014426 2004-08-18 2005-08-05 光学活性α-フルオロカルボン酸エステル誘導体の製造方法 WO2006018991A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/597,105 US7462734B2 (en) 2004-08-18 2005-08-05 Process for production of optically active α-fluoro-carboxylic ester derivatives
CN200580021638.2A CN1976891B (zh) 2004-08-18 2005-08-05 光学活性α-氟代羧酸酯衍生物的制造方法
EP05768858A EP1780194A4 (en) 2004-08-18 2005-08-05 METHOD FOR THE PRODUCTION OF OPTICALLY ACTIVE ALPHA-FLUOROCARBOXYLIC ACID ESTERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004237883 2004-08-18
JP2004-237883 2004-08-18

Publications (1)

Publication Number Publication Date
WO2006018991A1 true WO2006018991A1 (ja) 2006-02-23

Family

ID=35907381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014426 WO2006018991A1 (ja) 2004-08-18 2005-08-05 光学活性α-フルオロカルボン酸エステル誘導体の製造方法

Country Status (4)

Country Link
US (1) US7462734B2 (ja)
EP (1) EP1780194A4 (ja)
CN (1) CN1976891B (ja)
WO (1) WO2006018991A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049531A1 (en) * 2006-10-27 2008-05-02 Bayer Cropscience Ag Stereoselective one step fluorination process for the preparation of 2-fluoropropionate
JP2009067776A (ja) * 2007-08-17 2009-04-02 Central Glass Co Ltd 光学活性α−フルオロカルボン酸エステルの精製方法
US8283489B2 (en) 2007-01-23 2012-10-09 Central Glass Company, Limited Process for producing optically active α-fluorocarboxylate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940790B2 (ja) * 2006-06-30 2012-05-30 セントラル硝子株式会社 脱ヒドロキシフッ素化剤
JP5849710B2 (ja) * 2011-02-03 2016-02-03 セントラル硝子株式会社 β−フルオロアルコール類の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184929A (ja) * 1989-12-15 1991-08-12 Kanto Chem Co Inc 光学活性フルオロアルコールおよびその製造方法
JPH11171858A (ja) * 1997-09-29 1999-06-29 Air Prod And Chem Inc アミノスルファートリフルオリドによるフッ素化方法
JP2003267923A (ja) * 2002-03-11 2003-09-25 Takasago Internatl Corp 光学活性3−ハロゲノカルボン酸エステルの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4439488C1 (de) * 1994-10-26 1996-03-21 Schering Ag Verfahren zur Umwandlung von Hydroxylgruppen in die entsprechenden Fluorverbindungen
GB9506309D0 (en) * 1995-03-28 1995-05-17 Secr Defence Pyrimidine compounds
US6248889B1 (en) * 1998-11-20 2001-06-19 3M Innovative Properties Company Process for converting an alcohol to the corresponding fluoride
US6903233B2 (en) * 2002-03-11 2005-06-07 Takasago International Corporation Process for producing optically active 3-halogenocarboxylic acid ester and 3-azidocarboxylic acid ester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184929A (ja) * 1989-12-15 1991-08-12 Kanto Chem Co Inc 光学活性フルオロアルコールおよびその製造方法
JPH11171858A (ja) * 1997-09-29 1999-06-29 Air Prod And Chem Inc アミノスルファートリフルオリドによるフッ素化方法
JP2003267923A (ja) * 2002-03-11 2003-09-25 Takasago Internatl Corp 光学活性3−ハロゲノカルボン酸エステルの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FOCELLA A. ET AL: "Simple Stereospecific Synthesis of (R)-2-Fluorohexanoic Acid Ethyl Ester", SYNTHETIC COMMUNICATIONS, vol. 21, no. 21, 1991, pages 2165 - 2170, XP002993305 *
YIN J. ET AL: "Direct and Convenient Conversion of Alcohols to Fluorides", ORGANIC LETTERS, vol. 6, no. 9, 29 April 2004 (2004-04-29), pages 1465 - 1468, XP002993304 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049531A1 (en) * 2006-10-27 2008-05-02 Bayer Cropscience Ag Stereoselective one step fluorination process for the preparation of 2-fluoropropionate
JP2010507604A (ja) * 2006-10-27 2010-03-11 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 2−フルオロプロピオネートの製造のための立体選択的一段階フッ素化法
US8093421B2 (en) * 2006-10-27 2012-01-10 Bayer Cropscience Ag Stereoselective one step fluorination process for the preparation of 2-flouropropionate
CN101528662B (zh) * 2006-10-27 2013-04-17 拜尔作物科学股份公司 用于制备2-氟丙酸酯的立体选择性一步氟化法
TWI411603B (zh) * 2006-10-27 2013-10-11 Bayer Cropscience Ag 製備2-氟丙酸酯之立體選擇性的單步氟化之方法
KR101406436B1 (ko) 2006-10-27 2014-06-13 바이엘 크롭사이언스 아게 2-플루오로프로피온에이트를 제조하기 위한 입체선택적인 1 단계 플루오르화 방법
US8283489B2 (en) 2007-01-23 2012-10-09 Central Glass Company, Limited Process for producing optically active α-fluorocarboxylate
CN101578254B (zh) * 2007-01-23 2014-04-02 中央硝子株式会社 用于生产光学活性α-氟代羧酸酯的方法
JP2009067776A (ja) * 2007-08-17 2009-04-02 Central Glass Co Ltd 光学活性α−フルオロカルボン酸エステルの精製方法

Also Published As

Publication number Publication date
EP1780194A4 (en) 2010-01-06
EP1780194A1 (en) 2007-05-02
US7462734B2 (en) 2008-12-09
CN1976891A (zh) 2007-06-06
US20080103327A1 (en) 2008-05-01
CN1976891B (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4839724B2 (ja) 光学活性α−フルオロカルボン酸エステル誘導体の製造方法
KR102646463B1 (ko) 치환 페닐 케톤의 제조 방법
US20080125589A1 (en) Process for Production of Fluoro Derivative
US8058412B2 (en) Dehydroxyfluorination agent
JP6645855B2 (ja) フルオロスルホニルイミド化合物の製造方法
EP2683685B1 (fr) Procede de preparation du difluoroacetonitrile et de ses derives
US8304576B2 (en) Process for production of halogenated alpha-fluoroethers
WO2006018991A1 (ja) 光学活性α-フルオロカルボン酸エステル誘導体の製造方法
JP2010116331A (ja) α−置換エステル類の製造方法
EP2357168B1 (en) Method for producing fluorosulfuric acid ester
JP2008013519A (ja) 光学活性2−フルオロアルコール誘導体の製造方法
US8217196B2 (en) Process for producing α-fluoro-β-amino acids
JP4887720B2 (ja) 光学活性含フッ素ベンジルアルコールの製造方法
JP5506914B2 (ja) フルオロアルカンスルフィン酸エステルの製造方法
JP4610252B2 (ja) 4−フルオロプロリン誘導体の製造方法
JP4675065B2 (ja) 4−フルオロプロリン誘導体の製造方法
EP3415491B1 (en) Method for producing phenoxyethanol derivative
JP2004505893A (ja) 求電子性フッ素を有するアンモニウム化合物、それを含む試薬、その使用方法およびそれを得るための合成方法
WO2012163896A1 (fr) Procede de preparation d&#39;un compose fluoromethylpyrazole sous forme acide carboxylique ou derivee
JP2019127449A (ja) 光学活性1−クロロ−3,3−ジフルオロイソプロピルアルコールの製造方法
JP2005343835A (ja) 2,5−2置換光学活性ピロリジン誘導体の製造法
JP2005008533A (ja) α−トリフルオロメチル−β−ヒドロキシカルボニル化合物の製造方法
JP2005035961A (ja) 光学活性1−(2−トリフルオロメチルフェニル)エチルアミンの製造方法
JPH08183783A (ja) 不斉炭素に結合した含フッ素アルキル基を有する光学活性化合物及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11597105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005768858

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580021638.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005768858

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11597105

Country of ref document: US