WO2006013803A1 - 撮像装置および撮像方法 - Google Patents

撮像装置および撮像方法 Download PDF

Info

Publication number
WO2006013803A1
WO2006013803A1 PCT/JP2005/014008 JP2005014008W WO2006013803A1 WO 2006013803 A1 WO2006013803 A1 WO 2006013803A1 JP 2005014008 W JP2005014008 W JP 2005014008W WO 2006013803 A1 WO2006013803 A1 WO 2006013803A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
imaging
photographer
focal length
image
Prior art date
Application number
PCT/JP2005/014008
Other languages
English (en)
French (fr)
Inventor
Hideto Motomura
Katsuhiro Kanamori
Hiroyoshi Komobuchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006013803A1 publication Critical patent/WO2006013803A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present invention relates to an imaging apparatus and an imaging method for imaging a subject.
  • a subject is placed on a turntable (360-degree rotation), a camera is attached to an arm (90-degree rotation), and an entire hemispherical imaging device that captures subject information by dividing it into 146 images from the entire hemisphere (For example, see Non-Patent Document 1).
  • this device in order to accurately acquire the texture information of the subject (such as the pattern of the subject surface and the uneven pattern), multi-viewpoint imaging is performed including the change in the positional relationship between the subject and the illumination.
  • a technique is disclosed in which the camera moves in the horizontal direction and the divided images are accurately pasted based on the camera position information measured each time the image is captured (for example, (See Patent Document 1).
  • Non-Patent Literature 1 Internet ⁇ URL: http: ⁇ kankyo.lelab.ecl.ntt.co.jp/realffin#real/ 3d.htm> [Search on July 29, 2004] (High Reality 3D Capturing System ( 1) Object imaging -Hemispherical imaging device-)
  • Patent Document 1 JP-A-9-218941 (Fig. 2)
  • changing the angle of view using a conventional multifocal lens has a problem in terms of operability.
  • the adjustment of the position and orientation of the photographic device is performed by physical movement such as the movement of the photographer, expansion and contraction of the arm, and rotation of the body. Speak.
  • the method in which the photographer rotates or slides the lens housing is an operation method that matches the mechanism of the multifocal lens, and the photographer needs a certain amount of learning.
  • changing the angle of view by button dialing is different from the physical movement that changes the position and orientation of the photographic device, so you want to capture the entire scene or capture details of a specific object ⁇ , t ⁇ It cannot be said that the operation method directly reflects the intention of shooting.
  • an object thereof is to provide an imaging apparatus and an imaging method capable of imaging by directly reflecting an imaging intention.
  • a second object is to provide an imaging device and an imaging method capable of easily performing multi-viewpoint imaging.
  • an imaging apparatus is measured by an imaging unit that images a subject, a distance measuring unit that measures a distance from the imaging device to the photographer, and the distance measuring unit. And a control unit that adjusts a zoom of a captured image captured by the imaging unit based on a distance to the photographer.
  • the imager captures an image to be captured by driving the imaging apparatus and changing the distance to the imager. Since zoom adjustment is incorporated into the framing operation that moves the imaging device, it is possible to zoom compared to indirect operation such as rotation and slide of the lens housing or button operation. Direct operation becomes possible
  • the imager can zoom the image to be captured simply by moving the position of the imaging device, and the practical value in today's widespread use of imaging devices such as camera-equipped mobile phones is extremely high.
  • FIG. 1 (a) to (f) are schematic views showing a conventional imaging apparatus.
  • FIG. 2 is a schematic diagram showing a situation where an imager takes an image of a subject using the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a configuration of an imaging apparatus according to Embodiment 1.
  • FIG. 4 is a flowchart showing a flow of an operation for changing a focal length in the imaging apparatus according to the first embodiment.
  • Fig. 5 is a diagram showing how the imager moves the image pickup apparatus according to Embodiment 1 by hand and the image displayed on the viewfinder at that time. It is a diagram showing a state of approaching, (b) an image displayed on the finder when approaching, (c) a state where the photographer moves the imaging apparatus away from himself, and (d) an image displayed on the finder when moving away.
  • FIG. 6 is a diagram showing another example of how the image pickup device according to Embodiment 1 is held and moved by the hand and another example of an image displayed on the viewfinder at that time.
  • FIG. 7 is a diagram illustrating the operating principle of the focal length calculation unit of the imaging apparatus according to the first embodiment.
  • FIG. 8 is a diagram for explaining the actual measurement of the distance between the subject image sensor and the photographer.
  • FIG. 9 is a block diagram showing a configuration of an imaging apparatus according to Embodiment 2.
  • FIG. 10 is a diagram illustrating the principle by which the imaging magnification providing unit of the imaging apparatus according to Embodiment 2 switches the imaging magnification.
  • FIG. 11 is a schematic diagram showing a state in which an imager takes an image of a subject using the imaging apparatus according to the second embodiment.
  • FIG. 12 is a diagram showing an example of temporal change in the observation distance.
  • FIG. 13 is a block diagram showing the configuration of the imaging apparatus according to Embodiment 3 of the present invention.
  • FIG. 14 shows the captured image taken by the movement amount calculation unit of the imaging apparatus according to Embodiment 3. It is a figure explaining the example which calculates the movement amount also about the distance change force of a person's face feature point.
  • FIG. 15 is a diagram illustrating the principle by which the movement amount calculation unit of the imaging apparatus according to the third embodiment calculates the movement amount.
  • FIG. 16 is a schematic diagram showing a state in which a subject is imaged using the imaging apparatus according to the first or third embodiment.
  • FIG. 17 is a block diagram showing a configuration of an imaging apparatus according to Embodiment 5 of the present invention.
  • Fig. 18 shows how the imager moves the image pickup apparatus according to Embodiment 5 with his hand.
  • FIG. 4 is a diagram showing how the imaging device is moved away by itself, (d) an image displayed on the viewfinder when the imaging device is moved away.
  • FIG. 19 is a diagram showing another example of how the image pickup device according to Embodiment 5 is moved by being held by the hand, and another example of an image displayed on the viewfinder at that time.
  • An imaging device includes an imaging unit that images a subject, a distance measurement unit that measures a distance from the imaging device to a photographer, and the imaging that is measured by the distance measurement unit. Control means for zooming the picked-up image picked up by the image pickup means based on the distance to the user.
  • the distance to the photographer includes values such as an absolute distance, a relative distance, and a relative distance ratio.
  • the image to be captured can be zoomed based on the distance to the photographer. Therefore, zoom adjustment is incorporated into the framing operation for moving the imaging device. Direct operation is possible rather than zoom adjustment by operation
  • the imaging unit includes a multifocal lens, and the control unit calculates a focal length of the multifocal lens based on a distance to the imager, and the multifocal point And a focal length control unit that controls the focal length of the lens to match the focal length calculated by the focal length calculation unit.
  • control means includes: a cut-out size calculation unit that calculates an image size to be cut out from the captured image based on a distance to the photographer; And an image cutout unit to be output.
  • the focal length of the imaging means can be controlled based on the distance to the photographer, or the image size cut out from the captured image can be controlled, so that the focal point is included in the framing operation for moving the imaging device. Since control of distance or cropped image size is incorporated, direct operation is possible rather than control of focal length or cropped image size by, for example, a button or dial operation.
  • the focal length calculation unit may calculate the focal length of the multifocal lens based on a difference between a distance to the photographer at a predetermined time and a distance to the photographer at a current time. .
  • the focal length calculation unit calculates a focal length of the multifocal lens when a distance to the imager at a current time is shorter than a distance to the imager at a predetermined time. If the distance to the imager at the current time is longer than the distance to the imager at a predetermined time, the focal length of the multifocal lens may be calculated to be short.
  • the cut-out size calculation unit calculates an image size cut out from the captured image based on a difference between a distance to the photographer at a predetermined time and a distance to the photographer at a current time. May be.
  • the cut-out size calculation unit calculates a cut-out image size of the captured image to be smaller when the distance to the photographer at the current time is shorter than the distance to the photographer at a predetermined time, When the current distance to the photographer is longer than the distance to the photographer at a predetermined time, the cut-out image size of the captured image may be calculated to be large.
  • the focal length of the imaging means is controlled based on the distance to the photographer, or the image is cut out from the captured image.
  • the size of the subject can be controlled, so that the subject can be captured at the same size.
  • the focal length calculation unit calculates the focal length of the multifocal lens to be shorter when the distance to the imager at a current time is shorter than the distance to the imager at a predetermined time, When the distance to the imager is longer than the distance to the imager at a predetermined time, the focal length of the multifocal lens may be calculated to be long.
  • the cut-out size calculation unit calculates a cut-out image size of the captured image larger when the distance to the photographer at the current time is shorter than the distance to the photographer at a predetermined time, If the current distance to the photographer is longer than the distance to the photographer at a predetermined time, the cut-out image size of the captured image may be calculated to be small.
  • the change in the distance from the imaging device to the subject is acquired indirectly by the change in the distance from the imaging device to the photographer, and the distance from the imaging device to the photographer becomes longer (the imaging device should be kept away from the photographer)
  • the details of the subject can be captured by controlling the focal length or the cut-out image size to narrow the imaging angle of view.
  • the imaging device is also moving away from the subject, so control the focal length or cut-out image size to control the angle of view. Can be expanded to capture the entire scene.
  • control means further includes an imaging magnification providing unit that sets a focal length range of the multifocal lens based on a distance to the photographer and provides the focal length calculation unit to the focal length calculation unit. May be.
  • control means further includes an imaging magnification providing unit that sets a range of the image size based on the distance to the photographer and provides the range to the cut-out size calculating unit. That's right.
  • the zooming by expanding and contracting the arm is performed by switching the focal length range of the multifocal lens or the image size range to be cut out. Operation can be facilitated.
  • the pre-imaging magnification providing unit may set the focal length range of the multifocal lens to be narrow when the standard deviation of the distance to the photographer at a predetermined time is less than a threshold value.
  • the pre-imaging magnification providing unit may set the image size range narrow when the standard deviation of the distance to the photographer at a predetermined time is less than a threshold value.
  • the pre-imaging magnification providing unit has a movement amount of the distance to the photographer at a first predetermined time that is not less than a first threshold and at a second predetermined time following the first predetermined time. When the standard deviation of the distance to the photographer is less than the second threshold, the range of the focal length of the multifocal lens may be set narrow. [0036] Further, the pre-imaging magnification providing unit has a movement amount of the distance to the photographer in a first predetermined time that is equal to or greater than a first threshold and in a second predetermined time following the first predetermined time. If the standard deviation of the distance to the photographer is less than a second threshold, the range of the image size may be set narrow.
  • the present invention can be implemented as an imaging method that can be implemented as such an imaging apparatus, and includes steps that are characteristic means of such an imaging apparatus. It can also be realized as a program executed by a computer. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM or a transmission medium such as the Internet.
  • an imaging apparatus that measures a distance to an imager with a distance sensor and controls an imaging angle of view according to the distance.
  • FIG. 2 is a schematic diagram showing a situation where an imager takes an image of a subject using the imaging apparatus according to Embodiment 1 of the present invention
  • Fig. 3 is a diagram of the imaging apparatus according to Embodiment 1 of the present invention. It is a block diagram showing the configuration.
  • the imaging device 100 is a device for imaging the subject 300. As shown in FIG. 3, the multifocal lens 101, the subject imaging sensor 102, the finder 103, the distance sensor 104, the focal length calculation unit 105, and the imaging A magnification providing unit 106, a focus control unit 107, an image recording unit 108, and an imaging magnification receiving unit 109 are provided.
  • the multifocal lens 101 changes the imaging range of the subject 300 imaged by the subject imaging sensor 102 by changing the focal length.
  • the subject imaging sensor 102 is an imaging sensor such as a CCD sensor or a CMOS sensor for imaging the subject 300.
  • the viewfinder 103 displays an image of the subject 300 captured by the subject imaging sensor 102 through the multifocal lens 101.
  • the distance sensor 104 is a distance to the photographer 200 (observation Measure the distance (Dml).
  • the photographing magnification acceptance unit 109 accepts the photographing magnification (maximum magnification) or the minimum magnification input by the photographer 200.
  • the photographer 200 increases the shooting magnification when he wants to shoot an enlarged image, and decreases the shooting magnification when he wants to shoot a reduced image.
  • the imaging magnification providing unit 106 holds the imaging magnification accepted by the imaging magnification accepting unit 109.
  • the focal length calculation unit 105 calculates the focal length of the multifocal lens 101 based on the observation distance Dml measured by the distance sensor 104 and the imaging magnification supplied from the imaging magnification providing unit 106.
  • the focal point control unit 107 controls the focal length of the multifocal lens 101 so that the focal length calculated by the focal length calculation unit 105 is obtained.
  • the image recording unit 108 records a captured image of the subject 300 captured by the subject imaging sensor 102 during recording.
  • FIG. 4 is a flowchart showing a flow of operation for changing the focal length in the imaging apparatus 100.
  • the imaging device 100 displays an image of the subject 300 captured by the subject imaging sensor 102 through the multifocal lens 101 on the viewfinder 103 (step S101).
  • the distance sensor 104 measures the distance (observation distance Dml) to the photographer 200, and outputs the measured observation distance Dml to the focal length calculation unit 105 (step S102).
  • the focal length calculation unit 105 determines whether or not a reference distance is set (step S103). If the reference distance is not set as a result of this determination, the focal distance calculation unit 105 sets the observation distance Dml input from the distance sensor 104 as the reference distance (step S104).
  • the focal distance calculation unit 105 calculates the difference (movement amount) between the reference distance and the observation distance Dml (step S105).
  • the focal length calculation unit 105 calculates the focal length of the winter focal lens 101 based on the movement amount and the imaging magnification supplied from the imaging magnification providing unit 106, and outputs the focal length to the focus control unit 107 (step S106).
  • the focal length calculation unit 105 calculates the focal length to increase the imaging magnification according to the movement amount.
  • the focal length calculation unit 105 increases the imaging magnification according to the movement amount.
  • the focal length is calculated to be short so as to reduce the rate.
  • the moving range in which the photographer 200 moves the image pickup apparatus 100 by hand is the shortest state in which the image pickup apparatus 100 is closest to the imager 200 within the range in which the image of the viewfinder 103 can be recognized by raising the arm (for example, From the observation distance of 10 cm), the arm is extended and the imaging apparatus 100 is separated from the photographer 200 until the longest state (for example, the observation distance is 50 cm). Therefore, for example, the photographer 200 holds the imaging device 100 by hand, and at the first intermediate position of the moving range (for example, the observation distance is 30 cm), the focal length of the multifocal lens 101 is also an intermediate focal length of the variable range.
  • the focal length calculation unit 105 sets the imaging magnification according to the movement amount. Calculate the longest focal length so that it is raised, and calculate the longest focal length (for example, the focal length is 192 mm) in the shortest state.
  • the focal length calculation unit 105 reduces the imaging magnification according to the amount of movement.
  • the focal length is calculated to be short (for example, the focal length is 24 mm), and the focal length is calculated to be the shortest in the longest state.
  • the reference distance it is necessary to roughly grasp the relationship between the observation distance and the focal distance. That is, when the reference distance is set when the observation distance is the longest state (the arm is most extended), it is desirable that the focal length of the multifocal lens 101 is the longest (the field angle is the narrowest). On the other hand, when the reference distance is set when the observation distance is the shortest (the arm is most retracted), it is desirable that the multifocal lens 101 has the shortest focal distance (the widest angle of view).
  • the reference distance may be set to a predetermined value (for example, 30 cm).
  • the reference distance and the focal distance can be set to predetermined values in advance.
  • the subject 300 is close to the imaging device 100 (for example, when photographing a cup placed on a desk)
  • high-magnification image enlargement is not necessary.
  • the photographer feels that a magnification of 4 is sufficient
  • the observation distance is the shortest (the arm is most retracted) and the focal length is set to 192 mm, the arm moves only half (intermediate position). The most extended state).
  • the change in magnification with respect to arm movement is too sensitive.
  • the photographer 200 In order to moderate the change in magnification with respect to the movement of the arm, the photographer 200 only needs to shorten the focal length when the observation distance is the shortest (the state where the arm is most contracted). Then, the imaging magnification providing unit 106 holds the imaging magnification accepted by the imaging magnification accepting unit 109 (4 times in this example), so that the focal length calculation unit 105 has an observation distance so as to be this imaging magnification. Change the focal length in the shortest state (96mm in this example).
  • the imaging magnification providing unit 106 holds the minimum magnification (in this example, 4 times) received by the imaging magnification accepting unit 109, so that the focal length calculation unit 105 observes the minimum magnification. If you change the setting of the focal length with the longest distance (96mm in this example),
  • the focal point control unit 107 changes the focal length of the multifocal lens 101 so as to be the focal length input from the focal length calculation unit 105 (step S107).
  • the observation distance Dml is changed, and the focal distance of the multifocal lens 101 can be changed.
  • Fig. 5 (a) when the photographer 200 brings the imaging device 100 closer to him, the angle of view of the multifocal lens 101 becomes narrower, and an enlarged image in which details of the subject can be confirmed is shown in Fig. 5 (b). Shown in As shown in the viewfinder 103.
  • Fig. 5 (c) when the photographer 200 moves the imaging device 100 away from himself, the angle of view of the multifocal lens 101 becomes wide, and a wide image that captures the entire scene is shown in Fig. 5 (d). Is displayed on the viewfinder 103 as shown in FIG. Thus, the photographer 200 can visually check the framing including the imaging angle of view using the finder 103.
  • the focal length calculation unit 105 calculates the focal length longer when the observation distance Dml is shorter than the reference distance. Conversely, if the observation distance D ml is longer than the reference distance, the focal length may be calculated to be longer so as to increase the imaging magnification according to the amount of movement. In this case, when the observation distance Dml becomes shorter than the reference distance, the focal distance calculation unit 105 calculates the focal distance to be short so as to reduce the imaging magnification according to the movement amount.
  • the focal distance calculation unit 105 calculates the focal distance to be short so as to reduce the imaging magnification according to the movement amount.
  • FIG. 6 (a) when the photographer 200 moves the imaging apparatus 100 away from his / her own power, the angle of view of the multifocal lens 101 is narrowed, and an enlarged image in which the details of the subject can be confirmed is shown in FIG. Displayed in viewfinder 103 as shown in b). Moving the imaging device 100 away from yourself is equivalent to moving the imaging device 100 closer to the subject 300, which is consistent with the general operation of the subject becoming larger when close to the subject, and is compatible as a zoom adjustment for shooting. High nature. Conversely, as shown in Fig. 6 (c), when the photographer 200 brings the imaging device 100 close to him, the angle of view of the multifocal lens 101 becomes wide, and a wide image that captures the entire scene is shown in Fig. 6 (d). Is displayed on the viewfinder 103 as shown in FIG.
  • FIG. 7 is a diagram for explaining the principle of operation of the focal length calculation unit 105.
  • the subject imaging sensor 102 images the subject 300 through the multifocal lens 101.
  • the length L1 of the subject 300 to be imaged is defined as follows: the distance between the subject 300 and the multifocal lens 101 is D1, the focal length is Fl, and the size of the subject imaging sensor 102 is S.
  • Equation 1 is T1 as a time reference point.
  • the distance Dm between the subject imaging sensor 102 and the photographer 200 is obtained simultaneously using the distance sensor 104 whose positional relationship is known with the subject imaging sensor 102.
  • the subject imaging sensor 102 and the distance sensor 104 are in the same position and move together.
  • the subject imaging sensor 102 and the distance sensor 104 are necessarily located at the same position, and the distance between the subject imaging sensor 102 and the photographer 200 is determined by the distance sensor 104 that does not necessarily need to be moved together.
  • the method is arbitrary if it can be converted into Dm.
  • the distance sensor 104 is arbitrary if the distance Dm between the subject imaging sensor 102 and the photographer 200 is obtained indirectly or directly, and examples thereof include an infrared light distance sensor and an ultrasonic distance sensor. As mentioned. If two image sensors are used, triangulation distance measurement is possible.
  • the length of the subject to be imaged is L2 (> L1).
  • the subject imaging sensor 102 captures the subject 300 to be imaged with a constant length so that the angle of view is full, and the distance sensor 104 is directed toward the subject 300. What is necessary is just to measure D1. Therefore, it is desirable that the distance sensor 104 has a variable direction or two sensors. And resolving (Equation 1) for the distance D1,
  • the length L2 of the subject at time T2 can be returned to L1 in (Equation 4) or (Equation 6), but any length can be obtained by multiplying the subject length L1 in (Equation 6) by the magnification factor a.
  • the focal length change amount ⁇ F for taking an image at (a L1) can be calculated.
  • the interval between time ⁇ 2 and time ⁇ 3 is determined by detection of observation distance D1, calculation of focal length change amount AF, and movement of the multifocal lens by focus control unit 107.
  • Focal length change amount ⁇ F is calculated using (Equation 7) and (Equation 8). It can be said that it can be executed at a rate (less than 30 frames Z seconds).
  • 1S using a multifocal lens as a device for changing the focal length is not limited to this.
  • Digital zoom by image processing, or a combination of optical zoom and digital zoom may be used.
  • the positions of the subject imaging sensor 102, the distance sensor 104, and the multifocal lens 101 shown in FIG. 2 are merely examples, and the present invention is not limited to this.
  • the positional relationship between the subject imaging sensor 102 and the distance sensor 104 needs to be known. Therefore, it is assumed that the relationship between the two is stored in memory.
  • the positional relationship between the subject imaging sensor 102 and the distance sensor 104 is stored in advance in the focal length calculation unit 105, and the subject imaging sensor 102 is used for calculating the focal length based on the observation distance D ml. And the positional relationship of the distance sensor 104 are considered.
  • the focal length calculation unit 105 is based on the difference (movement amount) between the reference distance and the observation distance Dml and the imaging magnification supplied from the imaging magnification providing unit 106.
  • the force for calculating the focal length is not limited to this.
  • the imaging magnification providing unit 106 has an imaging magnification corresponding to the observation distance Dml, and the focal distance calculation unit 105 refers to the imaging magnification providing unit 106 based on the observation distance Dml to thereby determine the multifocal point lens 101.
  • the focal length may be calculated.
  • the focal length adjustment is incorporated in the framing operation for moving the imaging apparatus, a direct operation can be performed rather than the angle of view adjustment by the button or dial operation. Therefore, it is possible to provide an imaging device with higher operability in the video entertainment field in which, for example, a scene in front of the eyes such as sports, sightseeing, and commemorative imaging is recorded as video. Also, in the field of cultural arts, a digital camera with a high degree of freedom that is not restricted by the subject or the imaging location. Can provide a one-off eve system.
  • the photographing magnification is received by the photographer in the photographing magnification receiving unit 109 has been described.
  • the case where the photographing magnification is changed without being received from the photographer will be described.
  • FIG. 9 is a block diagram showing a configuration of the imaging apparatus according to Embodiment 2 of the present invention.
  • the imaging device 150 does not include the imaging magnification accepting unit 109 of the imaging device 100 shown in FIG. 3, and the operation of the imaging magnification providing unit 151 is different.
  • FIG. 10 is a diagram illustrating the principle by which the imaging magnification providing unit 151 switches the imaging magnification.
  • the horizontal axis of Draft B1 represents time, the vertical axis is the observation distance normalized to 0 to 1, 0 is the observation distance closest to the photographer, and 1 is the position farthest from the photographer. Corresponds to observation distance. Therefore, the graph B1 is an example showing the temporal change of the observation distance.
  • the imaging magnification providing unit 151 monitors the change in the observation distance for a predetermined time. If the standard deviation is less than the threshold, the imaging magnification is decreased. For example, as shown in Fig. 10, when the observation distance is recorded from time T1 to time T2, and the standard deviation B2 of the observation distance is smaller than the threshold B3, the shooting magnification is reduced at time T3 (for example, changed from 8 times to 4 times) )
  • the method for calculating the change amount of the photographing magnification is arbitrary. For example, a method using the difference between the standard deviation B2 of the observation distance and the threshold value B3 is conceivable.
  • Image IB1 is a typical image displayed from time T1 to time T2
  • image IB2 is a typical image displayed from time T3 to time T4
  • image IB3 is displayed after time T4. This is a representative image.
  • the photographer 200 reads image IB2 after time T3. Since the image is reduced and displayed, to change the focal length within the same focal length range up to time T2, it is necessary to increase the fluctuation range of the observation distance.
  • graph B1 it can be seen that at time ⁇ 4, the photographer 200 widened the change in the observation distance and returned to the angle of view as in image ⁇ 3.
  • the focal length can be changed from time T1 to time ⁇ 2.
  • control exactly opposite to that in FIG. 10 is possible.
  • the normalized observation distance is reciprocated many times from 0 to 1, it is estimated that the wide-angle image and the narrow-angle image are compared. If this repetition continues for a predetermined period, the magnification can be increased, and the wide-angle image and the narrow-angle image can be compared with a smaller movement of the arm, and the zoom operation can be facilitated.
  • the determination of switching the imaging magnification is also reversed, and the imaging magnification providing unit 151 increases the imaging magnification when the standard deviation of the observation distance exceeds the threshold value.
  • the angle of view is adjusted, for example, it is conceivable that the angle of view is first roughly adjusted and then the angle of view is finely adjusted.
  • the image is taken at a wide angle like the image IC1, and the entire scene can be seen.
  • the photographer 200 selects a subject to be zoomed in from the scene and decides to zoom in on the subject 300, for example.
  • image IC2 first move roughly to position C2 so that the subject 300 is captured at the full angle of view, and then make fine adjustments in focal length before and after position C2.
  • the shooting magnification is constant over the entire expansion / contraction range of the arm, fine adjustment at position C2 is difficult.
  • the shooting magnification is increased so that the focal length changes greatly with a small amount of movement, and before and after position C2, the shooting magnification is decreased, and the focal length is increased with a large amount of movement. If you can change all of them, you can easily zoom. Based on the above thinking, when the shooting magnification is somewhat large (for example, 16 times), the amount of change in the observation distance is seen, and a large movement such as movement from position C1 to position C2 occurs. When the pattern stagnating in is powerful, switch the shooting magnification.
  • FIG. 12 is a diagram showing an example of the temporal change in the observation distance.
  • the horizontal axis represents time, and the vertical axis is the observation distance normalized to 0 to 1.
  • the imaging device 150 is at the position closest to the photographer, and when the normalized observation distance is 1, the imaging device 150 is at the position farthest from the photographer.
  • the imaging device 150 is in position C1 in FIG.
  • the image IC1 is displayed on the viewfinder 103.
  • the shooting magnification is set to 16 times.
  • the camera moves to the position C2 in FIG. 11, and the subject 300 is enlarged and displayed on the viewfinder 103 as shown in the image IC2.
  • the imaging magnification providing unit 151 looks at the movement amount D2 from the position C1 to the position C2, and starts monitoring the observation distance when the movement amount exceeds a threshold D3 (for example, 0.5).
  • a threshold D3 for example, 0.5
  • monitoring of the observation distance starts at time T2. After time T2, it stays at position C2, and the change in normalized observation position is small. Therefore, it is estimated that a fine adjustment of the focal length is attempted. This estimation is performed in the same manner as in FIG. 10 described above, and the imaging magnification providing unit 151 obtains the standard deviation D3 of the observation distance from time T2 to time T3 and determines that it is smaller than the threshold D4 for determining the imaging magnification switching.
  • change the shooting magnification and minimum magnification for example, the shooting magnification to 8 times and the minimum magnification to 4 times
  • the zoom is zoomed between 8x magnification and 8x according to the change of the observation distance from the longest state (the state where the arm is most extended) to the shortest state (the state where the arm is most contracted).
  • the calculation method of the change amount of the photographing magnification and the minimum magnification is arbitrary.
  • the average of the observation distance at time T3 can be used as the time T2 force.
  • the image pickup apparatus 150 is moved closer to the photographer 200 to observe the enlarged image, and at time T6, the image pickup apparatus 150 is moved away from the photographer 200 to observe the reduced image.
  • the amount of change in the normalized observation distance increases, and it can be seen that the arm is extended and contracted in a wider range and the focal length is controlled finely.
  • FIGS. 11 and 12 can also be applied to the case of force zoom-out described with zoom-in as an example.
  • a new subject appears in front of the power of observing the details of the subject 300 at time T1, or the user wants to shoot the entire scene immediately, such as when it makes a sound of interest.
  • framing such as panning or tilting is used to adjust the shooting direction to specify the shooting purpose.
  • the means for automatically detecting that the angle of view has stopped is the same as the procedure in Fig. 12, and the standard This can be done by deviation threshold processing.
  • an imaging apparatus that measures the distance to the imager with a single imaging sensor instead of the distance sensor of Embodiment 1 and controls the imaging angle of view according to this distance will be described.
  • FIG. 13 is a block diagram showing the configuration of the imaging apparatus according to Embodiment 3 of the present invention.
  • the same parts as those in the image pickup apparatus shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the imaging device 400 is a device for imaging the subject 300. As shown in FIG. 13, the multifocal lens 101, the subject imaging sensor 102, the viewfinder 103, the observation distance measurement imaging sensor 401, and the movement amount calculation. A unit 402, a focal length calculation unit 403, an imaging magnification providing unit 106, a focus control unit 107, and an image recording unit 108 are provided.
  • the observation distance measurement imaging sensor 401 is an imaging sensor for imaging the imager 200 and its background. Based on the image of the photographer 200 captured by the observation distance measurement imaging sensor 401, the movement amount calculation unit 402 changes the distance (observation distance Dml) between the observation distance measurement imaging sensor 401 and the photographer 200. Calculate (movement amount U).
  • the movement amount U is calculated from the distance change of the facial feature point of the photographer 200 shown in the captured image. For example, when the pupil is a facial feature point, as shown in FIG. 14, the movement amount U of the observation distance Dml is calculated from the change in the distance between the pupils 501 of both eyes (interpupillary distance X).
  • FIG. 15 shows the distance (observation distance Dml) to the photographer 200 using the observation distance measurement image sensor 401, and the subject imaging sensor 102 and the multifocal lens 101 are based on the observation distance Dml.
  • FIG. 5 is a diagram illustrating the principle of imaging a subject 300.
  • the task setting for capturing the length L1 of the subject at time T1, generating a movement amount U at time T2, and returning the length of the subject 300 imaged at time T3 back to L1 is the same as in FIG. .
  • the conditions on the subject imaging sensor 102 side are the same as those in FIG.
  • the difference from Fig. 7 is the method of measuring the observation distance Dml, which is the use of the imaging sensor 401 for measuring the observation distance.
  • the observation distance measurement imaging sensor 401 captures the face of the photographer 200 together with the background, and the movement amount calculation unit 402 extracts the facial feature points to calculate the distance between the facial feature points.
  • the distance between facial feature points is the pupil distance X as shown in FIG.
  • the movement amount U may be obtained from the imaging sensor 401 for observation distance measurement.
  • the distance between the imaging sensor 401 for measuring the observation distance is Lml at time T1 and Lm2 at time T2 in FIG.
  • the movement amount U calculated as described above is output to the focal length calculation unit 403.
  • the focal length calculation unit 403 calculates the focal length of the multifocal lens 101 based on the movement amount U and the imaging magnification supplied from the imaging magnification providing unit 106.
  • the face feature amount is a reference point for calculating the movement amount U
  • the reference point is set on the pupil 501 and moved by a change in the inter-pupil distance X as shown in FIG.
  • the amount U is defined, it does not limit the setting of the reference point when calculating the moving amount U of the observation distance. For example, it is possible to extract an edge reflected in the background of the face and use it as a reference point. It is also possible for the photographer 200 to actively wear a marker and use this marker as a reference point.
  • the focal length calculation unit 403 can calculate the focal length so that the subject is imaged with the same length L1 even when the moving distance U occurs. is there. As a result, even when the observation distance Dml changes by the movement amount U, the subject 300 can be imaged with the same length.
  • the configuration other than the imaging sensor 401 for measuring the observation distance, the movement amount calculation unit 402, and the focal length calculation unit 403 is the same as that of the first embodiment, and the realized functions are also the same.
  • the effect of using an image sensor for observation distance measurement is the diversity of sensors.
  • the ultrasonic sensor infrared light sensor is dedicated to distance measurement and is difficult to use in combination with other applications.
  • the imaging sensor can be used for two purposes: imaging and distance measurement. Therefore, in the present embodiment, since the moving distance U of the observation distance Dml to the photographer 200 is calculated by the observation distance measurement imaging sensor 401, the same function as the imaging apparatus 100 of the first embodiment is realized.
  • a highly diverse imaging device that can be used for two purposes: imaging and distance measurement.
  • a camera-equipped mobile phone that has been rapidly spreading in recent years has two imaging sensors, one for imaging the other side and the other for many products that have a function for imaging the other side. . It is not necessary to operate the local camera when shooting the subject with the remote camera and checking the framing with the viewfinder. Therefore, there is an advantage that this can be diverted to observation distance measurement.
  • the imager 100 described in Embodiment 1 or the implementation of the imaging device 100 A case will be described in which the photographer holds the imaging apparatus 400 described in the third embodiment with his hand and moves around the subject and archives the subject by multi-viewpoint imaging.
  • FIG. 16 is a schematic diagram showing a state where an imager takes an image of a subject using the imaging apparatus according to Embodiment 1 or Embodiment 3.
  • FIG. 16 is a schematic diagram showing a state where an imager takes an image of a subject using the imaging apparatus according to Embodiment 1 or Embodiment 3.
  • the imager 200 moves around the subject 300 at a fixed distance, and uses the imaging device 100 (400) to capture the subject 300 with multi-viewpoint power.
  • four viewpoints A to D are shown as examples, and captured images displayed on the finder 103 are shown in images 601 to 604 for each viewpoint.
  • the imaging angle of view can be kept constant by the method described in Embodiments 1 and 3, the subject 300 can be imaged with the same size for all viewpoints, and shape information and texture information can also be obtained in a three-dimensional manner. Be captured.
  • the imager can take an image of the object 300 with the same size from all viewpoints by holding the image pickup device with his hand and moving around the object at a fixed distance. Can absorb movement. Therefore, it is excellent in portability, and it is possible to realize a three-dimensional high-performance archive with a high degree of freedom without restrictions on the size, weight, and material of the subject.
  • an imaging apparatus that measures a distance to a photographer with a distance sensor, controls an imaging angle of view according to the distance, and extracts a part of the captured image.
  • FIG. 17 is a block diagram showing a configuration of the imaging apparatus according to Embodiment 5 of the present invention.
  • the same parts as those in the image pickup apparatus shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the imaging apparatus 700 is an apparatus for imaging the subject 300. As shown in FIG. 17, the multifocal lens 101, the subject imaging sensor 102, the finder 103, the distance sensor 104, the focal length calculation unit 105, the imaging A magnification providing unit 106, a focus control unit 107, a cutout range calculation unit 701, an image cutout unit 702, and an image recording unit 108 are provided.
  • the cutout range calculation unit 701 calculates the cutout range based on the observation distance Dml measured by the distance sensor 104. For example, the cutout range calculation unit 701 calculates the cutout range by specifying the ratio ⁇ as in the following (Equation 12). [0119] [Equation 12]
  • Dm, min represents the minimum observation distance
  • Dm, max represents the maximum observation distance
  • the image cutout unit 702 cuts out the image of the subject 300 captured by the subject imaging sensor 102 through the multifocal lens 101 within the cutout range calculated by the cutout range calculation unit 701, and the viewfinder 103 and the image recording unit Output to 108.
  • the observation distance D ml is changed, and the focal length of the multifocal lens 101 can be changed.
  • the cutout range is set to the observation distance Dml. It can be controlled in conjunction.
  • FIG. 18 (a) when the photographer 200 brings the imaging device 100 close to himself / herself, the angle of view of the multifocal lens 101 becomes narrower, and the upper left part of the subject 300 is cut out to reveal details. An enlarged image that can be confirmed is displayed on the viewfinder 103 as shown in FIG. Conversely, as shown in Fig. 18 (c), when the photographer 200 moves the imaging device 100 away from himself, the angle of view of the multifocal lens 101 becomes wide, and a wide image that captures the entire scene is shown in Fig. 18 (d). As shown in Displayed in viewfinder 103.
  • the image coordinates of the upper left vertex and the lower right vertex shown in (Expression 12) may be moved by a predetermined amount.
  • the photographer 200 can visually check the framing including the angle of view and the cutout range using the finder 103.
  • FIG. 19 (c) when the photographer 200 brings the imaging device 100 closer to him / her, the angle of view of the multifocal lens 101 becomes wide, and a wide image that captures the entire scene is shown in FIG. 19 (d). It is displayed on the finder 103 as shown.
  • the adjustment of the cut-out range of the captured image is incorporated in the framing operation for moving the imaging device, so that a direct operation can be performed rather than the angle of view adjustment by a button or dial operation.
  • the image to be clipped is arbitrary. For example, when the captured image recorded in the image recording unit 108 is played back and displayed on the display, the image is clipped. May be executed.
  • the imaging magnification providing unit 106 may be configured to switch the imaging magnification according to the change in the observation distance as in the second embodiment.
  • the imaging apparatus and imaging method according to the present invention can control the focal length by moving the imaging apparatus by the photographer.
  • a digital camera for example, a digital camera, a still camera, a video camera, a mobile phone with a camera, etc. It is useful for the imaging apparatus and the imaging method.

Abstract

 撮像意図を直接反映して撮像することができる撮像装置および撮像方法を提供する。また、簡単に多視点撮像を行うことができる撮像装置および撮像方法を提供する。撮像装置100は、焦点距離を変更することによって被写体撮像センサ102で撮像される被写体300の撮像範囲を変更する多焦点レンズ101と、この多焦点レンズ101を通して被写体撮像センサ102で撮像される被写体300の画像を表示するファインダ103と、撮像者200までの距離(観察距離Dm1)を計測する距離センサ104と、観察距離Dm1と撮像倍率提供部106から供給される撮像倍率とに基づいて多焦点レンズ101の焦点距離を算出する焦点距離算出部105と、焦点距離算出部105で算出された焦点距離となるように多焦点レンズ101の焦点距離を制御する焦点制御部107とを備える。                                                                                 

Description

明 細 書
撮像装置および撮像方法
技術分野
[0001] 本発明は、被写体を撮像する撮像装置および撮像方法に関するものである。
背景技術
[0002] 近年、様々な機器のデジタルィ匕によってメディア融合が進展し、ユーザーは機器の 違 、を意識せずに様々な情報にアクセスできるようになってきて!/、る。電子商取引に 代表されるように、実物の画像を撮像装置で電子的に取得し、仮想物体を電子的に 流通させて、物理的距離も意識せずに活動できる環境が整いつつある。このようなバ 一チャルコミュニケーションを構築するには、実物の画像を正確に取り込むことが必 要になる。
[0003] 例えばシーン全体を見渡した 、場合、画角の広 、撮像装置を使って画像を取り込 むことになる。逆に、ある特定のオブジェクトの細部が見たい場合、画角の狭い撮像 装置を使って画像を取り込むことになる。また、必要なエリアだけを画像取り込みする ために、画角は固定にして、撮像装置の向き、位置を調整する場合 (フレーミング)も ある。以上の要求に応えるために、現在市販されているスチルカメラやムービーカメラ の多くは、多焦点レンズ 801を搭載しており、図 1 (a)に示すようにレンズ筐体を回転 させたり、図 1 (b)に示すようにスライドさせたり、あるいは図 1 (c)に示すようにボタン 8 02を押下したり、図 1 (d)に示すようにダイアル 803を回転させたりすることによって画 角変更が可能である。また、フレーミングの状態を確認するために、図 1 (e)および図 1 (f)に示すようにファインダ 804が搭載されていて、撮像画像を目視で確認できる。
[0004] デジタルアーカイブの分野では、歴史的価値の高い建造物や芸術作品などを永久 保存する目的で、より高精度な画像取り込みを必要とする。また、 BtoB (Business To Business)電子商取引においても高精度の画像取り込みが求められ、質感や色合い など、実物とほぼ同じ印象を画像で確認できるシステムの開発が進められている。被 写体の形状情報を正確に取得するために、被写体とカメラの位置関係を変更して、 複数回に分けて撮像をする多視点撮像が活用されている。被写体をあらゆる角度か ら観察できるように、取り込まれたデータは 3次元的に管理され、観察視点に応じて 2 次元ディスプレイ面に投影される。このようなシステムとして、被写体を回転台(360度 回転)に乗せ、カメラをアーム(90度回転)に取り付けて、全半球面から 146枚の画像 に分けて被写体情報を取り込む全半球面撮影装置が提案されて 、る (例えば、非特 許文献 1参照)。この装置では、被写体のテクスチャ情報 (被写体表面の模様や凹凸 パターンなど)を正確に取得するために、被写体と照明の位置関係の変更も含めて 多視点撮像を行っている。また、より大きな被写体を取り込むために、カメラが水平方 向に移動し、撮像のたびに計測されたカメラ位置情報に基づ ヽて分割画像を正確に 貼り合わせる技術が開示されている (例えば、特許文献 1参照)。
非特許文献 1 :インターネット < URL : http:〃 kankyo.lelab.ecl.ntt.co.jp/realffin#real/ 3d.htm > [2004年 7月 29日検索] (高リアリティ 3Dキヤプチヤシステム(1)物体撮像 〜全半球面撮影装置〜)
特許文献 1 :特開平 9— 218941号公報(図 2)
発明の開示
発明が解決しょうとする課題
[0005] しカゝしながら、従来の多焦点レンズによる画角変更は、操作性の点で課題を有する 。つまり、撮影装置の位置や向きの調整は、撮影者が移動したり、腕の伸縮や体の回 転など、身体的動作で行われるため、多焦点レンズによる画角変更と動作が乖離し て ヽる。レンズ筐体を撮像者が回転あるいはスライドさせる方式は多焦点レンズの機 構に合わせた操作方法であり、撮像者は一定の学習を必要とする。また、ボタン'ダ ィアル操作による画角変更も撮影装置の位置や向きを変更する身体的動作と乖離し ているため、シーン全体を取り込みたい、あるいは特定のオブジェクトの細部を取り込 みた ヽ、 t ヽぅ撮像意図を直接反映した操作方法とは言えな ヽ。
[0006] さらに、従来の多視点撮像装置では、システムが大掛力りになり、スペースやコスト の負担が大きい。また被写体を回転台に設置するため、被写体の大きさや重量、材 質などが制限される。さらに携帯性が低いため、撮像の場所が限定される。撮像時間 も課題であり、例えば上記の全半球面撮影装置では、全半球面を 15度間隔で撮像 する場合(146枚撮像)、撮像に要する時間は 1時間である。また、(特許文献 1)の力 メラ位置計測も水平位置の計測に限られ、撮像対象が限定される課題がある。
[0007] そこで、本発明は上記の事情に鑑みてなされたものであり、第 1に撮像意図を直接 反映して撮像することができる撮像装置および撮像方法を提供することを目的とする
[0008] 第 2に、簡単に多視点撮像を行うことができる撮像装置および撮像方法を提供する ことを目的とする。
課題を解決するための手段
[0009] 上記目的を達成するため、本発明に係る撮像装置は、被写体を撮像する撮像手段 と、当該撮像装置から撮像者までの距離を計測する距離計測手段と、前記距離計測 手段で計測された前記撮像者までの距離に基づ ヽて、前記撮像手段で撮像される 撮像画像をズーム調整する制御手段とを備えることを特徴とする。
発明の効果
[0010] 以上の説明から明らかなように、本発明に係る撮像装置および撮像方法によれば、 撮像者が撮像装置を動力ゝして撮像者までの距離を変えることによって、撮像する画 像をズームすることができるので、撮像装置を動かすフレーミング動作の中にズーム 調整が組み込まれるため、例えばレンズ筐体の回転やスライド、あるいはボタンゃダ ィアル操作のような間接的な操作によるズーム調整よりも直接的な操作が可能になる
[0011] よって、撮像者が撮像装置の位置を動かすだけで、撮像する画像をズームすること ができ、カメラ付き携帯電話等の撮像装置が普及している今日における実用的価値 は極めて高い。
図面の簡単な説明
[0012] [図 1]図 1 (a)〜 (f)は従来の撮像装置を示す概略図である。
[図 2]図 2は本発明の実施の形態 1に係る撮像装置を用いて撮像者が被写体を撮像 する様子を示す概略図である。
[図 3]図 3は実施の形態 1に係る撮像装置の構成を示すブロック図である。
[図 4]図 4は実施の形態 1に係る撮像装置における焦点距離の変更の動作の流れを 示すフローチャートである。 圆 5]図 5は実施の形態 1に係る撮像装置を撮像者が手で持って動かす様子および その時にファインダに表示される画像を示す図であり、 (a)撮像者が撮像装置を自分 に近づける様子、(b)近づけた際にファインダに表示される画像、(c)撮像者が撮像 装置を自分力 遠ざける様子、(d)遠ざけた際にファインダに表示される画像を示す 図である。
圆 6]図 6は実施の形態 1に係る撮像装置を撮像者が手で持って動かす様子および その時にファインダに表示される画像の他の例を示す図であり、(a)撮像者が撮像装 置を自分力 遠ざける様子、(b)遠ざけた際にファインダに表示される画像、(c)撮像 者が撮像装置を自分に近づける様子、 (d)近づけた際にファインダに表示される画 像を示す図である。
圆 7]図 7は実施の形態 1に係る撮像装置の焦点距離算出部の動作原理を説明する 図である。
圆 8]図 8は被写体撮像センサと撮像者との距離を実測について説明する図である。
[図 9]図 9は実施の形態 2に係る撮像装置の構成を示すブロック図である。
圆 10]図 10は実施の形態 2に係る撮像装置の撮像倍率提供部が撮影倍率を切り替 える原理を示す図である。
[図 11]図 11は実施の形態 2に係る撮像装置を用 ヽて撮像者が被写体を撮像する様 子を示す概略図である。
圆 12]図 12は観察距離の時間的変化の一例を示す図である。
圆 13]図 13は本発明の実施の形態 3に係る撮像装置の構成を示すブロック図である 圆 14]図 14は実施の形態 3に係る撮像装置の移動量算出部が、撮像された撮像者 の顔特徴点の距離変化力も移動量を算出する例を説明する図である。
圆 15]図 15は実施の形態 3に係る撮像装置の移動量算出部が、移動量を算出する 原理を説明する図である。
圆 16]図 16は実施の形態 1または実施の形態 3に係る撮像装置を用いて被写体を 撮像する様子を示す概略図である。
圆 17]図 17は本発明の実施の形態 5に係る撮像装置の構成を示すブロック図である
O 圆 18]図 18は実施の形態 5に係る撮像装置を撮像者が手で持って動かす様子およ
びそ〇の時にファインダに表示される画像を示す図であり、(a)撮像者が撮像装置を自 分に近づける様子、(b)近づけた際にファインダに表示される画像、(c)撮像者が撮 像装置を自分力 遠ざける様子、(d)遠ざけた際にファインダに表示される画像を示 す図である。
圆 19]図 19は実施の形態 5に係る撮像装置を撮像者が手で持って動かす様子およ びその時にファインダに表示される画像の他の例を示す図であり、(a)撮像者が撮像 装置を自分力も遠ざける様子、(b)遠ざけた際にファインダに表示される画像、(c)撮 像者が撮像装置を自分に近づける様子、 (d)近づけた際にファインダに表示される 画像を示す図である。
符号の説明
150、 400、 700 撮像装置
101 多焦点レンズ
102 被写体撮像センサ
103 ファインダ
104 距離センサ
105、 403 焦点距離算出部
106、 151 撮像倍率提供部
107 焦点制御部
108 画像記録部
109 撮影倍率受付部
200 撮像者
300 被写体
401 観察距離計測用撮像センサ
402 移動量算出部
701 切り出し範囲算出部
702 画像切り出し部 発明を実施するための最良の形態
[0014] 本発明の実施の形態に係る撮像装置は、被写体を撮像する撮像手段と、当該撮像 装置から撮像者までの距離を計測する距離計測手段と、前記距離計測手段で計測 された前記撮像者までの距離に基づ!/ヽて、前記撮像手段で撮像される撮像画像を ズーム調整する制御手段とを備えることを特徴とする。
[0015] ここでは、撮像者までの距離には、絶対的距離、相対的距離、および相対的距離 の比等の値を含むものとする。
[0016] これによつて、撮像者までの距離に基づいて撮像される画像をズームすることがで きるので、撮像装置を動かすフレーミング動作の中にズーム調整が組み込まれるた め、例えばボタンやダイアル操作によるズーム調整よりも直接的な操作が可能になる
[0017] また、前記撮像手段は、多焦点レンズを備え、前記制御手段は、前記撮像者まで の距離に基づいて、前記多焦点レンズの焦点距離を算出する焦点距離算出部と、 前記多焦点レンズの焦点距離を前記焦点距離算出部によって算出された焦点距離 に合わせるように制御する焦点距離制御部とを備えてもょ 、。
[0018] また、前記制御手段は、前記撮像者までの距離に基づ!/ヽて、前記撮像画像から切 り出す画像サイズを算出する切り出しサイズ算出部と、前記撮像画像から一部を切り 出す画像切り出し部とを備えてもよい。
[0019] これによつて、撮像者までの距離に基づいて撮像手段の焦点距離を制御、または 撮像画像から切り出す画像サイズを制御することができるので、撮像装置を動かすフ レーミング動作の中に焦点距離または切り出し画像サイズの制御が組み込まれるた め、例えばボタンやダイアル操作による焦点距離または切り出し画像サイズの制御よ りも直接的な操作が可能になる。
[0020] また、前記焦点距離算出部は、所定時間における前記撮像者までの距離と現時点 における前記撮像者までの距離との差に基づいて、前記多焦点レンズの焦点距離を 算出してもよい。
[0021] また、前記焦点距離算出部は、現時点における前記撮像者までの距離が所定時 間における前記撮像者までの距離より短い場合に、前記多焦点レンズの焦点距離を 長く算出し、現時点における前記撮像者までの距離が所定時間における前記撮像 者までの距離より長い場合に、前記多焦点レンズの焦点距離を短く算出してもよい。
[0022] また、前記切り出しサイズ算出部は、所定時間における前記撮像者までの距離と現 時点における前記撮像者までの距離との差に基づ ヽて、前記撮像画像から切り出す 画像サイズを算出してもよい。
[0023] また、前記切り出しサイズ算出部は、現時点における前記撮像者までの距離が所 定時間における前記撮像者までの距離より短 ヽ場合に、前記撮像画像の切り出し画 像サイズを小さく算出し、現時点における前記撮像者までの距離が所定時間におけ る前記撮像者までの距離より長 ヽ場合に、前記撮像画像の切り出し画像サイズを大 きく算出してもよい。
[0024] これによつて、撮像者までの距離が短くなつた場合 (撮像装置を撮像者に近づけた 場合)、焦点距離または切り出し画像サイズを制御して撮像画角を狭くし、被写体の 細部を取り込むことができる。逆に、撮像者までの距離が長くなつた場合 (撮像装置 を撮像者から遠ざけた場合)、焦点距離または切り出し画像サイズを制御して撮像画 角を広くし、シーン全体を取り込むことができる。
[0025] また、被写体と撮像者との距離がそのままで撮像装置が移動しても、撮像者までの 距離に基づ!/ヽて撮像手段の焦点距離を制御、または撮像画像から切り出す画像サ ィズを制御することができるので、被写体を同じサイズで取り込むことができる。
[0026] また、前記焦点距離算出部は、現時点における前記撮像者までの距離が所定時 間における前記撮像者までの距離より短い場合に、前記多焦点レンズの焦点距離を 短く算出し、現時点における前記撮像者までの距離が所定時間における前記撮像 者までの距離より長い場合に、前記多焦点レンズの焦点距離を長く算出してもよい。
[0027] また、前記切り出しサイズ算出部は、現時点における前記撮像者までの距離が所 定時間における前記撮像者までの距離より短 ヽ場合に、前記撮像画像の切り出し画 像サイズを大きく算出し、現時点における前記撮像者までの距離が所定時間におけ る前記撮像者までの距離より長 ヽ場合に、前記撮像画像の切り出し画像サイズを小 さく算出してもよい。
[0028] これによつて、撮像装置を被写体に近づけることで、被写体の細部を撮影できる。 すなわち、撮像装置から被写体までの距離変化は、撮像装置から撮影者までの距離 変化で間接的に取得し、撮像装置から撮像者までの距離が長くなつた場合 (撮像装 置を撮像者力も遠ざけた場合)、撮像装置は被写体に近づいているため、焦点距離 または切り出し画像サイズを制御して撮像画角を狭くし、被写体の細部を取り込むこ とができる。逆に、撮像者までの距離が短くなつた場合 (撮像装置を撮像者に近づけ た場合)、撮像装置は被写体力も遠ざ力 ているため、焦点距離または切り出し画像 サイズを制御して撮像画角を広くし、シーン全体を取り込むことができる。
[0029] また、前記制御手段は、さらに、前記撮像者までの距離に基づいて、前記多焦点レ ンズの焦点距離の範囲を設定し、前記焦点距離算出部に提供する撮像倍率提供部 を備えてもよい。
[0030] また、前記制御手段は、さらに、前記撮像者までの距離に基づ!/、て、前記画像サイ ズの範囲を設定し、前記切り出しサイズ算出部に提供する撮像倍率提供部を備えて ちょい。
[0031] これによつて、例えば腕の動きに対して倍率の変化が敏感すぎるような場合に、多 焦点レンズの焦点距離の範囲、または切り出す画像サイズの範囲を切り替えて、腕 の伸縮によるズーム操作を容易にすることができる。
[0032] ここで、前撮像倍率提供部は、所定時間における前記撮像者までの距離の標準偏 差が閾値未満である場合に、前記多焦点レンズの焦点距離の範囲を狭く設定しても よい。
[0033] また、前撮像倍率提供部は、所定時間における前記撮像者までの距離の標準偏 差が閾値未満である場合に、前記画像サイズの範囲を狭く設定してもよ ヽ。
[0034] これによつて、例えば、細かな画角調整する際に、多焦点レンズの焦点距離の範囲 、または切り出す画像サイズの範囲を狭く設定することで、腕の伸縮によるズーム操 作を容易にすることができる。
[0035] また、前撮像倍率提供部は、第 1の所定時間における前記撮像者までの距離の移 動量が第 1の閾値以上であり、かつ第 1の所定時間に続く第 2の所定時間における 前記撮像者までの距離の標準偏差が第 2の閾値未満である場合に、前記多焦点レ ンズの焦点距離の範囲を狭く設定してもよ 、。 [0036] また、前撮像倍率提供部は、第 1の所定時間における前記撮像者までの距離の移 動量が第 1の閾値以上であり、かつ第 1の所定時間に続く第 2の所定時間における 前記撮像者までの距離の標準偏差が第 2の閾値未満である場合に、前記画像サイ ズの範囲を狭く設定してもよ 、。
[0037] これによつて、例えば大きな撮影倍率で画角を大きく変更し、その後、細かな画角 調整する際に、多焦点レンズの焦点距離の範囲、または切り出す画像サイズの範囲 を狭く設定することで、腕の伸縮によるズーム操作を容易にすることができる。
[0038] なお、本発明は、このような撮像装置として実現することができるだけでなぐこのよ うな撮像装置が備える特徴的な手段をステップとする撮像方法として実現したり、そ れらのステップをコンピュータに実行させるプログラムとして実現したりすることもでき る。そして、そのようなプログラムは、 CD— ROM等の記録媒体やインターネット等の 伝送媒体を介して配信することができるのは言うまでもない。
[0039] 以下、本発明の各実施の形態について、それぞれ図面を参照しながら説明する。
[0040] (実施の形態 1)
本実施の形態では、距離センサで撮像者までの距離を計測し、この距離に応じて 撮像画角を制御する撮像装置について説明する。
[0041] 図 2は撮像者が本発明の実施の形態 1に係る撮像装置を用いて被写体を撮像する 様子を示す概略図であり、図 3は本発明の実施の形態 1に係る撮像装置の構成を示 すブロック図である。
[0042] 撮像装置 100は、被写体 300を撮像するための装置であり、図 3に示すように多焦 点レンズ 101、被写体撮像センサ 102、ファインダ 103、距離センサ 104、焦点距離 算出部 105、撮像倍率提供部 106、焦点制御部 107、画像記録部 108、および撮影 倍率受付部 109を備えている。
[0043] 多焦点レンズ 101は、焦点距離を変更することによって、被写体撮像センサ 102に よって撮像される被写体 300の撮像範囲を変更する。被写体撮像センサ 102は、被 写体 300を撮像するための例えば CCDセンサや CMOSセンサ等の撮像センサであ る。ファインダ 103は、多焦点レンズ 101を通して被写体撮像センサ 102で撮像され る被写体 300の画像を表示する。距離センサ 104は、撮像者 200までの距離 (観察 距離 Dml)を計測する。撮影倍率受付部 109は、撮影者 200によって入力される撮 影倍率 (最高倍率)または最低倍率を受け付ける。撮影者 200は、拡大画像を撮影 したい場合には撮影倍率を大きくし、縮小画像を撮影したい場合は、撮影倍率を小 さくする。撮像倍率提供部 106は、撮影倍率受付部 109によって受け付けられた撮 像倍率を保持する。焦点距離算出部 105は、距離センサ 104で計測された観察距 離 Dmlと、撮像倍率提供部 106から供給される撮像倍率とに基づいて多焦点レンズ 101の焦点距離を算出する。焦点制御部 107は、焦点距離算出部 105で算出され た焦点距離となるように多焦点レンズ 101の焦点距離を制御する。画像記録部 108 は、録画時には被写体撮像センサ 102によって撮像される被写体 300の撮像画像を 記録する。
[0044] 次に、上記のように構成された撮像装置 100を用いて撮像者 200が被写体 300を 撮像する場合の動作について説明する。
[0045] 図 4は撮像装置 100における焦点距離の変更の動作の流れを示すフローチャート である。
[0046] 撮像装置 100は、多焦点レンズ 101を通して被写体撮像センサ 102で撮像される 被写体 300の画像をファインダ 103へ表示する(ステップ S101)。次に、距離センサ 104は、撮像者 200までの距離 (観察距離 Dml)を計測し、計測した観察距離 Dml を焦点距離算出部 105へ出力する (ステップ S102)。焦点距離算出部 105は、基準 距離が設定されているか否かを判定する (ステップ S 103)。この判定の結果、基準距 離が設定されていない場合には、焦点距離算出部 105は、距離センサ 104より入力 された観察距離 Dmlを基準距離として設定する (ステップ S104)。
[0047] 一方、基準距離が設定されている場合には、焦点距離算出部 105は、基準距離と 観察距離 Dmlとの差 (移動量)を算出する (ステップ S105)。次に、焦点距離算出部 105は、移動量および撮像倍率提供部 106から供給される撮像倍率に基づ 、て冬 焦点レンズ 101の焦点距離を算出し、焦点制御部 107へ出力する (ステップ S106) 。ここでは、焦点距離算出部 105は、基準距離より観察距離 Dmlが短くなると、移動 量に応じて撮像倍率を上げように焦点距離を長く算出するものとする。逆に、基準距 離より観察距離 Dmlが長くなると、焦点距離算出部 105は、移動量に応じて撮像倍 率を下げるように焦点距離を短く算出するものとする。
[0048] 一般に、撮像者 200が撮像装置 100を手で持って動かす移動範囲は、腕をまげて 撮像装置 100をファインダ 103の画像が認識できる範囲で最も撮像者 200へ近づけ た最短状態 (例えば、観察距離が 10cm)から腕を伸ばして撮像装置 100を撮像者 2 00から離した最長状態 (例えば、観察距離が 50cm)までとなる。そこで、例えば撮像 者 200が撮像装置 100を手で持って、最初に移動範囲の中間位置 (例えば、観察距 離が 30cm)で、多焦点レンズ 101の焦点距離に関しても可変範囲の中間の焦点距 離 (例えば、焦点距離が 60mm)で、画像をファインダ 103へ表示させたとすると、基 準距離として例えば 30cmが設定されることになる。この状態から、撮像者 200が撮 像装置 100を手で持って撮像者 200へ近づける、すなわち基準距離より観察距離 D mlが短くなると、焦点距離算出部 105は、移動量に応じて撮像倍率を上げるように 焦点距離を長く算出し、最短状態で焦点距離を最も長く(例えば、焦点距離が 192m m)算出する。逆に、撮像者 200が撮像装置 100を手で持って撮像者 200から遠ざ ける、すなわち基準距離より観察距離 Dmlが長くなると、焦点距離算出部 105は、 移動量に応じて撮像倍率を下げるように焦点距離を短く(例えば、焦点距離が 24m m)算出し、最長状態で焦点距離を最も短く算出する。後述する (式 1)が示すように、 焦点距離と撮影画角は反比例の関係にあるため、例えば焦点距離が 24mmから 19 2mmへ 8倍長くなつた場合、画角は 1Z8狭くなり、倍率 8倍の拡大画像を撮影でき る。
[0049] なお、基準距離の設定時 (ステップ S103)には、観察距離と焦点距離の関係を大 まかに把握しておく必要がある。すなわち、観察距離が最長状態 (腕を最も伸ばした 状態)で基準距離を設定する場合は、多焦点レンズ 101の焦点距離が最長である( 画角が最も狭い)ことが望ましい。逆に、観察距離が最短状態 (腕を最も縮めた状態) で基準距離を設定する場合は、多焦点レンズ 101の焦点距離が最短である (画角が 最も広い)ことが望ましい。また、基準距離は、あら力じめ所定の値 (例えば 30cm)を 設定していても構わない。例えば、撮像装置 100の使用開始時の観察距離 (例えば 、電源を投入する際の観察距離)が経験的に一定とわ力 ている場合は、基準距離 と焦点距離をあらかじめ所定の値に設定できる。 [0050] ところで、被写体 300が撮像装置 100の近くにある場合 (例えば、机の上に置かれ たコップを撮影する場合)は、高倍率の画像拡大が不要になる可能性がある。例えば 、撮影者が倍率 4倍で十分と感じた場合、観察距離が最短状態 (腕を最も縮めた状 態)で焦点距離が 192mmに設定されたままだと、腕の動きは半分だけ(中間位置か ら最も伸ばした状態)になる。そこで、腕の動きに対する倍率の変化が敏感すぎる場 合、が考えられる。腕の動きに対する倍率の変化を緩やかにするには、観察距離が 最短状態 (腕を最も縮めた状態)での焦点距離を短くすればよぐ撮影者 200は撮影 倍率を下げることになる。そして、撮影倍率受付部 109によって受け付けられた撮影 倍率 (この例では、 4倍)を撮像倍率提供部 106が保持することで、焦点距離算出部 105は、この撮影倍率になるように観察距離が最短状態での焦点距離を設定変更( この例では、 96mm)すればいい。
[0051] 逆に、被写体 300が撮像装置 100から遠く離れた位置にある場合 (例えば、遠く離 れた野原を飛ぶ蝶を撮影する場合)は、低倍率の画像拡大が不要になる可能性があ る。例えば、撮影者が倍率 4倍以上しか使わないとした場合、観察距離が最長状態( 腕を最も伸ばした状態)で焦点距離が 24mmに設定されたままだと、腕の動きは半分 だけ(中間位置力も最も縮めた状態)になる。そこで、腕の動きに対する倍率の変化 が敏感すぎる場合、が考えられる。腕の動きに対する倍率の変化を緩やかにするに は、観察距離が最長状態 (腕を最も伸ばした状態)での焦点距離を長くすればよく、 撮影者 200は最低倍率を上げることになる。そして、撮影倍率受付部 109によって受 け付けられた最低倍率 (この例では、 4倍)を撮像倍率提供部 106が保持することで、 焦点距離算出部 105は、この最低倍率になるように観察距離が最長状態での焦点 距離を設定変更 (この例では、 96mm)すれば 、。
[0052] 次に、焦点制御部 107は、焦点距離算出部 105より入力された焦点距離となるよう に多焦点レンズ 101の焦点距離を変更する (ステップ S107)。
[0053] 以上のように動作するので、撮像者 200が撮像装置 100を手で持って動かすと、観 察距離 Dmlが変更され、多焦点レンズ 101の焦点距離を変更することができる。例 えば、図 5 (a)に示すように撮像者 200が撮像装置 100を自分に近づけると、多焦点 レンズ 101の画角が狭くなり、被写体の細部が確認できる拡大画像が図 5 (b)に示す ようにファインダ 103に表示される。逆に、図 5 (c)に示すように撮像者 200が撮像装 置 100を自分力も遠ざけると、多焦点レンズ 101の画角が広くなり、シーン全体を写 しこむワイド画像が図 5 (d)に示すようにファインダ 103に表示される。このように、撮 像者 200はファインダ 103を用いて撮像画角を含むフレーミングの目視確認が可能 である。
[0054] なお、上記の焦点距離算出部 105における多焦点レンズ 101の焦点距離の算出 処理 (ステップ S106)では、焦点距離算出部 105は、基準距離より観察距離 Dmlが 短くなると焦点距離を長く算出するものとしているが、逆に、基準距離より観察距離 D mlが長くなると、移動量に応じて撮像倍率を上げように焦点距離を長く算出してもよ い。この場合、基準距離より観察距離 Dmlが短くなると、焦点距離算出部 105は、移 動量に応じて撮像倍率を下げるように焦点距離を短く算出するようにする。これにより 、例えば、図 6 (a)に示すように撮像者 200が撮像装置 100を自分力も遠ざけると、多 焦点レンズ 101の画角が狭くなり、被写体の細部が確認できる拡大画像が図 6 (b)に 示すようにファインダ 103に表示される。撮像装置 100を自分力も遠ざけることは、撮 像装置 100を被写体 300に近づけていることに相当し、被写体に近くと被写体が大 きくなるという一般的な動作に一致し、撮影におけるズーム調整として親和性が高い 。逆に、図 6 (c)に示すように撮像者 200が撮像装置 100を自分に近づけると、多焦 点レンズ 101の画角が広くなり、シーン全体を写しこむワイド画像が図 6 (d)に示すよ うにファインダ 103に表示される。
[0055] 次に、観察距離 Dmlが変化してファインダ 103に表示される被写体の長さが変化 した際に、この被写体の長さを観察距離 Dmlの変化前に表示されていた被写体の 長さに戻すように動作させるために、焦点距離算出部 105が行う焦点距離算出の動 作原理を説明する。
[0056] 図 7は、焦点距離算出部 105の動作原理を説明する図である。
[0057] 被写体撮像センサ 102は多焦点レンズ 101を通して被写体 300を撮像する。ここで 、撮像される被写体 300の長さ L1は、被写体 300と多焦点レンズ 101との距離を D1 、焦点距離を Fl、被写体撮像センサ 102の大きさを Sとすると、
[0058] [数 1] (式 1 )
[0059] で表わされる。この(式 1)を時間の基準点として T1とする。このとき、同時に被写体撮 像センサ 102と位置関係が既知である距離センサ 104を用いて被写体撮像センサ 1 02と撮像者 200との距離 Dmを求める。図 7では説明を簡単にするために、被写体 撮像センサ 102と距離センサ 104は同位置にあり、一体となって動くものとする。なお 、本発明において、被写体撮像センサ 102と距離センサ 104は同位置にある必然性 はなぐかつ一体となって動く制限も必要なぐ距離センサ 104の計測距離が被写体 撮像センサ 102と撮像者 200との距離 Dmに換算できればその方法は任意である。 また、距離センサ 104は、被写体撮像センサ 102と撮像者 200との距離 Dmが間接 的に、あるいは直接的に求められれば任意であり、例えば赤外光距離センサ、超音 波距離センサなどが例として挙げられる。撮像センサを 2つ使用すれば、三角測量に よる距離計測も可能である。
[0060] 次に、時間 T1が時間 T2に移った際に、被写体撮像センサ 102と被写体 300の少 なくとも一方が動いて距離 Dmが移動量 Uだけ短くなつた場合を考える。被写体撮像 センサ 102と撮像者 200との距離 D1は変化量 Uだけ長くなり、画角が広くなる。従つ て撮像される被写体の長さは L2 ( >L1)となる。
[0061] さらに、多焦点レンズ 101を調整して焦点距離 F1を変更し、撮像される被写体の長 さを時間 T1における長さ L1に戻すための方法を説明する。
[0062] 時間 T3に示すように、被写体 300の長さが L1になるには、時間 T2よりも画角を狭 くするために、時間 T2における焦点距離 F1よりも長くする必要がある。移動量 Uが多 焦点レンズ 101と被写体 300との距離の変化量 Δ Dと焦点距離の変化量 Δ Fに分解 されるとすると、
[0063] [数 2] F = U (式 2 [0064] となる。また時間 Tlと時間 T3において、被写体の長さ L1および被写体撮像センサ 1
02の大きさ Sが等しいから、
[0065] [数 3]
D, + AD D, 一 、
―! =ュ … (式 3 )
F, + AF F
[0066] が成り立つ。(式 2)を変化量 A Dについて解き、これを (式 3)に代入し、 A Fについて 解くと、
[0067] [数 4]
A =— ¾ ~"ひ … (式 4 )
[0068] になる。焦点距離 F1と移動量 Uは既知であるため、距離 D1が与えられれば、焦点距 離の変化量 が決まる。たとえば、 Dl = 300mmとおくと、多焦点レンズ 101から 3 OOmmの距離にある被写体が常に一定の長さ L1 = 300SZF1で撮像される。 D1を 実測する場合は、図 8に示すように、長さ一定で撮像したい被写体 300を画角いっぱ いになるように被写体撮像センサ 102で写し込み、距離センサ 104を被写体 300に 向けて距離 D1を実測すればいい。そこで、距離センサ 104は方向可変あるいは 2つ 搭載などが望ましい。また、(式 1)を距離 D1について解きなおすと、
[0069] [数 5]
Figure imgf000017_0001
(式 5 )
[0070] となり、これを (式 4)に代入すると、 [0071] [数 6]
A = ^^ひ … (式 6 )
[0072] が得られる。被写体撮像センサ 102の大きさ Sと移動量 Uは既知であるため、被写体 の長さ L1が与えられれば、焦点距離の変化量 A Fが決まる。たとえば、 Ll = 200m mとおくと、被写体撮像センサ 102から [200 (Fl) ZS]mmの距離にある被写体が 常に一定の長さ LI = 200mmで撮像される。
[0073] 以上より、(式 4)あるいは(式 6)で時間 T2の被写体の長さ L2を L1に戻せるが、(式 6)の被写体の長さ L1に倍率 aを掛ければ、任意の長さ( a L1)で撮像するための 焦点距離変更量 Δ Fが算出可能である。
[0074] [数 7]
A = ^ - ~ひ … (式 7 )
[0075] ここで αは任意定数である。距離 Dに関しても同様で、(式 4)の距離 D1に倍率 を 掛ければ、任意の距離( |8 D1)で撮像するための焦点距離変更量 A Fが算出可能 である。
[0076] [数 8]
AF = ^ ^ ^ひ … (式 8 )
[0077] ここで、時間 Τ2と時間 Τ3との間隔は、観察距離 D1の検出、焦点距離変更量 A F の算出、そして焦点制御部 107による多焦点レンズの動きで決まる。焦点距離変更 量 Δ Fの算出は(式 7)ある 、は(式 8)で行われるため、多くの計算機環境ではビデオ レート(30フレーム Z秒)未満で実行可能と言える。
[0078] このように動作させることによって、撮像者 200が撮像装置 100を手で持って動かし て観察距離 Dmlが変更されても、被写体の長さを観察距離 Dmlの変化前に表示さ れていた被写体の長さに戻すことができる。よって、撮像者 200が撮像装置 100を自 分に近づけたり遠ざけたりしても、ファインダ 103に表示されている画像を常に一定に 保つことが可能になる。
[0079] なお、上記説明において、焦点距離を変更する装置として多焦点レンズを用いた 1S これに限られるものではなぐ画像処理によるデジタルズームや、光学ズームとデ ジタルズームの組み合わせでも構わない。また、図 2に示す被写体撮像センサ 102 や距離センサ 104、多焦点レンズ 101の位置は一例であり、これに限られるものでは ない。
[0080] また、図 7からわ力るように、被写体撮像センサ 102と距離センサ 104の位置関係は 既知である必要がある。そこで、両者の関係はあら力じめメモリに格納しておくことが 前提となる。本実施の形態の撮像装置 100では、被写体撮像センサ 102と距離セン サ 104の位置関係は焦点距離算出部 105にあらかじめ格納されており、観察距離 D mlに基づく焦点距離の算出では被写体撮像センサ 102と距離センサ 104の位置関 係が考慮される。
[0081] また、本実施の形態では、焦点距離算出部 105は、基準距離と観察距離 Dmlとの 差 (移動量)および撮像倍率提供部 106から供給される撮像倍率に基づいて多焦点 レンズ 101の焦点距離を算出している力 これに限られるものではない。例えば、撮 像倍率提供部 106が観察距離 Dmlに対応する撮像倍率を有し、焦点距離算出部 1 05が、観察距離 Dmlに基づいて撮像倍率提供部 106を参照することによって多焦 点レンズ 101の焦点距離を算出しても構わない。
[0082] 以上により、撮像装置を動かすフレーミング動作の中に焦点距離調整が組み込ま れるため、ボタンやダイアル操作による画角調整よりも直接的な操作が可能になる。 よって、例えばスポーツや観光、記念撮像など目の前のシーンを映像として記録する 映像エンタテイメント分野でより操作性の高い撮像装置を提供できる。また、文化芸 術の分野では、被写体や撮像場所に制限されることのない自由度の高いデジタルァ 一力イブシステムを提供できる。
[0083] (実施の形態 2)
実施の形態 1では、撮影倍率受付部 109で撮影倍率を撮影者カゝら受け付ける場合 について説明したが、本実施の形態では、撮影倍率を撮影者から受け付けずに変 更する場合について説明する。
[0084] 図 9は本発明の実施の形態 2に係る撮像装置の構成を示すブロック図である。なお
、図 3に示す撮像装置と同様の部分については同じ符号を付し、詳細な説明を省略 する。
[0085] 撮像装置 150は、図 3に示す撮像装置 100の撮影倍率受付部 109を備えず、撮像 倍率提供部 151の動作が相違する。
[0086] 図 10は、撮像倍率提供部 151が撮影倍率を切り替える原理を示す図である。ダラ フ B1の横軸は時間を表わし、縦軸は 0〜1に正規化された観察距離であり、 0が撮影 者に最も近い位置での観察距離、 1が撮影者力 最も遠い位置での観察距離に相 当する。従って、グラフ B1は観察距離の時間的変化を示す一例である。
[0087] 撮像倍率提供部 151は、所定時間、観察距離の変化を監視し、標準偏差が閾値 未満であれば、撮影倍率を低くする。例えば、図 10に示すように時間 T1から時間 T2 まで観察距離を記録し、観察距離の標準偏差 B2が閾値 B3より小さい場合、時間 T3 で撮影倍率を低く(たとえば、 8倍から 4倍へ変更)する。なお、撮影倍率の変更量の 算出方法は任意であるが、例えば、観察距離の標準偏差 B2と閾値 B3の違いの大小 を用いる方法が考えられる。つまり、観察距離の標準偏差 B2と閾値 B3の差が大きい ときは、撮影倍率を大幅に変更 (より小さいな撮影倍率)し、観察距離の標準偏差 B2 と閾値 B3の差が小さいときは、撮影倍率をわずかに変更 (わずかに小さな撮影倍率 )する。
[0088] 撮影倍率が小さくなると、焦点距離の変化量が小さくなり、時間 T3から時間 T4に示 すように、撮影距離の振れ幅が小さくなる。画像 IB1は時間 T1から時間 T2の期間に 表示される代表的な画像であり、画像 IB2は時間 T3から時間 T4の期間に表示され る代表的な画像であり、画像 IB3は時間 T4以降に表示される代表的な画像である。 撮影者 200は、ファインダ 103に表示される撮影画像が時間 T3以降、画像 IB2のよ うに縮小されて表示されるので、時間 T2までと同じ焦点距離の範囲幅で焦点距離を 変更するには、観察距離の変動幅を大きくする必要がある。グラフ B1では、時間 Τ4 の時点で撮影者 200は観察距離の変化幅を広げ、画像 ΙΒ3のような画角に戻ったこ とがわかる。以上より、時間 Τ4以降は、より広い範囲で撮像装置 150を移動できるた め、時間 T1から時間 Τ2より細力べ焦点距離の変更できる。
[0089] 一方、図 10と全く逆の制御も可能である。すなわち、正規化観察距離を 0から 1まで 何度も往復している場合は、広角画像と狭角画像を見比べていると推測される。この 繰り返しが所定期間、続いたら、撮影倍率を大きくして、より小さな腕の動きで広角画 像と狭角画像を見比べることができ、ズーム操作を容易にできる。この場合、撮影倍 率切り替えの判断も逆になり、撮像倍率提供部 151は、観察距離の標準偏差が閾値 を越えたら、撮影倍率を大きくする。
[0090] ところで、画角調整の際に、例えば、まず大まかに画角を合わせて、その後、細かく 画角を調整する場合が考えられる。図 11において、位置 C1では、画像 IC1のように 広角に撮影され、シーン全体が見渡せる状況にある。撮影者 200はシーンの中から 、これからズームインする被写体を選び出し、例えば、被写体 300にズームインすると 決めたとする。次に、画像 IC2のように、被写体 300が画角いっぱいに撮影されるよう に位置 C2まで、まずは大まかに移動し、その後、位置 C2の前後で焦点距離の細か い調整を行う。この際、腕の伸縮範囲全体で撮影倍率が一定であると、位置 C2での 細かい調整が行いづらい。そこで、位置 C1から位置 C2までは撮影倍率を高くし、少 しの移動量で焦点距離が大きく変わるようにし、位置 C2の前後では撮影倍率を低く して、大きな移動量で焦点距離が細力べ変更できるようにすれば、ズーム操作が容易 になる。以上の考え方から、撮影倍率がある程度大きい場合 (たとえば、 16倍)に、観 察距離の変化量を見て、位置 C1から位置 C2への移動のように大きな移動が発生し 、引き続き、位置 C2に停滞するパターンが見つ力つたら、撮影倍率を切り替える。
[0091] 図 12は、観察距離の時間的変化の一例を示す図であり、横軸は時間を表わし、縦 軸は 0〜1に正規化された観察距離である。正規化観察距離が 0の場合、撮像装置 1 50は撮影者に最も近い位置にあり、正規化観察距離が 1の場合、撮像装置 150は 撮影者力 最も遠い位置にある。時間 T1において、撮像装置 150は図 11の位置 C1 にあり、画像 IC1がファインダ 103に表示されている。撮影倍率が 16倍に設定されて いる。時間 T2で図 11の位置 C2へ移動し、画像 IC2のように被写体 300が拡大され てファインダ 103に表示される。撮像倍率提供部 151は、位置 C1から位置 C2への 移動量 D2を見て、これが移動量に閾値 D3 (例えば、 0. 5)を超えたら、観察距離の 監視を開始する。グラフ D1では、時間 T2で観察距離の監視が開始される。時間 T2 以降は、位置 C2に停滞し、正規化観察位置の変化が小さい。従って、焦点距離の 微妙な調整を試みていると推定される。この推定は、上記図 10と同じ要領で、撮像 倍率提供部 151は、時間 T2から時間 T3の観察距離の標準偏差 D3を求め、撮影倍 率切り替えの判断をする閾値 D4より小さ 、と判断した場合に、時間 T4で撮影倍率 および最低倍率 (例えば、撮影倍率を 8倍に、最低倍率を 4倍に)を切り替える。これ によって、観察距離が最長状態 (腕を最も伸ばした状態)から最短状態 (腕を最も縮 めた状態)への変化に応じて倍率力 倍力 8倍の間でズームされることになる。なお 、撮影倍率および最低倍率の変更量の算出方法は任意であるが、例えば、時間 T2 力も時間 T3における観察距離の平均を用いることができる。例えば、この観察距離 の平均の相当する倍率が中心となるように撮影倍率および最低倍率を決定すること 力 Sできる。時間 T5では撮像装置 150を撮影者 200に近づけて拡大画像を観察し、 時間 T6では撮像装置 150を撮影者 200から遠ざけて縮小画像を観察して 、る。時 間 T4以降では、正規化観察距離の変化量が大きくなつており、腕の伸縮をより広い 範囲で行なって、焦点距離を細カゝく制御して ヽることがわかる。
[0092] 以上により、大きな撮影倍率で画角を大きく変更し、その後、細かな画角調整する 際に、撮影倍率および最低倍率を変更して、腕の伸縮によるズーム操作を容易にす ることがでさる。
[0093] なお、図 11と図 12では、ズームインを例にとって説明した力 ズームアウトの場合に も適用できる。すなわち、時間 T1で被写体 300の細部を観察していた力 目の前に 新たな被写体が現れたり、気になる音がしたり、等のきっかけでシーン全体を即座に 撮影したい場合である。ズームアウトが完了した後は、パンイングゃチルティング等を つ力 て撮影方向を調整して、撮影目的を特定するなどのフレーミングが考えられる 。画角調整が止まったことを自動的に検出する手段は、図 12の要領と同様で、標準 偏差の閾値処理で可能である。
[0094] (実施の形態 3)
本実施の形態では、実施の形態 1の距離センサに替えて単体の撮像センサで撮像 者までの距離を計測し、この距離に応じて撮像画角を制御する撮像装置について説 明する。
[0095] 図 13は本発明の実施の形態 3に係る撮像装置の構成を示すブロック図である。な お、図 3に示す撮像装置と同様の部分については同じ符号を付し、詳細な説明を省 略する。
[0096] 撮像装置 400は、被写体 300を撮像するための装置であり、図 13に示すように多 焦点レンズ 101、被写体撮像センサ 102、ファインダ 103、観察距離計測用撮像セン サ 401、移動量算出部 402、焦点距離算出部 403、撮像倍率提供部 106、焦点制 御部 107、および画像記録部 108を備えている。
[0097] 観察距離計測用撮像センサ 401は、撮像者 200とその背景を撮像するための撮像 センサである。移動量算出部 402は、観察距離計測用撮像センサ 401によって撮像 された撮像者 200の画像に基づいて、観察距離計測用撮像センサ 401と撮像者 20 0との距離 (観察距離 Dml)の変化量 (移動量 U)を算出する。移動量 Uは、撮像画 像に映された撮像者 200の顔特徴点の距離変化カゝら算出する。例えば、瞳を顔特徴 点とする場合、図 14に示すように、両眼の瞳 501の間の距離 (瞳間距離 X)変化から 観察距離 Dmlの移動量 Uを算出する。
[0098] 以下、移動量算出部 402において、観察距離計測用撮像センサ 401によって撮像 された撮像者 200の画像に基づいて、移動量 Uを算出する方法を説明する。
[0099] 図 15は、観察距離計測用撮像センサ 401を用いて撮像者 200までの距離 (観察距 離 Dml)を計測し、観察距離 Dmlに基づいて被写体撮像センサ 102と多焦点レン ズ 101で被写体 300を撮像する原理を説明する図である。
[0100] 時間 T1において被写体の長さ L1を捉え、時間 T2において移動量 Uが発生し、時 間 T3において撮像される被写体 300の長さを再び L1に戻す課題設定は図 7と同一 である。また被写体撮像センサ 102側の条件も図 3と同一である。図 7との違いは、観 察距離 Dmlの計測方法であり、観察距離計測用撮像センサ 401を用いる点である。 観察距離計測用撮像センサ 401は撮像者 200の顔を背景とともに撮像し、移動量算 出部 402で顔特徴点を抽出して顔特徴点間の距離を算出する。顔特徴点間の距離 は図 14のように、瞳間距離 Xを用い、これは図 15において、時間 T1では Lml、時間 T2では Lm2としている。以上の条件で、(式 4)あるいは(式 6)を用いて焦点距離変 更量 A Fを算出するには、移動量 Uを観察距離計測用撮像センサ 401から求めれば いい。時間 T2において、観察距離計測用撮像センサ 401と顔特徴点間の距離の関 係から、
[0101] [数 9] ひ
式 9
Figure imgf000024_0001
[0102] と
[0103] [数 10]
Figure imgf000024_0002
(式 1 〇)
S L
[0104] が成り立つ。
(式 9)を Uについて解き、(式 10)を Dmlについて解き、(式 10)の Dmlを(式 9)の Dmlに代入すると、
[0105] [数 11]
J Ι τ )
U = " 、 "',1― ^ … (式 1 1 )
S
[0106] となる。 [0107] 以上のように算出された移動量 Uは、焦点距離算出部 403へ出力される。焦点距 離算出部 403は、移動量 Uと撮像倍率提供部 106から供給される撮像倍率とに基づ いて多焦点レンズ 101の焦点距離を算出する。
[0108] なお、顔特徴量は移動量 Uを算出するための基準点であり、本実施の形態では図 14に示すように瞳 501に基準点を設定して瞳間距離 Xの変化で移動量 Uを定義して いるが、観察距離の移動量 Uを算出する際の基準点の設定に制限を与えるものでな い。例えば、顔の背景に写っているエッジを抽出し、基準点として利用することも可能 である。また、撮像者 200が積極的にマーカーを身につけ、このマーカーを基準点と して利用することももちろん可能である。
[0109] また、実施の形態 1と同様に、焦点距離算出部 403は、移動距離 Uが発生しても被 写体を同じ長さ L1で撮像するように焦点距離を算出することも可能である。これによ り、観察距離 Dmlが移動量 Uだけ変化しても被写体 300を同じ長さで撮像すること ができる。
[0110] 以上のように、観察距離計測用撮像センサ 401、移動量算出部 402、焦点距離算 出部 403以外の構成は実施の形態 1と同じであり、実現する機能も同一である。観察 距離計測に撮像センサを用いる効果はセンサの多様性にある。つまり、超音波セン サゃ赤外光センサは距離計測専用であり、他の用途との併用が難しい。一方、撮像 センサは画像撮像と距離計測の 2つの用途に適用可能である。よって、本実施の形 態では、観察距離計測用撮像センサ 401で撮像者 200までの観察距離 Dmlの移動 量 Uを算出しているので、実施の形態 1の撮像装置 100と同じ機能を実現しつつ、か つ画像撮像と距離計測の 2つの用途に活用できる多様性の高い撮像装置を実現で きる。例えば、近年急速に普及しているカメラ付携帯電話は、 2つの撮像センサを持 ち、 1つは相手側を撮像し、他方は自分側を撮像する機能を有する商品が多数出回 つて 、る。被写体を相手側カメラで撮像してファインダでフレーミングを確認する際に は、自分側カメラを動作させる必要がない。そこで、これを観察距離計測に転用でき るメリットがある。
[0111] (実施の形態 4)
本実施の形態では、撮像者が実施の形態 1で説明した撮像装置 100または実施の 形態 3で説明した撮像装置 400を撮像者が手で持って被写体の周りを移動し、多視 点撮像で被写体をアーカイブする場合について説明する。
[0112] 図 16は撮像者が実施の形態 1または実施の形態 3に係る撮像装置を用いて被写 体を撮像する様子を示す概略図である。
[0113] 撮像者 200は、被写体 300から一定距離で周りを移動し、撮像装置 100 (400)を 用いて多視点力も被写体 300の撮像を行う。図 16には視点 A〜Dの 4つの視点を例 として示し、ファインダ 103に表示される撮像画像を視点ごとに、画像 601〜604に 示した。実施の形態 1および実施の形態 3で説明した方法で撮像画角を一定に保つ ことができ、被写体 300を全視点力も同一サイズで撮像でき、形状情報を始め、テク スチヤ情報も 3次元的に捉えられる。
[0114] 以上の構成により、撮像者は撮像装置を手で持って一定距離で被写体の周りを移 動すること〖こよって、被写体 300を全視点から同一サイズで撮像でき、撮像者の手の 動きを吸収することができる。よって、携帯性に優れ、被写体の大きさ、重量、材質な どに対する制限がなぐ自由度の高い、かつ 3次元的な高性能のアーカイブが実現 できる。
[0115] (実施の形態 5)
本実施の形態では、距離センサで撮像者までの距離を計測し、この距離に応じて 撮像画角を制御し、かつ撮像画像の一部を切り出す撮像装置につ!ヽて説明する。
[0116] 図 17は本発明の実施の形態 5に係る撮像装置の構成を示すブロック図である。な お、図 3に示す撮像装置と同様の部分については同じ符号を付し、詳細な説明を省 略する。
[0117] 撮像装置 700は、被写体 300を撮像するための装置であり、図 17に示すように多 焦点レンズ 101、被写体撮像センサ 102、ファインダ 103、距離センサ 104、焦点距 離算出部 105、撮像倍率提供部 106、焦点制御部 107、切り出し範囲算出部 701、 画像切り出し部 702、および画像記録部 108を備えて 、る。
[0118] 切り出し範囲算出部 701は、距離センサ 104で計測された観察距離 Dmlに基づ いて切り出し範囲を算出する。例えば、切り出し範囲算出部 701は、切り出し範囲を 次の(式 12)のように比率 γで指定して算出する。 [0119] [数 12]
VX' J left, top
Figure imgf000027_0001
(式 1 2 )
W 7 h
(, y)r ightt .bottom w γ, h—— γ
[0120] ここで、(x、y) LEFT, TOPは切り出し範囲を表す矩形の左上頂点の画像座標を、 ( x、 y) RIGHT, BOTTOMは切り出し範囲を表す矩形の右下頂点の画像座標を表 す。ただし比率 γは 0〜1である。この比率 γを、例えば
[0121] [数 13] η m,\一一 D »;,min
D m'max - D m,mi .n
D , = - "' '2 +ひ
[0122] のように移動量 Uと関連付けさせる。ここで Dm, minは観察距離の最小値、 Dm, ma xは観察距離の最大値を表す。
[0123] 画像切り出し部 702は、多焦点レンズ 101を通して被写体撮像センサ 102で撮像さ れる被写体 300の画像を、切り出し範囲算出部 701で算出された切り出し範囲で切 り出し、ファインダ 103および画像記録部 108へ出力する。
[0124] 以上の構成から、撮像者 200が撮像装置 700を手で持って動かすと、観察距離 D mlが変更され、多焦点レンズ 101の焦点距離を変更することができ、実施の形態 1 と同じ構成と機能を有する。さらに、本実施の形態では、観察距離 Dmlに応じて被 写体撮像センサ 102で撮像された画像の切り出し範囲を算出する切り出し範囲算出 部 701を備えて 、るので、切り出し範囲を観察距離 Dmlに連動して制御できる。
[0125] 例えば、図 18 (a)に示すように撮像者 200が撮像装置 100を自分に近づけると、多 焦点レンズ 101の画角が狭くなり、さらに被写体 300の左側上部が切り出されて細部 が確認できる拡大画像が図 18 (b)に示すようにファインダ 103に表示される。逆に、 図 18 (c)に示すように撮像者 200が撮像装置 100を自分力も遠ざけると、多焦点レ ンズ 101の画角が広くなり、シーン全体を写しこむワイド画像が図 18 (d)に示すように ファインダ 103に表示される。なお、切り出し範囲算出部 701が算出する切り出し範 囲の位置については、例えば (式 12)に示す左上頂点および右下頂点の画像座標 を所定量移動させればよい。このように、撮像者 200はファインダ 103を用いて撮像 画角および切り出し範囲を含むフレーミングの目視確認が可能である。
[0126] また、上記の例とは逆に、例えば、図 19 (a)に示すように撮像者 200が撮像装置 1 00を自分力も遠ざけると、多焦点レンズ 101の画角が狭くなり、さらに被写体 300の 左側上部が切り出されて細部が確認できる拡大画像が図 19 (b)に示すようにフアイ ンダ 103に表示されるようにしてもよい。撮像装置 100を自分力も遠ざけることは、撮 像装置 100を被写体 300に近づけていることに相当し、被写体に近くと被写体が大 きくなるという一般的な動作に一致し、撮影におけるズーム調整として親和性が高い 。この場合、図 19 (c)に示すように撮像者 200が撮像装置 100を自分に近づけると、 多焦点レンズ 101の画角が広くなり、シーン全体を写しこむワイド画像が図 19 (d)に 示すようにファインダ 103に表示される。
[0127] 以上により、撮像装置を動かすフレーミング動作の中に撮像画像の切り出し範囲調 整が組み込まれるため、ボタンやダイアル操作による画角調整よりも直接的な操作が 可能になる。なお、本発明は画像切り出し部 702の機能を限定するものではないた め、被切り出し画像は任意であり、例えば画像記録部 108に記録した撮像画像を再 生してディスプレイに表示する際に切り出しが実行されても構わない。また、撮像倍 率提供部 106を、上記実施の形態 2のように、観察距離の変化に応じて撮影倍率を 切り替える構成としても構わな 、。
産業上の利用可能性
[0128] 本発明に係る撮像装置および撮像方法は、撮像者が撮像装置を動かすことによつ て焦点距離を制御することができ、例えばデジタルカメラ、スチルカメラ、ビデオカメラ 、カメラ付き携帯電話等の撮像装置および撮像方法に有用である。

Claims

請求の範囲
[1] 被写体を撮像する撮像手段と、
当該撮像装置から撮像者までの距離を計測する距離計測手段と、
前記距離計測手段で計測された前記撮像者までの距離に基づ!/、て、前記撮像手 段で撮像される撮像画像をズーム調整する制御手段と
を備えることを特徴とする撮像装置。
[2] 前記撮像手段は、多焦点レンズを備え、
前記制御手段は、
前記撮像者までの距離に基づいて、前記多焦点レンズの焦点距離を算出する焦 点距離算出部と、
前記多焦点レンズの焦点距離を前記焦点距離算出部によって算出された焦点距 離に合わせるように制御する焦点距離制御部とを備える
ことを特徴とする請求項 1記載の撮像装置。
[3] 前記焦点距離算出部は、所定時間における前記撮像者までの距離と現時点にお ける前記撮像者までの距離との差に基づいて、前記多焦点レンズの焦点距離を算出 する
ことを特徴とする請求項 2記載の撮像装置。
[4] 前記焦点距離算出部は、現時点における前記撮像者までの距離が所定時間にお ける前記撮像者までの距離より短 、場合に、前記多焦点レンズの焦点距離を長く算 出し、現時点における前記撮像者までの距離が所定時間における前記撮像者まで の距離より長い場合に、前記多焦点レンズの焦点距離を短く算出する
ことを特徴とする請求項 3記載の撮像装置。
[5] 前記焦点距離算出部は、現時点における前記撮像者までの距離が所定時間にお ける前記撮像者までの距離より短 、場合に、前記多焦点レンズの焦点距離を短く算 出し、現時点における前記撮像者までの距離が所定時間における前記撮像者まで の距離より長い場合に、前記多焦点レンズの焦点距離を長く算出する
ことを特徴とする請求項 3記載の撮像装置。
[6] 前記制御手段は、さらに、 前記撮像者までの距離に基づ!/、て、前記多焦点レンズの焦点距離の範囲を設定 し、前記焦点距離算出部に提供する撮像倍率提供部を備える
ことを特徴とする請求項 2記載の撮像装置。
[7] 前撮像倍率提供部は、
所定時間における前記撮像者までの距離の標準偏差が閾値未満である場合に、 前記多焦点レンズの焦点距離の範囲を狭く設定する
ことを特徴とする請求項 6記載の撮像装置。
[8] 前撮像倍率提供部は、
第 1の所定時間における前記撮像者までの距離の移動量が第 1の閾値以上であり 、かつ第 1の所定時間に続く第 2の所定時間における前記撮像者までの距離の標準 偏差が第 2の閾値未満である場合に、前記多焦点レンズの焦点距離の範囲を狭く設 定する
ことを特徴とする請求項 6記載の撮像装置。
[9] 前記制御手段は、
前記撮像者までの距離に基づいて、前記撮像画像カゝら切り出す画像サイズを算出 する切り出しサイズ算出部と、
前記撮像画像から一部を切り出す画像切り出し部とを備える
ことを特徴とする請求項 1記載の撮像装置。
[10] 前記切り出しサイズ算出部は、所定時間における前記撮像者までの距離と現時点 における前記撮像者までの距離との差に基づ ヽて、前記撮像画像から切り出す画像 サイズを算出する
ことを特徴とする請求項 9記載の撮像装置。
[11] 前記切り出しサイズ算出部は、現時点における前記撮像者までの距離が所定時間 における前記撮像者までの距離より短 ヽ場合に、前記撮像画像の切り出し画像サイ ズを小さく算出し、現時点における前記撮像者までの距離が所定時間における前記 撮像者までの距離より長!、場合に、前記撮像画像の切り出し画像サイズを大きく算 出する
ことを特徴とする請求項 10記載の撮像装置。
[12] 前記切り出しサイズ算出部は、現時点における前記撮像者までの距離が所定時間 における前記撮像者までの距離より短 ヽ場合に、前記撮像画像の切り出し画像サイ ズを大きく算出し、現時点における前記撮像者までの距離が所定時間における前記 撮像者までの距離より長い場合に、前記撮像画像の切り出し画像サイズを小さく算出 する
ことを特徴とする請求項 10記載の撮像装置。
[13] 前記制御手段は、さらに、
前記撮像者までの距離に基づいて、前記画像サイズの範囲を設定し、前記切り出 しサイズ算出部に提供する撮像倍率提供部を備える
ことを特徴とする請求項 9記載の撮像装置。
[14] 前撮像倍率提供部は、
所定時間における前記撮像者までの距離の標準偏差が閾値未満である場合に、 前記画像サイズの範囲を狭く設定する
ことを特徴とする請求項 13記載の撮像装置。
[15] 前撮像倍率提供部は、
第 1の所定時間における前記撮像者までの距離の移動量が第 1の閾値以上であり 、かつ第 1の所定時間に続く第 2の所定時間における前記撮像者までの距離の標準 偏差が第 2の閾値未満である場合に、前記画像サイズの範囲を狭く設定する ことを特徴とする請求項 13記載の撮像装置。
[16] 前記距離計測手段は、前記撮像者までの絶対距離を計測する
ことを特徴とする請求項 1記載の撮像装置。
[17] 前記距離計測手段は、
前記撮像者を撮像する少なくとも 1つの撮像者撮像部と、
前記撮像者撮像部で撮像された画像に基づいて、前記撮像者までの距離を算出 する距離算出部とを備える
ことを特徴とする請求項 1記載の撮像装置。
[18] 前記距離算出部は、 2つの前記撮像者撮像部で撮像された画像に基づいて、前記 撮像者までの距離を算出する ことを特徴とする請求項 17記載の撮像装置。
[19] 前記距離算出部は、前記撮像者撮像部で撮像された画像に含まれる基準図形を 抽出し、所定時間における前記基準図形と現時点における前記基準図形との違い に基づいて、前記撮像者までの距離を算出する
ことを特徴とする請求項 17記載の撮像装置。
[20] 前記距離算出部は、前記基準図形との違いの計測を、前記基準図形の位置、大き さ、形状、明るさ、および色の少なくとも 1つに基づいて行う
ことを特徴とする請求項 19記載の撮像装置。
[21] 被写体を撮像する撮像装置を備える携帯端末装置であって、
請求項 1〜20のいずれか 1項に記載の撮像装置を備える
ことを特徴とする携帯端末装置。
[22] 被写体を撮像する撮像ステップと、
撮像者までの距離を計測する距離計測ステップと、
前記撮像ステップにより撮像される画像をズームする調整ステップと、
前記距離計測ステップにより計測された前記撮像者までの距離に基づいて前記調 整ステップにおけるズームを制御する制御ステップと
を含むことを特徴とする撮像方法。
[23] 被写体を撮像するためのプログラムであって、
被写体を撮像する撮像ステップと、
撮像者までの距離を計測する距離計測ステップと、
前記撮像ステップにより撮像される画像をズームする調整ステップと、
前記距離計測ステップにより計測された前記撮像者までの距離に基づいて前記調 整ステップにおけるズームを制御する制御ステップとをコンピュータに実行させる ことを特徴とするプログラム。
PCT/JP2005/014008 2004-08-03 2005-08-01 撮像装置および撮像方法 WO2006013803A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-227176 2004-08-03
JP2004227176 2004-08-03

Publications (1)

Publication Number Publication Date
WO2006013803A1 true WO2006013803A1 (ja) 2006-02-09

Family

ID=35787088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014008 WO2006013803A1 (ja) 2004-08-03 2005-08-01 撮像装置および撮像方法

Country Status (1)

Country Link
WO (1) WO2006013803A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125794A1 (ja) * 2006-04-27 2007-11-08 Konica Minolta Holdings, Inc. データ測定装置及びデータ測定方法
JP2011205534A (ja) * 2010-03-26 2011-10-13 Kyocera Corp 携帯電子機器
WO2014105507A1 (en) * 2012-12-28 2014-07-03 Motorola Mobility Llc Front camera face detection for rear camera zoom function
CN106303244A (zh) * 2016-08-22 2017-01-04 深圳市金立通信设备有限公司 自拍杆及其长度计算方法、拍摄参数调节方法及终端
CN106303277A (zh) * 2016-08-22 2017-01-04 深圳市金立通信设备有限公司 补光灯的参数控制方法、终端及自拍杆
CN106331477A (zh) * 2016-08-22 2017-01-11 深圳市金立通信设备有限公司 自拍杆及其长度计算方法、拍摄参数调节方法及终端
CN106341593A (zh) * 2016-08-22 2017-01-18 深圳市金立通信设备有限公司 拍照控制方法及终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518748A (ja) * 1991-07-09 1993-01-26 Kyocera Corp 距離情報等を表示可能なデイジタル電子スチルカメラ
JPH10307026A (ja) * 1997-05-08 1998-11-17 Matsushita Electric Ind Co Ltd 位置検出装置
JP2002111801A (ja) * 2000-09-28 2002-04-12 Casio Comput Co Ltd 携帯電話装置
JP2002351603A (ja) * 2001-05-25 2002-12-06 Mitsubishi Electric Corp 携帯情報処理装置
JP2003075717A (ja) * 2001-09-06 2003-03-12 Nikon Corp 距離検出装置
JP2003195145A (ja) * 2001-12-27 2003-07-09 Olympus Optical Co Ltd カメラ
WO2004080062A1 (ja) * 2003-03-06 2004-09-16 Nec Design, Ltd. 機械的または電子的なファインダー機構を有しないカメラ
JP2005121838A (ja) * 2003-10-15 2005-05-12 Olympus Corp カメラ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518748A (ja) * 1991-07-09 1993-01-26 Kyocera Corp 距離情報等を表示可能なデイジタル電子スチルカメラ
JPH10307026A (ja) * 1997-05-08 1998-11-17 Matsushita Electric Ind Co Ltd 位置検出装置
JP2002111801A (ja) * 2000-09-28 2002-04-12 Casio Comput Co Ltd 携帯電話装置
JP2002351603A (ja) * 2001-05-25 2002-12-06 Mitsubishi Electric Corp 携帯情報処理装置
JP2003075717A (ja) * 2001-09-06 2003-03-12 Nikon Corp 距離検出装置
JP2003195145A (ja) * 2001-12-27 2003-07-09 Olympus Optical Co Ltd カメラ
WO2004080062A1 (ja) * 2003-03-06 2004-09-16 Nec Design, Ltd. 機械的または電子的なファインダー機構を有しないカメラ
JP2005121838A (ja) * 2003-10-15 2005-05-12 Olympus Corp カメラ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125794A1 (ja) * 2006-04-27 2007-11-08 Konica Minolta Holdings, Inc. データ測定装置及びデータ測定方法
JP2011205534A (ja) * 2010-03-26 2011-10-13 Kyocera Corp 携帯電子機器
WO2014105507A1 (en) * 2012-12-28 2014-07-03 Motorola Mobility Llc Front camera face detection for rear camera zoom function
CN106303244A (zh) * 2016-08-22 2017-01-04 深圳市金立通信设备有限公司 自拍杆及其长度计算方法、拍摄参数调节方法及终端
CN106303277A (zh) * 2016-08-22 2017-01-04 深圳市金立通信设备有限公司 补光灯的参数控制方法、终端及自拍杆
CN106331477A (zh) * 2016-08-22 2017-01-11 深圳市金立通信设备有限公司 自拍杆及其长度计算方法、拍摄参数调节方法及终端
CN106341593A (zh) * 2016-08-22 2017-01-18 深圳市金立通信设备有限公司 拍照控制方法及终端

Similar Documents

Publication Publication Date Title
JP4118322B2 (ja) 撮影装置、携帯端末装置、撮影方法、およびプログラム
US20060044399A1 (en) Control system for an image capture device
US9007464B2 (en) Photographing apparatus, photographing system, photographing method, and program stored in non-transitory medium in photographing apparatus
JP5620142B2 (ja) 撮像装置および撮像方法
KR101824439B1 (ko) 모바일 스테레오 카메라 장치 및 그 촬영방법
JP6512897B2 (ja) ズーム制御装置、ズーム制御装置の制御方法
WO2006013803A1 (ja) 撮像装置および撮像方法
US11184539B2 (en) Intelligent dual-lens photographing device and photographing method therefor
KR20160020791A (ko) 촬영 장치, 복수의 촬영 장치를 이용하여 촬영하는 촬영 시스템 및 그 촬영 방법
WO2014153950A1 (zh) 快速自动聚焦的方法和图像采集装置
WO2014105507A1 (en) Front camera face detection for rear camera zoom function
WO2014071840A1 (zh) 一种拍摄照片和视频的方法及装置
JP2010523015A (ja) 多様なモードにおいて操作可能なマルチレンズカメラ
US9204054B2 (en) Method for photographing a target subject
CN104853105B (zh) 基于可控制镜头倾斜的摄像装置的三维快速自动对焦方法
JP2007086269A (ja) カメラ装置およびカメラ装置のズームレンズ光学系の焦点距離調節方法
JP2010147715A (ja) 撮像装置
KR102470054B1 (ko) 제어장치 및 제어방법
JP2011119995A (ja) 立体撮像装置及び立体撮像方法
KR20170057574A (ko) 셀프 촬영용 스틱 및 셀프 촬영용 스틱의 제어 방법
JP5744581B2 (ja) 撮像装置及びその制御方法
CN113302908B (zh) 控制方法、手持云台、系统及计算机可读存储介质
JP5646582B2 (ja) 撮像装置
KR101814714B1 (ko) 스마트폰 카메라 원격 제어 방법 및 시스템
JP7254562B2 (ja) 撮像装置及びその制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP