WO2006013753A1 - 高周波複合部品 - Google Patents

高周波複合部品 Download PDF

Info

Publication number
WO2006013753A1
WO2006013753A1 PCT/JP2005/013661 JP2005013661W WO2006013753A1 WO 2006013753 A1 WO2006013753 A1 WO 2006013753A1 JP 2005013661 W JP2005013661 W JP 2005013661W WO 2006013753 A1 WO2006013753 A1 WO 2006013753A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
capacitor
acoustic wave
switch
surface acoustic
Prior art date
Application number
PCT/JP2005/013661
Other languages
English (en)
French (fr)
Inventor
Takanori Uejima
Naoki Nakayama
Tetsuro Harada
Kunihiro Koyama
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2006531405A priority Critical patent/JPWO2006013753A1/ja
Priority to EP05767376A priority patent/EP1775847B1/en
Priority to US10/595,260 priority patent/US7398059B2/en
Publication of WO2006013753A1 publication Critical patent/WO2006013753A1/ja
Priority to US12/100,474 priority patent/US7653360B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • H03H7/465Duplexers having variable circuit topology, e.g. including switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2250/00Indexing scheme relating to dual- or multi-band filters

Definitions

  • the present invention relates to a high-frequency composite component, and more particularly to a high-frequency composite component that can be used in a plurality of different mobile communication systems.
  • Fig. 18 shows a part of a configuration of a general dual-band mobile phone, including antenna 1, duplexer 2, and two signal paths, DCS system 3 (1.8 GHz band) and GSM system 4 (900 MHz). It is composed of.
  • the diplexer 2 selects a transmission signal from the DCS system 3 or GSM system 4 at the time of transmission, and selects a reception signal to the DCS system 3 or GSM system 4 at the time of reception.
  • the DCS system 3 includes a high-frequency switch 3a that separates the transmitter Txd and the receiver Rxd, and a filter 3b that passes the fundamental frequency of the DCS and attenuates the second and third harmonics.
  • the GSM system 4 includes a high-frequency switch 4a that separates the transmitter Txg and the receiver Rxg, and a filter 4b that passes the fundamental frequency of GSM and attenuates the third harmonic.
  • Patent Document 1 discloses that an inductor 6 is arranged in parallel between balanced output terminals Rx of a bandpass filter 5 having a balanced output type surface acoustic wave filter force, as shown in FIG. ing.
  • a capacitor is inserted in series with each balanced output terminal, or in order to increase the impedance, another capacitor is placed between the balanced output terminals.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-142981
  • an object of the present invention is to provide a high-frequency composite component that can easily set a desired impedance with a single high-frequency composite component, does not require matching adjustment with an LNA, can reduce the number of components, and can be downsized There is.
  • another object of the present invention is to provide a high-frequency composite component that prevents interference between elements and has good characteristics in addition to achieving the object.
  • a high-frequency composite component according to the present invention includes:
  • the switch, the LC filter, the surface acoustic wave filter, and the matching element are integrated in a laminated block formed by laminating a plurality of dielectric layers;
  • the high-frequency composite component according to the present invention includes a matching element including an inductor and a capacitor between the surface acoustic wave filter and the reception-side balanced output terminal.
  • a matching element including an inductor and a capacitor between the surface acoustic wave filter and the reception-side balanced output terminal.
  • the switch, the LC filter, the surface acoustic wave filter, and the matching element are integrated with a multilayer block formed by laminating a plurality of dielectric layers, what is important is that between the matching element and the LC filter.
  • the arrangement is such that interference can be prevented.
  • the inductance of the matching element is required to have high Q value and stability.
  • the inductor of the matching element is formed in the first region of the multilayer block, and the inductor and the capacitor of the LC filter are different from the first region in plan view. It is preferably formed in two regions.
  • the inductor of the matching element is preferably mounted on the surface of the multilayer block, and the inductor and capacitor of the LC filter are preferably incorporated in the multilayer block. Further, it is preferable that a ground electrode is disposed between the inductor of the matching element and the inductor and capacitor of the LC filter. Alternatively, among the LC filter capacitors, the shunt capacitor is preferably formed near the bottom layer of the multilayer block.
  • the inductor and capacitor of the matching element are formed on the surface of the multilayer block, and the inductor of the matching element is disposed adjacent to the capacitor of the matching element without passing through other elements.
  • the surface acoustic wave filter may be a balanced surface acoustic wave filter having a balanced output port, or may be an unbalanced surface acoustic wave filter having an unbalanced output port.
  • the matching element inductor is connected in parallel between the balanced output ports, and the matching element capacitor is connected in series to the balanced output port.
  • the inductor and capacitor of the matching element also serve as a balun.
  • the high-frequency composite component according to the present invention can be configured as a dual-band compatible high-frequency composite component that can handle signal processing in two different frequency bands.
  • Such a dual-band compatible high-frequency composite component includes a diplexer that branches the signal path of the first frequency band and the signal path of the second frequency band different from the first frequency band after the antenna terminal.
  • A a signal path between the antenna terminal and the first transmission side input terminal and a signal path between the antenna terminal and the first reception side balanced output terminal in the signal path of the first frequency band.
  • a first switch for selectively switching (B) a first LC filter disposed between the first switch and the first transmission side input terminal and including an inductor and a capacitor; and (C) the first switch.
  • a first surface acoustic wave filter disposed between the switch and the first reception-side balanced output terminal; and (D) disposed between the first surface acoustic wave filter and the first reception-side balance output terminal.
  • a first matching element including an inductor and a capacitor; a signal path between the antenna terminal and the second transmission side input terminal in the signal path of the second frequency band; the antenna terminal and the second reception Between the side balanced output terminals A second switch for selectively switching the signal path; and (F) a second LC filter disposed between the second switch and the second transmission side input terminal and including an inductor and a capacitor, (G ) A second surface acoustic wave filter disposed between the second switch and the second reception-side balanced output terminal; and (H) the second surface acoustic wave filter and the second reception-side balanced output terminal.
  • a second matching element disposed between and including an inductor and a capacitor
  • the diplexer, the first / second switch, the first / second LC filter, the first / second surface acoustic wave filter, and the first / second matching element are laminated blocks in which a plurality of dielectric layers are laminated.
  • the high-frequency composite component according to the present invention can be configured as a triple-band compatible high-frequency composite component that can handle signal processing in three different frequency bands.
  • a triple-band compatible high-frequency composite component has a signal path in the first frequency band and a second frequency band and a third frequency band different from the first frequency band, after the antenna terminal.
  • A a signal path between the antenna terminal and the first transmission side input terminal and a signal path between the antenna terminal and the first reception side balanced output terminal in the signal path of the first frequency band.
  • a first switch for selectively switching (B) a first LC filter disposed between the first switch and the first transmission side input terminal and including an inductor and a capacitor; and (C) the first switch.
  • a first surface acoustic wave filter disposed between the switch and the first reception-side balanced output terminal; and (D) disposed between the first surface acoustic wave filter and the first reception-side balance output terminal.
  • a first matching element including an inductor and a capacitor, a signal path between the antenna terminal and the second transmission side input terminal in the signal path of the second frequency band, the antenna terminal, With the 3rd receiver balanced output terminal (F) a second LC filter disposed between the second switch and the second transmission side input terminal and including an inductor and a capacitor; G) A signal path disposed between the second switch and the second receiving-side balanced output terminal, and a signal path disposed between the second switch and the third receiving-side balanced output terminal.
  • a second matching element including an inductor and a capacitor, and a third surface acoustic wave filter disposed between the duplexer and the third receiving balance output terminal.
  • ( ⁇ ) 3 is disposed between the surface acoustic wave filter and the third reception-side balanced output terminal, comprising: a third matching element including an inductor and a capacitor, and
  • the diplexer, first / second switch, first / second LC filter, duplexer, first / second / third surface acoustic wave filter and first / second / third matching element are laminated with a plurality of dielectric layers. Being integrated with the laminated body block,
  • FIG. 1 is a block diagram showing a basic configuration of a first embodiment of a high-frequency composite component according to the present invention. 2] It is an equivalent circuit diagram of the first embodiment.
  • FIG. 3 A block diagram showing the basic configuration of the second embodiment of the high-frequency composite component according to the present invention.
  • ⁇ 7 It is an explanatory view showing the electrode shape formed on each sheet layer (from the bottom to the 16th and 17th layers) of the ceramic multilayer substrate of the second example.
  • FIG. 8 is a plan view showing a mounting state of each circuit element on the surface of the ceramic multilayer substrate of the second embodiment.
  • FIG. 9 is a block diagram showing a basic configuration of a third embodiment of the high-frequency composite component according to the present invention.
  • FIG. 11 is an equivalent circuit diagram of a fourth embodiment of the high-frequency composite component according to the present invention.
  • FIG. 15 is a plan view showing a mounting state of each circuit element on the surface of the ceramic multilayer substrate of the fourth embodiment.
  • FIG. 16 is an equivalent circuit diagram of a fifth embodiment of the high-frequency composite component according to the present invention.
  • FIG. 17 is an equivalent circuit diagram of a sixth embodiment of the high-frequency composite component according to the present invention.
  • FIG. 18 is a block diagram showing a switch circuit of a conventional dual-band mobile phone.
  • FIG. 19 is a block diagram showing a schematic configuration of a conventional bandpass filter. BEST MODE FOR CARRYING OUT THE INVENTION
  • the single-band compatible high-frequency composite component according to the first embodiment has a balanced output section of the balanced surface acoustic wave filter SAW and a balanced output terminal on the receiving side.
  • An inductor L is connected in parallel with Rx, and capacitors CI and C2 are connected in series.
  • the high-frequency composite component is roughly composed of a high-frequency switch 11, an LC filter 12, a balanced surface acoustic wave filter SAW, and a matching element 13. Has been.
  • the high frequency switch 11 is for selectively switching a signal path between the antenna terminal ANT and the transmission side input terminal Tx and a signal path between the antenna terminal ⁇ and the reception side balanced output terminal Rx. It is.
  • the LC filter 12 is a low-pass filter that is disposed between the high-frequency switch 11 and the transmission-side input terminal Tx and includes an inductor GLtl and a capacitor.
  • the capacitor of this low-pass filter consists of a capacitor GC connected in parallel with the inductor GLtl and two grounding capacitors (shunt capacitors) GCul, G Cu2 connected to the ground.
  • the matching element 13 includes an inductor L connected in parallel between the balanced output portion of the surface acoustic wave filter SAW and the reception-side balance output terminal Rx, and capacitors CI and C.
  • the high-frequency switch 11, the LC filter 12, the surface acoustic wave filter SAW, and the matching element 13 are integrated in a multilayer block formed by laminating a plurality of dielectric layers. ing.
  • the high-frequency composite part of the first embodiment which is a single-band compatible type
  • the high-frequency composite part of the second and third examples which is a dual-band compatible type
  • the fourth type that is a triple-band compatible type It is included as a part of the high-frequency composite part of the embodiment. Therefore, the more detailed configuration and operation of the first embodiment are described in the second, third, fourth, Revealed by the fifth and sixth embodiments.
  • the high-frequency composite component of the second embodiment is a dual-band compatible high-frequency composite component (front-end module) equipped with a GSM system and DCS system, as shown in the block diagram of FIG.
  • Inductors Lg and Ld are connected in parallel between the balanced output of balanced surface acoustic wave filters SAWg and SAWd and the balanced output terminals Rxg and Rxd on the receiving side, and capacitors Clg, C2g and Cld and C2d are connected in series.
  • the high-frequency composite component includes a diplexer 20 that branches the GSM signal path and the DCS signal path after the antenna terminal ANT.
  • the GSM system includes a first high-frequency switch 11G, a first LC filter 12G, a balanced first surface acoustic wave filter SAWg, and a first matching element 13G.
  • the DCS system includes a second high-frequency switch 11D, a second LC filter 12D, a balanced second surface acoustic wave filter SAWd, and a second matching element 13D.
  • the first high-frequency switch 11G selects a signal path between the antenna terminal ANT and the first transmission side input terminal Txg and a signal path between the antenna terminal ANT and the first reception side balanced output terminal Rxg. Switch automatically.
  • the first LC filter 12G is disposed between the first high frequency switch 11G and the first transmission side input terminal Txg.
  • the first surface acoustic wave filter SAWg is disposed between the first high-frequency switch 11G and the first reception-side balanced output terminal Rxg.
  • the inductor Lg is connected in parallel to the first surface acoustic wave filter SAWg side, and the capacitors Clg and C2g are connected in series between the inductor Lg and the reception-side balanced output terminal Rxg. It is a thing.
  • the second high-frequency switch 11D selects a signal path between the antenna terminal ANT and the second transmission side input terminal Txd and a signal path between the antenna terminal ANT and the second reception side balanced output terminal Rxd. Switch automatically.
  • the second LC filter 12D is arranged between the second high frequency switch 11D and the second transmission side input terminal Txd.
  • the second surface acoustic wave filter SAWd is disposed between the second high-frequency switch 11D and the second reception-side balanced output terminal Rxd.
  • the second matching element 13D includes an inductor Ld in parallel with the second surface acoustic wave filter SAWd side.
  • the capacitors Cld and C2d are connected in series between the inductor Ld and the receiving side balanced output terminal Rxd.
  • the diplexer 20 selects a transmission signal from the DCS system or the GSM system at the time of transmission, and selects a reception signal to the DCS system or the GSM system at the time of reception.
  • the first port P11 of the diplexer 20 has an antenna terminal ANT force
  • the second port P12 has the first high-frequency switch 11G first port P31g
  • the third port P13 has the second high-frequency switch 1 ID first port P3 Each Id is connected.
  • the first port P21g of the first LC filter 12G is connected to the second port P32g of the first high-frequency switch 11G, and the first surface acoustic wave filter SA Wg is connected to the third port P33g. Yes.
  • the first transmission side input terminal Txg is connected to the second port P22g of the first LC filter 12G.
  • the second port P32d of the second high-frequency switch 11D is connected to the second LC filter 12 and the first port P21d of the 2D, and the second surface acoustic wave filter is connected to the third port P33d.
  • SA Wd is connected.
  • the second transmission side input terminal Txd is connected to the second port P22d of the second LC filter 12D.
  • the diplexer 20 includes inductors Ltl and Lt2 and capacitors Ccl, Cc2, Ctl, Ct2 and Cu1.
  • a parallel circuit composed of an inductor Ltl and a capacitor Ctl is connected between the first port P11 and the second port P12, and the second port P12 side of the parallel circuit is grounded via the capacitor Cul.
  • Capacitors Ccl and Cc2 are connected in series between the first port P11 and the third port P13, and are grounded via the connection point inductor Lt2 and the capacitor Ct2.
  • the first high-frequency switch 11G includes diodes GDI and GD2, which are switching elements, inductors GSL1 and GSL2, capacitors GC5 and GC6, and a resistor RG.
  • a diode GDI is connected between the first port P31g and the second port P32g so that the anode is on the first port P31g side, and the force sword is grounded via the inductor GSL1.
  • the diode GD2 has a force sword connected to the first port P31g via the inductor GSL2 and an anode grounded via the capacitor GC5.
  • the control terminal Vcl is connected to the connection point between the diode GD2 and the capacitor GC5 via the resistor RG. Also, with the power sword of diode GD2 The connection point with the third port P33g is grounded via the capacitor GC6.
  • the second high-frequency switch 11D includes diodes DDI and DD2, which are switching elements, inductors DSL1, DSL2, DSLt, capacitors DC6, DC7, DCtl, and a resistor RD.
  • a diode DDI is connected between the first port P31d and the second port P32d so that the anode is on the first port P31d side, and the force sword is grounded via the inductor DSL1.
  • a series circuit of a capacitor DCtl and an inductor DSLt is connected in parallel with the diode DDI between the first port P31d and the second port P32d.
  • the diode DD2 has a force sword connected to the first port P31d via the inductor DSL2 and an anode grounded via the capacitor DC5.
  • the control terminal Vc2 is connected to the connection point between the diode DD2 and the capacitor DC5 via the resistor R D.
  • the power sword of the diode DD2 is connected to the third port P33d via the capacitor DC6, and the connection point between the force sword and the capacitor DC6 is grounded via the capacitor DC7.
  • the first LC filter 12G is configured by connecting a parallel circuit of an inductor GLtl and a capacitor GCcl between a first port P21g and a second port P22g. Both ends of the inductor GLtl are grounded via capacitors GCul and GCu2, respectively.
  • the second LC filter 12D includes a parallel circuit of an inductor DLt 1 and a capacitor DCc 1 and a parallel circuit of an inductor DLt2 and a capacitor DCc 2 connected in series between a first port P21d and a second port P22d. is there. Both ends of the inductor DLtl are grounded via capacitors DCul and DCu2, respectively.
  • FIGS. 5 to 7 show capacitor electrodes, stripline electrodes, and the like formed by screen printing on each sheet layer constituting the ceramic multilayer substrate of the high-frequency composite component of the second embodiment. ing.
  • the ceramic multilayer substrate is formed by sequentially laminating the first to 17th sheet layers 61a to 61q, which also have ceramic strength mainly composed of barium oxide, aluminum oxide, and silica, and firing them at a temperature of 1000 ° C or less. Is done.
  • Various external connection terminal electrodes are formed on the first sheet layer 61a.
  • a ground electrode G1 is formed on the second sheet layer 61b, and electrodes of capacitors GCul, GCu2, Ct2, and GC5 are formed on the third sheet layer 61c, and a capacitance is formed with the ground electrode G1.
  • a ground electrode G2 is formed on the fourth sheet layer 61d, and a capacitor is formed on the fifth sheet layer 61e.
  • DCul and DCu2 electrodes are formed, and a capacitance is formed with the ground electrode G2.
  • Inductors Ltl, Lt2, DLtl, DLt2, GLtl, DSL1, and DSL2 are formed on the seventh and ninth sheet layers 61g and 61i by stripline electrodes, and are connected by via holes. Furthermore, inductors Lt1, Lt2, DLtl, DLt2, GLtl, and GSL2 are formed on the eleventh sheet layer 61k by stripline electrodes, and each is connected to the same type of lower layer via hole.
  • Electrodes of capacitors Ctl and DCcl are formed on the twelfth sheet layer 611, and capacitors Ctl, Ccl, DCtl and GCcl electrodes and a ground electrode G3 are formed on the thirteenth sheet layer 61m. Electrodes of capacitors Ccl, DCtl, GCcl, and DC5 are formed on the 14th sheet layer 61 ⁇ . On the fifteenth sheet layer 61 ⁇ , electrodes of capacitors Cc2 and DCtl and a ground electrode G4 are formed.
  • the surface of the seventeenth sheet layer 61q is the surface of the ceramic multilayer substrate 50, on which various connection terminal electrodes are formed.
  • the first and second elastic surface wave filters SAWg, SAWd and diodes GDI, GD2, DDI, DD2 are mounted on the surface, and the inductor Lg and capacitors Clg, C2g that constitute the first matching element 13G
  • the inductor Ld and the capacitors Cld and C2d constituting the second matching element 13D are mounted.
  • resistors RG and RD are mounted on the surface of the ceramic multilayer substrate 50, and inductors DSL1, DSLt, and GSL1 are mounted.
  • DCS when transmitting a DCS transmission signal (1.8 MHz band), DCS is turned on by applying 3V to the control terminal Vc2 in the second high-frequency switch 11D and turning on the diodes DD1 and DD2, for example.
  • the transmission signal of the system passes through the second LC filter 12D, the second high-frequency switch 1 ID, and the diplexer 20, and is transmitted from the antenna terminal ANT connected to the first port PI1 of the diplexer 20.
  • the DCS transmission signal is It is designed not to wrap around the M system first transmission side input terminal Txg and the first reception side balanced output terminal Rxg.
  • the second LC filter 12D of the DCS system attenuates the second and third harmonics of the DCS system.
  • the second high frequency switch 11D of the DCS system for example, OV is applied to the control terminal Vc2 to turn off the diode DDI so that the DCS transmission signal is not transmitted. Also, by connecting the diplexer 20, the GSM transmission signal is prevented from wrapping around the DCS system second transmission side input terminal Txd and the second reception side balanced output terminal Rxd.
  • the second harmonic of the GSM system is attenuated by a low-pass filter consisting of the capacitor Ctl, the inductor Ltl, and the shunt capacitor Cu 1 of the diplexer 20, and the GSM third LC is attenuated by the GSM first LC filter 12G. Decrease it! /
  • OV is applied to the control terminal Vc2 in the second high-frequency switch 11D of the DCS system to turn off the diodes DDI and DD2, and the GSM
  • the DCS system received signal is applied to the DCS system 2nd transmission side input terminal Txd.
  • the GSM received signal does not wrap around the GSM first transmitter input terminal Txg, and the signal input from the antenna terminal ANT is received by the DCS receive side balanced output terminal Rxd and GSM received, respectively. Output to the side balanced output terminal R xg.
  • the DCS system received signal does not wrap around the GSM system and the GSM system received signal does not wrap around the DCS system.
  • inductors Lg, Ld and a capacitor C1 are provided between the surface acoustic wave filters SAWg, SAWd and the reception-side balanced output terminals Rxg, Rxd. Since the matching elements 13G and 13D including g, C2g, Cld, and C2d are provided, the impedance of the receiver balanced output terminals Rxg and Rxd can be set freely by appropriately combining this inductor and capacitor. It becomes. The impedance can be adjusted to be lowered by inserting a capacitor on the output terminals Rxg and Rxd side.
  • inductors Lg, Ld and capacitors Clg, C2g, Cld, C2d are integrated with a ceramic multilayer substrate together with other circuit components, this type of inductor or capacitor is discretely mounted on the printed circuit board.
  • the mounting area on the printed circuit board can be reduced compared to the case where it is placed on the surface, and the distance between the surface acoustic wave filters SAWg and SAWd and the matching elements 1 3G and 13D is reduced to the maximum / J limit.
  • the high-frequency characteristics can be improved by suppressing the loss between the finoleta SAWg and SAWd and the matching elements 13G and 13D.
  • the inductors Lg and Ld of the matching elements 13G and 13D are formed so as not to overlap with the inductors and capacitors of the LC filters 12G and 12D in the ceramic multilayer substrate in plan view. Isolation can be ensured and signal contamination can be prevented. The same effect is that the inductors Lg and Ld of the matching elements 13G and 13D are mounted on the surface of the ceramic multilayer substrate, and the inductors and capacitors of the LC filters 12G and 12D are built in the ceramic multilayer substrate. It is also achieved.
  • the capacitors Clg, C2g, Cld, C2d of the matching elements 13G, 13D are formed so as not to overlap with the inductors and capacitors of the LC filters 12G, 12D. As a result, signal mixing between the transmission and reception paths can be more effectively prevented.
  • the ground electrode G4 is disposed between the inductors Lg, Ld of the matching elements 13G, 13D and the inductors and capacitors of the LC filters 12G, 12D, it is possible to effectively prevent interference between the two. be able to. Similar effects can be achieved by the fact that the capacitors of the LC filters 12G and 12D, in particular, the shunt capacitors GCul, GCu2, DCul, and DCu2 are formed near the bottom layer of the ceramic multilayer substrate.
  • Inductors Lg and Ld of matching elements 13G and 13D and capacitors Clg, C2g, Cld and C2d are formed on the surface of the ceramic multilayer substrate, and inductors Lg and Ld of matching elements 13G and 13D do not pass through other elements. It is also possible to place adjacent to capacitors Clg, C2g, Cld, C2d of matching elements 13G, 13D Mutual interference can be prevented.
  • the ground electrode G 4 is also arranged between the capacitors Clg, C 2 g, Cld, C 2 d of the matching elements 13 G, 13 D and the inductors and capacitors of the LC filters 12 G, 12 D. Thereby, interference of both can be prevented more effectively.
  • the surface mount components constituting the matching elements 13G and 13D constitute the high frequency switches 11G and 11D and the diplexer 20.
  • the surface mount components are arranged apart from each other through surface acoustic wave filters SAWg and SAWd. By arranging in this way, interference between the matching elements 13G and 13D and other elements can be more effectively suppressed.
  • the high-frequency composite component according to the third embodiment is a dual-band compatible type equipped with a GSM system and a DCS system, as in the second embodiment.
  • Capacitors Clg, C2g, Cld, and C2d are connected in series to the balanced output sections of the non-linear surface acoustic wave filters SAWg and SAWd, respectively, and are connected to the receiving balanced output terminals Rxg and Rxd.
  • Inductors Lg and Ld are connected in parallel.
  • the capacitors Clg, C2g and the capacitors Cld, C2d are connected in series to the first and second neutral surface wave filters SAWg and SAWd, respectively, and the inductors Lg and Ld are connected to the first and second receiving sides.
  • the impedance of the first and second receiving balanced output terminals Rxg and Rxd can be set freely, and in particular the impedance can be increased.
  • the circuit configuration and operation other than the first and second matching elements 13G and 13D are the same as those in the second embodiment, and a duplicate description is omitted.
  • the high-frequency composite component of the fourth embodiment is a triple-band compatible type equipped with a GSM system and a DCS system branched to two receiving balanced output terminals Rxdl and Rxd2. It is configured as a high-frequency composite part.
  • the GSM system includes the first high-frequency switch 11G, the first LC filter 12G, and the balanced first Surface acoustic wave filter SAWg and first matching element 13G.
  • the configuration and operation of this GSM system are the same as those in the second and third embodiments, and a duplicate description is omitted.
  • the diplexer 20 has basically the same configuration as the second and third embodiments, and further, when a capacitor Cant is connected between the first port P11 and the antenna terminal ANT. Furthermore, the connection point is grounded via the inductor Lant.
  • the DCS system includes a second high-frequency switch 11D ', a second LC filter 12D, and a second transmission-side input terminal Txd.
  • the circuit configuration of this part is the same as that of the second and third embodiments, and a duplicate description is omitted.
  • the duplex port 14D is connected to the third port P33d of the second high-frequency switch 11D ', and this duplexer 14D uses the second reception side balanced output terminal Rxdl and the third reception side as the reception signal path. For branching to the balanced output terminal Rxd2.
  • the second high-frequency switch 11D ' has a signal path between the antenna terminal ANT and the second transmission side input terminal Txd, and between the antenna terminal ANT and the second and third reception side balanced output terminals Rxdl and Rxd2.
  • the signal path is selectively switched.
  • the second high-frequency switch 11D ' is composed of diodes DDI and DD2, which are switching elements, inductors DPSL1, DSL2, and DPSLt, capacitors DC5, DC6, DPCt, and a resistor DR1.
  • a diode DDI is connected between the first port P31d and the second port P32d so that the anode is on the second port P32d side, and this anode is grounded via the inductor DPSL1 and the capacitor DC6.
  • the control terminal Vc2 is connected to the connection point between the inductor DPSL1 and the capacitor DC6.
  • a series circuit of a capacitor DPCt and an inductor DPSLt is connected in parallel with the diode DDI between the first port P31d and the second port P32d.
  • the diode DD2 has an anode connected to the first port P31d via the inductor DSL2 and a force sword grounded via the capacitor DC5.
  • the connection point between the diode DD2 and the capacitor DC5 is grounded through the resistor DR1.
  • the inductor PSL2 is connected between the first port P41d and the second port P42d, and the connection point between the inductor PSL2 and the second port P42d is grounded via the capacitor PC7.
  • the second port P42d is connected to the second surface acoustic wave filter SAWdl!
  • a capacitor DC7 is connected between the first port P41d and the third port P43d of the duplexer 14D. Is connected.
  • the connection point between capacitor DC7 and first port P41d is grounded via capacitor Cj, and the connection point between capacitor DC7 and third port P43d is grounded via inductor DSL1.
  • the third port P43d is connected to the third surface acoustic wave filter SAWd2.
  • the second matching element 13D1 is connected to the balanced output portion of the second surface acoustic wave filter SAWdl
  • the third matching element 13D2 is connected to the balanced output portion of the third surface acoustic wave filter SAWd2.
  • the second and third matching elements 13D1 and 13D2 are connected to the SAWdl and SAWd2 in parallel with the inductor Ld in the same manner as in the second embodiment, and the capacitors Cld and C2d are connected to the inductor Ld and the receiving side balanced output. These are connected in series between terminals Rxdl and Rxd2.
  • the function and effect are the same as in the second embodiment.
  • the second and third matching elements 13D1 and 13D2 may have the same circuit configuration as that of the third embodiment. In this case, the same effects as those of the third embodiment are achieved.
  • FIGS. 12 to 14 show capacitor electrodes, stripline electrodes, and the like formed by screen printing on the respective sheet layers constituting the ceramic multilayer substrate of the high-frequency composite component of the fourth embodiment. .
  • Various external connection terminal electrodes are formed on the first sheet layer 62a.
  • a ground electrode G11 is formed on the second sheet layer 62b, and electrodes of capacitors Cul, Ct2, and DC6 are formed on the third sheet layer 62c, and a capacitance is formed with the ground electrode G11.
  • a ground electrode G12 is formed on the fourth sheet layer 62d, and capacitors DCu1, DCu2, Cj, GCul, GCu2 are formed on the fifth sheet layer 62e, and a capacitance is formed with the ground electrode G12. is doing.
  • Inductor Ltl, Lt2, DLtl, DLt2, GLtl, GSL2, DSL2, and PSL2 are formed on the eighth sheet layer 62h by stripline electrodes.
  • inductors GSL2 and Ltl are formed by slip line electrodes, and each is connected to the lower layer electrode by a via hole.
  • inductors Ltl, Lt2, DLtl, D Lt2, GLtl, GSL2, DSL2, and PSL2 are formed by stripline electrodes, and are connected to the lower electrode of the same type through via holes.
  • the eleventh sheet layer 62k has inductors by stripline electrodes Ltl and GSL2 are formed, and each is connected to the lower electrode of the same type through a via hole.
  • inductors Lt2, DLtl, DLt2, GLtl, GSL2, and DSL2 are formed by stripline electrodes, which are connected to the lower electrode of the same type by via holes. Electrodes of capacitors Ctl and DCc2 are formed on the 13th sheet layer 62m, and electrodes of capacitors Ctl and Ccl and a ground electrode G13 are formed on the 14th sheet layer 62 ⁇ . 15th sheet layer 62 ⁇ Electrode capacitors DC5, Ctl, Ccl, GCcl, GC5, DCu1, DCc2 are formed. On the 16th sheet layer 62p, electrodes of capacitors Cc2 and CCcl and a ground electrode G14 are formed. The electrode of the capacitor D Ccl is formed on the 17th sheet layer 62q.
  • the surface of the nineteenth sheet layer 62s is the surface of the ceramic multilayer substrate 50 as shown in Fig. 15, and various connection terminal electrodes are formed on the first, second, and third elastic surfaces.
  • an inductor Lg and capacitors Clg and C2g constituting the first matching element 13G, and an inductor Ld and capacitors Cld and C2d constituting the second and third matching elements 13D1 and 13D2 are mounted.
  • resistors RG and DR1 are mounted on the surface of the ceramic multilayer substrate 50, resistors RG and DR1 are mounted, inductors Lant, DPCt, DPSLt, DSL1, and DPSL1 are mounted, and capacitors Cant, DC7, and PC7 are mounted.
  • the received signal is sent to the second receiving-side balanced output terminal Rxdl and the third receiving-side balanced output terminal by turning on and off the diode DD2 of the second high-frequency switch 11D '. Switch to Rxd2.
  • Other basic operations are the same as those described in the second embodiment, and the effects thereof are the same as those of the second embodiment.
  • the surface mount components constituting the matching elements 13G, 13D1, 13D2 are the high frequency switches 11G, 11D ', the diplexer 20, the duplexer.
  • the surface mount component constituting 14D is arranged on the opposite side through surface acoustic wave filters S AWg, SAWdl, and SAWd2. This arrangement further effectively suppresses interference between the matching elements 13G, 13D1, 13D2 and other elements. I can control.
  • the high-frequency composite component of the fifth embodiment is configured as a triple-band compatible type as shown in the equivalent circuit of FIG.
  • the structure is basically the same as that of the fourth embodiment (see FIG. 11), and the operation and effect thereof are the same as those of the fourth embodiment.
  • the difference is that the reception-side balanced output terminals Rxdl and Rxd2 are separated by a diode switch 15D instead of the duplexer 14D.
  • the diode switch 15D is configured by diodes SDD1 and SDD2, which are switching elements, inductors SID1 and SID2, capacitors SCI, SC2 and SC3, and a resistor SR.
  • the first port P51d is connected to the third port P33d of the second high-frequency switch 11D ', and one end of the capacitor SC3 connected to the first port P51d is connected to the diode via the power sword of the diode SDD 1 and the inductor SID2. Connected to the anode of SDD2.
  • the anode of the diode SDD1 is grounded via the inductor SID1 and the capacitor SC1, and the control terminal Vc3 is connected to the connection point between the inductor SID1 and the capacitor SC1.
  • the force sword of the diode SDD2 is grounded via the capacitor SC2, and the connection point between the cathode and the capacitor SC2 is grounded via the resistor SR.
  • the second port P52d connected to the anode of the diode SDD1 is connected to the second surface acoustic wave filter SAWdl!
  • the third port P53d connected to the anode of the diode SDD2 is connected to the third surface acoustic wave filter SAWd2.
  • the high-frequency composite component according to the sixth embodiment is configured as a triple-band compatible type as shown in the equivalent circuit of FIG.
  • the configuration is basically the same as that of the fourth embodiment (see FIG. 11), and the function and effect thereof are also the same as those of the fourth embodiment.
  • the difference is that surface acoustic wave filters SAWdl and SAWd2 are unbalanced with an unbalanced output port, and matching elements 13D1 and 13D2 connected to the unbalanced output port are configured as baluns. It is.
  • the high-frequency composite component according to the present invention is not limited to the above-described embodiment, but can be variously modified within the scope of the gist thereof.
  • the single-band compatible type, the dual-band compatible type, and the triple-band compatible high-frequency composite component have been described.
  • the present invention is also applicable to a quad-band or higher multi-band compatible high-frequency composite component. can do.
  • the LC filters 12, 12 G, 12D for attenuating higher-order harmonics are the high-frequency switches 11, 11G, 11D, 11D ′ and the transmission side input terminals Tx, Txg, Ts. Force placed between d and antenna terminal ANT (diplexer 20) may be placed between the high-frequency switch.
  • the present invention is useful for high-frequency composite parts that can be used in a plurality of different mobile communication systems.
  • a desired impedance can be easily set and matching adjustment with an LNA is not required. Excellent in terms.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filters And Equalizers (AREA)

Abstract

 アンテナ端子(ANT)から送受信する信号をGSM系信号経路とDCS系信号経路とにダイプレクサ(20)で選択的に切り換える高周波複合部品。GSM系及びDCS系には高周波スイッチ(11G),(11D)で切り換えられる送信側入力端子(Txg),(Txd)と受信側バランス出力端子(Rxg),(Rxd)を備えている。受信側バランス出力端子(Rxg)、(Rxd)と弾性表面波フィルタ(SAWg),(SAWd)の出力側との間にインダクタ(Lg),(Ld)とコンデンサ(C1g),(C2g),(C1d),(C2d)からなる整合素子が挿入されている。                                                                                 

Description

明 細 書
高周波複合部品
技術分野
[0001] 本発明は、高周波複合部品、特に、複数の異なる移動体通信システムに利用可能 な高周波複合部品に関する。
背景技術
[0002] 現在、ヨーロッパでは、移動体通信装置として、複数の周波数帯、例えば、 1. 8GH z帯を使用する DCSと 900MHz帯を使用する GSMとで動作が可能なデュアルバン ド携帯電話機が提案されて 、る。
[0003] 図 18は、一般的なデュアルバンド携帯電話機の構成の一部を示し、アンテナ 1、ダ ィプレクサ 2及び二つの信号経路 DCS系 3 (1. 8GHz帯)とGSM系4 (900MHz)か ら構成されている。
[0004] ダイプレクサ 2は、送信の際には DCS系 3あるいは GSM系 4からの送信信号を選 択し、受信の際には DCS系 3あるいは GSM系 4への受信信号を選択する。 DCS系 3は送信部 Txdと受信部 Rxdとに分離する高周波スィッチ 3a、 DCSの基本周波数を 通過させるとともに、 2次高調波及び 3次高調波を減衰させるフィルタ 3bからなる。 G SM系 4も、同様に、送信部 Txgと受信部 Rxgとに分離する高周波スィッチ 4a、 GSM の基本周波数を通過させるとともに、 3次高調波を減衰させるフィルタ 4bからなる。
[0005] ところで、近年では、受信部に 2本の信号端子を持つ平衡型 (バランス出力型)の高 周波複合部品が提供されており、このような平衡型では LNA (ローノイズアンプ)との インピーダンスマッチングが必要となる。
[0006] 特許文献 1には、図 19に示すように、バランス出力型の弾性表面波フィルタ力もな るバンドパスフィルタ 5の平衡出力端子 Rx間にインダクタ 6を並列に配置することが開 示されている。しかし、インダクタ 6のみでは所望のインピーダンス (特に複素数)に設 定することは困難である。本発明者の知見によると、さらにインピーダンスを下げるた めには各平衡出力端子と直列にコンデンサを挿入したり、インピーダンスを上げるた めにはコンデンサにカ卩えていま一つのインダクタを平衡出力端子間に並列に挿入す ることが必要である。しかし、このような高周波複合部品と LNAとの間にさらにコンデ ンサゃインダクタを別部品として後付けすることは、部品点数や実装面積の増加によ つて機器が大型化してしまうとともに、バンドパスフィルタ 5と LNAとの間のマッチング 調整がより複雑になってしまう。
特許文献 1 :特開 2003— 142981号公報
発明の開示
発明が解決しょうとする課題
[0007] そこで、本発明の目的は、高周波複合部品単体で所望のインピーダンスを容易に 設定できて LNAとのマッチング調整が不要で、部品点数の低減、小型化が可能な 高周波複合部品を提供することにある。
[0008] また、本発明の他の目的は、前記目的を達成することに加えて、素子相互の干渉を 防ぎ、特性の良好な高周波複合部品を提供することにある。
課題を解決するための手段
[0009] 前記目的を達成するため、本発明に係る高周波複合部品は、
(A)アンテナ端子と送信側入力端子との間の信号経路と、前記アンテナ端子と受 信側バランス出力端子との間の信号経路とを選択的に切り換えるためのスィッチと、
(B)前記アンテナ端子と前記送信側入力端子との間に配置され、インダクタ及びコ ンデンサを含む LCフィルタと、
(C)前記スィッチと前記受信側バランス出力端子との間に配置された弾性表面波フ イノレタと、
(D)前記弾性表面波フィルタと前記受信側バランス出力端子との間に配置され、ィ ンダクタ及びコンデンサを含む整合素子と、を備え、
前記スィッチ、 LCフィルタ、弾性表面波フィルタ及び整合素子が複数の誘電体層 を積層してなる積層体ブロックで一体ィ匕されてなること、
を特徴とする。
[0010] 本発明に係る高周波複合部品においては、弾性表面波フィルタと受信側バランス 出力端子との間にインダクタ及びコンデンサを含む整合素子を備えているため、この インダクタとコンデンサを適宜組み合わせることで、受信側バランス出力端子のインピ 一ダンスを自由に設定することが可能となる。し力も、このインダクタとコンデンサは他 の回路部品とともに積層体ブロックで一体ィ匕されているため、インダクタやコンデンサ をディスクリートでプリント基板上に配置する場合と比べてプリント基板上での実装面 積を小さくすることができると共に、弾性表面波フィルタと整合素子との距離を最小限 に抑え、フィルタと整合素子との間の損失を抑えて高周波特性を改善することができ る。
[0011] ところで、前記スィッチ、 LCフィルタ、弾性表面波フィルタ及び整合素子を複数の 誘電体層を積層してなる積層体ブロックで一体化する際に重要なのは、整合素子と LCフィルタとの間の干渉を防止できる配置とすることである。特に、整合素子のイン ダクタンスには Q値や安定性が高いことが要求される。
[0012] そこで、本発明に係る高周波複合部品において、整合素子のインダクタは積層体 ブロックの第 1領域に形成されており、 LCフィルタのインダクタ及びコンデンサは平面 視で前記第 1領域とは異なる第 2領域に形成されていることが好ましい。
[0013] 同様に、整合素子のインダクタは積層体ブロックの表面に搭載されており、 LCフィ ルタのインダクタ及びコンデンサは積層体ブロックの内部に内蔵されていることが好ま しい。また、整合素子のインダクタと LCフィルタのインダクタ及びコンデンサとの間に はグランド電極が配置されていることが好ましい。あるいは、 LCフィルタのコンデンサ のうちシャントコンデンサは積層体ブロックの最下層近辺に形成されていることが好ま しい。
[0014] 整合素子のインダクタ及びコンデンサは積層体ブロックの表面に形成されており、 整合素子のインダクタは他の素子を介さずに整合素子のコンデンサに隣接配置して ちょい。
[0015] また、前記弾性表面波フィルタは、バランス出力ポートを有するバランス型弾性表 面波フィルタであってもよぐあるいは、アンバランス出力ポートを有するアンバランス 型弾性表面波フィルタであってもよい。バランス型である場合は、整合素子のインダク タがバランス出力ポート間に並列接続されており、整合素子のコンデンサがバランス 出力ポートに直列接続されている。また、アンバランス型である場合は、整合素子の インダクタ及びコンデンサはバランを兼ねていることになる。 [0016] さらに、本発明に係る高周波複合部品は、二つの異なる周波数帯の信号処理に対 応できるデュアルバンド対応型の高周波複合部品として構成することができる。このよ うなデュアルバンド対応型の高周波複合部品は、前記アンテナ端子の後段に、第 1 周波数帯の信号経路と、前記第 1周波数帯とは異なる第 2周波数帯の信号経路とを 分岐するダイプレクサを備え、さらに、
前記第 1周波数帯の信号経路における、 (A)前記アンテナ端子と第 1送信側入力 端子との間の信号経路と、前記アンテナ端子と第 1受信側バランス出力端子との間の 信号経路とを選択的に切り換えるための第 1スィッチと、(B)前記第 1スィッチと前記 第 1送信側入力端子との間に配置され、インダクタ及びコンデンサを含む第 1LCフィ ルタと、(C)前記第 1スィッチと前記第 1受信側バランス出力端子との間に配置された 第 1弾性表面波フィルタと、 (D)前記第 1弾性表面波フィルタと前記第 1受信側バラン ス出力端子との間に配置され、インダクタ及びコンデンサを含む第 1整合素子と、 前記第 2周波数帯の信号経路における、 (E)アンテナ端子と第 2送信側入力端子と の間の信号経路と、前記アンテナ端子と第 2受信側バランス出力端子との間の信号 経路とを選択的に切り換えるための第 2スィッチと、(F)前記第 2スィッチと前記第 2送 信側入力端子との間に配置され、インダクタ及びコンデンサを含む第 2LCフィルタと 、(G)前記第 2スィッチと前記第 2受信側バランス出力端子との間に配置された第 2 弾性表面波フィルタと、 (H)前記第 2弾性表面波フィルタと前記第 2受信側バランス 出力端子との間に配置され、インダクタ及びコンデンサを含む第 2整合素子と、を備 え、
前記ダイプレクサ、第 1 ·第 2スィッチ、第 1 ·第 2LCフィルタ、第 1 ·第 2弾性表面波フ ィルタ及び第 1 ·第 2整合素子が複数の誘電体層を積層してなる積層体ブロックで一 体ィ匕されてなること、
を特徴とする。
[0017] さらに、本発明に係る高周波複合部品は、三つの異なる周波数帯の信号処理に対 応できるトリプルバンド対応型の高周波複合部品として構成することができる。このよ うなトリプルバンド対応型の高周波複合部品は、前記アンテナ端子の後段に、第 1周 波数帯の信号経路と、前記第 1周波数帯とは異なる第 2周波数帯及び第 3周波数帯 の信号経路とを分岐するダイプレクサを備え、さらに、
前記第 1周波数帯の信号経路における、 (A)前記アンテナ端子と第 1送信側入力 端子との間の信号経路と、前記アンテナ端子と第 1受信側バランス出力端子との間の 信号経路とを選択的に切り換えるための第 1スィッチと、(B)前記第 1スィッチと前記 第 1送信側入力端子との間に配置され、インダクタ及びコンデンサを含む第 1LCフィ ルタと、(C)前記第 1スィッチと前記第 1受信側バランス出力端子との間に配置された 第 1弾性表面波フィルタと、 (D)前記第 1弾性表面波フィルタと前記第 1受信側バラン ス出力端子との間に配置され、インダクタ及びコンデンサを含む第 1整合素子と、 前記第 2周波数帯の信号経路における、 (E)アンテナ端子と第 2送信側入力端子と の間の信号経路と、前記アンテナ端子と第 2·第 3受信側バランス出力端子との間の 信号経路とを選択的に切り換えるための第 2スィッチと、 (F)前記第 2スィッチと前記 第 2送信側入力端子との間に配置され、インダクタ及びコンデンサを含む第 2LCフィ ルタと、(G)前記第 2スィッチと前記第 2受信側バランス出力端子との間に配置された 信号経路と、前記第 2スィッチと前記第 3受信側バランス出力端子との間に配置され た信号経路とを分岐するデュプレクサと、 (H)前記デュプレクサと前記第 2受信側バ ランス出力端子との間に配置された第 2弾性表面波フィルタと、(I)前記第 2弾性表面 波フィルタと前記第 2受信側バランス出力端子との間に配置され、インダクタ及びコン デンサを含む第 2整合素子と、 ω前記デュプレクサと前記第 3受信側バランス出力 端子との間に配置された第 3弾性表面波フィルタと、(Κ)前記第 3弾性表面波フィル タと前記第 3受信側バランス出力端子との間に配置され、インダクタ及びコンデンサを 含む第 3整合素子と、を備え、
前記ダイプレクサ、第 1 ·第 2スィッチ、第 1 ·第 2LCフィルタ、デュプレクサ、第 1 ·第 2·第 3弾性表面波フィルタ及び第 1 ·第 2 ·第 3整合素子が複数の誘電体層を積層し てなる積層体ブロックで一体化されてなること、
を特徴とする。
図面の簡単な説明
[図 1]本発明に係る高周波複合部品の第 1実施例の基本構成を示すブロック図であ る。 圆 2]第 1実施例の等価回路図である。
圆 3]本発明に係る高周波複合部品の第 2実施例の基本構成を示すブロック図であ る。
圆 4]第 2実施例の等価回路図である。
圆 5]第 2実施例のセラミック多層基板の各シート層(下力も第 1〜第 8層)に形成した 電極形状を示す説明図である。
圆 6]第 2実施例のセラミック多層基板の各シート層(下力も第 9〜第 15層)に形成し た電極形状を示す説明図である。
圆 7]第 2実施例のセラミック多層基板の各シート層(下から第 16層及び第 17層)に 形成した電極形状を示す説明図である。
圆 8]第 2実施例のセラミック多層基板の表面における各回路素子の搭載状態を示す 平面図である。
圆 9]本発明に係る高周波複合部品の第 3実施例の基本構成を示すブロック図であ る。
圆 10]第 3実施例の等価回路図である。
圆 11]本発明に係る高周波複合部品の第 4実施例の等価回路図である。
圆 12]第 4実施例のセラミック多層基板の各シート層(下力も第 1〜第 8層)に形成し た電極形状を示す説明図である。
圆 13]第 4実施例のセラミック多層基板の各シート層(下力も第 9〜第 15層)に形成し た電極形状を示す説明図である。
圆 14]第 4実施例のセラミック多層基板の各シート層(下力も第 16〜第 18層)に形成 した電極形状を示す説明図である。
圆 15]第 4実施例のセラミック多層基板の表面における各回路素子の搭載状態を示 す平面図である。
圆 16]本発明に係る高周波複合部品の第 5実施例の等価回路図である。
圆 17]本発明に係る高周波複合部品の第 6実施例の等価回路図である。
圆 18]従来のデュアルバンド携帯電話機のスィッチ回路を示すブロック図である。
[図 19]従来のバンドパスフィルタの概略構成を示すブロック図である。 発明を実施するための最良の形態
[0019] 以下、本発明に係る高周波複合部品の実施例について添付図面を参照して説明 する。
[0020] (第 1実施例、図 1及び図 2参照)
本第 1実施例であるシングルバンド対応型の高周波複合部品は、図 1のブロック図 にその特徴的な構成を示すように、バランス型弾性表面波フィルタ SAWの平衡出力 部と受信側バランス出力端子 Rxとの間に、インダクタ Lが並列に接続されているととも にコンデンサ CI, C2がそれぞれ直列に接続されている。
[0021] 詳しくは、図 2の等価回路図に示すように、高周波複合部品は、概略、高周波スイツ チ 11と、 LCフィルタ 12と、バランス型弾性表面波フィルタ SAWと、整合素子 13とで 構成されている。
[0022] 高周波スィッチ 11は、アンテナ端子 ANTと送信側入力端子 Txとの間の信号経路 と、アンテナ端子 ΑΝΤと受信側バランス出力端子 Rxとの間の信号経路とを選択的に 切り換えるためのものである。 LCフィルタ 12は、高周波スィッチ 11と送信側入力端子 Txとの間に配置され、インダクタ GLtl及びコンデンサを含んだローパスフィルタであ る。このローパスフィルタのコンデンサは、インダクタ GLtlと並列接続されたコンデン サ GCと、グランドに接続される二つの接地コンデンサ(シャントコンデンサ) GCul, G Cu2からなつている。
[0023] 整合素子 13は、前述のように、弾性表面波フィルタ SAWの平衡出力部と受信側バ ランス出力端子 Rxとの間に、インダクタ Lを並列に接続するとともにコンデンサ CI, C
2をそれぞれ直列に接続したものである。
[0024] また、本第 1実施例において、前記高周波スィッチ 11、 LCフィルタ 12、弾性表面 波フィルタ SAW及び整合素子 13は、複数の誘電体層を積層してなる積層体ブロッ クで一体化されている。
[0025] シングルバンド対応型である本第 1実施例の高周波複合部品は、以下に説明する デュアルバンド対応型である第 2·第 3実施例の高周波複合部品及びトリプルバンド 対応型である第 4実施例の高周波複合部品にその一部として含まれるものである。 従って、本第 1実施例のより詳細な構成及び動作は以下に説明する第 2·第 3 ·第 4· 第 5 ·第 6実施例によって明らかにされる。
[0026] (第 2実施例、図 3〜図 8参照)
本第 2実施例である高周波複合部品は、図 3のブロック図にその特徴的な構成を示 すように、 GSM系及び DCS系を備えたデュアルバンド対応型の高周波複合部品(フ ロントエンドモジュール)であり、バランス型弾性表面波フィルタ SAWg, SAWdの平 衡出力部と受信側バランス出力端子 Rxg, Rxdとの間に、それぞれインダクタ Lg, Ld が並列に接続されているとともにコンデンサ Clg, C2g及び Cld、 C2dがそれぞれ直 列に接続されている。
[0027] 詳しくは、図 4の等価回路図に示すように、高周波複合部品は、アンテナ端子 ANT の後段に、 GSM系の信号経路と、 DCS系の信号経路とを分岐するダイプレクサ 20 を備えている。さらに、 GSM系は第 1高周波スィッチ 11Gと第 1LCフィルタ 12Gとバ ランス型第 1弾性表面波フィルタ SAWgと第 1整合素子 13Gとを備えている。 DCS系 も、同様に、第 2高周波スィッチ 11Dと第 2LCフィルタ 12Dとバランス型第 2弾性表面 波フィルタ SAWdと第 2整合素子 13Dとを備えている。
[0028] 第 1高周波スィッチ 11Gは、アンテナ端子 ANTと第 1送信側入力端子 Txgとの間 の信号経路と、アンテナ端子 ANTと第 1受信側バランス出力端子 Rxgとの間の信号 経路とを選択的に切り換える。第 1LCフィルタ 12Gは、第 1高周波スィッチ 11Gと第 1 送信側入力端子 Txgとの間に配置されている。第 1弾性表面波フィルタ SAWgは第 1高周波スィッチ 11Gと第 1受信側バランス出力端子 Rxgとの間に配置されている。
[0029] 第 1整合素子 13Gは、インダクタ Lgを第 1弾性表面波フィルタ SAWg側に並列に接 続し、コンデンサ Clg, C2gをインダクタ Lgと受信側バランス出力端子 Rxgとの間に それぞれ直列に接続したものである。
[0030] 第 2高周波スィッチ 11Dは、アンテナ端子 ANTと第 2送信側入力端子 Txdとの間 の信号経路と、アンテナ端子 ANTと第 2受信側バランス出力端子 Rxdとの間の信号 経路とを選択的に切り換える。第 2LCフィルタ 12Dは、第 2高周波スィッチ 11Dと第 2 送信側入力端子 Txdとの間に配置されている。第 2弾性表面波フィルタ SAWdは第 2高周波スィッチ 11Dと第 2受信側バランス出力端子 Rxdとの間に配置されている。
[0031] 第 2整合素子 13Dは、インダクタ Ldを第 2弾性表面波フィルタ SAWd側に並列に 接続し、コンデンサ Cld, C2dをインダクタ Ldと受信側バランス出力端子 Rxdとの間 にそれぞれ直列に接続したものである。
[0032] ダイプレクサ 20は、送信の際には DCS系あるいは GSM系からの送信信号を選択 し、受信の際には DCS系あるいは GSM系への受信信号を選択する。ダイプレクサ 2 0の第 1ポート P11にはアンテナ端子 ANT力 第 2ポート P12には第 1高周波スイツ チ 11Gの第 1ポート P31g、第 3ポート P13には第 2高周波スィッチ 1 IDの第 1ポート P 3 Idがそれぞれ接続されている。
[0033] GSM系において、第 1高周波スィッチ 11Gの第 2ポート P32gには第 1LCフィルタ 12Gの第 1ポート P21gが接続され、第 3ポート P33gには第 1弾性表面波フィルタ SA Wgが接続されている。第 1LCフィルタ 12Gの第 2ポート P22gには第 1送信側入力 端子 Txgが接続されている。
[0034] DCS系にお!/、て、第 2高周波スィッチ 11Dの第 2ポート P32dには第 2LCフィルタ 1 2Dの第 1ポート P21dが接続され、第 3ポート P33dには第 2弾性表面波フィルタ SA Wdが接続されている。第 2LCフィルタ 12Dの第 2ポート P22dには第 2送信側入力 端子 Txdが接続されている。
[0035] ダイプレクサ 20は、インダクタ Ltl, Lt2及びコンデンサ Ccl, Cc2, Ctl, Ct2, Cu 1で構成されている。第 1ポート P11と第 2ポート P12との間にインダクタ Ltlとコンデ ンサ Ctlとからなる並列回路が接続され、この並列回路の第 2ポート P12側がコンデ ンサ Culを介して接地される。また、第 1ポート P11と第 3ポート P13との間にはコン デンサ Ccl, Cc2が直列接続され、それらの接続点力インダクタ Lt2及びコンデンサ Ct2を介して接地される。
[0036] 第 1高周波スィッチ 11Gは、スイッチング素子であるダイオード GDI, GD2、インダ クタ GSL1, GSL2、コンデンサ GC5, GC6及び抵抗 RGで構成されている。第 1ポ ート P31gと第 2ポート P32gとの間に、アノードが第 1ポート P31g側になるようにダイ オード GDIが接続され、力ソードはインダクタ GSL1を介して接地される。ダイオード GD2は力ソードがインダクタ GSL2を介して第 1ポート P31gに接続され、アノードがコ ンデンサ GC5を介して接地される。ダイオード GD2とコンデンサ GC5との接続点に 抵抗 RGを介して制御端子 Vclが接続されている。また、ダイオード GD2の力ソードと 第 3ポート P33gとの接続点はコンデンサ GC6を介して接地される。
[0037] 第 2高周波スィッチ 11Dは、スイッチング素子であるダイオード DDI, DD2、インダ クタ DSL1, DSL2, DSLt、コンデンサ DC6, DC7、 DCtl及び抵抗 RDで構成され ている。第 1ポート P31dと第 2ポート P32dとの間に、アノードが第 1ポート P31d側に なるようにダイオード DDIが接続され、力ソードはインダクタ DSL1を介して接地され る。また、第 1ポート P31dと第 2ポート P32dとの間には、コンデンサ DCtlとインダクタ DSLtの直列回路がダイオード DDIとは並列に接続されている。ダイオード DD2は 力ソードがインダクタ DSL2を介して第 1ポート P31dに接続され、アノードがコンデン サ DC5を介して接地される。ダイオード DD2とコンデンサ DC5との接続点に抵抗 R Dを介して制御端子 Vc2が接続されている。また、ダイオード DD2の力ソードはコン デンサ DC6を介して第 3ポート P33dに接続され、力ソードとコンデンサ DC6との接続 点はコンデンサ DC7を介して接地される。
[0038] 第 1LCフィルタ 12Gは、第 1ポート P21gと第 2ポート P22gとの間にインダクタ GLtl とコンデンサ GCclの並列回路を接続したものである。インダクタ GLtlの両端はそれ ぞれコンデンサ GCul, GCu2を介して接地される。
[0039] 第 2LCフィルタ 12Dは、第 1ポート P21dと第 2ポート P22dとの間に、インダクタ DLt 1とコンデンサ DCc 1の並列回路及びインダクタ DLt2とコンデンサ DCc 2の並列回路 を直列に接続したものである。インダクタ DLtlの両端はそれぞれコンデンサ DCul, DCu2を介して接地される。
[0040] 図 5〜図 7は、本第 2実施例である高周波複合部品のセラミック多層基板を構成す る各シート層上にスクリーン印刷などで形成されたコンデンサ電極、ストリップライン電 極などを示している。セラミック多層基板は酸化バリウム、酸ィ匕アルミニウム、シリカを 主成分としたセラミックス力もなる第 1〜第 17シート層 61a〜61qを下力も順次積層し 、 1000°C以下の温度で焼成することにより形成される。
[0041] 第 1シート層 61aには種々の外部接続用端子電極が形成されている。第 2シート層 61bにはグランド電極 G1が形成され、第 3シート層 61cにはコンデンサ GCul, GCu 2, Ct2, GC5の電極が形成され、グランド電極 G1とでキャパシタンスを形成している 。第 4シート層 61dにはグランド電極 G2が形成され、第 5シート層 61eにはコンデンサ DCul, DCu2の電極が形成され、グランド電極 G2とでキャパシタンスを形成してい る。
[0042] 第 7·第 9シート層 61g, 61iにはストリップライン電極によってインダクタ Ltl, Lt2, DLtl, DLt2, GLtl, DSL1, DSL2が形成され、それぞれがビアホールにて接続 されている。さらに、第 11シート層 61kにはストリップライン電極によってインダクタ Lt 1, Lt2, DLtl, DLt2, GLtl, GSL2が形成され、それぞれがビアホールにて下層 の同種の電極と接続されて!ヽる。
[0043] 第 12シート層 611にはコンデンサ Ctl, DCclの電極が形成され、第 13シート層 61 mにはコンデンサ Ctl, Ccl, DCtl, GCclの電極及びグランド電極 G3が形成され ている。第 14シート層 61ηにはコンデンサ Ccl, DCtl, GCcl, DC5の電極が形成 されている。第 15シート層 61οにはコンデンサ Cc2, DCtlの電極及びグランド電極 G4が形成されている。
[0044] 第 17シート層 61qの表面は、図 8に示すように、セラミック多層基板 50の表面であ つて、種々の接続用端子電極が形成されている。そして、その表面には、第 1 ·第 2弾 性表面波フィルタ SAWg, SAWd、ダイオード GDI, GD2, DDI, DD2が搭載され 、さらに、第 1整合素子 13Gを構成するインダクタ Lg、コンデンサ Clg, C2g、第 2整 合素子 13Dを構成するインダクタ Ld、コンデンサ Cld, C2dが搭載されている。さら に、セラミック多層基板 50の表面には、抵抗 RG, RDが搭載され、インダクタ DSL1, DSLt, GSL1力搭載されている。
[0045] ここで、図 4に示した回路構成を有する高周波複合部品の動作について説明する。
まず、 DCS系(1. 8MHz帯)の送信信号を送信する場合には、第 2高周波スィッチ 1 1Dにおいて制御端子 Vc2に、例えば 3Vを印加してダイオード DD1、 DD2をオンす ることにより、 DCS系の送信信号が第 2LCフィルタ 12D、第 2高周波スィッチ 1 ID及 びダイプレクサ 20を通過し、ダイプレクサ 20の第 1ポート PI 1に接続されたアンテナ 端子 ANTから送信される。
[0046] この際、 GSM系の第 1高周波スィッチ 11Gにおいて制御端子 Vclに、例えば OVを 印加してダイオード GDIをオフすることにより、 GSM系の送信信号が送信されないよ うにしている。また、ダイプレクサ 20を接続することにより、 DCS系の送信信号が GS M系の第 1送信側入力端子 Txg及び第 1受信側バランス出力端子 Rxgに回り込まな いようにしている。さらに、 DCS系の第 2LCフィルタ 12Dでは DCS系の 2次高調波及 び 3次高調波を減衰させて 、る。
[0047] 次いで、 GSM系(900MHz帯)の送信信号を送信する場合には、第 1高周波スィ ツチ 11Gにおいて制御端子 Vclに、例えば 3Vを印加してダイオード GDI, GD2を オンすることにより、 GSM系の送信信号が第 1LCフィルタ 12G、第 1高周波スィッチ 11G及びダイプレクサ 20を通過し、ダイプレクサ 20の第 1ポート PI 1に接続されたァ ンテナ端子 ANTから送信される。
[0048] この際、 DCS系の第 2高周波スィッチ 11Dにおいて制御端子 Vc2に、例えば OVを 印加してダイオード DDIをオフすることにより、 DCS系の送信信号が送信されないよ うにしている。また、ダイプレクサ 20を接続することにより、 GSM系の送信信号が DC S系の第 2送信側入力端子 Txd及び第 2受信側バランス出力端子 Rxdに回り込まな いようにしている。
[0049] さらに、ダイプレクサ 20のコンデンサ Ctl、インダクタ Ltl及びシャントコンデンサ Cu 1力 なるローパスフィルタにて GSM系の 2次高調波を減衰させ、 GSM系の第 1LC フィルタ 12Gでは GSM系の 3次高調波を減衰させて!/、る。
[0050] 次いで、 DCS系及び GSM系の受信信号を受信する場合には、 DCS系の第 2高 周波スィッチ 11Dにおいて制御端子 Vc2に、例えば OVを印加してダイオード DDI, DD2をオフし、 GSM系の第 1高周波スィッチ 11Gにお!/、て制御端子 Vclに OVを印 加してダイオード GDI, GD2をオフすることにより、 DCS系の受信信号が DCS系の 第 2送信側入力端子 Txdに、 GSM系の受信信号が GSM系の第 1送信側入力端子 Txgに、それぞれ回り込まないようにし、アンテナ端子 ANTから入力した信号をそれ ぞれ DCS系の受信側バランス出力端子 Rxd、 GSM系の受信側バランス出力端子 R xgに出力する。
[0051] また、ダイプレクサ 20を接続することにより、 DCS系の受信信号が GSM系に、 GS M系の受信信号が DCS系に、それぞれ回り込まな 、ようにして!/、る。
[0052] 本第 2実施例の高周波複合部品においては、弾性表面波フィルタ SAWg, SAWd と受信側バランス出力端子 Rxg, Rxdとの間に、インダクタ Lg, Ld及びコンデンサ C1 g, C2g, Cld, C2dを含む整合素子 13G, 13Dを備えているため、このインダクタと コンデンサを適宜組み合わせることで、受信側バランス出力端子 Rxg, Rxdのインピ 一ダンスを自由に設定することが可能となる。そして、コンデンサを出力端子 Rxg, R xd側に挿入することにより、インピーダンスを下げる調整が可能である。
[0053] また、このインダクタ Lg, Ldとコンデンサ Clg, C2g, Cld, C2dは他の回路部品と ともにセラミック積層基板で一体ィ匕されているため、この種のインダクタやコンデンサ をディスクリートでプリント基板上に配置する場合と比べてプリント基板上での実装面 積を小さくすることができると共に、弾性表面波フィルタ SAWg, SAWdと整合素子 1 3G, 13Dとの距離を最 /Jヽ限に抑免、フイノレタ SAWg, SAWdと整合素子 13G, 13D との間の損失を抑えて高周波特性を改善することができる。
[0054] また、整合素子 13G, 13Dのインダクタ Lg, Ldはセラミック積層基板において LCフ ィルタ 12G, 12Dのインダクタ及びコンデンサとは平面視で重ならないように形成され ているため、送受信経路間でのアイソレーションを確保し、信号の混入を防止するこ とができる。同様の効果は、整合素子 13G, 13Dのインダクタ Lg, Ldはセラミック積 層基板の表面に搭載されており、 LCフィルタ 12G, 12Dのインダクタ及びコンデンサ はセラミック積層基板の内部に内蔵されていることによつても達成される。
[0055] さらに、本実施例においては、整合素子 13G, 13Dのコンデンサ Clg, C2g, Cld , C2dと LCフィルタ 12G, 12Dのインダクタ及びコンデンサとは平面視で重ならない ように形成されている。これにて、送受信経路間での信号の混入を、さらに効果的に 防止することができる。
[0056] また、整合素子 13G, 13Dのインダクタ Lg, Ldと LCフィルタ 12G, 12Dのインダク タ及びコンデンサとの間にはグランド電極 G4が配置されているため、両者の干渉を 効果的に防止することができる。同様の効果は、 LCフィルタ 12G, 12Dのコンデンサ 、特に、シャントコンデンサ GCul, GCu2, DCul, DCu2がセラミック積層基板の最 下層近辺に形成されていることによつても達成される。整合素子 13G, 13Dのインダ クタ Lg, Ld及びコンデンサ Clg, C2g, Cld, C2dがセラミック積層基板の表面に形 成されており、整合素子 13G, 13Dのインダクタ Lg, Ldは他の素子を介さずに整合 素子 13G, 13Dのコンデンサ Clg, C2g, Cld, C2dに隣接配置することも、同様に 相互干渉を防止することができる。
[0057] さらに、本実施例においては、整合素子 13G, 13Dのコンデンサ Clg, C2g, Cld , C2dと LCフィルタ 12G, 12Dのインダクタ及びコンデンサとの間にもグランド電極 G 4が配置されている。これにより、両者の干渉をより効果的に防止することができる。
[0058] また、図 8に示したように、セラミック多層基板の表面において、整合素子 13G, 13 Dを構成している表面実装部品は、高周波スィッチ 11G, 11D、ダイプレクサ 20を構 成して ヽる表面実装部品とは弾性表面波フィルタ SAWg, SAWdを介して離れて配 置するようにしている。このように配置することで、整合素子 13G, 13Dと他の素子と の干渉をさらに効果的に抑制できる。
[0059] (第 3実施例、図 9及び図 10参照)
本第 3実施例である高周波複合部品は、図 9のブロック図にその特徴的な構成を示 すように、前記第 2実施例と同様に、 GSM系及び DCS系を備えたデュアルバンド対 応型の高周波複合部品であり、ノ ランス型弾性表面波フィルタ SAWg, SAWdの平 衡出力部にそれぞれコンデンサ Clg, C2g及び Cld、 C2dが直列に接続されている とともに、受信側バランス出力端子 Rxg, Rxdにインダクタ Lg, Ldが並列に接続され ている。
[0060] このように、コンデンサ Clg, C2g及びコンデンサ Cld, C2dをそれぞれ第 1 ·第 2弹 性表面波フィルタ SAWg, SAWd側に直列に接続し、インダクタ Lg, Ldを第 1 ·第 2 受信側バランス出力端子 Rxg, Rxd側にそれぞれ並列に接続することにより、第 1 · 第 2受信側バランス出力端子 Rxg, Rxdのインピーダンスを自由に設定でき、特にィ ンピーダンスを上げることができる。
[0061] なお、本第 3実施例において、第 1 ·第 2整合素子 13G, 13D以外の回路構成及び 動作は前記第 2実施例と同様であり、重複する説明は省略する。
[0062] (第 4実施例、図 11〜図 15参照)
本第 4実施例である高周波複合部品は、図 11の等価回路図に示すように、 GSM 系及び二つの受信側バランス出力端子 Rxdl, Rxd2に分岐された DCS系とを備え たトリプルバンド対応型の高周波複合部品として構成されている。
[0063] 即ち、 GSM系は第 1高周波スィッチ 11Gと第 1LCフィルタ 12Gとバランス型第 1弹 性表面波フィルタ SAWgと第 1整合素子 13Gとを備えている。この GSM系の構成及 び作用は前記第 2 ·第 3実施例と同様であり、重複した説明は省略する。
[0064] ダイプレクサ 20に関しても前記第 2·第 3実施例と基本的には同様の構成を備え、さ らに、第 1ポート P11とアンテナ端子 ANTとの間にコンデンサ Cantが接続されるとと もに、その接続点はインダクタ Lantを介して接地される。
[0065] DCS系は、第 2高周波スィッチ 11D'と第 2LCフィルタ 12Dと第 2送信側入力端子 Txdとで構成されている。この部分の回路構成は前記第 2·第 3実施例と同様であり、 重複した説明は省略する。
[0066] DCS系において、第 2高周波スィッチ 11D'の第 3ポート P33dはデュプレクサ 14D が接続されており、このデュプレクサ 14Dは、受信信号経路を第 2受信側バランス出 力端子 Rxdlと第 3受信側バランス出力端子 Rxd2とに分岐するためのものである。
[0067] 第 2高周波スィッチ 11D'は、アンテナ端子 ANTと第 2送信側入力端子 Txdとの間 の信号経路と、アンテナ端子 ANTと第 2·第 3受信側バランス出力端子 Rxdl, Rxd2 との間の信号経路とを選択的に切り換える。
[0068] 第 2高周波スィッチ 11D'は、スイッチング素子であるダイオード DDI, DD2、インダ クタ DPSL1, DSL2, DPSLt、コンデンサ DC5, DC6, DPCt及び抵抗 DR1で構 成されている。第 1ポート P31dと第 2ポート P32dとの間に、アノードが第 2ポート P32 d側になるようにダイオード DDIが接続され、このアノードはインダクタ DPSL1及びコ ンデンサ DC6を介して接地される。インダクタ DPSL1とコンデンサ DC6との接続点 に制御端子 Vc2が接続されている。また、第 1ポート P31dと第 2ポート P32dとの間に は、コンデンサ DPCtとインダクタ DPSLtの直列回路がダイオード DDIとは並列に接 続されている。ダイオード DD2はアノードがインダクタ DSL2を介して第 1ポート P31d に接続され、力ソードがコンデンサ DC5を介して接地される。ダイオード DD2とコン デンサ DC5との接続点は抵抗 DR1を介して接地される。
[0069] デュプレクサ 14Dは、第 1ポート P41dと第 2ポート P42dとの間にインダクタ PSL2が 接続され、インダクタ PSL2と第 2ポート P42dとの接続点はコンデンサ PC7を介して 接地される。第 2ポート P42dは第 2弾性表面波フィルタ SAWdlに接続されて!、る。 また、デュプレクサ 14Dの第 1ポート P41dと第 3ポート P43dとの間にコンデンサ DC7 が接続されて 、る。コンデンサ DC7と第 1ポート P41 dとの接続点はコンデンサ Cjを 介して接地されるとともに、コンデンサ DC7と第 3ポート P43dとの接続点はインダクタ DSL1を介して接地される。第 3ポート P43dは第 3弾性表面波フィルタ SAWd2に接 続されている。
[0070] 第 2弾性表面波フィルタ SAWdlの平衡出力部には第 2整合素子 13D1が接続さ れ、第 3弾性表面波フィルタ SAWd2の平衡出力部には第 3整合素子 13D2が接続 されている。この第 2·第 3整合素子 13D1, 13D2は第 2実施例と同様に、インダクタ Ldを弾性表面波フィルタ SAWdl, SAWd2側に並列に接続し、コンデンサ Cld, C 2dをインダクタ Ldと受信側バランス出力端子 Rxdl, Rxd2との間にそれぞれ直列に 接続したものである。その作用効果は第 2実施例と同様である。なお、第 2·第 3整合 素子 13D1, 13D2は前記第 3実施例と同じ回路構成としてもよぐこの場合には第 3 実施例と同様の作用効果を奏する。
[0071] 図 12〜図 14は、本第 4実施例である高周波複合部品のセラミック多層基板を構成 する各シート層上にスクリーン印刷などで形成されたコンデンサ電極、ストリップライン 電極などを示している。
[0072] 第 1シート層 62aには種々の外部接続用端子電極が形成されている。第 2シート層 62bにはグランド電極 G11が形成され、第 3シート層 62cにはコンデンサ Cul, Ct2, DC6の電極が形成され、グランド電極 G 11とでキャパシタンスを形成している。第 4シ ート層 62dにはグランド電極 G12が形成され、第 5シート層 62eにはコンデンサ DCu 1, DCu2, Cj, GCul, GCu2の電極が形成され、グランド電極 G 12とでキャパシタ ンスを形成している。
[0073] 第 8シート層 62hにはストリップライン電極によってインダクタ Ltl, Lt2, DLtl, DL t2, GLtl, GSL2, DSL2, PSL2力形成されている。第 9シート層 62iにはス卜リップ ライン電極によってインダクタ GSL2, Ltlが形成され、それぞれがビアホールにて下 層の電極と接続されている。
[0074] 第 10シート層 62jにはストリップライン電極によってインダクタ Ltl, Lt2, DLtl, D Lt2, GLtl, GSL2, DSL2, PSL2が形成され、下層の同種の電極とビアホールを 介して接続されている。第 11シート層 62kにはストリップライン電極によってインダクタ Ltl, GSL2が形成され、それぞれがビアホールにて下層の同種の電極と接続され ている。
[0075] 第 12シート層 621にはストリップライン電極によってインダクタ Lt2, DLtl, DLt2, GLtl, GSL2, DSL2が形成され、それそれがビアホールにて下層の同種の電極と 接続されている。第 13シート層 62mにはコンデンサ Ctl, DCc2の電極が形成され、 第 14シート層 62ηにはコンデンサ Ctl, Cclの電極及びグランド電極 G13が形成さ れて ヽる。第 15シート層 62ο【こ ίまコンデンサ DC5, Ctl, Ccl, GCcl, GC5, DCu 1, DCc2の電極が形成されている。第 16シート層 62pにはコンデンサ Cc2, CCcl の電極及びグランド電極 G 14が形成されて!、る。第 17シート層 62qにはコンデンサ D Cclの電極が形成されている。
[0076] 第 19シート層 62sの表面は、図 15にも示すように、セラミック多層基板 50の表面で あって、種々の接続用端子電極が形成され、第 1 ·第 2·第 3弾性表面波フィルタ SA Wg, SAWdl, SAWd2、ダイ才ード GDI, GD2, DDI, DD2力 ^搭載されて!/、る。さ らに、第 1整合素子 13Gを構成するインダクタ Lg、コンデンサ Clg, C2g、第 2·第 3 整合素子 13D1, 13D2を構成するインダクタ Ld、コンデンサ Cld, C2dが搭載され ている。
[0077] さらに、セラミック多層基板 50の表面には、抵抗 RG, DR1が搭載され、インダクタ L ant, DPCt, DPSLt, DSL1, DPSL1が搭載され、コンデンサ Cant, DC7, PC7 が搭載されている。
[0078] 本第 4実施例である高周波複合部品においては、第 2高周波スィッチ 11D'のダイ オード DD2のオン、オフによって受信信号が第 2受信側バランス出力端子 Rxdlと第 3受信側バランス出力端子 Rxd2とに切り換えられる。その他の基本的な動作は前記 第 2実施例で説明したとおりであり、その作用効果も第 2実施例と同様である。
[0079] 特に、図 15に示したように、セラミック多層基板の表面において、整合素子 13G, 1 3D1, 13D2を構成している表面実装部品は、高周波スィッチ 11G, 11D'、ダイプ レクサ 20、デュプレクサ 14Dを構成している表面実装部品とは弾性表面波フィルタ S AWg, SAWdl, SAWd2を介して反対側に配置するようにしている。このように配置 することで、整合素子 13G, 13D1, 13D2と他の素子との干渉をさらに効果的に抑 制できる。
[0080] (第 5実施例、図 16参照)
本第 5実施例である高周波複合部品は、図 16の等価回路に示すように、トリプルバ ンド対応型として構成されている。基本的には前記第 4実施例(図 11参照)と同様の 構成からなり、その作用効果も第 4実施例と同様である。異なるのは、前記デュプレク サ 14Dに代えてダイオードスィッチ 15Dにて受信側バランス出力端子 Rxdl, Rxd2 の分離を行うようにした点である。
[0081] 詳しくは、ダイオードスィッチ 15Dは、スイッチング素子であるダイオード SDD1, S DD2、インダクタ SID1, SID2、コンデンサ SCI, SC2, SC3及び抵抗 SRで構成さ れている。第 1ポート P51dは第 2高周波スィッチ 11D'の第 3ポート P33dに接続され 、一端が第 1ポート P51dに接続されているコンデンサ SC3の他端はダイオード SDD 1の力ソード及びインダクタ SID2を介してダイオード SDD2のアノードに接続されて いる。
[0082] ダイオード SDD1のアノードはインダクタ SID1とコンデンサ SC1を介して接地され、 インダクタ SID1とコンデンサ SC1との接続点には制御端子 Vc3が接続されている。 ダイオード SDD2の力ソードはコンデンサ SC2を介して接地され、該カソードとコンデ ンサ SC2との接続点は抵抗 SRを介して接地される。ダイオード SDD1のアノードに 接続されて ヽる第 2ポート P52dは第 2弾性表面波フィルタ SAWdlに接続されて!、る 。また、ダイオード SDD2のアノードに接続されている第 3ポート P53dは第 3弾性表 面波フィルタ S AWd2に接続されて!、る。
[0083] (第 6実施例、図 17参照)
第 6実施例である高周波複合部品は、図 17の等価回路に示すように、トリプルバン ド対応型として構成されている。基本的には前記第 4実施例(図 11参照)と同様の構 成からなり、その作用効果も第 4実施例と同様である。異なるのは、弾性表面波フィル タ SAWdl, SAWd2はアンバランス出力ポートを有するアンバランス型であって、ァ ンバランス出力ポートに接続されている整合素子 13D1, 13D2はバランとして構成さ れている点である。
[0084] (他の実施例) なお、本発明に係る高周波複合部品は前記実施例に限定するものではなぐその 要旨の範囲内で種々に変更できることは勿論である。
[0085] 例えば、前記実施例では、シングルバンド対応型、デュアルバンド対応型、トリプル バンド対応型の高周波複合部品について説明したが、本発明はクアツドバンド以上 のマルチバンド対応型の高周波複合部品についても適用することができる。
[0086] また、前記各実施例において、高次高調波を減衰させるための LCフィルタ 12, 12 G, 12Dは、高周波スィッチ 11, 11G, 11D, 11D'と送信側入力端子 Tx, Txg, Ts dとの間に配置されている力 アンテナ端子 ANT (ダイプレクサ 20)と高周波スィッチ との間に配置してもよい。
産業上の利用分野
[0087] 以上のように、本発明は、複数の異なる移動体通信システムに利用可能な高周波 複合部品に有用であり、特に、所望のインピーダンスを容易に設定できて LNAとの マッチング調整が不要な点で優れて 、る。

Claims

請求の範囲
[1] (A)アンテナ端子と送信側入力端子との間の信号経路と、前記アンテナ端子と受 信側バランス出力端子との間の信号経路とを選択的に切り換えるためのスィッチと、
(B)前記アンテナ端子と前記送信側入力端子との間に配置され、インダクタ及びコ ンデンサを含む LCフィルタと、
(C)前記スィッチと前記受信側バランス出力端子との間に配置された弾性表面波フ イノレタと、
(D)前記弾性表面波フィルタと前記受信側バランス出力端子との間に配置され、ィ ンダクタ及びコンデンサを含む整合素子と、を備え、
前記スィッチ、 LCフィルタ、弾性表面波フィルタ及び整合素子が複数の誘電体層 を積層してなる積層体ブロックで一体ィ匕されてなること、
を特徴とする高周波複合部品。
[2] 前記整合素子のインダクタは前記積層体ブロックの第 1領域に形成されており、前 記 LCフィルタのインダクタ及びコンデンサは平面視で前記第 1領域とは異なる第 2領 域に形成されていることを特徴とする請求の範囲第 1項に記載の高周波複合部品。
[3] 前記整合素子のインダクタは前記積層体ブロックの表面に搭載されており、前記 L
Cフィルタのインダクタ及びコンデンサは前記積層体ブロックの内部に内蔵されてい ることを特徴とする請求の範囲第 1項又は第 2項に記載の高周波複合部品。
[4] 前記整合素子のインダクタと前記 LCフィルタのインダクタ及びコンデンサとの間に はグランド電極が配置されていることを特徴とする請求の範囲第 1項ないし第 3項の いずれかに記載の高周波複合部品。
[5] 前記 LCフィルタのコンデンサのうちシャントコンデンサは前記積層体ブロックの最 下層近辺に形成されて 、ることを特徴とする請求の範囲第 1項な 、し第 4項の 、ずれ かに記載の高周波複合部品。
[6] 前記整合素子のインダクタ及びコンデンサは前記積層体ブロックの表面に形成さ れており、前記整合素子のインダクタは他の素子を介さずに前記整合素子のコンデ ンサに隣接配置されていることを特徴とする請求の範囲第 1項ないし第 5項のいずれ かに記載の高周波複合部品。
[7] 前記弾性表面波フィルタは、バランス出力ポートを有するバランス型弾性表面波フ ィルタであって、前記整合素子のインダクタが前記バランス出力ポート間に並列接続 されており、前記整合素子のコンデンサが前記バランス出力ポートに直列接続されて V、ることを特徴とする請求の範囲第 1項な 、し第 6項の 、ずれかに記載の高周波複 合部品。
[8] 前記弾性表面波フィルタは、アンバランス出力ポートを有するアンバランス型弾性 表面波フィルタであって、前記整合素子のインダクタ及びコンデンサはバランを兼ね て 、ることを特徴とする請求の範囲第 1項な 、し第 6項の 、ずれかに記載の高周波 複合部品。
[9] 前記アンテナ端子の後段に、第 1周波数帯の信号経路と、前記第 1周波数帯とは 異なる第 2周波数帯の信号経路とを分岐するダイプレクサを備え、さらに、
前記第 1周波数帯の信号経路における、 (A)前記アンテナ端子と第 1送信側入力 端子との間の信号経路と、前記アンテナ端子と第 1受信側バランス出力端子との間の 信号経路とを選択的に切り換えるための第 1スィッチと、(B)前記第 1スィッチと前記 第 1送信側入力端子との間に配置され、インダクタ及びコンデンサを含む第 1LCフィ ルタと、(C)前記第 1スィッチと前記第 1受信側バランス出力端子との間に配置された 第 1弾性表面波フィルタと、 (D)前記第 1弾性表面波フィルタと前記第 1受信側バラン ス出力端子との間に配置され、インダクタ及びコンデンサを含む第 1整合素子と、 前記第 2周波数帯の信号経路における、 (E)アンテナ端子と第 2送信側入力端子と の間の信号経路と、前記アンテナ端子と第 2受信側バランス出力端子との間の信号 経路とを選択的に切り換えるための第 2スィッチと、(F)前記第 2スィッチと前記第 2送 信側入力端子との間に配置され、インダクタ及びコンデンサを含む第 2LCフィルタと 、(G)前記第 2スィッチと前記第 2受信側バランス出力端子との間に配置された第 2 弾性表面波フィルタと、 (H)前記第 2弾性表面波フィルタと前記第 2受信側バランス 出力端子との間に配置され、インダクタ及びコンデンサを含む第 2整合素子と、を備 え、
前記ダイプレクサ、第 1 ·第 2スィッチ、第 1 ·第 2LCフィルタ、第 1 ·第 2弾性表面波フ ィルタ及び第 1 ·第 2整合素子が複数の誘電体層を積層してなる積層体ブロックで一 体ィ匕されてなること、
を特徴とする請求の範囲第 1項ないし第 8項のいずれかに記載の高周波複合部品 前記アンテナ端子の後段に、第 1周波数帯の信号経路と、前記第 1周波数帯とは 異なる第 2周波数帯及び第 3周波数帯の信号経路とを分岐するダイプレクサを備え、 さらに、
前記第 1周波数帯の信号経路における、 (A)前記アンテナ端子と第 1送信側入力 端子との間の信号経路と、前記アンテナ端子と第 1受信側バランス出力端子との間の 信号経路とを選択的に切り換えるための第 1スィッチと、(B)前記第 1スィッチと前記 第 1送信側入力端子との間に配置され、インダクタ及びコンデンサを含む第 1LCフィ ルタと、(C)前記第 1スィッチと前記第 1受信側バランス出力端子との間に配置された 第 1弾性表面波フィルタと、 (D)前記第 1弾性表面波フィルタと前記第 1受信側バラン ス出力端子との間に配置され、インダクタ及びコンデンサを含む第 1整合素子と、 前記第 2周波数帯の信号経路における、 (E)アンテナ端子と第 2送信側入力端子と の間の信号経路と、前記アンテナ端子と第 2·第 3受信側バランス出力端子との間の 信号経路とを選択的に切り換えるための第 2スィッチと、(F)前記第 2スィッチと前記 第 2送信側入力端子との間に配置され、インダクタ及びコンデンサを含む第 2LCフィ ルタと、(G)前記第 2スィッチと前記第 2受信側バランス出力端子との間に配置された 信号経路と、前記第 2スィッチと前記第 3受信側バランス出力端子との間に配置され た信号経路とを分岐するデュプレクサと、 (H)前記デュプレクサと前記第 2受信側バ ランス出力端子との間に配置された第 2弾性表面波フィルタと、(I)前記第 2弾性表面 波フィルタと前記第 2受信側バランス出力端子との間に配置され、インダクタ及びコン デンサを含む第 2整合素子と、 ω前記デュプレクサと前記第 3受信側バランス出力 端子との間に配置された第 3弾性表面波フィルタと、(Κ)前記第 3弾性表面波フィル タと前記第 3受信側バランス出力端子との間に配置され、インダクタ及びコンデンサを 含む第 3整合素子と、を備え、
前記ダイプレクサ、第 1 ·第 2スィッチ、第 1 ·第 2LCフィルタ、デュプレクサ、第 1 ·第 2·第 3弾性表面波フィルタ及び第 1 ·第 2 ·第 3整合素子が複数の誘電体層を積層し てなる積層体ブロックで一体化されてなること、
を特徴とする請求の範囲第 1項ないし第 8項のいずれかに記載の高周波複合部
PCT/JP2005/013661 2004-08-06 2005-07-26 高周波複合部品 WO2006013753A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006531405A JPWO2006013753A1 (ja) 2004-08-06 2005-07-26 高周波複合部品
EP05767376A EP1775847B1 (en) 2004-08-06 2005-07-26 High frequency composite component
US10/595,260 US7398059B2 (en) 2004-08-06 2005-07-26 High frequency composite component
US12/100,474 US7653360B2 (en) 2004-08-06 2008-04-10 High-frequency composite component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004231739 2004-08-06
JP2004-231739 2004-08-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/595,260 A-371-Of-International US7398059B2 (en) 2004-08-06 2005-07-26 High frequency composite component
US12/100,474 Continuation US7653360B2 (en) 2004-08-06 2008-04-10 High-frequency composite component

Publications (1)

Publication Number Publication Date
WO2006013753A1 true WO2006013753A1 (ja) 2006-02-09

Family

ID=35787042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013661 WO2006013753A1 (ja) 2004-08-06 2005-07-26 高周波複合部品

Country Status (7)

Country Link
US (2) US7398059B2 (ja)
EP (1) EP1775847B1 (ja)
JP (2) JPWO2006013753A1 (ja)
KR (1) KR100769875B1 (ja)
CN (1) CN100576760C (ja)
TW (1) TWI267253B (ja)
WO (1) WO2006013753A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251508A (ja) * 2006-03-15 2007-09-27 Hitachi Metals Ltd 高周波スイッチモジュール
WO2008023510A1 (fr) * 2006-08-21 2008-02-28 Murata Manufacturing Co., Ltd. Module à haute fréquence
US7879310B2 (en) 2005-08-03 2011-02-01 Board Of Trustees Of The University Of Alabama Silanes as a source of hydrogen
CN103378870A (zh) * 2012-04-26 2013-10-30 启碁科技股份有限公司 通讯装置与射频均衡器

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006013753A1 (ja) * 2004-08-06 2008-05-01 株式会社村田製作所 高周波複合部品
US7885613B2 (en) * 2005-04-15 2011-02-08 Hitachi Metals, Ltd. Multiband high-frequency circuit, multiband high-frequency circuit device and multiband communications apparatus comprising same
JP2006310904A (ja) * 2005-04-26 2006-11-09 Hitachi Media Electoronics Co Ltd 信号回路及びこれを備える情報処理装置
CN101128986B (zh) * 2005-04-28 2012-06-27 株式会社村田制作所 高频开关模块及用于高频电路的频率特性调整方法
DE102005056340A1 (de) * 2005-11-25 2007-05-31 Epcos Ag Mit akustischen Wellen arbeitendes Bauelement
EP1981173A4 (en) * 2006-01-31 2010-11-10 Murata Manufacturing Co HIGH-FREQUENCY COMPOSITE COMPONENTS AND MOBILE COMMUNICATION APPARATUS
JP2008109535A (ja) * 2006-10-27 2008-05-08 Hitachi Media Electoronics Co Ltd スイッチ回路、それを有するフロントエンドモジュール及び無線端末
TWI407761B (zh) * 2006-12-07 2013-09-01 Wistron Neweb Corp 可同時於複數個行動通訊系統下待機之通訊裝置
TWI442621B (zh) * 2007-01-19 2014-06-21 Murata Manufacturing Co High frequency parts
TW200835043A (en) * 2007-01-19 2008-08-16 Murata Manufacturing Co High-frequency part
WO2008103083A1 (en) * 2007-02-19 2008-08-28 Telefonaktiebolaget Lm Ericsson (Publ) An apparatus and a method for directing a received signal in an antenna system
EP2131493A4 (en) * 2007-05-29 2011-07-20 Murata Manufacturing Co ACOUSTIC WAVE DISCHARGE FILTER
WO2009125627A1 (ja) * 2008-04-11 2009-10-15 三菱電機株式会社 機器状態検出装置及び機器状態検出方法並びに生活者異常検知装置、生活者異常検知システム及び生活者異常検知方法
DE102009004720B4 (de) * 2009-01-15 2017-07-27 Qualcomm Technologies, Inc. (N.D.Ges.D. Staates Delaware) Multiband-Impedanzanpass-Schaltung zur Anpassung von Planarantennen
JP4992960B2 (ja) * 2009-12-07 2012-08-08 株式会社村田製作所 高周波モジュール
JP2012044436A (ja) 2010-08-19 2012-03-01 Ntt Docomo Inc マルチバンド整合回路
DE102011006269A1 (de) 2011-02-28 2012-08-30 Infineon Technologies Ag Hochfrequenzumschaltanordnung, Sender und Verfahren
KR101787762B1 (ko) * 2011-08-09 2017-10-18 엘지이노텍 주식회사 드라이버 ic 입력단의 방전 경로 회로
JP5933355B2 (ja) 2012-06-12 2016-06-08 太陽誘電株式会社 フィルタ及びデュプレクサ
JP6292447B2 (ja) * 2013-06-07 2018-03-14 パナソニックIpマネジメント株式会社 送受信切替装置
WO2015008558A1 (ja) * 2013-07-16 2015-01-22 株式会社村田製作所 フロントエンド回路
KR101926408B1 (ko) * 2015-02-05 2018-12-07 가부시키가이샤 무라타 세이사쿠쇼 고주파 스위치 모듈
KR102556605B1 (ko) * 2015-12-07 2023-07-17 가부시키가이샤 와이솔재팬 듀플렉서 디바이스
KR102642898B1 (ko) 2016-02-18 2024-03-04 삼성전기주식회사 음향 공진기 모듈 및 그 제조 방법
JP6729790B2 (ja) * 2017-03-14 2020-07-22 株式会社村田製作所 高周波モジュール
WO2019093182A1 (ja) * 2017-11-07 2019-05-16 Agc株式会社 高周波デバイス用シリカガラス及び高周波デバイス
KR101978250B1 (ko) * 2017-12-11 2019-08-28 현대오트론 주식회사 Vfs주파수를 제어하는 방법 및 장치
CN109274477A (zh) * 2018-11-16 2019-01-25 Oppo(重庆)智能科技有限公司 一种信号处理方法、装置以及计算机存储介质
JP2021125775A (ja) * 2020-02-04 2021-08-30 株式会社村田製作所 マルチプレクサ、フロントエンド回路および通信装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117123A (ja) * 1996-10-09 1998-05-06 Murata Mfg Co Ltd 弾性表面波フィルタ装置
JP2001211097A (ja) 2000-01-28 2001-08-03 Hitachi Metals Ltd マルチバンド用高周波スイッチモジュール
JP2002111431A (ja) * 2000-09-28 2002-04-12 Seiko Epson Corp 弾性表面波装置
EP1261143A1 (en) 2001-05-15 2002-11-27 TDK Corporation Transceiver front end module
JP2003142981A (ja) * 2001-11-01 2003-05-16 Hitachi Metals Ltd 高周波部品
JP2003152590A (ja) 2001-11-14 2003-05-23 Ngk Spark Plug Co Ltd アンテナスイッチモジュール
JP2003209484A (ja) * 2002-01-11 2003-07-25 Ngk Insulators Ltd 送受信装置
JP2003332167A (ja) * 2002-05-13 2003-11-21 Tdk Corp 電子部品及びその製造方法
JP2003338724A (ja) * 2002-03-15 2003-11-28 Matsushita Electric Ind Co Ltd 平衡型高周波デバイス、及びそれを用いた平衡型高周波回路
US20040048634A1 (en) 2001-09-14 2004-03-11 Yuki Satoh High-frequency composite switch module

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI102121B1 (fi) 1995-04-07 1998-10-15 Lk Products Oy Radiotietoliikenteen lähetin/vastaanotin
JP3711846B2 (ja) 2000-07-27 2005-11-02 株式会社村田製作所 高周波モジュール及びそれを用いた移動体通信装置
ATE513368T1 (de) * 2000-08-22 2011-07-15 Hitachi Metals Ltd Laminiertes hochfrequenz-schaltmodul
US7253702B2 (en) 2000-11-01 2007-08-07 Hitachi Metals, Ltd. High-frequency switch module
EP1223634A3 (en) * 2000-12-26 2003-08-13 Matsushita Electric Industrial Co., Ltd. High-frequency switch, laminated high-frequency switch, high-frequency radio unit, and high-frequency switching method
JP3973915B2 (ja) 2001-03-30 2007-09-12 株式会社日立メディアエレクトロニクス 高周波フィルタ、高周波回路、アンテナ共用器及び無線端末
US6683512B2 (en) * 2001-06-21 2004-01-27 Kyocera Corporation High frequency module having a laminate board with a plurality of dielectric layers
US6750737B2 (en) * 2001-10-02 2004-06-15 Matsushita Electric Industrial Co., Ltd. High frequency switch and radio communication apparatus with layered body for saw filter mounting
US7027777B2 (en) * 2001-10-30 2006-04-11 Matsushita Electric Industrial Co., Ltd. High frequency switch and high frequency radio communication apparatus
JP2003198204A (ja) 2001-12-26 2003-07-11 Kyocera Corp 高周波モジュール
US6873529B2 (en) * 2002-02-26 2005-03-29 Kyocera Corporation High frequency module
EP1345323B1 (en) 2002-03-15 2005-02-09 Matsushita Electric Industrial Co., Ltd. Balanced high-frequency device and balance-characteristics improving method and balanced high-frequency circuit using the same
JP2004153523A (ja) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd 高周波スイッチモジュール
DE102004016399B4 (de) * 2003-03-27 2013-06-06 Kyocera Corp. Hochfrequenzmodul und Funkvorrichtung
JPWO2006013753A1 (ja) * 2004-08-06 2008-05-01 株式会社村田製作所 高周波複合部品
JP2006238014A (ja) * 2005-02-24 2006-09-07 Kyocera Corp 弾性表面波素子実装基板及びそれを用いた高周波モジュール、通信機器
CN101128986B (zh) * 2005-04-28 2012-06-27 株式会社村田制作所 高频开关模块及用于高频电路的频率特性调整方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117123A (ja) * 1996-10-09 1998-05-06 Murata Mfg Co Ltd 弾性表面波フィルタ装置
JP2001211097A (ja) 2000-01-28 2001-08-03 Hitachi Metals Ltd マルチバンド用高周波スイッチモジュール
JP2002111431A (ja) * 2000-09-28 2002-04-12 Seiko Epson Corp 弾性表面波装置
EP1261143A1 (en) 2001-05-15 2002-11-27 TDK Corporation Transceiver front end module
US20040048634A1 (en) 2001-09-14 2004-03-11 Yuki Satoh High-frequency composite switch module
JP2003142981A (ja) * 2001-11-01 2003-05-16 Hitachi Metals Ltd 高周波部品
JP2003152590A (ja) 2001-11-14 2003-05-23 Ngk Spark Plug Co Ltd アンテナスイッチモジュール
JP2003209484A (ja) * 2002-01-11 2003-07-25 Ngk Insulators Ltd 送受信装置
JP2003338724A (ja) * 2002-03-15 2003-11-28 Matsushita Electric Ind Co Ltd 平衡型高周波デバイス、及びそれを用いた平衡型高周波回路
JP2003332167A (ja) * 2002-05-13 2003-11-21 Tdk Corp 電子部品及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUCERO R. ET AL., DESIGN OF AN LTCC INTEGRATED TRI-BAND DIRECT CONVERSION RECEIVER FRONT-END MODULE
See also references of EP1775847A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879310B2 (en) 2005-08-03 2011-02-01 Board Of Trustees Of The University Of Alabama Silanes as a source of hydrogen
JP2007251508A (ja) * 2006-03-15 2007-09-27 Hitachi Metals Ltd 高周波スイッチモジュール
WO2008023510A1 (fr) * 2006-08-21 2008-02-28 Murata Manufacturing Co., Ltd. Module à haute fréquence
JPWO2008023510A1 (ja) * 2006-08-21 2010-01-07 株式会社村田製作所 高周波モジュール
JP4655093B2 (ja) * 2006-08-21 2011-03-23 株式会社村田製作所 高周波モジュール
CN103378870A (zh) * 2012-04-26 2013-10-30 启碁科技股份有限公司 通讯装置与射频均衡器

Also Published As

Publication number Publication date
EP1775847A4 (en) 2009-04-01
JPWO2006013753A1 (ja) 2008-05-01
JP2008263624A (ja) 2008-10-30
US20080315968A1 (en) 2008-12-25
US7398059B2 (en) 2008-07-08
KR20060064695A (ko) 2006-06-13
CN100576760C (zh) 2009-12-30
CN1898879A (zh) 2007-01-17
JP4329873B2 (ja) 2009-09-09
EP1775847B1 (en) 2012-06-13
US20070035362A1 (en) 2007-02-15
TW200618501A (en) 2006-06-01
KR100769875B1 (ko) 2007-10-24
EP1775847A1 (en) 2007-04-18
US7653360B2 (en) 2010-01-26
TWI267253B (en) 2006-11-21

Similar Documents

Publication Publication Date Title
WO2006013753A1 (ja) 高周波複合部品
JP6116648B2 (ja) フィルタモジュール
KR101127022B1 (ko) 고주파 회로 및 고주파 부품
US7567148B2 (en) Frequency shunt
KR100983017B1 (ko) 복합 고주파 부품 및 이동체 통신 장치
US7561005B2 (en) High frequency front-end module and duplexer
US7403082B2 (en) Dual mode antenna switch module
EP1298798A2 (en) Dual-channel passband filtering system using acoustic resonators in lattice topology
US20020137471A1 (en) High-frequency composite switch component
WO2001048935A1 (fr) Commutateur haute frequence, module de commutation haute frequence et dispositif de communications sans fil
JP4029779B2 (ja) 高周波モジュールおよび通信装置
JP2003152588A (ja) マルチバンドアンテナスイッチ回路およびマルチバンドアンテナスイッチ積層モジュール複合部品並びにそれを用いた通信装置
US20080258839A1 (en) High-frequency switching module and frequency-characteristic adjusting method for high-freqency circuit
EP2063529A2 (en) High frequency electronic component
WO2007023731A1 (ja) 高周波スイッチ
JP3807615B2 (ja) マルチバンドアンテナスイッチ回路
JP3729183B2 (ja) 高周波モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001315.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006531405

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005767376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007035362

Country of ref document: US

Ref document number: 10595260

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067008412

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067008412

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10595260

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005767376

Country of ref document: EP