WO2019093182A1 - 高周波デバイス用シリカガラス及び高周波デバイス - Google Patents

高周波デバイス用シリカガラス及び高周波デバイス Download PDF

Info

Publication number
WO2019093182A1
WO2019093182A1 PCT/JP2018/040155 JP2018040155W WO2019093182A1 WO 2019093182 A1 WO2019093182 A1 WO 2019093182A1 JP 2018040155 W JP2018040155 W JP 2018040155W WO 2019093182 A1 WO2019093182 A1 WO 2019093182A1
Authority
WO
WIPO (PCT)
Prior art keywords
ghz
frequency
value
silica glass
less
Prior art date
Application number
PCT/JP2018/040155
Other languages
English (en)
French (fr)
Inventor
木寺 信隆
寿弥 佐々木
康臣 岩橋
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201880068797.5A priority Critical patent/CN111263736A/zh
Priority to JP2019552729A priority patent/JPWO2019093182A1/ja
Publication of WO2019093182A1 publication Critical patent/WO2019093182A1/ja
Priority to US16/860,107 priority patent/US11912617B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/44Gas-phase processes using silicon halides as starting materials chlorine containing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/46Gas-phase processes using silicon halides as starting materials fluorine containing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to silica glass for high frequency devices and high frequency devices.
  • high frequency devices used for passive devices in high frequency bands such as microwaves and millimeter waves include antennas, filters, duplexers, diplexers, capacitors, inductors, and the like.
  • a filter which is one of high frequency devices, a configuration using transmission lines such as a waveguide, a substrate integrated waveguide (SIW), and a microstrip line is known.
  • Patent Document 2 describes that the FQ value is constant.
  • the fact that the FQ value is constant means that the higher the frequency F, the lower the Q value (the dielectric loss tangent tan ⁇ becomes larger), and the dielectric loss increases.
  • the inventor of the present invention has studied the relationship between the OH group concentration (hydroxyl group concentration) and the frequency F and the FQ value. In the frequency band of 20 GHz or more and 100 GHz or less, the frequency is high in silica glass having a low OH group concentration. It has been found that the FQ value increases as F increases.
  • the present disclosure provides silica glass for a high frequency device whose FQ value increases as the frequency increases in a frequency band of 20 GHz or more and 100 GHz or less, and a high frequency device formed using the silica glass.
  • OH group concentration is 300 wtppm or less
  • FQ value at frequency 25 GHz to 30 GHz is 90000 GHz or more
  • slope is 1000 or more when FQ value is approximated as a linear function of frequency in a frequency band from 20 GHz to 100 GHz
  • silica glass for a high frequency device and a high frequency device formed using the silica glass.
  • the FQ value increases as the frequency increases in the frequency band of 20 GHz to 100 GHz, and therefore, the increase in dielectric loss is suppressed as the frequency increases. be able to.
  • One embodiment of the present invention is a synthetic silica glass manufactured by the vapor-phase axial deposition (VAD) method.
  • the synthetic silica glass is manufactured by supplying a compound containing Si as a synthetic raw material, oxygen gas, hydrogen gas, nitrogen gas and the like to a quartz glass burner and subjecting the synthetic raw material to hydrolysis reaction or oxidation reaction in an oxyhydrogen flame. Is a method of synthesizing silica glass.
  • the direct method is a synthesis method in which a compound containing Si is flame-hydrolyzed at a temperature of 1500 to 2000 ° C. to synthesize SiO 2 particles, and a transparent synthetic silica glass is directly synthesized by depositing and fusing on a substrate. It is.
  • a compound containing Si is subjected to flame hydrolysis at a temperature of 1000 to 1500 ° C. to synthesize SiO 2 particles, and deposited on a substrate to obtain a porous synthetic silica glass body, then 1400
  • the porous synthetic silica glass body is densified by raising the temperature to a temperature of ⁇ 1500 ° C. to obtain a transparent synthetic silica glass body.
  • the synthetic raw material of synthetic silica glass is not particularly limited as long as it can be gasified, but chlorides such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , SiCH 3 Cl 3 , SiF 4 , SiHF 3 , SiH
  • a halogenated silicon compound such as a fluoride such as 2 F 2 or an alkoxysilane represented by RnSi (OR) 4-n (where R is an alkyl group having 1 to 4 carbon atoms and n is an integer of 0 to 3)
  • RnSi (OR) 4-n where R is an alkyl group having 1 to 4 carbon atoms and n is an integer of 0 to 3
  • Examples thereof include halogen-free silicon compounds such as CH 3 ) 3 Si—O—Si (CH 3 ) 3 .
  • the porous silica glass body is heated to a transparent vitrification temperature to be transparent vitrified to obtain a dense silica glass body.
  • the transparent vitrification temperature is usually 1300 to 1600 ° C., preferably 1350 ° C. to 1500 ° C.
  • the atmosphere is preferably an atmosphere of 100% inert gas such as helium or an atmosphere containing an inert gas such as helium as a main component.
  • the pressure may be reduced pressure or normal pressure. In particular, helium gas can be used at normal pressure.
  • OH group reduction treatment and transparent vitrification treatment can be performed simultaneously.
  • the temperature is maintained at 1200 to 1350 ° C. under reduced pressure for 20 to 70 hours to reduce OH groups, and then the temperature is raised to 1350 to 1500 ° C. to perform transparent vitrification.
  • the OH group concentration can be adjusted by the processing time and the processing temperature. At the same processing temperature, the longer the processing time, the lower the OH group concentration. If the treatment temperature is too low, dehydration does not occur in the glass, and if it is too high, sintering proceeds to densify the glass so that the water in the glass does not escape, so the treatment temperature is preferably in the range of 1000 to 1350 ° C.
  • the silica glass body obtained in this manner is heated to a temperature above the softening point and molded into a desired shape to obtain a silica glass molded body.
  • the temperature range of molding processing is preferably 1650 ° C. to 1800 ° C. If the temperature is less than 1650 ° C., the viscosity of the silica glass is high, so that self weight deformation is not substantially performed, and growth of cristobalite, which is a crystal phase of SiO 2 , may occur to cause so-called devitrification. Also, in 1800 ° C. or more it is because sublimation of SiO 2 can not be neglected.
  • the silica glass in the present embodiment has an OH group concentration of 300 wtppm or less, preferably 100 wtppm or less, more preferably 40 wtppm or less, and further preferably 10 wtppm or less.
  • OH group concentration 300 wtppm or less, preferably 100 wtppm or less, more preferably 40 wtppm or less, and further preferably 10 wtppm or less.
  • Alkali metals Na, K, Li, etc.
  • alkaline earth metals Mg, Ca, etc.
  • transition metals Fe, Ni, Cr, Cu, Mo, W, Al, Ti, Ce
  • ppb stands for parts per billion.
  • the measurement of the OH group concentration of the silica glass in the present embodiment can be carried out by an infrared spectrophotometer according to Non-Patent Document 1 listed above.
  • the concentration of the metal impurity contained in the silica glass in the present embodiment can be evaluated by ICP (Inductively Coupled Plasma) mass spectrometry.
  • the FQ value which is an evaluation value of the dielectric loss of the silica glass in the present embodiment can be determined by the product of the frequency F and the Q value (reciprocal of dielectric loss tangent tan ⁇ ).
  • the dielectric loss tangent tan ⁇ of silica glass can be evaluated by the balanced disk resonator method described in Non-Patent Document 2 listed above.
  • the inventor of the present invention has studied the relationship between the OH group concentration, the frequency F and the FQ value, and the silica glass having an OH group concentration of 300 wt ppm or less has an FQ value of 90000 GHz or more at a frequency of 25 GHz to 30 GHz. It was found that when the FQ value is approximated as a linear function of frequency in the frequency band of 100 GHz or less, the slope is 1000 or more. That is, the inventor found that in the frequency band of 20 GHz or more and 100 GHz or less, the FQ value increases as the frequency F becomes higher.
  • the inventors of the present invention have found that the silica glass having an OH group concentration exceeding 300 wtppm has a substantially constant FQ value regardless of the frequency F of the electromagnetic wave passing through the silica glass.
  • silica glass having an OH group concentration exceeding 300 wtppm has an FQ value of less than 90000 GHz at a frequency of 25 GHz to 30 GHz and approximates the FQ value as a linear function of frequency in a frequency band of 20 GHz to 100 GHz. It was found that the slope at the time of When the FQ value is substantially constant regardless of the frequency F, the Q value decreases (the dielectric loss tangent tan ⁇ increases) as the frequency F increases, and the dielectric loss increases.
  • silica glass having an OH group concentration of 300 wtppm or less has an FQ value of 90000 GHz or more at a frequency of 25 GHz to 30 GHz and approximates the FQ value as a linear function of the frequency in a frequency band of 20 GHz to 100 GHz.
  • the slope has a characteristic of 1000 or more.
  • the Q value decreases as the frequency F increases in the frequency band of 20 GHz to 100 GHz as compared to the silica glass having a substantially constant FQ value regardless of the frequency F (dielectric tangent The degree to which tan ⁇ increases) decreases.
  • the silica glass which can suppress the increase degree of the dielectric loss which increases as the frequency becomes higher.
  • the FQ value at a frequency of 25 GHz to 30 GHz is preferably larger, but usually, the upper limit is preferably 230000 GHz or less.
  • the inclination when the FQ value is approximated as a linear function of the frequency is preferably as large as possible, but in general, the upper limit is preferably 1600 or less.
  • silica glass having an OH group concentration of 100 wtppm or less has an FQ value of 100000 GHz or more at a frequency of 25 GHz to 30 GHz and approximates the FQ value as a linear function of frequency in a frequency band of 20 GHz to 100 GHz. It was found that the inclination at the time of the test was 1000 or more.
  • the Q value decreases as the frequency F increases in a frequency band of 20 GHz or more and 100 GHz or less compared to silica glass having a substantially constant FQ value regardless of the frequency F ( The degree to which the dielectric loss tangent tan ⁇ increases further decreases.
  • the silica glass which can further suppress the increase degree of the dielectric loss which increases as the frequency becomes higher.
  • the FQ value at a frequency of 25 GHz to 30 GHz is preferably larger, but usually 2300000 GHz or less as the upper limit.
  • the inclination when the FQ value is approximated as a linear function of the frequency is preferably as large as possible, but in general, the upper limit is preferably 1600 or less.
  • silica glass having an OH group concentration of 40 wtppm or less has an FQ value of 160000 GHz or more at a frequency of 25 GHz to 30 GHz and approximates the FQ value as a linear function of frequency in a frequency band of 20 GHz to 100 GHz. It was found that the inclination at the time of the test was 1000 or more.
  • the FQ value at a frequency of 25 GHz to 30 GHz is preferably larger, but usually 2300000 GHz or less as the upper limit.
  • the inclination when the FQ value is approximated as a linear function of the frequency is preferably as large as possible, but in general, the upper limit is preferably 1600 or less.
  • the inventor of the present invention found that the silica glass having an OH group concentration of 10 wtppm or less has an FQ value of 160000 GHz or more at a frequency of 25 GHz to 30 GHz and approximates the FQ value as a linear function of the frequency in a frequency band of 20 GHz to 100 GHz. It was found that the inclination at the time of having been 1250 or more.
  • the FQ value at a frequency of 25 GHz to 30 GHz is preferably larger, but usually 2300000 GHz or less as the upper limit. Further, in the frequency band of 20 GHz or more and 100 GHz or less, the inclination when the FQ value is approximated as a linear function of the frequency is preferably as large as possible, but in general, the upper limit is preferably 1600 or less.
  • the degree to which the Q value decreases as the frequency F becomes higher in a frequency band of 20 GHz to 100 GHz as compared to silica glass having a substantially constant FQ value regardless of the frequency F (The degree to which the dielectric loss tangent tan ⁇ increases) is further reduced. That is, in the frequency band of 20 GHz or more and 100 GHz or less, it is possible to provide the silica glass which can further suppress the increase degree of the dielectric loss which increases as the frequency becomes higher.
  • the inclination when the FQ value is approximated as a linear function of the frequency in the frequency band of 20 GHz to 100 GHz is larger than when the OH group concentration exceeds 10 wtppm.
  • the degree of increase in dielectric loss can be significantly suppressed.
  • the silica glass of the present invention has the characteristic that the FQ value increases as the frequency increases.
  • the use of the silica glass of the present invention is considered not only for the frequency band of 20 GHz to 40 GHz used in wireless transmission systems, but also for the use of 40 GHz to 70 GHz for the purpose of achieving further high-capacity communication. Even in the case of a band, the increase of dielectric loss can be suppressed.
  • the use of silica glass by the present inventor is considered to be applied to a safe driving support for automobiles and the like, a high resolution radar system for collision prevention, etc. The dielectric loss increases even in the frequency band of 70 GHz to 100 GHz. Can be suppressed.
  • the silica glass of the present invention preferably has an OH group concentration of 40 wtppm or less, an FQ value of 125000 GHz or more at a frequency of 20 GHz or more and less than 40 GHz, and an upper limit of the FQ value of 230000 GHz or less.
  • the FQ value is preferably 175000 GHz or more at a frequency of 40 GHz or more and less than 70 GHz, and the upper limit of the FQ value is preferably 300000 GHz or less.
  • the FQ value is preferably 200,000 GHz or more at a frequency of 70 GHz or more and 100 GHz or less, and the upper limit of the FQ value is preferably 330000 GHz or less.
  • the silica glass of the present invention preferably has an OH group concentration of 10 wtppm or less, an FQ value of 150000 GHz at a frequency of 20 GHz or more and less than 40 GHz, and an upper limit of the FQ value of 230000 GHz or less.
  • the FQ value is preferably 200,000 GHz or more at a frequency of 40 GHz or more and less than 70 GHz, and the upper limit of the FQ value is preferably 300000 GHz or less.
  • the FQ value is preferably 225000 GHz or more at a frequency of 70 GHz or more and 100 GHz or less, and the upper limit of the FQ value is preferably 330000 GHz or less.
  • the silica glass of such a characteristic can be suitably applied to any of the above-mentioned applications with different operating frequencies in order to suppress an increase in dielectric loss.
  • the inventor's silica glass can be suitably used to form a high frequency device used in various wireless systems.
  • high frequency devices include waveguides, transmission lines such as SIWs and microstrip lines, and passive devices such as antennas, filters, duplexers, diplexers, capacitors, and inductors.
  • passive devices such as antennas, filters, duplexers, diplexers, capacitors, and inductors.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction indicate a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis, respectively.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to one another.
  • the XY plane, the YZ plane, and the ZX plane are a virtual plane parallel to the X axis direction and the Y axis direction, a virtual plane parallel to the Y axis direction and the Z axis direction, and a virtual plane parallel to the Z axis direction and the X axis direction Represents
  • the filter according to the present disclosure is a waveguide filter including a waveguide formed in a dielectric surrounded by a conductor wall, and is configured to receive a high frequency signal in a high frequency band (for example, 0.3 GHz to 300 GHz) such as microwaves and millimeter waves.
  • a high frequency band for example, 0.3 GHz to 300 GHz
  • the filter according to the present disclosure is suitable, for example, for filtering a high frequency signal corresponding to a radio wave transmitted or received by an antenna in a fifth generation mobile communication system (so-called 5G), an on-vehicle radar system, or the like.
  • 5G fifth generation mobile communication system
  • 5G fifth generation mobile communication system
  • FIG. 1 is a perspective view showing an example of the configuration of a filter according to the present disclosure.
  • the filter 10 according to the present disclosure shown in FIG. 1 includes a first conductor layer 21, a second conductor layer 22, and a dielectric sandwiched between the first conductor layer 21 and the second conductor layer 22.
  • And 23 is a band pass filter provided with the SIW structure.
  • the filter 10 passes a high frequency signal of a predetermined frequency band passing in the Y-axis direction, and blocks a high frequency signal of a frequency band other than the frequency band.
  • the first conductor layer 21 and the second conductor layer 22 are planar conductors arranged in parallel to the XY plane, and oppose each other in the Z-axis direction.
  • the first conductor layer 21 and the second conductor layer 22 are formed in a rectangular shape with the Y-axis direction as the longitudinal direction.
  • silver, copper, etc. are mentioned, for example.
  • the dielectric 23 is formed in a rectangular parallelepiped shape with the Y-axis direction as the longitudinal direction.
  • the X-axis direction is located on a pair of opposing side surfaces of the dielectric 23 in the X-axis direction or inside the dielectric 23 so that the waveguide is formed in the dielectric 23.
  • a conductor wall is formed on the pair of boundary surfaces facing each other.
  • the silica glass of the present invention is used as the material of the dielectric 23.
  • FIG. 2 is a plan view showing a filter in the first embodiment according to the present disclosure.
  • the band pass filter 10A shown in FIG. 2 is an example of the filter 10 of FIG. 1 and includes a waveguide formed in a dielectric 23 surrounded by a conductor wall.
  • a conductor wall surrounding dielectric 23 is a pair of an upper conductor wall corresponding to first conductor layer 21, a lower conductor wall corresponding to second conductor layer 22, and a pair of dielectric members facing in the X-axis direction. It has a pair of side surface conductor walls 41 and 42 formed in the side.
  • the dielectric portion surrounded by the pair of side surface conductor walls 41 and 42, the upper conductor wall and the lower conductor wall functions as a waveguide extending in the Y axis direction so as to guide the electromagnetic wave in the Y axis direction.
  • the pair of side surface conductor walls 41 and 42 respectively have a plurality of control walls projecting in the X-axis direction inside the waveguide.
  • the band pass filter 10A in the first embodiment includes control walls 43a to 47a projecting from the first side surface conductor wall 41 toward the second side surface conductor wall 42, and a first side surface from the second side surface conductor wall 42. And control walls 43b to 47b protruding toward the side conductor wall 41. These control walls are each formed by a conductor slit whose surface is covered with a conductor.
  • Each conductor slit has an upper end connected to the upper conductor wall and a lower end connected to the lower conductor wall, for example, a portion where the conductor is coated on the surface of the slit provided in the dielectric 23 by cutting or the like It corresponds to
  • control walls 43a to 47a are formed, for example, at equal intervals at intervals in the Y-axis direction between adjacent control walls, and project from the first side conductor wall 41 toward the second side conductor wall 42. It is formed to be.
  • control walls 43b to 47b are formed at equal intervals, for example, in the Y-axis direction between adjacent control walls, and from the second side conductor wall 42 to the first side conductor wall 41. It is formed to project toward the side. That is, the X-axis direction shown in FIG. 2 represents the projecting direction of each of the control walls 43a to 47a and 43b to 47b.
  • the pair of control walls 43a and 43b, the pair of control walls 44a and 44b, the pair of control walls 45a and 45b, the pair of control walls 46a and 46b, and the pair of control walls 47a and 47b are respectively in the same ZX plane Is formed.
  • the positions of the pair of control walls may be offset from each other in the Y-axis direction.
  • L43 to L47 represent the lengths of the control walls 43a to 47a in the X-axis direction, respectively.
  • Each of the control walls 43a to 47a is set to a length that can be seen as a wall when viewed from an electromagnetic wave propagating through the waveguide, and functions as a post wall that reflects the electromagnetic wave propagating through the waveguide.
  • the control walls 43b to 47b may be set to the same length.
  • the distance L41 between the pair of side surface conductor walls 41 and 42 is preferably approximately equal to ⁇ g / 2, where ⁇ g is the wavelength of the electromagnetic wave propagating through the waveguide (in-tube wavelength).
  • the distance between the control walls adjacent in the Y-axis direction is preferably about the same as ⁇ g / 2, where ⁇ g is the wavelength of the electromagnetic wave propagating through the waveguide (in-tube wavelength).
  • the control walls 43a to 47a are arranged at intervals in the Y-axis direction, and the lengths of the control walls 43a to 47a in the X-axis direction are gradually increased in the order of arrangement of the control walls 43a to 47a in the Y-axis direction Or it may decrease gradually. Thereby, the degree of suppressing the reflection loss of the electromagnetic wave propagating through the waveguide can be adjusted with high accuracy. For example, L47, L46 and L45 gradually increase in this order, and L44 and L43 gradually decrease in this order.
  • the lengths in the X-axis direction of the control walls 43b to 47b arranged at intervals in the Y-axis direction are also gradually increased or gradually reduced in the order of arrangement of the control walls 43b to 47b in the Y-axis direction
  • the degree of suppressing the reflection loss of the electromagnetic wave propagating through the waveguide can be adjusted with high accuracy.
  • the lengths of the control walls in the X-axis direction may be set to the same dimensions.
  • the control walls 43a to 47a and 43b to 47b have a length of about ⁇ g / 2 arranged in the Y-axis direction by a pair of control walls opposed in the X-axis direction and a pair of control walls adjacent in the Y-axis direction.
  • a plurality of resonators are configured (the wavelength of the electromagnetic wave propagating in the waveguide (tube wavelength) is ⁇ g).
  • the coupling between the resonators is adjusted by the length of each control wall in the X-axis direction and the width in the Y-axis direction (wall thickness), and affects the reflection characteristics and the frequency characteristics as a filter.
  • the band pass filter 10A has a plurality of (four in the case of FIG. 2) resonators formed between control walls adjacent in the Y-axis direction.
  • FIG. 3 is a diagram showing an example of the relationship between the frequency and the FQ value for a plurality of silica glasses having different OH group concentrations.
  • the sample glass materials of Examples 1 to 3 are examples of the silica glass of the present invention, which are synthetic silica glasses produced by the VAD method, and have different OH group concentrations.
  • the OH group concentrations in Examples 1 to 3 are 5 wtppm, 34 wtppm and 82 wtppm, respectively.
  • the sample glass material of Comparative Example 1 is a synthetic silica glass produced by the direct method.
  • the OH group concentration of Comparative Example 1 is 1122 wtppm.
  • FIG. 3 shows an example of the evaluation results of FQ values of these sample glass materials. It can be seen that the sample glass materials of low OH group concentration of Examples 1 to 3 have high FQ value and small dielectric loss as compared with Comparative Example 1. Also, it can be seen that the dielectric loss decreases as the OH group concentration decreases. Furthermore, when the FQ value is approximated as a linear function of frequency, the sample glass material of low OH group concentration in Examples 1 to 3 has a large slope of the approximated linear function compared to Comparative Example 1, and the higher frequency band The FQ value becomes significantly higher. Therefore, it turns out that dielectric loss can be suppressed especially in a high frequency band. In the approximate linear function described in FIG. 1, "y" represents an FQ value, and "x" represents a frequency.
  • Examples 1 to 3 concentration of the metal impurities in Examples 1 to 3 is 5 ppb or less, and Examples 1 to 3 can be suitably used in the high frequency device manufacturing process.
  • FIG. 4 is a perspective view showing a filter according to a second embodiment of the present disclosure.
  • the band pass filter 10B shown in FIG. 4 is an example of the filter 10 of FIG. 1 and includes a waveguide formed in a dielectric surrounded by a conductor wall.
  • the description of the configuration and effects similar to those of the first embodiment in the second embodiment will be omitted by using the above description.
  • the band pass filter 10B has an SIW structure formed of a first conductor layer, a second conductor layer, and a dielectric layer sandwiched between the first conductor layer and the second conductor layer. .
  • FIG. 4 the illustration of the first conductor layer and the second conductor layer is omitted to improve the visibility, and only a rectangular parallelepiped dielectric layer is illustrated.
  • This dielectric layer is formed using the silica glass of the present invention.
  • the X axis, the Y axis, and the Z axis are orthogonal to one another.
  • the dielectric layer of the bandpass filter 10B has a pair of post walls 11 and 12 arranged in two rows in the Y-axis direction.
  • the dielectric portion surrounded by the pair of post walls 11, 12 and the first conductor layer and the second conductor layer functions as a waveguide extending in the Y axis direction so as to guide the electromagnetic wave in the Y axis direction.
  • Each of the pair of post walls 11 and 12 is a set of a plurality of conductor posts arranged in a fence shape.
  • Each conductor post is a columnar conductor having an upper end connected to the first conductor layer and a lower end connected to the second conductor layer, and, for example, a through hole penetrating the dielectric layer in the Z-axis direction It is conductor plating formed in the hole wall surface.
  • the dielectric layer of the band pass filter 10B has a plurality of control walls 13a, 13b, 14a, 14b, 15a, 15b, 16a, 16b, 17a, 17b inside the waveguide.
  • Each of these control walls is a set of a plurality of conductor posts arranged in a fence-like manner.
  • Each conductor post is a columnar conductor having an upper end connected to the first conductor layer and a lower end connected to the second conductor layer, and, for example, a through hole penetrating the dielectric layer in the Z-axis direction It is conductor plating formed in the hole wall surface.
  • control walls are formed to be orthogonal to the pair of post walls 11 and 12 which are orthogonal to the first conductor layer and the second conductor layer parallel to the XY plane and parallel to the YZ plane. (Ie, formed parallel to the ZX plane).
  • the control walls 13a, 14a, 15a, 16a, 17a are formed between the adjacent control walls at intervals in the Y-axis direction, and project toward the second post wall 12 from the first post wall 11 side. It is formed to be.
  • the control walls 13b, 14b, 15b, 16b and 17b are formed between the adjacent control walls at intervals in the Y-axis direction, and project from the second post wall 12 side toward the first post wall 11 It is formed to be.
  • the pair of control walls 13a and 13b are formed in the same ZX plane.
  • a pair of control walls 14a and 14b, a pair of control walls 15a and 15b, a pair of control walls 16a and 16b, and a pair of control walls 17a and 17b are also formed in the same ZX plane.
  • the conductor posts on the control wall 13a are disposed at intervals sufficiently shorter than the wavelength of the electromagnetic wave propagating through the waveguide.
  • the distance between the conductor post in the control wall 13a and the conductor post in the first post wall 11 is also set sufficiently shorter than the wavelength of the electromagnetic wave propagating through the waveguide.
  • the control wall 13a functions as a post wall that reflects the electromagnetic wave propagating through the waveguide.
  • the distance L4 between the pair of post walls 11 and 12 is preferably about the same as ⁇ / 2, where ⁇ is the wavelength of the electromagnetic wave propagating through the waveguide.
  • the band pass filter 10B has an SIW structure having a plurality of (four in the case of FIG. 4) resonators.
  • the filter A is a band pass filter in a frequency band including 28 GHz
  • the filter B is a band pass filter in a frequency band including 60 GHz
  • the filter C is a band pass filter in a frequency band including 80 GHz.
  • FIG. 5 shows an example of an analysis result of the pass characteristic S21 of the filter A which passes electromagnetic waves in a frequency band including 28 GHz.
  • the dielectric physical property value of silica glass used for the dielectric material layer of the filter A used the measured value of the dielectric loss tangent tan ⁇ measured in order to calculate the FQ value around 33 GHz of FIG.
  • the dimensions of the dielectric layer of the filter A (see FIG.
  • FIG. 6 shows an example of an analysis result of the pass characteristic S21 of the filter B which passes electromagnetic waves in a frequency band including 60 GHz.
  • the dielectric physical property value of silica glass used for the dielectric material layer of filter B used the measured value of dielectric loss tangent tan-delta measured in order to calculate the FQ value around 65 GHz of FIG.
  • the dimensions of the dielectric layer of the filter B (see FIG.
  • FIG. 7 shows an example of an analysis result of the pass characteristic S21 of the filter C which passes electromagnetic waves in a frequency band including 80 GHz.
  • the dielectric physical property value of silica glass used for the dielectric material layer of the filter C used the measured value of the dielectric loss tangent tan ⁇ measured in order to calculate the FQ value around 85 GHz of FIG.
  • the dimension of the dielectric layer of the filter C (see FIG.
  • silica glass having a high FQ value can be provided as compared to conventional silica glass.
  • silica glass which has a high FQ value as the frequency increases, and in particular, a low loss in a high frequency band can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

OH基濃度が300wtppm以下であり、周波数25GHz以上30GHz以下におけるFQ値が90000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上である高周波デバイス用シリカガラス。当該シリカガラスを用いて形成される高周波デバイス。

Description

高周波デバイス用シリカガラス及び高周波デバイス
 本発明は、高周波デバイス用シリカガラス及び高周波デバイスに関する。
 従来から、マイクロ波やミリ波等の高周波帯におけるパッシブなデバイスに用いられる高周波デバイスとして、アンテナ、フィルタ、分波器、ダイプレクサ、コンデンサ及びインダクタ等がある。例えば、高周波デバイスの一つであるフィルタの形態には、導波管、SIW(Substrate Integrated Waveguide)及びマイクロストリップ線路等の伝送線路を利用した構成などが知られている。
 近年、大容量伝送技術としてマイクロ波帯やミリ波帯域を利用する無線伝送が注目されている。しかし、使用する周波数の拡大に伴い信号周波数が高くなるにつれて、高周波デバイスの誘電体層における誘電損失が大きくなる問題がある。そこで、誘電体基板材料として誘電損失が小さな材料が注目されている。例えば、誘電損失の小さな誘電体として、誘電正接tanδが小さな石英が知られている(例えば、特許文献1参照)。
 一方、OH基濃度が比較的低く、マイクロ波の周波数帯域におけるFQ値が所定値以上の石英ガラス材料を使用すると、石英ガラス材料へのマイクロ波電力の吸収が抑制されることが知られている(例えば、特許文献2参照)。なお、FQ値は、周波数FとQ値(誘電正接tanδの逆数)との積である。
特開2014-23028号公報 特開平7-330357号公報
J . Paul Williams, Yao-sin Su, Wesley R. Strzegowski, Barry L. Butler, Herbert L. Hoover and Vincent O. Altemose, "Direct determination of water in glass" Ceramic. Bulletin., Vol.55, No.5, pp524, 1976. Y. Kato and M. Horibe, "Permittivity measurements and associated uncertainties up to 110 GHz in circular-disk resonator method" Proceedings of the 46th European Microwave Conference (2016) 4-6 Oct 2016.
 特許文献2には、FQ値が一定である旨が記載されている。FQ値が一定であるということは、周波数Fが高くなるほど、Q値が低下し(誘電正接tanδが大きくなり)、誘電損失が増大することを意味する。しかしながら、本発明者は、OH基濃度(水酸基濃度)と周波数FとFQ値との関係について研究を進めたところ、20GHz以上100GHz以下の周波数帯において、OH基濃度が低いシリカガラスにおいては、周波数Fが高くなるほどFQ値が増加することを見出した。
 そこで、本開示は、20GHz以上100GHz以下の周波数帯において、周波数が高くなるほどFQ値が増加する高周波デバイス用シリカガラス、及び当該シリカガラスを用いて形成される高周波デバイスを提供する。
 本開示の一態様は、
 OH基濃度が300wtppm以下であり、周波数25GHz以上30GHz以下におけるFQ値が90000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上である高周波デバイス用シリカガラス、及び当該シリカガラスを用いて形成される高周波デバイスを提供する。
 本開示の一態様に係る高周波デバイス用シリカガラスによれば、20GHz以上100GHz以下の周波数帯において、周波数が高くなるほどFQ値が増加するので、周波数が高くなるほど増大する誘電損失の増加度合いを抑制することができる。
本開示に係るフィルタの構成の一例を示す斜視図である。 本開示に係る第1の実施形態におけるフィルタを示す平面図である。 OH基濃度の異なる複数のシリカガラスについて、周波数とFQ値との関係の一例を示す図である。 SIWの一実施例を示す斜視図である。 SIWの28GHz付近のフィルタ特性の一例を示す図である。 SIWの60GHz付近のフィルタ特性の一例を示す図である。 SIWの80GHz付近のフィルタ特性の一例を示す図である。
 以下、本発明を実施するための形態について説明するが、本発明はこれに限定されるものではない。
 本発明の一実施形態に、VAD(Vapor-phase Axial Deposition)法によって製作された合成シリカガラスがある。合成シリカガラスを製作する方法は、石英ガラス製バーナーに合成原料としてSiを含む化合物、酸素ガス、水素ガス、窒素ガスなどを供給し、合成原料を酸水素火炎中で加水分解反応あるいは酸化反応させることによりシリカガラスを合成する方法である。合成シリカガラスを製作する方法には、直接法と間接法(VAD法、OVD法など)の2種類がある。
 直接法は、Siを含む化合物を1500~2000℃の温度にて火炎加水分解してSiO粒子を合成し、基材上に堆積、融着させることにより透明合成シリカガラスを直接合成する合成方法である。
 一方、VAD法は、Siを含む化合物を1000~1500℃の温度にて火炎加水分解してSiO粒子を合成し、基材上に堆積させることにより多孔質合成シリカガラス体を得、次いで1400~1500℃の温度に昇温することにより多孔質合成シリカガラス体を緻密化し、透明合成シリカガラス体を得る方法である。
 また、合成シリカガラスの合成原料は、ガス化可能な原料であれば特に制限されないが、SiCl、SiHCl、SiHCl、SiCHClなどの塩化物、SiF、SiHF、SiHなどのフッ化物といったハロゲン化珪素化合物、またはRnSi(OR)4-n(ここにRは炭素数1~4のアルキル基、nは0~3の整数)で示されるアルコキシシランや(CHSi-O-Si(CHなどのハロゲンを含まない珪素化合物が挙げられる。
 多孔質シリカガラス体を得た後、多孔質シリカガラス体を透明ガラス化温度まで昇温して透明ガラス化し、緻密シリカガラス体を得る。透明ガラス化温度は通常1300~1600℃であり、特に1350℃から1500℃であることが好ましい。雰囲気は、ヘリウムなどの不活性ガス100%の雰囲気、またはヘリウムなどの不活性ガスを主成分とする雰囲気であることが好ましい。圧力は、減圧または常圧であればよい。特に常圧の場合はヘリウムガスを用いることができる。
 更に減圧下においてはOH基低減化処理と透明ガラス化処理を同時に行うことができる。この場合、減圧下において1200~1350℃の間で20~70時間温度を保ちOH基を低減させた後、1350~1500℃に昇温して透明ガラス化を行う。OH基濃度は、処理時間と処理温度により調整できる。同じ処理温度では処理時間が長い程、OH基濃度は低減される。処理温度は低過ぎるとガラス中で脱水反応が起きず、また高すぎると焼結が進み緻密化してガラス中の水分が外に抜けなくなるため、処理温度は1000~1350℃の範囲が好ましい。
 こうして得られたシリカガラス体を軟化点以上の温度に加熱して所望の形状に成形してシリカガラス成形体を得る。成形加工の温度域は1650℃~1800℃が好ましい。1650℃未満ではシリカガラスの粘度が高いため、実質的に自重変形が行われず、またSiOの結晶相であるクリストバライトの成長が起こり、いわゆる失透が生じるおそれがあるからである。また、1800℃以上ではSiOの昇華が無視できなくなるからである。
 本実施形態におけるシリカガラスは、OH基濃度が300wtppm以下であり、好ましくは100wtppm以下、より好ましくは40wtppm以下、さらに好ましくは10wtppm以下である。このようなOH基濃度で形成されたシリカガラスに電磁波を通過させると、マイクロ波およびミリ波の周波数帯での誘電損失を小さくすることができる。マイクロ波およびミリ波の周波数帯は、300MHz以上300GHz以下の帯域を表す。wtppmは、質量分率を表し、ppmは、百万分率を表す。
 本実施形態におけるシリカガラス中のアルカリ金属(Na,K,Liなど)、アルカリ土類金属(Mg,Caなど)、遷移金属(Fe,Ni,Cr,Cu,Mo,W,Al,Ti,Ceなど)などの金属不純物の濃度は、100ppb以下、好ましくは20ppb以下、より好ましくは10ppb以下、さらに好ましくは5ppb以下である。シリカガラスに含まれる金属不純物がこのような濃度に抑えられることにより、高周波デバイスの製造プロセスにおける金属汚染の発生を抑制することができる。ppbは、十億分率を表す。
 本実施形態におけるシリカガラスのOH基濃度の測定は、上掲の非特許文献1に従って赤外分光光度計によって実施できる。
 本実施形態におけるシリカガラスに含まれる金属不純物の濃度は、ICP(Inductively Coupled Plasma)質量分析によって評価することができる。
 本実施形態におけるシリカガラスの誘電損失の評価値であるFQ値は、周波数FとQ値(誘電正接tanδの逆数)との積によって求めることができる。また、シリカガラスの誘電正接tanδは、上掲の非特許文献2に記載の平衡型円板共振器法よって評価することができる。
 本発明者は、OH基濃度と周波数FとFQ値との関係について研究を進めたところ、OH基濃度が300wtppm以下のシリカガラスは、周波数25GHz以上30GHz以下におけるFQ値が90000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上であることを見出した。つまり、本発明者は、20GHz以上100GHz以下の周波数帯において、周波数Fが高くなるほどFQ値が増加することを見出した。
 一方、本発明者は、OH基濃度が300wtppmを超えるシリカガラスは、シリカガラスを通過する電磁波の周波数FにかかわらずFQ値が略一定であることを見出した。特に、本発明者は、OH基濃度が300wtppmを超えるシリカガラスは、周波数25GHz以上30GHz以下におけるFQ値が90000GHz未満であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000未満であることを見出した。周波数FにかかわらずFQ値が略一定であるとき、周波数Fが高くなるほど、Q値が低下し(誘電正接tanδが大きくなり)、誘電損失が増大する。
 これに対し、OH基濃度が300wtppm以下のシリカガラスは、周波数25GHz以上30GHz以下におけるFQ値が90000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上の特性を有する。このような特性のシリカガラスでは、周波数FにかかわらずFQ値が略一定のシリカガラスに比べて、20GHz以上100GHz以下の周波数帯では、周波数Fが高くなるほど、Q値が低下する度合い(誘電正接tanδが増大する度合い)は小さくなる。つまり、20GHz以上100GHz以下の周波数帯において、周波数が高くなるほど増大する誘電損失の増大度合いを抑制できるシリカガラスの提供が可能となる。OH基濃度が300wtppm以下のシリカガラスにおいて、周波数25GHz以上30GHz以下におけるFQ値は、より大きい方が好ましいが、通常上限としては230000GHz以下が好ましい。また、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きは大きいほど好ましいが、通常上限としては1600以下であることが好ましい。
 また、本発明者は、OH基濃度が100wtppm以下のシリカガラスは、周波数25GHz以上30GHz以下におけるFQ値が100000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上であることを見出した。このような特性のシリカガラスを使用すると、周波数FにかかわらずFQ値が略一定のシリカガラスに比べて、20GHz以上100GHz以下の周波数帯では、周波数Fが高くなるほど、Q値が低下する度合い(誘電正接tanδが増大する度合い)は更に小さくなる。つまり、20GHz以上100GHz以下の周波数帯において、周波数が高くなるほど増大する誘電損失の増大度合いを更に抑制できるシリカガラスの提供が可能となる。OH基濃度が100wtppm以下のシリカガラスにおいて、周波数25GHz以上30GHz以下におけるFQ値は、より大きい方が好ましいが、通常上限として230000GHz以下が好ましい。また、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きは大きいほど好ましいが、通常上限としては1600以下であることが好ましい。
 また、本発明者は、OH基濃度が40wtppm以下のシリカガラスは、周波数25GHz以上30GHz以下におけるFQ値が160000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上であることを見出した。OH基濃度が40wtppm以下のシリカガラスにおいて、周波数25GHz以上30GHz以下におけるFQ値はより大きい方が好ましいが、通常上限として230000GHz以下が好ましい。また、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きは大きいほど好ましいが、通常上限としては1600以下であることが好ましい。さらに、本発明者は、OH基濃度が10wtppm以下のシリカガラスは、周波数25GHz以上30GHz以下におけるFQ値が160000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1250以上であることを見出した。OH基濃度が10wtppm以下のシリカガラスにおいて、周波数25GHz以上30GHz以下におけるFQ値はより大きい方が好ましいが、通常上限として230000GHz以下が好ましい。また、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きは大きいほど好ましいが、通常上限としては1600以下であることが好ましい。これらの特性のシリカガラスを使用しても、周波数FにかかわらずFQ値が略一定のシリカガラスに比べて、20GHz以上100GHz以下の周波数帯では、周波数Fが高くなるほど、Q値が低下する度合い(誘電正接tanδが増大する度合い)は更に小さくなる。つまり、20GHz以上100GHz以下の周波数帯において、周波数が高くなるほど増大する誘電損失の増大度合いを更に抑制できるシリカガラスの提供が可能となる。
 特に、OH基濃度が10wtppm以下であると、OH基濃度が10wtppmを超える場合に比べて、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが大きくなるので、誘電損失の増加度合いを顕著に抑制することができる。
 このように、本発明のシリカガラスは、周波数の上昇に伴ってFQ値が増加する特性を有する。本発明のシリカガラスの使用は、無線伝送システムにて利用される20GHz以上40GHz以下の周波数帯だけでなく、更なる大容量通信を達成するために利用が検討されている40GHz以上70GHz以下の周波数帯でも誘電損失の増大を抑制できる。さらに、本発明者のシリカガラスの使用は、自動車等の安全運転支援や衝突防止のための高分解能レーダーシステム等への適用が検討されている70GHz以上100GHz以下の周波数帯でも、誘電損失の増大を抑制できる。
 例えば、本発明のシリカガラスは、OH基濃度が40wtppm以下であり、周波数20GHz以上40GHz未満にてFQ値は125000GHz以上であることが好ましく、FQ値の上限は230000GHz以下であることが好ましい。周波数40GHz以上70GHz未満にてFQ値は175000GHz以上であることが好ましく、FQ値の上限は300000GHz以下であることが好ましい。周波数70GHz以上100GHz以下にてFQ値は200000GHz以上であることが好ましく、FQ値の上限は330000GHz以下であることが好ましい。また、本発明のシリカガラスは、OH基濃度が10wtppm以下であり、周波数20GHz以上40GHz未満にてFQ値は150000GHz以上であることが好ましく、FQ値の上限は230000GHz以下であることが好ましい。周波数40GHz以上70GHz未満にてFQ値は200000GHz以上であることが好ましく、FQ値の上限は300000GHz以下であることが好ましい。周波数70GHz以上100GHz以下にてFQ値は225000GHz以上であることが好ましく、FQ値の上限は330000GHz以下であることが好ましい。このような特性のシリカガラスは、誘電損失の増大を抑制する上で、使用周波数の異なる上述の各アプリケーションのいずれにも好適に適用することができる。
 本発明者のシリカガラスは、各種の無線システムで用いられる高周波デバイスの形成に好適に用いることができる。高周波デバイスの具体例として、導波路、SIW、マイクロストリップ線路等の伝送線路、アンテナ、フィルタ、分波器、ダイプレクサ、コンデンサ及びインダクタ等のパッシブデバイスが挙げられる。本発明のシリカガラスを、これらの高周波デバイスの誘電体に適用することにより、低損失で高性能な高周波デバイスを提供することができる。
 次に、本発明のシリカガラスを用いて形成されるフィルタの構成例について説明する。なお、以下の説明において、X軸方向、Y軸方向、Z軸方向は、それぞれ、X軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向を表す。X軸方向とY軸方向とZ軸方向は、互いに直交する。XY平面、YZ平面、ZX平面は、それぞれ、X軸方向及びY軸方向に平行な仮想平面、Y軸方向及びZ軸方向に平行な仮想平面、Z軸方向及びX軸方向に平行な仮想平面を表す。
 本開示に係るフィルタは、導体壁に囲まれる誘電体に形成される導波路を備える導波管フィルタであり、マイクロ波やミリ波等の高周波帯(例えば、0.3GHz~300GHz)における高周波信号をフィルタリングする。本開示に係るフィルタは、例えば、第5世代移動通信システム(いわゆる、5G)や車載レーダーシステムなどにおいて、アンテナにより送信又は受信される電波に対応する高周波信号をフィルタリングするのに好適である。
 図1は、本開示に係るフィルタの構成の一例を示す斜視図である。図1に示される本開示に係るフィルタ10は、第1の導体層21と、第2の導体層22と、第1の導体層21と第2の導体層22との間に挟まれる誘電体23とによって形成されるSIW構造を備えるバンドパスフィルタである。フィルタ10は、Y軸方向に通過する所定の周波数帯域の高周波信号を通過させ、当該周波数帯域以外の周波数帯域の高周波信号を遮断する。
 第1の導体層21と第2の導体層22とは、XY平面に平行に配置される平面状の導体であり、互いにZ軸方向で対向する。第1の導体層21と第2の導体層22とは、Y軸方向を長手方向として、矩形状に形成されている。第1の導体層21と第2の導体層22の材料として、例えば、銀、銅などが挙げられる。
 誘電体23は、Y軸方向を長手方向として、直方体状に形成されている。図1には明示されていないが、導波路が誘電体23に形成されるように、誘電体23のX軸方向で対向する一対の側面、又は、誘電体23の内部に位置しX軸方向で対向する一対の境界面には、導体壁が形成される。誘電体23の材料に、本発明のシリカガラスが使用される。
 図2は、本開示に係る第1の実施形態におけるフィルタを示す平面図である。図2に示されるバンドパスフィルタ10Aは、図1のフィルタ10の一例であり、導体壁に囲まれる誘電体23に形成される導波路を備える。誘電体23を囲む導体壁は、第1の導体層21に相当する上側導体壁と、第2の導体層22に相当する下側導体壁と、誘電体23のX軸方向で対向する一対の側面に形成される一対の側面導体壁41,42とを有する。
 一対の側面導体壁41,42と上側導体壁と下側導体壁とに囲まれる誘電体部分は、電磁波をY軸方向に導くようにY軸方向に延在する導波路として機能する。
 一対の側面導体壁41,42は、それぞれ、導波路の内側にX軸方向に突出する複数の制御壁を有する。第1の実施形態におけるバンドパスフィルタ10Aは、第1の側面導体壁41から第2の側面導体壁42に向かって突出する制御壁43a~47aと、第2の側面導体壁42から第1の側面導体壁41に向かって突出する制御壁43b~47bとを備える。これらの制御壁は、それぞれ、表面が導体で覆われる導体スリットにより形成されている。各導体スリットは、上側導体壁に接続される上端と、下側導体壁に接続される下端とを有し、例えば、誘電体23に切削等により設けられるスリットの表面に導体が被覆された部位に相当する。
 また、これらの制御壁は、例えば、XY平面に平行な上側導体壁及び下側導体壁に直交し、且つ、YZ平面に平行な一対の側面導体壁41,42に直交するように形成されている(つまり、ZX平面に平行に形成されている)。制御壁43a~47aは、例えば、隣り合う制御壁間でY軸方向に間隔を空けて等間隔に形成されており、第1の側面導体壁41から第2の側面導体壁42に向かって突出するように形成されている。同様に、制御壁43b~47bは、例えば、隣り合う制御壁間でY軸方向に間隔を空けて等間隔に形成されており、第2の側面導体壁42から第1の側面導体壁41に向かって突出するように形成されている。つまり、図2に示されるX軸方向は、制御壁43a~47a,43b~47bのそれぞれの突出方向を表す。
 例えば、一対の制御壁43a,43b、一対の制御壁44a,44b、一対の制御壁45a,45b、一対の制御壁46a,46b及び一対の制御壁47a,47bは、それぞれ、同一のZX平面内に形成されている。なお、これらの一対の制御壁の各々の位置が、Y軸方向に互いにずれていてもよい。
 L43~L47は、それぞれ、制御壁43a~47aのX軸方向での長さを表す。制御壁43a~47aは、それぞれ、導波路を伝搬する電磁波から見ると壁に見えるような長さに設定されており、導波路を伝搬する電磁波を反射するポスト壁として機能する。制御壁43b~47bについても同様の長さに設定されているとよい。
 また、一対の側面導体壁41,42の間の間隔L41は、導波管を伝搬する電磁波の波長(管内波長)をλgとするとき、λg/2と同程度であることが好ましい。また、Y軸方向に隣り合う制御壁間の間隔は、導波管を伝搬する電磁波の波長(管内波長)をλgとするとき、λg/2と同程度であることが好ましい。
 制御壁43a~47aは、Y軸方向に間隔を空けて配列されており、制御壁43a~47aのX軸方向での各長さは、制御壁43a~47aのY軸方向での配列順に漸増又は漸減してもよい。これにより、導波管を伝搬する電磁波の反射損失を抑制する度合いを高精度に調整することができる。例えば、L47,L46,L45はこの順に漸増し、L44,L43はこの順に漸減する。同様に、Y軸方向に間隔を空けて配列されている制御壁43b~47bのX軸方向での各長さも、制御壁43b~47bのY軸方向での配列順に漸増又は漸減することで、導波管を伝搬する電磁波の反射損失を抑制する度合いを高精度に調整することができる。なお、各制御壁のX軸方向での長さは、互いに同じ寸法に設定されてもよい。
 制御壁43a~47a,43b~47bは、X軸方向で対向する一対の制御壁とY軸方向で隣り合う一対の制御壁とで、Y軸方向に配列される約λg/2の長さの複数の共振器を構成する(導波管を伝搬する電磁波の波長(管内波長)をλgとする)。それらの共振器間の結合は、各制御壁のX軸方向での長さとY軸方向での幅(壁厚)とで調整され、フィルタとしての反射特性及び周波数特性に影響を与える。このように、バンドパスフィルタ10Aは、Y軸方向で隣り合う制御壁間に形成される複数段(図2の場合、4段)の共振器を有する。
 次に、本発明者のシリカガラスの実施例について説明する。
 図3は、OH基濃度の異なる複数のシリカガラスについて、周波数とFQ値との関係の一例を示す図である。実施例1~3のサンプルガラス材は、本発明のシリカガラスの実施例であり、VAD法により作製した合成シリカガラスであって、各々異なるOH基濃度を有している。実施例1~3のOH基濃度は、それぞれ、5wtppm, 34wtppm, 82wtppmである。比較例1のサンプルガラス材は、直接法により作製した合成シリカガラスである。比較例1のOH基濃度は、1122wtppmである。
 図3は、これらのサンプルガラス材のFQ値の評価結果の一例を示す。実施例1~3の低OH基濃度のサンプルガラス材は、比較例1と比べ、FQ値が高く誘電損失が小さいことが分かる。また、誘電損失は、OH基濃度が低いほど小さくなることが分かる。さらに、FQ値を周波数の1次関数として近似すると、実施例1~3の低OH基濃度のサンプルガラス材では、比較例1と比べ、近似した1次関数の傾きが大きく、高周波数帯ほどFQ値が顕著に高くなっていく。そのため、特に高周波数帯にて誘電損失を抑制できることが分かる。なお、図1中に記載の近似1次関数において、“y”は、FQ値を表し、“x”は、周波数を表す。
 また、実施例1~3の金属不純物の濃度は5ppb以下であり、高周波デバイス製作プロセスにおいて実施例1~3を好適に使用できる。
 また、本発明のシリカガラスを用いて高周波フィルタを作製することを想定し、図4に示されるSIW形式のバンドパスフィルタ10Bについて、Sパラメータの一つである通過特性S21のシミュレーションを実施した。
 シミュレーションについて説明する前に、バンドパスフィルタ10Bの構成について以下説明する。
 図4は、本開示に係る第2の実施形態におけるフィルタを示す斜視図である。図4に示されるバンドパスフィルタ10Bは、図1のフィルタ10の一例であり、導体壁に囲まれる誘電体に形成される導波路を備える。なお、第2の実施形態のうち第1の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略する。
 バンドパスフィルタ10Bは、第1の導体層と、第2の導体層と、第1の導体層と第2の導体層との間に挟まれた誘電体層とによって形成されるSIW構造を備える。図4では、視認性向上のため、第1の導体層と第2の導体層の図示は省略され、直方体状の誘電体層のみが図示されている。この誘電体層は、本発明のシリカガラスを用いて形成される。X軸、Y軸、Z軸は、互いに直交する。
 バンドパスフィルタ10Bの誘電体層は、Y軸方向に二列に並ぶ一対のポスト壁11,12を有する。一対のポスト壁11,12と第1の導体層と第2の導体層とに囲まれた誘電体部分は、電磁波をY軸方向に導くようにY軸方向に延在する導波路として機能する。一対のポスト壁11,12は、それぞれ、柵状に配列された複数の導体ポストの集合である。各導体ポストは、第1の導体層に接続される上端と、第2の導体層に接続される下端とを有する柱状導体であり、例えば、誘電体層をZ軸方向に貫通する貫通孔の孔壁面に形成された導体めっきである。
 また、バンドパスフィルタ10Bの誘電体層は、複数の制御壁13a,13b,14a,14b,15a,15b,16a,16b,17a,17bを導波路の内部に有する。これらの制御壁は、それぞれ、柵状に配列された複数の導体ポストの集合である。各導体ポストは、第1の導体層に接続される上端と、第2の導体層に接続される下端とを有する柱状導体であり、例えば、誘電体層をZ軸方向に貫通する貫通孔の孔壁面に形成された導体めっきである。
 また、これらの制御壁は、XY平面に平行な第1の導体層及び第2の導体層に直交し、且つ、YZ平面に平行な一対のポスト壁11,12に直交するように形成されている(つまり、ZX平面に平行に形成されている)。制御壁13a,14a,15a,16a,17aは、隣り合う制御壁間でY軸方向に間隔を空けて形成されており、第1のポスト壁11側から第2のポスト壁12に向かって突出するように形成されている。制御壁13b,14b,15b,16b,17bは、隣り合う制御壁間でY軸方向に間隔を空けて形成されており、第2のポスト壁12側から第1のポスト壁11に向かって突出するように形成されている。
 一対の制御壁13a,13bは、同一のZX平面内に形成されている。同様に、一対の制御壁14a,14b、一対の制御壁15a,15b、一対の制御壁16a,16b及び一対の制御壁17a,17bも、それぞれ、同一のZX平面内に形成されている。
 制御壁13aにおける各導体ポストは、導波路を伝搬する電磁波の波長よりも十分短い間隔で配置されている。制御壁13aにおける導体ポストと、第1のポスト壁11における導体ポストとの間隔も、導波路を伝搬する電磁波の波長よりも十分短く設定されている。これにより、制御壁13aは、導波路を伝搬する電磁波を反射するポスト壁として機能する。他の制御壁13b,14a,14b,15a,15b,16a,16b,17a,17bについても同様である。また、一対のポスト壁11,12の間の間隔L4は、導波管を伝搬する電磁波の波長をλとするとき、λ/2と同程度であることが好ましい。
 このように、バンドパスフィルタ10Bは、複数段(図4の場合、4段)の共振器を有するSIW構造を備える。
 次に、バンドパスフィルタ10Bの通過特性S21を計算するシミュレーションについて説明する。シミュレーション上で使用されるバンドパスフィルタ10Bとして、有限要素法を用いて3種類のフィルタA,B,Cを設計した。フィルタAは、28GHzを含む周波数帯域におけるバンドパスフィルタであり、フィルタBは、60GHzを含む周波数帯域におけるバンドパスフィルタであり、フィルタCは、80GHzを含む周波数帯域におけるバンドパスフィルタである。
 図5は、28GHzを含む周波数帯域の電磁波を通過させるフィルタAの通過特性S21の解析結果の一例を示す。フィルタAの誘電体層に使用されるシリカガラスの誘電物性値は、図3の33GHz付近のFQ値を計算するために測定された誘電正接tanδの測定値を用いた。フィルタAの誘電体層の寸法(図4参照)は、単位をmmとすると、
  L1:4.2
  L2:16.5
  L3:0.5
  L4:4.0
  制御壁13a,13bの長さL13:0.9
  制御壁14a,14bの長さL14:1.2
  制御壁15a,15bの長さL15:1.25
  制御壁16a,16bの長さL16:1.2
  制御壁17a,17bの長さL17:0.9
である。
 図6は、60GHzを含む周波数帯域の電磁波を通過させるフィルタBの通過特性S21の解析結果の一例を示す。フィルタBの誘電体層に使用されるシリカガラスの誘電物性値は、図3の65GHz付近のFQ値を計算するために測定された誘電正接tanδの測定値を用いた。フィルタBの誘電体層の寸法(図4参照)は、単位をmmとすると、
  L1:2.0
  L2:8.3
  L3:0.5
  L4:1.8
  制御壁13a,13bの長さL13:0.25
  制御壁14a,14bの長さL14:0.45
  制御壁15a,15bの長さL15:0.55
  制御壁16a,16bの長さL16:0.45
  制御壁17a,17bの長さL17:0.25
である。
 図7は、80GHzを含む周波数帯域の電磁波を通過させるフィルタCの通過特性S21の解析結果の一例を示す。フィルタCの誘電体層に使用されるシリカガラスの誘電物性値は、図3の85GHz付近のFQ値を計算するために測定された誘電正接tanδの測定値を用いた。フィルタCの誘電体層の寸法(図4参照)は、単位をmmとすると、
  L1:1.45
  L2:6.85
  L3:0.5
  L4:1.25
  制御壁13a,13bの長さL13:0.32
  制御壁14a,14bの長さL14:0.415
  制御壁15a,15bの長さL15:0.425
  制御壁16a,16bの長さL16:0.415
  制御壁17a,17bの長さL17:0.32
である。
 図5~7において、S21が大きいほど(零に近づくほど)、誘電体層の誘電損失が低いことを表す。εは、比誘電率を表す。図5~7に示されるように、OH基濃度が少ないほど、通過特性S21によって表される通過損失が少ないことがわかる。また、高周波数帯域におけるバンドパスフィルタほど、OH基濃度の差異による通過損失の差異が大きくなり、低OH基濃度のシリカガラスほど良好な通過特性を示すことがわかる。
 以上、本発明によれば、従来のシリカガラスと比較して高FQ値のシリカガラスを提供できる。また、周波数の増加に応じてFQ値が高くなり、特に高周波数帯にて低損失となるシリカガラスを提供できる。
 以上、高周波デバイス用シリカガラス及び高周波デバイスを実施形態により説明したが、本発明は上記の実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
 本国際出願は、2017年11月7日に出願した日本国特許出願第2017-215119号及び2018年1月15日に出願した日本国特許出願第2018-004232号に基づく優先権を主張するものであり、日本国特許出願第2017-215119号及び日本国特許出願第2018-004232号の全内容を本国際出願に援用する。
10 フィルタ
10A,10B バンドパスフィルタ
11,12 ポスト壁
13a,13b,14a,14b,15a,15b,16a,16b,17a,17b 制御壁
21 第1の導体層
22 第2の導体層
23 誘電体
41,42 側面導体壁

Claims (10)

  1.  OH基濃度が300wtppm以下であり、周波数25GHz以上30GHz以下におけるFQ値が90000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上である高周波デバイス用シリカガラス。
  2.  OH基濃度が100wtppm以下であり、周波数25GHz以上30GHz以下におけるFQ値が100000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上である高周波デバイス用シリカガラス。
  3.  OH基濃度が40wtppm以下であり、周波数25GHz以上30GHz以下におけるFQ値が160000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1000以上である高周波デバイス用シリカガラス。
  4.  OH基濃度が10wtppm以下であり、周波数25GHz以上30GHz以下におけるFQ値が160000GHz以上であり、20GHz以上100GHz以下の周波数帯においてFQ値を周波数の1次関数として近似した際の傾きが1250以上である高周波デバイス用シリカガラス。
  5.  OH基濃度が40wtppm以下であり、周波数20GHz以上40GHz未満にてFQ値が125000GHz以上であり、周波数40GHz以上70GHz未満にてFQ値が175000GHz以上であり、周波数70GHz以上100GHz以下にてFQ値が200000GHz以上である、請求項3に記載の高周波デバイス用シリカガラス。
  6.  OH基濃度が10wtppm以下であり、周波数20GHz以上40GHz未満にてFQ値が150000GHz以上であり、周波数40GHz以上70GHz未満にてFQ値が200000GHz以上であり、周波数70GHz以上100GHz以下にてFQ値が225000GHz以上である、請求項4に記載の高周波デバイス用シリカガラス。
  7.  金属不純物の濃度が100ppb以下である、請求項1から6のいずれか一項に記載の高周波デバイス用シリカガラス。
  8.  請求項1から7のいずれか一項に記載の高周波デバイス用シリカガラスを用いて形成される高周波デバイス。
  9.  請求項1から7のいずれか一項に記載の高周波デバイス用シリカガラスを用いて形成されるパッシブデバイス。
  10.  請求項1から7のいずれか一項に記載の高周波デバイス用シリカガラスを用いて形成されるフィルタ。
PCT/JP2018/040155 2017-11-07 2018-10-29 高周波デバイス用シリカガラス及び高周波デバイス WO2019093182A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880068797.5A CN111263736A (zh) 2017-11-07 2018-10-29 高频器件用石英玻璃及高频器件
JP2019552729A JPWO2019093182A1 (ja) 2017-11-07 2018-10-29 高周波デバイス用シリカガラス及び高周波デバイス
US16/860,107 US11912617B2 (en) 2017-11-07 2020-04-28 Silica glass for radio-frequency device and radio-frequency device technical field

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017215119 2017-11-07
JP2017-215119 2017-11-07
JP2018004232 2018-01-15
JP2018-004232 2018-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/860,107 Continuation US11912617B2 (en) 2017-11-07 2020-04-28 Silica glass for radio-frequency device and radio-frequency device technical field

Publications (1)

Publication Number Publication Date
WO2019093182A1 true WO2019093182A1 (ja) 2019-05-16

Family

ID=66439130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040155 WO2019093182A1 (ja) 2017-11-07 2018-10-29 高周波デバイス用シリカガラス及び高周波デバイス

Country Status (4)

Country Link
US (1) US11912617B2 (ja)
JP (1) JPWO2019093182A1 (ja)
CN (1) CN111263736A (ja)
WO (1) WO2019093182A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172232A1 (ja) * 2020-02-28 2021-09-02 Agc株式会社 シリカガラス、シリカガラスを用いた高周波デバイス、およびシリカガラスの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330357A (ja) * 1994-06-01 1995-12-19 Sumitomo Metal Ind Ltd マイクロ波プラズマ装置用の石英ガラス材料
JP2004099376A (ja) * 2002-09-10 2004-04-02 Shinetsu Quartz Prod Co Ltd 合成石英ガラス繊維、ストランド、ヤーン及びクロス
US20170215270A1 (en) * 2016-01-27 2017-07-27 Corning Incorporated Silica content substrate such as for use harsh environment circuits and high frequency antennas

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330941A (en) 1991-07-24 1994-07-19 Asahi Glass Company Ltd. Quartz glass substrate for polysilicon thin film transistor liquid crystal display
JP4240709B2 (ja) 1998-12-25 2009-03-18 旭硝子株式会社 合成石英ガラスおよびその製造方法
WO2000039040A1 (fr) 1998-12-25 2000-07-06 Asahi Glass Company, Limited Verre de quartz synthetique et procede de preparation associe
JP3804407B2 (ja) 2000-07-07 2006-08-02 日本電気株式会社 フィルタ
US6927653B2 (en) 2000-11-29 2005-08-09 Kyocera Corporation Dielectric waveguide type filter and branching filter
US6800574B2 (en) * 2001-10-24 2004-10-05 3M Innovative Properties Company Glass beads and uses thereof
JP3981346B2 (ja) 2003-06-26 2007-09-26 京セラ株式会社 誘電体導波管線路と導波管との接続構造並びにその構造を用いたアンテナ装置及びフィルター装置
US20050044893A1 (en) * 2003-08-28 2005-03-03 Jeffrey Coon Process for making low-OH glass articles and low-OH optical resonator
JPWO2006013753A1 (ja) * 2004-08-06 2008-05-01 株式会社村田製作所 高周波複合部品
TW200835043A (en) * 2007-01-19 2008-08-16 Murata Manufacturing Co High-frequency part
JP5406439B2 (ja) * 2007-08-23 2014-02-05 信越石英株式会社 耐化学性シリカガラス及び耐化学性シリカガラスの製造方法
JP5366303B2 (ja) * 2008-05-12 2013-12-11 信越石英株式会社 放電灯用合成シリカガラス、それで作成した放電灯ランプ及び該放電灯ランプを備えた放電灯装置、並びに前記放電灯用合成シリカガラスの製造方法
JP5750410B2 (ja) 2012-07-20 2015-07-22 株式会社フジクラ 導波路、導波路製造方法、導波路実装構造、導波路実装方法及び高周波通信モジュール
CN103515679B (zh) 2013-10-09 2015-09-30 南京理工大学 基于ltcc的w波段高抑制微型带通滤波器
JP5727069B1 (ja) 2014-04-23 2015-06-03 株式会社フジクラ 導波路型スロットアレイアンテナ及びスロットアレイアンテナモジュール
CN108863107A (zh) * 2016-04-22 2018-11-23 Agc株式会社 显示器用玻璃基板
DE112017006738T5 (de) 2017-01-05 2019-10-02 Intel Corporation Multiplexer- und kombiniererstrukturen, die in einer mm-wellen-verbinderschnittstelle eingebettet sind
JP6312910B1 (ja) 2017-04-28 2018-04-18 株式会社フジクラ フィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330357A (ja) * 1994-06-01 1995-12-19 Sumitomo Metal Ind Ltd マイクロ波プラズマ装置用の石英ガラス材料
JP2004099376A (ja) * 2002-09-10 2004-04-02 Shinetsu Quartz Prod Co Ltd 合成石英ガラス繊維、ストランド、ヤーン及びクロス
US20170215270A1 (en) * 2016-01-27 2017-07-27 Corning Incorporated Silica content substrate such as for use harsh environment circuits and high frequency antennas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172232A1 (ja) * 2020-02-28 2021-09-02 Agc株式会社 シリカガラス、シリカガラスを用いた高周波デバイス、およびシリカガラスの製造方法
CN115279705A (zh) * 2020-02-28 2022-11-01 Agc株式会社 二氧化硅玻璃、使用有二氧化硅玻璃的高频装置、以及二氧化硅玻璃的制造方法
EP4112569A4 (en) * 2020-02-28 2024-04-10 Agc Inc SILICA GLASS, HIGH-FREQUENCY DEVICE USING SILICA GLASS, AND METHOD FOR PRODUCING SILICA GLASS

Also Published As

Publication number Publication date
CN111263736A (zh) 2020-06-09
US20200255324A1 (en) 2020-08-13
JPWO2019093182A1 (ja) 2020-11-26
US11912617B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
TWI708751B (zh) 用於高頻應用之低k介電組成物
KR0185030B1 (ko) 유전체 공진기 및 이를 이용한 유전체 공진기 장치
Kamutzki et al. Silicate dielectric ceramics for millimetre wave applications
Li et al. High Q× f values of Zn-Ni co-modified LiMg0. 9Zn0. 1-xNixPO4 microwave dielectric ceramics for 5G/6G LTCC modules
WO2019093182A1 (ja) 高周波デバイス用シリカガラス及び高周波デバイス
US6440883B2 (en) Dielectric porcelain composition, and dielectric resonator and nonradiative dielectric strip using same
CN105914438A (zh) 一种多谐振腔容性交叉耦合装置
Rose et al. Synthesis and microwave dielectric studies of pure Li2MgSiO4 and B2O3, MgF2, WO3 added Li2MgSiO4 for substrate applications
Feng et al. Ag-diffusion inhibition mechanism in SiO2-added glass-ceramics for 5G antenna applications
CN103951425B (zh) 一种温度稳定型白钨矿结构微波介质陶瓷及其制备方法
EP1708303B1 (en) Microwave band-pass filter
CN104844210B (zh) 温度稳定型低介电常数微波介电陶瓷CaLaV3O10
Du et al. Novel ultralow-permittivity BaMg2Al6Si9O30-based microwave dielectric ceramics with self near-zero temperature coefficient of resonant frequency and thermal expansion
CN112979297B (zh) 一种低介电常数微波介质陶瓷材料及陶瓷元器件
JP4808837B2 (ja) 高周波用アルミナ質焼結体
Wang et al. Thermally tunable dielectric resonator filter
JPH0952761A (ja) アルミナ質磁器組成物およびその製造方法
JP3623093B2 (ja) 高周波用配線基板
US20220411322A1 (en) Silica glass, high frequency device using silica glass, and silica glass production method
Yang et al. Crystal structure and microwave dielectric properties of BaZnP2O7-based ceramics with Sr2+ substitution
Liu et al. A novel NaMg (1-x) Znx (PO3) 3 microwave dielectric ceramic with an ultra-low dielectric constant for LTCC application
JP3510948B2 (ja) 高周波用誘電体磁器組成物および誘電体共振器
Wang et al. Low-permittivity BaCuSi4O10-based dielectric Ceramics: An available solution to connect low temperature cofired ceramic technology and millimeter-wave communications
JP3957623B2 (ja) 高品質係数を有する高周波用誘電体セラミック組成物
CN113651599A (zh) 低介电常数高品质因子镓酸盐微波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875761

Country of ref document: EP

Kind code of ref document: A1