WO2006010527A1 - Verfahren zur bestimmung des vorhandenseins einer in einem medium homogen verteilten chemischen verbindung mittels kreuzkorrelation eines messspektrums mit referenzspektren - Google Patents

Verfahren zur bestimmung des vorhandenseins einer in einem medium homogen verteilten chemischen verbindung mittels kreuzkorrelation eines messspektrums mit referenzspektren Download PDF

Info

Publication number
WO2006010527A1
WO2006010527A1 PCT/EP2005/007839 EP2005007839W WO2006010527A1 WO 2006010527 A1 WO2006010527 A1 WO 2006010527A1 EP 2005007839 W EP2005007839 W EP 2005007839W WO 2006010527 A1 WO2006010527 A1 WO 2006010527A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical compound
identity
medium
homogeneously distributed
function
Prior art date
Application number
PCT/EP2005/007839
Other languages
English (en)
French (fr)
Inventor
Rüdiger Sens
Christos Vamvakaris
Sophia Ebert
Erwin Thiel
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP05761631A priority Critical patent/EP1774321A1/de
Priority to BRPI0513585-0A priority patent/BRPI0513585A/pt
Priority to CA002574663A priority patent/CA2574663A1/en
Priority to AU2005266512A priority patent/AU2005266512A1/en
Priority to NZ552904A priority patent/NZ552904A/en
Priority to US11/572,324 priority patent/US20080057589A1/en
Priority to MX2007000068A priority patent/MX2007000068A/es
Priority to JP2007521883A priority patent/JP2008507685A/ja
Publication of WO2006010527A1 publication Critical patent/WO2006010527A1/de
Priority to IL180179A priority patent/IL180179A0/en
Priority to NO20070722A priority patent/NO20070722L/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2882Markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3196Correlating located peaks in spectrum with reference data, e.g. fingerprint data

Definitions

  • the present invention relates to a method for determining the identity or non-identity of at least one homogeneously distributed in a medium chemical compound V by
  • a variety of methods are used to identify or study chemical compounds.
  • a large part of the analysis method makes use of various types of analysis radiation which interacts with the chemical compound to be investigated and, by absorption, emission, reflection and / or scattering, changes its original intensity as a function of the respective one Wavelength experiences. In this way, one obtains a measuring function I '( ⁇ ), which reproduces the changed intensity of the analysis radiation as a function of the respective wavelength.
  • a measurement function I ' ( ⁇ , c ' ) is obtained which contains the dependence on the concentration c 'of the chemical compound in the medium.
  • the chemical compound can be present as a component in a gas mixture dissolved in a solvent or a solid substance, such as a polymer, the proportion of the chemical compound on the Measuring function I '( ⁇ , c') so small that it is no longer detectable.
  • the object of the present invention was therefore to provide a method which, on the one hand, makes it possible in a simple manner to determine the lowest concentrations of at least one chemical compound in a medium which can no longer be detected by conventional methods based on analysis radiation radiation. on the other hand, allows a determination of the identity or non-identity of at least one suspected chemical compound in a medium by comparison with a known chemical compound in the same or as similar as possible medium.
  • medium any substance which, in principle, allows the homogeneous distribution of the chemical compounds V and V, respectively.
  • gases pasty substances, such as creams, liquids, such as pure liquids, mixtures of liquids, dispersions and paints, as well as solids, such as plastics, wherein superficial coatings of any substrates, such as eg everyday objects of everyday life Bens, automobiles, building facades, etc., are counted with, for example, cured paints.
  • any radiation is considered which can interact with the chemical compound (s) V or V and provides a corresponding wavelength-dependent measurement function.
  • it is electromagnetic radiation, but also particle radiation, such as neutron or electron radiation, or acoustic radiation, such as ultrasound, come into consideration.
  • particle radiation such as neutron or electron radiation
  • acoustic radiation such as ultrasound
  • any known measuring methodology which qualifies the determination of a measuring function I '( ⁇ , c ' ) or comparison function I ( ⁇ , c) is also suitable.
  • Common spectroscopic measuring methods for determining the measuring function are, for example, IR, NIR, Raman, UV, VIS or else NMR spectroscopy.
  • the determination of the measuring function is carried out. If the permeability to the analyte radiation is sufficient, the measuring function can reproduce the absorption or transmission behavior of the system. If this permeability is not ensured or only to an insufficient extent, the measuring function can reflect the reproduction of the wavelength-dependent reflection behavior of the system. If the system is excited by the analyzer radiation to emit radiation, the wavelength-dependent emission behavior can serve as a measuring function. Furthermore, a combination of different measuring functions is possible. For example, both the absorption (transmission) and the emission behavior of the system can be the basis for the determination method according to the invention.
  • the homogeneous distribution of the chemical compound V or V in the medium ensures that the measurement function obtained does not depend on the measuring location.
  • the chemical compounds V and V are usually gases or vapors. However, if a homogeneous distribution achieved by suitable measures, these compounds may also be present as finely divided solid particles.
  • the chemical compounds V and V are usually dissolved in molecular form or also in the form of finely divided solid particles, with pasty media generally not separating the solid particles due to the higher viscosity compared to gaseous or liquid media ⁇ lematic.
  • liquid media by means of suitable measures, for example the presence of dispersing aids and / or continuous mixing, a homogeneous distribution of the solid particles during the determination of the measuring function or comparison function can be achieved.
  • the liquid media are, for example, dispersions or colors, they are usually already adjusted in such a way that no precipitation takes place or only over a relatively long period of time. The determination of the measuring function or comparison function can then normally be carried out without prob ⁇ lems.
  • the method according to the invention can be used to more accurately determine the concentration of ingredients (corresponding to the at least one chemical compound V) in a wide variety of media. So it can u.a. be used for the determination of pollutants, such as nitrogen oxides, sulfur dioxide or finely divided suspended matter in the atmosphere.
  • pollutants such as nitrogen oxides, sulfur dioxide or finely divided suspended matter in the atmosphere.
  • the method according to the invention can also be used to determine the authenticity or non-authenticity of a medium which contains at least one chemical compound V as a marker.
  • the marker can be added in such small amounts that it is neither visually nor by conventional spectroscopic Analysver ⁇ recognizable drive.
  • the method according to the invention can therefore be used to determine the authenticity of a correspondingly marked product packaging, mineral oils, etc., or even to detect the presence of (possibly illegal) manipulations.
  • the measuring function l '( ⁇ , c') or comparison function l ( ⁇ , c) is approximated by a more or less large number of supporting values, it being sensible to use a large number of supporting values in the case of a complex course of the measuring and comparison functions , on the other hand, with measuring and comparison functions with a simpler course, it will do with fewer support values. Accordingly, the intensities I 'and I have to be determined at a multiplicity or even only at a comparatively small number of different wavelengths ⁇ in order to obtain meaningful results. Accordingly, one becomes equation I
  • n is the number of support values
  • Tj and Ij denote the respective intensities at the wavelength ⁇ j
  • N * is again a normalization factor
  • comparison function and measurement function may also be possible in individual cases to carry out the determination of the comparison function and measurement function in different media. This is possible in particular if the influence of the medium in the wavelength range in question is low, the comparison function or measurement function is accordingly determined solely or predominantly by the measurement response of the chemical compound V or V.
  • the normalization factor N makes it possible to scale to a desired value range of the correlation function K ( ⁇ , c ', c).
  • the spectral shift ⁇ usually comprises a wavelength range in which the measurement function I '( ⁇ , c') or comparison function I ( ⁇ , c) is reproduced completely or almost completely. Usually, this is a range B of 0 ⁇ 10-FWHM (Fill Width Half Maximum), where FWHM is the spectral width of the measuring function l '( ⁇ , c') or comparison function l ( ⁇ , c) at half maximum intensity ⁇ ' max or Imax corresponds.
  • Equation (I) determines the concentration c '.
  • the normalization factor N or N * is set to 1 for this case. From the size of K ( ⁇ , c ' , c) the concentration c' can be calculated numerically.
  • the method according to the invention for determining the identity or non-identity of at least one chemical compound V homogeneously distributed in a liquid or solid medium is used.
  • the chemical compound V or V may, in principle, be any substance homogeneously distributed or distributable in the medium, which interacts with the analysis radiation coming into use. This substance may necessarily be contained in the medium according to the provenance of the medium or intentionally added to the medium, for example for marking purposes.
  • such substances may be by-products from the production of the medium or are traces of catalysts which have been used in the preparation of the media (eg solvents, dispersions, plastics, etc.).
  • these substances may be typical of the plant of the oily plant.
  • the identity or non-identity of these substances can therefore be the origin of the oil confirm or exclude. The same applies, for example, to petroleum oils which have a spectrum of typical contaminants dependent on the crude oil deposit.
  • At least one chemical compound V is deliberately added to the medium, for example a liquid, it is possible to determine the medium thus labeled as authentic or to detect possible manipulations.
  • fuel oil which is usually favored for tax purposes, can be distinguished from generally higher taxed diesel oil, or liquid product streams can be separated in large-scale installations, such as, for example, Oil refineries, mark and thereby ver ⁇ follow. Since the method according to the invention permits the determination of very low concentrations of the at least one chemical compound V, it can be added to the medium in a correspondingly low concentration; a possible negative influence by the presence of the compound, for example in the combustion of heating oil or diesel oil, can therefore be excluded.
  • spirits may also be labeled in order to distinguish properly produced, taxed and marketed alcoholic beverages from goods that have been illegally manufactured and placed on the market. It is important, of course, that chemical compounds V are used for marking, which are harmless for human consumption.
  • At least one chemical compound V for marking plastics or coatings. This in turn can be done to determine the authenticity or non-authenticity of the plastics or coatings or to ensure a sorted classification of used plastics in terms of their recycling.
  • the increased sensitivity of the method according to the invention is advantageous because the at least one chemical compound V, for example a dye, in only very small
  • Amounts can be added and thus, e.g. the visual appearance of the Kunststoffstof ⁇ fe or coatings is not affected.
  • the process according to the invention is particularly preferably used for determining the identity or non-identity of at least one chemical compound V homogeneously distributed in a liquid medium.
  • Particularly suitable liquid media are organic liquids and their mixtures, for example alcohols, such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, pentanol, isopentanol, neopentanol or .alpha Hexanol, glycols, such as 1, 2-ethylene glycol, 1,2- or 1, 3-propylene glycol, 1, 2, 2,3 or 1, 4-butylene glycol, di- or triethylene glycol or di- or tripropylene glycol, ethers, such as methyl tert-butyl ether, 1,2-ethylene glycol mono- or dimethyl ether, 1,2-ethylene glycol mono- or diethyl ether, 3-methoxypropanol, 3-isopropoxypropanol, tetrahydrofuran or dioxane, ketones, such as acetone, methyl ethyl ketone or diacetone alcohol, esters, such
  • the method finds particular application for determining the identity or non-identity of at least one chemical compound V in mineral oil.
  • the at least one chemical compound is particularly preferably a marker for mineral oils.
  • Mineral oil markers are usually substances that show absorption in both the visible and non-visible wavelength regions of the spectrum (e.g., in the NIR).
  • markers a wide variety of classes of compounds, e.g. Phthalocyanines, naphthalocyanines, nickel-dithiolene complexes, aminium compounds fertilize aromatic amines, methine and azulenesquaric acid (eg WO 94/02570 A1, WO 96/10620 A1, older German patent application 10 2004 003 791.4), but also azo dyes (eg DE 21 29590 A1, US Pat. No.
  • markers for mineral oil substances which only lead to a visually or spectroscopically recognizable color reaction after extraction from the mineral oil and subsequent derivatization are described as markers for mineral oil.
  • marker substances are, for example, aniline derivatives (for example WO 94/11466 A1) or naphthylamine derivatives (for example US Pat. No. 4,209,302, WO 95/07460 A1).
  • aniline derivatives for example WO 94/11466 A1
  • naphthylamine derivatives for example US Pat. No. 4,209,302, WO 95/07460 A1
  • WO 02/50216 A2 discloses, inter alia, aromatic carbonyl compounds as marker materials which are detected by UV spectroscopy. With the aid of the process according to the invention, the detection of these compounds in much lower concentrations becomes possible.
  • FIG. 1 describes, by way of example, the schematic experimental setup based on seven wavelength base values corresponding to seven light-emitting diodes ("1" to "7" in the block "light-emitting diode rows”).
  • the radiation of the individual light-emitting diodes is optionally coupled via light guides into a 1 cm cuvette.
  • the transmitted or emitted light (fluorescence or phosphorescence) is detected in the detectors 1 or 2 (silicon diodes).
  • the detector signals are evaluated by means of correlation electronics and, as described above, checked for identity or non-identity.
  • the light emitting diodes of the LED array showed the following emission wavelengths in nm: LED 1: 600
  • the power of the LEDs was in the range of 1 to 10 mW.
  • the spectral position of the radiation emitted by the individual light-emitting diodes relative to the absorption spectrum of the anthraquinone dye according to Example 1 is shown schematically in FIG. 2 on the basis of the triangles shown, with the ordinate values not being specified further.
  • the anthraquinone dye according to Example 1 was dissolved in toluene in the following concentrations:
  • the method according to the invention thus permits the determination of much lower concentrations of this compound than a conventional spectroscopic measurement.
  • FIGS. 5a to 5e show the absorption spectra obtained on a dilution series of a cationic cyanine dye.
  • the abscissa value range corresponds to that in FIG. 5a. Therefore, the abscissa description was omitted in the former.
  • FIGS. 6a to 6e show the correlation functions corresponding to the spectra 5a to 5e. Since in FIGS. 6b to 6e the ordinate and abscissa value ranges correspond to those in FIG. 5a, the axis labels have been left in the former.
  • the correlation values K ( ⁇ , c ' , c) are in the range of about -0.001 to about 0.001, but can be transformed into any other range of values, for example from 0 to 1, by shifting parallel to the ordinate and changing the scale.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung der Identität oder Nicht-Identität mindestens einer in einem Medium homogen verteilten chemischen Verbindung V' durch: a) Bestrahlung des mindestens eine homogen verteilte chemische Verbindung V' enthaltenden Mediums mit Analysestrahlung variabler Wellenlänge λ und b) Bestimmung der spektralen Messfunktion I'(λ) anhand der absorbierten, reflektierten, emittierten und/oder gestreuten Strahlung, welches dadurch gekennzeichnet ist, dass man gemäß Gleichung (I) eine Korrelationsfunktion K (δλ,c' ,c) bestimmt, wobei bedeuten K (δλ ,c', c) die von der relativen Verschiebung δλ der Funktionen I'(λ,c') und I(λ,c) und den Konzentrationen c' und c der mindestens einen chemischen Verbindung V' und V abhängige Korrelation, c' Konzentration der mindestens einen homogen im Medium verteilten chemischen Verbindung V' bekannter oder vermuteter Identität, c Konzentration der mindestens einen homogen im Medium verteilten chemischen Verbindung V bekannter Identität, I'(λ,c') Messfunktion des mindestens eine homogen verteilte chemische Verbindung V' in der Konzentration c' enthaltenden Mediums, I(λ,c) Vergleichsfunktion des mindestens eine homogen verteilte chemische Verbindung V in der Konzentration c enthaltenden Mediums und N Normierungsfaktor, und mit Hilfe der Korrelationsfunktion K (δλ,c',c) Identität oder Nicht-Identität zwischen den Verbindungen V' und V ermittelt.

Description

VERFAHREN ZUR BESTIMMUNG DES VORHANDENSEINS EINER IN EINEM MEDIUM HOMOGEN VERTEILTEN CHEMISCHEN VERBINDUNG MITTELS KREUZKORRELATION EINES MESSSPEKTRUMS MIT REFERENZSPEKTREN
Beschreibung 5
Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung der Identität oder Nicht-Identität mindestens einer in einem Medium homogen verteilten chemischen Verbindung V durch
0 a) Bestrahlung des mindestens eine homogen verteilte chemische Verbindung V enthaltenden Mediums mit Analysestrahlung variabler Wellenlänge λ und
b) Bestimmung der spektralen Messfunktion l'(λ) anhand der absorbierten, reflek¬ tierten, emittierten und/oder gestreuten Strahlung, 5 welches dadurch gekennzeichnet ist, dass man gemäß Gleichung I
K(δλ,c',c) = 1/N • Jl'(λ,c')-l(λ + δλ,c)dλ (I)
0 eine Korrelationsfunktion K(δλ,c',c) bestimmt,
wobei bedeuten
K(δλ,c',c) die von der relativen Verschiebung δλ der Funktionen l'(λ,c') und l(λ,c) und 5 den Konzentrationen c'und c der mindestens einen chemischen Verbin¬ dung V und V abhängige Korrelation,
c Konzentration der mindestens einen homogen im Medium verteilten chemi¬ schen Verbindung V bekannter oder vermuteter Identität, 0 c Konzentration der mindestens einen homogen im Medium verteilten chemi¬ schen Verbindung V bekannter Identität,
l'(λ,c') Messfunktion des mindestens eine homogen verteilte chemische Verbin- 5 düng V in der Konzentration c' enthaltenden Mediums,
l(λ,c) Vergleichsfunktion des mindestens eine homogen verteilte chemische Ver¬ bindung V in der Konzentration c enthaltenden Mediums
0 und N Normierungsfaktor,
und mit Hilfe der Korrelationsfunktion K(δλ,c',c) Identität oder Nicht-Identität zwischen den Verbindungen V und V ermittelt.
Zur Identifizierung oder Untersuchung chemischer Verbindungen kommt eine Vielzahl von Methoden zur Anwendung. Ein großer Teil der Analyseverfahren bedient sich da¬ bei verschiedenster Arten von Analysestrahlung, welche mit der zu untersuchenden chemischen Verbindung in Wechselwirkung tritt und durch Absorption, Emission, Re- flektion und/oder Streuung eine Veränderung ihrer ursprünglichen Intensität in Abhän¬ gigkeit von der jeweiligen Wellenlänge erfährt. Auf diese Weise erhält man eine Mess¬ funktion l'(λ), welche die veränderte Intensität der Analysestrahlung als Funktion der jeweiligen Wellenlänge wiedergibt.
Befindet sich die chemische Verbindung homogen in einem Medium verteilt, so erhält man eine Messfunktion l'(λ,c'), welche die Abhängigkeit von der Konzentration c' der chemischen Verbindung im Medium beinhaltet. Bei nur geringer Konzentration der chemischen Verbindung in dem jeweiligen Medium -beispielsweise kann die chemi¬ sche Verbindung als Komponente in einem Gasgemisch, gelöst in einem Lösungsmittel oder einer Festsubstanz, wie etwa einem Polymer, vorliegen- wird der Anteil der che¬ mischen Verbindung an der Messfunktion I'(λ,c') so klein, dass er nicht mehr detek- tierbar ist.
Die Aufgabe der vorliegenden Erfindung bestand nun darin, ein Verfahren zur Verfü- gung zu stellen, welches einerseits auf einfache Weise die Bestimmung kleinster, mit herkömmlichen, auf Analysestrahlung basierenden Verfahren nicht mehr zu detektie- rende Konzentrationen mindestens einer chemischen Verbindung in einem Medium ermöglicht, andererseits eine Bestimmung der Identität oder Nicht-Identität mindestens einer vermuteten chemischen Verbindung in einem Medium durch Vergleich mit einer bekannten chemischen Verbindung in demselben oder möglichst ähnlichem Medium gestattet.
Demzufolge wurde das eingangs beschriebene Verfahren gefunden.
Unter Medium ist hierbei jegliche Substanz zu verstehen, welche prinzipiell die homo¬ gene Verteilung der chemischen Verbindungen V bzw. V gestattet. Beispielsweise sind dies Gase, pastöse Stoffe, wie z.B. Cremes, Flüssigkeiten, wie z.B. reine Flüssig¬ keiten, Flüssigkeitsgemische, Dispersionen und Farben sowie Feststoffe, wie z.B. Kunststoffe, wobei zu den Feststoffen in weiterem Sinn auch oberflächliche Beschich- tungen von jedweden Substraten, wie z.B. Gebrauchsgegenständen des täglichen Le- bens, Automobilen, Gebäudefassaden etc., mit z.B. ausgehärteten Anstrichsmitteln zu zählen sind.
Als Analysestrahlung kommt jegliche Strahlung in Betracht, welche mit der (den) che- mischen Verbindung(en) V bzw. V in Wechselwirkung treten kann und eine entspre¬ chende wellenlängenabhängige Messfunktion liefert. Insbesondere handelt es sich um elektromagnetische Strahlung, jedoch kann auch Partikelstrahlung, wie Neutronen¬ oder Elektronenstrahlung, oder akustische Strahlung, wie Ultraschall, in Betracht kom¬ men. Prinzipiell ist dementsperechend auch jede bekannte Messmethodik geeignet, welche die Ermittlung einer Messfunktion l'(λ,c') bzw. Vergleichsfunktion l(λ,c) gestat¬ tet. Gängige spektroskopische Messverfahren zur Ermittlung der Messfunktion sind beispielsweise die IR-, NIR-, Raman-, UV-, VIS- oder auch NMR-Spektroskopie.
Abhängig vom Verhalten des Systems aus chemischer Verbindung V bzw. V und dem diese enthaltenden Medium gegenüber der Analysestrahlung gestaltet sich die be- stimmung der Messfunktion. Bei ausreichender Durchlässigkeit gegenüber der Analy¬ sestrahlung kann die Messfunktion das Absorptions- bzw. Transmissionsverhalten des Systems wiedergeben. Ist diese Durchlässigkeit nicht oder nur in ungenügendem Ma¬ ße gewährleistet, kann die Messfunktion die Wiedergabe des wellenlängenabhängigen Reflektionsverhalten des Systems wiederspiegeln. Wird das System durch die Analy¬ sestrahlung zur Emission von Strahlung angeregt, kann das wellenlängenabhängige Emissionsverhalten als Messfunktion dienen. Desweiteren ist auch eine Kombination verschiedner Messfunktionen möglich. Beispielsweise kann sowohl das Absorptions- (Transmissions-) als auch das Emissionsverhalten des Systems Grundlage für das erfindungsgemäße Bestimmungsverfahren sein.
Die homogene Verteilung der chemischen Verbindung V bzw. V im Medium gewähr¬ leistet, dass die gewonnene Messfunktion nicht vom Messort abhängig ist.
Im Falle von gasförmigen Medien handelt es sich bei den chemischen Verbindungen V bzw. V im Regelfall um Gase oder Dämpfe. Wird jedoch eine homogene Verteilung durch geeignete Maßnahmen erreicht, können diese Verbindungen auch als feinteilige Feststoffpartikel vorliegen.
Im Falle von pastösen oder flüssigen Medien liegen die chemischen Verbindungen V und V üblicherweise molekular gelöst oder ebenfalls als feinteilige Feststoffpartikel vor, wobei in pastösen Medien, aufgrund der gegenüber gasförmigen oder flüssigen Me¬ dien höheren Viskosität, eine Separierung der Feststoffpartikel in der Regel nicht prob¬ lematisch ist. Im Falle von flüssigen Medien kann durch geeignete Maßnahmen, wie z.B. Anwesen¬ heit von Dispergierhilfsmitteln und/oder kontinuierlicher Durchmischung, eine homoge¬ ne Verteilung der Feststoffpartikel während der Ermittlung der Messfunktion bzw. Ver¬ gleichsfunktion erreicht werden. Handelt es sich bei den flüssigen Medien z.B. um Dis- persionen oder Farben, so sind diese in der Regel bereits so eingestellt, dass Entmi¬ schungen nicht oder nur über einen längeren Zeitraum hinweg stattfinden. Die Ermitt¬ lung der Messfunktion bzw. Vergleichsfunktion kann dann normalerweise ohne Prob¬ leme erfolgen. Gegebenenfalls kann aber auch hier durch geeignete Homogenisie¬ rungsmaßnahmen einer Verfälschung der Messung durch Separierung entgegenge- wirkt werden.
Im Falle von festen Medien, insbesondere etwa Kunststoffen, liegen die chemischen Verbindungen V und V üblicherweise als feinteilige Feststoffpartikel oder molekular gelöst vor. Daher stellen Entmischungsphänomene naturgemäß hier meist kein Prob- lern dar.
Das erfindungsgemäße Verfahren kann einerseits zur genaueren Bestimmung der Konzentration von Inhaltsstoffen (entsprechend der mindestens einen chemischen Verbindung V) in verschiedensten Medien dienen. So kann es u.a. zur Bestimmung von Schadstoffen, wie beispielsweise Stickoxiden, Schwefeldioxid oder feinteiligen Schwebstoffen in der Atmosphäre verwendet werden.
Andererseits kann das erfindungsgemäße Verfahren auch herangezogen werden, um die Authentizität oder Nicht-Authentizität eines Mediums zu bestimmen, welches min- destens eine chemischen Verbindung V als Markierungsstoff enthält. Von besonderem Vorteil ist hierbei, dass der Markierungsstoff in so geringen Mengen zugesetzt werden kann, dass er weder visuell, noch durch herkömmliche spektroskopische Analysever¬ fahren erkennbar ist. Das erfindungsgemäße Verfahren kann daher zur Bestimmung der Authentizität einer entsprechend markierten Produktverpackung, von Mineralölen etc. verwendet werden, oder um eben das Vorliegen von (möglicherweise illegalen) Manipulationen aufzudecken.
Üblicherweise wird die Messfunktion l'(λ,c') bzw. Vergleichsfunktion l(λ,c) durch eine mehr oder weniger große Anzahl von Stützwerten angenähert, wobei man bei einem komplexen Verlauf der Mess- und Vergleichsfunktionen sinnvollerweise eine große Anzahl von Stützwerten verwenden, bei Mess- und Vergleichsfunktionen mit einfache¬ rem Verlauf dagegen mit weniger Stützwerten auskommen wird. Dementsprechend müssen die Intensitäten I' und I bei einer Vielzahl oder eben nur bei einer verhältnis¬ mäßig geringen Zahl von verschiedenen Wellenlängen λ bestimmt werden, um aussa- gekräftige Resultate zu erhalten. Entsprechend wird man Gleichung I
+00
K(δλ,c',c) = 1/N jϊ'(λ,c').|(λ + δλ,c)dλ (I)
also durch Gleichung Il
K(δλ,c',c) = 1/N* - ∑n (λi, c') -Ii(As + δλ, c) (II) i=1
annähern, worin n die Anzahl der Stützwerte, Tj und Ij die jeweiligen Intensitäten bei der Wellenlänge λj bezeichnet, und N* wiederum ein Normierungsfaktor ist.
Weiter kann es im Einzelfall auch möglich sein, die Ermittlung der Vergleichsfunktion und Messfunktion in jeweils unterschiedlichen Medien durchzuführen. Dies ist insbe¬ sondere dann möglich, wenn der Einfluss des Mediums im betrachteten Wellenlängen¬ bereich gering ist, die Vergleichsfunktion bzw. Messfunktion dementsprechend alleine oder in überwiegendem Maße von der Messantwort der chemischen Verbindung V bzw. V bestimmt wird.
Der Normierungsfaktor N ermöglicht die Skalierung auf einen gewünschten Wertebe¬ reich der Korrelationsfunktion K(δλ,c',c). Üblicherweise wird N so gewählt, dass K(δλ,c',c) Werte zwischen 0 und 1 annimmt, wobei ein Wert von 0 keinerlei Korrelation, ein Wert von 1 maximaler Korrelation zwischen Messfunktion l'(λ,c') und Vergleichs¬ funktion l(λ,c) entspricht. Dementsprechend ergibt sich der Normierungsfaktor N (für δλ = 0, d.h. maximale Korrelation) zu
Figure imgf000007_0001
bzw. der Normierungsfaktor N* (für δλ = 0, d.h. maximale Korrelation) zu
N* = JT l i(λi,c') -li(λi,c) i=1
Die spektrale Verschiebung δλ umfasst üblicherweise einen Wellenlängenbereich, in welchem die Messfunktion I'(λ,c') bzw. Vergleichsfunktion l(λ,c) vollständig oder nahe¬ zu vollständig wiedergegeben wird. Üblicherweise ist dies ein Bereich B von 0 ≤ δλ ≤ 10-FWHM (Füll Width half Maximum), wobei FWHM der spektralen Breite der Mess- funktion l'(λ,c') bzw. Vergleichsfunktion l(λ,c) bei halber maximaler Intensität \'max bzw. Imax entspricht.
Typischerweise sieht der nach Gleichung (I) oder (II) berechnete Kurvenverlauf von K(δλ,c',c) in Abhängigkeit von δλ für gegebene Werte von c' und c wie in den Figuren 6a bis 6e dargestellt aus. Setzt man in Gleichung (I) anstelle von l'(λ, c') die Funktion l(λ, c) bzw. in Gleichung (II) anstelle von l'j(λ„ c') die Funktion \t\, c) ein, so erhält man eine unverrauschte Korrelationsfunktion (Autokorrelationsfunktion), welche der Darstel¬ lung in Figur 6a gleicht.
Mit abnehmender Konzentration c' nimmt das Untergrundrauschen sowohl der Mess¬ funktion als auch der Korrelationsfunktion K(δλ,c',c) zu. Mit Hilfe gängiger statistischer Methoden lässt sich jedoch leicht feststellen, mit welcher Wahrscheinlichkeit die unver¬ rauschte Korrelationsfunktion in einer Vielzahl von Messungen verrauschter Korrelati- onsfunktionen K(δλ,c',c) nachgewiesen werden kann. So ergibt beispielsweise eine statistische Auswertung von 50 Einzelmessungen, welche jeweils für sich der grafi¬ schen Darstellung der Korrelationsfunktion der Figur 6e ähneln, einen Korrelationsgrad -und damit Identitätsnachweis- von ≥ 95%.
Ist die Identität der chemischen Verbindung V bzw. V bestätigt, kann zur Bestimmung der Konzentration c' Gleichung (I) herangezogen werden. Der Normierungsfaktor N bzw. N* wird für diesen Fall gleich 1 gesetzt. Aus der Grosse von K(δλ,c',c) kann die Konzentration c' numerisch berechnet werden.
Vorzugsweise wendet man das erfindungsgemäße Verfahren zur Bestimmung der Identität oder Nicht-Identität mindestens einer in einem flüssigen oder festen Medium homogen verteilten chemischen Verbindung V an.
Bei der chemischen Verbindung V bzw. V kann es sich im Prinzip um jede beliebige im Medium homogen verteilte bzw. verteilbare Substanz handeln, welche mit der zur Verwendung kommenden Analysestrahlung in Wechselwirkung tritt. Diese Substanz kann entsprechend der Provenienz des Mediums in diesem zwangsläufig enthalten sein oder absichtlich, etwa zu Markierungszwecken, dem Medium zugegeben worden sein.
Beispielsweise können solche Substanzen aus der Herstellung des Mediums herrüh¬ rende Nebenprodukte sein oder es handelt sich um Spuren von Katalysatoren, welche bei der Herstellung der Medien (z.B. Lösungsmitteln, Dispersionen, Kunststoffen etc.) verwendet wurden. Bei Naturprodukten, wie etwa pflanzlichen Ölen, können diese Substanzen für den Anbauort der ölhaltigen Pflanze typisch sein. Durch Bestimmung der Identität oder Nicht-Identität dieser Substanzen lässt sich daher die Herkunft des Öles bestätigen oder auch ausschließen. Ähnliches gilt beispielsweise auch für Erd¬ ölsorten, welche ein von der Erdöllagerstätte abhängiges Spektrum an typischen Be¬ gleitsubstanzen aufweisen.
Wird dem Medium, beispielsweise einer Flüssigkeit, mindestens eine chemische Ver¬ bindung V absichtlich zugegeben, ist es möglich, das so markierte Medium als authen¬ tisch zu bestimmen bzw. mögliche Manipulationen zu erkennen. So kann z.B. auf diese Weise Heizöl, welches üblicherweise steuerlich begünstigt ist, von in der Regel höher besteuertem Dieselöl unterschieden werden oder es lassen sich flüssige Produktströ¬ me in großtechnischen Anlagen, wie z.B. Erdölraffinerien, markieren und dadurch ver¬ folgen. Da das erfindungsgemäße Verfahren die Bestimmung von sehr geringen Kon¬ zentrationen der mindestens einen chemischen Verbindung V gestattet, kann diese in entsprechend geringer Konzentration dem Medium zugegeben werden; ein möglicher negativer Einfluss durch die Gegenwart der Verbindung, beispielsweise bei der Verbrennung von Heiz- oder Dieselöl, kann daher ausgeschlossen werden.
In ähnlicher Weise können z.B. auch Spirituosen gekennzeichnet werden, um so ord¬ nungsgemäß hergestellte, versteuerte und in Verkehr gebrachte Alkoholika von illegal- erweise hergestellter und in Verkehr gebrachter Ware zu unterscheiden. Wichtig ist hierbei natürlich, dass zur Markierung chemische Verbindungen V verwendet werden, welche für den menschlichen Verzehr unbedenklich sind.
Desweiteren ist es möglich, mindestens eine chemische Verbindung V zur Markierung von Kunststoffen oder Lackierungen zu verwenden. Dies kann wiederum geschehen, um die Authentizität oder Nicht-Authentizität der Kunststoffe bzw. Lackierungen zu bestimmen oder um eine sortenreine Klassifizierung von gebrauchten Kunststoffen im Hinblick auf ihre Wiederverwertung zu gewährleisten. Auch hier ist die gesteigerte Empfindlichkeit des erfindungsgemäßen Verfahrens von Vorteil, da die mindestens eine chemische Verbindung V, beispielsweise ein Farbstoff, in nur sehr geringen
Mengen zugesetzt werden kann und somit z.B. die visuelle Erscheinung der Kunststof¬ fe oder Lackierungen nicht beeinflusst wird.
Besonders bevorzugt findet das erfindungsgemäße Verfahren Anwendung zur Be- Stimmung der Identität oder Nicht-Identität mindestens einer in einem flüssigen Medium homogen verteilten chemischen Verbindung V.
Als flüssige Medien sind insbesondere organische Flüssigkeiten und deren Mischun¬ gen zu nennen, beispielsweise Alkohole, wie Methanol, Ethanol, Propanol, Isopropa- nol, Butanol, Isobutanol, sec-Butanol, Pentanol, Isopentanol, Neopentanol oder Hexanol, Glykole, wie 1 ,2-Ethylenglykol, 1,2- oder 1 ,3-Propylenglykol, 1 ,2-, 2,3- oder 1 ,4-Butylenglykol, Di- oder Triethylenglykol oder Di- oder Tripropylenglykol, Ether, wie Methyl-tertbutylether, 1,2-Ethylenglykolmono- oder -dimethylether, 1,2-Ethylenglykol- mono- oder -diethylether, 3-Methoxypropanol, 3-lsopropoxypropanol, Tetrahydrofuran oder Dioxan, Ketone, wie Aceton, Methylethylketon oder Diacetonalkohol, Ester, wie Essigsäuremethylester, Essigsäureethylester, Essigsäurepropylester oder Essigsäure- butylester, aliphatische oder aromatische Kohlenwasserstoffe wie Pentan, Hexan, Hep- tan, Octan, Isooctan, Petrolether, Toluol, XyIoI, Ethylbenzol, Tetraliπ, Dekalin, Dime- thylnaphthalin, Testbenzin, Mineralöl, wie Benzin, Kerosin, Dieselöl oder Heizöl, natür- liehe Öle, wie Olivenöl, Sojaöl oder Sonnenblumenöl, oder natürliche oder synthetische Motoren-, Hydraulik- oder Getriebeöle, z.B. Fahrzeugmotorenöl oder Nähmaschinenöl, oder Bremsflüssigkeiten. Weiterhin sind darunter auch Produkte zu verstehen, wie sie bei der Aufarbeitung von bestimmten Pflanzentypen, z.B. Raps oder Sonnenblumen, anfallen. Solche Produkte sind auch unter dem Begriff "Bio-Diesel" bekannt.
Erfindungsgemäß findet das Verfahren insbesondere Anwendung zur Bestimmung der Identität oder Nicht-Identität mindestens einer chemischen Verbindung V in Mineralöl. Hierbei handelt es sich bei der mindestens einen chemischen Verbindung besonders bevorzugt um Markierungsstoffe für Mineralöle.
Markierungsstoffe für Mineralöl sind meist Substanzen, welche sowohl im sichtbaren als auch im nicht sichtbaren Wellenlängenbereich des Spektrums Absorption zeigen (z.B. im NIR). Als Markierungsstoffe werden verschiedenste Verbindungsklassen, wie z.B. Phthalocyanine, Naphthalocyanine, Nickel-Dithiolen-Komplexe, Aminiumverbin- düngen von aromatischen Aminen, Methinfarbstoffe und Azulenquadratsäurefarbstoffe (z.B. WO 94/02570 A1 , WO 96/10620 A1 , ältere deutsche Patentanmeldung 10 2004 003 791.4), aber auch Azofarbstoffe (z.B. DE 21 29 590 A1, US 5,252,106, EP 256 460 A1 , EP 0 509 818 A1 , EP 0 519 270 A2, EP 0 679 710 A1, EP 0 803 563 A1 , EP 0 989 164 A1 , WO 95/10581 A1 , WO 95/17483 A1) vorgeschlagen. Anthrachi- nonderivate zur Einfärbung/Markierung von Benzin bzw. Mineralölen sind in den Schrif¬ ten US 2,611 ,772, US 2,068,372, EP 1 001 003 A1 , EP 1 323 811 A2 und WO 94/21752 A1 sowie der älteren deutschen Patentanmeldung 103 61 504.0 beschrieben.
Als Markierungsstoffe für Mineralöl werden desweiteren Substanzen beschrieben, wel¬ che erst nach Extraktion aus dem Mineralöl und anschließende Derivatisierung zu ei¬ ner visuell oder spektroskopisch erkennbaren Farbreaktion führen. Solche Markie¬ rungsstoffe sind etwa Anilinderivate (z.B. WO 94/11466 A1) oder Naphthylaminderivate (z.B. US 4,209,302, WO 95/07460 A1). Gemäß dem erfindungsgemäßen Verfahren ist es möglich, die Anilin- und Naphthylaminderivate ohne vorherige Derivatisierung zu detektieren.
Eine Extraktion und/oder weitere Derivatisierung des Markierungsstoffes, wie in den genannten Schriften z.T. erwähnt, um eine gesteigerte Farbreaktion zu erhalten oder eine Aufkonzentrierung des Markierungsstoffes, um dessen Farbe besser visuell oder spektroskopisch bestimmen zu können, ist gemäß vorliegendem Verfahren auch mög¬ lich, in der Regel jedoch nicht notwendig.
Die Schrift WO 02/50216 A2 offenbart u.a aromatische Carbonylverbindungen als Mar¬ kierungsstoffe, welche UV-spektroskopisch detektiert werden. Mit Hilfe des erfindungs¬ gemäßen Verfahrens wird der Nachweis dieser Verbindungen in weit geringeren Kon¬ zentrationen möglich.
Selbstverständlich können die in den genannten Schriften beschriebenen Markierungs¬ stoffe auch zur Markierung anderer Flüssigkeiten verwendet werden, wobei solche Flüssigkeiten exemplarisch bereits zuvor aufgeführt wurden.
Beispiele:
Als Markierungsstoffe für Mineralöl wurden korrelationsspektroskopisch verschiedene Anthrachinonfarbstoffe untersucht.
A) Herstellung der Anthrachinonfarbstoffe
Beispiel 1 :
Figure imgf000011_0001
(CAS-Nr.: 108313-21-9, Molmasse: 797,11 ; C54H60N4O2 λmax = 760 nm (Toluol))
1 ,4,5,8-Tetrakis[(4-butylphenyl)amino]-9, 10-anthracendion wurde analog zur Schrift EP 204 304 A2 synthetisiert.
Hierzu wurden 82,62 g (0,5370 mol) 4-Butylanilin (97 %ig) vorgelegt, 11 ,42 g (0,0314 mol) 1 ,4,5,8-Tetrachloranthrachinon (95,2 %ig), 13,40 g (0,1365 mol) Kalium- acetat, 1 ,24 g (0,0078 mol) Kupfer(ll)-sulfat wasserfrei und 3,41 g (0,0315 mol) Benzyl- alkohol zugeben und der Ansatz auf 130 0C aufgeheizt. Man ließ 6,5 h bei 130 0C nachrühren, heizte dann auf 170 0C auf und ließ nochmals 6 h bei 170 0C nachrühren. Nach dem Abkühlen auf 60 0C gab man 240 ml Aceton zu, saugte bei 25 0C ab und wusch den Rückstand zuerst mit 180 ml Aceton und dann mit 850 ml Wasser bis das Filtrat eine Leitfähigkeit von 17 μS aufwies. Der gewaschene Rückstand wurde schlie߬ lich getrocknet. Man erhielt 19,62 g Produkt entsprechend einer Ausbeute von 78,4 %.
Völlig analog wurden die nachfolgend aufgeführten Verbindungen durch Umsetzung von 1,4,5,8-Tetrachloranthrachinon mit den entsprechenden aromatischen Aminen synthetisiert:
Beispiel 2:
Figure imgf000012_0001
Beispiel 3:
Figure imgf000012_0002
Beispiel 4:
Figure imgf000013_0001
Beispiel 5:
Figure imgf000013_0002
Beispiele:
Figure imgf000013_0003
Beispiel 7:
Figure imgf000014_0001
Beispiel 8:
Figure imgf000014_0002
Beispiel 9:
Figure imgf000014_0003
Beispiel 10:
Figure imgf000015_0001
Beispiel 11 :
Figure imgf000015_0002
B1 ) Korrelationsanalyse der Anthrachinonfarbstoffe in Absorption
Figur 1 beschreibt beispielhaft den schematischen Versuchsaufbau basierend auf sie¬ ben Wellenlängen-Stützwerten entsprechend sieben Leuchtdioden ("1" bis "7" im Block "Leuchtdiodenzeile"). Mit Hilfe der intensitätsstabilisierten Leuchtdiodenzeile wird die Strahlung der einzelnen Leuchtdioden wahlweise über Lichtleiter in eine 1 cm Küvette eingekoppelt. Das transmittierte bzw. emittierte Licht (Fluoreszenz oder Phosphores¬ zenz) wird in den Detektoren 1 bzw. 2 (Siliziumdioden) detektiert. Die Detektorsignale werden mit Hilfe einer Korrelationselektronik ausgewertet und wie oben beschrieben, auf Identität bzw. Nicht-Identität überprüft. Die Leuchtdioden der Leuchtdiodenzeile wiesen folgende Emissionswellenlängen in nm auf: Leuchtdiode 1: 600
Leuchtdiode 2: 670
Leuchtdiode 3: 700
Leuchtdiode 4: 770 Leuchtdiode 5: 780
Leuchtdiode 6: 810
Leuchtdiode 7: 880
Die Leistung der Leuchtdioden lag im Bereich von 1 bis 10 mW.
Die spektrale Lage der von den einzelnen Leuchtdioden emittierten Strahlung relativ zum Absorptionsspektrum des Anthrachinonfarbstoffs gemäß Beispiel 1 ist in Figur 2 anhand der eingezeichneten Dreiecke schematisch gezeigt, wobei die Ordinatenwerte nicht weiter konkretisiert wurden.
Der Anthrachinonfarbstoff gemäß Beispiel 1 wurde in folgenden Konzentrationen in Toluol gelöst:
Einwaage (ppb gewichtsmäßig)
8877.0
3548.2
1563.7
846.4
470.2
337.9
272.6
154.6
89.3
44.6
Trägt man die Einwaagekonzentrationen gegen die korrelationsanalytisch ermittelten Konzentrationen (ppb gewichtsmäßig) jeweils linear auf, so erhält man den in Figur 3 gezeigten Geradenverlauf mit hohem Korrelationsgrad.
In der doppelt-logarithmischen Auftragung der Figur 4 wird ersichtlich, dass die Korre¬ lation bis in den niederen ppb-Bereich (gewichtsmäßig) besteht. Analoge Resultate wurden bei gleichem Messaufbau an den Anthrachinonfarbstoffen der Beispiele 2 bis 11 (mit vergleichbaren Konzentrationen in Toluol) erhalten, weshalb auf eine entsprechende Darlegung der Messergebnisse verzichtet wurde.
Bei ermittelter Identität einer Verbindung gestattet das erfindungsgemäße Verfahren somit die Bestimmung weit geringerer Konzentrationen dieser Verbindung als eine her¬ kömmliche spektroskopische Messung.
B2) Korrelationsanalyse eines kationischen Cyaninfarbstoffs in Absorption
Die Figuren 5a bis 5e zeigen die an einer Verdünnungsreihe eines kationischen Cya¬ ninfarbstoffs erhaltenen Absorptionsspektren. In den Figuren 5b bis 5e entspricht der Abszissen-Wertebereich dem in Figur 5a. Daher wurde in ersteren die Abszissenbe¬ schriftung fortgelassen. Die relativen Konzentrationen betrugen 1 ,0 (Fig. 5a; relative Extinktion im Absorptionsmaximum: E = 1), 0,1 (Fig. 5b; relative Extinktion im Absorp¬ tionsmaximum: E = 0,1), 0,01 (Fig. 5c; relative Extinktion im Absorptionsmaximum: E = 0,01), 0,002 (Fig. 5d; relative Extinktion im Absorptionsmaximum: E = 0,002) und 0,001 (Fig. 5e; relative Extinktion im Absorptionsmaximum: E = 0,001). Während die Absorption des Farbstoffs in den Spektren der Figuren 5a bis 5c noch detektiert wer- den kann, ist in den Spektren der Figuren 5d und 5e die Nachweisgrenze erreicht bzw. unterschritten.
Die Figuren 6a bis 6e zeigen die den Spektren 5a bis 5e entsprechenden Korrelations¬ funktionen. Da in den Figuren 6b bis 6e die Ordinaten- und Abszissen-Wertebereiche denen in Figur 5a entsprechen, wurden die Achsenbeschriftungen in ersteren fortge¬ lassen. Die Korrelationwerte K(δλ,c',c) liegen im Bereich von etwa -0,001 bis etwa 0,001 , lassen sich jedoch, durch Verschiebung parallel zur Ordinate und Änderung der Skalierung, in einen beliebigen anderen Wertebereich, beispielsweise von 0 bis 1, transformieren.
Der für die Korrelationsfunktion typische Treppenverlauf ist in den Figuren 6a bis 6d deutlich zu erkennen. Wie bereits zuvor erläutert, lässt sich auch aus der in Figur 6e gezeigten Korrelation eine positive Aussage hinsichtlich der Identität der gesuchten Verbindung treffen.
Angemerkt sei hier noch, dass alle in den Figuren 6a bis 6e gezeigten Korrelations¬ funktionen auf lediglich einer Messung basieren. Werden gerade bei niederen Konzent¬ rationen des Farbstoffs die Messungen mehrmals durchgeführt und die erhaltenen Messwerte aufsummiert, so verbessert sich das Signal/Rausch-Verhältnis und damit entsprechend auch die Aussagekraft der Korrelationsdiagramme.

Claims

Patentansprüche
1. Verfahren zur Bestimmung der Identität oder Nicht-Identität mindestens einer in einem Medium homogen verteilten chemischen Verbindung V durch
a) Bestrahlung des mindestens eine homogen verteilte chemische Verbindung V enthaltenden Mediums mit Analysestrahlung variabler Wellenlänge λ und
b) Bestimmung der spektralen Messfunktion l'(λ) anhand der absorbierten, re¬ flektierten, emittierten und/oder gestreuten Strahlung,
dadurch gekennzeichnet, dass man gemäß Gleichung I
+00 K(δλ,c',c) = 1/N • Jl'(λ,c') -l(λ + δλ,c)dλ (I)
eine Korrelationsfunktion K(δλ,c',c) bestimmt,
wobei bedeuten
K(δλ,c',c) die von der relativen Verschiebung δλ der Funktionen l'(λ,c') und l(λ,c) und den Konzentrationen c'und c der mindestens einen chemi¬ schen Verbindung V und V abhängige Korrelation,
c Konzentration der mindestens einen homogen im Medium verteilten chemischen Verbindung V bekannter oder vermuteter Identität,
c Konzentration der mindestens einen homogen im Medium verteilten chemischen Verbindung V bekannter Identität,
l'(λ,c') Messfunktion des mindestens eine homogen verteilte chemische
Verbindung V in der Konzentration c' enthaltenden Mediums,
l(λ,c) Vergleichsfunktion des mindestens eine homogen verteilte chemische Verbindung V in der Konzentration c enthaltenden Mediums
und
N Normierungsfaktor, und mit Hilfe der Korrelationsfunktion K(δλ,c',c) Identität oder Nicht-Identität zwi¬ schen den Verbindungen V und V ermittelt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man es zur Bestim¬ mung der Identität oder Nicht-Identität mindestens einer in einem flüssigen oder festen Medium homogen verteilten chemischen Verbindung V anwendet.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man es zur Bestim- mung der Identität oder Nicht-Identität mindestens einer in einem flüssigen Medi¬ um homogen verteilten chemischen Verbindung V anwendet.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass es sich bei dem flüs¬ sigen Medium um Mineralöl handelt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass es sich bei der min¬ destens einen Verbindung V und der mindestens einen Verbindung V um Mar¬ kierungsstoffe für Mineralöle handelt.
PCT/EP2005/007839 2004-07-23 2005-07-19 Verfahren zur bestimmung des vorhandenseins einer in einem medium homogen verteilten chemischen verbindung mittels kreuzkorrelation eines messspektrums mit referenzspektren WO2006010527A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP05761631A EP1774321A1 (de) 2004-07-23 2005-07-19 Verfahren zur bestimmung des vorhandenseins einer in einem medium homogen verteilten chemischen verbindung mittels kreuzkorrelation eines messpektrums mit referenzspektren
BRPI0513585-0A BRPI0513585A (pt) 2004-07-23 2005-07-19 processo para a determinação da identidade ou da não identidade de pelo menos um composto quìmico
CA002574663A CA2574663A1 (en) 2004-07-23 2005-07-19 Method for determining the presence of a chemical compound which is homogeneously distributed in a medium by means of cross-correlating a measuring spectrum with reference spectra
AU2005266512A AU2005266512A1 (en) 2004-07-23 2005-07-19 Method for determining the presence of a chemical compound which is homogeneously distributed in a medium by means of cross-correlating a measuring spectrum with reference spectra
NZ552904A NZ552904A (en) 2004-07-23 2005-07-19 Method for determining the presence of a chemical compound which is homogeneously distributed in a medium by means of cross-correlating a measuring spectrum with reference spectra
US11/572,324 US20080057589A1 (en) 2004-07-23 2005-07-19 Method For Determining The Presence Of A Chemical Compound Which Is Homogeneously Distributed In A Medium By Means Of Cross-Correlating A Measuring Spectrum With Reference Spectra
MX2007000068A MX2007000068A (es) 2004-07-23 2005-07-19 Procedimiento para determinar la identidad o no identidad de por lo menos un compuesto quimico homogeneamente distribuido en un medio.
JP2007521883A JP2008507685A (ja) 2004-07-23 2005-07-19 媒体中に均一に分布された化合物の存在を測定スペクトルと参照スペクトルの相互相関により測定する方法
IL180179A IL180179A0 (en) 2004-07-23 2006-12-19 Method for determining the presence of a chemical compound which is homogeneously distributed in a medium by means of cross-correlating a measuring spectrum with reference spectra
NO20070722A NO20070722L (no) 2004-07-23 2007-02-07 Fremgangsmate for a bestemme tilstedevaerelse av en kjemisk forbindelse som er homogent fordelt i et medim ved hjelp av kryss-korrelering av et malespekter med et referansespekter.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004035948.2 2004-07-23
DE102004035948A DE102004035948A1 (de) 2004-07-23 2004-07-23 Verfahren zur Bestimmung der Identität oder Nicht-Identität mindestens einer in einem Medium homogen verteilten chemischen Verbindung

Publications (1)

Publication Number Publication Date
WO2006010527A1 true WO2006010527A1 (de) 2006-02-02

Family

ID=35116016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/007839 WO2006010527A1 (de) 2004-07-23 2005-07-19 Verfahren zur bestimmung des vorhandenseins einer in einem medium homogen verteilten chemischen verbindung mittels kreuzkorrelation eines messspektrums mit referenzspektren

Country Status (18)

Country Link
US (1) US20080057589A1 (de)
EP (1) EP1774321A1 (de)
JP (1) JP2008507685A (de)
KR (1) KR20070039602A (de)
CN (1) CN1989408A (de)
AR (1) AR050008A1 (de)
AU (1) AU2005266512A1 (de)
BR (1) BRPI0513585A (de)
CA (1) CA2574663A1 (de)
DE (1) DE102004035948A1 (de)
IL (1) IL180179A0 (de)
MX (1) MX2007000068A (de)
NO (1) NO20070722L (de)
NZ (1) NZ552904A (de)
PE (1) PE20060538A1 (de)
TW (1) TW200612086A (de)
WO (1) WO2006010527A1 (de)
ZA (1) ZA200701517B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074156A1 (de) * 2005-12-29 2007-07-05 Basf Se Verfahren zur bestimmung der identität oder nicht-identität und konzentration einer chemischen verbindung in einem medium
WO2009065789A1 (de) * 2007-11-21 2009-05-28 Basf Se Deuterierung von markierstoffen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050081A2 (de) * 2007-10-11 2009-04-23 Basf Se Spektrometer mit led-array
ATE545014T1 (de) * 2009-04-30 2012-02-15 Hoffmann La Roche Verfahren zur detektion von verunreinigungen einer optischen messküvette
WO2020235426A1 (ja) * 2019-05-17 2020-11-26 パナソニックIpマネジメント株式会社 ラマン分光スペクトル解析装置及びラマン分光スペクトル解析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278444A (en) * 1980-04-22 1981-07-14 Mobil Oil Corporation Liquid hydrocarbons containing a fluorescent compound
WO1993024823A1 (en) * 1992-05-27 1993-12-09 Ashland Oil, Inc. An improved indirect method for determining oxygenate content using near-infrared absorption spectra
DE4243776A1 (de) * 1992-12-23 1994-06-30 Basf Ag Verwendung von im IR-Bereich fluoreszierenden Verbindungen als Markierungsmittel für Flüssigkeiten
DE4243774A1 (de) * 1992-12-23 1994-06-30 Basf Ag Verfahren zur Detektion von Markierstoffen in Flüssigkeiten
WO1999000666A1 (en) * 1997-06-30 1999-01-07 Boston Advanced Technologies, Inc. Method and apparatus for marking and identifying liquids
WO1999002973A1 (en) * 1996-07-23 1999-01-21 Ashland Inc. Process and apparatus for analysis of hydrocarbon species by near infrared spectroscopy
US20030195798A1 (en) * 2002-04-11 2003-10-16 John Goci Voter interface for electronic voting system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2068372A (en) * 1936-03-25 1937-01-19 Du Pont Preparation of aralkylamino-anthraquinone compounds
US2611772A (en) * 1950-12-30 1952-09-23 Eastman Kodak Co Preparation of 1, 4, 5, 8-tetraamino-anthraquinone compounds
US4209302A (en) * 1979-05-10 1980-06-24 Morton-Norwich Products, Inc. Marker for petroleum fuels
WO1989001144A1 (en) * 1987-07-24 1989-02-09 Terumo Kabushiki Kaisha Apparatus for measuring concentration and oxygen saturation of hemoglobin
WO1992019957A2 (en) * 1991-05-03 1992-11-12 University Of Maryland At Baltimore Method for optically measuring chemical analytes
US5804447A (en) * 1992-07-23 1998-09-08 Basf Aktiengesellschaft Use of compounds which absorb and/or fluoresce in the IR region as markers for liquids
US5252106A (en) * 1992-07-29 1993-10-12 Morton International, Inc. Base extractable petroleum markers
FI101829B1 (fi) * 1995-03-07 1998-08-31 Erkki Juhani Soini Biospesifinen määritysmenetelmä
AU5907998A (en) * 1997-02-28 1998-09-18 Joseph R Lakowicz Measuring analytes with metal-ligand complex probes
DE59802005D1 (de) * 1997-12-23 2001-12-06 Evotec Biosystems Ag Verfahren zum nachweis von reaktionen mittels koinzidenzanalyse
DE19907011A1 (de) * 1999-02-18 2000-08-31 Deutsches Krebsforsch Fluoreszenzkorrelationsspektroskopievorrichtung und -verfahren, insbesondere zur Mehrfarbenfluoreszenzkorrelationsspektroskopie
DE10035190C5 (de) * 2000-07-20 2009-07-16 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Vorrichtung zur Fluoreszenzmessung
US7217574B2 (en) * 2000-10-30 2007-05-15 Sru Biosystems, Inc. Method and apparatus for biosensor spectral shift detection
DE10111420A1 (de) * 2001-03-09 2002-09-12 Gnothis Holding Sa Ecublens Bestimmung von Analyten durch Fluoreszenz-Korrelationsspektroskopie
US6620623B1 (en) * 2002-05-06 2003-09-16 The University Of Chicago Biochip reader with enhanced illumination and bioarray positioning apparatus
DE10337877A1 (de) * 2003-08-18 2005-03-17 Basf Ag Verfahren zur Detektion der durch einen Umwelteinfluss hervorgerufenen Eigenschaftsänderung einer Probe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278444A (en) * 1980-04-22 1981-07-14 Mobil Oil Corporation Liquid hydrocarbons containing a fluorescent compound
WO1993024823A1 (en) * 1992-05-27 1993-12-09 Ashland Oil, Inc. An improved indirect method for determining oxygenate content using near-infrared absorption spectra
DE4243776A1 (de) * 1992-12-23 1994-06-30 Basf Ag Verwendung von im IR-Bereich fluoreszierenden Verbindungen als Markierungsmittel für Flüssigkeiten
DE4243774A1 (de) * 1992-12-23 1994-06-30 Basf Ag Verfahren zur Detektion von Markierstoffen in Flüssigkeiten
WO1999002973A1 (en) * 1996-07-23 1999-01-21 Ashland Inc. Process and apparatus for analysis of hydrocarbon species by near infrared spectroscopy
WO1999000666A1 (en) * 1997-06-30 1999-01-07 Boston Advanced Technologies, Inc. Method and apparatus for marking and identifying liquids
US20030195798A1 (en) * 2002-04-11 2003-10-16 John Goci Voter interface for electronic voting system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REINHARD BEER AND ROBERT H. NORTON: "Analysis of spectra using correlation functions", APPLIED OPTICS, vol. 27, no. 7, 1 April 1998 (1998-04-01), pages 1255 - 1261, XP002351149 *
See also references of EP1774321A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074156A1 (de) * 2005-12-29 2007-07-05 Basf Se Verfahren zur bestimmung der identität oder nicht-identität und konzentration einer chemischen verbindung in einem medium
EA014502B1 (ru) * 2005-12-29 2010-12-30 Басф Се Способ определения идентичности или неидентичности и концентрации химического соединения в среде
WO2009065789A1 (de) * 2007-11-21 2009-05-28 Basf Se Deuterierung von markierstoffen

Also Published As

Publication number Publication date
NZ552904A (en) 2009-10-30
AU2005266512A1 (en) 2006-02-02
JP2008507685A (ja) 2008-03-13
CN1989408A (zh) 2007-06-27
TW200612086A (en) 2006-04-16
CA2574663A1 (en) 2006-02-02
DE102004035948A1 (de) 2006-03-16
MX2007000068A (es) 2007-03-28
IL180179A0 (en) 2007-06-03
NO20070722L (no) 2007-04-18
PE20060538A1 (es) 2006-07-04
AR050008A1 (es) 2006-09-20
KR20070039602A (ko) 2007-04-12
US20080057589A1 (en) 2008-03-06
ZA200701517B (en) 2008-12-31
BRPI0513585A (pt) 2008-05-13
EP1774321A1 (de) 2007-04-18

Similar Documents

Publication Publication Date Title
DE102005062910A1 (de) Verfahren zur Bestimmung der Identität oder Nicht-Identität und Konzentration einer chemischen Verbindung in einem Medium
DE69839048T2 (de) Verfahren und vorrichtung zur identifizierung von flüssigkeiten
EP1774321A1 (de) Verfahren zur bestimmung des vorhandenseins einer in einem medium homogen verteilten chemischen verbindung mittels kreuzkorrelation eines messpektrums mit referenzspektren
EP2912439B1 (de) Anordnung und verfahren für ein kraftfahrzeug zum erfassen einer kraftstoffsorte und/oder kraftstoffcharakteristik
DE19621312A1 (de) Maskierung der Hintergrundfluoreszenz und Signalverstärkung bei der optischen Analyse biologisch medizinischer Assays
DE4445004A1 (de) Zusammensetzung zur delokalisierten Kennzeichnung von Gegenständen, ihre Herstellung und Verwendung
EP3311141B1 (de) Verfahren und vorrichtung zur bestimmung einer materialeigenschaft eines bitumenmaterials
EP3494383A1 (de) Vorrichtung zur identifikation von stoffen
EP3268725A2 (de) Verfahren und vorrichtung zur identifizierung von kunststoffen und/oder deren additiven
WO2011032857A2 (de) Verwendung von derivaten aromatischer verbindungen als markierstoffe für flüssigkeiten
DE10049404C2 (de) Mit einem NIR-Marker versehener kunststoff-, glas-, textil- oder papierhaltiger Werkstoff und Verfahren zur Identifizierung dieses Werkstoffs
WO2004109265A1 (de) Vorrichtung und verfahren zum automatischen detektieren von wenigstens einem in einem flüssigen betriebsstoff enthaltenen fluoreszierenden und/oder lichtabsorbierenden indikator während des einfüllvorgangs des betriebsstoffs in eine maschine
US11391674B2 (en) Bulk liquid tagging, identifying and authentication
Fischer et al. Quellen und vorkommen kurzkettiger alkylphenole (scap)
EP1892270B1 (de) Nanopartikel eines Authentifizierungssystems
DE102015001525A1 (de) Die automatische Sortierung von Polyethylenterephthalat aus unterschiedlichen Quellen anhand der Fluoreszenzabklingzeit der Eigenfluoreszenz
DE4243774A1 (de) Verfahren zur Detektion von Markierstoffen in Flüssigkeiten
DE102016214792A1 (de) Vorrichtung und Verfahren zur Identifikation von Stoffen eines Materials mittels Spektroskopie
DE102016001546A1 (de) Die Fluoreszenz, insbesondere die Fluoreszenzabklingzeit von pyrogenem Siliciumdioxid als Sonde für die Untersuchung von Medien, insbesondere von Polymermaterialien
Babichenko et al. Diagnosis of organic compounds in water quality monitoring
Deaton et al. Determination of metalloporphyrins in rocks, sediments and other geological materials using total reflectance spectrophotometry
Henry et al. Luminescence properties and chemical composition of crude oils
WO2009065789A1 (de) Deuterierung von markierstoffen
DE2110342B2 (de) Verfahren zur Bestimmung von aliphatischen und cyclo aliphatischen Alkoholen
Williams House paint

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 180179

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/000068

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12007500093

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2005761631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11572324

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2574663

Country of ref document: CA

Ref document number: 2005266512

Country of ref document: AU

Ref document number: 07005753

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 200580024980.8

Country of ref document: CN

Ref document number: 2007521883

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 552904

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2005266512

Country of ref document: AU

Date of ref document: 20050719

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005266512

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077004385

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077004385

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005761631

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11572324

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0513585

Country of ref document: BR