WO2006008965A1 - 光レセプタクル用フェルール保持部材及びその製造方法並びにそれを用いた光レセプタクル - Google Patents

光レセプタクル用フェルール保持部材及びその製造方法並びにそれを用いた光レセプタクル Download PDF

Info

Publication number
WO2006008965A1
WO2006008965A1 PCT/JP2005/012468 JP2005012468W WO2006008965A1 WO 2006008965 A1 WO2006008965 A1 WO 2006008965A1 JP 2005012468 W JP2005012468 W JP 2005012468W WO 2006008965 A1 WO2006008965 A1 WO 2006008965A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
holding member
transparent body
ferrule
optical receptacle
Prior art date
Application number
PCT/JP2005/012468
Other languages
English (en)
French (fr)
Inventor
Chisami Ishida
Hiroshi Okumura
Hirokazu Takeuchi
Masanori Wada
Original Assignee
Toto Ltd.
Nippon Electric Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd., Nippon Electric Glass Co., Ltd. filed Critical Toto Ltd.
Priority to US11/596,368 priority Critical patent/US7771129B2/en
Priority to EP05757799A priority patent/EP1767970A4/en
Priority to KR1020067026254A priority patent/KR101112517B1/ko
Publication of WO2006008965A1 publication Critical patent/WO2006008965A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/327Optical coupling means having lens focusing means positioned between opposed fibre ends with angled interfaces to reduce reflections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3845Details of mounting fibres in ferrules; Assembly methods; Manufacture ferrules comprising functional elements, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3874Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Definitions

  • the present invention relates to a ferrule holding member for an optical receptacle used for optically connecting an optical fiber connector to a light receiving / emitting element, and a manufacturing method thereof, and an optical receptacle using the same.
  • the present invention relates to a ferrule holding member for an optical stubless optical receptacle and related technology.
  • a conventional optical receptacle has a cylindrical built-in ferrule inserted into the proximal end portion of the inner hole of the sleeve by press-fitting or bonding, as disclosed in Patent Document 1 below as an example. It is constructed by inserting and attaching a sleeve holder to the outer periphery of the base end of the sleeve. Then, a ferrule (plug ferrule) is inserted into the distal end side of the inner hole of the sleeve, and the optical fiber on the plug ferrule side and the optical fiber on the built-in ferrule side come into contact with each other at the respective end faces. It is optically connected.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-332988 (FIG. 4)
  • Patent Document 2 Japanese Patent Laid-Open No. 4-223412
  • the optical receptacle disclosed in Patent Document 1 uses a built-in ferrule, the connection with the plug ferrule is PC-connected, and the connection loss is minimized.
  • the outer diameter, inner diameter and concentricity of the built-in ferrule must be finished with high accuracy.
  • the accuracy is that the outer diameter is 1.249mm ⁇ 0.5 ⁇ m, the inner diameter is 126.5 ⁇ ⁇ ⁇ 0.5 m (when using an optical fiber with a diameter of 125 m), The concentricity is 1. or less, and submicron accuracy is required. This is the reason why the manufacturing costs are soaring.
  • PC connection Physical Contact Connection
  • PC connection is an optical fiber connector in which the ferrule end face is polished to form a convex spherical surface, and the optical fiber core is in close contact with the ferrule end face. A connection method that reduces reflection.
  • the optical fiber inserted in the inner hole of the built-in ferrule needs to be fixed with an adhesive, but this operation must be relied on manually and requires a lot of labor and cost.
  • the difference between the outer diameter of the optical fiber and the inner diameter of the built-in ferrule, that is, the clearance is 1 to 2 111 (maximum eccentricity is 1. O ⁇ m)
  • the optical fiber is inserted into the inner hole of the built-in ferrule.
  • Eccentricity and maximum concentricity between the outer diameter and inner diameter are 1.4 m (maximum eccentricity is 0.7 ⁇ m), so there are few things that exceed the allowable connection loss of 0.5 dB.
  • L is the distance between the center of the core of the optical fiber attached to the plug ferrule and the center of the core of the optical fiber attached to the built-in ferrule (distance between the cores), and D is the mode fiber. Inenoled, diameter.
  • the eccentric amount of the optical fiber in the inner hole is 1 ⁇ m at the maximum, and the maximum eccentric amount due to the concentricity of the outer diameter and the inner diameter is Therefore, the maximum eccentricity is 1. Therefore, theoretically, the maximum distance between the cores is 3.
  • the mode field diameter is 10 / zm
  • a connection loss as large as 2. OdB can occur.
  • the allowable value of the connection loss in the optical communication receptacle is 0.5 dB, and inevitably the dimensional accuracy of the built-in ferrule must be higher than the allowable value, which increases the cost. It is inevitable.
  • due to environmental fluctuations there is a risk that the optical fiber may protrude or retract from the end face of the built-in ferrule. In some cases, the connection loss tends to increase, and PC connection may not be possible.
  • the end face of the built-in ferrule on the side in contact with the plug ferrule must be polished to a convex spherical surface with high precision so that it can be connected to a PC.
  • This operation is also performed one or several built-in ferrules at a time. Since it can only be polished, it is inferior in mass productivity, which also causes an increase in manufacturing costs.
  • polishing flaws easily enter the end face of the built-in ferrule and the return loss becomes small.
  • the first technical problem of the present invention is that it can be manufactured at a low cost, has a small connection loss, and forms a convex curved surface connected to the end face of the ferrule on the tip side so as to have an appropriate shape and characteristics.
  • An object of the present invention is to provide a ferrule holding member for an optical receptacle, a method for manufacturing the same, and an optical receptacle using the same.
  • the second technical problem of the present invention is that a ferrule holding member for an optical receptacle that can be manufactured at low cost, has a low connection loss, and does not cause a decrease in coupling efficiency, a manufacturing method thereof, and a method for using the same. It is to provide an optical receptacle.
  • a ferrule holding member for an optical receptacle according to the present invention which has been made to solve the first technical problem, includes a sleeve having an inner hole for inserting a ferrule, and an inner hole of the sleeve. And a transparent body having a first end face for contacting the end face of the ferrule at an intermediate position in the axial direction of the sleeve, and the first end face of the transparent body was obtained by thermal treatment. It is characterized by a convex curved surface force.
  • the transparent body has a first end face at an intermediate position in the axial direction of the sleeve, preferably at a central position in the axial direction, between the ferrule (plug ferrule) and the optical element (light emitting element or light receiving element). It delivers light.
  • the transparent body is preferably a columnar body that is also a solid single member.
  • the ferrule holding member for an optical receptacle is composed of a sleeve and a transparent body, and the first end surface of the transparent body that contacts the end surface of the ferrule (plug ferrule) is thermally treated. Therefore, it can be manufactured at low cost and the connection loss is small.
  • the transparent body plays the role of delivering light between the plug ferrule and the light receiving element or light emitting element, as well as the built-in ferrule, and does not require an optical fiber. There is no need for labor, labor and cost for inserting and bonding.
  • this transparent body does not have a waveguide structure such as an optical fiber unlike the built-in ferrule, so that it can be decentered as long as it is PC-connected so that there is no axial deviation from the core of the optical fiber of the opposing plug ferrule.
  • connection loss can only exceed 0.5 dB if the problem is only the surface quality of the PC connection surface and the light transmittance of the transparent body at the communication wavelength.
  • the first end surface of the transparent body is solidified after being softened and deformed by heat treatment, so that the first end surface becomes a convex curved surface having an appropriate shape due to surface tension or the like, and its characteristics or properties are mirror surface or mirror surface. It can be a close surface.
  • the transparent body precursor can be softened and deformed by thermal treatment, and the first end face can be formed into an appropriately shaped convex curved surface. For this reason, the tolerance of the dimensional accuracy of the transparent body precursor is increased, the yield is improved, and the transparent body precursor can be produced at low cost.
  • the first end surface of the transparent body is formed by thermal treatment, even if dirt such as organic matter adheres to the surface of the transparent precursor, heat cleaning is performed, and light loss due to the dirt can be suppressed.
  • the first end surface of the transparent body is preferably an unpolished surface.
  • the first end surface of the transparent body becomes a mirror surface or a surface close to the mirror surface by thermal treatment, so that it is possible to omit a polishing step that causes a cost increase,
  • it is possible to suppress a reduction in reflection loss that makes it difficult for polishing flaws to enter the end face it is possible to obtain a surface that is optically superior to a polishing surface that uses force.
  • a region force convex spherical surface having a radius of 75 m or more around the axial center line of the sleeve at the first end surface of the transparent body is preferable.
  • the convex spherical surface need not be a convex spherical surface having a single radius of curvature over the entire region, and may be a surface in which convex spherical surfaces having different curvature radii are smoothly and continuously connected. .
  • the curvature radius of the convex spherical surface and the inner diameter d of the sleeve have a relationship of p> dZ2.
  • the radius of curvature of the convex spherical surface is preferably 3 to 50 mm.
  • a ferrule holding member for an optical receptacle made to solve the second technical problem includes a sleeve having an inner hole for inserting a ferrule, and the sleeve.
  • a transparent body having a first end face disposed in the inner hole of the rib and for contacting the end face of the ferrule at an intermediate position in the axial direction of the sleeve, and the transparent body is connected to the inner surface of the sleeve. It is characterized in that it is fixed directly by thermal treatment.
  • the ferrule holding member for the optical receptacle is composed of the sleeve and the transparent body, and the transparent body is directly and thermally fixed to the inner surface of the sleeve.
  • the connection loss is small and the coupling efficiency is not lowered.
  • the optical fiber is not attached to the transparent body, the advantages associated with this can be obtained.
  • the transparent body precursor can be softened and deformed to thermally fix the transparent body to the inner surface of the sleeve. Therefore, the yield can be improved, and the transparent precursor can be produced at low cost.
  • the transparent body is thermally bonded to the inner surface of the sleeve, the bonding efficiency is reduced without changing the bonding position of the transparent body even when exposed to fluctuations in temperature or high temperature and humidity. There is no risk of incurring.
  • the adhesion strength between the sleeve and the transparent body is 49 N or more.
  • the fixing strength is 49N or more, the transparent body can be prevented from loosening, and the durability can be improved.
  • the fixing strength between the sleeve and the transparent body after standing at a high temperature and high humidity of 85 ° C and 85% Rh for 2000 hours is 49N or more.
  • the transparent body and the sleeve are preferably hermetically sealed.
  • the airtightness of the space formed between the optical receptacle and the optical element in Kogu specifically hereinafter 1 X 10- 9 Pa'm 3 / sec High airtightness can be maintained.
  • the means for performing the thermal treatment is arc discharge, laser, flame or Is preferably a heat treatment furnace or other indirect heating.
  • the thermal treatment here refers to both a thermal treatment for making the first end surface of the transparent body a convex curved surface and a thermal treatment for fixing the transparent body to the inner surface of the sleeve. Including. These are preferably performed simultaneously by the same thermal treatment.
  • a CO laser wavelength: 10 m
  • an electric furnace is used as the heat treatment furnace.
  • a furnace can be used.
  • the 10Log ⁇ (nf-nb) 2 / (nf + nb) 2 ⁇ force becomes 3 ⁇ 47 or more, so that the reflected return light can be suppressed and the optical characteristics are adversely affected. It is avoided. In this case, it is more preferable that ⁇ 10Log ⁇ (nf-nb) (nf + nb) 2 ⁇ is 40 or more.
  • the average thermal expansion coefficient differential force between 30 and 380 ° C between the sleeve and the transparent body is preferably 8 ppmZ ° C or less.
  • the difference in average thermal expansion coefficient between 30 and 380 ° C between the sleeve and the transparent body is more preferably lppmZ ° C or less.
  • the transparent body preferably has an infrared light transmittance of 85% or more at a wavelength of 800 to 1700 nm at a wall thickness of 1 mm.
  • the transparent body is advantageous for transmitting the optical communication wavelength, and is suitable for optical communication applications.
  • the transparent body and the Z or sleeve are advantageous in transmitting ultraviolet light.
  • the isolator chip is fixed to the end face of the transparent body using an ultraviolet curable adhesive. It is.
  • the transparent body preferably has a glass strength.
  • the transparent body has glass strength, it has excellent weather resistance.
  • the transparent body has a borosilicate glass strength.
  • the transparent body when the transparent body also has a borosilicate glass power, it has an advantage that it has a thermal expansion coefficient that is close to or the same as that of the sleeve material, and has a small difference in refractive index from the core portion of the optical fiber, which is particularly excellent in weather resistance. It becomes.
  • the borosilicate glass is specifically, by mass%, SiO 65-85%
  • borosilicate glass has a mass of 0 / ⁇ , SiO 67 ⁇ 80%, BO 12 ⁇ 19%, Li O + Na O + KO 2 ⁇ 9.5
  • a flat surface inclined with respect to the axial perpendicular surface of the sleeve is formed on the second end surface opposite to the first end surface of the transparent body.
  • the sleeve is preferably made of ceramics, crystallized glass, metal or resin.
  • a slit is formed in the sleeve.
  • the slit is preferably formed so as to extend parallel to the direction along the axis of the sleeve.
  • the first technical problem and the second technical problem are also solved by an optical receptacle using the optical receptacle ferrule holding member configured as described above.
  • a method for manufacturing a ferrule holding member for an optical receptacle according to the present invention for solving the first technical problem includes a sleeve having an inner hole for inserting a ferrule, and the sleeve
  • the sleeve When manufacturing a ferrule holding member for an optical receptacle comprising a transparent body having a first end face for contacting the end face of the ferrule at an intermediate position in the axial direction of the sleeve.
  • the step of forming the first end face of the transparent body into a convex curved surface is characterized in that after the transparent body precursor is inserted into the inner hole of the sleeve, the transparent body precursor is softened using a thermal treatment means. Is.
  • the ferrule (plug ferrule) can be obtained only by inserting the transparent body precursor into the inner hole of the sleeve and softening the transparent body precursor by a thermal treatment means. Since the first end face of the transparent body that contacts the end face of the transparent body can be a convex curved surface due to surface tension or the like, the manufacturing cost is reduced and the connection loss is reduced. Also, the first end surface of the transparent body is solidified after being softly deformed by the heat treatment means, so that the characteristics or properties thereof can be a mirror surface or a surface close to the mirror surface.
  • the transparent body precursor is softened and deformed by thermal treatment, and the first end face is formed into a convex curved surface having an appropriate shape. Therefore, the yield that the tolerance of the dimensional accuracy of the transparent body precursor is large is improved, and the transparent body precursor can be produced at low cost.
  • the first end face of the transparent body is formed by thermal treatment, even if dirt such as organic matter adheres to the surface of the transparent precursor, it is heat cleaned and effectively removes dirt that increases light loss. Can be removed.
  • the manufacturing method of the ferrule holding member for an optical receptacle according to the present invention made to solve the second technical problem includes a sleeve having an inner hole for inserting a ferrule, and the sleeve
  • a ferrule holding member for an optical receptacle comprising a transparent body having a first end face for contacting the end face of the ferrule at an intermediate position in the axial direction of the sleeve.
  • the step of adhering the transparent body and the sleeve is characterized in that after the transparent body precursor is inserted into the inner hole of the sleeve, the transparent body precursor is softened using a thermal treatment means. .
  • the transparent body can be applied to the inner surface of the sleeve only by inserting the transparent body precursor into the inner hole of the sleeve and softening the transparent body precursor by a thermal treatment means. Since it can be directly and thermally fixed, the manufacturing cost and the connection loss can be reduced. Furthermore, even if the dimensional accuracy of the transparent body precursor is poor, the transparent body precursor can be softened and deformed to thermally fix the transparent body to the inner surface of the sleeve. Yield increases, and a transparent precursor can be produced at low cost.
  • the transparent body is thermally bonded to the inner surface of the sleeve, the bonding efficiency of the transparent body does not change even when exposed to fluctuations in temperature or high temperature and high humidity environments, resulting in a decrease in bonding efficiency. There is no fear.
  • the thermal treatment means is preferably arc discharge, laser, flame, heat treatment furnace or other indirect heating.
  • the transparent body precursor can be easily softened and deformed, and the first end face of the transparent body can be formed into an appropriate convex curved surface by surface tension or the like.
  • deviation eccentricity
  • Indirect heating is performed, for example, by heating the entire sleeve in which the transparent body precursor is placed in the inner hole using a heat treatment furnace. The heat treatment temperature at this time is higher than the soft soft spot of the sleeve or the soft soft spot of the glass rod lower than the melting point.
  • the transparent body precursor is preferably a glass rod or a resin rod.
  • the transparent precursor is easily and reliably softened and solidified into a transparent body having the convex curved surface as the first end surface by a thermal treatment means, or a transparent body is formed on the inner surface of the sleeve. It can be easily and reliably thermally fixed.
  • the glass rod is mass%
  • a resin rod can also be used, and specifically, a thermoplastic resin such as polycarbonate resin, polyethylene resin, polypropylene resin, talyl resin, and fluorine resin can be used.
  • the end surface of the glass rod or the resin rod is preferably chamfered.
  • the first end surface of the transparent body attached to the inner hole of the sleeve is Since the convex surface is formed by thermal treatment, the characteristics or properties of the first end surface can be made to be a mirror surface or a suitable surface close to the mirror surface, and the manufacturing cost can be reduced and the connection loss can be reduced. . In addition, even if dirt such as organic matter adheres to the surface of the transparent body precursor, the first end face of the transparent body is heat-cleaned to become a clean surface. It is possible to suppress light loss due to the like.
  • the transparent body attached to the inner hole of the sleeve is used as the inner surface of the sleeve. Since it is fixed directly and thermally by heat treatment, the two can be firmly fixed, the manufacturing cost can be reduced and the connection loss can be reduced, and the tolerance of the dimensional accuracy of the transparent precursor can be increased. Furthermore, even when exposed to fluctuations in temperature or high temperature and high humidity environments, the bonding position of the transparent body does not change, and the reduction in bonding efficiency can be suppressed as much as possible.
  • FIG. 1 is a longitudinal front view showing an optical receptacle on which a ferrule holding member for an optical receptacle according to an embodiment of the present invention (hereinafter simply referred to as a ferrule holding member) is mounted
  • FIG. 2 is a ferrule according to an embodiment of the present invention.
  • FIG. 6 is a longitudinal front view showing a state in which the plug ferrule is inserted into the holding member.
  • the optical receptacle 1 is obtained by mounting a ferrule holding member 3 inside a holder 2 having a flange 2a at the end on the base end side.
  • the ferrule holding member 3 includes a cylindrical sleeve 4 fitted and fixed in the fitting hole of the holder 2, and a cylindrical solid transparent member thermally fixed to the inner surface of the base end side of the sleeve 4.
  • Body 5 is a component.
  • the first end surface 5a on the distal end side of the transparent body 5 is located in the middle of the sleeve 4 in the axial direction (substantially central portion in the axial direction).
  • the first end surface 5a of the transparent body 5 is a convex curved surface obtained by thermal treatment and an unpolished surface, and the axial center line Z of the sleeve 4 A region with a radius of 75 ⁇ m or more centered on is a convex spherical surface.
  • the curvature radius p of the convex spherical surface and the inner diameter d of the sleeve 4 have a relationship of p> dZ2, and specifically, the curvature radius p of the convex spherical surface is set to 3 to 5 Omm. .
  • the end surface 6 a of the plug ferrule 6 inserted from the front end side force of the sleeve 4 is configured to contact the convex spherical surface of the first end surface 5 a of the transparent body 5.
  • the optical fiber 7 mounted in the inner hole of the plug ferrule 6 has a diameter of the core portion 7a of about 10 ⁇ m and a diameter of the outer peripheral side cladding portion 7b of about 125 ⁇ m.
  • the convex spherical surface of the first end surface 5 a of the transparent body 5 is configured to contact the core portion 7 a of the optical fiber 7.
  • the transparent body 5 is fixed directly and thermally on the inner surface of the sleeve 4, and the fixing strength of both is set to 49 N or more. Even after standing for 2000 hours under high temperature and high humidity of% Rh, it is fixed so as to have a strength of 49N or more.
  • the transparent body 5 and the sleeve 4 are hermetically sealed.
  • both the thermal treatment means for fixing the transparent body 5 to the inner surface of the sleeve 4 and the thermal treatment means for making the first end surface 5a of the transparent body 5 a convex curved surface are both arc discharges.
  • Laser, flame, heat treatment furnace or other indirect heating is used.
  • a CO laser (wavelength: 10 m) is used as the laser, and an electric furnace is used as the heat treatment furnace in the indirect heating.
  • the refractive index (nb) of the transparent body 5 and the refractive index (nf) of the core portion 7a of the optical fiber 7 attached to the inner hole of the plug rule 6 are 10Log ⁇ (nf-nb) V (nf + nb) 2 ⁇ ⁇ 37 is satisfied.
  • the difference in average thermal expansion coefficient between the sleeve 4 and the transparent body 5 at 30 to 380 ° C. is 8 ppm / ° C. or less, preferably lppm Z ° C. or less.
  • the transparent body 5 has an infrared light transmittance of 85% or more at a wavelength of 800 to 1700 nm at a wall thickness of 1 mm, and at least a part or all of the transparent body 5 and the sleeve 4 ( In this embodiment, all of the transparent body 5) has an ultraviolet light transmittance of 75% or more at a wavelength of 300 to 450 nm with a thickness of 1 mm.
  • the transparent body 5 also has glass or resin, preferably borosilicate glass power, and borosilicate glass is SiO 65-85 in mass%.
  • borosilicate glass has a mass of 0 / o, SiO 67-80%,
  • the sleeve 4 is a cylindrical single member, and can be formed of ceramics, crystallized glass, metal, or resin.
  • ceramics zirconia
  • crystallized glass Li O -Al O — SiO system, j8-spodumene solid as main crystal phase
  • Crystallized glass on which a solution is deposited is deposited.
  • the sleeve 4 is Li O -Al O -SiO system
  • the second end surface 5 b opposite to the first end surface 5 a of the transparent body 5 is 4 with respect to the axial perpendicular surface (surface perpendicular to the axial center line Z) 8 of the sleeve 4.
  • the end surface 4b on the base end side of the sleeve 4 is also a flat surface that is flush with the same inclination angle ex.
  • FIG. 3 is a longitudinal front view showing an optical receptacle equipped with a ferrule holding member according to another embodiment of the present invention.
  • the optical receptacle 21 is obtained by mounting a ferrule holding member 23 inside a holder 22 having a flange 22a.
  • the ferrule holding member 23 is made of an insulating material made of ceramics, crystallized glass, glass, or resin, and has a cylindrical thick sleeve 24 fitted and fixed in the fitting hole of the holder 22.
  • a cylindrical solid transparent body 5 that is thermally fixed to the inner surface on the proximal end side of the sleeve 24 is a constituent element.
  • the sleeve 24 Only the base end portion of the sleeve 24 is press-fitted or bonded and fixed to the holder 22, and the holder 22 has a shape that does not cover the distal end portion of the sleeve 24. Further, since the sleeve 24 is thicker than the sleeve 4 used in the optical receptacle 1 shown in FIG. 1, the sleeve 24 is excellent in mechanical strength, and the tip portion is covered by the holder 22 even if it is not necessary. Hard to break! / If the optical receptacle 21 has such a structure, the tip thereof does not emit or receive electromagnetic waves as an antenna (because the tip of the sleeve 24 is not covered by the holder 22). ), Mounting an optical receptacle, and it is difficult to adversely affect transmission / reception electronic components (for example, laser diodes).
  • transmission / reception electronic components for example, laser diodes
  • ferrule holding members 3 and 23 having the above-described configuration are manufactured by the following method.
  • a glass material is drawn to produce a long original glass rod 9, and the plurality of original glass rods 9 thus manufactured are indicated by reference B in FIG.
  • the glass rods 10 are cut into a predetermined dimension in the axial direction, and both end surfaces thereof are roughly polished, so that a plurality of glass rods 10 as transparent precursors are collected at a time, as indicated by symbol C in FIG. Get at the same time.
  • both end faces 11a of the respective glass rods are chamfered l ib, and the chamfered glass rod 11 is made of ceramics (as shown by E in the figure).
  • Zircoyu or crystallized glass (Li O-Al O -SiO system, mainly
  • Crystalline glass that precipitates ⁇ -spodumene solid solution as a crystalline phase is inserted into the inner hole of cylindrical sleeve 4.
  • the built-in body 12 is put in an electric furnace or is
  • the glass rod 11 is irradiated with light and light from the opening 4c on the distal end side of the sleeve 4 to deform the glass rod 11 softly.
  • the end surface (first end surface) 11a on the front end side of the glass rod 11 becomes a convex curved surface due to surface tension, and at the same time, the glass rod 11 is thermally fixed to the inner surface of the sleeve 4.
  • the base end side end portion of the built-in body 12 is polished to make the base end side end portion an inclined flat surface, whereby the ferrule holding member 3 as described above is obtained. Note that the above manufacturing method can be performed in the same procedure even when a raw resin rod made of a long resin material is used as a starting material.
  • optical receptacle holding member of the present invention will be described in detail based on examples.
  • different thermal treatments were performed using different glass rods 11 and sleeves 4, and various evaluations were performed.
  • the results are shown below.
  • Table 1 shows Examples 1 to 4 using an electric furnace
  • Table 2 shows Examples 5 and 6 using a carbon dioxide laser.
  • the refractive index at a wavelength of 1310 nm of the core portion of the optical fiber one (SMF) was 1.452
  • the refractive index at a wavelength of 1550 was 1.449.
  • the ferrule holding member of Examples 1 to 4 was obtained by placing in a set electric furnace and holding the heat treatment time shown in Table 1 and softening and taking out the glass rod.
  • the difference in average thermal expansion coefficient between the glass rod (transparent body) and the sleeve at 30 to 380 ° C. is 3.2 ppm / ° in Examples 1 to 3.
  • Example 4 0.5 ppm / °. Met.
  • a distance D to a certain reference surface force transparent body 5 in the sleeve 4 is measured in advance, and a predetermined force is applied to the first end surface 5a of the transparent body 5 for a predetermined time (10 seconds). Then measure the distance D again, and if the distance does not change within the measurement error range, the printing force! It must have a fixed strength greater than As a result of experiments based on such technical ideas, in Examples 1 to 4 by the electric furnace heating shown in Table 1 above and Examples 5 and 6 by the laser shown in Table 2 above, the fixing strength exceeds 98 N. It was found that all showed sufficient bond strength.
  • Table 3 above shows the 4 °, 6 °, 8 °, and 15 ° angles of the second end surface of the ferrule holding member of Example 4 described above with respect to the axis perpendicular to the axis of the sleeve 4 (inclination angle of the flat surface).
  • 2 shows the results of measuring the coupling efficiency of six optical receptacles each configured as a plane having a gap. In the measurement of the coupling efficiency, as shown in FIG. 6, first, the ferrule 6 on which the optical fiber 7 is mounted is inserted into the optical receptacle 1 and kept in a state where a pressing pressure of about 1 kgf is applied.
  • the laser diode 12 is driven at a constant current by the DC stabilized power supply 13, and the light emitted from the laser diode 12 is condensed by the condenser lens 14 and incident from the second end face side of the transparent body 5,
  • the coupling efficiency is evaluated based on the value measured by the optical power meter 15 of the optical power transmitted to the optical fiber 7 when the optical axis is adjusted so that the optical coupling efficiency with the optical fiber 7 is maximized.
  • Table 3 above shows the measured values.
  • the optical power meter 15 measured the optical power transmitted to the optical fiber 7 when coupled directly to the optical fiber 7 mounted on the ferrule 6 without using the optical receptacle 1 under the same conditions (coupling efficiency).
  • Coupled efficiency was 512 / z W.
  • the inclination angle of the flat surface is 4-15 °. It was found that the coupling efficiency of the ferrule holding member of Example 4 was kept high.
  • FIG. 1 is a longitudinal front view showing an optical receptacle equipped with a ferrule holding member according to an embodiment of the present invention.
  • FIG. 2 is an enlarged vertical front view of a main part showing a state in which a ferrule (plug ferrule) is inserted into a ferrule holding member according to an embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional front view showing an optical receptacle equipped with a ferrule holding member according to another embodiment of the present invention.
  • FIG. 4 is a schematic view showing the manufacturing status of the ferrule holding member according to the embodiment of the present invention.
  • FIG. 5 is a schematic view for explaining an experimental result in the example of the present invention.
  • FIG. 6 is a schematic diagram for explaining a coupling efficiency measurement method in an example of the present invention. Explanation of symbols

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

【課題】 安価に製造でき且つ接続損失を小さくできると共に、先端側のフェルールの端面と接続する凸曲面を容易に且つ適切な形状及び特性に形成でき、または結合効率の低下を招く虞がない光レセプタクル用フェルール保持部材等を提供する。 【解決手段】 スリーブ4の内孔に、その軸方向途中位置にプラグフェルール6の端面6aを接触させるための第1端面5aを有する透明体5を装着したフェルール保持部材3において、透明体5の第1端面5aを、熱的処理により得られた凸曲面とする。好ましくは、その凸曲面5aを未研磨面とし、更にその凸曲面5aにおけるスリーブ4の軸中心線Zを中心とする半径75μm以上の領域を、凸球状面する。また、透明体5を、スリーブ4の内表面に直接且つ熱的処理により固着する。

Description

明 細 書
光レセプタクル用フヱルール保持部材及びその製造方法並びにそれを 用いた光レセプタクル
技術分野
[0001] 本発明は、光ファイバコネクタを受*発光素子に光学的に接続するため等に用いら れる光レセプタクル用フエルール保持部材及びその製造方法並びにそれを用いた 光レセプタクルに係り、特に、安価なスタブレスの光レセプタクル用フェルール保持部 材及びその関連技術に関する。
背景技術
[0002] 周知のように、従来の光レセプタクルは、その一例として下記の特許文献 1に開示さ れているように、スリーブの内孔の基端部に円柱状の内蔵フエルールを圧入または 接着により挿着し、該スリーブの基端部外周にスリーブホルダーを外挿することにより 構成される。そして、このスリーブの内孔の先端側にはフエルール(プラグフエルール )が挿入され、このプラグフェルール側の光ファイバと、内蔵フェルール側の光フアイ バとが、それぞれの端面で接触することにより、光学的に接続されるものである。
[0003] また、これとは相違する従来の光レセプタクルとしては、例えば下記の特許文献 2に 開示されているように、半導体モジュールの本体に形成された内孔の基端部に、ガラ スなどの光学材料で形成されたロッドを挿着し、このロッドの先端面と、前記内孔の先 端側に挿入されたフェルールの端面とを接触させる形式のものが公知となっている。 そして、前記ロッドにおけるフエルールの端面と接触する先端面(同文献では B面)は 、球面研磨されている。このようにロッドの先端面が球面研磨されている点と、その球 面研磨された先端面を保護しつつロッドの固定作業を行なわねばならない点とを勘 案すれば、このロッドも、モジュール本体の内孔に圧入または接着により挿着されて いると解される。
[0004] 特許文献 1:特開平 10— 332988号公報(図 4)
特許文献 2:特開平 4 - 223412号公報
発明の開示 発明が解決しょうとする課題
[0005] し力しながら、上記特許文献 1に開示された光レセプタクルは、内蔵フエルールを 使用している関係上、プラグフエルールとの接続は PC接続されており、最小限の接 続損失に抑えるためには、内蔵フエルールの外径寸法、内径寸法及び同心度を高 精度に仕上げねばならない。例えば、その精度は、外径寸法が 1. 249mm± 0. 5 μ m、内径寸法が 126. 5 ^ πι± 0. 5 m (直径 125 mの光ファイバ使用時)、外径と 内径との同心度が 1. 以下であり、サブミクロンの精度が必要になる。これが原 因となって、製造コストの高騰を招いているのが実情である。尚、 PC接続 (Physical C ontact Connection)とは、光ファイバコネクタにおいて、フエルール端面を研磨等によ つて凸球面などの形状に形成し、光ファイバのコア部をそのフエルール端面に密着さ せてフレネル反射を少なくする接続方法を言う。
[0006] また、内蔵フエルールの内孔に挿入されている光ファイバ一は、接着剤で固定する 必要があるが、この作業は手作業に頼らなければならず、多大な手間と費用を要す る。更に、光ファイバ一の外径と内蔵フエルールの内径の差、すなわちクリアランスは 、 1〜2 111でぁり(偏芯量として最大1. O ^ m) ,内蔵フェルールの内孔で光ファイバ 一が偏芯し、且つ外径と内径との同心度が最大 1. 4 m (偏芯量として最大 0. 7 μ m)であるため、接続損失の許容値である 0. 5dBを超えるものが少なからず発生する
[0007] ここで、理論的に偏芯量から接続損失を算出すると、次のようになる。即ち、偏芯量 と接続損失との関係は、接続損失 (dB) =4. 34 X LZ (DZ2) 2で表わされる。尚、 L は、プラグフェルールに装着された光ファイバのコア部の中心と内蔵フェルールに装 着された光ファイバのコア部の中心との距離(コア部間の距離)であり、 Dは、モードフ ィーノレド、径である。
[0008] 上述のように、プラグフェルールと内蔵フェルールのそれぞれにおいて、内孔での 光ファイバの偏芯量は最大で 1 μ mであり、外径と内径の同心度による最大の偏芯量 は 0. であるので、最大で合計 1. の偏芯量になる。従って、理論上、最 大でコア部間の距離は 3. となり、モードフィールド径を 10 /z mとすると、最大で 2. OdBもの大きな接続損失が生じ得ることになる。 [0009] この場合、光通信用レセプタクルにおける接続損失の許容値は 0. 5dBであり、必 然的に、許容値よりも内蔵フェルールの寸法精度を高くせねばならないため、コスト アップの要因となることは避けられない。し力も、環境変動に起因して、光ファイバ一 が内蔵フエルールの端面に対し、突き出したり、引き込んだりする虞があり、接続損失 が大きくなり易ぐ場合によっては PC接続できないこともある。
[0010] しかも、プラグフエルールと接触する側の内蔵フエルールの端面は、 PC接続できる ように凸球面に高精度に研磨しなければならないが、この作業も一度に 1本又は数本 の内蔵フエルールしか研磨できないので、量産性に劣っており、これも製造コストの 上昇を招く要因となっている。カロえて、内蔵フエルールの端面に研磨キズが入り易ぐ 反射減衰量が小さくなるという問題をも有している。これらの問題は、上記特許文献 2 に開示された光レセプタクルについても、モジュール本体の内孔に揷着されるロッド の先端面を球面研磨せねばならないことを勘案すれば、同様にして生じ得る。
[0011] 更に、内蔵フェルールは、剛体スリーブの基端部に圧入又は接着剤によって固定 されている力 圧入の場合は、気温の変動によって内蔵フエルールの接着位置が変 化する虞があり、また、接着剤による固定の場合は、高温高湿環境下において、接着 剤が劣化しやすぐ内蔵フェルールの接着位置が変化する虞がある。内蔵フェルー ルの接着位置が変化すると、発光素子ゃ受光素子と内蔵フエルールとの距離が変化 し、結合効率が低下する虞がある。この問題も、上記特許文献 2に開示された光レセ プタクルカ、モジュール本体の内孔にロッドを圧入または接着剤により固定せねばな らないことを勘案すれば、同様にして生じ得る。
[0012] 本発明の第 1の技術的課題は、安価に製造でき、接続損失が小さぐしかも先端側 のフエルールの端面と接続する凸曲面を容易に且つ適切な形状及び特性を有する ように形成することが可能な光レセプタクル用フエルール保持部材及びその製造方 法並びにそれを用 、た光レセプタクルを提供することにある。
[0013] また、本発明の第 2の技術的課題は、安価に製造でき、接続損失が小さぐしかも 結合効率の低下を招く虞がない光レセプタクル用フエルール保持部材及びその製造 方法並びにそれを用 、た光レセプタクルを提供することにある。
課題を解決するための手段 [0014] 上記第 1の技術的課題を解決するためになされた本発明に係る光レセプタクル用 フエルール保持部材は、フェルールを揷入するための内孔を有するスリーブと、該ス リーブの内孔に配設され且つ該スリーブの軸方向途中位置に前記フエルールの端 面を接触させるための第 1端面を有する透明体とを備えると共に、前記透明体の第 1 端面が、熱的処理により得られた凸曲面力 なることを特徴とするものである。この場 合、透明体は、スリーブの軸方向途中位置好ましくは軸方向中央部位置に第 1端面 を有し、フェルール (プラグフエルール)と、光素子 (発光素子ゃ受光素子)との間の 光の受け渡しをするものである。また、透明体は、中実の単一部材カもなる柱状体で あることが好ましい。
[0015] このような構成によれば、光レセプタクル用フエルール保持部材は、スリーブと透明 体とから構成され、フェルール (プラグフエルール)の端面と接触する透明体の第 1端 面が熱的処理により凸曲面とされているため、安価に製造でき、且つ接続損失が小 さくなる。すなわち、透明体は、内蔵フエルールと同様に、プラグフエルールと受光素 子や発光素子との光の受渡しをする役目を果たすものであって、しかも光ファイバを 必要としないことから、光ファイバを挿入'接着するための手間や労苦更には費用が 不要となる。また、この透明体は、内蔵フェルールのように光ファイバなどの導波路構 造を持たないので、対向するプラグフェルールの光ファイバのコアとの軸ずれがなぐ PC接続しさえすればよぐ偏芯による接続損失がない。接続損失は PC接続面の表 面品位と通信波長における透明体の光透過率のみを問題にすれば良ぐ 0. 5dBを 超えることは有り得ない。し力も、透明体の第 1端面は、熱処理により軟化変形した後 に固化するため、第 1端面が表面張力等により適切な形状の凸曲面になると共に、そ の特性ないしは性状が鏡面または鏡面に近い面とすることができる。また、透明体前 駆体の寸法精度が悪くても、透明体前駆体を熱的処理により軟化変形させて、第 1 端面を適切な形態の凸曲面とすることができる。そのため、透明体前駆体の寸法精 度の許容範囲が大きぐ歩留まりが向上し、透明体前駆体を安価に作製することがで きる。また、透明体の第 1端面は、熱的処理により形成されるため、透明体前駆体の 表面に有機物等の汚れが付着しても、ヒートクリーニングされ、汚れ等による光損失を 抑制できる。 [0016] 上記の構成において、透明体の第 1端面は、未研磨面であることが好ましい。
[0017] このようにすれば、既述のように、熱的処理により透明体の第 1端面が鏡面または鏡 面に近い面となるから、コストアップ要因となる研磨工程を省くことができ、且つ端面 に研磨キズが入り難ぐ反射減衰量が小さくなることを抑制できるば力りでなぐ研磨 面よりも光学的に優れた性状の面とすることができる。
[0018] 上記の構成において、透明体の第 1端面におけるスリーブの軸中心線を中心とす る半径 75 m以上の領域力 凸球状面であることが好ましい。この場合、凸球状面 は、その全領域に亘つて単一の曲率半径を有する凸球状面である必要はなぐ異な る曲率半径を有する凸球状面が滑らかに連続して連なる面であればよい。
[0019] このようにすれば、スリーブの軸中心線を中心とした半径 75 μ m以上の領域が凸球 状面であることにより、この透明体の第 1端面と、フェルール (プラグフェルール)の端 面との PC接続が安定して達成される。
[0020] 上記の構成において、凸球状面の曲率半径 とスリーブの内径 dが p >dZ2の関 係を有することが好ましい。
[0021] このような関係を有すれば、上記のように凸球状面を設定したことと相俟って、 PC 接続が容易となる。
[0022] 上記の構成において、凸球状面の曲率半径 力 3〜50mmであることが好ましい
[0023] このようにすれば、透明体の第 1端面とフエルールの端面とを PC接続した際に、フ エルール側の光ファイバ先端部に応力が集中し難くなり、当該先端部に傷が付き光 の通過が阻害されるという不具合の発生確率が低下する。即ち、凸球状面の曲率半 径が 3mmよりも小さいと、 PC接続した際に、フェルール側の光ファイバ先端部に応 力が集中し易くなり、また 50mmよりも大きいと、反射戻り光が大きくなり、場合によつ ては PC接続できなくなる虞がある。従って、曲率半径 pが上記の数値範囲内にあれ ば、このような不具合が効果的に回避される。凸球状面の曲率半径 pの好ましい範 囲は、 7〜25mmである。
[0024] 上記第 2の技術的課題を解決するためになされた本発明に係る光レセプタクル用 フエルール保持部材は、フェルールを揷入するための内孔を有するスリーブと、該ス リーブの内孔に配設され且つ該スリーブの軸方向途中位置に前記フエルールの端 面を接触させるための第 1端面を有する透明体とを備えると共に、前記透明体を、前 記スリーブの内表面に直接且つ熱的処理により固着してなることを特徴とするもので ある。
[0025] このような構成によれば、光レセプタクル用フエルール保持部材が、スリーブと透明 体とから構成され、透明体をスリーブの内表面に直接且つ熱的に固着してなるため、 安価に製造でき、接続損失が小さぐしかも結合効率が低下する虞がない。そして、 透明体には、光ファイバが装着されていないことから、既述のこれに伴なう利点を享 受できる。更に、透明体前駆体の寸法精度が悪くても、透明体前駆体を軟化変形さ せてスリーブの内表面に透明体を熱的に固着できるため、透明体前駆体の寸法精 度の許容範囲が大きぐ歩留まりが向上し、透明体前駆体を安価に作製することがで きる。し力も、透明体が熱的にスリーブ内表面に接着してなるため、気温の変動や高 温高湿環境下に曝されても、透明体の接着位置が変化することがなぐ結合効率の 低下を招く虞がなくなる。
[0026] 上記の構成において、スリーブと透明体との固着強度力 49N以上であることが好 ましい。
[0027] このようにすれば、固着強度が 49N以上であることから、透明体が緩むことを回避 でき、耐久性の向上が図られる。
[0028] 上記の構成において、 85° Cで且つ 85%Rhの高温高湿下に 2000時間静置した 後における前記スリーブと前記透明体との固着強度が、 49N以上であることが好まし い。
[0029] このようにすれば、 V、かなる環境下にあっても、光レセプタクルの特性が変化し難く なり、環境による悪影響を受ける確率が激減する。
[0030] 上記の構成において、透明体とスリーブとが気密封止されてなることが好ましい。
[0031] このようにすれば、光モジュールにおいて、光レセプタクルと受発光素子との間に 形成された空間の気密性を高ぐ具体的には 1 X 10— 9Pa'm3/sec以下という高い気 密性に保つことができる。
[0032] 上記の構成において、熱的処理を行なう手段は、アーク放電、レーザー、火炎また は熱処理炉その他の間接加熱であることが好ましい。
[0033] なお、ここでいう熱的処理は、透明体の第 1端面を凸曲面とするための熱的処理と 、透明体をスリーブの内表面に固着するための熱的処理との両者を含む。そして、こ れらは、同一の熱的処理によって同時に実行されることが好ましい。また、レーザーと しては、 COレーザー(波長が 10 m)を使用することができ、熱処理炉としては電気
2
炉を使用することができる。
[0034] 上記の構成において、透明体の屈折率を nbとし、フエルールの内孔に装着される 光ファイバ一のコア部の屈折率を nfとした時、—10Log{ (nf-nb) V (nf+nb) 2}≥
37を満足することが好ま 、。
[0035] このようにすれば、 10Log{ (nf— nb)2/ (nf+nb) 2}力 ¾7以上となることにより、 反射戻り光を抑制することができ、光学的特性に悪影響を及ぼすことが回避される。 この場合、 - 10Log{ (nf-nb) (nf +nb) 2}が 40以上となることがより好まし 、。
[0036] 上記の構成において、スリーブと透明体との 30〜380° Cにおける平均熱膨脹係 数差力 8ppmZ° C以下であることが好ましい。
[0037] このようにすれば、使用温度条件下でのスリーブと透明体との平均熱膨脹係数差が 不当に大きくならないことから、スリーブや透明体における割れやクラックの発生を好 適に防止することができる。
[0038] 上記の構成において、スリーブと透明体との 30〜380° Cにおける平均熱膨脹係 数差が、 lppmZ° C以下であることがより好ましい。
[0039] このようにすれば、使用温度条件下でのスリーブと透明体との平均熱膨脹係数差が より適切値となることから、透明体中の応力を抑制できることになる。これにより、 PDL
(Polarization dependent loss) ~ PMD (Polarization mode dispersion)の増大を招 \ 虞がなくなる。
[0040] 上記の構成において、透明体は、肉厚 lmmでの波長 800〜1700nmにおける赤 外域の光透過率が、 85%以上であることが好まし 、。
[0041] このようにすれば、透明体が光通信波長を透過させる上で有利となり、光通信の用 途に好適となる。
[0042] 上記の構成において、透明体及びスリーブのうち少なくともいずれかの一部分又は 全部は、肉厚 lmmでの波長 300〜450nmにおける紫外域の光透過率力 75%以 上であることが好ましい。
[0043] このようにすれば、透明体及び Zまたはスリーブが紫外線を透過させる上で有利と なり、例えばアイソレータチップを紫外線硬化型接着剤を使用して透明体の端面に 固着する場合などに便利である。
[0044] 上記の構成において、透明体が、ガラス力もなることが好ましい。
[0045] このように、透明体がガラス力 なると、耐候性に優れると!、う利点が得られる。
[0046] 上記構成にお!、て、透明体が、ホウケィ酸ガラス力もなることが好ま 、。
[0047] このように、透明体がホウケィ酸ガラス力もなると、スリーブ材質と近いまたは同じ熱 膨張係数を有し、光ファイバ一のコア部との屈折率差も小さぐ耐候性に特に優れる ため有利となる。
[0048] 上記の構成において、具体的にホウケィ酸ガラスは、質量%で、 SiO 65-85%
2
、 B O 8〜25%、 Li O+Na O+K Ο 1. 5〜10%、 Α1 Ο 0〜10%、 MgO + C
2 3 2 2 2 2 3
aO + SrO + BaO+ZnO 0〜5%含有することが好ましい。また、ホウケィ酸ガラス は、質量0 /οで、 SiO 67〜80%、 B O 12〜19%、 Li O+Na O+K O 2〜9. 5
2 2 3 2 2 2
%、 Al O 0〜6%、 MgO + CaO + SrO + BaO + ZnO 0〜3%、 Fe O 0〜0· 0
2 3 2 3
5%含有することが特に好ま 、。
尚、上記した成分以外にも、 PbO、 ZrO、 TiO、 As O、 Sb O、 CI等の成分を少
2 2 2 3 2 3 2
量であれば含有させることができる。
[0049] このようにすれば、透明体がホウケィ酸ガラス力もなることによる既述の利点を、より 一層的確に享受することができる。
[0050] 上記の構成において、透明体の第 1端面とは反対側の第 2端面に、スリーブの軸直 角面に対して傾斜した平面が形成されてなることが好ましい。
[0051] このようにすれば、透明体の第 2端面での反射戻り光をカットすることができ、反射 戻り光によって光学的な悪影響が及ぶことを効果的に回避することが可能となる。特 に、上記平面が、スリーブの軸直角面に対して、 4〜15° の角度を有してなると、透 明体の第 1端面と反対側の第 2端面に、スリーブの軸直角面に対して傾斜した平面 が形成されてなることの既述の利点に加え、結合効率を高く維持できると 、う利点も 享受できる。
[0052] 上記の構成において、スリーブが、セラミックス、結晶化ガラス、金属または榭脂から なることが好ましい。
[0053] このようにすれば、透明体の外周を覆うスリーブとしての役割を適切に果たすことが でき、特に、セラミックスまたは結晶化ガラス力もなると耐熱性が高いため、透明体の 母材を軟化変形させる際にも、スリーブの寸法が変化したり、劣化したりすることがな く、また耐候性にも優れると 、う利点が得られる。
[0054] 上記の構成において、スリーブにスリットが形成されてなることが好ましい。この場合 、スリットは、スリーブの軸芯に沿う方向と平行に延びるように形成されることが好まし い。
[0055] このようにすれば、スリーブと透明体の平均熱膨張差が大きくても、応力を逃がすこ とができるため、スリーブや透明体における割れやクラックの発生を防止できる。
[0056] 上記第 1の技術的課題及び第 2の技術的課題は、上述のような構成とされた光レセ プタクル用フエルール保持部材を用いてなる光レセプタクルによっても解決される。
[0057] 一方、上記第 1の技術的課題を解決するためになされた本発明に係る光レセプタク ル用フエルール保持部材の製造方法は、フエルールを挿入するための内孔を有する スリーブと、該スリーブの内孔に配設され且つ該スリ一ブの軸方向途中位置に前記フ エルールの端面を接触させるための第 1端面を有する透明体とを備えた光レセプタク ル用フエルール保持部材を製造するに際して、前記透明体の第 1端面を凸曲面とす る工程として、スリーブの内孔に透明体前駆体を挿入した後、熱的処理手段を用い て透明体前駆体を軟化させることを特徴とするものである。
[0058] このような方法によれば、スリーブの内孔に透明体前駆体を挿入して、熱的処理手 段により透明体前駆体を軟ィ匕させることのみをもって、フエルール (プラグフエルール )の端面と接触する透明体の第 1端面を、表面張力等により凸曲面とすることができる ため、製造の低廉化及び接続損失の低下が実現する。し力も、透明体の第 1端面は 、熱処理手段により軟ィ匕変形した後に固化するため、その特性ないしは性状が鏡面 または鏡面に近い面とすることができる。更に、透明体前駆体の寸法精度が悪くても 、透明体前駆体を熱的処理により軟化変形させて、第 1端面を適切な形態の凸曲面 とすることができるため、透明体前駆体の寸法精度の許容範囲が大きぐ歩留まりが 向上し、透明体前駆体を安価に作製することができる。また、透明体の第 1端面は、 熱的処理により形成されるため、透明体前駆体の表面に有機物等の汚れが付着して も、ヒートクリーニングされ、光損失を増大させる汚れを効果的に除去できる。
[0059] また、上記第 2の技術的課題を解決するためになされた本発明に係る光レセプタク ル用フエルール保持部材の製造方法は、フエルールを挿入するための内孔を有する スリーブと、該スリーブの内孔に配設され且つ該スリ一ブの軸方向途中位置に前記フ エルールの端面を接触させるための第 1端面を有する透明体とを備えた光レセプタク ル用フエルール保持部材を製造するに際して、前記透明体と前記スリーブとを固着 する工程として、スリーブの内孔に透明体前駆体を挿入した後、熱的処理手段を用 いて透明体前駆体を軟化させることを特徴とするものである。
[0060] このような方法によれば、スリーブの内孔に透明体前駆体を挿入して、熱的処理手 段により透明体前駆体を軟化させることのみをもって、透明体をスリーブの内表面に 直接且つ熱的に固着できるため、製造の低廉ィ匕及び接続損失の低下が実現する。 更に、透明体前駆体の寸法精度が悪くても、透明体前駆体を軟化変形させてスリー ブの内表面に透明体を熱的に固着できるため、透明体前駆体の寸法精度の許容範 囲が大きぐ歩留まりが向上し、透明体前駆体を安価に作製することができる。しかも 、透明体が熱的にスリーブ内表面に接着してなるため、気温の変動や高温高湿環境 下に曝されても、透明体の接着位置が変化することがなぐ結合効率の低下を招く虞 がなくなる。
[0061] 上記のいずれの方法においても、熱的処理手段は、アーク放電、レーザー、火炎ま たは熱処理炉その他の間接加熱であることが好ましい。
[0062] このようにすれば、透明体前駆体を容易に軟化変形させて、表面張力等により透明 体の第 1端面を適切な凸曲面とすることができる。特に、レーザーまたは間接加熱( 熱処理炉等)であると、凸曲面(凸球状面)の頂点と、スリーブ内径の中心とのずれ( 偏芯)を少なくすることができる。間接加熱は、例えば、内孔に透明体前駆体を入れ たスリーブを、熱処理炉を用いてその全体を加熱して行う。その際の熱処理温度は、 スリーブの軟ィ匕点または融点よりも低ぐガラスロッドの軟ィ匕点より高 、温度であれば 良く、具体的には、 500〜800。 Cであり、好ましくは 600〜800ο Cであると、短時 間で所望の曲率半径を有する凸球状面が得られるとともに、透明体の端面のヒートク リーニングも同時に行われる。この場合、熱処理時間が 3時間以内であると、生産効 率に優れるという利点が得られる。また、レーザーによる加熱方法では、使用するレ 一ザ一が COレーザーであると、透明体前駆体を短時間で軟ィ匕させることができる。
2
[0063] 上記の方法にぉ 、て、透明体前駆体は、ガラスロッドまたは榭脂ロッドであることが 好ましい。
[0064] このようにすれば、熱的処理手段によって透明体前躯体を、凸曲面を第 1端面とす る透明体に容易且つ確実に軟化,固化させ、或いはスリーブの内表面に透明体とし て容易且つ確実に熱的に固着させることができる。この場合、例えばガラスロッドは、 質量%で、
SiO 65〜85%、B O 8〜25%、 Li O+Na O+K O 1. 5〜10%、Α1 Ο 0
2 2 3 2 2 2 2 3
〜10%、 MgO + CaO + SrO + BaO + ZnO 0〜5%含有すること力 屈折率、熱 膨張係数、軟化変形時の耐失透性の点で好ましい。また、榭脂ロッドも使用可能であ り、具体的には、ポリカーボネート榭脂、ポリエチレン榭脂、ポリプロピレン榭脂、アタリ ル榭脂、フッ素榭脂等の熱可塑性榭脂が使用可能である。
[0065] 上記の方法において、ガラスロッドまたは榭脂ロッドの端面は、面取りされていること が好ましい。
[0066] このようにすれば、ロッドの端面の欠けがなぐ凸球状面がいびつになり難くなると 共に、透明体とスリーブ界面での這い上がり現象も起こり難くなるという利点が得られ る。
発明の効果
[0067] 以上のように本発明に係る光レセプタクル用フエルール保持部材及びその製造方 法並びにそれを用いた光レセプタクルによれば、スリーブの内孔に揷着される透明 体の第 1端面を、熱的処理によって凸曲面となるようにしたから、この第 1端面の特性 ないしは性状を鏡面または鏡面に近い好適な面とすることができると共に、製造の低 廉化及び接続損失の低下が実現する。また、透明体前駆体の表面に有機物等の汚 れが付着しても、透明体の第 1端面がヒートクリーニングされ、清浄な面となり、汚れ 等による光損失を抑制できる。
[0068] また、本発明に係る光レセプタクル用フエルール保持部材及びその製造方法並び にそれを用いた光レセプタクルによれば、スリーブの内孔に揷着される透明体を、スリ 一ブの内表面に直接且つ熱的処理により固着させるようにしたから、両者の強固な 固着がなされ、且つ製造の低廉化及び接続損失の低下が実現すると共に、透明体 前駆体の寸法精度の許容範囲を大きくでき、更には気温の変動や高温高湿環境下 に曝されても、透明体の接着位置が変化することがなくなり、結合効率の低下を可及 的に抑制できる。
発明を実施するための最良の形態
[0069] 以下、本発明の実施形態を添付図面を参照して説明する。図 1は、本発明の実施 形態に係る光レセプタクル用フエルール保持部材 (以下、単にフエルール保持部材 という)が装着された光レセプタクルを示す縦断正面図、図 2は、本発明の実施形態 に係るフエルール保持部材にプラグフェルールが挿入された状態を示す縦断正面図 である。
[0070] 図 1に示すように、光レセプタクル 1は、基端側の端部に鍔部 2aを有するホルダー 2 の内部に、フエルール保持部材 3を装着したものである。このフエルール保持部材 3 は、ホルダー 2の嵌揷孔に内嵌固定された円筒状のスリーブ 4と、該スリーブ 4の基端 側の内表面に熱的に固着された円柱状の中実の透明体 5とを構成要素としている。 この場合、透明体 5の先端側の第 1端面 5aは、スリーブ 4の軸方向途中(軸方向略中 央部)に位置している。
[0071] 図 1及び図 2に示すように、透明体 5の第 1端面 5aは、熱的処理により得られた凸曲 面であり且つ未研磨面であると共に、スリーブ 4の軸中心線 Zを中心とする半径 75 μ m以上の領域が凸球状面とされている。この凸球状面の曲率半径 pと、スリーブ 4の 内径 dとは、 p >dZ2の関係を有し、具体的には、凸球状面の曲率半径 pは、 3〜5 Ommに設定されている。そして、スリーブ 4の先端側力ゝら揷入されたプラグフェルー ル 6の端面 6aが、透明体 5の第 1端面 5aにおける凸球状面に接触するように構成さ れている。この場合、プラグフエルール 6の内孔に装着されている光ファイバ 7は、コ ァ部 7aの径が 10 μ m程度であり且つその外周側のクラッド部 7bの径が 125 μ m程 度であって、透明体 5の第 1端面 5aの凸球面は、光ファイバ 7のコア部 7aに接触する ように構成されている。
[0072] 更に、透明体 5は、スリーブ 4の内表面に直接且つ熱的処理により固着されると共 に、この両者の固着強度は、 49N以上とされ、詳しくは、 85° Cで且つ 85%Rhの高 温高湿下に 2000時間静置した後であっても、 49N以上の強度となるように固着され ている。また、透明体 5とスリーブ 4とは、気密封止されている。この場合、透明体 5を スリーブ 4の内表面に固着させるための熱的処理手段、及び透明体 5の第 1端面 5a を凸曲面とするための熱的処理手段としては、両者共に、アーク放電、レーザー、火 炎、熱処理炉その他の間接加熱のいずれかが使用される。尚、レーザーとしては、 C Oレーザー(波長が 10 m)を使用し、間接加熱のうちの熱処理炉としては電気炉を
2
使用することが好ましい。
[0073] また、透明体 5の屈折率 (nb)と、プラグフ ルール 6の内孔に装着される光ファイバ 7のコア部 7aの屈折率(nf)とは、 10Log{ (nf-nb) V (nf+nb) 2}≥ 37を満して いる。更に、スリーブ 4と透明体 5との 30〜380° Cにおける平均熱膨張係数差は、 8 ppm/° C以下、好ましくは lppmZ° C以下とされている。また、透明体 5は、肉厚 lmmでの波長 800〜1700nmにおける赤外域の光透過率が 85%以上とされると共 に、透明体 5及びスリーブ 4のうち少なくともいずれかの一部分又は全部(この実施形 態では透明体 5のみの全部)は、肉厚 lmmでの波長 300〜450nmにおける紫外域 の光透過率が、 75%以上とされている。そして、透明体 5は、ガラスまたは榭脂、好ま しくはホウケィ酸ガラス力もなり、またホウケィ酸ガラスは、質量%で、 SiO 65-85
2
%、 B O 8〜25%、 Li O+Na O+K Ο 1. 5〜10%、 Α1 Ο 0〜10%、 MgO
2 3 2 2 2 2 3
+ CaO + SrO + BaO + ZnO 0〜5%含有することが好ましい。また、ホウケィ酸ガ ラスは、質量0 /oで、 SiO 67〜80%、
2
B O 12〜19%、Li O+Na O+K O 2〜9. 5%、 Al O 0〜6%、
2 3 2 2 2 2 3
MgO + CaO + SrO + BaO + ZnO 0〜3%、 Fe O 0〜0· 05%含有することが特
2 3
に好ましい。
[0074] 一方、スリーブ 4は、円筒状の単一部材であって、セラミックス、結晶化ガラス、金属 または榭脂から形成することができる力 この実施形態では、セラミックス (ジルコ-ァ )又は結晶化ガラス (Li O -Al O — SiO系で、主結晶相として j8—スポジュメン固
2 2 3 2
溶体を析出する結晶化ガラス)からなる。特にスリーブ 4が Li O -Al O - SiO系で、
2 2 3 2 主結晶相として βースポジュメン固溶体を析出する結晶化ガラス力 なると、加熱延 伸成形によって作製することが可能となるため、スリーブの内外径の寸法精度が極め て高くなり、プラグフェルールを揷入できなくなったり、プラグフェルールが緩んで把 持できなくなったりすることがない。
[0075] また、透明体 5の第 1端面 5aと反対側 (基端側)の第 2端面 5bは、スリーブ 4の軸直 角面 (軸中心線 Zに直角な面) 8に対して 4〜 15° の角度 αを有する平面とされ、スリ ーブ 4の基端側の端面 4bも、これと面一で且つ同一傾斜角度 exを有する平面とされ ている。
[0076] 図 3は、本発明の他の実施形態に係るフエルール保持部材が装着された光レセプ タクルを示す縦断正面図である。図 3に示すように、光レセプタクル 21は、鍔部 22aを 有するホルダー 22の内部に、フェルール保持部材 23を装着したものである。このフ エルール保持部材 23は、セラミックス、結晶化ガラス、ガラスまたは榭脂から形成され た絶縁材料からなり、かつ、ホルダー 22の嵌揷孔に内嵌固定された円筒状の肉厚の スリーブ 24と、該スリーブ 24の基端側の内表面に熱的に固着された円柱状の中実の 透明体 5とを構成要素としている。スリーブ 24は、その基端部のみをホルダー 22に圧 入又は接着固定され、ホルダー 22は、スリーブ 24の先端部を覆わないような形状を 有している。また、スリーブ 24は、図 1に示す光レセプタクル 1に使用されているスリー ブ 4よりも肉厚であるため、機械的強度に優れており、先端部がホルダー 22によって 覆われて 、なくても破損しにく!/、。光レセプタクル 21がこのような構造を有して 、ると 、その先端部がアンテナとして電磁波を出したり、受信したりすることがなく (スリーブ 2 4の先端部がホルダー 22によって覆われていないため)、光レセプタクルを装着する 送受信用電子部品(例えば、レーザーダイオード)に悪影響を及ぼしにくい。
[0077] 以上のような構成を備えたフェルール保持部材 3、 23は、以下に示すような方法に より製造される。
[0078] 先ず、図 4に符号 Aで示すように、ガラス素材をドローイングして長尺な元ガラスロッ ド 9を製作し、この製作された複数本の元ガラスロッド 9を、同図に符号 Bで示すように 結束した後、その軸方向にぉ 、て所定寸法に切断し且つその両端面を粗研磨する ことにより、同図に符号 Cで示すように、透明前躯体としての複数個のガラスロッド 10 を一挙同時に得る。この後、同図に符号 Dで示すように、それぞれのガラスロッドの両 端面 11aに面取り l ibを施し、この面取りされたガラスロッド 11を、同図に符号 Eで示 すように、セラミックス(ジルコユア)又は結晶化ガラス (Li O-Al O -SiO系で、主
2 2 3 2 結晶相として β—スポジュメン固溶体を析出する結晶化ガラス)からなる円筒状のスリ ーブ 4の内孔に揷入する。
[0079] そして、スリーブ 4の基端側の端面 4aとガラスロッド 11の基端側の端面 11aとを合致 させて組み込み体 12とした状態で、この組み込み体 12を電気炉中に入れ或いはレ 一ザ一光をそのスリーブ 4の先端側開口部 4cからガラスロッド 11に照射して、そのガ ラスロッド 11を軟ィ匕変形させる。これにより、ガラスロッド 11の先端側の端面 (第 1端面 ) 11aが表面張力により凸曲面になると同時に、ガラスロッド 11がスリーブ 4の内表面 に熱的に固着される。この後、この組み込み体 12の基端側の端部を研磨することに より、その基端側の端部を傾斜状の平面とし、これにより上述のようなフエルール保持 部材 3が得られる。なお、以上の製造方法は、長尺の榭脂素材からなる元榭脂ロッド を出発物とした場合であっても、同様の手順で行なうことが可能である。
実施例 1
[0080] 本発明の光レセプタクル用保持部材を、実施例に基づき詳細に説明する。この場 合において、本発明の実施例として、異なるガラスロッド 11及びスリーブ 4を使用して 、異なる熱的処理を行ない、各種の評価を行なった。その結果を、以下に示す。尚、 表 1は、電気炉を用いた実施例 1〜4を、表 2は、炭酸ガスレーザーを用いた実施例 5 、 6を示すものである。
[0081] <ガラスロッド A>
ホウケィ酸ガラス (組成:質量0 /0で、 SiO 70%
2 、Α1 Ο 6%
2 3 、B O 13%
2 3 、 CaO l%、BaO 2%、Na O 6. 5%
2 、 K O 1%
2 、 Sb203 0. 5%、熱膨張係数: 5. lp pmZ° C、屈折率(1310nm) : 1. 471、屈折率(1550nm) : 1. 469、面取りあり、 高さ 2mm X外径 1. 248mm φの円柱体)
[0082] くガラスロッド Β> ホウケィ酸ガラス (組成:質量0 /oで、 SiO 80%、 Α1 Ο 3%、 B O 13%、 Na O
2 2 3 2 3 2
4%、熱膨張係数 3. 2ppm/° C、屈折率(1310nm) : 1. 468、屈折率(1550n m) : 1. 465、面取りあり、高さ 2mmX外径 1. 248πιπι φの円柱体)
[0083] 尚、光ファイバ一(SMF)のコア部の波長 1310nmでの屈折率は、 1. 452であり、 波長 1550應での屈折率は、 1. 449であった。
[0084] <スリーブ A>
ZrO (東陶機器株式会社製、熱膨脹係数 8. 3ppm/° C、スリットなし、外径 1. 6
2
Omm X内径 1. 25mm)
[0085] <スリーブ B>
Li O-AI O - SiO系結晶化ガラス (日本電気硝子社製結晶化ガラススリーブ、熱
2 2 3 2
膨張係数 2. 7ppm/° C、スリットなし、外径 1. 80mm X内径 1. 25mm)
[0086] <電気炉加熱 >
ガラスロッドをスリーブの内孔に挿入し、スリーブの基端側の端面とガラスロッドの基 端側の端面とを合致させて組み込み体とした状態で、この組み込み体を表 1に示す 熱処理温度に設定した電気炉中に入れ、表 1に示す熱処理時間保持してガラスロッ ドを軟ィ匕させ取り出し、実施例 1〜4のフエルール保持部材を得た。尚、ガラスロッド( 透明体)とスリーブとの 30〜380° Cにおける平均熱膨脹係数差は、実施例 1〜3で は、 3. 2ppm/° 。であり、実施例 4では、 0. 5ppm/° 。であった。
[0087] [表 1] 加
Figure imgf000018_0001
[0088] <レーザー >
ガラスロッドをスリーブの内孔に挿入し、スリーブの基端側の端面とガラスロッドの基 端側の端面とを合致させて組み込み体とした状態で、表 2に示す条件でレーザー光 を、スリーブの先端側開口部力 ガラスロッドに照射してガラスロッドを軟ィ匕変形させ 実施例 5、 6のフエルール保持部材を得た。尚、ガラスロッド (透明体)とスリーブとの 3 0〜380° Cにおける平均熱膨脹係数差は、実施例 5では、 3. 2ppm/° Cであり、 実施例 6では、 2. 4ppm/° Cであった。
[0089] [表 2]
レーザ.— (炭酸ガスレーザー 波長 ϋ 0 . 6 m )
Figure imgf000019_0001
[0090] 評価方法
[0091] <端部の曲率半径 >
干渉型コネクタ端面形状測定器 (NORLAND社製 ACCIS)によって求めた。この 結果、上記の表 1に示す電気炉加熱による実施例 1〜4では、透明体の端部 (第 1端 部)の曲率半径が 3. Omn!〜 20mmであり、また上記の表 2に示すレーザーによる実 施例 5、 6では、同曲率半径が 3. Ommであって、いずれも好適な値であることが判明 した。
[0092] <固着強度 >
図 5に示すように、スリーブ 4におけるある基準面力 透明体 5までの距離 Dを予め 測っておき、所定の力を透明体 5の第 1端面 5aに所定時間(10秒)加える。その後、 再度距離 Dを計測し、距離が測定誤差範囲内で変化していなければ、印力!]したカ以 上の固定強度があるものとする。このような技術的思想に基づく実験の結果、上記の 表 1に示す電気炉加熱による実施例 1〜4や上記の表 2に示すレーザーによる実施 例 5、 6では、固着強度が 98Nを上回っており、いずれも充分な固着強度を示してい ることが判明した。
[0093] <反射減衰量 > スリーブの開口部から OTDR (アンリツ製 MW9070B)と接続したコネクタフェルー ルを挿入し、透明体端部と PC接続させることによって、透明体とコネクタフエルールと の接続部における反射減衰量を測定した。なお、試作したサンプルの終端部(コネク タフエルールが挿入され、 PC接続される側の反対の端部)を光軸の法線方向に対し 8° 斜めにフラット研磨することで終端部の反射を原理的に無視できるようにした。こ の結果、上記の表 1に示す電気炉加熱による実施例 1〜4では、反射減衰量が 43dB 〜49dBであり、また上記の表 2に示すレーザーによる実施例 5、 6では、反射減衰量 力 3dBであって、 、ずれも好適な値であることが判明した。
[0094] [表 3]
Figure imgf000020_0001
[0095] <結合効率 >
上記の表 3は、既述の実施例 4のフエルール保持部材における第 2端面をスリーブ 4の軸直角面に対して 4° 、 6° 、 8° 、 15° の角度(平坦面の傾斜角)を有する平面 としてそれぞれ構成した 6個の光レセプタクルの結合効率を測定した結果を示すもの である。結合効率の測定は、図 6に示すように、まず、光ファイバ 7を実装したフェル ール 6を光レセプタクル 1に挿入して、約 lkgfの押し圧力を印加した状態に保持する 。次に、レーザーダイオード 12を直流安定化電源 13で定電流駆動して、レーザーダ ィオード 12から放射される光を集光レンズ 14で集光して透明体 5の第 2端面側から 入射して、光ファイバ 7との光学的結合効率が最大になるよう光軸を調整した際の光 ファイバ 7に伝達する光パワーを光パワーメータ 15で測定した値で結合効率を評価 する。上記の表 3には、その測定した値を示している。尚、比較対照として同じ条件で 光レセプタクル 1を介さず、フェルール 6に実装した光ファイバ 7へ直接結合した際の 光ファイバ 7に伝達する光パワーを光パワーメーター 15で測定した値 (結合効率)は 、 512 /z Wであった。上記の表 3からわかるように、平坦面の傾斜角が 4〜15° であ る実施例 4のフエルール保持部材の結合効率は、高く保たれることが判明した。 図面の簡単な説明
[0096] [図 1]本発明の実施形態に係るフェルール保持部材が装着された光レセプタクルを 示す縦断正面図である。
[図 2]本発明の実施形態に係るフェルール保持部材にフェルール (プラグフェルール )が挿入された状態を示す要部拡大縦断正面図である。
[図 3]本発明の他の実施形態に係るフエルール保持部材が装着された光レセプタク ルを示す縦断正面図である。
[図 4]本発明の実施形態に係るフェルール保持部材の製造状況を示す概略図である
[図 5]本発明の実施例における実験結果を説明するための概略図である。
[図 6]本発明の実施例における結合効率測定方法を説明するための概略図である。 符号の説明
[0097] 1、 21 光レセプタクル
2、 22 ホノレダー
3、 23 フエルール保持部材 (光レセプタクル用フエルール保持部材)
4、 24 スリーブ
5 透明体
5a 第 1端面(凸球状面)
5b 第 2端面
6 フエルール(プラグフエルール)
6a フ ルールの端面
7 光ファイバ
7a コア部
8 スリーブの軸直角面
11 ガラスロッド
l ib 面取り
12 レーザーダイオード 13 直流安定化電源 14 集光レンズ 15 光パワーメータ d スリーブの内径 Z スリーブの軸中心線

Claims

請求の範囲
[1] フエルールを挿入するための内孔を有するスリーブと、該スリーブの内孔に配設さ れ且つ該スリーブの軸方向途中位置に前記フエルールの端面を接触させるための 第 1端面を有する透明体とを備えると共に、前記透明体の第 1端面が、熱的処理によ り得られた凸曲面カゝらなることを特徴とする光レセプタクル用フエルール保持部材。
[2] 前記透明体の第 1端面が、未研磨面であることを特徴とする請求項 1に記載の光レ セプタクル用フエルール保持部材。
[3] 前記透明体の第 1端面におけるスリーブの軸中心線を中心とする半径 75 μ m以上 の領域が、凸球状面であることを特徴とする請求項 1または 2に記載の光レセプタク ル用フエルール保持部材。
[4] 前記凸球状面の曲率半径 pとスリーブの内径 dが、 p >dZ2の関係を有することを 特徴とする請求項 3に記載の光レセプタクル用フェルール保持部材。
[5] 前記凸球状面の曲率半径 1S 3〜50mmであることを特徴とする請求項 3または
4に記載の光レセプタクル用フエルール保持部材。
[6] フエルールを挿入するための内孔を有するスリーブと、該スリーブの内孔に配設さ れ且つ該スリーブの軸方向途中位置に前記フエルールの端面を接触させるための 第 1端面を有する透明体とを備えると共に、前記透明体を、前記スリーブの内表面に 直接且つ熱的処理により固着してなることを特徴とする光レセプタクル用フエルール 保持部材。
[7] 前記スリーブと前記透明体との固着強度が、 49N以上であることを特徴とする請求 項 6に記載の光レセプタクル用フエルール保持部材。
[8] 85° Cで且つ 85%Rhの高温高湿下に 2000時間静置した後における前記スリー ブと前記透明体との固着強度力 49N以上であることを特徴とする請求項 6または 7 に記載の光レセプタクル用フエルール保持部材。
[9] 前記透明体と前記スリーブとが気密封止されてなることを特徴とする請求項 6〜8の いずれか〖こ記載の光レセプタクル用フエルール保持部材。
[10] 前記熱的処理を行なう手段が、アーク放電、レーザー、火炎または熱処理炉その 他の間接加熱であることを特徴とする請求項 1または 6に記載の光レセプタクル用フ エルール保持部材。
[11] 前記透明体の屈折率を nbとし、フエルールの内孔に装着される光ファイバ一のコア 部の屈折率を nfとした時、— 10L。g{
Figure imgf000024_0001
2}≥37を満足すること を特徴とする請求項 1〜10のいずれかに記載の光レセプタクル用フエルール保持部 材。
[12] 前記スリーブと前記透明体との 30〜380° Cにおける平均熱膨脹係数差が、 8pp m/° C以下であることを特徴とする請求項 1〜: L 1のいずれかに記載の光レセプタク ル用フエルール保持部材。
[13] 前記スリーブと前記透明体との 30〜380° Cにおける平均熱膨脹係数差が、 lpp m/° C以下であることを特徴とする請求項 1〜12のいずれかに記載の光レセプタク ル用フエルール保持部材。
[14] 前記透明体は、肉厚 lmmでの波長 800〜1700nmにおける赤外域の光透過率が
、 85%以上であることを特徴とする請求項 1〜13のいずれかに記載の光レセプタク ル用フエルール保持部材。
[15] 前記透明体及び前記スリーブのうち少なくともいずれかの一部分又は全部は、肉厚 lmmでの波長 300〜450nmにおける紫外域の光透過率力 75%以上であることを 特徴とする請求項 1〜14のいずれかに記載の光レセプタクル用フエルール保持部材
[16] 前記透明体が、ガラス力もなることを特徴とする請求項 1〜15のいずれかに記載の 光レセプタクル用フエルール保持部材。
[17] 前記透明体が、ホウケィ酸ガラス力 なることを特徴とする請求項 1〜16のいずれ かに記載の光レセプタクル用フエルール保持部材。
[18] 前記ホウケィ酸ガラスは、質量0 /0で、 SiO 65〜85%、B O 8〜25%、
2 2 3
Li O+Na O+K O 1. 5〜10%、Α1 Ο 0〜10%、 MgO + CaO +
2 2 2 2 3
SrO + BaO + ZnO 0〜5%含有することを特徴とする請求項 1〜 17の!、ずれかに 記載の光レセプタクル用フエルール保持部材。
[19] 前記透明体の第 1端面とは反対側の第 2端面に、前記スリーブの軸直角面に対し て傾斜した平面が形成されてなることを特徴とする請求項 1〜18のいずれかに記載 の光レセプタクル用フエルール保持部材。
[20] 前記スリーブが、セラミックス、結晶化ガラス、金属または榭脂からなることを特徴と する請求項 1〜19のいずれかに記載の光レセプタクル用フエルール保持部材。
[21] 前記スリーブにスリットが形成されてなることを特徴とする請求項 1〜20のいずれか に記載の光レセプタクル用フエルール保持部材。
[22] 請求項 1〜 21の 、ずれかに記載の光レセプタクル用フエルール保持部材を用 ヽて なることを特徴とする光レセプタクル。
[23] フエルールを挿入するための内孔を有するスリーブと、該スリーブの内孔に配設さ れ且つ該スリーブの軸方向途中位置に前記フエルールの端面を接触させるための 第 1端面を有する透明体とを備えた光レセプタクル用フエルール保持部材を製造す るに際して、前記透明体の第 1端面を凸曲面とする工程として、スリーブの内孔に透 明体前駆体を挿入した後、熱的処理手段を用いて透明体前駆体を軟化させることを 特徴とする光レセプタクル用フェルール保持部材の製造方法。
[24] フエルールを挿入するための内孔を有するスリーブと、該スリーブの内孔に配設さ れ且つ該スリーブの軸方向途中位置に前記フエルールの端面を接触させるための 第 1端面を有する透明体とを備えた光レセプタクル用フエルール保持部材を製造す るに際して、前記透明体と前記スリーブとを固着する工程として、スリーブの内孔に透 明体前駆体を挿入した後、熱的処理手段を用いて透明体前駆体を軟化させることを 特徴とする光レセプタクル用フェルール保持部材の製造方法。
[25] 前記熱的処理手段が、アーク放電、レーザー、火炎または熱処理炉その他の間接 加熱であることを特徴とする請求項 23または 24に記載の光レセプタクル用フェルー ル保持部材の製造方法。
[26] 前記透明体前駆体が、ガラスロッドまたは榭脂ロッドであることを特徴とする請求項 23〜25のいずれかの光レセプタクル用フヱルール保持部材の製造方法。
[27] 前記ガラスロッドまたは榭脂ロッドの端面が、面取りされていることを特徴とする請求 項 26に記載の光レセプタクル用フエルール保持部材の製造方法。
PCT/JP2005/012468 2004-07-15 2005-07-06 光レセプタクル用フェルール保持部材及びその製造方法並びにそれを用いた光レセプタクル WO2006008965A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/596,368 US7771129B2 (en) 2004-07-15 2005-07-06 Ferrule holding member for an optical receptacle, method of manufacturing the same, and optical receptacle using the same
EP05757799A EP1767970A4 (en) 2004-07-15 2005-07-06 FERRULE SUPPORT FOR OPTICAL SOCKET, METHOD FOR PRODUCING FERRULE SUPPORT AND OPTICAL SOCKET EMPLOYING FERRULE SUPPORT
KR1020067026254A KR101112517B1 (ko) 2004-07-15 2005-07-06 광 리셉터클용 페룰 유지 부재 및 그 제조 방법, 그것을사용한 광 리셉터클

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004208627 2004-07-15
JP2004-208627 2004-07-15
JP2005-195179 2005-07-04
JP2005195179A JP4606954B2 (ja) 2004-07-15 2005-07-04 光レセプタクル用フェルール保持部材及びその製造方法並びにそれを用いた光レセプタクル

Publications (1)

Publication Number Publication Date
WO2006008965A1 true WO2006008965A1 (ja) 2006-01-26

Family

ID=35785085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012468 WO2006008965A1 (ja) 2004-07-15 2005-07-06 光レセプタクル用フェルール保持部材及びその製造方法並びにそれを用いた光レセプタクル

Country Status (6)

Country Link
US (1) US7771129B2 (ja)
EP (1) EP1767970A4 (ja)
JP (1) JP4606954B2 (ja)
KR (1) KR101112517B1 (ja)
TW (1) TWI382211B (ja)
WO (1) WO2006008965A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989379B2 (en) * 2005-06-29 2011-08-02 Nippon Electric Glass Co., Ltd. Optical glass
CN103299224A (zh) * 2011-01-11 2013-09-11 康宁股份有限公司 带有具有相对的成一定角度的平表面的透镜的光连接器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304469A (ja) * 2006-05-15 2007-11-22 Fujifilm Corp レーザモジュールおよびその組立装置
JP2008046520A (ja) * 2006-08-21 2008-02-28 Fujifilm Corp 光コネクタ並びに光ファイバモジュールおよびその組立方法
JP2009139895A (ja) * 2007-12-11 2009-06-25 Sumitomo Electric Ind Ltd 光モジュールおよび光モジュールの製造方法
JP5071673B2 (ja) * 2008-04-28 2012-11-14 住友電気工業株式会社 光レセプタクル
JP5093898B2 (ja) * 2008-06-25 2012-12-12 富士フイルム株式会社 多心フェルール及び光ファイバの接続構造
EP2264420A1 (en) * 2009-06-19 2010-12-22 Acterna, LLC Optical reflective marker adaptor for a patch cord in OTDR applications
WO2012058240A1 (en) * 2010-10-26 2012-05-03 Biolase Technology, Inc. Collimating coupler for laser treatment devices
EP3064166B1 (de) * 2015-03-06 2018-07-04 Schott AG Hermetisch abgedichtete led-leuchte sowie verfahren zur herstellung einer hermetisch abgedichteten led-leuchte
JP2017122754A (ja) * 2016-01-04 2017-07-13 株式会社エンプラス 光レセプタクル、光モジュールおよび測定方法
KR20220029032A (ko) 2020-09-01 2022-03-08 송기창 온돌 마루용 1액형 접착제 조성물

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271604U (ja) * 1985-10-24 1987-05-07
JPH04223412A (ja) 1990-12-26 1992-08-13 Toshiba Corp レセプタクル形半導体レ−ザモジュ−ル
JPH06138352A (ja) 1992-10-29 1994-05-20 Okano Densen Kk 半導体レーザモジュール用レンズの製造方法
JPH08122578A (ja) * 1994-10-25 1996-05-17 Oki Electric Ind Co Ltd 光学モジュールおよびその組立て方法
JPH0980269A (ja) * 1995-09-18 1997-03-28 Mitsubishi Electric Corp 光結合装置
JPH1068843A (ja) * 1996-08-27 1998-03-10 Ando Electric Co Ltd 高反射減衰量型受光装置
JPH10148736A (ja) * 1996-11-21 1998-06-02 Sumitomo Kinzoku Electro Device:Kk 光通信用パッケージ
JPH10332988A (ja) 1997-06-03 1998-12-18 Toto Ltd 光レセプタクル
JP2003270495A (ja) * 2002-03-18 2003-09-25 Kyocera Corp ダミーフェルールと光レセプタクル及びそれを用いた光モジュール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271604A (ja) 1985-09-26 1987-04-02 住友ベークライト株式会社 合板の製造方法
JP2788800B2 (ja) * 1991-07-11 1998-08-20 日本電気株式会社 光コネクタ
JP2987247B2 (ja) * 1991-12-09 1999-12-06 バーグ・テクノロジー・インコーポレーテッド 光ファイバー接続装置
JPH07253521A (ja) * 1993-09-27 1995-10-03 Toto Ltd 光ファイバコネクタ用キャピラリ及びその製造方法
US6311010B1 (en) * 1999-11-17 2001-10-30 Telephone Services, Inc. Of Florida Variable optical attenuator with locking mechanism
US6501900B1 (en) * 2000-02-17 2002-12-31 Fitel Usa Corp. Variable optical fiber attenuator device
JP4443750B2 (ja) * 2000-09-29 2010-03-31 古河電気工業株式会社 光ファイバの固定構造
US6623174B2 (en) * 2000-10-12 2003-09-23 Tyco Electronics Corporation Optical connector
US6659659B1 (en) * 2001-04-11 2003-12-09 Optical Communication Products, Inc. High-speed optical sub-assembly utilizing ceramic substrate, direct coupling and laser welding
JP2003185892A (ja) * 2001-12-19 2003-07-03 Sumitomo Electric Ind Ltd 光接続用スリーブ、光モジュール、及び光通信モジュール
US7210857B2 (en) * 2003-07-16 2007-05-01 Finisar Corporation Optical coupling system
US20050196105A1 (en) * 2004-03-02 2005-09-08 Liu Chin J. Optical connector
US7190864B2 (en) * 2004-04-02 2007-03-13 Beamtek, Inc. Fiber collimating lenses and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271604U (ja) * 1985-10-24 1987-05-07
JPH04223412A (ja) 1990-12-26 1992-08-13 Toshiba Corp レセプタクル形半導体レ−ザモジュ−ル
JPH06138352A (ja) 1992-10-29 1994-05-20 Okano Densen Kk 半導体レーザモジュール用レンズの製造方法
JPH08122578A (ja) * 1994-10-25 1996-05-17 Oki Electric Ind Co Ltd 光学モジュールおよびその組立て方法
JPH0980269A (ja) * 1995-09-18 1997-03-28 Mitsubishi Electric Corp 光結合装置
JPH1068843A (ja) * 1996-08-27 1998-03-10 Ando Electric Co Ltd 高反射減衰量型受光装置
JPH10148736A (ja) * 1996-11-21 1998-06-02 Sumitomo Kinzoku Electro Device:Kk 光通信用パッケージ
JPH10332988A (ja) 1997-06-03 1998-12-18 Toto Ltd 光レセプタクル
JP2003270495A (ja) * 2002-03-18 2003-09-25 Kyocera Corp ダミーフェルールと光レセプタクル及びそれを用いた光モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1767970A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989379B2 (en) * 2005-06-29 2011-08-02 Nippon Electric Glass Co., Ltd. Optical glass
CN103299224A (zh) * 2011-01-11 2013-09-11 康宁股份有限公司 带有具有相对的成一定角度的平表面的透镜的光连接器
US9557488B2 (en) 2011-01-11 2017-01-31 Corning Incorporated Optical connector with lenses having opposing angled planar surfaces

Also Published As

Publication number Publication date
TWI382211B (zh) 2013-01-11
US7771129B2 (en) 2010-08-10
KR20070042923A (ko) 2007-04-24
JP2006053537A (ja) 2006-02-23
US20080193087A1 (en) 2008-08-14
JP4606954B2 (ja) 2011-01-05
TW200604612A (en) 2006-02-01
KR101112517B1 (ko) 2012-03-14
EP1767970A1 (en) 2007-03-28
EP1767970A4 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
WO2006008965A1 (ja) 光レセプタクル用フェルール保持部材及びその製造方法並びにそれを用いた光レセプタクル
JP3853866B2 (ja) 光ファイバー固定用基板
JP4037346B2 (ja) 光ファイバ結合部品
CN1196002C (zh) 带光纤的光装置零件的预备材料,光纤短截棒及制造方法
WO2006080143A1 (ja) 光パワーモニター及びその製造方法
EP0522571B1 (en) Optical connector
WO2019160918A1 (en) Fiber array formed using laser bonded optical fibers
US20230350135A1 (en) Optical fiber termination structure, optical connection component and hollow-core optical fiber
AU730505B2 (en) Ferrule for optical fiber connector
JP4646670B2 (ja) 光レセプタクル及びそれを用いた光モジュール
JP2009151200A (ja) 光接続スリーブ、光レセプタクル、および光モジュール
JPH0961673A (ja) 光半導体モジュール
JP2002311283A (ja) 光通信部品保持管及び光通信部品組立体
JP5059715B2 (ja) 光学接続構造
CN100552484C (zh) 用于光学插座的套圈保持件及其制造方法和使用其的光学插座
JP4356103B2 (ja) 光ファイバ付予備材
US7016591B2 (en) Optical waveguide component capable of preventing an optical waveguide member from being eccentric and method of producing the same
JP2006011119A (ja) 光部品、波長合分波器および光部品の製造方法
JP4025619B2 (ja) ファイバスタブの製造方法
JP2003050337A (ja) 光ファイバスタブの製造方法及び光ファイバスタブ
JPH06194546A (ja) ファイバカプラ
JP2003107289A (ja) レセプタクル型光モジュール及びその加工方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005757799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580019288.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067026254

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005757799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11596368

Country of ref document: US