WO2006006707A1 - 扉装置および冷蔵庫 - Google Patents

扉装置および冷蔵庫 Download PDF

Info

Publication number
WO2006006707A1
WO2006006707A1 PCT/JP2005/013196 JP2005013196W WO2006006707A1 WO 2006006707 A1 WO2006006707 A1 WO 2006006707A1 JP 2005013196 W JP2005013196 W JP 2005013196W WO 2006006707 A1 WO2006006707 A1 WO 2006006707A1
Authority
WO
WIPO (PCT)
Prior art keywords
door
self
closing
door device
deceleration
Prior art date
Application number
PCT/JP2005/013196
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Hamada
Tsuyoki Hirai
Tadashi Adachi
Hirofumi Tsukamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006529204A priority Critical patent/JPWO2006006707A1/ja
Priority to CN2005800231861A priority patent/CN1985063B/zh
Publication of WO2006006707A1 publication Critical patent/WO2006006707A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F5/00Braking devices, e.g. checks; Stops; Buffers
    • E05F5/02Braking devices, e.g. checks; Stops; Buffers specially for preventing the slamming of swinging wings during final closing movement, e.g. jamb stops
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D11/00Additional features or accessories of hinges
    • E05D11/10Devices for preventing movement between relatively-movable hinge parts
    • E05D11/1028Devices for preventing movement between relatively-movable hinge parts for maintaining the hinge in two or more positions, e.g. intermediate or fully open
    • E05D11/1078Devices for preventing movement between relatively-movable hinge parts for maintaining the hinge in two or more positions, e.g. intermediate or fully open the maintaining means acting parallel to the pivot
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F1/00Closers or openers for wings, not otherwise provided for in this subclass
    • E05F1/08Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings
    • E05F1/10Closers or openers for wings, not otherwise provided for in this subclass spring-actuated, e.g. for horizontally sliding wings for swinging wings, e.g. counterbalance
    • E05F1/12Mechanisms in the shape of hinges or pivots, operated by springs
    • E05F1/1207Mechanisms in the shape of hinges or pivots, operated by springs with a coil spring parallel with the pivot axis
    • E05F1/1215Mechanisms in the shape of hinges or pivots, operated by springs with a coil spring parallel with the pivot axis with a canted-coil torsion spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/028Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/20Brakes; Disengaging means; Holders; Stops; Valves; Accessories therefor
    • E05Y2201/21Brakes
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/20Brakes; Disengaging means; Holders; Stops; Valves; Accessories therefor
    • E05Y2201/252Type of friction
    • E05Y2201/254Fluid or viscous friction
    • E05Y2201/256Fluid or viscous friction with pistons or vanes
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/20Brakes; Disengaging means; Holders; Stops; Valves; Accessories therefor
    • E05Y2201/262Type of motion, e.g. braking
    • E05Y2201/264Type of motion, e.g. braking linear
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2201/00Constructional elements; Accessories therefor
    • E05Y2201/40Motors; Magnets; Springs; Weights; Accessories therefor
    • E05Y2201/47Springs
    • E05Y2201/488Traction springs
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/30Application of doors, windows, wings or fittings thereof for domestic appliances
    • E05Y2900/31Application of doors, windows, wings or fittings thereof for domestic appliances for refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/02Details of doors or covers not otherwise covered
    • F25D2323/024Door hinges

Definitions

  • the present invention relates to a door device having a self-closing function and a deceleration function and a refrigerator using the same.
  • a drawer-type storage case having a self-closing device is widely used.
  • a drawer-type storage case having a self-closing device is widely used.
  • Japanese Patent Application Laid-Open No. 8-38281 Japanese Patent Application Laid-Open No. 8-38281.
  • FIG. 10 is a block diagram of a conventional door device described in Japanese Patent Application Laid-Open No. 8-382871. As shown in FIG. 1 0 5, the essential parts of the self-closing device are the inclined part 1 0 0 3, the guide track, the drive pin 1 0 0 5 and the tension panel.
  • the guide track is formed by a groove disposed in a rail 10 0 7 that can be fixed to the side wall 10 0 2 of the main body.
  • the drive pins 1005 can be directly fixed to the drawer wall 1010 1 or the drawer rail on the drawer side of the drawer guide gas.
  • the inclined part 1 0 0 3 is guided into the guide track 1 0 0 4 by two ports.
  • the guide track 1 0 04 consists of a long and straight back part 1 0 0 4 'and a front arcuate part 1 0 04 ⁇ .
  • the tension spring 1 0 06 is fixed to the main body side, for example, the main body side wall 100 2 by its rear end.
  • the door 1 0 1 1 is a flat plate formed at the tip of the drawer wall 1 0 0 1.
  • the inclined part 1 0 0 3 is moved along the straight part of the guide track 1 0 0 4 'in the direction of arrow A until it reaches the arcuate part 1 0 0 4 ⁇ of the guide track .
  • the inclined portion 1 0 0 3 is inclined forward and the drive pin 1 0 0 5 is further moved from the inclined portion 1 0 0 3. Due to the guide provided by the two ports and the dimensioning of the arc of the part 1 0 0 4 ', the inclined part 1 0 0 3 is in the position where the drawer is drawn out, ie the tension spring 1 0 0 When it is not automatically pulled back by 6, it is locked in its forward position.
  • the inclined portion 1 0 0 3 is first moved by the movement of the drawer, while the spring force of the tension spring 1 0 0 6 is transmitted to the drawer via the inclined portion 1 0 0 3 and the drive pin 1 0 0 5, That means that the tension spring 1 0 0 6 hears the drawer into the body by the inclined part 1 0 0 3. In this way, a drawer that is pushed in halfway can be fully drawn into the body.
  • FIG. 10 is an external perspective view of a main body using a conventional door device.
  • FIG. 10 is a perspective view of the upper part of the door device when the door of the conventional door device is fully opened.
  • FIG. 10 is an exploded perspective view of the upper part of the conventional door device.
  • FIG. 10 is an exploded perspective view of the lower part of a conventional door device. As shown in Fig. 10 06 to Fig.
  • the conventional door device 40 0 1 has a main body 40 0 2 having a front opening 4 0 0 2 a and an upper hinge device provided on the upper portion of the main body 40 0 2 4 0 0 3 and lower hinge device 4 0 04 provided at the bottom of the main body 4 0 0 2 and upper hinge device 4 0 0 3 by closing the front opening 4 0 0 2 a of the main body 4 0 0 2 when closed
  • a door 4005 that is pivotally connected to the main body 4002 by a lower hinge device 4004.
  • the upper hinge device 4 0 0 3 is fixed to the upper surface of the main body 4 0 0 2 and has an upper bracket 4 0 0 6 having a rotating shaft 4 0 0 6 a, and one end of the upper hinge device 4 0 0 6 is the front opening 4 0 0 2 a is composed of a coil spring 4 0 0 7 whose other end is fixed to the upper surface of the door 4 0 0 5 and an upper collar 4 0 0 8.
  • the upper collar 4 0 0 8 is inserted into the coil portion 4 0 0 7 a of the coil spring 4 0 0 7 a.
  • the main body 4002 and the door 4005 are rotatably connected by passing through the center and further being inserted into the upper surface hole 4005a provided on the upper surface of the door 4005.
  • the coil panel 40 0 7 urges the door 4 0 5 in the closing direction when the door 4 0 5 is in the fully open position, and gradually energizes the door 4 0 0 5 as it moves in the closing direction. Weak, when the door 4 0 0 5 is in the closed position, it is set so that it is hardly biased further in the closing direction.
  • the lower hinge device 4 0 0 4 is fixed to the lower surface of the main body 4 0 0 2 and the lower bracket 4 0 0 9 having a rotating shaft 4 0 0 9 a and the door 4 0 0 5 is fixed to the lower surface of the door 4 0 0 Stopper 40 1 0 that contacts lower bracket 4 0 0 9 when door 5 is fully open and limits the opening angle of door 4 0 5 and stopper 4 0 1 0 Further door 4 0 0 5 Lower collar 4 0 1 1 which is placed on the lower side and fixed to door 4 0 0 5 via door 4 0 10 It becomes.
  • the bottom collar 4 0 1 1 a is inserted into the hole 4 0 1 0 a of the stopper 4 0 1 0 a, and the bottom 4 0 1 1 a is provided in the bottom surface of the door 40 0 5
  • the stopper 4 0 1 0 and the lower collar 4 0 1 1 are fixed to the door 4 0 0 5.
  • the rotating shaft 4 0 0 9 a of the lower bracket 4 0 0 9 fixed to the lower surface of the main body 4 0 0 2 is inserted into the cylindrical portion 4 0 1 1 a of the lower force roller 4 0 1 1 so that the main body 4 0 0 2 and the door 4 0 0 5 are rotatably connected.
  • the lower bracket 4 0 0 9 and the lower collar 4 0 1 1 come into contact with each other, so that the door 4 0 0 5 can be rotated to a predetermined position halfway from when the door 4 0 5 is fully opened to when it is closed. Accordingly, a lower cam mechanism 40 0 9 a and an upper cam mechanism 40 1 1 b for storing the self-closing force by raising the door 400 5 gradually. Also, the door 4 0 0 5 is approximately 9 0 due to the stopper 4 0 1 0. It can be rotated up to.
  • movement is demonstrated below.
  • the lower cam mechanism 4 0 0 9 b and the upper cam mechanism 4 0 lib will gradually raise the door 4 0 0 5 until it reaches a predetermined position.
  • the self-closing cap is stored and when the door reaches the predetermined position, the rise of the door 4 0 0 5 stops, but the lower cam mechanism 4 0 0 9 b and the upper cam mechanism 4 0 1 1 b maintain the self-closing cap at the predetermined position. Will remain.
  • the coil panel gradually accumulates the self-closing force until the fully open position reaches approximately 90 °.
  • the door 4005 starts to be closed automatically by the coil panel 4000.
  • the self-closing force of the coil spring 4 0 7 decreases, and when the door 4 0 0 5 reaches a predetermined position, the lower cam mechanism 4 0 0 9 b and the upper part Cam mechanism 4 0 1 1 b and further self-closing force is applied, so that the door 4 0 0 5 can reach the closed position reliably while descending step by step, so that the door 4 0 0 5 can be self-closed at all rotational positions. Is possible.
  • a self-closing function part having a self-closing function for self-closing the door
  • the refrigerator includes the door device described above. Brief Description of Drawings
  • FIG. 1 is a side view of a door device according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram of the door device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of a main part of the door device according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view of main parts of the door device according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view of the door device according to Embodiment 1 of the present invention.
  • FIG. 6 is an operation diagram of the door device according to Embodiment 1 of the present invention.
  • FIG. 7 is an operation diagram of the door device according to Embodiment 1 of the present invention.
  • FIG. 8 is an operation diagram of the door device according to the first embodiment of the present invention.
  • FIG. 9 is an operation diagram of the door device according to the first embodiment of the present invention.
  • FIG. 10 is an operation diagram of the door device according to the first embodiment of the present invention.
  • FIG. 11 is a side view of the door device according to Embodiment 2 of the present invention.
  • FIG. 12 is a cross-sectional view of the door device according to Embodiment 2 of the present invention.
  • FIG. 13 is a main part configuration diagram of the door device according to the second embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of the door device according to Embodiment 2 of the present invention.
  • FIG. 15 is a cross-sectional view of the door device according to Embodiment 2 of the present invention.
  • FIG. 16 is a cross-sectional view of the door device according to Embodiment 2 of the present invention.
  • FIG. 17 is an operation diagram of the door device according to the second embodiment of the present invention.
  • FIG. 18 is an operation diagram of the door device according to the second embodiment of the present invention.
  • FIG. 19 is an operation diagram of the door device according to the second embodiment of the present invention.
  • FIG. 20 is an operation diagram of the door device according to the second embodiment of the present invention.
  • FIG. 21 is a side view of Embodiment 3 of the door device according to the present invention.
  • FIG. 22 is a main part configuration diagram of Embodiment 3 of the door device according to the present invention.
  • FIG. 23 is a main part configuration diagram of Embodiment 3 of the door device according to the present invention.
  • FIG. 24 is a cross-sectional view taken along line AA in FIG. 23 of Embodiment 3 of the door device according to the present invention.
  • FIG. 25 is a main part configuration diagram of Embodiment 3 of the door device according to the present invention.
  • FIG. 26 is a viscosity characteristic diagram with respect to temperature change of the silicone oil according to the third embodiment of the door device of the present invention.
  • FIG. 27 is a main part configuration diagram of Embodiment 3 of the door device according to the present invention.
  • FIG. 28 is a characteristic diagram of the operating time at each temperature of Embodiment 3 of the door device according to the present invention.
  • FIG. 29 is an operation diagram of Embodiment 3 of the door device according to the present invention.
  • FIG. 30 is an operation diagram of Embodiment 3 of the door device according to the present invention.
  • FIG. 31 is an operation diagram of Embodiment 3 of the door device according to the present invention.
  • FIG. 32 is a side view of Embodiment 4 of the refrigerator provided with the door device according to the present invention.
  • FIG. 33 is a main part configuration diagram of Embodiment 4 of the door device according to the present invention.
  • FIG. 34 is a block diagram of the essential parts of Embodiment 4 of the door device according to the present invention.
  • FIG. 35 is a main part configuration diagram of Embodiment 5 of the door device according to the present invention.
  • FIG. 36 is a main part configuration diagram of Embodiment 5 of the door device according to the present invention.
  • FIG. 37 is a characteristic diagram of the elastic body according to the fifth embodiment of the door device of the present invention.
  • FIG. 38 is a side view of Embodiment 6 of the door device according to the present invention.
  • FIG. 39 is a main part configuration diagram of Embodiment 6 of the door device according to the present invention.
  • FIG. 40 is a front view of Embodiment 7 of a refrigerator provided with a door device according to the present invention.
  • Fig. 41 shows the internal structure of an order warehouse equipped with the door device of the interview.
  • Fig. 42 is a cross-sectional view taken along the line CC in Fig. 41.
  • FIG. 43 is a diagram showing a configuration of a rail member of the door device of the embodiment.
  • FIG. 44 is a diagram showing the internal configuration of the eighth embodiment of the refrigerator provided with the door device according to the present invention.
  • FIG. 45 is a sectional view taken along the line D-D in FIG.
  • FIG. 46 is a diagram showing the configuration of the rail member of the door device of the embodiment.
  • FIG. 47 is a front view of Embodiment 9 of a refrigerator provided with a door device according to the present invention.
  • FIG. 48 is a diagram showing the internal configuration of the refrigerator provided with the door device of the embodiment.
  • Fig. 49 is a cross-sectional view taken along line E-E in Fig. 48.
  • FIG. 50 is a side sectional view of the refrigerator according to the tenth embodiment of the present invention.
  • FIG. 51 is a perspective view of the upper part of the refrigerator compartment door of the refrigerator according to the embodiment.
  • FIG. 52 is an exploded perspective view of the lower part of the refrigerator compartment door of the refrigerator according to the embodiment.
  • FIG. 53 is a longitudinal sectional view of the lower part of the refrigerator compartment door of the refrigerator according to the embodiment.
  • FIG. 54 is a side sectional view of the lower part of the refrigerator compartment door of the refrigerator according to the embodiment.
  • FIG. 55 is a perspective view of main components of the refrigerator according to the embodiment.
  • FIG. 5 6 shows a plan view when the refrigerator compartment door of the embodiment is fully opened.
  • FIG. 57 is a cross-sectional plan view when the refrigerator compartment door of the refrigerator of the embodiment has reached the second position.
  • FIG. 58 is a cross-sectional plan view when the refrigerator compartment door of the refrigerator of the embodiment has reached the first position. '
  • FIG. 59 is a plan sectional view when the refrigerator compartment door of the refrigerator according to the embodiment has reached the third position.
  • FIG. 60 is an upper perspective view of the refrigerator according to Embodiment 11 of the present invention.
  • FIG. 61 is a plan view of the refrigerator according to Embodiment 11 of the present invention.
  • FIG. 62 is a configuration diagram of the self-closing function unit according to the embodiment 11 of the present invention.
  • FIG. 63 is an enlarged view of a main part of the door device according to the embodiment 11 of the present invention.
  • FIG. 6 is an operation diagram of the door device in Embodiment 1 of the present invention.
  • FIG. 65 is an operation diagram of the door device according to Embodiment 11 of the present invention.
  • FIG. 66 is an operation diagram of the door device according to Embodiment 11 of the present invention.
  • FIG. 67 is a configuration diagram of the main part of the door device according to Embodiment 12 of the present invention.
  • FIG. 68 is a characteristic diagram according to Embodiment 12 of the present invention.
  • FIG. 69 is an operation diagram of the door device according to Embodiment 12 of the present invention.
  • FIG. 70 is an operation diagram of the door device according to Embodiment 12 of the present invention.
  • FIG. 71 is a main part configuration diagram of the door device according to the embodiment 13 of the present invention.
  • FIG. 7 2 is a view of the door device according to Embodiment 13 of the present invention as viewed in the direction of arrow A in FIG.
  • FIG. 73 is an operation diagram in Embodiment 13 of the present invention.
  • FIG. 74 is an operation diagram according to Embodiment 13 of the present invention.
  • FIG. 75 is an upper perspective view of the embodiment 14 of the refrigerator provided with the door device according to the present invention.
  • FIG. 76 is a plan view of Embodiment 14 of the door device according to the present invention.
  • FIG. 77 is a main part configuration diagram of Embodiment 14 of the door device according to the present invention.
  • FIG. 78 is an operation diagram in the closing direction of the door of the embodiment 14 of the door device according to the present invention.
  • FIG. 79 is an operation diagram in the opening direction of the door of the embodiment 14 of the door device according to the present invention.
  • FIG. 80 is an operation diagram of the contact point of the embodiment 14 of the damper of the door device according to the present invention.
  • FIG. 81 is an upper perspective view of the embodiment 15 of the refrigerator provided with the door device according to the present invention.
  • FIG. 82 is a plan view of Embodiment 15 of the door device according to the present invention.
  • FIG. 83 is a main part configuration diagram of Embodiment 16 of the door device according to the present invention.
  • FIG. 84 is a main part configuration diagram of Embodiment 17 of the door device according to the present invention.
  • FIG. 85 is an upper perspective view of Embodiment 18 of the refrigerator provided with the door device according to the present invention.
  • FIG. 86 is a plan view of Embodiment 18 of the door device according to the present invention.
  • FIG. 87 is a block diagram of the essential parts of Embodiment 18 of the door device according to the present invention.
  • FIG. 88 is an operation diagram in the closing direction of the door of the embodiment 18 of the door device according to the present invention.
  • FIG. 89 is an operation diagram in the door opening direction of the embodiment 18 of the door device according to the present invention.
  • FIG. 90 is an operation diagram of the contact point of the damper according to the embodiment 18 of the door device of the present invention.
  • FIG. 9 1 is a top view of an embodiment 19 of a refrigerator equipped with a door device according to the present invention.
  • FIG. 92 is a plan view of Embodiment 19 of the door device according to the present invention.
  • FIG. 93 is a main part configuration diagram of Embodiment 20 of the door device according to the present invention.
  • FIG. 94 is a main part configuration diagram of Embodiment 21 of the door device according to the present invention.
  • FIG. 95 is a side sectional view of the refrigerator in the embodiment 22 of the present invention.
  • FIG. 96 is a perspective view of the upper part of the refrigerator compartment door of the refrigerator according to the embodiment.
  • FIG. 97 is an exploded perspective view of the lower part of the refrigerator compartment door of the refrigerator according to the embodiment.
  • FIG. 98 is a front view of the lower part of the refrigerator compartment door of the refrigerator according to the embodiment.
  • FIG. 99 is a side sectional view of the refrigerator according to the embodiment when the refrigerator compartment door is closed.
  • FIG. 100 is a side sectional view of the refrigerator according to the embodiment when the refrigerator compartment door is opened.
  • FIG. 10 is a cross-sectional plan view of the refrigerator according to the embodiment when the refrigerator compartment door is closed.
  • FIG. 10 is a plan sectional view when the refrigerator compartment door of the refrigerator of the same embodiment is fully opened.
  • FIG. 10 is a plan sectional view when the refrigerator compartment door of the refrigerator according to the embodiment has reached the second position.
  • FIG. 10 is a plan sectional view when the refrigerator compartment door of the refrigerator of the embodiment has reached the first position.
  • FIG. 10 is a block diagram of a conventional door device.
  • FIG. 10 is an external perspective view of a main body using a conventional door device.
  • FIG. 10 is a perspective view of the upper part of the door device in a state where the door of the conventional door device is fully opened.
  • FIG. 10 is an exploded perspective view of the upper part of the conventional door device.
  • FIG. 109 is an exploded perspective view of the lower part of the conventional door device. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention will be described below together with the first and second embodiments.
  • the conventional door device configuration described above there is a possibility that a hand or a finger is clogged between the main body and the door immediately before the drawer is completely closed.
  • a door device of the present invention is housed in a housing in a drawer having a housing and a housing member engaged with the housing and provided with a door on the front side. It comprises a rail member that can move the member back and forth, a self-closing device having a self-closing function that automatically closes the door, and a damper that decelerates the door when the door is closed.
  • the self-closing device is an example of a self-closing function unit
  • the damper is an example of a deceleration function unit.
  • the door device of the present invention has a self-closing function that self-closes the door and a deceleration function that reduces the moving speed of the door when the door is closed, so that the drawer is self-closed while ensuring safety. be able to.
  • the present invention relates to a drawer having a housing and a housing member that is engaged with the housing and provided with a door on the front surface side, a rail member that enables the housing member to move back and forth with respect to the housing, and a door.
  • a self-closing device with a self-closing function for self-closing and a damper that decelerates the closing speed of the door when closing the door, the door is decelerated when it closes, ensuring safety.
  • the drawer can be closed automatically.
  • the present invention is provided with a self-closing device in a damper, and the self-closing device and the damper can be installed in a compact cage.
  • a storage member is provided in each of a plurality of spaces formed in the housing, and is fixed to the housing in a drawer including a door provided on the front surface of the storage member. And a rail member that enables the storage member to move back and forth, and a damper that has a self-closing function for self-closing the door, and a gap in a predetermined value range is formed between the door and the adjacent door or housing. In the second position, the damper starts to decelerate at least, so that the moving speed of the door is decelerated just before the door closes, and the drawer can be closed automatically while ensuring safety.
  • the present invention also includes a connecting member that connects the storage member and the self-closing device, and the self-closing device is fixed to the rail member that is configured on the housing side, and when the door is closed, When the first position where the self-closing device is connected is reached, when the self-closing device operates the self-closing function to automatically close the door, the storage member and the self-closing device are connected by the connecting member. Only a door can have a self-closing function, and a door device having both a part having no self-closing function and a part having a self-closing function can be provided depending on the degree of opening of the door.
  • the second position where the damper for decelerating the door closing speed starts the deceleration operation is closer to the housing than the first position, thereby ensuring safety.
  • the drawer can be closed automatically.
  • the second position is a distance at which a person's finger or fist may be caught between the door and the housing. Even if the door closes automatically due to movement, it is possible to prevent a person's finger or fist from being caught between the door and the housing.
  • the drawer opening force during movement in the direction in which the storage member is opened is canceled by releasing the deceleration operation. Can be reduced.
  • the connecting member is connected to the storage member in the vicinity of the center of the rail member. Smooth operation is possible by equalizing the load.
  • the connecting member and the storage member can be attached / detached by moving the storage member, the operation of the damper can be released by the movement of the storage member, and the drawer door is opened in the release process of the damper operation. Power can be reduced.
  • the damper releases the deceleration operation, so that the load for the deceleration operation is increased.
  • the door will be released, and the door can be closed securely, and the door can be prevented from opening naturally when fully closed.
  • the third position is a distance at which a human finger cannot easily enter between the door and the housing, and the distance at which the human finger does not easily enter between the door and the housing.
  • the door device of the above invention since the door device of the above invention is mounted on the refrigerator, the moving speed of the door is reduced immediately before the drawer of the refrigerator is closed, and the drawer is automatically closed while ensuring safety. can do.
  • the present invention is not limited by this embodiment (Embodiment 1).
  • FIG. 1 is a side view of a door device according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram of the door device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of the main part in the first embodiment of the present invention.
  • Figure 4 shows the implementation of the present invention.
  • 5 is a cross-sectional view of a main part in Embodiment 1.
  • FIG. FIG. 5 is a cross-sectional view in Embodiment 1 of the present invention.
  • FIG. 6 is an operation diagram according to the first embodiment of the present invention.
  • FIG. 7 is an operation diagram according to the first embodiment of the present invention.
  • FIG. 8 is an operation diagram in the first embodiment of the present invention.
  • FIG. 9 is an operation diagram according to the first embodiment of the present invention.
  • FIG. 10 is an operation diagram according to the first embodiment of the present invention.
  • a housing 1 1 0 0 is a box having an opening 1 1 0 1.
  • the door device 1 1 1 0 is arranged in the housing 1 1 0 0, and is composed of a door 1 1 1 1 that seals the opening 1 1 0 1 and a storage member 1 1 1 2 that has an upper surface opened.
  • the handle 1 1 1 3 is an operation unit formed on the front of the door 1 1 1 1.
  • Mounting holes 1 1 1 4 are hole holes formed in both sides of the storage member 1 1 1 2.
  • the rail member 1 1 2 0 is mainly composed of an operation rail 1 1 2 1, an intermediate rail 1 1 2 2, and a fixed rail 1 1 2 3.
  • the operating rail 1 1 2 1 is fixed to the storage member 1 1 1 2 by mounting holes 1 1 1 4 and can be moved back and forth together with the door device 1 1 1 0.
  • the intermediate rail 1 1 2 2 connects the operating rail 1 1 2 1 and the fixed rail 1 1 2 3 so that it can move horizontally with both the operating rail 1 1 2 1 and the fixed rail 1 1 2 3 It is connected to.
  • the fixed rail 1 1 2 3 is fixed to the housing 1 1 0 0 so that the door device 1 1 1 0 can be moved horizontally.
  • the damper 1 1 3 0 is arranged below the fixed rail 1 1 2 3 and mainly covers 1 1 3 1, elastic body 1 1 3 2, piston 1 1 3 3, and connecting member It is composed of 1 1 4 0.
  • the cover 1 1 3 1 has a hollow cylindrical shape with one end open, and has two different inner diameters d 1 and 2.
  • the damper 1 1 3 0 is an example of a deceleration function unit.
  • the elastic body 1 1 3 2 is a tension spring that connects the sealing end of the cover 1 1 3 1 and the biston 1 1 3 3.
  • the piston 1 1 3 3 is arranged inside the cover 1 1 3 1 so as to be horizontally movable, and is a substantially cylindrical flange portion 1 1 formed on the sealing end side of the cover 1 1 3 1 3 3 a and flange 1 1 3 3 a Shaft 1 1 3 3 b formed toward the open end of cover 1 1 3 1 and flange 1 1 3 3 a Packing 1 1 3 3 c.
  • the packing 1 1 3 3 c is made of elastic silicone natural rubber.
  • the outer shape d 3 of the packing 1 1 3 3 c is almost equal to the inner diameter d 2 of the cover 1 1 3 1.
  • a predetermined clearance is formed between the outer diameter d 3 of the packing 1 1 3 3 c and the inner diameter d 1 of the cover 1 1 3 1.
  • the outer periphery of the packing 1 1 3 3 c and the cover 1 1 3 1 When the predetermined clearance is formed between the inner walls and the flange 1 1 3 3 a is located between the predetermined distance L 1 and the predetermined distance L 2, the outer periphery of the packing 1 1 3 3 c Is in contact with the inner wall of the cover 1 1 3 1.
  • the connecting member 1 1 40 is mainly composed of a guide rail 1 1 4 1, an inclined member 1 1 4 2, and a link mechanism 1 1 4 3.
  • the guide rail 1 1 4 1 is fixed to the open end of the cover 1 1 3 1.
  • the side wall of the guide rail 1 1 4 1 is formed with a groove 1 1 4 1 a that opens the end of the cover 1 1 3 1, and both ends are closed on the upper wall of the guide rail 1 1 4 1 Grooves 1 1 4 1 b are formed.
  • a groove 1 1 4 1 c having an upper opening is formed in the vicinity of the side opposite the cover on the side wall of the guide rail 1 1 4 1.
  • the inclined member 1 1 4 2 is rotatably connected to the end of the shaft 1 1 3 3 b at the connecting portion 1 1 4 2 a.
  • the connecting portion 1 1 4 2 a is formed by the groove 1 1 4 1 a. Guided to move horizontally.
  • the inclined member 1 1 4 2 Two protrusions 1 1 4 2 b and 1 1 4 2 c are formed on the top, and these 2 protrusions 1 1 4 2 b and 1 1 4 2 c are the upper walls of the guide rail 1 1 4 1
  • the inclined member 1 1 4 2 is fitted in the groove 1 1 4 1 b so as to protrude in the horizontal direction.
  • Link mechanism 1 1 4 3 is mainly composed of plate 1 1 4 3 a and roller 1 1 4 3 b, and plate 1 1 4 3 a is downward with respect to the side wall of operating rail 1 1 2 1 It is fixed towards.
  • the roller 1 1 4 3 b is a cylindrical body member that is rotatably disposed at the lower end of the plate 1 1 4 3 a. In the installed state, the rollers 1 1 4 2 b and 1 1 42 c Position between them.
  • the door device 1 1 1 1 0 is pulled forward, and the distance between the inner surface of the door 1 1 1 1 and the front surface of the housing 1 1 0 0 is L 1.
  • the flange portion 1 1 3 3 a also moves forward, and the flange portion 1 1 3 3 a is located at a predetermined distance A 1 from the sealed end of the cover 1 1 3 3, and at the same time the cover
  • the inner diameter of 1 1 3 1 changes from d 1 to d 2.
  • the door device 1 1 1 1 0 is pulled forward, and the distance between the inner surface of the door 1 1 1 1 and the front surface of the housing 1 1 0 0 is L 2 in the second position.
  • the flange part 1 1 3 3 a also moves forward in the same way, and the flange part 1 1 3 3 a is located at a predetermined distance A 2 from the sealed end of the cover 1 1 3 1 and at the same time the cover is covered.
  • the inner diameter of 1 1 3 1 changes from d 2 to d 1.
  • the door device 1 1 1 0 is pulled forward, and the distance between the inner surface of the door 1 1 1 1 and the front surface of the housing 1 1 0 0 is L 3 in the first position.
  • the flange part 1 1 3 3 a also moves forward, and the flange part 1 1 3 3 a is at a predetermined distance A 3 away from the closed end of the cover 1 1 3 1 and the cover 1 1 3 3
  • the inner diameter of 1 is d2.
  • the inclined member 1 1 4 2 tilts when the protrusion 1 1 4 2 b fits into the groove 1 1 4 1 c.
  • L 1 is set between 0 mm and 10 mm. This is the distance that human fingers cannot easily enter.
  • L 2 is set between 10 mm and 1 50 mm. This is the distance that a person's finger or fist can pinch between objects.
  • L3 is set between 1550 mm and 2200 mm. This is a distance of L 2 or more, and a distance that takes into account the self-closing speed for operability, that is, a distance at which it is determined that the removal of the stored item from the drawer is actually completed.
  • the inner surface of the door 1 1 1 1 in the present embodiment is a substantial inner surface of the door 1 1 1 1 facing the opening of the housing 1 1 0 0, and the housing 1 1 0 0 It does not indicate only the peripheral contact surface.
  • this also includes a portion constituting an inner surface that is opposed to a portion that can be an end surface of the opening of the casing 110.
  • a bulging inner plate is formed on the door 1 1 1 1, the inner plate surface becomes the inner surface, and if any member is attached to the inside of the door 1 1 1 1, the inner side of that member also becomes the inner surface.
  • Sealing members such as gaskets around the door used in refrigerators also correspond to this.
  • the front surface of the housing 1 1 0 0 in the present embodiment is a substantial front surface facing the substantial inner surface of the door 1 1 1 1 described above, and the periphery of the door 1 1 1 1 It does not refer only to the opening surface in contact with the edge.
  • a portion that can be an end surface of the opening of the casing 1 1 100 that faces the substantial inner surface of the door 1 1 1 1 is also included.
  • the end surface of the member is also the front of the casing 1 1 0 0, and the casing 1 1 0 0
  • the lower end surface of this other door may be the front surface of the housing 110.
  • the setting of the distances L l, L 2, L 3 between the inner surface of the door 1 1 1 1 and the front surface of the housing 1 1 0 0 in the present embodiment is effective for the target user.
  • the distance that can protect the user's hands and fingers is taken into account by taking into account variations such as the size of the hands and fingers and the orientation during handling. It is not set only by the distance between the front surface of the housing 1 1 0 0 and the housing 110 abutting against the housing.
  • the fully open door device 1 1 1 0 is handled by the human hand.
  • 1 1 1 When 3 is pushed, it gradually moves backward, and the door device 1 1 1 0 becomes the first position, and when it moves further backward, the roller 1 1 4 1 b comes into contact with the projection 1 1 4 2 c, and the inclined member 1 1 4 2 is released from tilting, and the elastic body 1 1 3 2's elastic force causes the link mechanism 1 1 4 3 to move backward together with the inclined member 1 1 4 2 connected to the piston 1 1 3 3
  • the door device 1 1 1 0 performs a self-closing operation.
  • a predetermined clearance is formed between the packing 1 1 3 3 c and the inner diameter d 2 of the cover 1 1 3 1, there is no deceleration action.
  • a predetermined self-closing speed can be obtained at a distance longer than a distance where a person's finger or fist may be pinched between objects.
  • the outer diameter d 3 of the packing 1 1 3 3 c is almost the same diameter as the inner diameter d 2 of the cover 1 1 3 1, so that the deceleration action is achieved. Will occur. In other words, it is possible to self-close while decelerating at a distance where a person's finger or fist can be pinched between objects.
  • a predetermined clearance is formed between the packing 1 1 3 3 c and the inner diameter d 2 of the cover 1 1 3 1.
  • the deceleration action is released and only the self-closing operation is performed.
  • a predetermined self-closing speed can be obtained at a distance where a human finger cannot easily enter.
  • the door device 1 1 1 0 includes the storage members 1 1 1 2 in the plurality of spaces formed in the housing 1 1 0 0, respectively, and the storage members 1 1 1 2 In the drawer consisting of the door 1 1 1 1 1 provided on the front of the rail, the rail member 1 1 2 0 fixed to the housing 1 1 0 0 and allowing the storage member 1 1 1 2 to move back and forth, and the door 1 1 1 1 1 1 1 3 0 with a self-closing function, and the distance between the door 1 1 1 1 and the housing 1 1 0 0 is Damper 1 By starting the deceleration operation at least for 1 30, the moving speed of the door will decelerate immediately before the door 1 1 1 1 closes, and the drawer can be closed automatically while ensuring safety.
  • the distance between the door 1 1 1 1 and the housing 1 1 0 0 is more than the possible distance that a person's finger or fist may get caught between objects, and operability is taken into account By starting the self-closing operation within the range of distance, the drawer can be surely self-closing without decelerating the door 1 1 1 1.
  • the deceleration action is canceled and only the self-closing operation is enabled.
  • the operability can be improved by increasing the self-closing speed.
  • FIG. 11 is a side view of the refrigerator according to Embodiment 2 of the present invention.
  • FIG. 12 is a cross-sectional view of the refrigerator in the second embodiment of the present invention.
  • FIG. 13 is a main part configuration diagram according to Embodiment 2 of the present invention.
  • FIG. 14 is a cross-sectional view according to the second embodiment of the present invention.
  • FIG. 15 is a cross-sectional view according to the second embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of Embodiment 2 of the present invention.
  • FIG. 17 is an operation diagram in the second embodiment of the present invention.
  • FIG. 18 is an operation diagram in the second embodiment of the present invention.
  • FIG. 19 is an operation diagram in the second embodiment of the present invention.
  • FIG. 20 is an operation diagram according to the second embodiment of the present invention.
  • a drawer-type storage chamber 1 2 0 1 is formed in the lower part of the refrigerator body 1 2 0 0, and the storage chamber 1 2 0 1 is provided with a door device 1 2 1 0. ing.
  • the door device 1 2 1 0 mainly includes a door 1 2 1 1, a support base 1 2 1 2, a storage member 1 2 1 3, and a rail member 1 2 2 0.
  • the door 1 2 1 1 is a heat insulating plate installed so as to close an opening formed in the front surface of the storage chamber 1 2 0 1.
  • the support base 1 2 1 2 fixes the door 1 2 1 1 and the rail member 1 2 2 0.
  • the storage member 1 2 1 3 is a container having an upper surface opened, and is arranged in such a manner that the upper part of the storage member 1 2 1 3 is fixed to the upper part of the support base 1 2 1 2.
  • the rail member 1 2 2 0 mainly includes an operation rail 1 2 2 1, an intermediate rail 1 2 2 2, and a fixed rail 1 2 2 3.
  • the operation rail 1 2 2 1 is fixed to the storage member 1 2 1 3 and can be moved horizontally back and forth together with the door device 1 2 1 0.
  • the intermediate rail 1 2 2 2 is a rail connecting the operating rail 1 2 2 1 and the fixed rail 1 2 2 3 so that it can move horizontally with both the operating rail 1 2 2 1 and the fixed rail 1 2 2 3 It is connected.
  • the fixed rail 1 2 2 3 is fixed to the refrigerator main body 1 2 0 0 so that the door device 1 1 1 0 can be moved horizontally.
  • the damper 1 2 3 0 is positioned below the storage member 1 2 1 3 and is fixed in a groove 1 2 0 2 formed in the refrigerator main body 1 2 0 0, mainly a speed reducer 1 2 3 1 and a one-way clutch 1 2 4 0, and a self-closing device 1 2 5 0 is provided inside.
  • the damper 1 2 3 0 is an example of a deceleration function unit
  • the self-closing device 1 2 5 0 is an example of a self-closing function unit.
  • the reducer 1 2 3 1 is a grease-sealed speed reducer that seals the grease in the sealed space 1 2 3 3 partitioned in the damper 1 2 3 0 and connects the sealed space with the first shaft 1
  • Multiple blades 1 2 3 5 fixed to 2 3 4 are configured, and when the blades 1 2 3 5 rotate, they are decelerated by resistance generated between them and surrounding grease (detailed explanation is omitted) ).
  • the one-way clutch 1 2 4 0 is composed of a spring and a second shaft 1 2 4 2.
  • the spring is tightly wound around the first shaft 1 2 3 4, and one end of the spring 1 2 4 1 is fixed to the second shaft 1 2 4 2.
  • the second shaft 1 2 4 2 is rotatably connected to the first shaft 1 2 3 4.
  • the second shaft 1 2 4 2 rotates freely with respect to the first shaft 1 2 3 4 in the direction in which the diameter of the spring 1 2 4 1 loosens, and in the direction in which the diameter of the spring 1 2 4 1 contracts. Is the axis
  • the second shaft 1 2 4 2 is free to rotate with respect to the first shaft 1 2 3 4 in the direction in which the door device 1 2 1 0 is pulled out, and the second shaft 1 2 2 in the reverse direction. 4 2 and shaft 1 2 3 4 have the same rotation.
  • the self-closing device 1 2 5 0 is formed in the damper 1 2 3 0, mainly the elastic body 1 2 5 1 and the clutch. It consists of mechanism 1 2 5 2 and connecting gear 1 2 5 3.
  • the elastic body 1 2 5 1 is a spring-shaped spring wound around the second shaft 1 2 4 2 communicating with the inside of the self-closing compartment, and the center end 1 2 5 1 a is the second shaft 1 2 5 4, the outer peripheral end 1 2 5 1 b is fixed to the body of the damper 1 2 3 0, and the elastic body 1 2 5 1 can store elastic energy by rotating the shaft in a certain direction.
  • the clutch mechanism 1 2 5 2 includes a gear 1 2 5 5 formed on the second shaft 1 2 4 2 and a stopper 1 2 5 6.
  • the stopper 1 2 5 6 is disposed in the vicinity of the gear 1 2 5 5, and the damper 1 2 5 7 stands upright when there is no load by the winding spring 1 2 5 7 and can be rotated in a fixed direction 1 2 3 It is fixed at 0.
  • the stopper lower end 1 2 5 6 a is in a position where it fits into the gear 1 2 5 5
  • the flange upper end 1 2 5 6 b is the damper 1
  • the connecting gear 1 2 5 3 is a gear configured on the second shaft 1 242.
  • Link mechanism 1 2 6 0 is a horizontal tooth fixed to the center of the bottom of the storage member In the state where the door device 1 2 1 0 is installed, the link mechanism 1 2 6 0 and the connecting gear 1 2 5 3 transmit the squeezing power.
  • a protrusion 1 2 61 is formed on the side wall of the link mechanism 1 2 60, which protrudes in the direction of the self-closing device 1 2 5 0.
  • the protrusion 1 2 6 1 repeatedly contacts and dissociates with the top end of the strobe 1 2 5 6 b.
  • the door device 1 2 1 0 is pulled forward, and the distance between the inner surface of the door 1 2 1 1 and the adjacent door 1 2 1 1 front is X
  • the linkage mechanism 1 2 6 0 and the connecting gear 1 2 5 3 are released from the engagement, and at the same time, the contact between the projection 1 2 6 1 and the stopper upper end 1 2 5 6 b is also released.
  • the stagger 1 2 5 6 is in an upright state.
  • XI is set between 40 mm and 200 mm. This is the distance at which a space is formed on the front surface of the door 1 2 1 1 adjacent to the inner surface of the door 1 2 1 1, and the distance considering the self-closing speed for operability.
  • the fully closed door device 1 2 1 0 gradually moves forward by being pulled by a human hand.
  • the link mechanism 1 2 6 0 is simultaneously moved forward, and the second shaft 1 2 4 2 rotates via the connecting gear 1 2 5 3.
  • inertial energy is stored in the elastic body 1 2 5 1 a.
  • the one-way clutch 1 2 4 0 The second shaft 1 2 4 2 is free to rotate with respect to the first shaft 1 2 3 4 due to the movement of the second shaft, that is, the connecting gear 1 2 5 3 is the damper 1 2 3 0 It is possible to rotate with almost no load without being affected by 2 5 6.
  • the door device 1 2 1 0 in the fully opened state gradually moves backward when pushed by a human hand, and the door device 1 2 1 0 becomes the first position, and further moves backward, so that the protrusion 1 2 6 1 comes into contact with the top end of the stagger 1 2 5 6 a, and the stopper 1 2 5 6 tilts backward, so that the elastic energy stored in the elastic body 1 2 5 1 is released and the second axis
  • the door device 1 2 1 0 performs a self-closing operation when 1 2 4 2 rotates in the reverse direction.
  • the speed reducer 1 2 3 1 is also operated at the same time. In this manner, the door device 1 2 1 0 is closed at the same time as being decelerated to a constant speed from the first position to the fully closed position.
  • the link mechanism 1 2 60 is disposed at the center of the storage member 1 2 1 3, the rail member 1 2 2 0 disposed on both sides has a substantially uniform force and is good. Operation becomes possible.
  • the door device 1 2 10 includes the storage members 1 2 1 3 in the plurality of spaces formed in the refrigerator main body 1 2 0 0, respectively.
  • a rail member 1 2 2 0 fixed to the refrigerator body 1 2 0 0 and capable of moving the storage member 1 2 1 3 back and forth in a drawer consisting of a door 1 2 1 1 provided on the front surface, Door 1 2 1 1 with self-closing function 1 2 3 0
  • the connecting gear 1 2 5 3 fixed to the body 1 2 0 0 and the damper 1 2 3 0 to the link mechanism 1 2 6 0 fixed to the storage member 1 2 1 3
  • the door 1 2 1 1 will be closed automatically while reducing the moving speed to a constant speed, and the drawer can be closed automatically while ensuring safety.
  • the shock absorber absorbs shock because the viscosity of the oil in the oil damper varies depending on the temperature characteristics.
  • the power is also different, Since the deceleration speed of the drawer varies greatly between the storage rooms in each temperature range, it has the problem of giving the user a bad impression of usability.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a door device that can surely provide an operational feeling of a deceleration operation and that improves usability, and a refrigerator that includes this door device.
  • the door device of the present invention includes a door that opens and closes the front opening of the K image that is maintained in a cooled or heated state formed in the housing, and a storage that stores articles.
  • a door device having a drawer provided with a member the rail member that enables the storage member to move back and forth, the self-closing mechanism that automatically closes the door, and the speed at which the door closes when the door closes is reduced.
  • the damper has a characteristic that switches between a first operation that performs a large deceleration when the door closing speed is fast and a second operation that performs a small deceleration when the door closing speed is slow.
  • the second operation of the damper is performed within the operating range of the self-closing mechanism.
  • the damper is an example of a deceleration function unit
  • the self-closing mechanism unit is an example of a self-closing function unit.
  • the door device of the present invention provides a large speed reduction effect when the user closes the door with a large force to obtain a large speed reduction effect, and a small speed reduction effect when the door speed is low. As a result, the ease of use of the door device can be greatly improved by being able to experience the deceleration function of the door device sensuously.
  • the door device of the present invention is a door device having a drawer provided with a door that opens and closes a front opening of a compartment that is formed in a housing and is maintained in a cooled or heated state, and a storage member that stores articles.
  • the storage member can be moved back and forth A self-closing mechanism that automatically closes the door, and a damper that decelerates the closing speed of the door when the door is closed, and the damper performs a large deceleration when the door closing speed is high. It has the characteristic of switching between one operation and a second operation that performs a small deceleration when the door closing speed is slow, and at least the second operation of the damper is performed within the operating range of the self-closing mechanism.
  • the damper decelerates the door closing speed only when the self-closing mechanism operates, and the door closing speed is reduced by the deceleration function when the door is closed. It is possible to prevent the failure to close the door.
  • the damper is continuously operated after the first operation of performing a large deceleration when the door closing speed is fast, and the door having a slow closing speed reduced by the first operation is based on the first operation. It has the characteristic of switching in stages so as to perform the second operation in which the deceleration is smaller than the deceleration. Since it always has a two-stage deceleration effect, it is possible to obtain a uniform sense of deceleration operation even between different doors provided in multiple compartments, greatly improving the ease of use of the door device by improving the quality of the deceleration operation. be able to.
  • the present invention has a plurality of compartments each having a plurality of drawers provided with drawers, the ambient temperatures of the plurality of dampers are different temperature zones, and a small deceleration is achieved when the door closing speed is slow.
  • the self-closing speed during the second operation to be performed is almost constant between the drawers provided in the compartments in different temperature zones, and the doors are completely closed between the different doors provided in the multiple compartments.
  • the deceleration speed of the door just before is constant. This further slows down The unity of operation can be obtained and the usability of the door device can be greatly improved.
  • the damper is a rectilinear damper in which oil is filled, and the oil is decelerated by viscous resistance when the oil passes through the flow path, and the oil passes during the first operation.
  • the flow passage area through which oil passes during the second operation is made larger than the flow passage area, and the deceleration speed of the door immediately before the door is completely closed is constant.
  • the damper is a straight-advancing damper filled with oil inside.
  • the damper disposed in the section having a low temperature includes: Filled with low viscosity oil.
  • the damper has an effective range in which a deceleration effect can be obtained and an invalid range in which a deceleration effect is hardly obtained.
  • the effective range is forward in the direction in which the damper operates, the invalid range. Is located behind. As a result, the deceleration effect does not act during the final operation of the damper, and the self-closing force of the self-closing mechanism can be reduced.
  • the length of the ineffective range of the damper disposed in the low temperature section of the section having different temperature zones is greater than the length of the ineffective range of the damper disposed in the high temperature section. Is also big. As a result, the operating speed of the dampers placed in the compartments with low temperatures increases, and the feeling of operation is even in the door devices placed in compartments with different temperature zones. Can be.
  • the damper since the damper is attached to the rail member in the inner part of the housing where the temperature fluctuation is small, it is difficult to be affected by the temperature fluctuation particularly when the door is opened and closed.
  • the operation feeling can be made uniform.
  • each of the plurality of compartments has different temperature zones
  • the self-closing mechanism for self-closing the door has at least an elastic body to obtain a self-closing force
  • the elastic body has different temperature zones.
  • the elastic force differs depending on the section.
  • the elastic force of the self-closing mechanism portion arranged in the low-temperature compartment among the compartments having different temperature zones is the same as that of the self-closing mechanism portion arranged in the high-temperature compartment. It is set larger than the elastic force.
  • the self-closing force of the self-closing mechanism portion arranged in the compartment having a low temperature increases, and the operational feeling can be made uniform even in the door device arranged in the compartment having a different temperature range.
  • the present invention forms a plurality of storage chambers that are substantially sealed by partitioning a plurality of compartments with heat insulating walls, and the temperature of the plurality of storage chambers is at least a refrigeration temperature zone and a freezing temperature zone.
  • the self-closing speed during the second operation is substantially constant even when the ambient temperature of the reduction gear is in a temperature range that differs greatly from the normal temperature, such as a refrigeration temperature range or the refrigeration temperature range.
  • the self-closing speed during the second operation which performs a small deceleration when the door closing speed is slow, is almost constant even between ambient temperatures in different temperature zones.
  • the deceleration speed of the second operation which is the deceleration operation of the door immediately before the door is completely closed, is almost constant, so that the refrigerator is sold at stores, etc. Even if it is held at room temperature, Compared with the case where the temperature is kept at the refrigeration temperature or freezing temperature range, almost the same deceleration speed can be obtained. For this reason, there is an effect that the user can experience the deceleration function under actual use conditions even in a refrigerator that is not cooled.
  • the speed reduction operation of the door device in a plurality of storage rooms such as a vegetable room and a freezer room can be made uniform.
  • the present invention is not limited by this embodiment (Embodiment 3).
  • FIG. 21 is a side view of the door device according to Embodiment 3 of the present invention.
  • FIG. 22 is a configuration diagram of a main part of the door device according to Embodiment 3 of the present invention.
  • FIG. 23 is a main part configuration diagram of the door device according to the third embodiment of the present invention.
  • FIG. 24 is a cross-sectional view taken along line AA in FIG. 23 of the door device according to Embodiment 3 of the present invention.
  • FIG. 25 is a main part configuration diagram of the door device according to the third embodiment of the present invention.
  • FIG. 26 is a viscosity characteristic diagram with respect to temperature change of silicon oil in the door device in Embodiment 3 of the present invention.
  • FIG. 27 is a configuration diagram of main parts of the door device according to Embodiment 3 of the present invention.
  • FIG. 28 is a characteristic diagram of the operating time at each temperature of the door device according to Embodiment 3 of the present invention.
  • FIG. 29 is an operation diagram of the door device according to the third embodiment of the present invention.
  • FIG. 30 is an operation diagram of the door device according to the third embodiment of the present invention.
  • FIG. 31 is an operation diagram of the door device according to the third embodiment of the present invention.
  • Figure 2 1, Figure 2 2, Figure 2 3, Figure 2 4, Figure 25, Figure 26, Figure 27 The casing 2 1 0 0 is partitioned into two different temperature zones, and the first partition 2 1 0 2 as the partition is the same temperature as the temperature outside the casing, and the second partition as the partition Section 2 1 0 3 is set to have a temperature of about 10 ° C lower than that of the first section 2 1 0 2.
  • the door device 2 1 1 0 is arranged in the housing 2 1 0 0, and is composed of a lid 2 1 1 1 that seals the front surface and a storage member 2 1 1 2 for storing articles whose upper surface is opened. Has been.
  • the handle 2 1 1 3 is an operation unit formed on the front surface of the lid 2 1 1 1.
  • the rail member 2 1 2 0 is arranged opposite to both sides of the door device 2 1 1 0, and is mainly the operation rail 2 1 2 1 and the intermediate rail 2 1 2 2 and the fixed rail 2 1
  • the operating rail 2 1 2 1 can move horizontally back and forth with the door device 2 1 1 0.
  • the intermediate rail 2 1 2 2 is a rail connecting the operating rail 2 1 2 1 and the fixed rail 2 1 2 3 so that it can move horizontally with both the operating rail 2 1 2 1 and the fixed rail 2 1 2 3 It is connected to.
  • the fixed rail 2 1 2 3 is fixed to the housing 2 1 0 0 so that the door device 2 1 1 0 can be moved horizontally.
  • the self-closing mechanism 2 1 3 0 is mainly composed of guide rails 2 1 3 1 and inclined members 2 1
  • the guide rail 2 1 3 1 is connected to the release end of the damper 2 1 4 0 and is fixed to the fixed rail 2 1 2 3.
  • the side wall of the guide rail 2 1 3 1 is formed with a groove 2 1 3 1 a that opens the end of the damper 2 1 4.0, and the upper wall of the guide rail 2 1 3 1 is a groove that is closed at both ends.
  • 2 1 3 1 b is formed.
  • a groove 2 1 3 1 c is formed in the vicinity of the front side wall end of the guide rail 2 1 3 1, and a groove 2 1 3 1 c is formed in the lower wall of the guide rail 2 1 3 1.
  • 3 1 d is formed.
  • the self-closing mechanism unit 2 1 3 0 is an example of a self-closing function unit.
  • the inclined member 2 1 3 2 is rotatably connected to the end of the damper 2 1 40 at the first connecting portion 2 1 3 2 a, and the first connecting portion 2 1 3 2 a is the groove 2 1 3 1 a Guided to move horizontally.
  • two protrusions 2 1 3 2 b and 2 1 3 2 c are formed on the top of the inclined member 2 1 3 2, and these two protrusions 2 1 3 2 b and 2 1 3 2 c It protrudes from the upper wall of the guide rail 2 1 3 1 and is inserted into the groove 2 1 3 1 b to move horizontally.
  • a second connecting portion 2 1 3 2 d protruding downward is formed below the first connecting portion 2 1 3 2 a.
  • the lower end of the second connecting portion 2 1 3 2 d is a guide.
  • Rail 2 1 3 1 penetrates the groove 2 1 3 1 d formed in the lower wall.
  • the damper 1 2 40 is an example of a deceleration function unit.
  • Link mechanism 2 1 3 3 is mainly composed of plate 2 1 3 3 a and roller 2 1 3 3 b, and plate 2 1 3 3 a is downward with respect to the side wall of operating rail 2 1 2 1 It is fixed towards.
  • the roller 2 1 3 3 b is a cylindrical body member that is rotatably disposed at the lower end of the plate 2 1 3 3 a. In the installed state, the two protrusions 2 1 3 2 b, 2 1 3 2 c Position between.
  • the elastic body 2 1 3 4 connects the outer rear end of the damper 2 1 40 and the lower end of the second connecting portion 2 1 3 2 d of the inclined member 2 1 3 2.
  • the damper 2 1 4 0 is a rectilinear damper that is arranged at the rearmost part of each section and is connected to the rear end of the guide rail 2 1 3 1. Mainly the damper main body 2 1 4 1 and the operating shaft 2 It consists of 1 42.
  • the damper body 2 1 4 1 has a structure in which a piston is arranged in a cylindrical casing and filled with silicon oil 2 1 4 3, and its operation is switched to the second stage in response to such a load. Yes. Specifically, when a high load is generated as a load, the flow area between the damper main body 2 1 4 1 and the piston is reduced so that a high deceleration effect is exerted. 4 3 Viscous resistance increases and damper 2 1 4 This is the first operation in which an operation load of 0 is increased. When the load is reduced, the flow area between the damper body and the piston is increased so that a slightly smaller deceleration effect is exhibited.
  • the operating shaft 2 1 4 2 is a shaft connected to the piston of the damper body 2 1 4 1, and its front end is connected to the first connecting part 2 1 3 2 a of the inclined member 2 1 3 2 .
  • the second silicone oil 2 1 4 3 b filled in the second damper 2 1 4 0 b arranged in 3 has different viscosity characteristics, and the viscosity of each viscosity characteristic decreases with increasing temperature To do.
  • the viscosity of the second silicone oil 2 1 4 3 b is the viscosity of the first silicone oil 2 1 4 3 a at a high temperature of 10 ° C and It shows almost the same value.
  • the door device 2 1 1 0 is pulled forward, and the inclined member is at the first position where the distance between the inner surface of the lid 2 1 1 1 and the front surface of the housing 2 1 0 0 is L 1.
  • 2 1 3 2 tilts as protrusion 2 1 3 2 b fits into groove 2 1 3 1 c.
  • the connection between the inclined member 2 1 3 2 and the self-closing mechanism part 2 1 3 0 is released, and the self-closing mechanism part 2 1 3 0 is moved to the first position by the action of the inclined inclination member 2 1 3 2.
  • the fully open door device 2 1 1 0 is gradually moved backward when the handle 2 1 1 3 is pushed by a human hand, and the door device 2 1 1 0 becomes the first position.
  • the roller 2 1 3 3 b comes into contact with the projection 2 1 3 2 c, and the tilting of the inclined member 2 1 3 2 is released, and the operating shaft 2 is moved by the elastic force of the elastic body 2 1 3 4
  • the link mechanism moves backward together with the inclined member 2 1 3 2 connected to 1 4 2 2
  • the door device 2 1 1 0 performs a self-closing operation while being decelerated by the damper 2 1 40.
  • the damper 2 1 4 0 has a structure in which its operation is switched in two stages with respect to the load, and the door device 2 1 1 0 accelerated by a human hand is the first of the damper 2 1 4 0. It is greatly decelerated by one action. After that, the decelerated door device 2 1 1 0 is slowly closed by the second operation of the damper 2 1 4 0.
  • a general damper with a constant flow path area it is affected by the viscosity characteristics of the silicone oil 2 1 4 3 due to temperature changes in all of the deceleration processes, and with the difference in ambient temperature Although there is a noticeable difference in the operating time of the door device 2 1 1 0.
  • the damper that switches its operation in two steps as in this embodiment 2 1 In the case of 4 0, the first operation is that the viscous resistance of the silicone oil 2 1 4 3 in the flow path increases because the flow area between the damper body 2 1 4 1 and the piston becomes smaller, so the damper 2 1 The operating load of 40 also increases, and a large deceleration effect is obtained. At this time, since the viscous resistance in the flow path is large, it is easily affected by the viscosity characteristics of silicone oil 2 14 3 due to temperature changes.
  • the damper 2 1 4 0 which has a second action that has a lower speed reduction effect and is less susceptible to the viscosity characteristics due to temperature changes, is compared to a damper that always has a speed reduction effect like a normal damper.
  • the operating time of a certain door device 2 1 1 0 can be made uniform to some extent, and the effect of viscosity characteristics due to temperature changes can be reduced.Therefore, in the second operation immediately before the door closes, the door Since the self-closing speed can be obtained, the quality of the door device can be further improved and the usability can be improved.
  • the viscosity of the second silicone oil 2 1 4 3 b is almost the same as the viscosity of the first silicone oil 2 1 4 3 a at a high temperature of 10
  • the operation time of the door device 2 1 1 0 in the first compartment 2 1 0 2 and the door device 2 1 1 0 in the second compartment 2 1 0 3 is substantially the same level.
  • the damper 2 1 4 0 is disposed at the rearmost part of each of the partitions 2 1 0 2 and 2 1 0 3, the damper 2 1 4 is caused by the entry and exit of outside air when the door device 2 1 1 0 is opened and closed.
  • the temperature change of 0 itself becomes small.
  • the door device 2 1 1 0 includes the housing 2 having the storage member 2 1 1 2 in the first compartment 2 1 0 2 and the second compartment 2 1 0 3, each having a different temperature zone.
  • the door device 2 1 1 0 consisting of 1 0 0 and the door 2 1 1 1 provided in front of the storage member 2 1 1 2, it is fixed to the housing 2 1 0 0 and the storage member 2 1 1 2 Only while the rail member 2 1 2 0 and the self-closing mechanism 2 1 3 0 that automatically closes the door 2 2 1 1 1 and the self-closing mechanism 2 1 3 0 are operating
  • the door 2 2 1 1 1 has a damper 2 1 4 0, and the damper 1 2 1 4 0 has a structure that switches its operation in two stages with respect to this load.
  • the damper 2 1 4 0 which has a second action that has a small deceleration effect and is not easily affected by the viscosity characteristics due to temperature changes, is less affected by the viscosity characteristics due to temperature changes. , Even if the temperature change has been made, the operation speed of the door device 2 1 1 0 becomes uniform.
  • first damper 2 1 disposed in the door device 2 1 1 0 of the first section The first silicone oil 2 1 4 3 a filled in 4 0 a and the second silicone oil 2 filled in the second damper 2 1 4 0 b arranged in the door device 2 1 1 0 of the second section 2 Since the viscosity characteristics of 1 4 3 b are changed so as to eliminate the viscosity difference of the silicone oil due to the temperature difference between the two compartments, the operating speed of each door device 2 1 10 becomes uniform.
  • the damper 2 1 4 0 is attached to the back of the compartment where the temperature fluctuation is small, so that it is less susceptible to temperature fluctuations especially when the door device 2 1 1 0 is opened and closed.
  • the operating feeling of the door device 2 1 1 0 can be made uniform.
  • the dampers 2 1 4 0 are respectively configured with respect to the rail members 2 1 2 0 arranged to face both side surfaces of the door device, but either one of the rail members It is possible to reduce the cost by arranging the damper 2 1 4 0 only on the side.
  • a refrigerator having a refrigeration cycle as a heat source is taken up as an example of a device having a door that opens and closes a front opening of a compartment formed in a casing and maintained in a cooled or heated state. It was.
  • the present invention can be applied not only to refrigerators, but also to other cooling devices equipped with a drawer-type door, and has a heating source such as a heater as a heat source to heat and keep the inside of the compartment. The same effect can be achieved even if it is applied to the equipment.
  • the door is closed when it is not in a store or when it is not warmed or warmed during storage, and when the temperature of the damper 2 1 4 0 changes due to cooling or warming during actual use.
  • the feeling of operation can be maintained at a level with almost no sense of incongruity, particularly with the door device 2 110 of the present embodiment.
  • the operational feeling between the multiple door devices 2 1 1 0 Therefore, the practical effect of equalizing the operation of the damper 2 1 4 0 by the door device 2 1 1 10 of the present embodiment becomes even more valuable.
  • FIG. 32 is a side view of the refrigerator provided with the door device in the fourth embodiment of the present invention.
  • FIG. 33 is a configuration diagram of a main part of the door device according to Embodiment 4 of the present invention.
  • FIG. 34 is a configuration diagram of the main part of the door device according to the fourth embodiment of the present invention.
  • a storage room for food or the like which is a compartment having different temperature zones, is formed in the lower part of the refrigerator body 2 2 0 0.
  • the freezer compartment 2 2 0 1 arranged at the lowermost part of the refrigerator main body 2 2 0 0 is cooled so that the room temperature is from ⁇ 18 ° C. to ⁇ 30 ° C.
  • the vegetable room 2 2 0 2 arranged in the upper stage of the freezer room 2 2 0 1 is cooled so that the room becomes 2 ° C to 7 ° C.
  • the door device 2 2 1 0 is disposed in the refrigerator body 2 2 0 0 and has a lid 2 2 1 1 that seals the front surface and a storage member 2 2 1 2 for storing articles such as food with an open top surface. It is composed of Node 2 2 1 3 is an operation part formed on the front surface of the lid 2 2 1 1.
  • the gasket 2 2 1 4 is a seal member formed on the inner surface of the lid 2 2 1 1 and having a magnet inside.
  • the damper 2 2 4 0 is a linear damper connected to the rear end of the guide rail 2 1 3 1, mainly the damper body 2 2 4 1 the damper body 2 2 4 1 and the operating shaft 2 2 4 5 It is composed of The damper 2 2 4 0 is an example of a deceleration function unit.
  • the damper body 2 2 4 1 has a structure in which a biston is arranged in a cylindrical casing and filled with silicon oil 2 2 4 2, and its operation is switched to the second stage in response to such a load. Yes. Specifically, when a high load is generated as a load, the operating load of damper 2 2 4 0 is large. When the load decreases, the second operation becomes a smaller operation load of the damper.
  • the damper body 2 2 4 1 has two compartments, and the effective range 2 2 4 3 is relative to the direction in which the movable shaft 2 2 4 5 is stored in the damper body 2 2 4 1.
  • the zone where the operating load is generated, and the invalid range 2 2 4 4 is the zone where the operating load is not generated in the same direction.
  • the effective range length X 1 is the length of the effective range 2 2 4 3 of the first damper 2 2 40 0 a disposed in the freezer compartment 2 2 0 1.
  • the invalid range length Y 1 is the length of the invalid range 2 2 4 4 of the first damper 2 2 4 0 a disposed in the freezer compartment 2 2 0 1.
  • the effective range length X 2 is the length of the effective range 2 2 4 3 of the second damper 2 2 4 0 b arranged in the vegetable compartment 2 2 0 2.
  • the invalid range length Y 2 is the length of the invalid range 2 2 4 4 of the second damper 2 2 4 0 b arranged in the vegetable compartment 2 2 0 2.
  • the operating shaft 2 2 4 5 is a shaft connected to the piston of the damper body 2 2 4 1, and its front end is connected to the first connecting part 2 1 3 2 a of the inclined member 2 1 3 2 .
  • the lengths of the first damper 2 2 4 0 a and the second damper 1 2 2 4 0 b are the same, and the effective range length X 1 is set shorter than the effective range length X 2, and at the same time the invalid range The length Y1 is set longer than the invalid range Y2.
  • the door device 2 2 10 in the open state gradually moves rearward when the handle 2 2 1 3 is pushed by a human hand, and the door device 2 2 1 0 becomes the first position.
  • the roller 2 1 3 3 b comes into contact with the projection 2 1 3 2 c, and the tilting of the inclined member 2 1 3 2 is released, and the elastic force of the elastic body 2 1 3 4
  • the link mechanism 2 1 3 3 moves rearward together with the inclined members 2 1 3 2 connected to the doors 2 2 4 5
  • the door device 2 10 is self-closed while being decelerated by the damper 2 2 4 0 Perform the action.
  • the invalid range length Y1 of the first damper 2 2 4 0 a disposed in the door device 2 2 1 0 of the freezer 2 2 0 1 is the vegetable room 2 2 0 2
  • the door unit installed in the freezer compartment 2 2 0 1 is set longer than the invalid range Y 2 of the second damper 2 2 4 0 b installed in the 2 2 1 0 Deceleration operation time of 2 2 1 0 can be shortened.
  • the effective range length XI can be shortened to obtain a minimum deceleration effect. I can't.
  • the operation is switched in two steps with respect to such a load as in this embodiment, even if the effective range length X 1 is shortened, a short effective range length is sufficient. A deceleration effect can be obtained.
  • the gasket 2 2 1 4 and the refrigerator body 2 2 0 0 have the maximum opening force in the fully closed state where they are adsorbed by magnetic force, whereas the fully closed state Damper at 2 2 4 0 is invalid range 2 2
  • the damper 2 2 4 0 has little effect on the maximum opening force because it is located at 4 4 and has no drag.
  • the viscosity of the silicone oil 2 2 4 2 of the damper 2 2 4 0 decreases as the temperature rises as shown in Fig. 26.
  • the operation is switched in two stages, and the silicone oil 2 2 4 2 and elastic body 2 1 3 4 filled in each damper 2 2 4 0 are the same. Even if the lengths XI and X 2 have different lengths, the door device 2 2 1 0 will have almost the same operating time, and a minimum deceleration effect can be obtained. You can experience this.
  • the damper 2 2 4 0 has a first operation that obtains a high deceleration effect when the closing speed of the door 2 2 1 1 is fast, and a low deceleration when the closing speed of the door 2 2 1 1 is slow.
  • the second action By switching the second action to obtain the effect in stages, the speed of door 2 2 1 1 accelerated by the force applied to door 2 2 1 1 by the hand of the person is reduced, and door 2 2 1 The impact sound when 1 and the refrigerator body 2 2 0 0 come into contact with each other can be reduced.
  • the damper 2 2 4 0 can reduce the self-closing force of the door 2 2 1 1 by having a second operation that obtains a low deceleration effect when the closing speed of the door 2 2 1 1 is slow.
  • the design of the closing mechanism 2 2 3 0 is facilitated.
  • the damper 2 2 4 0 has an effective range 2 2 4 3 where the deceleration effect can be obtained and an invalid range 2 2 4 4 where the deceleration effect can hardly be obtained.
  • the effective range is located at the front and the invalid range 2 2 4 4 is located at the rear, the resistance of the damper 2 2 4 0 before fully closed can be reduced, and the door device 2 2 1 0 Reduce the door opening force.
  • the damper 2 2 4 0 is arranged in the door device 2 2 1 0 of the freezer compartment 2 2 0 1
  • the ineffective range length Y1 of the first damper 2 2 4 0 a installed is the ineffective range length Y of the second damper 2 2 4 0 b installed in the door device 2 2 1 0 of the vegetable compartment 2 2 0 2
  • the operating time of the 2 2 0 2 door device 2 2 1 0 is almost the same level, and even the door device 2 2 1 0 arranged in different compartments of the temperature zone can make the operation feeling uniform.
  • FIG. 35 is a main part configuration diagram of the door device according to the fifth embodiment of the present invention.
  • FIG. 36 is a main part configuration diagram of the door device according to the fifth embodiment of the present invention.
  • FIG. 37 is a characteristic diagram of the elastic body of the door device in accordance with the fifth exemplary embodiment of the present invention.
  • the self-closing mechanism 2 3 3 0 is mainly composed of guide rails 2 1 3 1 and inclined members 2 1
  • the self-closing mechanism portion 2 3 3 0 is an example of a self-closing function portion.
  • the elastic body 2 3 3 4 connects the rear end of the damper 2 2 40 and the lower end of the second connecting portion 2 1 3 2 d of the inclined member 2 1 3 2.
  • the damper 2 2 4 0 is a rectilinear damper connected to the rear end of the guide rail 2 2 3 1, mainly the damper main body 2 2 4 1 and the operating shaft 2
  • the damper body 2 2 4 1 has screws in a cylindrical casing, and the same silicon oil 2 2 4 2 is filled in the freezer compartment 2 2 0 1 and vegetable compartment 2 2 0 2 (Details not shown).
  • the difference in elastic force when the displacement of the elastic bodies 2 3 3 4 a and 2 3 3 4 b is L 1 is due to the temperature difference between the freezer compartment 2 2 0 1 and the vegetable compartment 2 2 0 2. It is set to be almost equal to the resistance difference of the amplifier 2 2 4 0.
  • the first elastic body 2 3 3 4 a is the same as the second elastic body 2 3 3 4 Elastic body 2 3 3 4 b Has stronger elastic force than b.
  • the operation and action of the door device configured as described above will be described below.
  • the freezer compartment 2 2 0 1 when the elastic bodies 2 3 3 4 disposed in the door devices 2 3 10 of the freezer compartment 2 2 0 1 and the vegetable compartment 2 2 0 2 have the same elastic force, the freezer compartment 2 2 0 1
  • the self-closing operation time of the door device 2 3 1 0 is longer than the self-closing operation time of the door device 2 2 1 0 of the vegetable compartment 2 2 0 2.
  • the inertial force of the first elastic body 2 3 3 4 a disposed in the door device 2 2 10 of the freezing chamber 2 2 0 1 is the freezing chamber 2 2 0 1 and Vegetable room 2 2 0 2's second elastic force arranged in the vegetable room 2 2 0 2 door device 2 2 1 0 so as to eliminate the difference in resistance of the damper 2 2 4 0 due to the temperature difference of 2 2 0 2 3 3 4 Since the setting is stronger than b, the operating time of the door device 2 2 1 0 in the freezer compartment 2 2 0 1 and the vegetable compartment 2 2 0 2 is almost the same level.
  • the elastic body 2 3 3 4 includes the first elastic body 2 3 3 4 a disposed in the door device 2 3 10 of the freezing room 2 2 0 1 and the vegetable room 2 2.
  • the second elastic body 2 3 3 4 b arranged in the door device 2 3 1 0 eliminates the difference in the operating force of the damper caused by the temperature difference between the storage chambers.
  • the elastic force of the first elastic body 3 3 4 a is set stronger than the elastic force of the second elastic body 2 3 3 4 b, the operating speed of each door device 2 3 1 0 becomes uniform and used A person can obtain a uniform feeling of operation.
  • FIG. 38 is a side view of the door device according to the sixth embodiment of the present invention.
  • FIG. 39 is a main part configuration diagram of the door device according to the sixth embodiment of the present invention.
  • the first section 2 4 0 2 is a section formed in the casing 2 1 0 0, and the second section 2 4 0 3 is below the first section 24 0 2 It is a section formed in the direction.
  • the internal volume of the first compartment 240 is set larger than the internal volume of the second compartment 2403.
  • the door device 2 4 1 0 is disposed in the first compartment 2 4 0 2 and the second compartment 240 3.
  • the door device 24 10 a is arranged in the first section 2 4 0 2
  • the door device 2 4 1 0 b is arranged in the second section 2 4 0 3.
  • the door device 2 4 10 is composed of a lid 2 4 1 1 for sealing the front surface and a storage member 2 4 1 2 having an open top surface.
  • Handle 2 4 1 3 The handle 24 1 3 is an operation unit formed on the front surface of the lid 24 1 1.
  • the internal volume V 1 is the loading capacity of the storage member 2 4 1 2 a of the door device 2 4 10 a.
  • the internal volume V 2 is the loading capacity of the storage member 2 4 1 2 b of the door device 2 4 10 0 b.
  • the internal volume V I is set to be larger than the internal volume V 2.
  • the load capacity that can be loaded on each door device 2 4 1 0 a and 2 4 1 0 b varies depending on the difference in internal volume VI and V 2, and the load G 1 is stored in the door device 24 1 0 a. This is the weight that can be loaded on the member 24 1 2 a.
  • the load G 2 is a weight that can be loaded on the storage member 2 4 1 2 b of the door device 2 4 1 0 b.
  • the load G 1 is greater than the load 2. W
  • the self-closing mechanism 2 4 3 0 mainly consists of guide rails 2 4 3 1 and inclined members 2 4
  • the guide rail 2 4 3 1 is connected to the free end of the elastic body fixing member 2 4 3 5 and is fixed to the fixed rail 2 1 2 3.
  • the upper wall of the guide rail 2 4 3 1 is formed with a groove 2 4 3 1 a closed at both ends.
  • a groove 2 4 3 1 b with an upper opening is formed near the front side wall end of the guide rail 2 4 3 1, and a groove 24 3 with both ends closed is formed on the lower wall of the guide rail 2 4 3 1. 1 c is formed.
  • 43 0 is an example of a self-closing function unit.
  • the inclined member 24 3 2 is accommodated in the guide rail 2 4 3 1 so as to be horizontally movable, and two protrusions 24 3 2 a and 2 3 4 2 b are formed on the upper portion of the inclined member 2 4 3 2.
  • the two protrusions 2 4 3 2 a and 2 4 3 2 protrude from the upper wall of the guide rail 2 4 3 1 and are fitted in the grooves 2 4 3 1 a to move in the horizontal direction.
  • a downwardly projecting connecting portion 2 4 3 2 c is formed below the inclined member 2 4 3 2, and the lower end of the connecting portion 2 4 3 2 c is below the guide rail 2 4 3 1 It penetrates the groove 2 4 3 1 c formed in the wall.
  • Link mechanism 2 4 3 3 mainly consists of plate 2 4 3 3 a and roller 2 4 3 3 b, and plate 2 4 3 3 a is the side wall of operation rail 2 4 2 1 It is fixed towards.
  • the roller 2 4 3 3 b is a cylindrical body member that is rotatably disposed at the lower end of the plate 2 4 3 3 a. In the installed state, the roller 2 4 3 3 b has two protrusions 24 3 2 a and 2 4 3 2 b Position between them.
  • the elastic body 2 4 3 4 connects the rear end of the elastic body fixing member 2 4 3 5 and the lower end of the connecting portion 243 2 c of the inclined member 2 43 2.
  • the elastic force of the first elastic body 2 4 3 4 a installed in the door device 2 4 1 0 a is the same as that of the second elastic body 2 4 3 4 b installed in the door device 2 4 1 0 b. It is set larger than the elastic force.
  • the damper 2 4 4 0 is a straight-ahead damper fixed to the housing 2 4 0 0 below the housing member 2 4 1 2, mainly the damper main body 2 4 4 1 and the operating shaft 2 4 4 2
  • the damper 1 2 4 4 0 is an example of a deceleration function unit.
  • the first damper 2 4 40 0 a is disposed in the first section 2 4 0 2 and the second damper 2 4 4 0 b is disposed in the second section 2 4 0 3.
  • the damper body 2 4 4 1 has a structure in which a piston is disposed in a cylindrical casing and filled with silicon oil 2 4 4 3, and its operation is switched to the second stage in response to such a load. Yes. Specifically, when a high load is generated as a load, the damper 2 44 0 becomes the first operation in which the operating load increases, and when the load decreases, the operation load of the damper 2 44 0 decreases. Two operations are performed.
  • Silicon oil 2 4 4 3 a sealed in the first damper 2 4 4 0 a is sealed in the second damper 2 4 4 0 b so that the first damper 2 4 4 0 a can achieve a greater deceleration effect Viscosity is set higher than silicon oil 2 4 4 3 b.
  • a return panel is built into the damper body 2 4 4 1, and the operating shaft 2 4 4 2 is pushed forward when no load is applied (details not shown).
  • the operating shaft 2 4 4 2 is a shaft connected to the piston of the damper main body 2 4 4 1, and a contact member 2 4 4 4 is formed at the front end thereof. Further, a projection 2 4 4 5 is formed on the lower surface of the storage member 2 4 1 2 at a position facing the contact member 2 4 4 4.
  • the door device 2 4 1 0 is pulled forward, and the inner surface of the lid 2 4 1 1 In the first position where the distance between the front surfaces of the housing 2 4 0 0 is L 1, the inclined member 2 4 3 2 tilts because the protrusion 2 4 3 2 a fits into the groove 2 4 3 1 b To do.
  • the connection between the inclined member 2 4 3 2 and the self-closing mechanism portion 2 4 3 0 is released, and the self-closing mechanism portion 24 3 0 moves to the first position by the action of the inclined inclined member 2 4 3 2. maintain.
  • the abutting member 2 444 and the protrusion 2 445 abut and are applied to the door device 2 4 1 0.
  • the self-closing force is buffered by the damper 2440. Become.
  • the door device 2 4 1 0 in the open state When the door device 2 4 1 0 in the open state is gradually moved backward when the handle 2 4 1 3 is pushed by a human hand, the door device 2 4 1 0 becomes the first position and further moves backward.
  • the rollers 2 4 3 3 b abut against the protrusions 2 4 3 2 b, the tilt of the inclined members 2 4 3 2 is released, and the rollers 2 4 3 3 are self-closed by the elastic force of the elastic bodies 2 4 3 4.
  • the abutting member 2444 and the projection 2 4 4 5 abut, and the self-closing force applied to the door device 2 4 10 is buffered by the damper 2440, so that a deceleration effect is obtained.
  • the internal volume VI of the door device 2 4 1 a a arranged in the first compartment 2 4 0 2 is the internal volume of the door device 2 4 1 0 b arranged in the second compartment 2 4 0 3 It is larger than V 2 and the load G 1 of the door device 2 4 10 0 a arranged in the first compartment 2 4 0 2 is equal to the door device 2 4 arranged in the second compartment 2 4 0 3 Larger than the load capacity G 2 of 1 0 b.
  • the viscosity of silicon oil 2 443 3 a is set higher than that of silicon oil 244 3 b, so the door device 2 4 10 0 a has a sufficient deceleration effect for larger loads. be able to.
  • the elastic force of the first elastic body 2 4 3 4 a installed in the door device 2 4 1 0 a is the elasticity of the second elastic body 2 4 3 4 b installed in the door device 2 4 10 0 b. Since it is set larger than the force, the door device 2 4 1 0 a can obtain a sufficient self-closing effect for a larger load.
  • the door device 2 4 1 0 is a door device with a large load capacity and load capacity in the door devices 2 4 1 0 a and 2 4 1 0 b with different load loads and load capacities.
  • the deceleration effect and self-closing effect of device 2 4 1 0 a relative to door device 2 4 1 0 b sufficient deceleration effect and self-closing force can be obtained for a large load.
  • the operation speeds of the respective door devices 2 4 1 0 a and 2 4 1 0 b are uniform.
  • the rectangular drawer is susceptible to changes in the center of gravity in the longitudinal direction of the drawer due to increase / decrease of the load load and movement of the storage location. There is a problem that the self-closing operation becomes unstable due to wiggling.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a door device capable of a stable self-closing operation even in a rectangular drawer.
  • the door device of the present invention is capable of moving the drawer back and forth, with a drawer provided with a housing in the space, a drawer provided on the front surface of the container, and the drawer.
  • a self-closing function part that self-closes the door, and a damper that acts on the door only while the self-closing function part is in operation.
  • rail members and dampers are provided at least on both sides of the center of gravity of the drawer.
  • the damper is an example of a deceleration function unit.
  • the center of gravity of the drawer is located between the dampers, and it is possible to perform self-closing and deceleration while supporting both sides of the center of gravity. Reduced stickiness and stable self Close operation is possible.
  • the door device of the present invention is disposed in the housing in order to make it possible to move the drawer forward and backward, and a drawer provided with a housing provided with a container in the space, a door provided on the front surface of the container.
  • the door is rectangular and the rail member and the damper are the door. There are at least one each on both sides of the central axis in the longitudinal direction.
  • the door device of the present invention reduces the back and forth rattling during self-closing and deceleration, and enables stable self-closing operation, so that the self-closing operation can be performed smoothly and the convenience of the refrigerator is improved. be able to.
  • the present invention relates to a housing provided with a container in a space, a drawer provided with a door provided on the front surface of the container, and a rail member disposed on the housing to enable the drawer to move back and forth. It has a self-closing function part that self-closes the door, and a damper that acts on the door only while the self-closing function part is in operation.
  • the door is rectangular and the rail member and damper have a center of gravity for the drawer. There are at least one place on each side. By doing this, the center of gravity of the drawer is located between the dampers arranged above and below, and it is possible to perform self-closing and deceleration operations while supporting both sides sandwiching the center of gravity. Longitudinal shakiness is reduced, and a stable self-closing operation is possible.
  • the present invention provides a drawer including a housing provided with a container in the space, a door provided on the front surface of the container, and the drawer can be moved back and forth.
  • a rail member disposed in the housing, a self-closing function part that self-closes the door, and a damper that acts on the door only while the self-closing function part is in operation.
  • at least one rail member and one damper are provided on both sides of the door in the vertical direction.
  • the door has a vertically long shape with the vertical direction as the longitudinal direction. Furthermore, even in a drawer with a long up and down direction that tends to become unstable due to a slight movement of gravity, the top and bottom of the drawer are Shaking in the direction can be reduced, and stable self-closing operation becomes possible.
  • the present invention increases the number of rail members more than the number of rail members installed on the rail member door, thereby stabilizing the deceleration operation by the dampers in the drawer and further increasing the number of rails. Shaking in the longitudinal direction during closing and deceleration is reduced, and stable self-closing operation becomes possible.
  • the rail member is provided at three or more locations on the wall surface inside the housing, and the imaginary line connecting the adjacent rail members viewed from the front side is arranged in a substantially triangular or substantially rectangular shape
  • the damper is disposed in the vicinity of the rail member or in the vicinity of the rail member at least on the long side of a substantially triangular or substantially rectangular shape.
  • the rail member is provided at three or more locations on the wall surface inside the housing.
  • the imaginary line connecting the adjacent rail members as viewed from the front side is arranged in a substantially triangular or substantially rectangular shape, and the damper is at least diagonally located in the vicinity of the rail member or the rail member. It is arranged. This makes it possible to operate stably even if the number of installed dampers is reduced by approaching the imaginary line connecting the dampers where the center of gravity of the drawers is arranged. .
  • the present invention enables a more stable self-closing operation and lowers the cost and reduces the door opening force even in a refrigerator whose capacity is likely to change greatly by mounting the door device in the refrigerator. It becomes.
  • the present invention is not limited by this embodiment (Embodiment 7).
  • FIG. 40 is a front view of a refrigerator provided with a door device according to Embodiment 7 of the present invention.
  • FIG. 41 is a diagram showing an internal configuration of a refrigerator provided with the door device of the embodiment.
  • FIG. 42 is a cross-sectional view taken along line C-C in FIG.
  • FIG. 43 is a diagram showing a configuration of a rail member of the door device of the embodiment.
  • the casing 3 1 0 0 is partitioned into a plurality of spaces, and the door device 3 1 1 0 and the door device 3 1 are respectively formed in the partitions. 20 is arranged.
  • the door device 3 1 1 0 is a substantially square drawer, and is mainly composed of a door 3 1 1 1, a container 3 1 1 2, a first rail member 3 1 3 0 a, and a damper 3 1 4 0. ing.
  • the damper is an example of a deceleration function unit.
  • the door device 3 1 2 0 is a vertically long drawer, and is mainly composed of the door 3 1 2 1, the container 3 1 2 2, the first rail member 3 1 3 0 a, and the damper 3 1 4 0.
  • the door 3 1 1 1 is a horizontally long plate, and a container 3 1 1 2 for storing articles is fixed on the inner surface thereof.
  • the door 3 1 2 1 is a vertically long plate, and a plurality of containers 3 1 2 2 for storing articles are arranged on the inner surface thereof in the vertical direction.
  • the first rail member 3 1 3 0 a is mainly composed of the operating rail 3 1 3 1, the intermediate rail 3 1 3 2, the fixed rail 3 1 3 3, and the self-closing function part 3 1 3 4 .
  • the moving rail 3 1 3 1 can move horizontally back and forth with the doors 3 1 1 1 and 3 1 2 1.
  • the intermediate rail 3 1 3 2 is a rail connecting the operating rail 3 1 3 1 and the fixed rail 3 1 3 3 and is connected to both the operating rail 3 1 3 1 and the fixed rail 3 1 3 3 so that they can move horizontally. It has been.
  • the fixed rail 3 1 3 3 is fixed to the housing 3 1 0 0 so that the door 3 1 1 1 and the door 3 1 2 1 can be moved horizontally.
  • the self-closing function part 3 1 3 4 is arranged on the fixed rail 3 1 3 3 and the mechanism part 3 1 3 4 a which can be attached to and detached from the operating rail 3 1 3 1 and the mechanism part 3 1 3 4 a and an elastic body 3 1 34 b that pulls backward.
  • the damper 3 1 4 0 is a linear silicon damper, which is composed of a damper body 3 1 4 0 a and an operating shaft 3 1 4 0 b.
  • the front end of the operating shaft 3 1 4 0 b It is connected with the mechanism part 3 1 3 4 a.
  • the rear end of the damper body 3 1 4 0 a and the rear end of the elastic body are fixed.
  • the rail member 3 1 3 0 a sandwiches the center of gravity position A of the door device 3 1 1 0 and the longitudinal center axis 3 1 1 1 a of the door device 3 1 1 0 It is arranged so as to face the inner wall in the left-right direction in the space, and the damper 3 1 40 is also attached to the rear of each rail member 3 1 3 0 a.
  • the rail member 3 1 3 0 a is located at the center of gravity B of the door device 3 1 2 0 and the longitudinal center axis 3 1 2 of the door device 3 1 2 0 0a is arranged so as to face the inner wall in the vertical direction in the space, and the damper 3 1 4 0 is also attached to the rear of each rail member 3 1 3 0 a.
  • the door device 3 1 1 0 and the door device 3 1 2 0 in the opened state gradually move backward when the door 3 1 1 1 and door 3 1 2 1 are pushed by a human hand. It self-closes while decelerating from the position where rail 3 1 3 1 and mechanism 3 1 3 4 a are connected.
  • the substantially square door device 3 1 1 0 is provided with rail members 3 1 3 0 a facing in the left-right direction, and an imaginary line connecting the two opposing operation rails 3 1 3 1 and Since the center of gravity position A is close, the door device 3 1 1 0 can be stably opened and closed without shaking in the left-right or up-down direction, and in addition, during the self-closing operation while decelerating
  • the damper 3 1 4 0 exhibits resistance against the running rail, but it can operate stably without shaking.
  • the swinging width is relatively small because the door device 3 1 1 10 is approximately square, and the operation is stable. Is possible. .
  • the rail member 3 1 3 0 a is arranged in the vertical direction of the vertically long door device 3 1 2 0, so that the load position of the article changes. Even if the center of gravity position B moves left and right, the swinging width is relatively small because the door device 3 120 is vertically long, and a relatively stable operation can be realized.
  • the door device 3 1 2 0 of the present embodiment is different from the vertically long door device 3 1 2 0 through the rail member 3 1 3 0 a and the rail member 3 1 3 0 a.
  • the damper 3 1 4 0 that conveys the resistance to the door is arranged in the vertical direction, so that relatively stable operation can be achieved even if the load and position of the article change and the center of gravity B moves up, down, left and right. it can.
  • FIG. 44 is a diagram showing the internal configuration of the refrigerator provided with the door device according to the eighth embodiment of the present invention.
  • FIG. 45 is a sectional view taken along the line D-D in FIG.
  • FIG. 46 is a diagram showing the configuration of the rail member of the door device of the embodiment.
  • the casing 3 2 0 0 is partitioned into a plurality of spaces, and the door device 3 2 1 0 and the door device 3 2 2 0 are respectively contained in the compartments. It is arranged.
  • the door device 3 2 2 0 is a vertically long drawer, and its vertical length Y is about 6 times longer than the horizontal length X. Also, the door 3 2 2 1, the container 3 2 2 2, the rail member 3 1 3 0 a, the second rail member 3 1 3 0 b, the center of gravity B of the door device 3 2 2 0 and the door device 3 2 2 0 Longitudinal central axis 3 1 2 0 a is placed, and rail members 3 1 3 0 a which are substantially symmetrical with this central axis 3 1 2 0 a are each provided with dampers 3 1 4 0 There are 2 locations in each location.
  • the door 3 2 2 1 is a vertically long plate, and a plurality of containers 3 2 2 2 for storing articles are vertically arranged on the inner surface thereof.
  • the load capacity of the door device 3 2 2 0 was set larger than that of the door device 3 1 2 0 described in the seventh embodiment.
  • the pitch between the longitudinal rail members 3 1 3 0 a and the first rail members 3 1 3 0 a is Y, and in this embodiment, it is about 1 600 mm.
  • the pitch between the first rail member 3 1 3 0 a and the second rail member 3 1 3 0 b is X, which is about 2 80 mm in this embodiment. It was.
  • the second rail member 3 1 3 Ob is mainly composed of an operating rail 3 1 3 1, an intermediate rail 3 1 3 2, a fixed rail 3 1 3 3, and a self-closing function part 3 1 34. Unlike the rail member 3 1 3 0 a, the damper 3 1 40 is not attached to the rear of the self-closing function portion 3 1 34.
  • the operating rail 3 1 3 1 can move horizontally back and forth with the door 3 2 2 1.
  • the intermediate rail 3 1 3 2 is a rail that connects the operating rail 3 1 3 1 and the fixed rail 3 1 3 3 and is connected to both the operating rail 3 1 3 1 and the fixed rail 3 1 3 3 so that they can move horizontally.
  • the fixed rail 3 1 3 3 is fixed to the housing 3 1 0 0 so that the door 3 2 2 1 can be moved horizontally.
  • the self-closing function part 3 1 3 4 is arranged on the fixed rail 3 1 3 3 and the mechanism part 3 1 3 4 a which can be attached to and detached from the operation rail 3 1 3 1 and the mechanism
  • the elastic body 3 1 3 4 b pulls the part 3 1 34 a backward.
  • the door device 3 2 2 0 in the opened state gradually moves backward when the door 3 2 2 1 is pushed by a human hand, and the operating rail 3 1 3 1 and the mechanical part 3 1 34 a Self-closing while decelerating from the connected position.
  • the rail member 3 1 3 0 a with the damper 3 1 4 0 attached The rail member 3 1 3 0 a is fixed to the inner wall of the housing 3 2 0 0 with a Y pitch in the vertical direction, and the two rail members 3 1 3 0 a The first rail member 3 1 3 0
  • the maximum distance between the imaginary line connecting the operating rails 3 1 3 1 and the center of gravity B is X, and in this example, Y is about 6 times larger than X. For this reason, during self-closing while decelerating, the door device 3 2 2 0 performs stable self-closing with relatively little shaking motion in the left-right direction due to the drag of the damper 3 1 4 0.
  • the length of Y is about 6 times as large as, but in the case of a vertically long drawer, the length of Y with respect to X is more than twice. In this case, since a lateral motion is generated, eliminating the longitudinal motion according to the present invention is very effective for smooth self-closing.
  • the damper 3 1 4 0 is an example of a deceleration function unit.
  • one damper 3 1 4 0 is disposed on each of the rail members 3 1 3 0 a which is substantially symmetrical to the central axis 3 1 2 0 a in the longitudinal direction of the door device 3 2 2 0.
  • more self-closing can be achieved by eliminating the blur in the longitudinal direction.
  • first rail members 1 3 0 a a total of four first rail members 1 3 0 a, first rail members 3 1 3 0 a and second rail members 3 1 3 0 b are arranged.
  • the load resistance applied to each rail is further reduced, and the drawers are supported in a balanced manner, enabling more stable opening and closing operations.
  • the door device 3 2 20 of the present embodiment is the first rail member 3
  • damper 3 1 4 0 is installed in the vertical direction under the condition that the vertical pitch Y is much larger than the horizontal pitch X
  • FIG. 47 is a front view of a refrigerator provided with the door device according to the ninth embodiment of the present invention.
  • FIG. 48 shows the internal structure of the refrigerator provided with the door device of the embodiment.
  • FIG. 49 is a cross-sectional view taken along the line EE of FIG.
  • the refrigerator body 3 300 is divided into a plurality of spaces, and the refrigerator body 3 3 0 0 has a refrigerator compartment 3 3 1 0, and the middle section has vegetables Chamber 3 3 2 0 and freezing chamber 3 3 3 0 are formed in the middle and lower stages.
  • a rotary door device 3 3 1 1 and a drawer type door device 3 3 1 2 are formed.
  • Door device 3 3 1 2 is a vertically long drawer, mainly door 3 3 1 3, container 3 3 1 4, rail member 3 1 3 0 a, 3 1 3 0 b, damper 3 1 4 0 It consists of
  • the door 3 3 1 3 is a vertically long plate, and a container 3 3 1 4 is arranged on the inner surface of the container 3 3 1 4 in the vertical direction.
  • the door 3 3 1 3 The size of each was 90 mm high and 240 mm wide.
  • a handle 3 3 1 5 is formed on the front surface of the door 3 3 1 3.
  • the handle 3 3 1 5 is formed on the side of the adjacent refrigerator compartment 3 3 10.
  • the door device 3 3 1 2 is provided with three rail members because of the allowable load in this embodiment.
  • the first rail member 3 1 3 0 a is arranged in two, one in each of the upper part of the inner wall of the refrigerator compartment 3 3 1 0 and the lower part of the refrigerator compartment 3 3 1 0 that forms a diagonal thereto.
  • the dampers 3 1 4 0 are also attached behind the respective first rail members 3 1 3 0 a.
  • the second rail member 3 1 3 0 b is arranged one below the inner wall of the refrigerator compartment 3 3 1 0, and the damper 3 1 4 0 It is not attached.
  • the vegetable room 3 3 2 0 is formed in the middle of the refrigerator body 3 3 0 0, and a drawer-type door device 3 3 2 1 is formed.
  • Freezer room 3 3 3 0 is formed in the first freezer room 3 3 3 1 formed in the lower part of the vegetable room 3 3 2 0 and in the side of the vegetable room 3 3 2 0 and the first freezer room 3 3 3 1 Second freezing chamber 3 3 2.
  • the second freezer 3 3 3 2 is formed with a vertically long drawer-type door device 3 3 3 3, and the door device 3 3 3 3 mainly includes the door 3 3 3 4 and the container 3 3 3 5
  • the door 3 3 3 4 is a vertically long plate with the vertical direction as the longitudinal direction, and a container 3 3 3 5.
  • the size of the door 3 3 3 4 is set to a height of 90 mm in the vertical direction and a width of 240 mm in the horizontal direction.
  • a handle 3 3 3 6 is formed on the front surface of the door 3 3 3 4.
  • the handle 3 3 3 6 is formed on the adjacent first freezer compartment 3 3 3 1 side.
  • the door device 3 3 3 3 is provided with four rail members in this embodiment.
  • a total of two first rail members 3 1 3 0 a are disposed at the upper part of the inner wall of the second freezing chamber 3 3 3 2 and at the lower part of the inner wall that forms a diagonal thereto.
  • a total of two second rail members 3 1 3 0 b are diagonally arranged on the inner wall of the second freezer compartment so as to face the first rail members 3 1 3 0 a respectively.
  • the first rail member 3 1 3 0 a and the second rail member 3 1 3 0 b were arranged, but the first rail member 3 1 3 0 a to which the inner damper 3 1 4 0 was attached was the upper part of the inner wall of the refrigerator compartment 3 3 1 0, A total of 2 pieces, one each at the bottom of the cold storage room 3 3 1 0 that forms a corner, and a virtual connection between the two first rail members 3 1 3 0 a operating rails 3 1 3 1
  • the center of gravity line B and the center of gravity B are close to each other, and when self-closing while decelerating, the door device 3 3 1 2 does not move up and down and left and right due to the anti-damper of the damper 3 1 4 0.
  • the self-closing operation can be further stabilized by installing the damper 3 1 4 0 so that the line connecting the damper 3 1 4 0 is in the vicinity of the center of gravity B of the door device.
  • the door device 3 3 1 2 disposed on the upper part of the refrigerator body 3 3 0 0 operates the lower part of the handle 3 3 1 5. Since the rail member 3 1 3 0 a is arranged in the vicinity of the operation part, it is not easily affected by the bias of the load when the door 3 3 1 3 is pushed by a human hand, and stable self-closing operation Is possible.
  • the door device 3 3 3 3 provided with a total of 4 rail members also performs stable self-closing without shaking motion in the vertical and horizontal directions. In addition, it is less affected by the movement of the center of gravity B due to the increase / decrease of the load and the bias of the load location, and enables stable self-closing operation.
  • the door device 3 3 3 4 disposed in the lower part of the refrigerator body 3 3 0 0 operates the vicinity of the upper part of the handle 3 3 3 6.
  • the rail member 3 1 3 0 a is near the operation unit. Because it is installed, it is less susceptible to the load imbalance when the door 3 3 3 4 is pushed by a human hand, and enables stable self-closing.
  • the door devices 3 3 1 2 and 3 3 3 3 0 of the present embodiment have the damper 3 1 4 0 attached to the first rail member 3 1 3 0 a arranged diagonally, and In order to improve the load capacity and stabilize the opening / closing operation, use 3 and 4 rail members, which are more than the number of dampers 3 1 4 0, to make the opening / closing operation of the drawer more stable. This makes it possible to provide an easy-to-use refrigerator.
  • the resistance generated in the damper 3 1 4 0 when opened can be lowered, and the opening force can be reduced.
  • the 3 and 15 and the 3 and 3 6 are formed at the center of the refrigerator body 3 300 and in a location close to the part operated by a person in actual use.
  • the rail members 3 1 3 0 a are respectively provided, for example, when the handle is provided on the outer side surface of the refrigerator body 3 3 0 0, the rail members 3 1 3 0 a are arranged in this embodiment. The same effect can be expected by arranging them symmetrically.
  • the present invention will be described below together with Embodiments 10 to 13.
  • the coil spring 4 0 0 7 from the position where the door 4 0 0 5 is opened to the extent that the object can be taken out from the front opening 4 0 0 2 a of the main body 4 0 0 2, Since the door 4 0 0 5 closes automatically due to the two self-closing forces of the lower cam mechanism 4 0 0 9 and the upper cam mechanism 4 0 1 1 b, the self-closing speed of the door 4 0 0 5 is high near the closed position. The user's arm or finger may be caught between the door 4 0 0 5 and the front opening 4 0 0 2 a.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a door device having a self-closing mechanism that is safe regardless of the weight of the door itself or the weight of an object stored in the door. .
  • the door device of the present invention includes a self-closing function unit that self-closes the door and a deceleration function unit that operates on the door.
  • the weight of the door itself and the weight of the object stored in the door are not only when the door is closed by the self-closing function but also when the door is closed manually. Regardless of this, a safe closing operation can be realized.
  • the door device of the present invention can realize a safe closing operation regardless of the weight of the door itself or the weight of the stored item stored in the door.
  • the present invention includes a housing having a front opening, a door provided in the front opening, a connecting portion that rotatably connects the door to the housing, and a self-closing function that performs an operation of closing the door. And a deceleration function unit that decelerates the closing speed of the door when the door is closed. By doing this, the door can be closed by itself, and the door can be closed at a slow speed regardless of the weight of the door itself and the weight of the object stored in the door, improving the usability and safety of the door device.
  • the door closing operation can be realized.
  • the present invention provides the self-closing function portion and the deceleration function portion in the connecting portion, the number of parts is small and the space-saving self-closing function and the deceleration function can be provided, so that it is inexpensive and easy to use. Provide a good door device be able to.
  • the vehicle when the first position where the deceleration function unit starts operating is positioned closer to the housing than the second position where the self-closing function unit starts operating, the vehicle is Since the momentum of the door cannot be used for self-closing, the self-closing function section needs a large self-closing capability to prevent the self-closing function section from becoming large, and after the door starts to automatically close by self-closing, the speed is reduced.
  • the safety of the door device can be improved by operating the function.
  • the first position where the deceleration function unit starts to operate is erroneously set as a position where a person's finger or arm may be caught between the door and the housing.
  • the danger of pinching human fingers and arms between the door and the housing can be avoided, and the safety of the door device can be further enhanced.
  • the self-closing function unit when the door is closed from the fully opened state, the self-closing function unit is manually closed to the second position where the operation starts, and when the door reaches the second position, the self-closing function unit When the door reaches the first position where the deceleration function unit starts to operate, the self-closing function is not activated for full opening of the door. Since the door can be closed manually at the same timing, the stored items can be taken in and out smoothly, and the usability of the door device can be improved. Moreover, the self-closing function of the self-closing function part can be reduced by operating the self-closing function after closing the door by the manual part, so that the size and cost of the self-closing function part can be reduced.
  • the operation of the deceleration function part is canceled from the third position immediately before the door is completely closed.
  • the deceleration function that inhibits self-closing does not operate, only the self-closing function operates, and the self-closing by the self-closing function is performed reliably, so the reliability of the door device should be improved. Can do.
  • the third position allows a human finger to easily enter between the door and the housing.
  • the door can be closed without fail while avoiding the danger of a finger being caught.
  • the present invention is provided on the door side corresponding to the self-closing function part, and includes at least a connection part that is detachably connected to the self-closing function part when the door is closed.
  • the self-closing function part pulls in the connection part and automatically closes the door by connecting the self-closing function part and the connection part. Until the condition is reached, the self-closing force is transmitted to the door, and the self-closing dimension can be increased.
  • the self-closing function part and the connection part are arranged on the door support part side with respect to the center axis in the width direction of the refrigerator, so that the self-closing function part and the connection part are automatically located at a place away from the opening part of the door. Since the closed function part and the connection part are provided, the design of the refrigerator can be improved.
  • the self-closing function portion and the connecting portion are detachably connected by magnetic force, so that the reaction force due to the latch mechanism does not occur in the self-closing process, thereby preventing the door from being forgotten to close. can do.
  • the self-closing function part and the connection part are detachably connected by a latch mechanism, so that the self-closing function is opened from the time when the self-closing function part and the connection part are connected to the fully closed state.
  • the self-closing dimension can be increased.
  • the self-closing function portion after the self-closing function portion and the connection portion are coupled, the self-closing function portion can obtain a self-closing force with a simple structure by closing the door by the self-closing force of the elastic body.
  • the cost of the self-closing function can be reduced.
  • the present invention provides a uniform self-closing in the self-closing process by closing the door by the self-closing force by the driving force of the motor after the self-closing function unit and the connecting part are coupled.
  • the door can be fully closed without fail.
  • the present invention provides a self-closing function section after the self-closing function section and the connection section are connected.
  • the self-closing function unit is configured with a door switch that detects opening and closing of the door, it is not necessary to separately provide a door switch in the refrigerator body, and the assembling property of the refrigerator can be improved.
  • the self-closing function part and the connection part are arranged on the ceiling part of the refrigerator, the self-closing function part and the connection part are in a place that is difficult to reach by human hands. This reduces the frequency of accidental human touches when moving in and out, and improves the reliability of the self-closing function section and connection section.
  • the self-closing function unit includes a first mechanism member that rotates only a predetermined angle from the fully closed state in conjunction with the rotation of the door, and a state in which the door is connected to the self-closing function unit.
  • the first mechanism can be rotated, and the second mechanism member that stops the rotation of the first mechanism member when the door is disconnected from the self-closing function portion, and the first mechanism member is pulled to the rear of the refrigerator. Since the first mechanism has a magnet at the front end of the first mechanism, the self-closing function part and the door are detachably connected by magnetic force and are latched during the self-closing process. No reaction force is generated by the mechanism.
  • the magnetic body is disposed on the inner surface of the door facing the magnet disposed on the first mechanism member, the self-closing function portion and the door are detachably coupled by magnetic force. Therefore, no reaction force is generated by the latch mechanism during the self-closing process.
  • the self-closing function unit is configured with a position detection switch that detects the position of the first mechanism member, highly accurate position detection can be performed, and the door position detection accuracy can be improved.
  • the rotation center of the first mechanism member is coaxial with the rotation center of the door.
  • the contact portion between the self-closing function portion and the connection portion is a fixed position, and the self-closing function portion and the connection portion can be configured with a simple mechanism.
  • the first mechanism member and the front end of the magnet are positioned rearward from the front surface of the refrigerator main body, so that the first mechanism member which is a movable part is There is no discharge from the front of the refrigerator, and the design of the refrigerator can be improved.
  • a protrusion is formed on the inner surface of the door facing the magnet disposed on the first mechanism member toward the refrigerator main body, and a magnetic body is disposed at the tip of the protrusion, so that the movable part The first mechanism member is not discharged from the front of the refrigerator, and the design of the refrigerator can be improved.
  • this invention can improve usability, ensuring the safety
  • the function of the deceleration function unit can suppress problems such as spillage of food and beverages stored in the refrigerator body and doors due to the impact when the doors are closed, and cracking and dropping of eggs stored in the doors.
  • FIG. 50 is a side sectional view of the refrigerator according to Embodiment 10 of the present invention
  • FIG. 51 is a perspective view of the upper part of the refrigerator door of the refrigerator according to the embodiment
  • FIG. 52 is the refrigerator according to the embodiment.
  • An exploded perspective view of the lower part of the refrigerator compartment door FIG. 53 is a longitudinal sectional view of the lower part of the refrigerator compartment door of the embodiment
  • FIG. 54 is a side sectional view of the lower part of the refrigerator compartment door of the embodiment
  • FIG. 5 5 is a perspective view of main parts of the refrigerator of the same embodiment
  • FIG. 56 is a cross-sectional plan view when the refrigerator compartment door of the embodiment is fully opened
  • FIG. 5 7 is a view of the refrigerator of the same embodiment.
  • FIG. 5 8 is a plan sectional view when the refrigerator compartment door of the embodiment has reached the first position
  • FIG. 5 9 is a plan sectional view when the door reaches the second position
  • FIG. 6 is a cross-sectional plan view when the refrigerator compartment door of the embodiment has reached a third position.
  • the heat insulating box body 4 0 2 1 which is the housing of the refrigerator 40 2 0 is a foam heat insulating material 4 0 2 4 between the inner box 4 0 2 2 and the outer box 4 0 2 3 And has a front opening 4 0 2 .1 a, with partition walls 4 0 2 5, 4 0 2 6, 4 0 2 7, refrigeration room 4 0 2 8, switching room 4 from the top 0 2 9, vegetable room 40 3 0, freezer room 40 3 1 are formed.
  • each storage room closes the front opening 4 0 2 1 a when closed and the refrigerator compartment door 4 0 3 2 which is a door connected to the heat insulating box 4 0 2 1 which is the casing, the switching room door 4 0 3 3, Vegetable room door 4 0 3 4, Freezer room door 4 0 3 5
  • the refrigerator door 4 0 3 2 is composed of an upper hinge 4 0 3 6 fixed to the heat insulating box 4 0 2 1 and a lower hinge 4 0 3 7 fixed to the partition wall 4 0 2 5.
  • the other switching room door 4 0 3 3, vegetable room door 40 34 and freezer room door 4 0 3 5 are connected to both sides of the heat insulation box 4 0 2 1.
  • the fixed rail member 4 0 2 1 b is connected to the heat insulating box body 40 2 1 so that it can be opened and closed in the front-rear direction.
  • the upper hinge 4 0 3 6 is a plate-like upper hinge body 4 0 3 6 a fixed to the upper surface of the heat insulating box 4 0 2 1, and a part of the upper hinge body 4 0 3 6 a is the front opening 4 0 2
  • the upper rotating shaft 40 3 6 b that protrudes downward from the refrigerator door 4 0 3 2 side from 1 a and protrudes downward is provided.
  • the upper part of the refrigerator door 4 0 3 2 can be rotated by inserting the upper rotary shaft 4 0 3 6 b into the upper surface hole 4 0 3 2 a provided on the upper surface of the refrigerator door 4 0 3 2. .
  • the lower hinge 4 0 3 7 is formed by bending a plate-shaped object at a substantially right angle and extending from the upper surface of the fixed part 4 0 3 7 a parallel to the upper and lower direction and the fixed part 4 0 3 7 a
  • the base part 4 0 3 7 b which is almost horizontal, the lower rotary shaft 4 0 3 7 c provided upward on the base part 4 0 3 7, and the upper and lower central parts of the lower rotary shaft 4 0 3 7 c It consists of a cylindrical pin 40 3 7 d that protrudes toward the fixed part 4 0 3 7 a from the lower rotating shaft 40 3 7 c, and the fixed part 4 0 3 7 a is connected to the refrigerator compartment door 40 3 2 Partition wall between the switching chamber doors 40 3 3 4 0 2 5 Adhered to the front, base 40 3.7 b, lower rotary shaft 4 0 3 7 c, pins 4 0 3 7 d are front openings 4 0 2 1 Projects to the refrigerator door 4 0 3 2 side from
  • the lower part of the refrigerator compartment door 40 3 2 has a recessed part 4 0 3 2 b provided on the lower surface of the refrigerator compartment door 40 3 2, and a lower surface hole having a predetermined depth provided in the recessed part 4 0 3 2 b 4 0 3 2 c, a base 40 0 3 8 having a self-closing function and a deceleration function, a cover 40 3 9, and a spring 4040.
  • the spring 40 4 0 is placed in the bottom hole 4 0 3 2 c in parallel with the insertion direction.
  • the base flange portion 40 3 8 c having the round hole-shaped base hole portion 40 3 8 b is accommodated in the recess 40 32 b.
  • the base tube portion 40 0 3 8a is cylindrically protruded from the bottom hole 4 0 3 2c to the bottom side of the base flange portion 4 0 3 8c, and the bottom surface hole 4 0 of the base tube portion 4 0 3 8a 3 2 c The end on the back side is closed, and the sum of the length of the spring 40 40 and the length of the base tube 4 0 3 8 a is larger than the depth of the bottom hole 4 0 3 8 a. 4 0 40 is held in a compressed state in the lower surface hole 4 0 3 2 c by inserting the base 4 0 3 8.
  • the cover 40 3 9 is fixed to the recess 4 0 3 2 b from the lower side of the base 4 0 3 8 so that the base 4 0 3 8 Is the bottom hole 4 4
  • the cover 4 0 3 9 is the base part of the lower hinge 4 0 3 7 4 0 3 7 b Contact part 4 0 3 9 a that contacts the upper surface, and base 4 0 3 9 a and base 4 0 3 9 a Cover cylinder part 4 0 3 9 b, cover flange part 4 0 3 9 c, and cover flange part covering base flange part 4 0 3 8 c 4 0 3 9 c from the recessed part 4 0 3 2 c Standing on the recessed part 4 0 3 2 c and contacting the cover 4 0 3 9 c 9d.
  • the cover convex part 4 0 3 9 d is coaxial with the base hole part 4 0 3 8 b when the cover 4 0 3 9 is fixed to the concave part 4 0 3 2 c, and from the base hole part 4 0 3 8 b. It has a cylindrical shape with a small diameter.
  • the cover flange part 4 0 3 9 c is located in the space between the upper surface and the concave part 4 0 3 2 c. In addition to the flange thickness of 3 8 c, it has a predetermined space 4 0 4 1.
  • the base 40 0 4 8 can move upward by a predetermined space 4 0 4 1 minutes independently of the cover 4 0 3 9 while further compressing the spring 4 0 4 0. ing.
  • Base cylinder part 4 0. 3 8 a and contact part 4 0 3 9 a are the base vertical groove parts 4 0 3 8 d, so that the pins 4 0 3 7 d do not hit when the lower hinge 4 0 3 7 is inserted It has a cover groove part 4 0 3 9 e.
  • the inner diameter of the base cylinder part 40 3 8 a and the inner diameter of the cover one hole part 40 3 9 b are both slightly larger than the diameter of the lower rotating shaft 4 0 3 7 c of the lower hinge 4 0 3 7 and further lower Hinge 4 0 3 7 pin 4 0 3 7
  • the tip of the base is opposite to the base of the cylinder 4 0 3 8 a and the inner diameter of the cover hole 4 0 3 9 b and at least a base It is set so that it does not protrude from the outer diameter of the cylindrical part 4 0 3 8 a.
  • the base vertical groove 4 0 3 8 d is formed from the bottom surface of the base cylinder portion 4 0 3 8 a to the middle in the vertical direction, and the upper end of the base vertical groove 4 0 3 8 d is the lower rotating shaft 4 0 3 7 c During insertion, the upper end of the pin 40 0 3 7d and the base vertical groove 4 0 3 8d are slightly in contact with each other, so that the spring 4 0 4 0 is hardly further compressed. From the upper end of the groove 40 0 3 8d, a path 3 8e having a vertical space enough to allow the pin 4 0 3 7d to run is provided in the rotating direction of the refrigerator compartment door 40 32.
  • the path 40 3 8 e is the base vertical groove 4 0 3 8 d, the inclined part 4 0 3 8 f inclined downward in the direction of rotation of the refrigerator door 4 0 3 2 from the lower end, and the inclined part 40 3 8 f further from the upper end Refrigeration room door 4 0 3 2 Horizontal part 4 0 3 8 g formed in the horizontal direction, and the end of horizontal part 4 0 3 8 g Refrigeration room door 4 0 3 2 Sometimes the pin 40 3 7 d abuts and has a terminal end 40 3 8 h that limits the rotation of the refrigerator door 4 0 3 2.
  • the pin 4 0 3 7 d reaches the terminal end 4 0 3 8 h while always contacting the upper surface of the path 4 0 3 8 e by moving the base 4 0 3 8 up and down while compressing the spring 4 0 40
  • the predetermined space 40 04 1 is set to be equal to or greater than the distance between the upper and lower ends of the inclined portion 40 38 8 f.
  • the second position at which the self-closing function of the refrigerator compartment door 40 32 starts to operate is determined by the position of the lower end of the upper surface of the inclined portion 40 38 f.
  • the lower surface of the path 40 3 8 e is formed substantially parallel to the upper surface with an interval larger than the diameter of the pin 40 3 7 d, and the lower surface of the inclined portion 4 0 3 8 f is inclined.
  • a buffer member 4 0 3 8 i is provided on the way.
  • the cushioning member 4 0 3 8 i hardly interferes with the travel of the pin 4 0 3 7 d in the opening direction of the refrigerator compartment door 4 0 3 2, and only in the closing direction due to friction with the pin 4 0 3 7 d 4 0 3 7 It has a direction to the deceleration function that hinders the traveling of d and reduces the speed when the refrigerator door 4 0 3 2 is closed, and the inclined part 4 0 3 8 f Provided at a predetermined distance from the upper and lower slopes of the bottom surface.
  • the pin 4 0 3 7 d When the pin 4 0 3 7 d reaches the lower end of the buffer member 4 0 3 8 i and the pin 4 0 3 7 d reaches the lower end of the buffer member 4 0 3 7 d, the pin 4 0 Since the speed when the refrigerator door 4 0 3 2 is closed is reduced by hindering the 3 7 d running, the first position where the deceleration function of the refrigerator door 4 0 3 2 starts operation is the buffer member 4 0 It is determined from the position of the lower end of 3 8 i.
  • the speed when the refrigerator door 4 0 3 2 is closed is gradually increased due to friction between the pin 40 0 3 7 d and the buffer member 4 0 3 8 i. Decelerated force
  • the pin 40 3 7 d reaches the upper end of the buffer member 4 0 3 8 i
  • the pin 4 0 3 7 d does not receive friction from the buffer member 4 0 3 8 i, so the refrigerator compartment door 4 0 3 2
  • the deceleration of the door closing speed is finished, and the pin 4 0 3 7 d reaches the upper end of the base vertical groove 4 0 3 8 d as it is, and the refrigerator compartment door 403 2 is completely closed.
  • the third position where the deceleration function of the refrigerator compartment door 40 32 is released is determined by the position of the upper end of the buffer member 40 38 i.
  • the bottom of the refrigerator compartment door 4 0 3 2 is the base groove 4 0 3 8 with the panel 4 04 0, the base 4 0 3 8 and the cover 4 0 3 9 on the lower surface of the refrigerator compartment door 4 0 3 2 d, Cover groove 4 0 3 9 e and pin 4 0 3 7 Insert the lower rotary shaft 4 0 3 7 c while aligning the direction of d, and open the refrigerator door 4 0 3 2
  • the pin 40 0 3 7 d travels along the route 4 0 3 8 e so that the pin becomes self-rotating.
  • the refrigerator door 4 0 3 2 is raised from the surface of the heat insulating box 4 0 2 1 to the heat insulating box 4 0 2 1 side.
  • the inner box 4 0 2 3 And a partition wall 40 25 and a bank portion 4 0 3 2 d having a substantially rectangular cross section extending in the vertical direction of the refrigerator door 4 0 32 located further inside the refrigerator room 4 0 2 8.
  • the bank part 4 0 3 2 d is provided in parallel with the left and right sides of the refrigerator door 4 0 3 2 in the left-right direction. Between the bank parts 4 0 3 2 d, storage objects such as drinks and eggs are placed.
  • the storage shelf 4 0 4 3 has enough space to allow the storage 4 0 4 2 to be taken in and out, and is provided with 3 levels in the vertical direction, and the heat insulation box body of the shelf 4 0 4 3 4 0 2 1 side This surface is configured to be almost flush with the tip of the bank part 4 0 3 2 d.
  • the second position where the self-closing function of the refrigerator compartment door 4 0 3 2 starts to operate is the front opening 4 0 2 1 a of the heat insulating box 4 0 2 1 when the refrigerator compartment door 4 0 3 2 is closed.
  • Refrigeration room door 4 0 3 2 There is a space of about 1550 mm to 2500 mm between the bank on the opposite side of the rotating shaft 4 0 3 2 d and deceleration of the cold room door 4 0 3 2
  • the first position where the function starts to operate is the same as the front opening 4 0 2 la of the heat insulating box 4 0 2 1 and the rotation axis of the refrigerator door 4 0 3 2 when the refrigerator door 4 0 3 2 is closed
  • There is a space of approximately 100 mm to 150 mm between the bank on the side of the bank 4 0 3 2 d and the third position where the deceleration function of the refrigerator door 4 0 3 2 is released is also refrigerated.
  • the refrigerator door 40 3 2 when the refrigerator door 40 3 2 is fully opened, the refrigerator door is opened larger than the second position, and can be opened by about 120 °, and the second door is fully opened. The door is manually closed up to the position.
  • the refrigerator compartment door 4 0 3 2 is the front opening 4 0 2 1 a and the rotation axis of the refrigerator compartment door 4 0 3 2
  • the refrigerator door 4 0 3 2 appears to be a base 4
  • the self-closing starts when the pin 4 0 3 7 d rises on the inclined part 4 0 3 8 f of 0 3 8.
  • the door is closed, and the space between the front opening 4 0 2 1 a and the cold storage door 4 0 3 2 on the opposite side of the rotating shaft 4 0 3 2 d is about 100 mm to 15 mm
  • the closing speed of the refrigerator compartment door 4 0 3 2 starts to decelerate due to friction between the buffer member 4 0 3 8 i and the pin 4 0 3 7 d.
  • the closing speed of the refrigerator door 4 0 3 2 gradually decreases, and the front opening 4 0 2 1 a and the refrigerator door 4 0 3 2 opposite the rotating shaft.
  • the refrigerator door 4 0 3 2 is released from the deceleration function and remains in the pin 4 0 3 7 d reaches the base vertical groove 4 0 3 8 d and the refrigerator door 3 2 closes.
  • the second position where the self-closing function of the refrigerator door 4 0 3 2 operates is the front opening 4 0 2 1 a of the heat insulating box 4 0 2 1 when the refrigerator door 4 0 3 2 is closed.
  • Refrigeration room door 4 0 3 2 Rotation axis and opposite bank part 4 0 3 2 d
  • the refrigerator 400 0 is designed to open the refrigerator compartment door 4 0 3 2 and put in and out the stored items 4 0 4 2, so the refrigerator compartment door 4 0 3 2 is once opened and continuously opened. Thus, it is easier to use the refrigerator door 4 0 3 2. if it can keep the open state for a container in which a plurality of storage objects 4 0 4 2 are taken in and out.
  • the first position where the deceleration function of the refrigerator compartment door 4 0 3 2 starts operating is the front opening 4 0 2 1 a of the heat insulating box 4 0 2 1 when the refrigerator compartment door 4 0 3 2 is closed.
  • Refrigeration room door 4 0 3 2 has a space of about 100 mm to 1 50 mm between the rotating shaft and the opposite bank part 4 0 3 2 d, but the range in which the deceleration function operates If it is wide, it takes time to close the refrigeration room door 4 0 3 2, and as a result, the cold air in the refrigeration room 4 0 2 8 that has been cooled steadily escapes, increasing the power consumption and refrigeration.
  • the range in which the deceleration function operates should be narrow, as it will cause deterioration of the stored items 4 0 4 2 in the chamber 4 0 2 8.
  • the refrigerator door 4 0 3 2 when the refrigerator door 4 0 3 2 is closed, the front opening 4 0 2 la of the heat insulating box 4 0 2 1 and the bank portion 4 0 3 2 d opposite to the rotating shaft of the refrigerator door 4 0 3 2
  • the speed reduction function operates from the position where the bank part 4 0 3 2 d enters the refrigerator compartment 4 0 2 8 further than the front opening part 4 0 2 1 a.
  • the user's fingers and arms are sandwiched between the front opening 4 0 2 1 a and the bank on the opposite side of the rotation axis 4 0 3 2 d Can occur.
  • the third position where the deceleration function of the refrigerator compartment door 4 0 3 2 is released is the front opening 4 0 2 1 a and the bank portion on the opposite side to the rotating shaft of the refrigerator compartment door 4 0 3 2 4 0 3 It is assumed that there is a space of about 1 mm to 5 mm between 2d, but if the range where the deceleration function operates is narrow as mentioned above, the power consumption increases if the power consumption increases.
  • the bank on the opposite side of the rotation axis of the front opening 4 0 2 1 a and the refrigerator compartment door 4 0 3 2 It is desirable to take the space with the part 4 0 3 2 d wide and release the deceleration function as soon as possible, but if it is too early, there is a possibility that the user's fingers and arms may be caught during the closing operation. For this reason, in this embodiment, the bank on the opposite side of the rotation axis of the front opening 4 0 2 1 a and the refrigerator door 4 0 3 2 is used so that the user's fingers and arms are not caught during the closing operation.
  • a position having a space of about 1 mm to 5 mm between the part 4 0 3 2 d was defined as a third position where the deceleration function of the refrigerator compartment door 4 0 3 2 was released.
  • the bank portion 4 0 3 2 d is provided in the refrigerator compartment door 40 3 2, but when there is no bank portion 4 0 3 2 d, the heat insulation box of the refrigerator compartment door 4 0 3 2 is provided. If the space between the surface of the body 4 0 2 1 and the front opening 4 0 2 1 is within each predetermined value range,
  • the surface of the shelf 4 0 4 3 on the side of the heat insulating box 4 0 2 1 is almost flush with the tip of the bank 4 0 3 2 d, but the side of the shelf 4 0 4 3 on the side of the heat insulating box 4 0 2 1 If the surface of the bank protrudes from the tip of the bank part 4 0 3 2 d to the heat insulating box 4 0 2 1 side, the tip of the bank part 4 0 3 2 d opposite to the rotating shaft of the refrigerator door 4 0 3 2 And shelf 4 0 4 3 heat insulation box 4 0 2 1 side surface, front opening 4 0 2 1 a A space having a shorter distance may be set as each predetermined value range.
  • the bank portion on the opposite side of the rotating shaft of the open refrigerator door 4 0 3 2 side 4 0 3 2 d tip and shelf 4 0 4 3 heat insulation box 4 0 2 1 side of the refrigeration room door in the closed position 4 0 3 2 opposite to heat insulation box 4 0 1 A space having a narrower distance from the outer appearance surface may be set to each predetermined value range.
  • the refrigerator 4 0 2 0 has a self-closing function and a speed reduction function that operate on the refrigerator compartment door 4 0 3 2.
  • the pin 4 0 3 7 d and the base of the lower hinge 4 0 3 7 By providing the 4 0 3 8, the refrigerator compartment door 4 0 3 2 can be self-closed, and the refrigerator compartment door 4 0 3 2 its own weight and shelf 4 0 4 3
  • the door closing operation is performed at a slow speed regardless of the weight, and the convenience of the refrigerator 400 and the safe door closing operation can be realized.
  • the first position where the deceleration function of the lower hinge 4 0 3 7 pin 4 0 3 7 d and the base 4 0 3 8 starts operating is more insulated than the second position where the self-closing function starts operating.
  • the lower hinge has a self-closing function, because if it is placed on the body 4 0 2 1 side and then self-closes after reducing the closing speed of the refrigerator door 4 0 3 2, the momentum at the time of closing cannot be used for self-closing.
  • a large self-closing capability is required for the 4 0 3 7 pins 4 0 3 7 d and the base 4 0 3 8, and an increase in the size of the self-closing function unit can be suppressed.
  • the front opening 4 0 2 1 a of the heat insulating box 4 0 2 1 and the bank portion 4 on the opposite side to the rotation axis of the refrigerator compartment door 4 0 3 2 0 3 2 d By taking a space within the predetermined value range, the lower hinge 4 0 3 7 pin 4 0 3 7 d and base 4 0 3 according to the usage situation of the user of the refrigerator 4 0 2 0 By setting the self-closing distance by 8, the usability of the refrigerator 400 can be further improved.
  • the first position where the deceleration function of the refrigerator compartment door 40 3 2 starts to operate is the front opening 4 0 2 la of the heat insulating box 4 0 2 1 and the refrigerator compartment door 4 0 opposite to the rotating shaft 4 0 3 2 Bank part 4 0 3 2 Space between the specified value range and the refrigerator 4 0 2 0
  • the lower hinge 4 0.3 7 pin 4 0 3 according to the user's usage situation 7 (Setting the deceleration distance by 1 and base 4 0 3 8 can prevent the user's arm and fingers from being pinched and can further enhance the safety of the door device.
  • the self-closing operation of the refrigerator door 4 0 3 2 using the self-closing function of the refrigerator 4 0 2 0 by the pins 4 0 3 7 d and the base 4 0 3 8 of the lower hinge 40 3 7 is obstructed.
  • the refrigerator compartment 4 0 3 2 is automatically closed immediately before it completely closes.
  • the decelerating function that hinders the operation does not operate, and only the self-closing function operates, and the reliability of the self-closing can be improved by the self-closing function.
  • FIG. 60 is a top perspective view of the refrigerator according to Embodiment 11 of the present invention.
  • FIG. 61 is a plan view of the refrigerator according to Embodiment 11 of the present invention.
  • FIG. 62 is a configuration diagram of the self-closing function unit according to the embodiment 11 of the present invention.
  • FIG. 63 is an enlarged view of a main part of the door device according to Embodiment 11 of the present invention.
  • FIG. 64 is an operation diagram of the door device according to Embodiment 11 of the present invention.
  • FIG. 65 is an operation diagram of the door device according to Embodiment 11 of the present invention.
  • FIG. 66 is an operation diagram of the door device according to Embodiment 11 of the present invention.
  • a door 4 1 1 0 is pivotally supported on the upper part of the refrigerator main body 4 1 0 0 having a front opening 4 1 0 2 so as to be rotatable about a hinge 4 1 0 1 as a rotation center.
  • the hinge cover 1 2 0 is a resin cover that covers the top of the hinge 4 1 0 1.
  • the self-closing mechanism portion 4 1 3 0 is disposed on the ceiling portion near the hinge 4 1 0 1 of the refrigerator body 4 1 0 0, mainly the first mechanism 4 1 3 1, and the permanent magnet 4 1 3 3, damper 4 1 3 4, first spring 4 1 3 5, second spring 4 1 3 6, and position detection switch 4 1 3 7.
  • the first mechanism 4 1 3 1 is rotatably connected coaxially with the rotation center of the hinge 4 1 0 1, and the mounting position is substantially L formed on the upper surface of the hinge cover 4 1 2 0. It is a letter-shaped mechanism member.
  • the material is preferably a material that can ensure a predetermined strength, such as a diuracon or a steel plate.
  • the first mechanism 4 1 3 1 is a first body portion having a shape directed rearward from the hinge 4 1 0 1.
  • 4 1 3 1 a and in the width direction of the refrigerator, the first body 4 1 3 1 a and the second body 4 1 3 1 b shaped in the direction of the anti-hinge 4 1 0 1
  • a shaft through hole 4 1 3 1 c is formed near the front of the second body 4 1 3 1 b.
  • Second mechanism 4 1 3 2 is mounted rotatably with respect to first mechanism 4 1 3 1 This is an approximately L-shaped mechanism member, and in the mounted state, the first side 4 1 3 2 a that is substantially horizontal with respect to the width direction of the refrigerator, and the second side 4 that is configured to face backward 4
  • the material is preferably a material that can ensure a predetermined strength, such as diuracon or steel plate.
  • the second mechanism 4 1 3 2 has two shafts formed downward in the mounted state.
  • the first shaft 4 1 3 2 c is a substantially cylindrical shaft formed in an L-shaped corner, and the first shaft 4 1 3 2 c passes through the shaft through hole 4 1 3 1 c, The second mechanism 4 1 3 2 can rotate with respect to the first mechanism 4 1 3 1.
  • the second shaft 1 3 2 d is a substantially cylindrical shaft formed at the rear end of the second side 4 1 3 2 b.
  • first guide groove 4 1 2 1 and the second guide groove 4 1 2 2 are formed in the hinge cover 4 1 2 0.
  • the first guide groove 4 1 2 1 is an oblong hole centered on the hinge 4 1 0 1, and the first shaft 4 1 3 2 c that penetrates the through shaft hole 4 1 3 1 c is the first guide groove. By passing through the guide groove 4 1 2 1, the first mechanism 4 only in the range of the first guide groove
  • the range of 1 is set so that the first mechanism 4 1 3 1 can move only between the first stop position and the vicinity of the second stop position.
  • the first stop position is a state in which the first body 4 1 3 1 a is inclined 8 ° rearward with respect to the width direction of the refrigerator, and the second stop position is the first body 4 1 3 1 a is horizontal with respect to the width direction of the refrigerator.
  • the second guide groove 4 1 2 2 is an elongated round hole formed in a base 4 1 2 3 disposed behind the first guide groove 4 1 2 1.
  • the long side 4 1 2 2 a of the second guide groove 4 1 2 2 is centered on the hinge 4 1 0 1
  • the short side 4 1 2 2 b is the first axis at the second stop position 4 1 3 2 centered on c is doing.
  • the second shaft 4 1 3 2 d passes through the second guide groove 4 1 2 2, the rotation of the second mechanism 4 1 3 2 centered on the first shaft 4 1 3 2 c
  • the rolling motion will be regulated.
  • the first side 4 1 3 2 a is the first mechanism 4 1 3 1 and the permanent magnet 4 1 3 3
  • the first mechanism 4 1 3 1 can rotate around the hinge 4 1 0 1.
  • the first mechanism 4 1 3 1 cannot rotate around the hinge 4 1 0 1.
  • the permanent magnet 4 1 3 3 is a magnet fixed in front of the second body 4 1 3 1 b, and it is desirable to use neodymium or ferrite magnet as the magnet material.
  • the damper 4 1 3 4 is a straight-ahead damper fixed to the hinge cover 4 1 2 0.
  • the damper 4 1 4 34 is an example of a deceleration function unit.
  • the damper 4 1 3 4 is composed of a damper body 4 1 3 4 a and a damper case 4 1 3 4 b that houses the damper body 4 1 34 a.
  • the damper body 4 1 3 4 a The front end of is in contact with the rear end surface of the first mechanism 4 1 3 1 in the operating range of the first mechanism 4 1 3 1.
  • the damper body 4 1 3 4 a is filled with silicone oil, and the operation is switched in two stages against such load. (Details not shown) Specifically, when a high load is generated as a load Is the first operation in which the operation load of the damper body 4 1 3 4 a is increased, and when the load is reduced, the operation is the second operation in which the operation load of the damper body 4 1 3 4 a is also reduced.
  • the operation load is generated in the direction in which the damper body 4 1 3 4 a is compressed, and the operation load is preferably substantially 0 in the opposite direction.
  • a recovery panel is built in to restore the initial state when there is no load.
  • the first panel 4 1 3 5 is the first mechanism 4 1 3 1 by connecting the opposite end of the first mechanism 4 1 3 1 to the rear hinge 4 1 0 1 side and the rear vicinity of the hinge cover 4 1 2 0. 3 1 will be pulled backwards.
  • the elastic force of the first panel 4 1 3 5 is maximum, and when it is in the first stop position, the elastic force is minimum, In this embodiment, a slight elastic force is applied so that the elastic force does not become zero even at the first stop position.
  • the second panel 4 1 3 6 connects the first mechanism 4 1 3 1 and the second mechanism 4 1 3 2 to pull the first side 4 1 3 2 a of the second mechanism 4 1 3 2 forward. It will be stretched.
  • the position detection switch 4 1 3 7 is a switch for detecting the position of the first mechanism 4 1 3 1 that is disposed so as to contact the rear end face of the first mechanism 4 1 3 1 and detects the position of the first mechanism 4 1 3 1.
  • the unit board that incorporates the Hall IC is used (details not shown).
  • the control means determines that the door 4 1 1 0 is closed.
  • the control means determines that the door 4 1 1 0 is open.
  • the connecting part 1 4 0 has a convex shape inside the door facing the permanent magnet 4 1 3 3 It consists of the formed protrusion 4 1 4 1 and the magnetic body 4 1 4 2 formed at the tip of the protrusion 4 1 4 1.
  • the material of the magnetic body 4 1 4 2 is painted on the surface It is desirable to use a steel plate.
  • the magnetic body 4 1 4 2 and the permanent magnet 4 1 3 3 fixed to the first mechanism 4 1 3 1 in the first stop position are in contact with each other.
  • the shape of the protrusions 4 1 4 1 is determined so as to contact.
  • the cover 4 1 5 0 is a member that covers the upper portion of the refrigerator body 4 1 0 0, and a notch 4 1 5 1 is formed at a position where the permanent magnet 4 1 3 3 and the connection portion 1 4 0 abut. .
  • first side 4 1 3 2 a and the magnetic body 4 1 4 2 are in contact with each other, so that the second mechanism 4 1 3 2 is in the first state, and the first mechanism 4 1 3 1 is the hinge 4 1 0 1 It can be rotated around the center.
  • damper body 4 1 3 4 a is in a state of being pushed backward by the rear end face of the first mechanism 4 1 3 1.
  • the position detection switch 4 1 3 7 is electrically opened by the contact point being pushed by the rear end face of the first mechanism 4 1 3 1, and the control means (not shown) is the door 4 1 1 0 is determined to be closed.
  • connection 4 1 4 0 and the permanent magnet 4 1 3 3 are connected by magnetic force, so that the first mechanism 4 1 3 1
  • the second mechanism 4 1 3 2 and the permanent magnet 4 1 3 3 move forward while rotating around the hinge 4 1 0 1. Accordingly, the first panel 4 1 3 5 is stretched to accumulate elastic force, and the damper body 4 1 3 4 a moves forward by the action of the return panel.
  • the position detection switch 4 1 3 7 is electrically closed when the rear end surface of the first mechanism 4 1 3 1 is separated from the contact point, and the control means (not shown) is the door 4 1 1 0 is determined to be open.
  • the position of door 4 1 1 0 is directly detected as in a conventional refrigerator, compared to the case where a certain amount of differential is required to identify the opening and closing of door 4 1 1 0.
  • the open state can be distinguished from the closed state with very high detection accuracy.
  • the door 4 1 1 0 is further opened by a human hand.
  • the first mechanism 4 1 3 1 stops the rotation around the hinge 4 1 0 1 by the first guide groove 4 1 2 1 so that the connection between the magnetic connection 4 1 4 0 and the permanent magnet 4 1 3 3 is released.
  • connection between the connection part 4 1 4 0 and the permanent magnet 4 1 3 3 is released, so that the first side 1 3 of the second mechanism 4 1 3 2 is caused by the action of the second spring 4 1 3 6.
  • 1 a is allowed to rotate forward, and the second shaft 4 1 3 2 d moves to the short side 4 1 2 2 b and enters the second state, so that the first mechanism 4 1 3 1 and the second mechanism Together with 4 1 3 2 and permanent magnet 4 1 3 3, rotation around hinge 4 1 0 1 becomes impossible.
  • the first body 4 1 3 1 a and the permanent The rotation of the first mechanism 4 1 3 1 stops at the second stop position where the magnet 4 1 3 3 is horizontal with the horizontal direction of the refrigerator, and the first side 4 1 3 2 of the second mechanism 4 1 3 2 a stops at a position protruding forward from the front end face of the permanent magnet 4 1 3 3.
  • the damper body 4 1 3 4 a also moves forward and returns to stop in contact with the rear end face of the first mechanism 4 1 3 1 To do.
  • the self-closing function portion 4 1 3 0 stores the elastic force in the first spring 4 1 3 5 and is pulled forward to stop.
  • the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 are arranged in the vicinity of the hinge 4 1 0 1, and the protrusion of the protrusion 4 1 4 1 can be reduced, so that the refrigerator There is no loss of design. Furthermore, since the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 are formed on the ceiling, they cannot be touched easily.
  • connection 4 1 4 0 and the permanent magnet 4 1 3 3 are magnetized.
  • the upper part of the magnetic body 4 1 4 2 comes into contact with the second mechanism 4 1 3 2 and the first side 4 1 3 2 a moves rearward from the second state to the first state.
  • the first mechanism 4 1 3 1 can rotate around the hinge 4 1 0 1 and is pulled back by the elastic force stored in the first panel 4 1 3 5, so that the door 4 1 ⁇ 0 will be self-closed.
  • the first mechanism 4 1 3 1 moves rearward until it reaches the first stop position, and the rear end surface of the first mechanism moves the damper body 4 1 3 4 a rearward As a result, the door 4 1 1 0 closes while decelerating until it is fully closed.
  • the first panel 4 1 3 5 maintains a slight elastic force even at the first stop position, so that the self-closing force can be maintained from the self-closing start to the fully closed state. Large self-closing dimensions can be secured.
  • the damper 4 1 3 3 when the load on the damper 4 1 3 3 is small, such as when there is little storage or when the door 4 1 1 0 is closed slowly, the damper 4 1 3 3 is in the second operation and the deceleration effect is To reduce.
  • the control means determines that the door 4 1 1 0 is closed.
  • the position of door 4 1 1 0 is directly detected as in a conventional refrigerator, so that a certain amount of differential is required to identify the opening and closing of door 4 1 1 0. Then, it is possible to detect the door clearance with very high detection accuracy.
  • the refrigerator according to the present embodiment includes a refrigerator main body 4 1 1 0 having a front opening, and a door disposed to be rotatable at the hinge 4 1 0 1 with respect to the refrigerator main body 4 1 1 0. 4 1 1 0 and self-closing function part 4 1 3 0 and self-closing function part 4 1 Connected to the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 detachably formed when the door 4 1 1 0 closes.
  • the self-closing function part 4 1 3 0 is provided at a different location from the hinge 4 1 0 1 and the self-closing function part 4 1 3 0 pulls the connection part 4 1 4 0 into the door 4 1 1 0. It will be self-closing in the closing direction, and a large self-closing dimension can be obtained.
  • the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 are arranged in the vicinity of the hinge 4 1 0 1 in the width direction of the refrigerator body 4 1 0 0, so that the door 4 1 1 0 Since the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 are disposed at a location away from the opening of the refrigerator, the design of the refrigerator can be improved.
  • the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 are detachably connected by magnetic force, so that no reaction force is generated by the latch mechanism during the self-closing process, and the door 4 1 1 Forgetting to close 0 can be prevented.
  • the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 are connected, the self-closing function part 4 1 3 0 is moved to the door 4 1 1 0 by the self-closing force of the first spring 4 1 3 5.
  • the self-closing function can be obtained with a simple structure, and the cost of the self-closing function unit 4 1 3 0 can be reduced.
  • the self-closing function unit 4 1 3 0 is configured with a door switch that detects opening and closing of the door 4 1 1 0, it is not necessary to provide a door switch on the refrigerator body 4 1 0 0, and assembling the refrigerator Can be improved.
  • the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 are arranged on the ceiling part of the refrigerator main body 4 1 0 0, so that the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 is in a place that is difficult for people to reach, and the frequency with which people accidentally touch it when putting in and out the storage can be reduced.
  • the reliability of the 3 0 and the connecting portion 4 1 4 0 can be improved.
  • the self-closing function unit 4 1 3 0 includes the first mechanism 4 1 3 1 that rotates only a predetermined angle from the door 4 1 1 0 fully-closed state in conjunction with the rotation of the door 4 1 1 0, and the door 4 1
  • the first mechanism 4 1 3 1 can be rotated, and the door 4 1 1 0 is disconnected from the self-closing function part 4 1 3 0.
  • a permanent magnet 4 1 3 3 is formed at the front end of one mechanism 4 1 3 1 so that the self-closing function part 4 1 3 0 and the door 4 1 1 0 are detachably connected by magnetic force. Therefore, no reaction force is generated by the latch mechanism during the self-closing process.
  • the magnetic body 4 1 4 2 is provided on the inner surface of the door 4 1 1 0 facing the permanent magnet 4 1 3 3 provided in the first mechanism 4 1 3 1.
  • 4 1 3 0 and door 4 1 1 0 are detachably connected by magnetic force, and no reaction force is generated by the latch mechanism during the self-closing process.
  • the self-closing function section 4 1 3 0 is equipped with a position detection switch 4 1 3 7 that detects the position of the first mechanism 4 1 3 1, so that highly accurate position detection can be achieved, and the door 4 1 The position detection accuracy of 10 can be improved.
  • the center of rotation of the first mechanism 4 1 3 1 is positioned coaxially with the center of rotation of the door 4 1 1 0, so that the contact portion between the self-closing function portion 4 1 3 0 and the connection portion 4 1 4 0 Is a fixed position, and the self-closing function part 4 1 3 0 and the connection part 4 1 4 0 can be configured with a simple mechanism.
  • the front ends of the first mechanism 4 1 3 1 and the permanent magnet 4 1 3 3 are located behind the front surface of the refrigerator body 4 1 0 0.
  • the first mechanism 4 1 3 1 which is a movable part does not discharge from the front surface of the refrigerator main body 4 1 100, and the design of the refrigerator can be improved.
  • a protrusion 4 1 4 1 is formed on the inner surface of the door 4 1 1 0 facing the permanent magnet 4 1 3 3 disposed in the first mechanism 4 1 3 1 toward the refrigerator body, and the protrusion 4 1
  • the magnetic body 4 1 4 2 is arranged at the tip of 4 1 so that the first mechanism 4 1 3 1 which is a movable part does not discharge from the front of the refrigerator body 4 1 0 0, and the design of the refrigerator Can be improved.
  • the position detection switch 4 1 3 7 for detecting the opening / closing of the door 4 1 1 0 is arranged to detect the position of the first mechanism 4 1 3 1, but the connecting portion 4 1 The same effect can be expected even if the position detection switches 4 1 3 7 are arranged so as to detect the position of 40.
  • the straight-ahead silicon oil damper is used as the speed reducing means, but a similar effect can be expected even when a straight-ahead air damper is used.
  • FIG. 67 is a main part configuration diagram of the door device according to Embodiment 12 of the present invention.
  • FIG. 68 is a characteristic diagram according to Embodiment 12 of the present invention.
  • FIG. 69 is an operation diagram of the door device according to Embodiment 12 of the present invention.
  • FIG. 70 is an operation diagram of the door device according to Embodiment 12 of the present invention.
  • the self-closing mechanism portion 4 2 3 0 is disposed on the ceiling portion in the vicinity of the hinge 4 1 0 1 of the refrigerator main body 4 1 0 0, mainly the first mechanism 4 2 3 1 and the drive source 4 2 3 2, Position detection switch 4 2 3 3, Second mechanism 4 1 3 2, Permanent magnet 4 1 3 3, Damper 4 1 3 4, Second spring 4 1 3 6 .
  • the first mechanism 4 2 3 1 is connected to the rotation center of the hinge 4 1 0 1 so as to be rotatable on the same axis.
  • the mounting position is substantially L formed on the upper surface of the hinge cover 4 1 2 0. It is a letter-shaped mechanism member.
  • the material is preferably a material that can ensure a predetermined strength, such as a diuracon or a steel plate.
  • the first mechanism 4 2 3 1 is fixed to the hinge 4 1 0 1
  • the first mechanism 4 2 3 1 includes a first body 4 2 3 1 a shaped backward from the hinge 4 1 0 1 and a first body 4 2 3 1 a in the width direction of the refrigerator.
  • Anti-hinge 4 1 0 1 2nd body 4 2 3 1 b shaped in the direction of the shaft, 2 2 3 1 c near the front of the second body 4 2 3 1 b
  • a guide groove 4 2 3 1 d is formed in the vicinity of the opposite end of the anti-hinge 4 1 0 1 side.
  • the first stop position is a state in which the first body 4 2 3 1 a is inclined 8 ° rearward with respect to the horizontal direction of the refrigerator, and the second stop position is the first body 4 2 3 1 a is horizontal with respect to the width direction of the refrigerator.
  • the drive source 4 2 3 2 operates to pull the first mechanism 4 2 3 1 backward when energized.
  • the drive source 4 2 3 2 is a solenoid disposed behind the first mechanism 4 2 3 1. Yes, it consists of a coil 4 2 3 2 a and an iron core 4 2 3 2 b, which are electromagnets, and the front end of the iron core 4 2 3 2 b is connected to the guide groove 4 2 3 1 d.
  • FIG. 1 it is a characteristic diagram that shows the relationship between the travel distance and the propulsive force of each drive source and the elastic body, while the propulsive force of the elastic body is maximum at the second stop position.
  • the solenoid type drive reduction is set so that the propulsive force is maximized in the vicinity of the first stop position.
  • the position detection switch 4 2 3 3 is a position detection switch that is arranged on the upper surface of the first mechanism 4 2 3 1 and detects the position of the connection part 4 1 4 0.
  • the position detection switch 4 2 3 3 is a unit that incorporates a Hall IC. A standardized platform is used (details not shown).
  • control means is programmed to energize the drive source 4 2 3 2 for a predetermined time only when the door 4 1 1 0 changes from the open state to the closed state, and vice versa.
  • the drive source 4 2 3 2 is not energized.
  • the connecting part 4 2 4 0 is a door facing the permanent magnet 4 1 3 3 4 1 1 0 Protrusion 4 2 4 1 formed inside and the magnetic 4 2 4 2 formed at the tip of the protrusion 4 2 4 1
  • a material for the magnetic body 4 2 4 2 it is desirable to use a steel plate with a coated surface.
  • the magnetic body 4 2 4 2 and the permanent magnet 4 1 3 3 fixed to the first mechanism 4 2 3 1 at the first stop position come into contact with each other. Further, the shape of the protrusion 4 2 4 1 is determined so that the contact of the position detection switch 4 2 3 3 is also in contact with the position detection switch 4 2 3 3 in this state.
  • the fully closed door 4 1 1 0 is opened by a human hand.
  • the first mechanism 4 1 3 1 is hinged when the door 4 1 1 0 is opened 8 °.
  • the connection between the connecting portion 4 2 40 and the permanent magnet 4 1 3 3 due to the magnetic force is released.
  • the self-closing function unit 2 3 0 stops at the second stop position by the action of the second mechanism 4 1 3 2.
  • the contact between the position detection switch 4 2 3 3 and the connection portion 4 2 40 is also released, so that the control means determines that the door 4 1 10 has shifted from the closed state to the open state. That is, the drive source 4 2 3 2 is not energized.
  • the fully open door 4 1 1 0 is closed by a human hand, and the door 4 1 1 When 0 is opened by 8 °, the connection part 4 2 4 0 and the permanent magnet 4 1 3 3 are attracted and abutted by magnetic force, and the upper part of the magnetic body 4 2 4 2 is the second mechanism 4 1 3 2
  • the first side 4 1 3 2 a moves rearward and comes into the first state, so that the first mechanism 4 1 3 1 can rotate around the hinge 4 1 0 1.
  • the control means determines that the door 4 1 1 0 has shifted from the open state to the closed state. In other words, when the drive source 4 2 3 2 is energized, the drive source 4
  • the drive source 4 2 3 2 is set so that the highest propulsive force can be obtained immediately before the fully closed state, unlike the propulsive force of the panel.
  • the width of the door 4 1 1 0 is wide and large. Even when a self-closing force is required, the door can be reliably closed to the fully closed state while overcoming the resistance of the damper 4 1 3 0.
  • the refrigerator according to the present embodiment includes a refrigerator main body 4 1 1 0 having a front opening, and a door disposed to be rotatable at the hinge 4 1 0 1 with respect to the refrigerator main body 4 1 1 0. 4 1 1 0 and self-closing function part 4 2 3 0 and self-closing function part 4 2
  • the self-closing function part 4 2 3 0 Connected to the self-closing function part 4 2 3 0 and detachably connected when the door 4 1 1 0 closes. Prepare. After the self-closing function part 4 2 3 0 and the connection part 4 2 4 0 are connected, the self-closing function part 4 2 3 0 opens the door 4 1 1 0 by the driving force of the solenoid type drive source 4 2 3 2. By closing, the highest propulsive force can be obtained immediately before the fully closed state, and the door 4 1 1 0 that requires a large self-closing force can be reliably closed to the fully closed state.
  • a solenoid is used as the drive source 4 2 3 2, but the same effect can be expected even when a motor-type drive source is used.
  • FIG. 71 is a main part configuration diagram of the door device according to the embodiment 13 of the present invention.
  • FIG. 72 is a view taken along arrow A in FIG. 71 of the door device according to Embodiment 13 of the present invention.
  • FIG. 73 is an operation diagram in Embodiment 13 of the present invention.
  • FIG. 74 is an operation diagram in the embodiment 13 of the invention.
  • the self-closing functional part 4 3 1 0 is mainly composed of a guide rail 4 3 1 1, an inclined member 4 3 1 2, and an elastic body 4 3 1 3, and is provided on the ceiling surface of the refrigerator main body. It is fixed.
  • the guide rail 4 3 1 1 is connected to the damper 4 3 3 0 and is fixed to the ceiling surface of the refrigerator body.
  • the upper wall of the guide rail 4 3 1 1 is formed with a groove 4 3 1 1 a opening the damper 4 3 3 0 side end, and both ends are closed on the side wall of the guide rail 4 3 1 1 Grooves 4 3 1 1 are formed.
  • a groove 4 3 1 1 c with an opening on the groove 4 3 1 1 b side is formed near the front end of the guide rail 4 3 1 1 and both ends of the wall on the opposite side of the groove 4 3 1 1 b
  • a groove 3 1 1 d that is closed is formed.
  • the inclined member 4 3 1 2 is rotatably connected to the end of the damper 4 3 3 0 at the first connection portion 4 3 1 2 a, and the first connection portion 4 3 1 2 a is the groove 4 3 1 1 a Guided to move horizontally. Further, two protrusions 4 3 1 2 b and 4 3 1 2 c are formed on the side surface of the inclined member 4 3 1 2, and these two protrusions 4 3 1 2 b and 4 3 1 2 c It protrudes from the side wall of the guide rail 4 3 1 1 and fits in the groove 4 3 1 lb to move horizontally. Furthermore, the end of the second connection portion 4 3 1 2 d protruding from the first connection portion 4 3 1 2 a passes through the groove 4 3 1 1 d.
  • the damper 4 3 3 0 is an example of a deceleration function unit.
  • Elastic body 4 3 1 3 Elastic body 4 3 1 3 connects the outer rear end of damper 4 3 30 and the second connection portion 43 1 2 d of inclined member 4 3 1 2.
  • the connecting portion 4 3 2 0 is mainly composed of a plate 4 3 2 1 and rollers 4 3 2 2.
  • the plate 4 3 2 1 is fixed to the upper surface of the door 4 1 1 0 and has a shape protruding in the refrigerator body 4 1 0 0 direction.
  • a steel plate As a material, it is desirable to use a steel plate with surface treatment. .
  • the roller 4 3 2 2 is a cylindrical body member that is rotatably disposed on the lower surface of the end portion of the refrigerator body 4 1 0 0 side of the plate 4 3 2 1, and has two protrusions 4 3 1 in the installed state. Located between 2 b and 43 1 2 c.
  • the dampers 4 3 3 0 are linear dampers arranged at the rearmost part of each section and connected to the rear end of the guide rails 4 3 1 1, mainly the damper main body 43 3 1 and the operating shaft 43 It consists of 32.
  • the damper body 4 3 3 1 has a structure in which a piston is arranged in a cylindrical casing and filled with silicone oil, and its operation is switched in two stages with respect to such a load. Specifically, when a high load is generated as a load, the first operation increases the operating load of the damper 4 3 3 1, and when the load decreases, the operating load of the damper 4 3 3 1 decreases. Two operations (details not shown). '
  • the operating shaft 4 3 3 2 is a shaft connected to the piston of the damper main body 4 3 3 1, and the front end thereof is connected to the first connection portion 43 1 2 a of the inclined member 4 3 1 2.
  • the inclined member 4 3 1 2 is located at the rear end of the guide rail 4 3 1 1 and the joint 4 3 2 0 2 2 is located between the two protrusions 4 3 1 2 b and 43 1 2 c.
  • the roller 4 3 2 2 comes into contact with the protrusion 4 3 1 2 b as the door 4 1 1 0 is opened. 4 3 1 2 moves forward.
  • the elastic body 4 3 1 3 elastic body 43 1 3 connected to the second connection portion 4 3 1 2 d is stretched to accumulate elastic force.
  • the door 4 1 1 0 is further opened by a human hand, and in this embodiment, the door 4 1 1 0 is opened by 8 °, and the inclined member 4 3 1 2 and the connecting portion 4 3 2 0 is released, and the protrusion 4 3 1 2 b tilts in a way that fits into the groove 4 3 1 1 c, so that the inclined member stops at the front end of the guide rail 43 1 1 .
  • the elastic body 4 3 1 3 elastic body 4 3 1 3 can maintain the self-closing force from the start of the self-closing to the fully-closed state, so that a large self-closing dimension can be secured.
  • the refrigerator according to the present embodiment is disposed so as to be rotatable at the hinge 4 1 0 1 with respect to the refrigerator body 4 10 0 having the front opening and the refrigerator body 4 1 0 0.
  • the door 4 1 1 0 and the refrigerator main body 4 1 0 0 are arranged to face the self-closing function part 4 3 1 0 and the self-closing function part 4 3 1 0
  • a self-closing function part 4 3 1 is formed on the door 4 1 1 0 and has at least a connection part 4 3 2 0 connected to the self-closing function part 4 3 1 0 when the door 4 1 1 0 closes.
  • a self-closing device that has a self-closing force greater than the drag of the reduction device to securely close the door is used if a reduction device that performs a large deceleration with respect to any load is used so that the deceleration effect can be fully experienced. Since the load on the self-closing device increases, the self-closing device becomes larger and the cost of the self-closing device increases.
  • an oil damper or the like is used as the damper, if the ambient temperature changes, the viscosity of the oil in the oil damper varies depending on the temperature characteristics, so the shock absorption capacity also varies and the door deceleration speed becomes the ambient temperature. As a result, there is a problem that the quality of the door device is poor for the user due to some kind of change in the ambient temperature of the damper, which gives the user a bad impression.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a door device that can reliably obtain an operation feeling of a deceleration operation and that is improved in usability, and a refrigerator that includes the door device.
  • a door device of the present invention includes a door that is formed in a housing and that pivotally opens and closes a front opening of a compartment that is maintained in a cooled or heated state, and the door is self-closed.
  • a self-closing mechanism section that causes the door to close, and a damper that reduces a speed at which the door closes when the door is closed.
  • the damper has the characteristic of switching between a first operation that performs a large deceleration when the door closing speed is fast and a second operation that performs a small deceleration when the door closing speed is slow, and at least the second operation of the damper. Is performed within the operating range of the self-closing mechanism.
  • the damper is an example of a deceleration function unit
  • the self-closing mechanism unit is an example of a self-closing function unit.
  • the door device of the present invention provides a large speed reduction effect when the user closes the door with a large force to obtain a large speed reduction effect, and a small speed reduction effect when the door speed is low.
  • the door device according to the present invention includes a door that is formed in a housing and that opens and closes a front opening of a compartment that is maintained in a cooled or warmed state, a self-closing mechanism that automatically closes the door, and a door that closes.
  • a damper that decelerates the speed at which the door closes and the damper 1 is a first operation that performs a large deceleration when the door closing speed is fast, and a second that performs a small deceleration when the door closing speed is slow. And at least a second operation of the damper is performed within the operation range of the self-closing mechanism.
  • the damper decelerates the door closing speed only when the self-closing mechanism operates, and the door closing speed is reduced by the deceleration function when the door is closed. It is possible to prevent the failure to close the door.
  • the damper is configured such that the door having a slow closing speed, which is decelerated by the first action, is continuously operated after the first action of performing a large deceleration when the door closing speed is fast. It has the characteristic of switching in stages so as to perform a second operation that performs a smaller deceleration than the deceleration by, and since it always has a two-stage deceleration effect, it also decelerates between different doors provided in multiple sections A sense of unity of operation can be obtained, and the ease of use of the door device can be greatly improved by improving the quality of the deceleration operation.
  • the self-closing speed at the time of the second operation that performs a small deceleration when the closing speed of the door is slow is substantially constant even in a temperature range in which the ambient temperature of the damper is different. Even if the speed changes, the speed immediately before the door closes is almost constant, so that a sense of unity of the deceleration operation can be obtained and the usability of the door device can be greatly improved.
  • the damper is a rectilinear damper in which oil is filled, and the oil is decelerated by viscous resistance when the oil passes through the flow path, and the oil passes during the first operation.
  • the flow path area through which the oil passes during the second operation is larger than the flow area where the oil flows through the flow path, and the viscous resistance when the oil passes through the flow path during the second operation is not easily affected by temperature changes. Since the speed immediately before the door closes is almost constant, the feeling of unification of the deceleration operation can be obtained and the usability of the door device can be greatly improved.
  • the damper is a rectilinear damper filled with oil inside.
  • the damper in the damper disposed in the section having a low temperature is provided.
  • the viscosity of the oil increases the operating speed of the damper placed in the cooler section because it is filled with oil that has a lower viscosity than the oil in the damper placed in the hotter compartment. In other words, the operation feeling can be made uniform even in the door devices arranged in different zones.
  • the damper since the damper is disposed on the side opposite to the rotation axis with respect to the center axis in the width direction of the door, the load generated on the damper can be reduced, and the reliability is improved and the cost is reduced. Can be realized.
  • the present invention provides a projection formed toward the refrigerator main body near the upper portion of the door, and the tip of the projection and the movable portion tip of the damper abut to obtain a deceleration effect. Positioning behind the front of the refrigerator body prevents the damper from being exposed to the front of the refrigerator when the door is opened, and the damper of the person's hand is buffered when the food is stored or taken out of the refrigerator. Can be prevented.
  • the present invention also includes a refrigerator main body having an opening, a door rotatably disposed in the refrigerator main body, a shelf formed inside the door, and a self-closing mechanism that allows the door to self-close.
  • a rectilinear damper that is disposed on the side wall of the rotating shaft in the refrigerator body and that acts on the door only while the self-closing mechanism is operating, and the damper abuts against the side wall of the shelf. A deceleration effect can be obtained only in the necessary range before the door is closed.
  • a magnetic body is formed at the tip of the movable portion of the damper, and a magnet is formed at the tip of the movable portion of the damper and the contact portion of the door. Since it is pulled out to the stand-by state, it is not necessary to incorporate a return panel inside the damper, and the cost can be reduced.
  • the present invention includes position detection means, and the position detection means identifies the open / closed state of the door by detecting the position of the movable part of the damper, so whether or not the door is fully closed by the position detection means. As a result, it is not necessary to detect the opening / closing of the door on the door body, thus reducing costs and improving the detection system.
  • the present invention includes the door device described above with respect to the front opening of the storage chamber formed in the refrigerator main body. Therefore, when the user closes the door with a large force, As the speed increases, a large deceleration effect is obtained, and when the door speed is slow, a small deceleration effect is obtained, so that the deceleration function of the refrigerator door device can be sensed.
  • embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same configurations as those of the conventional examples or the embodiments described above, and detailed description thereof will be omitted.
  • FIG. 75 is an upper perspective view of the refrigerator provided with the door device according to Embodiment 14 of the present invention.
  • FIG. 76 is a plan view of the refrigerator provided with the door device according to Embodiment 14 of the present invention.
  • FIG. 77 is a configuration diagram of the main part of the door device according to Embodiment 14 of the present invention.
  • FIG. 78 is an operation diagram in the closing direction of the door according to Embodiment 14 of the present invention.
  • FIG. 79 is an operation diagram in the door opening direction according to the embodiment 14 of the present invention.
  • FIG. 80 is an operation diagram of the contact point of the damper of the door device according to Embodiment 14 of the present invention.
  • the door 5 1 1 0 is rotating the hinge 5 1 0 1 at the top of the refrigerator main body 5 1 0 0 with the front opening 5 1 0 2 , And is pivotally supported.
  • the self-closing mechanism 5 1 2 0 is composed of a first protrusion 5 1 2 1 disposed on the door 5 1 1 0 and a second protrusion 5 1 2 2 disposed on the refrigerator body 5 1 0 0. It is a self-closing means.
  • the self-closing mechanism unit 5 1 2 0 is an example of a self-closing function unit.
  • the first protrusion 5 1 2 1 is formed in the vicinity of the hinge 5 1 0 1 of the door 5 1 1 0, and the door 5 1 1 0 protrudes toward the refrigerator body 5 1 1 0 in the fully closed state.
  • the tip shape of the second arm 5 1 2 1 b is desirably an appropriate R shape, and it is desirable to use a resin material that can be slightly deformed as the material.
  • the second start 5 1 2 2 is formed in the vicinity of the hinge 5 1 0 1 of the refrigerator main body 5 1 0 0 and protrudes toward the door 5 1 1 0 5 1 2 2 a and the first arm 5 It is composed of a second arm 5 1 2 2 b protruding from the tip of 1 2 2 a toward the anti-hinge 5 1 0 1 direction.
  • the tip shape of the second arm 5 1 2 2 b is desirably an appropriate R shape, and it is desirable to use a highly rigid metal material as the material.
  • the self-closing mechanism portion 5 1 2 0 is configured such that when the door 5 1 1 0 is in a fully closed state, the tip of the second arm 5 1 2 1 b has a refrigerator body 5 1 rather than the second arm 5 1 2 2 b. Located on the 0 0 side, when the door 5 1 1 0 has an opening greater than or equal to the first opening, the tip of the second arm 5 1 2 1 b is forward of the second arm 5 1 2 2 b In the pulled out position.
  • the damper 5 1 30 is a rectilinear damper embedded in the inner wall of the ceiling of the refrigerator body 5 1 0 0, and is disposed in the vicinity of the end opposite to the hinge 5 1 0 1.
  • the damper 5 1 3 0 is an example of a deceleration function unit.
  • the damper 5 1 3 0 is composed of a damper main body 5 1 3 1 and a movable shaft 5 1 3 2 which is a linearly movable part connected to the damper one main body 5 1 3 1.
  • the damper body 5 1 3 1 is filled with silicon oil, and the operation is switched in two stages with respect to such a load. Specifically, when a high load is generated as a load, the flow area between the damper main body 5 1 3 1 and the piston is reduced so that a high deceleration effect is exerted. This is the first operation in which the viscous resistance increases and the operating load of the damper body 5 1 3 1 increases. When the load decreases, the flow area between the damper main body 5 1 3 1 and the piston increases so that a slightly smaller deceleration effect is exhibited. This is the second operation in which the operating load of the main body 5 1 3 1 is reduced.
  • the magnitude of the operating load can be perceived as the magnitude of the operating speed when viewed by the user.
  • an operating load is generated in the direction in which the movable shaft 5 1 3 2 is stored in the damper body 5 1 3 1, and when the movable shaft 5 1 3 2 moves in the opposite direction, the operating load is substantially reduced. It is preferably 0, and there is no built-in return panel that pushes the movable shaft 5 1 3 2 forward.
  • a magnetic body 5 1 3 3 is formed at the tip of the movable shaft 5 1 3 2.
  • the tip of the magnetic body 5 1 3 3 has a substantially spherical shape.
  • the magnet 5 1 4 0 is attached to the inner surface of the door 5 1 1 0, and it is desirable to use neodymium or ferrite magnet as the magnet material.
  • the magnetic body 5 1 3 3 and magnet 5 1 4 0 abut.
  • action are demonstrated below.
  • the damper 5 1 3 0 is disposed at a position away from the rotation center of the hinge 5 1 0 1, so that the low damper 1 is placed in the hinge 5 1 0 1 as in the prior art.
  • the load applied to the damper can be reduced compared to the arrangement.
  • the reaction force generated at the hinge 5 1 0 1 is reduced by the deceleration by the damper 5 1 3 0.
  • the load on the damper 5 1 3 0 Damper 5 1 3 0 is the first operation, and a large deceleration effect is obtained.
  • the damper 5 1 3 0 becomes the second operation, and self-closes at a slow speed even with a small load. In other words, even with a small autistic force, self-closing can be performed while decelerating.
  • the viscosity resistance in the flow path is large, so it is easily affected by the viscosity characteristics of the silicone oil as the temperature changes.
  • the flow area between the damper body and the piston increases, and the viscous resistance of silicon oil in the flow path decreases, so the deceleration operation is small and the viscous resistance is low.
  • the damper 5 1 3 0 is a door 5 1 that has a second operation that is less affected by the viscosity characteristics due to temperature changes and is less susceptible to a constant speed reduction effect than a damper that always has a speed reduction effect. Even if there is a temperature change around 10 °, the operation time can be made uniform to some extent, and the effect of the viscosity characteristics due to the temperature change can be reduced, so in the second operation just before the door closes, it is almost constant. Since the self-closing speed of the door can be obtained, the quality of the door device can be further improved and the usability can be improved.
  • the deceleration performance of the damper varies greatly due to this temperature difference.
  • the deceleration effect in over-the-counter sales and the deceleration in actual use The effect may vary greatly in terms of experience, and it has the problem of giving the user an impression that the performance of the deceleration function is poor.
  • the operation time can be made uniform to some extent, and the influence of the viscosity characteristic due to the temperature change can be reduced.
  • the self-closing speed is almost the same as when the refrigerator is operated, the quality of the door device can be further improved. Even if the damper is not installed directly in the refrigerator compartment, it can be considered in the same way if the damper is subjected to some temperature effect from the refrigerator compartment.
  • the damper 5 1 3 0 when the damper 5 1 3 0 is arranged on the front side of the refrigerator body, since the heat radiating pipe is usually arranged inside the engagement surface with the door part on the front side of the refrigerator, the damper radiates heat. It will be affected by the heat of the pipe. In that case, the temperature rises during high-load operation of the refrigerator, and the temperature decreases during low-load operation of the refrigerator, so the ambient temperature of the damper changes greatly even during operation of the refrigerator.
  • a damper with a second action that has a small deceleration effect and is not easily affected by the viscosity characteristics due to temperature changes can reduce the influence of the viscosity characteristics due to temperature changes, so in the second action just before the door closes Since a substantially constant door closing speed can be obtained, the quality of the door device can be further improved and the usability can be improved.
  • the damper 5 1 3 0 becomes the first operation and has a large deceleration effect. Is obtained.
  • the door 5 1 1 0 since the tip of the magnetic body 5 1 3 3 has a substantially spherical shape, the door 5 1 1 0 has the magnet 5 1 4 0 and the magnetic body 5 1 3 3 at the second opening degree.
  • the load applied to the damper 5 1 3 0 in the lateral direction by relieving the slight displacement between the contact position and the contact position between the magnet 5 1 40 and the magnetic body 5 1 3 3 when the door 5 1 1 0 is fully closed Can be reduced.
  • the refrigerator includes the door 5 1 1 0 that is rotatably disposed on the refrigerator body 5 1 0 0 and the self-closing mechanism 5 1 2 that self-closes the door 5 1 1 0. 0 and a self-closing mechanism 5 1 2 0 are operated while the door 5 1 1 0 is operated only when the door 5 1 1 0 is in motion, and the damper 5 1 3 0 is a refrigerator main body 5 1 0 0 Because it is installed on the ceiling of the door, deceleration can be obtained only in the operating range of the linear damper-5 1 3 0, and the door 5 1 1 0 Self-closing is possible.
  • damper 5 1 3 0 is arranged on the ceiling, even when the movable shaft 5 1 3 2 is pulled out forward and protrudes in front of the refrigerator body 5 1 0 0, Because it is difficult to touch, it is possible to prevent damage due to accidental contact.
  • the damper is disposed on the side opposite to the rotating shaft of the door 100, the load applied to the damper 5 1 30 can be reduced, and the damper 5 1 30 can be reduced in size and cost. It becomes possible.
  • the damper 5 1 3 0 is accelerated by the force applied to the door 5 1 1 0 by a human hand by having a first operation that obtains a high deceleration effect when the closing speed of the door 5 1 1 0 is fast.
  • the damper 5 1 3 0 has a second operation that obtains a low deceleration effect when the closing speed of the door 5 1 1 0 is slow, so that the door 5
  • the self-closing force of 1 1 0 can be reduced, and the design of the self-closing mechanism 5 1 2 0 becomes easy.
  • the first operation and the second operation are different in response to the change in the load of the items stored in the door 5 1 1 0 and the difference in the momentum of the door 5 1 1 0 closed by the human hand.
  • a magnetic body 5 1 3 3 is formed at the tip of the movable part of the damper 5 1 3 0, and a magnet 5 1 4 0 is formed at the contact part between the magnetic body 5 1 3 3 and the door 5 1 1 0.
  • the return panel provided separately inside or around the damper 5 1 3 0 is not required, the self-closing force can be reduced, and the design of the self-closing mechanism 5 1 2 0 is facilitated.
  • the magnetic body 5 1 3 3 is formed at the tip of the movable shaft 5 1 3 2 of the damper 5 1 3 0, and the magnet 5 1 4 0 is formed on the inner surface of the door in contact with the magnetic body 5 1 3 3
  • the same effect can be obtained even if a magnet is formed at the tip of the movable shaft 5 1 3 2 and a magnetic body is formed on the inner surface of the door in contact therewith.
  • the damper 5 1 3 0 is operated only when the self-closing mechanism 5 1 2 0 is operating.
  • it is designed to operate the self-closing mechanism 5 1 2 0 after the door speed has been sufficiently reduced by the first action of the damper 5 1 3 0.
  • it is possible to avoid when the self-closing mechanism 5 1 2 0 fails due to an external force, and to reduce the load on the self-closing device.
  • it is necessary to operate the self-closing device at the same time during the second operation, which is decelerated to some extent when closing the door, and this ensures that the door is fully closed. be able to.
  • FIG. 81 is an upper perspective view of a refrigerator provided with a door device according to Embodiment 15 of the present invention.
  • FIG. 82 is a plan view of the door device according to Embodiment 15 of the present invention.
  • the damper 5 1 3 0 is embedded in the inner wall of the ceiling of the refrigerator body 5 1 0 0, and the movable shaft 5 1 3 2 is in the front direction of the refrigerator body 5 1 0 0 In the stand-by state drawn out, the magnetic bodies 5 1 3 3 are arranged so as to be located inside the refrigerator body 5 100.
  • the damper 5 1 3 0 is an example of a deceleration function unit.
  • the contact portion 5 2 0 0 is a protrusion formed on the upper inner wall of the door 5 1 1 10 in the direction of the refrigerator body 5 1 0 0, and a magnet 5 2 0 1 is formed at the tip.
  • the abutting part 5 2 0 0 fits into the inner wall of the ceiling of the refrigerator body 5 1 0 0, and the magnet 5 2 0 1 is a magnetic body 5 1 3 3 Abut.
  • the refrigerator according to the present embodiment has the contact portion 5 2 0 0 formed toward the refrigerator main body 5 1 0 0 and the contact portion 5 2 0 0 in the vicinity of the upper portion of the door 5 1 1 0.
  • the tip of the damper and the movable shaft of the damper 5 1 3 0 come into contact with each other to obtain a deceleration effect.
  • the movable shaft of the damper 5 1 3 0 5 1 3 2 has the tip of the refrigerator body 5 1 0 0 By positioning it behind the front, when the door 5 1 1 0 is opened, the tip of the movable shaft 5 1 3 2 is not exposed to the front of the refrigerator body 5 1 0 0. It is possible to prevent the dampers from being damaged by buffering hands and containers.
  • FIG. 83 is a main part configuration diagram of the door device according to Embodiment 16 of the present invention.
  • the damper 5 1 3 0 is arranged so that the damper body 5 1 3 1 is embedded in the side wall of the hinge 5 1 0 1 of the refrigerator body 5 1 0 0, and the movable shaft 5 1 3 Damper 5 1 3 0 is attached so that 2 protrudes toward the refrigerator body.
  • the damper 5 1 3 0 is an example of a deceleration function unit.
  • the door 5 3 0 0 is pivotally supported so as to be rotatable about the hinge 5 1 0 1 as a rotation center.
  • a shelf 5 3 0 1 is formed inside the door 5 3 0 0, and a door pocket 5 3 0 2 is attached inside the shelf 5 3 0 1.
  • the magnet 5 3 0 3 is formed on the side wall of the hinge 5 1 0 1 of the shelf 5 3 0 1.
  • the magnetic body 5 1 3 3 and the magnet 5 3 0 3 are attracted by the magnetic force, so that the movable shaft 5 1 3 2 moves toward the inside of the refrigerator body 5 1 0 0.
  • the maximum stroke of the damper 5 1 3 0 is reached, the contact between the magnetic body 5 1 3 3 and the magnetic body 5 3 0 3 is released, and the magnetic body 5 1 3 3 is in a standby state while protruding into the refrigerator body 5 10 0.
  • the tip of the first projection 5 1 2 1 and the tip of the second projection 5 1 2 2 are The first protrusion 5 1 2 1 is deformed in the anti-hinge 5 1 0 1 direction due to the inertial force applied to the door 5 1 1 0 by the human hand. Thereafter, the door 5 1 1 0 is self-closed by the restoring force against the deformation of the first protrusion 5 1 2 1.
  • the refrigerator includes the door 5 3 0 0 that is rotatably disposed on the refrigerator main body 5 1 0 0, and the shelf 5 3 0 that is formed inside the door 5 3 0 0.
  • the linear damper 5 1 3 0 that acts on the door only while it is being made, and the damper 5 1 3 0 abuts against the side wall of the shelf 5 3 0 1 so that the door 5 3 0 0 A deceleration effect can be obtained only in a necessary range before the closed state.
  • the self-closing mechanism unit 5 1 2 0 is an example of a self-closing function unit.
  • FIG. 84 is a configuration diagram of the main part of the door device according to Embodiment 17 of the present invention. is there.
  • the controller 5 4 0 0 controls the operation of the refrigerator (details are not shown).
  • the position detection means 5 4 0 1 is a position detection switch placed on the ceiling of the refrigerator body 5 1 0 0 and in the vicinity of the damper 5 1 3 0, and is integrated into the unit by incorporating a hall IC.
  • the platform is used (details not shown).
  • Magnet 5 4 0 2 for operating position detection means 5 4 0 1 is fixed to movable shaft 5 1 3 2, and magnet 5 4 0 2 is detection means when door 5 1 1 0 is fully closed. 5 4 0 Close to 1.
  • the tip of the first projection 5 1 2 1 and the tip of the second projection 5 1 2 2 are The first protrusion 5 1 2 1 is deformed in the anti-hinge 5 1 0 1 direction due to the inertial force applied to the door 5 1 1 0 by the human hand. Thereafter, the door 5 1 1 0 is self-closed by the restoring force against the deformation of the first protrusion 5 1 2 1.
  • the magnet 5 2 0.1 and the magnetic body 5 1 3 3 come into contact with each other, and the movable shaft ⁇ 5 1 3 2 is the damper body 5 1 3
  • magnet 5 4 0 2 will also move backward, and magnet 5 4 0 2 will be detected 5 4 0 1 when door 5 1 1 0 is fully closed.
  • the detection means 5 4 0 1 position detection means 5 4 0 1 operates in the vicinity of the position detection means 5 4 0 1.
  • the refrigerator of this embodiment is a system that controls the operation of the refrigerator.
  • Control unit 5 4 0 0 and detection means 5 4 0 1 position detection means 5 4 0 1 for identifying whether door 5 1 1 0 is in a fully closed state detection means 5 4 0 1 position detection Means 5 4 0 1 can detect the open / closed state of the door 5 1 1 0 by detecting the position of the movable part of the damper 5 1 3 0, and the door 5 1 1 0 detects the position of the main body Compared to this method, the detecting means 5 4 0 1 position detecting means 5 4 0 1 can be downsized and the detection accuracy can be improved.
  • Embodiments 18 to 21 will be described below together with Embodiments 18 to 21.
  • An object of the present invention is to solve the above-described conventional problems, and an object of the present invention is to provide a door device that can be automatically restored with little influence on the self-closing force.
  • the self-closing force is stored in the spring, which is an elastic member, so that the damper self-resets when the self-closing device is opened, so the elastic member can be used repeatedly over a long period of time.
  • the elastic force of the rubber may deteriorate and self-recovery may not be possible.
  • the present invention solves the above-described conventional problems, and an object of the present invention is to provide a door device that can be automatically restored with little possibility of deterioration in the long term without performing damper restoration with components inside the damper. To do.
  • a door device includes a main body having a front opening, a door rotatably disposed on the main body, a self-closing mechanism that automatically closes the door, and a door.
  • a straight-forward type damper that reduces the speed at which the door closes when the door closes
  • the damper is disposed on the main body and is pulled out to the front side by being pulled by the door when the door is opened.
  • the damper is an example of a deceleration function unit.
  • the resistance at the time of self-closing can be reduced, and the load on the self-closing mechanism provided separately can be reduced.
  • the present invention can reduce the resistance at the time of self-closing and reduce the load on the self-closing mechanism provided separately, so that the cost of the door device can be reduced and the reliability can be improved.
  • the present invention includes a main body having a front opening, a door rotatably disposed on the main body, a self-closing mechanism that automatically closes the door, and a straight line that decelerates the closing speed of the door when the door is closed.
  • a damper having a movable part of the type, and the damper is disposed on the main body, and the movable part is pulled out to the front side by being pulled by the door when the door is opened. Since the resistance at the time of the operation can be reduced and the load on the self-closing mechanism can be reduced, the cost of the door device can be reduced and the reliability can be improved.
  • the self-closing mechanism unit is an example of a self-closing function unit.
  • the present invention since the damper is disposed on the opposite side to the rotation axis of the door and the center axis in the width direction, the load generated on the damper can be reduced, and the reliability is improved and reduced. Cost can be reduced. Further, the present invention provides a projection formed so that the main body side is convex in the vicinity of the upper portion of the door, and the tip of the projection abuts the tip of the movable portion of the damper to obtain a deceleration effect. Because the tip is located behind the front of the main unit, the damper will not be exposed to the front of the main unit when the door is opened, and the damper or the person's hand or container will be buffered when the food is stored or taken out. Can be prevented.
  • the present invention also includes a main body having a front opening, a door rotatably disposed on the main body, a shelf provided to the door and formed so as to protrude toward the inside of the door, A self-closing mechanism for self-closing the door, and a damper having a rectilinear movable part that is disposed on the side wall of the rotating shaft inside the main body and decelerates the closing speed of the door when the door is closed.
  • the damper is arranged on the side wall of the shelf, and when the door is opened, the movable part is pulled out by the shelf of the door and pulled out to the inside of the warehouse, so that the speed reducer can be seen from the front side of the door. Because it is difficult, a damper can be provided without impairing the design of the door device with the door open.
  • the resistance during self-closing can be reduced and the load on the self-closing mechanism provided separately can be reduced, the cost of the door device can be reduced and the reliability can be improved.
  • This also eliminates the need to self-reset the damper when the self-closing device is opened, and improves the reliability of the damper, thereby improving the reliability of the door device.
  • a deceleration effect can be obtained only in the necessary range before the door is closed.
  • a magnetic body is formed at the tip of the movable portion of the damper, and a magnet is formed at the tip of the movable portion of the damper and the contact portion of the door, so that the movable portion of the damper is opened when the door is opened. Since it is pulled out to the standby state, the damper can be restored semi-permanently with a simple configuration, and the cost of the door device can be reduced and the reliability can be improved.
  • the present invention includes a position detection unit, and the position detection unit identifies the opening / closing state of the door by detecting the position of the movable part of the damper.
  • the detection system can be improved.
  • the present invention includes the door device described above with respect to the front opening of the storage chamber formed in the refrigerator main body, whereby the pivoting type pivotally supported by the refrigerator hinge As for the doors, the resistance at the time of self-closing can be reduced and the load on the self-closing mechanism provided separately can be reduced.
  • the present invention is not limited to this embodiment (Embodiment 18).
  • FIG. 85 is an upper perspective view of the refrigerator provided with the door device according to Embodiment 18 of the present invention.
  • FIG. 86 is a plan view of the refrigerator provided with the door device according to Embodiment 18 of the present invention.
  • FIG. 87 is a configuration diagram of a main part of the door device according to Embodiment 18 of the present invention.
  • FIG. 88 is an operation diagram in the closing direction of the door in the first embodiment of the present invention.
  • FIG. 89 is an operation diagram in the door opening direction according to the eighteenth embodiment of the present invention.
  • FIG. 90 is an operation diagram of the contact point of the damper according to Embodiment 18 of the present invention.
  • the door 6 1 1 0 is rotating the hinge 6 1 0 1 on the upper part of the refrigerator main body 6 1 0 0 with the front opening 6 1 0 2 It is pivotally supported as a core so that it can rotate.
  • the self-closing mechanism 6 1 2 0 is the first protrusion 6 1 2 1 arranged on the door 6 1 1 0 And a second projection 6 1 2 2 disposed on the refrigerator main body 6 1 0 0.
  • the self-closing mechanism 6 1 2 0 is an example of a self-closing function unit.
  • the first protrusion 6 1 2 1 is formed in the vicinity of the hinge 6 1 0 1 of the door 6 1 1 0, and the door 6 1 1 0 protrudes toward the refrigerator main body 6 1 0 0 in the fully closed state.
  • the first arm 6 1 2 1 a and the second arm 6 1 2 1 projecting from the tip of the first arm 6 1 2 1 a toward the hinge 6 1 0 1 direction.
  • the tip shape of the second arm 6 1 2 1 b is preferably an appropriate R shape, and it is desirable to use a resin material that can be slightly deformed.
  • the second protrusion 6 1 2 2 is formed in the vicinity of the hinge 6 1 0 1 of the refrigerator main body 6 1 0 0 and protrudes toward the door 6 1 1 0 1 6 1 2 2 a and the first arm 6 It is composed of a second arm 6 1 2 2 b protruding from the tip of 1 2 2 a toward the anti-hinge 6 1 0 1 direction.
  • the tip shape of the second arm 6 1 2 2 b is desirably an appropriate R shape, and it is desirable to use a highly rigid metal material as the material.
  • the self-closing mechanism portion 6 1 2 0 is configured such that when the door 6 1 1 0 is fully closed, the tip of the second arm 6 1 2 1 b has a refrigerator body 6 1 rather than the second arm 6 1 2 2 b.
  • the tip of the second arm 6 1 2 1 b is forward of the second arm 6 1 2 2 b In the pulled out position.
  • the damper 6 1 3 0 is a rectilinear damper embedded in the inner wall of the ceiling of the refrigerator main body 6 1 0 0, and is disposed in the vicinity of the end opposite to the hinge 6 1 0 1.
  • the damper 6 1 3 0 is an example of a deceleration function unit.
  • the damper 6 1 3 0 is composed of a damper main body 6 1 3 1 and a movable shaft 6 1 3 2 which is a movable part connected to the damper main body 6 1 3 1. Yes.
  • the damper body 6 1 3 1 is filled with silicon oil, and the operation is switched in two stages against such load.
  • the damper main body 6 1 3 1 becomes the first operation in which the operating load increases, and when the load decreases, the damper main body 6 1 3 Second operation, in which the operating load of 1 is reduced.
  • an operating load is generated in the direction in which the movable shaft 6 1 3 2 is stored in the damper body 6 1 3 1, and when the movable shaft 6 1 3 2 moves in the opposite direction, the operating load is substantially 0. It is preferable to have a built-in return panel that pushes the operating shaft 6 1 3 2 forward.
  • a magnetic body 6 1 3 3 is formed at the tip of the movable shaft 6 1 3 2.
  • the tip of the magnetic body 6 1 3 3 has a substantially spherical shape.
  • the magnet 6 1 4 0 is attached to the inner surface of the door 6 1 1 0, and it is desirable to use neodymium or ferrite magnet as the magnet material.
  • the magnetic body 6 1 3 3 and magnet 6 1 4 0 abut.
  • action are demonstrated below.
  • Fig. 8 8, Fig. 8 9, and Fig. 90 first, when the open door 6 1 1 0 is closed by a human hand to the first opening, the first projection 6 1 2 1 The tip and the tip of the second projection 6 1 2 2 come into contact with each other, and the first projection 6 1 2 1 is deformed in the anti-hinge 6 1 0 1 direction by the force applied to the door 6 1 1 0 by a human hand. Thereafter, the door 6 1 1 0 is self-closed by the restoring force against the deformation of the first protrusion 6 1 2 1.
  • the damper 6 1 3 0 when the load on the damper 6 1 3 0 is small, such as when there is little storage or when the door 6 1 1 0 is closed slowly, the damper 6 1 3 0 is in the second operation and decelerates. The effect is reduced.
  • the return panel is not built in the damper 6 1 3 0, and the movable shaft 6 1 3 2 of the damper 6 1 3 0 is pulled by the door 6 1 1 0 when the door 6 1 1 0 opens.
  • the self-closing load of the self-closing mechanism portion 6 120 can be reduced, so that the cost of the door device can be reduced and the reliability can be improved.
  • the door 6 1 1 0 is opened, there is no need to self-reset the movable shaft 6 1 3 2 of the damper 6 1 3 0, so that the damper will not be restored due to deterioration of the parts inside the damper. Prevent and trust Reliability can be improved.
  • the refrigerator includes the door 6 1 1 0 that is rotatably disposed on the refrigerator main body 6 1 0 0 and the self-closing mechanism 6 1 2 that self-closes the door 6 1 1 0. 0 and a straight-running damper 6 1 3 0 that acts on the door 6 1 1 0 only while the self-closing mechanism 6 1 2 0 is in operation, and the damper 6 1 3 0 is a refrigerator main body 6 1 0 0 Because it is installed on the ceiling of the door, deceleration operation can be obtained only in the operating range of the linear damper-6 1 3 0, and the door 6 1 1 0 Self-closing is possible.
  • damper 6 1 3 0 is disposed on the ceiling, even when the movable shaft 6 1 3 2 is pulled out forward and protrudes forward of the refrigerator body 6 1 0 0 Because it is a place that is difficult for people to touch, Damage due to touch or the like can be suppressed.
  • the damper is disposed on the side opposite to the rotating shaft of the door 6 1 0 0, the load applied to the damper 6 1 3 0 can be reduced, and the damper 6 1 3 0 can be reduced in size and cost. Is possible.
  • the damper since the damper is disposed on the anti-hinge side, the reaction force generated in the hinge 6 1 0 1 due to the deceleration by the damper 6 1 3 0 is reduced, so that the durability of the hinge 6 1 0 1 is reduced. Improves.
  • the damper 6 1 3 0 has a first action that obtains a high deceleration effect when the door 6 1 1 0 closes quickly, so that the force applied to the door 6 1 1 0 by a human hand As a result, the speed of the door 6 1 10 accelerated by the above is reduced, and the collision noise when the door 6 1 1 10 contacts the refrigerator main body can be reduced.
  • the damper 6 1 3 0 can reduce the self-closing of the door 6 1 1 0 by having a second operation that obtains a low deceleration effect when the closing speed of the door 6 1 1 0 is slow,
  • the self-closing mechanism 6 1 2 0 can be easily designed.
  • the first operation and the second operation are different in response to the change in the load of the items contained in the door 6 1 1 0 and the difference in the momentum of the door 6 1 1 0 that is closed by human hands.
  • a magnetic body 6 1 3 3 is formed at the tip of the movable part of the damper 6 1 3 0, and a magnet 6 1 4 0 is formed at the contact part of the magnetic body 6 1 3 3 and the door 6 1 1 0.
  • the magnetic body 6 1 3 3 is formed at the tip of the movable shaft 6 1 3 2 of the damper 6 1 3 0, and the magnet 6 1 4 0 is attached to the inner surface of the door in contact with the magnetic body 6 1 3 3.
  • a similar effect can be obtained by forming a magnet at the tip of the movable shaft 6 1 3 2 and a magnetic material on the inner surface of the door in contact with the magnet.
  • FIG. 91 is an upper perspective view of the refrigerator provided with the door device according to Embodiment 19 of the present invention.
  • FIG. 92 is a plan view of the door device according to Embodiment 19 of the present invention.
  • the damper 6 1 3 0 is embedded in the inner wall of the ceiling of the refrigerator body 6 1 0 0, and the movable shaft 6 1 3 2 is in the front direction of the refrigerator body 6 1 0 0 In the standby state pulled out by the magnetic body 6 1
  • the damper 6 1 3 0 is an example of a deceleration function unit.
  • the abutting portion 6 2 0 0 is a protrusion formed on the upper inner wall of the door 6 1 1 10 in the direction of the refrigerator main body 6 1 0 0, and a magnet 6 2 0 1 is formed at the tip.
  • the abutting part 6 2 0 0 fits into the inner wall of the ceiling of the refrigerator main body 6 1 0 0, and the magnet 6 2 0 1 is magnetic body 6 1 3 3 Abut.
  • the refrigerator according to the present embodiment is near the top of the door 6 1 1 0.
  • the movable shaft 6 1 3 2 of the damper 6 1 3 0 is located behind the front of the refrigerator main body 6 1 0 0, so that the movable shaft 6 1 3 0 when the door 6 1 1 0 is opened. Since the tip of 2 is not exposed on the front surface of the refrigerator main body 6 100, it is possible to prevent the dampers from being damaged by buffering human hands and containers when storing or taking out food in the refrigerator.
  • FIG. 93 is a main part configuration diagram of the door device according to Embodiment 20 of the present invention.
  • the damper 6 1 3 0 is arranged so that the damper main body 6 1 3 1 is embedded in the side wall of the hinge 6 1 0 1 of the refrigerator main body 6 1 0 0, and the movable shaft 6 1 A damper 6 1 3 0 is installed so that 3 2 protrudes toward the refrigerator body.
  • the damper 6 1 3 0 is an example of a deceleration function unit.
  • the hinge of the door 6 3 0 0 is pivotally supported about the rotation 6 1 0 1 as the center of rotation.
  • a shelf 6 3 0 1 is formed inside the door 6 3 0 0, and a door pocket 6 3 0 2 is attached inside the shelf 6 3 0 1.
  • Magnet 6 3 0 3 is formed on the side wall of hinge 6 1 0 1 of shelf 6 3 0 1.
  • the movable shaft that is the movable portion
  • the magnetic body 6 1 3 3 and the magnet 6 3 0 3 formed at the tip of the 6 1 3 2 are in contact with each other.
  • the magnetic body 6 1 3 3 and the magnet 6 3 0 3 are attracted by magnetic force, so that the movable shaft 6 1 3 2 moves in the internal direction of the refrigerator body 6 1 0 0.
  • the maximum stroke of the damper 6 1 3 0 is reached, and the contact between the magnetic body 6 1 3 3 and the magnetic body 3 0 3 is released, and the magnetic body 6 1 3 3 Enters the standby state while protruding into the refrigerator body 6 1 0 0.
  • the tip of the first projection 6 1 2 1 and the tip of the second projection 6 1 2 2 are The first protrusion 6 1 2 1 is deformed in the anti-hinge 6 1 0 1 direction due to the inertial force applied to the door 6 1 1 0 by the human hand. Thereafter, the door 6 1 1 0 is self-closed by the restoring force against the deformation of the first protrusion 6 1 2 1.
  • the refrigerator includes the door 6 3 0 0 that is rotatably disposed on the refrigerator main body 6 1 0 0 and the shelf 6 3 0 that is formed inside the door 6 3 0 0.
  • the self-closing mechanism portion 6 1 2 0. is an example of a self-closing function portion.
  • the damper 6 1 3 0 is difficult to see from the front side of the door 6 3 0 0, so it is equipped with the damper 6 1 3 0 without impairing the aesthetics when the user opens the door 6 3 0 0
  • a refrigerator can be provided.
  • FIG. 94 is a main part configuration diagram of the door device according to Embodiment 21 of the present invention.
  • the controller 6 4 0 0 controls the operation of the refrigerator (details not shown).
  • the position detection means 6 4 0 1 is a position detection switch disposed on the ceiling of the refrigerator body 6 1 0 0 and in the vicinity of the damper 6 1 3 0, and is unitized by incorporating a hall IC. The same base is used.
  • the magnet 6 4 0 2 for operating the position detection means 6 4 0 1 is fixed to the movable shaft 6 1.3 2 and the magnet 6 4 0 2 is fixed when the door 6 1 1 0 is fully closed. Close to detection means 6 4 0 1.
  • the tip of the first projection 6 1 2 1 and the tip of the second projection 6 1 2 2 are The first protrusion 6 1 2 1 is deformed in the anti-hinge 6 1 0 1 direction due to the inertial force applied to the door 6 1 1 0 by the human hand. Thereafter, the door 6 1 1 0 is self-closed by the restoring force against the deformation of the first protrusion 6 1 2 1.
  • the magnet 6 2 0 1 and the magnetic body 6 1 3 3 come into contact with each other, and the movable shaft ⁇ 6 1 3 2 is the damper body 6 1 3 1 By moving in the direction to be stored in the magnet 6 4 0 2
  • the magnet 6 4 0 2 comes close to the position detection means 6 4 0 1 and the position detection means 6 4 0 1 operates.
  • the refrigerator has the control unit 6400 which controls the operation of the refrigerator and the position detection unit 6400 which identifies whether or not the door 6111 is fully closed.
  • the position detection means 6 4 0 1 detects the position of the movable part of the damper 6 1 3 0 so that the open / closed state of the door 6 1 1 0 can be identified, and the door 6 1 1 0 Compared to the conventional method for detecting the position of the main body, the detection means 6 4 0 1 and the position detection means 6 4 0 1 can be downsized and the detection accuracy can be improved.
  • the damper 6 1 3 0 is an example of a deceleration function unit. Next, the present invention will be described below together with Embodiment 22.
  • the door when a door device is used in the refrigerator, the door is automatically closed by the self-closing force of the twisted panel panel from the position where the door is opened to the extent that the stored item can be taken out from the refrigeration cabinet serving as a fixed frame.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a door device that does not deteriorate usability even when used in a refrigerator.
  • the rotary damper unit always acts while the door is closed, so the door closing speed is slow, and a large amount of cold air leaks from the refrigerator storage room during the door closing, causing the temperature in the storage room to rise.
  • the food in the storage room deteriorates and power consumption increases due to the cooling operation to restore the raised storage room temperature.
  • the present invention solves the above-described conventional problems, and provides a door device that suppresses deterioration of food and increase in power consumption even when used in a refrigerator. With the goal.
  • the door device has a self-closing function unit that causes the hinge part to self-close only within a predetermined range when the door is closed, and a self-closing function unit is operating. And a deceleration function unit that operates on the door only between the two.
  • the door can be held open without using a separate opening holding means.
  • the door device of the present invention can open and hold the door while the door has a self-closing function. Therefore, even when used in a refrigerator, it does not deteriorate the usability, and further deteriorates food and increases power consumption. Can be suppressed.
  • the present invention includes a housing having a front opening, a door that closes the front opening when closed, an upper hinge that is provided at an upper portion of the door and rotatably connects the door and the housing, and a lower portion of the door.
  • a self-closing function part that operates the self-closing function part, and the self-closing function part is operating. It has a deceleration function part that operates on the door only within a predetermined range, and the deceleration function part is configured in the rotating shaft of the lower hinge.
  • the self-closing start position is set to a predetermined range immediately before the door is closed, so that even when applied to a refrigerator, it is easy to put food in and out with the door open. It is possible to suppress the worsening of selfishness.
  • the deceleration function unit operates on the door only while the self-closing function unit is operating, the decrease in the closing speed can be minimized, and the deceleration function as a quality improvement factor that reduces the impact when the door is closed. While maintaining the effect of the part, it is possible to suppress the deterioration of food in the refrigerator storage room and the increase in power consumption.
  • the deceleration function unit in the rotating shaft of the lower hinge, the deceleration function unit is not visible from the appearance, and the appearance can be improved.
  • the present invention also provides a cam mechanism for the self-closing means of the self-closing function portion of the lower hinge. By using it, high reliability and durability regarding autism can be obtained.
  • the present invention uses a linear damper as a deceleration means of the deceleration function unit.
  • a linear damper As a deceleration means of the deceleration function unit.
  • the linear damper does not operate the deceleration function, so the door can be opened with a light force.
  • the vehicle when the first position where the deceleration function unit starts operating is positioned closer to the housing than the second position where the self-closing function unit starts operating, the vehicle is Since the momentum of the door cannot be used for self-closing, a large self-closing function is required for the self-closing function part, and the enlargement of the self-closing function part can be suppressed.
  • the self-closing distance of the door by the self-closing function unit is a distance within a predetermined value range in which the user cannot easily put in and out the stored items.
  • the user-friendliness of the door device can be further improved by setting the self-closing distance by the function unit.
  • the first position at which the deceleration function unit starts operating has a distance within a predetermined value range in which the user's finger or arm may be pinched, so that the user can use the door device according to the usage situation.
  • the self-closing function unit when the door is closed from the fully opened state, the self-closing function unit is manually closed to the second position where the operation starts, and when the door reaches the second position, the self-closing function unit When the door reaches the first position where the deceleration function unit starts to operate, it automatically closes while decelerating by the deceleration function unit, thereby providing a manual part for the door closing operation. Closing ability The cost can be reduced if the self-closing function part is downsized.
  • the present invention improves the usability while securing the safety of the refrigerator by mounting the above-described door device in the refrigerator so that the refrigerator has a safe and easy-to-use self-closing function and a deceleration function. be able to.
  • the function of the deceleration function unit can suppress problems such as spillage of food and beverages stored in the refrigerator main body and the door due to the impact when the door is closed, cracking and dropping of eggs converged on the door.
  • FIG. 95 is a side sectional view of the refrigerator according to Embodiment 22 of the present invention
  • FIG. 96 is a perspective view of the upper part of the refrigerator door of the refrigerator according to the embodiment
  • FIG. 97 is the refrigerator according to the embodiment.
  • Fig. 98 is a front view of the lower part of the refrigerator door of the refrigerator according to the embodiment
  • Fig. 99 is a side sectional view of the refrigerator of the refrigerator when the refrigerator door is closed.
  • FIG. 100 is a side sectional view of the refrigerator according to the embodiment when the refrigerator compartment door is opened
  • FIG. 101 is a plan sectional view when the refrigerator door of the refrigerator according to the embodiment is closed.
  • 2 is a cross-sectional plan view when the refrigerator door of the refrigerator of the same embodiment is fully opened
  • FIG. 10 3 is a cross-sectional plan view of when the refrigerator door of the refrigerator of the same embodiment reaches the second position
  • FIG. 10 is a plan sectional view when the refrigerator compartment door of the refrigerator of the embodiment has reached the first
  • the heat insulating box 7 0 2 1 of the refrigerator 7 0 2 0 is filled with foam insulation 7 0 2 4 between the inner box 7 0 2 2 and the outer box 7 0 2 3 It has a front opening 7 0 2 1 a, and the partition walls 7 0 2 5, 7 0 2 6, 7 0 2 7, refrigeration room from the top 7 0 2 8, switching room 7 0 2 9, A vegetable room 7 0 3 0 and a freezer room 7 0 3 1 are formed.
  • each storage room closes the front opening 7 0 2 1 a when closed and is connected to the heat insulation box 7 0 2 1 refrigeration room door 7 0 3 2, switching room door 7 0 3 3, vegetable room Door 7 0 3 4 and freezer compartment door 7 0 3 5 are provided.
  • the refrigerator compartment door 7 0 3 2 is composed of an upper hinge 7 0 3 6 fixed to the heat insulating box 7 0 2 1 and a lower hinge 7 0 3 7 fixed to the partition wall 7 0 2 5 7 0 3 7 2
  • the other switching room door 7 0 3 3 and vegetable room door 7 0 3 4 and freezer room door 7 0 3 5 are insulated boxes in each storage room 7 0 2 1 It is connected to the heat insulating box 7 0 2 1 so that it can be opened and closed in the front-rear direction by a rail member 7 0 2 1 b fixed to the section.
  • the upper hinge 7 0 3 6 is a plate-like upper hinge body 7 0 3 6 a fixed to the upper surface of the heat insulating box 7 0 2 1, and a part of the upper hinge body 7 0 3 6 a is the front opening 7 0 2
  • the upper rotating shaft 7 0 3 6 b protrudes downward from the refrigerator compartment door 7 0 3 2 side from 1 a and protrudes downward.
  • the upper part of the refrigerator compartment door 70 3 2 can be freely rotated by inserting the upper rotary shaft ⁇ 0 36 b into the upper surface hole 70 03 2 a provided on the upper surface of the refrigerator compartment door 70 32.
  • the lower hinge 7 0 3 7 is formed by bending a plate-like object at a substantially right angle and is fixed to the upper and lower fixed parts 7 0 3 7 a and the upper part of the fixed parts 7 0 3 7 a and is substantially horizontal.
  • the fixed part 7 0 3 7 a is a partition wall between the refrigerator compartment door 7 0 3 2 and the switching room door 7 0 3 3 7 0 2 5 fixed to the front surface, the base part 7 0 3 7 b, the lower rotating shaft 7 0 3 7 c protrudes from the front opening 7 0 2 1 a toward the refrigerator compartment door 7 0 3 2 side.
  • the lower part of the refrigerator door 7 0 3 2 is a recess provided on the lower surface of the refrigerator door 7 0 3 2 Part 0 0 3 2 b, and a substantially cylindrical bottom hole 7 0 3 2 c which is provided on the lower surface of the refrigerator door 7 0 3 2 and has a predetermined depth and is partially D-cut, Refrigerator door 7 0 3 2 Stopper 7 0 3 8, Door side cam 7 0 3 9 with self-closing function by cam mechanism, Hinge side cam ⁇ 0 4 0, Deceleration function A straight-ahead damper having 7 7 4 1.
  • the stoppers 70 3 8 are bent substantially at a right angle and are parallel to the horizontal stoppers 7 0 3 8 a and the stoppers 7 0 3 8 a.
  • the door-side cam 7 0 3 9 has an outer diameter slightly smaller than the bottom hole 7 0 3 2 c of the refrigerator compartment door 7 0 3 2 and an inner diameter of the lower rotating shaft of the lower hinge 7 0 3 7 7 0 3 7 c
  • a substantially cylindrical door-side cam cylinder 7 0 3 9 a and a part of the door-side cam cylinder 7 0 3 9 a, which are set to be slightly larger and partly D-forced, are closed.
  • the door side cam block part 7 0 3 9 b and the door side cam cylinder part 7 0 3 9 a protrude from the other end, and the door side cam cylinder part 7 0 3 9 a is provided at two points on the center of the cylinder.
  • both side surfaces in the rotational direction of the door-side cam projection 7 0 3 9 c gradually move from the door-side cam cylinder 7 0 3 9 a end toward the tip of the door-side cam projection 7 0 3 9 c It is slanted so as to be narrow and has a substantially trapezoidal shape.
  • the hinge-side cam 70 0 40 is provided coaxially with the cylindrical hinge-side cam cylinder portion 70 0 40 a having both ends opened and the hinge-side cam cylinder portion 70 0 40 0 a, and the lower hinge 7 0 3 7 lower rotary shaft 7 0 3 7 c Circular hinge side cam hole 7 0 4 0 b slightly larger than c, and hinge side cam cylinder 7 0 4 0 2005/013196
  • a hinge-side cam recess 7 0 40 0 c cut from one end of the cylinder of 132 a to the other end to the middle of the cylinder, and a hinge-side cam recess 7 0 4 0 c of the hinge-side cam cylinder 7 0 40 0 Hinge-side cam flange 7 0 40 0 d that extends substantially horizontally from the end of the opposite cylinder, and Hinge-side cam cylinder 7 0 40 0 0 Hinge-side cam cylinder 7 0 40 0 d And a hinge-side cam convex portion 740 0e extending to the outside of the other end of the cylinder of the portion 7040a.
  • the hinge-side cam recess 70 0 40 c is provided at two locations facing the door-side cam projection 7 0 39 9 c when the refrigerator compartment door 70 3 2 is closed.
  • the hinge-side cam cylinder 7 0 40 0 Hinge-side cam cylinder ⁇ 0 40 0
  • the door-side cam protrusion so that it gradually narrows from the end of the a toward the end of the hinge-side cam recess 7 0 40 0 c. Inclined at approximately the same angle as 7 0 39c, and has a substantially trapezoidal shape slightly larger than the door side cam projection 7 0 39c.
  • the straight damper 7 0 4 1 is the lower cylindrical shaft unit 0 0 4 1 a which is set slightly smaller than the cylindrical inner diameter of the lower rotating shaft 7 0 3 7 c of the lower hinge 7 0 3 7 and the unit 7 It consists of a moving part 7 0 4 1 b that protrudes outward from 0 4 1 a and moves linearly back and forth, and the moving part 7 0 4 1 b is linearly united by the impact 7 0 4 1 a side When the movable part 7 0 4 1 b that has once been moved to the unit 70 4 1 a returns to its original position, the deceleration effect is lost.
  • the hinge side cam hole 7 0 4 0 is connected to the lower rotation shaft 7 0 3 7 c of the lower hinge 7 0 3 7 c so that the hinge side cam recess 7 0 40 0 c is on the upper side. Insert the cam projection on the hinge side 7 0 4 0 e below It is fixed so that it cannot be rotated by being inserted into the hinge hole 70 3 7 d.
  • the door side cam 7 0 3 9 is inserted By inserting the lower rotary shaft 7 0 3 7 c into the door-side cam tube portion 7 0 40 0 a of the refrigerator compartment door 7 0 3 2, the lower portion of the refrigerator compartment door 7 0 3 2 becomes rotatable.
  • the door-side cam projections 7 0 3 9 c are housed in the hinge-side cam recesses 7 0 40 0 c, and the base of the door-side cam projections 7 0 3 9 c
  • the outer surface of the door side cam closing part 7 0 3 9 b is in contact with the end face of the lower surface hole 7 0 3 2 c of the refrigerator door 7 0 3 2, and on the contrary, the door side cam closing part 7 0 3 9
  • the inner surface of b is a linear damper 7 0 4 1 movable part 7 0 4 1 b Abuts the upper end surface, and the linear damper 7 0 4 1 is a movable part 7 0 4 1 b is a unit part 7 0 4 1 Stand still with a predetermined amount of movement to the a side.
  • the door side force projection 7 0 3 9 c is opened
  • the front side of the rotation direction is the hinge side cam recess 7 0 4 0 c is opened
  • the slope of the front side in the rotational direction starts to rise.
  • the door-side cam cylinder 7 0 3 9 c becomes the root of the door-side cam cylinder 7 0 3 9 a and the hinge-side cam recess 7 0 40 0 c becomes the upper end of the hinge-side cylinder 7 0 Gradually away from the end face of 4 0 a, the refrigerator door 7 0 3 2 also rises.
  • the tip of the door-side cam projection 7 0 3 9 c hits the end surface of the hinge-side cylindrical part 7 0 40 0 a, the refrigerating room door 7 0 3 2 also rises, and the refrigerating room door 7 0 3 2 is on the door side.
  • the tip of the cam projection 7 0 3 9 c is the end surface of the hinge-side cylinder 7 0 4 0 a
  • the stopper contact part rotates horizontally until the base part 7 0 3 7 of the lower hinge 70 3 7 and the stopper contact part 70 3 8 b come into contact with each other.
  • Moving part 7 0 4 1 b of rectilinear damper 7 0 4 1 b ascends to the inside of the door side cam closing part 7 0 3 9 b as the refrigerator compartment door 7 0 3 2 rises However, it is set to return to the original return position before the refrigeration room door 7 0 3 2 stops rising, so when the refrigeration room door 7 0 3 2 finishes rising, the door side cam block 7 It has the inner surface of 0 3 9 b and a predetermined space 7 0 4 2.
  • the second position at which the self-closing function of the refrigerator compartment door 70 3 2 starts to operate is determined by the position of the upper end of the inclination of the side surface on the front side in the opening rotation direction of the hinge-side cam recess 7 0 40 0 c. Therefore, the self-closing of the refrigerator compartment door 7 0 3 2 can be performed only immediately before closing.
  • the door-side cam 7 0 3 9 also descends, but on the way, the inner surface of the door-side cam closing part 7 0 3 9 b Linear damper 7 0 4 1 Movable part 7 0 4 1 Predetermined space between the upper end surface 7 0 4 2 is gradually narrowed and the refrigerator door 7 0 3 2 During the downward movement, the inner surface of the door-side cam closing portion 7 0 39 and the movable portion 7 0 4 1 b of the linear damper 7 0 4 1 are in contact with each other.
  • Refrigeration room door 7 0 3 2 stops moving down until it stops and refrigeration room door 7 0 3 2 is closed 7 0 4 1
  • Movable part 7 0 4 1 b is door side cam closing part 7 0 3 9 While moving in contact with the inner surface of b, it moves to the unit 7 0 4 1 a side, and during that time, the lowering speed of the refrigerator compartment door 7 0 3 2 is decelerated to increase the closing speed of the refrigerator compartment door 7 0 3 2 Slow down.
  • the first position where the deceleration function of the refrigerator compartment door 7 0 3 2 starts to operate is determined by the setting of the predetermined space 7 0 4 2, and the deceleration function of the linear damper 7 0 4 1 is the refrigerator compartment. It can be operated only by lowering the door 7 0 3 2 when it is closed.
  • the refrigerator compartment door 7 0 3 2 is raised from the surface of the heat insulation box 7 0 2 1 side to the heat insulation box body 7 0 2 1 side, and when the door of the refrigerator compartment door 7 0 3 2 is closed, the inner box 7 0 2 3 And a partition wall 7 0 2 5 and a bank portion 7 0 3 2 d having a substantially rectangular cross section extending in the vertical direction of the refrigerator door 7 0 32 located further inside the refrigerator room 7 0 2 8.
  • the bank part 7 0 3 2 d is provided in parallel with the left and right sides of the refrigerator compartment door 7 0 3 2, and storage items such as beverages and eggs are placed between both bank parts 7 0 3 2 c.
  • the shelf 7 0 4 4 to be stored has a space enough to allow the storage 7 0 4 3 to be taken in and out, and is provided with three levels in the vertical direction, and the surface of the shelf 7 0 4 4 on the 7 0 2 1 side Is configured to be substantially flush with the tip of the bank portion 70 3 2 d.
  • the second position where the self-closing function of the refrigerator compartment door 70 3 2 starts to operate is the front opening 7 0 2 1 a of the heat insulating box 7 0 2 1 when the refrigerator door 7 0 3 2 is closed.
  • Refrigeration room door 7 0 3 2 There is a space of about 1550 mm to 2500 mm between the bank on the opposite side of the rotating shaft 7 0 3 2 d and deceleration of the cold room door 7 0 3 2
  • the first position where the function begins to operate is also the refrigerator door 7 0 3 Heat insulation box when 2 is closed 7 0 2 1
  • Front opening 7 0 2 1 Approx. 1 0 between refrigeration room door 7 0 3 2 and opposite bank portion 7 0 3 2 d It is set to have a space of 0 mm to 150 mm.
  • the refrigeration room door 70 3 2 when the refrigeration room door 70 3 2 is fully opened, the refrigeration room door is opened larger than the second position, and can be opened by about 120 °, and it is manually closed from the fully opened position to the second position. It is configured to operate.
  • the refrigerator compartment door 7 0 3 2 is the front opening 7 0 2 1 a and the rotation axis of the refrigerator compartment door 7 0 3 2
  • the refrigerator compartment door 7 0 3 2 becomes the door side cam projection 7 0 3 9 c
  • Front side of opening rotation direction is hinge-side cam recess 7 0 40 0
  • Refrigerating room door 7 0 3 2 descends by descending slope of front side of opening rotation direction of c by itself While starting self-closing.
  • the door is closed, and the front opening 7 0 2 1 a and the cold storage door 7 0 3 2 between the rotating part 7 0 3 2 d on the opposite side of the rotary shaft 7 0 3 2
  • the closing speed of the refrigeration room door 70 3 2 starts to decelerate due to the operation of the linear damper 70 4 1 and finally closes.
  • the door side cam convex portion 7 0 3 9 c is always in the refrigerator compartment door while the side surface on the front side in the opening rotation direction is inclined to the side surface on the front side in the opening side rotation direction of the hinge side cam recess 7 0 4 0 c. Since the force in the closing direction is exerted on 7 0 3 2, even when the refrigerator door 7 0 3 2 is opened from the closed position, the refrigerator compartment door is still in the refrigerator compartment door 7 0 3 2 self-closing function. If the door opening operation is canceled before reaching the second position where the operation starts, the refrigerator door 7 0 3 2 will be self-sufficient.
  • Refrigerator 70 0 20 is designed to open the refrigerator compartment door 70 3 2 and put in / out the stored items 7 0 4 3, so the refrigerator compartment door 7 0 3 2 is opened once and continuously. When putting in and out a plurality of storage items 70 4 3, it is more convenient to keep the refrigerator compartment door 70 3 2 open.
  • the self-closing of the refrigerator compartment door 70 3 2 starts from the second position having a space of mm to 250 mm, and the self-closing function does not operate on the opening side from the second position.
  • the door 7 0 3 2 can be held open.
  • the first position where the deceleration function of the refrigerator compartment door 70 3 2 starts operating is the front opening 7 0 2 1 a of the heat insulating box 7 0 2 1 when the refrigerator compartment door 7 0 3 2 is closed.
  • Refrigeration room door 70 3 2 There is a space of about 100 mm to 150 mm between the rotating shaft and the bank on the opposite side 7 0 3 2 d, but the range in which the deceleration function operates If it is wide, it takes time to close the refrigeration room door 7 0 3 2, and as a result, the cold air in the refrigerated room 7 0 2 8 that has been refrigerated will escape and the power consumption will increase or the refrigeration will increase.
  • the range in which the deceleration function operates is better because it causes deterioration of the stored items in the room 70 2 8.
  • the front opening 7 0 2 .1 a of the heat insulating box 7 0 2 1 a and the bank portion on the opposite side of the rotating shaft of the refrigerator compartment door 7 0 3 2 7 0 3 2 The space with d is narrowed, or the bank on the opposite side of the rotating shaft 7 0 3 2 d enters the refrigerator compartment 7 0 2 8 further than the front opening 7 0 2 1 a If the deceleration function starts operating from the inserted position, the user's finger or arm must be pinched between the front opening 7 0 2 1 a and the bank 7 0 3 2 d opposite to the rotation axis. Can occur.
  • the bank portion 7 0 3 2 d is provided in the refrigerator compartment door 70 3 2, but when there is no bank portion 7 0 3 2 d, the heat insulation box of the refrigerator compartment door 7 0 3 2 is provided.
  • the space between the body 7 0 2 1 side surface and the front opening 7 0 2 1 a may be set to each predetermined value range.
  • the surface of the shelf 7 0 4 4 on the heat insulating box 7 0 2 1 side is almost flush with the tip of the bank 7 0 3 2 d, but the side of the shelf 7 0 4 4 on the heat insulating box 7 0 2 1 side If the surface of the bank protrudes from the tip of the bank 7 0 3 2 d to the heat insulating box 7 0 2 1 side, the tip of the bank 7 0 3 2 d opposite to the rotating shaft of the refrigerator door 7 0 3 2
  • the space with the shorter distance from the front opening 7 0 2 1 a among the surfaces of the shelves 7 0 4 4 and the heat insulating box 7 0 2 1 side may be set to each predetermined value range.
  • the bank portion on the opposite side of the rotating shaft of the open refrigerator door 7 0 3 2 7 0 3 2 d's tip and shelf 7 0 4 4 heat insulation box 7 0 2 1 side of the refrigerator compartment door 7 0 3 2 A space having a smaller distance from the opposite external surface may be set as each predetermined value range.
  • the refrigerator compartment door 7 0 3 2 only the predetermined range immediately before the refrigerator compartment door 7 0 3 2 is closed by the operation of the door side cam mechanism 7 0 39 and the hinge side cam mechanism 70 0 40 is the refrigerator compartment.
  • the door 7 0 3 2 can be self-closing, and the straight cam damper 7 0 4 1 and the door side cam mechanism 7 0 3 9 Because the closing speed can be reduced only when the refrigerator door 7 0 3 2 is closed by the operation of the hinge side cam mechanism 7 0 4 0, the refrigerator door 7 0 3 2 is opened even when applied to a refrigerator. Since it becomes easy to take in and out the stored goods as it is, it is possible to prevent the convenience of the refrigerator from being deteriorated.
  • the deceleration function section by the linear damper 7 0 4 1 is moved to the refrigerator compartment door 7 0 3 2 only while the self-closing function section by the door side cam mechanism 7 0 3 9 and the hinge side cam mechanism 7 0 4 0 is operating.
  • the reduction in the closing speed can be minimized, and the effect of the deceleration function as an element of quality improvement that reduces the impact when closing the door is maintained, while the food in the refrigerator compartment 7 0 2 8 Deterioration and increase in power consumption can be suppressed.
  • the lower rotary shaft 70 0 3 7 c of the lower hinge 70 3 7 is a hollow cylinder, and a linear damper 7 0 4 1 having a deceleration function is provided in the hollow space of the lower rotary shaft 70 3 7 c.
  • the deceleration function part can not be seen from the appearance, and the appearance of the refrigerator 70 0 20 can be improved.
  • a linear damper 7 0 4 1 is used as a deceleration means, and the descending of the refrigerator compartment door 7 0 3 2 when the door is closed by the door side cam mechanism 7 0 3 9 and the hinge side cam mechanism 7 0 4 0 Deceleration at 7 0 4 1 makes it easy to operate the deceleration function only when the refrigerator door 7 0 3 2 is closed automatically.
  • the linear damper 70 04 1 does not operate the deceleration function, so that the refrigerator compartment door 70 3 2 can be opened with a light force.
  • the first position where the deceleration function by the linear damper 7 0 4 1 starts operation is more insulated than the second position where the self-closing function starts operation. Positioning it on the 1 side will reduce the closing speed of the refrigerator door 7 0 3 2 and then self-close the door. 3 9 and the hinge-side cam mechanism 7 0 4 0 require a large self-closing capability, and the size of the self-closing function portion can be suppressed.
  • the front opening 7 0 2 la of the heat insulating box 7 0 2 1 and the bank portion 7 on the opposite side to the rotation axis of the refrigerator compartment door 7 0 3.2 0 3 2 d By taking a space within the predetermined value range, the door side cam mechanism 7 0 3 9 and the hinge side cam mechanism 7 0 4 0 according to the usage situation of the user of the refrigerator 7 0 2 0
  • the usability of the refrigerator 7 0 20 can be further improved.
  • the first position where the deceleration function of the refrigerator compartment door 70 3 2 starts to operate is the front opening 7 0 2 1 a of the heat insulating box 7 0 2 1 and the refrigerator compartment door on the opposite side of the rotating shaft
  • Set the predetermined space 7 0 4 2 according to the usage situation of the user by taking a space in the predetermined value range between 7 0 3 2 bank part 7 0 3 2 d Can prevent the user's arms and fingers from being pinched, and can increase the safety of the door device.
  • the door side cam mechanism 7 0 39 and the hinge side cam mechanism 7 0 40 are manually operated until the second position where the self-closing function starts.
  • the door-side cam mechanism 7 0 3 9 and the hinge-side cam mechanism 7 0 4 0 self-close, and the linear damper 7 0 4 1 operates the deceleration function.
  • the refrigerator door 7 0 3 2 arrives at the first position to start, by receiving a deceleration action by the straight damper 7 0 4 1 and self-closing while decelerating, a manual part is provided for the door closing operation.
  • the door-side cam mechanism 7 0 3 9 and the hinge-side cam mechanism 7 0 3 9 can reduce the self-closing capability of the self-closing function, and the door-side cam mechanism 7 0 3 9 and the hinge-side cam Miniaturization of mechanism 7 0 4 0 Costs can be reduced.
  • the door device according to the present invention includes a self-closing function portion and a deceleration function
  • the refrigerator according to the present invention includes the door device of the present invention. Since the door device and refrigerator according to the present invention have high functionality, operational efficiency, efficiency, and safety, they can be applied to applications such as system kits, furniture, office desks, and commercial refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Closing And Opening Devices For Wings, And Checks For Wings (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Abstract

機能性と操作作業性と効率と安全性の高い扉装置及び冷蔵庫が提供される。この扉装置は、扉と、扉を自閉させる自閉機能を有する自閉機能部と、扉を閉める際に扉の閉まる速度を減速させる減速機能部とを備える。この冷蔵庫は、その扉装置を備える。

Description

明細書
扉装置および冷蔵庫
技術分野
本発明は、 自閉機能および減速機能を有する扉装置及びそれを用い た冷蔵庫に関する。 背景技術
一般に、 引出し式の収納ケースにおいては、 自閉装置を具備したも のが広く普及している。 例えば、 特開平 8— 3 8 2 8 1号公報にそれ が開示されている。
図 1 0 5は、 特開平 8— 3 8 2 8 1号公報に記載された従来の扉装 置の構成図である。 図 1 0 5に示すように、 自閉装置の必須部分は、 傾斜部 1 0 0 3、 案内トラック、 駆動ピン 1 0 0 5および引張りパネ
1 0 06である。
案内トラックは本体側壁 1 0 0 2に固着可能なレール 1 0 0 7に配 設される溝によって形成される。 駆動ピン 1 0 0 5は、 引出し案内気 体の引出し側にある引出し壁 1 0 0 1または引出しレールに直接固着 されることができる。
傾斜部分 1 0 0 3は 2本のポルトによって案内トラック 1 0 0 4内 に案内される。 案内トラック 1 0 04は後方の長くかつ真っ直ぐな部 分 1 0 0 4 ' および前方の弓形の部分 1 0 04〃 からなる。 引張りば ね 1 0 0 6はその後方端により本体側で、 例えば、 本体側壁 1 0 0 2 に固着される。 扉 1 0 1 1は引出し壁 1 0 0 1の先端に形成された平 板である。
以上の構成により、 引出しが挿入された位置にあるとき、 傾斜部分 1 0 0 3の上方に向かって開放されたスロッ 卜内に延在する。 スロッ ト 1 0 0 9は駆動ピン 1 0 0 5の挿入を容易にする斜めの側壁を有す る。
引出しが開放されるとき、 傾斜部分 1 0 0 3はこれが案内トラック の弓形の部分 1 0 0 4〃 に達するまで矢印 Aの方向に案内トラックの 真っ直ぐな部分 1 0 0 4 ' に沿って動かされる。 この位置においては、 傾斜部分 1 0 0 3は前方に向かって傾斜され、 かつ駆動ピン 1 0 0 5 はさらに傾斜部分 1 0 0 3から動かされる。 2本のポルトによって提 供される案内および部分 1 0 0 4 ' の円弧の寸法付けにより、 傾斜部 分 1 0 0 3は、 引出しがその引き出された位置にある、 すなわち引張 りばね 1 0 0 6によって自動的に引き戻されないとき、 その前方位置 に錠止される。
引出しが挿入されているとき、 引出しは駆動ピン 1 0 0 5が傾斜部 分 1 0 0 3のスロッ ト 1 0 0 9に再係合するまで移動通路の前方部分 にわたつて自由に動かされる。 駆動ピン 1 0 0 5の摺動力により、 傾 斜部分 1 0 0 3は押し戻される。 傾斜部分 1 0 0 3が弓形部分 1 0 0 4〃 から動かされかつ案内トラック 1 0 0 4の真っ直ぐな部分 1 0 0 4 ' にあるとすぐに、 引張りばね 1 0 0 6は有効になる。 すなわち傾 斜部分 1 0 0 3がまず引出しの運動によって動かされる一方、 引っ張 りばね 1 0 0 6のばね力は傾斜部分 1 0 0 3および駆動ピン 1 0 0 5 を介して引出しに伝達され、 それは引張りばね 1 0 0 6が傾斜部分 1 0 0 3により引出しを本体に聞き込むことを意味する。 この方法にお いて、 途中まで押し込まれた引出しは、 本体に完全に引き込まれるこ とができる。
また、 近年、 例えば収納家具や貯蔵庫など回転扉を有するものの中 には使用者の使い勝手向上のため自閉可能な扉装置を備えるものがあ る。 例えば、 特開平 8 - 3 1 2 2 3 6号公報にそれが開示されている。 以下、 図面を参照しながら、 上記従来の扉装置について説明する。 図 1 0 6は、 従来の扉装置を用いた本体の外観斜視図である。 図 1 0 7は、 従来の扉装置の扉が全開した状態における扉装置上部の斜視 図である。 図 1 0 8は、 従来の扉装置上部の分解斜視図である。 図 1 0 9は、 従来の扉装置下部の分解斜視図である。 図 1 0 6から図 1 0 9に示すように従来の扉装置 40 0 1は前面開口部 4 0 0 2 aを有す る本体 40 0 2と、 本体 40 0 2上部に備 た上部ヒンジ装置 4 0 0 3と、 本体 4 0 0 2下部に備えた下部ヒンジ装置 4 0 04と、 閉時に 本体 4 0 0 2の前面開口部 4 0 0 2 aを閉塞して上部ヒンジ装置 4 0 0 3と下部ヒンジ装置 4 0 0 4により本体 4 0 0 2と回動自在に連結 された扉 40 0 5とから構成される。
上部ヒンジ装置 4 0 0 3は、 本体 4 0 0 2上面に固着され回転軸 4 0 0 6 aを有する上部ブラケッ ト 4 0 0 6と、 どちらか一端を本体 4 0 0 2の前面開口部 4 0 0 2 aに、 他端を扉 4 0 0 5の上面に固定さ れたコイルバネ 4 0 0 7と、 上部カラー 4 0 0 8とからなる。 まず回 転軸 4 0 0 6 aを上部カラー 4 0 0 8の筒部 4 0 0 8 aに挿入後、 上 部カラー 4 0 0 8をコイルバネ 4 0 0 7のコイル部 4 0 0 7 aの中心 を貫通させ、 更に扉 4 0 0 5上面に設けた上面孔 4 0 0 5 aに挿入す ることにより本体 40 0 2と扉 40 0 5とを回動自在に連結される。 また、 コイルパネ 40 0 7は扉 4 0 0 5が全開位置にある際には扉 4 0 0 5を閉方向へ付勢し、 扉 4 0 0 5が閉方向へ移動すると共に 徐々に付勢を弱め、 扉 4 0 0 5が閉位置にある時には更なる閉方向へ の付勢はほとんど行なわないよう設定されている。
一方下部ヒンジ装置 4 0 0 4は、 本体 4 0 0 2下面に固着され回転 軸 4 0 0 9 aを有する下部ブラケッ ト 4 0 0 9と、 扉 4 0 0 5下面に 固着され扉 4 0 0 5の全開時に下部ブラケッ ト 4 0 0 9と当接して扉 4 0 0 5の開放角度を制限するス トッパー 40 1 0と、 ストツパ一 4 0 1 0の更に扉 4 0 0 5下側に配置され扉 4 0 0 5との間にストツノ° 一 4 0 1 0を介して扉 4 0 0 5に固着された下部カラー 4 0 1 1 とか らなる。 まずストッパー 4 0 1 0の穴 4 0 1 O aに下部カラー 4 0 1 1の筒部 4 0 1 1 aが挿入され、 筒部 4 0 1 1 aを扉 40 0 5下面に 設けた下面孔 4 0 0 5 bに挿入後ストツバ一 4 0 1 0と下部カラー 4 0 1 1 とが扉 4 0 0 5に固着される。 更に本体 4 0 0 2の下面に固着 された下部ブラケッ ト 4 0 0 9の回転軸 4 0 0 9 aを下部力ラー 4 0 1 1の筒部 4 0 1 1 aに挿入することにより本体 4 0 0 2と扉 4 0 0 5とが回動自在に連結される。
また、 下部ブラケッ ト 4 0 0 9と下部カラー 4 0 1 1 とは当接する ことにより、 扉 4 0 0 5が閉時より全開に至るまでの途中の所定位置 まで扉 4 0 0 5の回動に伴い扉 4 0 0 5を段々と上昇させ自閉カを蓄 える下部カム機構 40 0 9 aと上部カム機構 40 1 1 bとを有する。 また、 ストッパー 4 0 1 0により扉 4 0 0 5は略 9 0。 まで回動可 能である。
以上のように構成された扉装置について、 以下その動作を説明する。 まず、 扉 4 0 0 5を閉位置より開放していくと、 所定位置までは下 部カム機構 4 0 0 9 bと上部カム機構 4 0 l i bにより扉 4 0 0 5は 段段と上昇し徐々に自閉カを蓄えていき、 所定位置に至ると扉 4 0 0 5の上昇は止まるが下部カム機構 4 0 0 9 bと上部カム機構 4 0 1 1 bは所定位置での自閉カを保 したままとなる。
一方コイルパネは同様に扉 4 0 0 5を閉位置より開放していくと、 全開位置の略 9 0 ° まで徐々に自閉への力を蓄えていく。
したがって、 扉 4 0 0 5を全開位置で放置すると、 まずコイルパネ 4 0 0 7により扉 4 0 0 5は自閉を開始する。 閉方向へ扉 4 0 0 5が 回動するに伴いコイルバネ 4 0 0 7の自閉カは低下していく 、 扉 4 0 0 5が所定位置に至ると下部カム機構 4 0 0 9 bと上部カム機構 4 0 1 1 bとにより更なる自閉力が加えられ、 扉 4 0 0 5は段々と下降 しながら確実に閉位置に到達可能なので全ての回動位置において扉 4 0 0 5を自閉させることが可能としている。
発明の開示
扉装置は
扉と
扉を自閉させる自閉機能を有する自閉機能部と、
扉を閉める際に扉の閉まる速度を減速させる減速機能部と を備える。
冷蔵庫は、 上述の扉装置を備える。 図面の簡単な説明
図 1は本発明の実施の形態 1における扉装置の側面図である。
図 2は本発明の実施の形態 1における扉装置の構成図である。
図 3は本発明の実施の形態 1における扉装置の要部断面図である。 図 4は本発明の実施の形態 1における扉装置の要部断面図である。 図 5は本発明の実施の形態 1における扉装置の断面図である。
図 6は本発明の実施の形態 1における扉装置の動作図である。
図 7は本発明の実施の形態 1における扉装置の動作図である。
図 8は本発明の実施の形態 1における扉装置の動作図である。
図 9は本発明の実施の形態 1における扉装置の動作図である。
図 1 0は本発明の実施の形態 1における扉装置の動作図である。
図 1 1は本発明の実施の形態 2における扉装置の側面図である。
図 1 2は本発明の実施の形態 2における扉装置の断面図である。
図 1 3は本発明の実施の形態 2における扉装置の要部構成図である。 図 1 4は本発明の実施の形態 2における扉装置の断面図である。 図 1 5は本発明の実施の形態 2における扉装置の断面図である。 図 1 6は本発明の実施の形態 2における扉装置の断面図である。 図 1 7は本発明の実施の形態 2における扉装置の動作図である。 図 1 8は本発明の実施の形態 2における扉装置の動作図である。 図 1 9は本発明の実施の形態 2における扉装置の動作図である。 図 2 0は本発明の実施の形態 2における扉装置の動作図である。 図 2 1は本発明による扉装置の実施の形態 3の側面図である。
図 2 2は本発明による扉装置の実施の形態 3の要部構成図である。 図 2 3は本発明による扉装置の実施の形態 3の要部構成図である。 図 2 4は本発明による扉装置の実施の形態 3の図 2 3の A— A線断 面図である。
図 2 5は本発明による扉装置の実施の形態 3の要部構成図である。 図 2 6は本発明による扉装置の実施の形態 3のシリコンオイルの温 度変化に対する粘度特性図である。
図 2 7は本発明による扉装置の実施の形態 3の要部構成図である。 図 2 8は本発明による扉装置の実施の形態 3の各温度における動作 時間の特性図である。
図 2 9は本発明による扉装置の実施の形態 3の動作図である。
図 3 0は本発明による扉装置の実施の形態 3の動作図である。
図 3 1は本発明による扉装置の実施の形態 3の動作図である。
図 3 2は本発明による扉装置を備えた冷蔵庫の実施の形態 4の側面 図である。
図 3 3は本発明による扉装置の実施の形態 4の要部構成図である。 図 3 4は本発明.による扉装置の実施の形態 4の要部構成図である。 図 3 5は本発明による扉装置の実施の形態 5の要部構成図である。 図 3 6は本発明による扉装置の実施の形態 5の要部構成図である。 図 3 7は本発明による扉装置の実施の形態 5の弾性体の特性図であ る。
図 3 8は本発明による扉装置の実施の形態 6の側面図である。
図 3 9は本発明による扉装置の実施の形態 6の要部構成図である。 図 4 0は本発明による扉装置を備えた冷蔵庫の実施の形態 7の正面 図である。
図 4 1は伺実施の形態の扉装置を備えた令蔵庫の内部構成を示す図 である。
図 4 2は図 4 1の C— C線断面図である。
図 4 3は同実施の形態の扉装置のレール部材の構成を示す図である。 図 4 4は本発明による扉装置を備えた冷蔵庫の実施の形態 8の内部 構成を示す図である。
図 4 5は図 4 4の D— D線断面図である。
図 4 6は同実施の形態の扉装置のレール部材の構成を示す図である。 図 4 7は本発明による扉装置を備えた冷蔵庫の実施の形態 9の正面 図である。
図 4 8は同実施の形態の扉装置を備えた冷蔵庫の内部構成を示す図 である。
図 4 9は図 4 8の E — E線断面図である。
図 5 0は本発明の実施の形態 1 0における冷蔵庫の側断面図である。 図 5 1は同実施の形態の冷蔵庫の冷蔵室ドア上部の斜視図である。 図 5 2は同実施の形態の冷蔵庫の冷蔵室ドア下部の分解斜視図であ る。
図 5 3は同実施の形態の冷蔵庫の冷蔵室ドア下部の縦断面図である。 図 5 4は同実施の形態の冷蔵庫の冷蔵室ドア下部の側断面図である。 図 5 5は同実施の形態の冷蔵庫の主要部品の斜視図である。
図 5 6は同実施の形態の冷蔵庫の冷蔵室ドアが全開した際の平面断 面図である。
図 5 7は同実施の形態の冷蔵庫の冷蔵室ドアが第 2の位置に到達し た際の平面断面図である。
図 5 8は同実施の形態の冷蔵庫の冷蔵室ドアが第 1の位置に到達し た際の平面断面図である。 '
図 5 9は同実施の形態の冷蔵庫の冷蔵室ドアが第 3の位置に到達し た際の平面断面図である。
図 6 0は本発明の実施の形態 1 1における冷蔵庫の上部斜視図であ る
図 6 1は本発明の実施の形態 1 1における冷蔵庫の平面図である。 図 6 2は本発明の実施の形態 1 1における自閉機能部の構成図であ 図 6 3は本発明の実施の形態 1 1における扉装置の要部拡大図であ 図 6 4は本発明の実施の形態 1 1における扉装置の動作図である。 図 6 5は本発明の実施の形態 1 1における扉装置の動作図である。 図 6 6は本発明の実施の形態 1 1における扉装置の動作図である。 図 6 7は本発明の実施の形態 1 2における扉装置の要部構成図であ 。
図 6 8は本発明の実施の形態 1 2における特性図である。
図 6 9は本発明の実施の形態 1 2における扉装置の動作図である。 図 7 0は本発明の実施の形態 1 2における扉装置の動作図である。 図 7 1は本発明の実施の形態 1 3における扉装置の要部構成図であ る。
図 7 2は本発明の実施の形態 1 3における扉装置の図 7 1の A矢視 図である
図 7 3は本発明の実施の形態 1 3における動作図である。 図 7 4は本発明の実施の形態 1 3における動作図である。
図 7 5は本発明による扉装置を備えた冷蔵庫の実施の形態 1 4の上 部斜視図である。
図 7 6は本発明による扉装置の実施の形態 1 4の平面図である。
図 7 7は本発明による扉装置の実施の形態 1 4の要部構成図である。 図 7 8は本発明による扉装置の実施の形態 1 4の扉の閉方向の動作 図である。
図 7 9は本発明による扉装置の実施の形態 1 4の扉の開方向におけ る動作図である。
図 8 0は本発明による扉装置のダンパーの実施の形態 1 4の当接点 の動作図である。
図 8 1は本発明による扉装置を備えた冷蔵庫の実施の形態 1 5の上 部斜視図である。
図 8 2は本発明による扉装置の実施の形態 1 5の平面図である。
図 8 3は本発明による扉装置の実施の形態 1 6の要部構成図である。 図 8 4は本発明による扉装置の実施の形態 1 7の要部構成図である。 図 8 5は本発明による扉装置を備えた冷蔵庫の実施の形態 1 8の上 部斜視図である。
図 8 6は本発明による扉装置の実施の形態 1 8の平面図である。
図 8 7は本発明による扉装置の実施の形態 1 8の要部構成図である。 図 8 8は本発明による扉装置の実施の形態 1 8の扉の閉方向の動作 図である。
図 8 9は本発明による扉装置の実施の形態 1 8の扉の開方向におけ る動作図である。
図 9 0は本発明による扉装置の実施の形態 1 8のダンパーの当接点 の動作図である。
図 9 1は本発明による扉装置を備えた冷蔵庫の実施の形態 1 9の上 部斜視図である。
図 9 2は本発明による扉装置の実施の形態 1 9の平面図である。
図 9 3は本発明による扉装置の実施の形態 2 0の要部構成図である。 図 9 4は本発明による扉装置の実施の形態 2 1の要部構成図である。 図 9 5は本発明の実施の形態 2 2における冷蔵庫の側断面図である。 図 9 6は同実施の形態の冷蔵庫の冷蔵室ドア上部の斜視図である。 図 9 7は同実施の形態の冷蔵庫の冷蔵室ドア下部の分解斜視図であ る。
図 9 8は同実施の形態の冷蔵庫の冷蔵室ドア下部の正面図である。 図 9 9は同実施の形態の冷蔵庫の冷蔵室ドア閉時の側断面図である。 図 1 0 0は同実施の形態の冷蔵庫の冷蔵室ドア開時の側断面図であ る。
図 1 0 1は同実施の形態の冷蔵庫の冷蔵室ドア閉時の平面断面図で ある。
図 1 0 2は同実施の形態の冷蔵庫の冷蔵室ドアが全開した際の平面 断面図である。
図 1 0 3は同実施の形態の冷蔵庫の冷蔵室ドアが第 2の位置に到達 した際の平面断面図である。
図 1 0 4は同実施の形態の冷蔵庫の冷蔵室ドアが第 1の位置に到達 した際の平面断面図である。
図 1 0 5は従来の扉装置の構成図である。
図 1 0 6は従来の扉装置を用いた本体の外観斜視図である。
図 1 0 7は従来の扉装置の扉が全開した状態における扉装置上部の 斜視図である。
図 1 0 8は従来の扉装置上部の分解斜視図である。
図 1 0 9は従来の扉装置下部の分解斜視図である。 発明を実施するための最良の形態
では、 まず、 実施の形態 1および 2と供に本発明を以下に説明する。 上記従来の扉装置の構成では、 引.出しが完全に閉まる直前に、 本体 と扉の間で手や指を詰める可能性が有りうる。
本発明は上記従来の課題を解決するもので、 自閉機能を有しながら、 扉が閉まる際の安全性を高めた扉装置を提供することを目的とする。 上記従来の課題を解決する為に、 本発明の扉装置は、 筐体と、 筐体 に係合され、 前面側に扉を設けた収納部材とを有した引出しにおいて、 筐体に対して収納部材を前後に移動可能とするレール部材と、 扉を自 閉させる自閉機能を有する自閉装置と、 扉を閉める際に扉を減速させ るダンパーとを備えたものである。 尚、 自閉装置は自閉機能部の一例 であり、 ダンパーは減速機能部の一例である。
これによつて、 扉を自閉する自閉機能に加えて、 扉が閉まる際に扉 の移動速度が減速する減速機能を有することになる。
本発明の扉装置は、 扉を自閉する自閉機能に加えて、 扉が閉まる際 に扉の移動速度が減速する減速機能を有することで、 安全性を確保し たまま引出しを自閉することができる。
本発明は、 筐体と、 筐体に係合され前面側に扉を設けた収納部材と を有した引出しにおいて、 筐体に対して収納部材を前後に移動可能と するレール部材と、 扉を自閉させる自閉機能を有する自閉装置と、 扉 を閉める際に前記扉の閉まる速度を減速させるダンパーとを備えたこ とにより、 扉が閉まる際に減速されることとなり、 安全性を確保した まま引出しを自閉することができる。
また、 本発明は、 自閉装置をダンパー内に備えたものであり、 自閉 装置とダンパーをコンパク 卜に設置することができる。
筐体内に形成された複数の空間内にそれぞれ収納部材を備え、 収納 部材の前面に設けられた扉とからなる引出しにおいて、 筐体に固定さ れ、 収納部材を前後に移動可能とするレール部材と、 扉を自閉させる 自閉機能を有するダンパーとを備え、 扉と隣接する扉もしくは筐体と の間に所定値範囲の隙間が形成される第 2位置において、 ダンパーは、 少なく とも減速動作を開始することにより、 扉が閉まる直前では扉の 移動速度が減速することとなり、 安全性を確保したまま引出しを自閉 することができる。
また、 本発明は、 収納部材と自閉装置とを連結する連結部材を備え、 自閉装置が筐体側に構成されたレール部材に固定されるとともに、 扉 を閉める際に連結部材によって収納部材と自閉装置とが連結される第 1位置に達した時、 自閉装置が前記扉を自閉させる自閉機能が動作す ることにより、 連結部材によって収納部材と自閉装置が連結した場合 にのみ扉に自閉機能を持たすことができ、 扉の開き具合によって自閉 機能がない部分と自閉機能を有する部分との両方を備えた扉装置を提 供することができる。
また、 本発明は、 扉を閉める際に、 扉の閉まる速度を減速させるダ ンパーが減速動作を開始する第 2位置は、 第 1位置よりも筐体側であ ることにより、 安全性を確保したまま引出しを自閉することができる。 また、 本発明は、 第 2位置は扉と筐体の間に人の指や拳が挟まるこ とのある距離としたものであり、 この第 2位置で減速動作が始まるこ とで、 自閉動作によって扉が自動で閉まっても、 扉と筐体の間に人の 指や拳が挟まることを防ぐことができる。
また、 本発明は、 ダンパーは、 少なく とも前記収納部材が開かれる 方向に移動中の状態においては、 減速動作を解除することにより、 収 納部材が開かれる方向に移動中における引出しの開扉力を低減するこ とができる。
また、 本発明は、 連結部材は、 レール部材の中央近傍で収納部材と 連結されていることにより、 自閉過程において各レール部材にかかる 荷重が均等となることにより、 円滑な動作が可能となる。
また、 本発明は、 連結部材と収納部材は、 収納部材の移動により着 脱可能であることにより、 収納部材の移動によりダンパーの動作が解 除可能となり、 ダンパー動作の解除過程における引出しの開扉力を低 減することができる。
また、 本発明は、 扉が第 2位置より筐体側にある第 3位置から全閉 位置の間の範囲にある場合には、 ダンパーは減速動作を解除すること により、 減速動作のための負荷が解除されることとなり、 扉を確実に 閉めることができ、 また全閉時の扉の自然開放を防止することができ る。
また、 本発明は、 第 3位置は扉と筐体の間に人の指が容易に入らな い距離としたものであり、 扉と筐体の間に人の指が容易に入らない距 離においてダンパーは減速動作を解除することにより、 減速動作のた めの負荷が解除されることとなり、 指が挾まる危険性を回避した上で 扉を確実に閉めることができ、 また全閉時の扉の自然開放を防止する ことができる。
また、 本発明は、 上記の発明の扉装置を冷蔵庫に搭載したことによ り、 冷蔵庫の引出しが閉まる直前では扉の移動速度が減速することと なり、 安全性を確保したまま引出しを自閉することができる。
以下、 本発明の実施の形態について、 図面を参照しながら説明する が、 従来例または先に説明した実施の形態と同一構成については同一 符号を付して、 その詳細な説明は省略する。
なお、 この実施の形態によってこの発明が限定されるものではなレ (実施の形態 1 )
図 1は本発明の実施の形態 1における扉装置の側面図である。 図 2 は本発明の実施の形態 1における扉装置の構成図である。 図 3は本発 明の実施の形態 1における要部断面図である。 図 4は本発明の実施の 形態 1における要部断面図である。 図 5は本発明の実施の形態 1にお ける断面図である。 図 6は本発明の実施の形態 1における動作図であ る。 図 7は本発明の実施の形態 1における動作図である。 図 8は本発 明の実施の形態 1における動作図である。 図 9は本発明の実施の形態 1における動作図である。 図 1 0は本発明の実施の形態 1における動 作図である。
図 1、 図 2、 図 3において、 筐体 1 1 0 0は、 開口 1 1 0 1を有す る箱体である。 扉装置 1 1 1 0は、 筐体 1 1 0 0内に配置されており、 開口 1 1 0 1を封止する扉 1 1 1 1 と上面が開口された収納部材 1 1 1 2から構成されている。 ハンドル 1 1 1 3は扉 1 1 1 1の前面に形 成された操作部である。 取付け穴 1 1 1 4は収納部材 1 1 1 2の両サ ィ ドに形成された孔穴である。
レール部材 1 1 2 0は、 主に稼動レール 1 1 2 1 と中間レール 1 1 2 2と固定レール 1 1 2 3から構成されている。 稼動レール 1 1 2 1 は取付け穴 1 1 1 4で収納部材 1 1 1 2と固定されており、 扉装置 1 1 1 0と共に前後に水平移動可能である。 中間レール 1 1 2 2は、 稼 動レール 1 1 2 1 と固定レール 1 1 2 3を連結するレールであり、 稼 動レール 1 1 2 1及び固定レール 1 1 2 3双方と水平移動可能なよう に連結されている。 固定レール 1 1 2 3は、 扉装置 1 1 1 0を水平移 動可能なように筐体 1 1 0 0に固定されている。
ダンパー 1 1 3 0は、 固定レール 1 1 2 3の下方に配設されており、 主にカバ一 1 1 3 1 と、 弾性体 1 1 3 2と、 ピストン 1 1 3 3と、 連 結部材 1 1 4 0により構成されている。 カバー 1 1 3 1は、 一端を開 放した中空の筒形状をしており、 2つの異なる内径 d 1 と 2を有す る。 尚、 ダンパー 1 1 3 0は減速機能部の一例である。
弾性体 1 1 3 2は、 カバ一 1 1 3 1の封止端とビストン 1 1 3 3を 連結する引張りバネである。 ピス トン 1 1 3 3は、 カバー 1 1 3 1内部に水平移動可能に配設さ れており、 カバ一 1 1 3 1の封止端側に形成された略円筒形のフラン ジ部 1 1 3 3 aと、 フランジ部 1 1 3 3 aからカバー 1 1 3 1の開放 端に向けて形成されたシャフ ト 1 1 3 3 bと、 フランジ部 1 1 3 3 a の周方向に取り付けられたパッキン 1 1 3 3 cで構成されている。 こ こで、 パッキン 1 1 3 3 cは、 弾性を有するシリコンゃ天然ゴムを使 用することが望ましく、 パッキン 1 1 3 3 cの外形 d 3は、 カバー 1 1 3 1の内径 d 2とほぼ同一径であり、 パッキン 1 1 3 3 cの外形 d 3とカバー 1 1 3 1の内径 d 1の間には所定のクリァランスが形成さ れている。
つまり、 フランジ部 1 1 3 3 aが、 解放端から所定距離 L 1の間も しくは所定距離 L 2から封止端の間に位置する場合は、 パッキン 1 1 3 3 cの外周とカバ一 1 1 3 1の内壁の間に所定のクリアランスが形 成され、 所定距離 L 1から所定距離 L 2の間にフランジ部 1 1 3 3 a が位置する場合は、 パツキン 1 1 3 3 cの外周がカバ一 1 1 3 1の内 壁に当接する。
図 4、 図 5において、 連結部材 1 1 4 0は、 主に案内レール 1 1 4 1 と、 傾斜部材 1 1 4 2と、 リンク機構 1 1 4 3とから構成されてい る。 案内レール 1 1 4 1は、 カバ一 1 1 3 1の解放端に固定されてい る。 ここで、 案内レール 1 1 4 1の側壁にはカバー 1 1 3 1側端を開 口した溝 1 1 4 1 aが形成されており、 案内レール 1 1 4 1の上壁に は両端を閉じた溝 1 1 4 1 bが形成されている。 さらに、 案内レール 1 1 4 1の側壁の反カバー側端近傍に上部を開口した溝 1 1 4 1 cが 形成されている。
傾斜部材 1 1 4 2は、 連結部 1 1 4 2 aにおいてシャフ ト 1 1 3 3 bの端部と回転可能に連結されており、 連結部 1 1 4 2 aは溝 1 1 4 1 aにより水平移動可能に案内される。 さらに、 傾斜部材 1 1 4 2の 上部には、 2つの突起 1 1 4 2 b、 1 1 4 2 cが形成されており、 こ の 2つの突起 1 1 4 2 b、 1 1 4 2 cが案内レール 1 1 4 1の上壁か ら突き出すように、 傾斜部材 1 1 4 2は、 溝 1 1 4 1 bにはめ込まれ て水平方向に移動する。
リンク機構 1 1 4 3は、 主にプレート 1 1 4 3 aとローラ 1 1 4 3 bにより構成されており、 プレート 1 1 4 3 aは稼動レール 1 1 2 1 の側壁に対して下方向に向けて固定されている。 ローラ 1 1 4 3 bは、 プレート 1 1 4 3 aの下端に回転可能に配設された円筒胴系部材であ り、 設置状態において、 2つの突起 1 1 4 2 b, 1 1 42 cの間に位 置する。
ここで、 図 1において、 扉装置 1 1 1 0が全閉状態の時、 フランジ 部 1 1 3 3 aはカバー 1 1 3 1の密閉端から所定距離 A 0離れた初期 位置にあり、 カバー 1 1 3 1の内径は d 1である。
次に、 図 3、 図 6において、 扉装置 1 1 1 0が前方に引き出され、 扉 1 1 1 1の内面と筐体 1 1 0 0前面の間の距離が L 1 となる第 3位 置において、 フランジ部 1 1 3 3 aも同様に前方に移動し、 フランジ 部 1 1 3 3 aはカバ一 1 1 3 1の密閉端から所定距離 A 1離れた位置 にあり、 同時にこの位置でカバー 1 1 3 1の内径は d 1から d 2に変 化する。
さらに、 図 7に示されるように、 扉装置 1 1 1 0が前方に引き出さ れ、 扉 1 1 1 1の内面と筐体 1 1 0 0前面の間の距離が L 2となる第 2位置において、 フランジ部 1 1 3 3 aも同様に前方に移動し、 フラ ンジ部 1 1 3 3 aはカバー 1 1 3 1の密閉端から所定距離 A 2離れた 位置にあり、 同時にこの位置でカバ一 1 1 3 1の内径は d 2から d 1 に変化する。
さらに、 図 8において、 扉装置 1 1 1 0が前方に引き出され、 扉 1 1 1 1の内面と筐体 1 1 0 0前面の間の距離が L 3となる第 1位置に おいて、 フランジ部 1 1 3 3 aも同様に前方に移動し、 フランジ部 1 1 3 3 aはカバー 1 1 3 1の密閉端から所定距離 A 3離れた位置にあ り、 カバー 1 1 3 1の内径は d 2である。 加えて、 傾斜部材 1 1 4 2 は、 突起 1 1 4 2 bが溝 1 1 4 1 cにはまり込むことで傾倒する。 こ れにより、 傾斜部材 1 1 4 2とリンク機構 1 1 4 3の連結は解除され る、 つまり第 1位置以降、 稼動レール 1 1 2 1 とダンパ一 1 1 3 0の 連結は解除されることとなるとともに、 傾^した傾斜部材 1 1 4 2の 働きにより、 ダンパー 1 1 3 0は第 1位置を維持する。
ここで、 本実施の形態において L 1は、 0 m mから 1 0 m mの間に 設定されている。 これは人の指が容易に入らない距離である。
さらに、 L 2は、 1 0 m mから 1 5 0 m mの間に設定されている。 これは人の指や拳が物と物の間に挾まることのありうる距離である。 さらに、 L 3は、 1 5 0 m mから 2 0 0 m mの間に設定している。 これは L 2以上の距離であり、 かつ操作性のための自閉速度を考慮し た距離、 つまり引出しからの収納物の取り出しが現実的に完了したと 判断される距離である。
なお、 本実施の形態でいう扉 1 1 1 1の内面とは、 筐体 1 1 0 0の 開口部に対向する実質的な扉 1 1 1 1の内面であり、 筐体 1 1 0 0へ の周縁当接面のみを指しているのではない。
すなわち、 筐体 1 1 0 0の開口部の端面となり得る部分との対向関 係となる内面を構成する部位もこれに含まれる。 たとえば、 扉 1 1 1 1に膨出した内板が形成されていればその内板面が内面となり、 扉 1 1 1 1の内側に何らかの部材が取り付けられていればその部材の内側 も内面となり得るものである。 冷蔵庫などで用いられる扉周縁のガス ケットなどのシール部材もこれに相当する。
また、 本実施の形態でいう筐体 1 1 0 0の前面とは、 前述の扉 1 1 1 1の実質的な内面と対向する実質的な前面であり、 扉 1 1 1 1の周 縁と当接する開口面のみを指しているのではない。
すなわち、 前述の扉 1 1 1 1の実質的な内面と対向する筐体 1 1 0 0の開口部の端面となり得る部位もこれに含まれる。 たとえば、 筐体 1 1 0 0の当該開口部に部材が形成されたり、 取り付けられたりして いればその部材の端面となる部分も筐体 1 1 0 0の前面となり、 筐体 1 1 0 0の開口部の上部に別の扉が設けられているなどはこの別の扉 の下端面が筐体 1 1 0 0の前面となり得る場合もある。
したがって、 本実施の形態でいう扉 1 1 1 1の内面と筐体 1 1 0 0 前面の間の距離 L l, L 2 , L 3の設定は、 作用的には対象となる使 用者の手や指などの大きさや取り扱い時の向きなどのバラツキを加味 して使用者の手や指を保護することのできる距離を設定するものであ り、 必ずしも典型的な扉 1 1 1 1の内面とこれに当接する筐体 1 1 0 0の前面の間の距離のみで設定されるものではない。
以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
図 1、 図 6、 図 7、 図 9、 図 1 0において、 まず、 全閉状態の扉装 置 1 1 1 0は、 人の手により八ンドル 1 1 1 3が引かれることにより 徐々に前方に移動する。 このとき、 扉装置 1 1 1 0とともに、 リンク 機構 1 1 4 3も同時に前方に移動する。 これにより、 突起 1 1 4 2 b にローラ 1 1 4 1 bが当接しながら、 傾斜部材 1 1 4 2に連結された ピストン 1 1 3 3 aは弹性体 1 1 3 2を引き伸ばしながら前方に移動 する。
次に扉装置 1 1 1 0が第 1位置に達した場合、 扉装置 1 1 1 0とダ ンパー 1 1 3 0の連結は解除されることとなるとともに、 傾倒した傾 斜部材 1 1 4 2の働きにより、 ダンバ一 1 1 3 0は第 1位置を維持し た状態となる。
次に、 全開状態の扉装置 1 1 1 0は、 人の手によりハンドル 1 1 1 3が押されることにより徐々に後方に移動し、 扉装置 1 1 1 0が第 1 位置となり、 さらに後方へ移動すると、 ローラ 1 1 4 1 bが突起 1 1 4 2 c に当接し、 傾斜部材 1 1 4 2の傾倒が解除され、 弾性体 1 1 3 2の弾性力により、 ピス トン 1 1 3 3に連結された傾斜部材 1 1 4 2 とともにリ ンク機構 1 1 4 3が後方に移動することで、 扉装置 1 1 1 0は自閉動作を行う。 このとき、 パッキン 1 1 3 3 c とカバ一 1 1 3 1の内径 d 2の間には所定のクリァランスが形成されていることから 減速作用は生じない。 つまり、 人の指や拳が物と物の間に挟まってし まう可能性が有りうる距離以上においては、 所定の自閉速度を得るこ とができる。
次に、 扉装置 1 1 1 0が第 2位置に達した場合、 パッキン 1 1 3 3 cの外形 d 3がカバー 1 1 3 1の内径 d 2 とほぼ同一径となることか ら減速作用が生じることになる。 つまり、 人の指や拳が物と物の間に 挟まつてしまう可能性が有りうる距離においては減速しながら自閉す ることができる。
次に、 扉装置 1 1 1 0が第 3位置に達した場合、 パッキン 1 1 3 3 c とカバ一 1 1 3 1の内径 d 2の間には所定のクリアランスが形成さ れていることから、 減速作用が解除されて自閉動作のみとなる。 つま り、 人の指が容易に入らない距離では所定の自閉速度を得ることがで さる。
以上のように本実施の形態の扉装置 1 1 1 0は、 筐体 1 1 0 0内に 形成された複数の空間内にそれぞれ収納部材 1 1 1 2を備え、 収納部 材 1 1 1 2の前面に設けられた扉 1 1 1 1 とからなる引出しにおいて、 筐体 1 1 0 0に固定され、 収納部材 1 1 1 2を前後に移動可能とする レール部材 1 1 2 0 と、 扉 1 1 1 1 を自閉させる自閉機能を有するダ ンパ一 1 1 3 0 とを備え、 扉 1 1 1 1 と筐体 1 1 0 0 との間の距離が 人の指や拳が物と物の間に挾まってしまう距離において、 ダンパー 1 1 3 0は、 少なく とも減速動作を開始することにより、 扉 1 1 1 1が 閉まる直前では扉の移動速度が減速することとなり、 安全性を確保し たまま引出しを自閉することができる。
また、 扉 1 1 1 1 と筐体 1 1 0 0との間の距離が人の指や拳が物と 物の間に挟まってしまう可能性の有りうる距離以上でかつ、 操作性を 考慮した距離の範囲内で自閉動作を開始することで、 扉 1 1 1 1 を減 速せずに確実に引出しを自閉することができる。
また、 扉 1 1 1 1 と筐体 1 1 0 0との間の距離が人の指が容易に入 らない距離においては、 減速作用を解除し、 自閉動作のみを有効にす ることで、 自閉速度を速めて操作性を向上することができる。
(実施の形態 2 )
図 1 1は本発明の実施の形態 2における冷蔵庫の側面図である。 図 1 2は本発明の実施の形態 2における冷蔵庫の断面図である。 図 1 3 は本発明の実施の形態 2における要部構成図である。 図 1 4は本発明 の実施の形態 2における断面図である。 図 1 5は本発明の実施の形態 2における断面図である。 図 1 6は本発明の実施の形態 2における断 面図である。 図 1 7は本発明の実施の形態 2における動作図である。 図 1 8は本発明の実施の形態 2における動作図である。 図 1 9は本発 明の実施の形態 2における動作図である。 図 2 0は本発明の実施の形 態 2における動作図である。
図 1 1、 図 1 2において、 冷蔵庫本体 1 2 0 0の下部には、 引出し 式の貯蔵室 1 2 0 1が形成され、 貯蔵室 1 2 0 1には扉装置 1 2 1 0 が具備されている。
扉装置 1 2 1 0は主に、 扉 1 2 1 1、 支持台 1 2 1 2、 収納部材 1 2 1 3、 レール部材 1 2 2 0により構成されている。
扉 1 2 1 1は、 貯蔵室 1 2 0 1の前面に形成された開口を塞ぐよう に設置された断熱プレー卜である。 支持台 1 2 1 2は、 扉 1 2 1 1 とレール部材 1 2 2 0を固定してい る。
収納部材 1 2 1 3は、 上面を開口した容器であり、 支持台 1 2 1 2 の上部に対して収納部材 1 2 1 3の上部が固定される形で配設されて いる。
レール部材 1 2 2 0は、 主に稼動レール 1 2 2 1 と中間レール 1 2 2 2と固定レール 1 2 2 3から構成されている。 稼動レール 1 2 2 1 は収納部材 1 2 1 3と固定されており、 扉装置 1 2 1 0と共に前後に 水平移動可能である。 中間レール 1 2 2 2は、 稼動レール 1 2 2 1 と 固定レール 1 2 2 3を連結するレールであり、 稼動レール 1 2 2 1及 び固定レール 1 2 2 3双方と水平移動可能なように連結されている。 固定レール 1 2 2 3は、 扉装置 1 1 1 0を水平移動可能なように冷蔵 庫本体 1 2 0 0に固定されている。
図 1 3において、 ダンパー 1 2 3 0は、 収納部材 1 2 1 3の下方に 位置し、 冷蔵庫本体 1 2 0 0に形成された溝 1 2 0 2内に固定されて おり、 主に減速装置 1 2 3 1、 ワンウェイクラッチ 1 2 4 0とから構 成されており、 自閉装置 1 2 5 0が内部に備えられている。
尚、 ダンバ一 1 2 3 0は減速機能部の一例であり、 自閉装置 1 2 5 0は自閉機能部の一例である。
減速装置 1 2 3 1は、 グリース密封式の減速手段であり、 ダンパー 1 2 3 0内に区画形成された密閉空間 1 2 3 3内にグリースを密封し、 密閉空間を連通する第 1軸 1 2 3 4に固定された複数の翼 1 2 3 5が 構成されており、 翼 1 2 3 5が回転する際に周囲のグリースとの間に 生じる抵抗により減速を行う (詳細の説明を省略する)。
ワンウェイクラッチ 1 2 4 0は、 ばねと、 第 2軸 1 2 4 2とから構 成されている。 ここで、 ばねは第 1軸 1 2 3 4に密着して巻かれてお り、 ばね 1 2 4 1の一端は第 2軸 1 2 4 2に固定されている。 また、 第 2軸 1 2 4 2は、 第 1軸 1 2 3 4に回動可能に連結されている。 こ れにより、 第 2軸 1 2 4 2はばね 1 2 4 1の径の緩む方向には第 1軸 1 2 3 4に対して自由に回転し、 ばね 1 2 4 1の径の縮む方向には軸
1 2 3 4と回転を一致することとなる。 本実施例においては、 扉装置 1 2 1 0を引き出す方向で、 第 2軸 1 2 4 2は、 第 1軸 1 2 3 4に対 して回転自由となり、 逆方向では、 第 2軸 1 2 4 2と軸 1 2 3 4は同 一回転となる。
さらに、 図 1 4、 図 1 5、 図 1 6に示されるように、 自閉装置 1 2 5 0は、 ダンパー 1 2 3 0内に形成されており、 主に弾性体 1 2 5 1 とクラッチ機構 1 2 5 2と、 連結ギヤ 1 2 5 3から構成されている。 弾性体 1 2 5 1は、 自閉区画内を連通する第 2軸 1 2 4 2の周囲に 巻きつけられたゼンマイ状のバネであり、 中心端 1 2 5 1 aは第 2軸 1 2 5 4に、 外周端 1 2 5 1 bはダンパー 1 2 3 0の本体に固定され ており、 一定方向の軸の回転により、 弾性体 1 2 5 1に弾性エネルギ 一を蓄えることができる。
クラツチ機構 1 2 5 2は、 第 2軸 1 2 4 2上に構成されたギヤ 1 2 5 5と、 ストッパ 1 2 5 6により構成されている。
ここで、 ストッパ 1 2 5 6は、 ギヤ 1 2 5 5の近傍に配設され、 巻 きばね 1 2 5 7により無負荷時には直立し、 かつ一定方向に回動可能 なようにダンバ一 1 2 3 0に軸止されている。 ここで、 ストッパ 1 2 5 6が直立した状態においては、 ストッパ下端 1 2 5 6 aはギヤ 1 2 5 5にはまり込む位置にあり、 ス卜ツバ上端 1 2 5 6 bはダンパー 1
2 3 0の外部に露出する位置にある。 また、 ストツバ上端 1 2 5 6 b に力が加わり、 ストッパ 1 2 5 6が一定方向に傾倒した状態において は、 ストッノ、° 1 2 5 6 aの下端は、 ギヤから解離する。
連結ギヤ 1 2 5 3は、 第 2軸 1 242に構成された歯車である。
リンク機構 1 2 6 0は、 収納部材の底面中央部に固定された水平歯 車であり、 扉装置 1 2 1 0設置された状態において、 リンク機構 1 2 6 0と連結ギヤ 1 2 5 3は嚙み合い動力を伝達する。
また、 リンク機構 1 2 6 0の側壁には、 自閉装置 1 2 5 0方向に向 けて突き出した突起 1 2 6 1が形成されており、 リンク機構 1 2 6 0 の水平移動により、 突起 1 2 6 1はストツバ上端 1 2 5 6 bと当接及 び解離を繰り返す。
さらに、 図 1 7に示されるように、 扉装置 1 2 1 0が全閉状態の時、 リンク機構 1 2 6 0と連結ギヤ 1 2 5 3も嚙み合い部は、 リンク機構 1 2 6 0の前方端から所定距離 B離れた初期位置にあり、 突起 1 2 6 1とストッパ上端 1 2 5 6 bは当接しており、 ストツバ 1 2 5 6は傾 倒状態にある。
次に、 図 1 8、 図 1 9、 図 2 0において、 扉装置 1 2 1 0が前方に 引き出され、 扉 1 2 1 1の内面と隣接する扉 1 2 1 1前面の間の距離 が X 1 となる第 2位置において、 リンク機構 1 2 6 0と連結ギヤ 1 2 5 3は嚙み合いが解除されると同時に、 突起 1 2 6 1 とストッパ上端 1 2 5 6 bの当接も解除され、 ストツバ 1 2 5 6は直立状態となる。 ここで、 X Iは、 4 0 mmから 2 0 0 mmの間に設定されている。 これは、 扉 1 2 1 1の内面と隣接する扉 1 2 1 1前面に空間が形成さ れる距離であり、 かつ操作性のための自閉速度を考慮した距離である。 以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
まず、 全閉状態の扉装置 1 2 1 0は、 人の手により引かれることに より徐々に前方に移動する。 このときリンク機構 1 2 6 0を同時に前 方に移動し、 連結ギヤ 1 2 5 3を介して第 2軸 1 2 4 2が回転する。 これにより、 弾性体 1 2 5 1 aに弹性エネルギーが蓄えられる。 ここ で、 突起 1 2 6 1はストツバ上端 1 2 5 6 bと当接し、 ス トツバ 1 2 5 6は傾倒状態にあることから、 また、 ワンウェイクラッチ 1 2 4 0 の動作により第 2軸 1 2 4 2は、 第 1軸 1 2 3 4に対して回転自由で あることから、 第 2軸、 つまり連結ギヤ 1 2 5 3は、 ダンパー 1 2 3 0ゃストツパ 1 2 5 6の影響を受けずほぼ無負荷で回転することがで さる。
次に扉装置 1 2 1 0が第 1位置に達した場合、 リンク機構 1 2 6 0 と連結ギヤ 1 2 5 3は嚙み合いが解除されると同時に、 突起 1 2 6 1 とストッパ上端 1 2 5 6 bの当接も解除され、 ストッパ 1 2 5 6は直 立状態となる。 つまり、 ストッパ 1 2 5 6により弾性体 1 2 5 1に弾 性エネルギーが蓄えられた状態で静止する。
次に、 全開状態の扉装置 1 2 1 0は、 人の手により押されることに より徐々に後方に移動し、 扉装置 1 2 1 0が第 1位置となり、 さらに 後方へ移動すると、 突起 1 2 6 1がストツバ上端 1 2 5 6 aに当接し て、 ス トッパ 1 2 5 6が後方に傾倒することで、 弾性体 1 2 5 1に蓄 えられた弾性エネルギーが解放され、 第 2軸 1 2 4 2が逆回転するこ とで扉装置 1 2 1 0は自閉動作を行う。 さらに、 第 2軸 1 2 4 2と第 1軸 1 2 3 4は同一回転をすることで、 減速装置 1 2 3 1 も同時に作 用することになる。 このように、 第 1位置から全閉位置までの間、 扉 装置 1 2 1 0は、 一定速度に減速されると同時に自閉する。
また、 リンク機構 1 2 6 0は、 収納部材 1 2 1 3の中央に配置され ているので、 両サイ ドに配置されたレール部材 1 2 2 0にはほぼ均等 に力が作用して良好な動作が可能になる。
以上のように本実施の形態の扉装置 1 2 1 0は、 冷蔵庫本体 1 2 0 0に形成された複数の空間内にそれぞれ収納部材 1 2 1 3を備え、 収 納部材 1 2 1 3の前面に設けられた扉 1 2 1 1 とからなる引出しにお いて、 冷蔵庫本体 1 2 0 0に固定され、 収納部材 1 2 1 3を前後に移 動可能とするレール部材 1 2 2 0と、 扉 1 2 1 1を自閉させる自閉機 能を有するダンパー 1 2 3 0 とを備え、 ダンバ一 1 2 3 0が冷蔵庫本 体 1 2 0 0に固定され、 かつダンパー 1 2 3 0に構成された連結ギヤ 1 2 5 3が収納部材 1 2 1 3に固定されたリンク機構 1 2 6 0と連結 されていることにより、 扉 1 2 1 1の移動速度を一定速度に減速した まま自閉することとなり、 安全性を確保したまま引出しを自閉するこ とができる。
また、 ワンウェイクラッチ 1 2 4 0およびクラッチ機構 1 2 5 2を 設けたことで、 ダンパー 1 2 3 0ゃストツパ 1 2 5 6の影響を受けず ほぼ無負荷で回転することで、 開扉力を低く抑えたまま引出しを開放 することができる。 次に、 実施の形態 3から 6と供に本発明を以下に説明する。
上記従来の扉装置の構成では、 複数の収納部が備えられた引出しに おいて、 収納部の大きさや重さが異なる場合に、 収納部を減速する際 の負荷が異なる為、 例えば扉の閉速度が大きい場合には負荷が大きい 為に減速機能が働きにく く、 また減速機能が動作した場合でも使用者 によって減速機能が体感できない為、 使い勝手が悪い印象を与えると いう課題を有している。
また、 冷蔵庫に適用する場合には、 販売時には店頭等で常温にて保 管されていることが多い為、 減速装置の周囲温度がほぼ常温である状 態と、 冷蔵庫を実際使用する際の冷蔵温度もしくは冷凍温度の影響を うけた周囲温度との間に大きな温度差があり、 この温度差によって減 速性能が大きく異なる。 その為、 店頭販売での減速効果と、 実使用で の減速効果が体感的に大きく異なり、 使用者に減速機能の性能が悪い といった印象を与えるという課題を有している。
さらに、 複数の収納部がそれぞれ温度帯の異なる冷蔵庫等に適用す る場合で、 特にオイルダンパーを用いた場合には、 温度特性の違いに よってオイルダンパー内の油の粘度が異なる為に衝撃吸収力も異なり、 引出しの減速速度が各温度帯の貯蔵室間で大きくばらつく為、 使用者 に使い勝手が悪い印象を与えるという課題を有している。
本発明は上記従来の課題を解決するもので、 減速動作の操作感を確 実に得られ、. 使い勝手を向上させた扉装置およびこの扉装置を備えた 冷蔵庫を提供することを目的とする。
上記従来の課題を解決する為に、 本発明の扉装置は、 筐体内に形成 された冷却もしくは加温状態に維持される K画の前面開口部を開閉す る扉と、 物品を収納する収納部材を備えた引出しを有する扉装置にお いて、 収納部材を前後に移動可能とするレール部材と、 扉を自閉させ る自閉機構部と、 扉を閉める傺に扉の閉まる速度を減速させるダンバ 一とを備え、 ダンパーは、 扉の閉速度が早い時に大きな減速を行う第 一動作と、 扉の閉速度が遅い時に小さな減速を行う第二動作とを切り 替える特性を有し、 少なく ともダンパーの第二動作は自閉機構部の動 作範囲内で行わせるものである。 尚、 ダンパーは減速機能部の一例で あり、 自閉機構部は自閉機能部の一例である。 一 これによつて、 使用者が扉を閉める際に大きな力で閉めた場合には、 扉の速度が速くなり大きな減速効果が得られ、 扉の速度が遅い場合に は小さな減速効果が得られるので、 扉装置の減速機能を官能的に体感 することができるようになる。
本発明の扉装置は、 使用者が扉を閉める際に大きな力で閉めた場合 には、 扉の速度が速くなり大きな減速効果が得られ、 扉の速度が遅い 場合には小さな減速効果が得られるので、 扉装置の減速機能を官能的 に体感することができるようになることで、 扉装置の使い勝手を大き く向上させることができる。
本発明の扉装置は、 筐体内に形成された冷却もしくは加温状態に維 持される区画の前面開口部を開閉する扉と、 物品を収納する収納部材 とを備えた引出しを有する扉装置において、 収納部材を前後に移動可 能とするレール部材と、 扉を自閉させる自閉機構部と、 扉を閉める際 に扉の閉まる速度を減速させるダンパーとを備え、 ダンパーは、 扉の 閉速度が早い時に大きな減速を行う第一動作と、 扉の閉速度が遅い時 に小さな減速を行う第二動作とを切り替える特性を有し、 少なくとも ダンパーの第二動作は自閉機構部の動作範囲内で行わせる。 これによ つて、 使用者が扉を閉める際に大きな力で閉めた場合には、 扉の速度 が速くなり大きな減速効果が得られ、 扉の速度が遅い場合には小さな 減速効果が得られるので、 扉装置の減速機能を官能的に体感すること ができるようになることで、 冷蔵庫の使い勝手を大きく向上させるこ とができる。
また、 本発明は、 ダンパーは自閉機構部が動作する際にのみ、 扉の 閉まる速度を減速させるものであり、 扉を閉める際に減速機能によつ て扉の閉速度が小さくなることで、 扉の閉め損ないが発生することを 防ぐことができる。
また、 本発明は、 ダンパーは、 扉の閉速度が早い時に大きな減速を 行う第一動作の動作後に連続して、 第一の動作によって減速された閉 速度の遅い扉が前記第一の動作による減速よりも小さな減速を行う第 二動作を行うように段階的に切り替える特性を有するものである。 常 に二段階の減速効果を有する為、 複数の区画に備えられた異なる扉間 においても減速動作の統一感が得られ、 減速動作の品位が向上するこ とで扉装置の使い勝手を大きく向上させることができる。
また、 本発明は、 筐体が引出しを設けた複数の区画を有してダンパ 一を複数備え、 複数のダンパーの周囲温度がそれぞれ異なる温度帯で あり、 扉の閉速度が遅い時に小さな減速を行う第二動作の際の自閉速 度は、 異なる温度帯の区画に備えられた引出し間でもほぼ一定である ものであり、 複数の区画に備えられた異なる扉間においても扉が完全 に閉まる直前の扉の減速速度が一定である。 このことで、 さらに減速 動作の統一感が得られ扉装置の使い勝手を大きく向上させることがで さる。
また、 閉まる直前にゆっく りと自閉することで、 使用者は自閉機能 を確実に体感することができ、 自閉機能の品位が向上することで扉装 置の使い勝手を大きく向上させることができる。
また、 本発明は、 ダンパーは、 内部にオイルを充填した直進式ダン パーであり、 オイルが流路を通る際の粘性抵抗によって減速を行うも のであって、 第一動作の際にオイルが通過する流路面積よりも第二動 作の際にオイルが通過する流路面積を大きくし、 扉が完全に閉まる直 前の扉の減速速度が一定である。 このことで、 さらに減速動作の統一 感が得られ扉装置の使い勝手を大きく向上させることができる。 .,
また、 本発明は、 ダンパーは、 内部にオイルを充填した直進ダンパ 一であり、 ダンパーの周囲温度が異なる複数の区画に配設される場合、 温度の低い区画に配置される前記ダンパーには、 粘度の低いオイルが 充填されている。 このことにより、 温度の低い区画に配置される前記 ダンパーの動作速度が上昇することとなり、 温度帯の異なる区画に配 置された扉装置においても動作感を均一にし得る。
また、 本発明は、 ダンパーは、 減速効果が得られる有効範囲と、 減 速効果がほとんど得られない無効範囲を有し、 ダンパーが動作する方 向に対して、 有効範囲が前方に、 無効範囲が後方に位置する。 このこ とにより、 ダンパーの最終動作時には減速効果が作用しないこととな り、 自閉機構部の自閉カを低減することができる。
また、 本発明は、 ダンパーは、 温度帯の異なる区画の内、 温度の低 い区画に配置されるダンパーの無効範囲の長さは、 温度の高い区画に 配置されるダンパーの無効範囲の長さよりも大きい。 このことにより、 温度の低い区画に配置されるダンパーの動作速度が上昇することとな り、 温度帯の異なる区画に配置された扉装置においても動作感を均一 にし得る。
また、 本発明は、 ダンパーは、 温度変動の少ない筐体内奥部のレ一 ル部材に取り付けられていることにより、 特に扉開閉時の温度変動の 影響を受け難くなるので、 使用状態における扉装置の動作感を均一に できる。
また、 本発明は、 複数の区画はそれぞれ異なる温度帯であり、 扉を 自閉させる自閉機構部は自閉カを得るために少なく とも弾性体を有し、 弾性体は、 異なる温度帯の区画に対応してそれぞれ弾性力が異なる。 このことにより、 扉装置の動作速度が異なることとなり、 簡単な構造 で温度帯の異なる区画に配置された扉装置においても動作感を均一に し得る。
また、 本発明は、 自閉機構部は、 温度帯の異なる区画の内、 温度の 低い区画に配置される自閉機構部の弾性力は、 温度の高い区画に配置 される自閉機構部の弾性力よりも大きく設定される。 このことにより、 温度の低い区画に配置される自閉機構部の自閉力が上昇することとな り、 温度帯の異なる区画に配置された扉装置においても動作感を均一 にし得る。
また、 本発明は、 複数の区画間を断熱壁で仕切ることによって略密 閉された複数の貯蔵室を形成しており、 複数の貯蔵室の温度が少なく とも冷蔵温度帯と冷凍温度帯であり、 減速装置の周囲温度が常温に対 して冷蔵温度帯または前記冷凍温度帯といった大きく異なる温度帯で あっても、 第二動作の際の自閉速度はほぼ一定である。 このことによ り、 扉の閉速度が遅い時に小さな減速を行う第二動作の際の自閉速度 は、 異なる温度帯の周囲温度間でもほぼ一定である。
これによつて、 貯蔵室内の温度が変わっても、 扉が完全に閉まる直 前での扉の減速動作である第二動作の減速速度がほぼ一定であること で、 冷蔵庫が店頭等で販売される為に常温で保持されている場合でも、 冷蔵温度や冷凍温度帯に保持される場合と比べてほぼ同一の減速速度 が得られる。 その為、 使用者が実使用条件における減速機能を冷却作 用が行われていない冷蔵庫でも体感することができるといった効果も 奏する。
さらに、 野菜室と冷凍室といった複数の貯蔵室における扉装置の減 速動作を均一化することができる。
また、 閉まる直前にゆっく りと自閉することで、 使用者は自閉機能 を確実に体感することができ、 自閉機能の品位が向上することで扉装 置の使い勝手を大きく向上させることができる。
以下、 本発明の実施の形態 3から 6について、 図面を参照しながら 説明するが、 従来例または先に説明した実施の形態と同一構成につい ては同一符号を付して、 その詳細な説明は省略する。
なお、 この実施の形態によってこの発明が限定されるものではなレ (実施の形態 3 )
図 2 1は本発明の実施の形態 3における扉装置の側面図である。 図 2 2は本発明の実施の形態 3における扉装置の要部構成図である。 図 2 3は本発明の実施の形態 3における扉装置の要部構成図である。 図 2 4は本発明の実施の形態 3における扉装置の図 2 3の A— A線断面 図である。 図 2 5は本発明の実施の形態 3における扉装置の要部構成 図である。 図 2 6は本発明の実施の形態 3における扉装置のシリコン オイルの温度変化に対する粘度特性図である。 図 2 7は本発明の実施 の形態 3における扉装置の要部構成図である。 図 2 8は本発明の実施 の形態 3における扉装置の各温度における動作時間の特性図である。 図 2 9は本発明の実施の形態 3における扉装置の動作図である。 図 3 0は本発明の実施の形態 3における扉装置の動作図である。 図 3 1は 本発明の実施の形態 3における扉装置の動作図である。
図 2 1、 図 2 2、 図 2 3、 図 2 4、 図 2 5、 図 2 6、 図 2 7におい て、 筐体 2 1 0 0は 2つの異なる温度帯に区画形成されており、 区画 としての第一区画 2 1 0 2は筐体外部の温度と同一の温度であり、 区 画としての第二区画 2 1 0 3は第一区画 2 1 0 2よりも約 1 0 °C温度 が低くなるように設定されている。
扉装置 2 1 1 0は、 筐体 2 1 0 0内に配置されており、 前面を封止 する蓋 2 1 1 1 と上面が開口された物品収納用の収納部材 2 1 1 2か ら構成されている。 ハンドル 2 1 1 3は蓋 2 1 1 1の前面に形成され た操作部である。
レール部材 2 1 2 0は、 扉装置 2 1 1 0の両側面に対向して配設さ れ、 主に稼動レール 2 1 2 1 と中間レール 2 1 2 2と固定レール 2 1
2 3から構成されている。 稼動レール 2 1 2 1は扉装置 2 1 1 0と共 に前後に水平移動可能である。 中間レール 2 1 2 2は、 稼動レール 2 1 2 1 と固定レール 2 1 2 3を連結するレールであり、 稼動レ一ル 2 1 2 1及び固定レール 2 1 2 3双方と水平移動可能なように連結され ている。 固定レール 2 1 2 3は、 扉装置 2 1 1 0を水平移動可能なよ うに筐体 2 1 0 0に固定されている。
自閉機構部 2 1 3 0は、 主に案内レール 2 1 3 1 と、 傾斜部材 2 1
3 2と、 リンク機構 2 1 3 3と、 弾性体 2 1 3 4から構成されており、 固定レール 2 1 2 3の後方近傍に設置されている。 案内レール 2 1 3 1は、 ダンパー 2 1 4 0の解放端に連結され、 固定レール 2 1 2 3に 固定されている。 ここで、 案内レール 2 1 3 1の側壁にはダンパー 2 1 4.0側端を開口した溝 2 1 3 1 aが形成されており、 案内レール 2 1 3 1の上壁には両端を閉じた溝 2 1 3 1 bが形成されている。 さら に、 案内レール 2 1 3 1の前方側壁端近傍に上部を開口した溝 2 1 3 1 cが形成されていると共に、 案内レール 2 1 3 1の下壁には両端を 閉じた溝 2 1 3 1 dが形成されている。 尚、 自閉機構部 2 1 3 0は、 自閉機能部の一例である。 傾斜部材 2 1 3 2は、 第一連結部 2 1 3 2 aにおいてダンバ一 2 1 4 0の端部と回転可能に連結されており、 第一連結部 2 1 3 2 aは溝 2 1 3 1 aにより水平移動可能に案内される。 さらに、 傾斜部材 2 1 3 2の上部には、 2つの突起 2 1 3 2 b、 2 1 3 2 cが形成されてお り、 この 2つの突起 2 1 3 2 b、 2 1 3 2 cが案内レール 2 1 3 1の 上壁から突き出し、 溝 2 1 3 1 bにはめ込まれて水平方向に移動する。 さらに、 第一連結部 2 1 3 2 aの下方には下向きに突き出した第二連 結部 2 1 3 2 dが形成されており、 第二連結部 2 1 3 2 dの下方端は、 案内レール 2 1 3 1の下壁に形成された溝 2 1 3 1 dを突き抜けてい る。 尚、 ダンパ一 2 1 40は、 減速機能部の一例である。
リンク機構 2 1 3 3は、 主にプレート 2 1 3 3 aとローラ 2 1 3 3 bにより構成されており、 プレート 2 1 3 3 aは稼動レール 2 1 2 1 の側壁に対して下方向に向けて固定されている。 ローラ 2 1 3 3 bは、 プレート 2 1 3 3 aの下端に回転可能に配設された円筒胴形部材であ り、 設置状態において、 2つの突起 2 1 3 2 b, 2 1 3 2 cの間に位 置する。
弾性体 2 1 3 4は、 ダンパー 2 1 4 0の外部後方端と傾斜部材 2 1 3 2の第二連結部 2 1 3 2 dの下方端とを連結している。
ダンパー 2 1 4 0は、 各区画の最後方部に配設され、 案内レール 2 1 3 1の後方端に連結された直進式のダンパーであり、 主にダンパー 本体 2 1 4 1と稼動シャフト 2 1 42から構成されている。
ダンパー本体 2 1 4 1は筒状のケーシング内にピス 卜ンを配設し、 シリコンオイル 2 1 4 3が充填されており、 かかる荷重に対して 2段 階にその動作を切り替える構造となっている。 具体的には、 高い荷重 が負荷として発生した時には、 高い減速効果が発揮するよう、 ダンパ 一本体 2 1 4 1 とピストンの間の流路面積が小さくなることで、 流路 におけるシリコンオイル 2 1 4 3の粘性抵抗が増加しダンパー 2 1 4 0の動作荷重も大きくなる第一動作となる。 荷重が減少した時には、 やや小さい減速効果が発揮されるよう、 ダンパー本体とピストンの間 の流路面積が大きくなることで、 流路におけるシリコンオイル 2 1 4 3の粘性抵抗が減少しダンパー 2 1 4 0の動作荷重も小さくなる第二 動作となる。 なお、 動作荷重は速度と引出しの総重量によって決定す るので、 引出しの総重量が一定の場合には動作荷重の大小は、 使用者 の目でみると動作速度の大小として体感することができる。
稼動シャフト 2 1 4 2は、 ダンパー本体 2 1 4 1のピストンと連結 されたシャフ トであり、 その前方端は傾斜部材 2 1 3 2の第一連結部 2 1 3 2 aと連結されている。
ここで、 図 2 6において、 第一区画 2 1 0 2に配設された第一ダン パー 2 1 4 0 aに充填された第一シリコンオイル 2 1 4 3 aと、 第二 区画 2 1 0 3に配設された第二ダンパー 2 1 4 0 bに充填された第二 シリコンオイル 2 1 4 3 bはそれぞれ異なる粘度特性を有しており、 いずれの粘度特性も温度の上昇により粘度は低下する。 ここで、 周囲 温度が 0でから 4 0 °Cの範囲においては、 第二シリコンオイル 2 1 4 3 bの粘度は、 1 0 °C高温時の第一シリコンオイル 2 1 4 3 aの粘度 とほぼ同じ値を示す。
さらに、 図 2 7において、 扉装置 2 1 1 0が前方に引き出され、 蓋 2 1 1 1の内面と筐体 2 1 0 0前面の間の距離が L 1 となる第一位置 において、 傾斜部材 2 1 3 2は、 突起 2 1 3 2 bが溝 2 1 3 1 cには まり込むことで傾倒する。 これにより、 傾斜部材 2 1 3 2と自閉機構 部 2 1 3 0の連結は解除されるとともに、 傾倒した傾斜部材 2 1 3 2 の働きにより、 自閉機構部 2 1 3 0は第一位置を維持する。
以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
図 2 8、 図 2 9、 図 3 0、 図 3 1において、 まず、 全閉状態の扉装 置 2 1 1 0は、 人の手により八ンドル 2 1 1 3が引かれることにより 徐々に前方に移動する。 このとき、 扉装置 2 1 1 0とともに、 リ ンク 機構 2 1 3 3も同時に前方に移動する。 これにより、 突起 2 1 3 2 b にローラ 2 1 3 3 bが当接しながら、 傾斜部材 2 1 3 2の第一連結部 2 1 3 2 aに連結された稼動シャフ ト 2 1 4 2は前方に移動すると共 に、 第二連結部 2 1 3 2 dに連結された弾性体 2 1 3 4も引き伸ばさ れる。
次に、 扉装置 2 1 1 0がさらに前方に移動し、 第一位置となったと き、 扉装置 2 1 1 0とダンパー 2 1 4 0の連結は解除されるとともに、 傾倒した傾斜部材 2 1 4 2の働きにより、 自閉機構部 2 1 3 0は第一 位置を維持した状態で停止する。
次に、 全開状態の扉装置 2 1 1 0は、 人の手によりハンドル 2 1 1 3が押されることで徐々に後方に移動し、 扉装置 2 1 1 0が第一位置 となる。 さらに後方へ移動すると、 ローラ 2 1 3 3 bが突起 2 1 3 2 cに当接し、 傾斜部材 2 1 3 2の傾倒が解除され、 弾性体 2 1 3 4の 弾性力により、 稼動シャフ ト 2 1 4 2に連結された傾斜部材 2 1 3 2 とともにリ ンク機構が後方に移動することで、 扉装置 2 1 1 0は、 ダ ンパー 2 1 40により減速しながら自閉動作を行う。
このとき、 ダンパー 2 1 4 0は、 かかる荷重に対して 2段階にその 動作を切り替える構造となっており、 人の手により加速された扉装置 2 1 1 0は、 ダンパー 2 1 4 0の第一動作により大幅に減速される。 この後、 減速された扉装置 2 1 1 0は、 ダンパー 2 1 4 0の第二動作 によりゆっく りと閉扉される。 ここで、 一定の流路面積をもった一般 のダンパーの場合、 減速工程の全てにおいて、 温度変化に伴うシリコ ンオイル 2 1 4 3の粘度特性の影響を受けてしまい、 周囲温度の差に 伴って扉装置 2 1 1 0の動作時間に顕著な差を生じるのに。 これに対 して、 本実施例のように 2段階にその'動作を切り替えるダンバ一 2 1 4 0の場合、 第一動作は、 ダンパー本体 2 1 4 1 とピス トンの間の流 路面積が小さくなることで、 流路におけるシリコンオイル 2 1 4 3の 粘性抵抗が増加するのでダンパー 2 1 4 0の動作荷重も大きくなり、 大きな減速効果が得られる。 また、 この時は流路における粘性抵抗が 大きいので温度変化に伴うシリコンオイル 2 1 4 3の粘度特性の影響 を受け易い。 一方で、 第二動作は、 ダンバ一本体 2 1 4 1 とピス トン の間の流路面積が大きくなることで、 流路におけるシリコンオイル 2 1 4 3の粘性抵抗が減少するので、 減速動作が小さく、 粘性抵抗が小 さい状態では周囲温度の差に伴う扉装置 2 1 1 0の動作時間には顕著 な差が生じず温度変化に伴うシリコンオイル 2 1 4 3の粘度特性の影 響を受け難い。
よって、 このように大きな負荷に対しては大きく減速し、 小さな負 荷に対しては小さい減速が得られるダンパーを備えることで、 使用者 は扉が閉まる際の減速機能を体感することができ、 扉装置の品位を向 上させることができる。
また、 通常のダンパーのように、 常時減速効果が得られるダンパ一 に比べて、 減速効果が小さく温度変化による粘度特性の影響を受けに くい第二動作を有するダンパー 2 1 4 0は、 温度変化がある扉装置 2 1 1 0の動作時間をある程度均一にすることができ、 温度変化による 粘度特性の影響を小さくできるので、 扉が閉まる直前の第二動作にお いては、 ほぼ一定の扉の自閉速度が得られるので、 さらに扉装置の品 位を向上させることができ、 使い勝手を向上させることができる。
このように、 季節の変化や何らかの環境下においてダンパーの周囲 温度が変化した場合、 この温度差によってダンパーの減速性能が大き く異なる為、 例えば店頭販売での減速効果と、 実使用での減速効果が 体感的に大きく異なることがあり、 使用者に減速機能の性能が悪いと いった印象を与えるという課題を有している。 しかし、 本発明による と、 減速装置の周囲に温度変化がある場合でも、 動作時間をある程度 均一にすることができ、 温度変化による粘度特性の影響を小さくでき るので、 扉が閉まる直前の第二動作においては、 冷蔵庫の運転時とほ ぼ同等の自閉速度が得られるので、 さらに扉装置の品位を向上させる ことができる。 なお、 冷蔵庫の庫内にダンパーを直接設置しない場合 でも、 冷蔵庫の庫内から何らかの温度影響をダンパーが受けるような 場合には同様のケースが考えられる。
通常、 冷蔵庫の販売時には店頭等で常温にて保管されていることが 多い為、 減速装置の周囲温度が、 ほぼ常温である状態と、 冷蔵庫を実 際使用する際の冷蔵温度もしくは冷凍温度である状態との間に大きな 温度差がある。 この温度差によって減速性能が大きく異なる為、 使用 者に減速機能の性能が悪いといった印象を与えるという課題を有して いる。 しかし、 本発明によると、 扉 2 1 1 1の周囲に温度変化がある 場合でも、 動作時間をある程度均一にすることができ、 温度変化によ る粘度特性の影響を小さくできるので、 店頭においても、 扉が閉まる 直前の第二動作においては、 冷蔵庫の運転時とほぼ同等の自閉速度が 得られるので、 減速動作を体感することができ、 さらに扉装置の品位 を向上させることができる。
また同様に常温で保管されている冷蔵庫の店頭販売の際に、 常温と は大きく温度帯の異なる冷蔵庫の庫内に適用する場合で、 オイルダン パーを用いた場合には、 温度特性の違いによってオイルダンパー内の 油の粘度が異なる為に衝撃吸収力も異なり、 冷蔵温度帯や冷凍温度帯 の影響を受けた雰囲気温度で適切な減速機能を発揮するようにオイル ダンパー内の油の粘度を設定すると、 常温ではオイルダンパー内の油 の粘度が大きくなり、 ダンパー機能がほとんど発揮されない為、 使用 者は減速動作を体感することができず、 店頭で減速動作の訴求を行う ことが難しい。 しかし、 本発明によると、 常温保管の冷蔵庫において も減速動作を確実に体感することができ、 消費者への商品説明を効果 的に行うことができる。
さらに、 図 2 8に示すように、 第一ダンパー 2 1 4 0 aと第二ダン パー 2 1 4 0 bに充填されたシリコンオイルが同一のものであった場 合、 第二区画 2 1 0 3の扉装置 2 1 1 0の自閉動作時間は、 第一区画 2 1 0 2の扉装置 2 1 1 0の自閉動作時間に比べて長くなつてしまう。 これに対して、 本実施例の如く、 第二シリコンオイル 2 1 4 3 bの 粘度が、 1 0 高温時の第一シリコンオイル 2 1 4 3 aの粘度とほぼ 同じ値となっているので、 第一区画 2 1 0 2の扉装置 2 1 1 0と第二 区画 2 1 0 3の扉装置 2 1 1 0の動作時間はほぼ同レベルとなる。
さらに、 ダンパー 2 1 4 0は、 各区画 2 1 0 2, 2 1 0 3の最後方 部に配設されているので、 扉装置 2 1 1 0の開閉に伴う外気の出入り によるダンパー 2 1 4 0自体の温度変化が小さくなる。
以上のように本実施の形態の扉装置 2 1 1 0は、 それぞれ温度帯の 異なる第一区画 2 1 0 2と第二区画 2 1 0 3に収納部材 2 1 1 2を備 えた筐体 2 1 0 0と、 収納部材 2 1 1 2の前面に設けられた扉 2 1 1 1とからなる扉装置 2 1 1 0において、 筐体 2 1 0 0に固定され、 収 納部材 2 1 1 2を前後に移動可能とするレール部材 2 1 2 0と、 扉 2 2 1 1 1を自閉させる自閉機構部 2 1 3 0と、 自閉機構部 2 1 3 0が 動作している間のみ扉 2 2 1 1 1に作用するダンバ一 2 1 4 0とから なり、 ダンバ一 2 1 4 0は、 かかる荷重に対して 2段階にその動作を 切り替える構造となっているので、 常時減速効果が得られる通常のダ ンパーに比べて、 減速効果が小さく温度変化による粘度特性の影響を 受けにくい第二動作を有するダンパー 2 1 4 0は、 温度変化による粘 度特性の影響を小さくでき、 温度変化があつたとしても、 扉装置 2 1 1 0の動作速度は均一となる。
さらに、 第一区画の扉装置 2 1 1 0に配設される第一ダンパー 2 1 4 0 aに充填される第一シリコンオイル 2 1 4 3 aと、 第二区画の扉 装置 2 1 1 0に配設される第二ダンパー 2 1 4 0 bに充填される第二 シリコンオイル 2 1 4 3 bは、 2つの区画の温度差によるシリコンォ ィルの粘度差を解消するように粘度特性を変えているので、 それぞれ の扉装置 2 1 1 0の動作速度は均一となる。
さらに、 ダンパー 2 1 4 0は、 温度変動の少ない区画奥部に取り付 けられていることにより、 特に扉装置 2 1 1 0開閉時の温度変動の影 響を受け難くなるので、 使用状態における扉装置 2 1 1 0の動作感を 均一にできる。
なお、 本実施例においては、 ダンパー 2 1 4 0は、 扉装置の両側面 に対向して配設されたレール部材 2 1 2 0に対してそれぞれ構成され ているが、 どちらか一つのレール部材にのみダンパー 2 1 4 0も配設 することで、 低コスト化を図ることができる。
なお、 本実施の形態においては、 筐体内に形成された冷却もしくは 加温状態に維持される区画の前面開口部を開閉する扉を備えた機器の 例として熱源に冷凍サイクルを備えた冷蔵庫を取り上げた。 しかし、 本発明は冷蔵庫に限らず引出式の扉を備えた他の冷却機器にも適用で きることはもちろんであり、 熱源としてヒーター等による加温源を有 して区画内を加温、 保温する機器に対して適用しても同様の効果を発 揮することができる。
すなわち、 店頭や保管時の冷却、 加温状態にないときに扉が自閉さ れる感覚と、 実使用時に冷却、 加温状態となってダンパー 2 1 4 0の 温度環境が変化した場合に扉が自閉される感覚とが大きく異なるよう な機器においては、 特に本実施の形態の扉装置 2 1 1 0によって動作 感をほぼ違和感のない程度の変化に維持できる効果を期待できる。 実 使用時の冷却または加温時に温度の異なる区画に複数のダンパー 2 1 4 0を備える機器については、 複数の扉装置 2 1 1 0相互間で動作感 の差異があると顕著に感じられやすいので、 本実施の形態の扉装置 2 1 1 0によるダンパー 2 1 4 0の動作の均一化の実用効果はなお一層 価値の高いものとなる。
(実施の形態 4 )
図 3 2は本発明の実施の形態 4における扉装置を備えた冷蔵庫の側 面図である。 図 3 3は本発明の実施の形態 4における扉装置の要部構 成図である。 図 3 4は本発明の実施の形態 4における扉装置の要部構 成図である。
図 3 2、 図 3 3、 図 3 4において、 冷蔵庫本体 2 2 0 0の下部には、 それぞれ温度帯の異なる区画である食品等の貯蔵室が形成されている。 冷蔵庫本体 2 2 0 0の最も下部に配置された冷凍室 2 2 0 1は、 室内 が— 1 8 °Cから— 3 0 °Cになるように冷却されている。
冷凍室 2 2 0 1の上段に配置された野菜室 2 2 0 2は、 室内が 2 °C から 7 °Cになるように冷却されている。
扉装置 2 2 1 0は、 冷蔵庫本体 2 2 0 0内に配置されており、 前面 を封止する蓋 2 2 1 1と上面が開口された食品等の物品収納用の収納 部材 2 2 1 2から構成されている。 ノ、ンドル 2 2 1 3は蓋 2 2 1 1の 前面に形成された操作部である。 ガスケッ ト 2 2 1 4は、 蓋 2 2 1 1 の内面に形成され、 内部に磁石を構成したシール部材である。
ダンパー 2 2 4 0は、 案内レール 2 1 3 1の後方端に連結された直 進式のダンパーであり、 主にダンパー本体 2 2 4 1ダンパー本体 2 2 4 1と稼動シャフ ト 2 2 4 5から構成されている。 尚、 ダンパー 2 2 4 0は、 減速機能部の一例である。
ダンパー本体 2 2 4 1は筒状のケ一シング内にビストンを配設し、 シリコンオイル 2 2 4 2が充填されており、 かかる荷重に対して 2段 階にその動作を切り替える構造となっている。 具体的には、 高い荷重 が負荷として発生した時には、 ダンパー 2 2 4 0の動作荷重も大きく なる第一動作となり、 荷重が減少した時には、 ダンバ一 2 2 4 0の動 作荷重も小さくなる第二動作となる。
また、 ダンパー本体 2 2 4 1内は 2つの区画が形成されており、 有 効範囲 2 2 4 3は、 可動シャフ ト 2 2 4 5がダンパー本体 2 2 4 1に 収納される方向に対して動作荷重が発生する区画であり、 無効範囲 2 2 4 4は、 同方向に対して動作荷重が発生しない区画である。
また、 稼動シャフ ト 2 2 4 5がダンパー本体 2 2 4 1に収納される 方向において、 有効範囲 2 2 4 3は無効範囲 2 2 4 4に対して前方に 位置する。
加えて、 可動シャフ ト 2 2 4 5が前方に移動する時、 動作荷重が略 0になることが好ましく、 稼動シャフト 2 2 4 5を前方に押し出す復 帰用のパネ等を内蔵していない (詳細は図示せず)。 この時、 有効範囲 長 X 1は、 冷凍室 2 2 0 1に配設された第一ダンパー 2 2 4 0 aの有 効範囲 2 2 4 3の長さである。
無効範囲長 Y 1は、 冷凍室 2 2 0 1に配設された第一ダンパー 2 2 4 0 aの無効範囲 2 2 4 4の長さである。
有効範囲長 X 2は、 野菜室 2 2 0 2に配設された第二ダンパー 2 2 4 0 bの有効範囲 2 2 4 3の長さである。
無効範囲長 Y 2は、 野菜室 2 2 0 2に配設された第二ダンパー 2 2 4 0 bの無効範囲 2 2 4 4の長さである。
稼動シャフト 2 2 4 5は、 ダンパー本体 2 2 4 1のピス トンと連結 されたシャフトであり、 その前方端は傾斜部材 2 1 3 2の第一連結部 2 1 3 2 aと連結されている。
ここで、 第一ダンパー 2 2 4 0 aと第二ダンバ一 2 2 4 0 bの長さ は同一であり、 有効範囲長 X 1は有効範囲長 X 2より短く設定されて おり、 同時に無効範囲長 Y 1は無効範囲 Y 2より長く設定されている。 以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
開放状態の扉装置 2 2 1 0は、 人の手によりハンドル 2 2 1 3が押 されることで徐々に後方に移動し、 扉装置 2 2 1 0が第一位置となる。 さらに後方へ移動すると、 ローラ 2 1 3 3 bが突起 2 1 3 2 cに当接 し、 傾斜部材 2 1 3 2の傾倒が解除され、 弾性体 2 1 3 4の弾性力に より、 稼動シャフ ト 2 2 4 5に連結された傾斜部材 2 1 3 2とともに リンク機構 2 1 3 3が後方に移動することで、 扉装置 2 2 1 0は、 ダ ンパー 2 2 4 0により減速しながら自閉動作を行う。
ここで、 図 2 8に示すように、 ダンパー本体 2 2 4 1内に充填され るシリコンオイル 2 2 4 2が同一で、 かつ有効範囲 2 2 4 3の長さが 同一であった場合、 冷凍室 2 2 0 1の扉装置 2 2 1 0の自閉動作時間 は、 野菜室 2 2 0 2の扉装置 2 2 1 0の自閉動作時間に比べて長くな つてしまう。
これに対して、 本実施例の如く、 冷凍室 2 2 0 1の扉装置 2 2 1 0 に配設された第一ダンパー 2 2 4 0 aの無効範囲長 Y 1が野菜室 2 2 0 2の扉装置 2 2 1 0に配設された第二ダンバ一 2 2 4 0 bの無効範 囲長 Y 2より長く設定されていることにより、 冷凍室 2 2 0 1に配設 された扉装置 2 2 1 0の減速動作時間を短縮することができる。
このとき、 ダンパ一 2 2 4 0に、 かかる荷重に対して動作を切り替 える機能を有していないダンパーであれば、 有効範囲長 X Iが短くな ることにより、 最低限の減速効果も得ることができない。 これに対し て、 本実施例の如く、 かかる荷重に対して 2段階にその動作を切り替 える構造となっていることから、 有効範囲長 X 1が短くなつても短い 有効範囲長で、 充分な減速効果を得ることができる。
また、 本実施例のような冷蔵庫においては、 ガスケッ ト 2 2 1 4と 冷蔵庫本体 2 2 0 0が磁力により吸着されている全閉状態で最大開扉 力となるのに対して、 全閉状態でのダンパー 2 2 4 0が無効範囲 2 2 4 4に位置し、 抗力が働かない状態にあるので、 ダンパー 2 2 4 0は 最大開扉力に対してほとんど影響を与えない。
さらに、 冷蔵庫が店頭で販売される場合、 図 2 6に示すように温度 が上昇することで、 ダンパー 2 2 4 0のシリコンオイル 2 2 4 2の粘 度は低減するが、 かかる荷重に対して 2段階にその動作を切り替える 構造となっており、 また、 それぞれのダンバ一 2 2 4 0に充填されて いるシリコンオイル 2 2 4 2および弾性体 2 1 3 4が同一であること から、 有効範囲長 X I , X 2に長さの違いがあつたとしても、 扉装置 2 2 1 0はほぼ同様の動作時間となると共に、 最低限の減速効果を得 ることができ、 店頭においてもダンパーの効果を体感することができ る。
以上のように本実施の形態のダンパー 2 2 4 0は、 扉 2 2 1 1の閉 速度が早い時に高い減速効果を得る第一動作と、 扉 2 2 1 1の閉速度 が遅い時に低い減速効果を得る第二動作を段階的に切り替えることに より、 人の手により扉 2 2 1 1に加えられた力により加速された扉 2 2 1 1の速度を減速させることとなり、 扉 2 2 1 1 と冷蔵庫本体 2 2 0 0が接触する際の衝突音を低減することができる。 また、 ダンパー 2 2 4 0は、 扉 2 2 1 1の閉速度が遅い時に低い減速効果を得る第二 動作を有することにより、 扉 2 2 1 1の自閉カを低減することができ、 自閉機構部 2 2 3 0の設計が容易になる。
また、 ダンパー 2 2 4 0は、 減速効果が得られる有効範囲 2 2 4 3 と、 減速効果がほとんど得られない無効範囲 2 2 4 4を有し、 ダンパ 一 2 2 4 0が動作する方向に対して、 前記有効範囲が前方に、 無効範 囲 2 2 4 4が後方に位置することにより、 全閉寸前のダンパー 2 2 4 0の抗カを小さくすることができ、 扉装置 2 2 1 0の開扉力を低減で さる。
また、 ダンパー 2 2 4 0は、 冷凍室 2 2 0 1の扉装置 2 2 1 0に配 設された第一ダンパー 2 2 4 0 aの無効範囲長 Y 1が、 野菜室 2 2 0 2の扉装置 2 2 1 0に配設された第二ダンパー 2 2 4 0 bの無効範囲 長 Y 2より長く設定されていることにより、 冷凍室 2 2 0 1 と野菜室
2 2 0 2の扉装置 2 2 1 0の動作時間はほぼ同レベルとなり、 温度帯 の異なる区画に配置された扉装置 2 2 1 0においても、 動作感を均一 にし得る。
(実施の形態 5 )
図 3 5は本発明の実施の形態 5における扉装置の要部構成図である。 図 3 6は本発明の実施の形態 5における扉装置の要部構成図である。 図 3 7は本発明の実施の形態 5における扉装置の弾性体の特性図であ る。
自閉機構部 2 3 3 0は、 主に案内レール 2 1 3 1 と、 傾斜部材 2 1
3 2と、 リンク機構 2 1 3 3と、 弾性体 2 3 3 4から構成されている。 尚、 自閉機構部 2 3 3 0は、 自閉機能部の一例である。
弾性体 2 3 3 4は、 ダンパー 2 2 4 0の後方端と傾斜部材 2 1 3 2 の第二連結部 2 1 3 2 dの下方端とを連結している。
ダンパー 2 2 4 0は、 案内レール 2 2 3 1の後方端に連結された直 進式のダンパーであり、 主にダンバ一本体 2 2 4 1 と稼動シャフ ト 2
2 4 5から構成されている。
ダンパー本体 2 2 4 1は筒状のケーシング内にビス 卜ンを配設し、 冷凍室 2 2 0 1、 野菜室 2 2 0 2いずれの貯蔵室にも同一のシリコン オイル 2 2 4 2が充填されている (詳細は図示せず)。
ここで、 図 3 7において、 冷凍室 2 2 0 1に配設された第一弾性体
2 3 3 4 aと、 野菜室 2 2 0 2に配設された第二弾性体 2 3 3 4 bは それぞれ異なる弾性力を有しており、 扉装置 2 3 1 0が第一位置に達 し弾性体 2 3 3 4 aおよび弾性体 2 3 3 4 bの変位が L 1 となった時 の弾性力の差は、 冷凍室 2 2 0 1 と野菜室 2 2 0 2の温度差によるダ ンパー 2 2 4 0の抗カ差とほぼ等しく設定されている。
つまり、 冷凍室 2 2 0 1 と野菜室 2 2 0 2の温度差によるシリコン オイル 2 2 4 2の粘度差による減速効果の差を補う分だけ、 第一弾性 体 2 3 3 4 aは第二弾性体 2 3 3 4 bより強い弾性力を有している。 以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
開放状態の扉装置 2 3 1 0は、 人の手により押されることで徐々に 後方に移動し、 扉装置 2 3 1 0が第一位置となり、 さらに後方へ移動 すると、 ローラ 2 1 3 3 bが突起 2 1 3 2 cに当接し、 傾斜部材 2 1 3 2の傾倒が解除され、 弾性体 2 3 3 4の弾性力により、 稼動シャフ ト 2 2 4 2に連結された傾斜部材 2 1 3 2とともにリンク機構 2 1 3 3が後方に移動することで、 扉装置 2 3 1 0は、 ダンパー 2 2 4 0に より減速しながら自閉動作を行う。
ここで、 冷凍室 2 2 0 1と野菜室 2 2 0 2の扉装置 2 3 1 0に配設 された弾性体 2 3 3 4が同一の弾性力であった場合、 冷凍室 2 2 0 1 の扉装置 2 3 1 0の自閉動作時間は、 野菜室 2 2 0 2の扉装置 2 2 1 0の自閉動作時間に比べて長くなつてしまう。
これに対して、 本実施例の如く、 冷凍室 2 2 0 1の扉装置 2 2 1 0 に配設された第一弾性体 2 3 3 4 aの弹性力が、 冷凍室 2 2 0 1 と野 菜室 2 2 0 2の温度差によるダンパー 2 2 4 0の抗カ差を解消するよ うに、 野菜室 2 2 0 2の扉装置 2 2 1 0に配設された第二弾性力 3 3 4 bより強く設定されていることにより、 冷凍室 2 2 0 1 と野菜室 2 2 0 2の扉装置 2 2 1 0の動作時間はほぼ同レベルとなる。
以上のように本実施の形態の弾性体 2 3 3 4は、 冷凍室 2 2 0 1の 扉装置 2 3 1 0に配設された第一弾性体 2 3 3 4 aと、 野菜室 2 2 0 2の扉装置 2 3 1 0に配設された第二弾性体 2 3 3 4 bが、 それぞれ の貯蔵室の温度差により生じるダンパーの動作力の差を解消するよう に、 第一弾性体 3 3 4 aの弾性力を第二弾性体 2 3 3 4 bの弾性力 より強く設定してあるので、 それぞれの扉装置 2 3 1 0の動作速度は 均一となり、 使用者は均一な動作感を得ることができる。
(実施の形態 6)
図 3 8は本発明の実施の形態 6における扉装置の側面図である。 図 3 9は本発明の実施の形態 6における扉装置の要部構成図である。 図 3 8、 図 3 9において、 第一区画 2 4 0 2は筐体 2 1 0 0内に区 画形成された区画であり、 第二区画 2 4 0 3は第一区画 24 0 2の下 方に形成された区画である。 ここで、 第一区画 2 4 0 2の内容積は第 二区画 240 3の内容積より大きく設定されている。
扉装置 2 4 1 0は、 第一区画 2 4 0 2および第二区画 24 0 3内に 配置されている。 ここで、 扉装置 24 1 0 aは、 第一区画 2 4 0 2内 に配置されており、 扉装置 2 4 1 0 bは、 第二区画 2 4 0 3内に配置 されている。 扉装置 2 4 1 0は、 前面を封止する蓋 2 4 1 1 と上面が 開口された収納部材 2 4 1 2から構成されている。 ハンドル 2 4 1 3 ハンドル 24 1 3は蓋 24 1 1の前面に形成された操作部である。
ここで、 内容積 V 1は、 扉装置 2 4 1 0 aの収納部材 2 4 1 2 aの 積載容量である。 内容積 V 2は、 扉装置 2 4 1 0 bの収納部材 2 4 1 2 bの積載容量である。
このとき、 本実施例においては、 内容積 V Iの方が、 内容積 V 2よ り大きく設定されている。
さらに、 内容積 V I、 V 2の差異により、 それぞれの扉装置 2 4 1 0 a、 2 4 1 0 bに積載可能な荷重も異なり、 積載荷重 G 1は、 扉装 置 24 1 0 aの収納部材 24 1 2 aに積載可能な重量である。
積載荷重 G 2は、 扉装置 2 4 1 0 bの収納部材 2 4 1 2 bに積載可 能な重量である。
ここで、 本実施例においては、 積載荷重 G 1の方が、 積載荷重 2よ W
46 り大きく設定されている。
自閉機構部 2 4 3 0は、 主に案内レール 2 4 3 1 と、 傾斜部材 2 4
3 2と、 リンク機構 2 4 3 3と,、 弾性体 2 4 3 4と、 弾性体固定部材 2 4 3 5とから構成されており、 固定レール 2 4 2 3の後方近傍に設 置されている。 案内レール 2 4 3 1は、 弾性体固定部材 2 4 3 5の解 放端に連結され、 固定レール 2 1 2 3に固定されている。 ここで、 案 内レール 2 4 3 1の上壁には両端を閉じた溝 2 4 3 1 aが形成されて いる。 さらに、 案内レール 2 4 3 1の前方側壁端近傍に上部を開口し た溝 2 4 3 1 bが形成されていると共に、 案内レール 2 4 3 1の下壁 には両端を閉じた溝 24 3 1 cが形成されている。 尚、 自閉機構部 2
43 0は、 自閉機能部の一例である。
傾斜部材 24 3 2は、 案内レール 2 4 3 1内に水平移動可能に収納 されており、 傾斜部材 2 4 3 2の上部には、 2つの突起 24 3 2 a、 2 3 4 2 bが形成されており、 この 2つの突起 2 4 3 2 a、 2 4 3 2 が案内レール 2 4 3 1の上壁から突き出し、 溝 2 4 3 1 aにはめ込 まれて水平方向に移動する。 さらに、 傾斜部材 2 4 3 2の下方には下 向きに突き出した連結部 2 4 3 2 cが形成されており、 連結部 2 4 3 2 cの下方端は、 案内レール 2 4 3 1の下壁に形成された溝 2 4 3 1 cを突き抜けている。
リンク機構 2 4 3 3は、 主にプレート 2 4 3 3 aとローラ 2 4 3 3 bにより構成されており、 プレート 2 4 3 3 aは稼動レール 2 4 2 1 の側壁に して下方向に向けて固定されている。 ローラ 2 4 3 3 bは、 プレート 2 4 3 3 aの下端に回転可能に配設された円筒胴形部材であ り、 設置状態において、 2つの突起 24 3 2 a、 2 4 3 2 bの間に位 置する。
弾性体 2 4 3 4は、 弾性体固定部材 2 4 3 5の後方端と傾斜部材 2 43 2の連結部 243 2 cの下方端とを連結している。 ここで、 扉装置 2 4 1 0 aに設置された第一弾性体 2 4 3 4 aの弾 性力は、 扉装置 2 4 1 0 bに設置された第二弾性体 2 4 3 4 bの弾性 力よりも大きく設定されている。
ダンパー 2 4 4 0ダンパー 2 4 4 0は、 収納部材 2 4 1 2の下方の 筐体 2 4 0 0に固定された直進式のダンパーであり、 主にダンパー本 体 2 4 4 1 と稼動シャフ ト 2 4 4 2から構成されている。 尚、 ダンバ 一 2 4 4 0は、 減速機能部の一例である。
このとき、 第一ダンパー 2 4 4 0 aは第一区画 2 4 0 2に、 第ニダ ンパー 2 4 4 0 bは第二区画 2 4 0 3に配設されている。
ダンパ一本体 2 4 4 1は筒状のケーシング内にビス トンを配設し、 シリコンオイル 2 4 4 3が充填されており、 かかる荷重に対して 2段 階にその動作を切り替える構造となっている。 具体的には、 高い荷重 が負荷として発生した時には、 ダンパー 2 4 4 0の動作荷重も大きく なる第一動作となり、 荷重が減少した時には、 ダンバ一2 4 4 0の動 作荷重も小さくなる第二動作となる。
第一ダンパー 2 4 4 0 aはより大きい減速効果が得られるよう、 第 一ダンパー 2 4 4 0 aに封入されたシリコンオイル 2 4 4 3 aは、 第 ニダンパ一 2 4 4 0 bに封入されているシリコンオイル 2 4 4 3 bよ りも粘度を高く設定されている。
さらに、 ダンパー本体 2 4 4 1内には復帰用のパネが内蔵されてお り、 無負荷時には稼動シャフ ト 2 4 4 2が前方に押し出される (詳細 は図示せず)。
稼動シャフ ト 2 4 4 2は、 ダンパー本体 2 4 4 1のピス トンと連結 されたシャフ トであり、 その前方端には当接部材 2 4 4 4が形成され ている。 さらに、 収納部材 2 4 1 2の下面には、 当接部材 2 4 4 4に 対向する位置に突起 2 4 4 5が形成されている。
ここで、 扉装置 2 4 1 0が前方に引き出され、 蓋 2 4 1 1 の内面と 筐体 2 4 0 0前面の間の距離が L 1 となる第一位置において、 傾斜部 材 2 4 3 2は、 突起 2 4 3 2 aが溝 2 4 3 1 bにはまり込むことで傾 倒する。 これにより、 傾斜部材 2 4 3 2と自閉機構部 2 4 3 0の連結 は解除されるとともに、 傾倒した傾斜部材 2 4 3 2の働きにより、 自 閉機構部 24 3 0は第一位置を維持する。
さらに、 第一位置から全閉状態までは、 当接部材 2 444と突起 2 44 5が当接し、 扉装置 2 4 1 0にかかる .自閉カは、 ダンパー 2 44 0により緩衝されることとなる。
以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
開放状態の扉装置 2 4 1 0は、 人の手によりハンドル 2 4 1 3が押 されることで徐々に後方に移動し、 扉装置 2 4 1 0が第一位置となり、 さらに後方へ移動すると、 ローラ 2 4 3 3 bが突起 2 4 3 2 bに当接 し、 傾斜部材 2 4 3 2の傾倒が解除され、 弾性体 2 4 3 4の弾性力に より自閉する。 ここで、 第一位置以降、 当接部材 2 444と突起 2 4 4 5は当接し、 扉装置 2 4 1 0にかかる自閉カは、 ダンバ一 2440 により緩衝されるので減速効果が得られる。
ここで、 第一区画 2 4 0 2に配設された扉装置 2 4 1 ひ aの内容積 V Iは、 第二区画 2 4 0 3に配設された扉装置 2 4 1 0 bの内容積 V 2よりも大きく、 また、 第一区画 2 4 0 2に配設された扉装置 2 4 1 0 aの積載荷重 G 1は、 第二区画 2 4 0 3に配設された扉装置 2 4 1 0 bの積載荷重 G 2よりも大きい。
これに対して、 シリコンオイル 2 44 3 aはシリコンオイリレ 2 44 3 bより粘度を高く設定しているので、 扉装置 2 4 1 0 aはより大き な負荷に対して十分な減速効果を得ることができる。
さらに、 扉装置 2 4 1 0 aに設置された第一弾性体 2 4 3 4 aの弾 性力は、 扉装置 2 4 1 0 bに設置された第二弾性体 2 4 3 4 bの弾性 力よりも大きく設定されているので、 扉装置 2 4 1 0 aはより大きな 負荷に対して十分な自閉効果を得ることができる。
以上のように本実施の扉装置 2 4 1 0は、 それぞれ積載荷重およ 積載容量の異なる扉装置 2 4 1 0 a 、 2 4 1 0 bにおいて、 積載荷重 および積載容量が大きく設定された扉装置 2 4 1 0 aの減速効果と自 閉効果を扉装置 2 4 1 0 bに対していずれも大きくしたことにより、 大きな負荷に対して十分な減速効果と自閉力が得られることとなり、 それぞれの扉装置 2 4 1 0 a 、 2 4 1 0 bの動作速度は均一となる。 次に、 実施の形態 7から 9と供に本発明を以下に説明する。
上記従来の扉装置の構成では、 長方形の引出しにおいては積載荷重 の増減や収納場所の移動による引出しの長手方向における重心位置の 変化を受けやすく、 このように重心が変化すると扉の自閉動作の際に ガ夕ツキが生じ自閉動作が不安定となるという課題を有している。 本発明は上記従来の課題を解決するもので、 長方形の引出しにおい ても安定した自閉動作が可能な扉装置を提供することを目的とする。 上記従来の課題を解決する為に、 本発明の扉装置は、 空間内に容器 を備えた筐体と、 容器の前面に設けられた扉とを備えた引出しと、 引 出しを前後に移動可能にするために筐体に配設されたレール部材と、 扉を自閉させる自閉機能部と、 自閉機能部が動作している間のみ扉に 作用するダンパーとを備え、 扉は長方形であるとともにレール部材ぉ よびダンパーは前記引出しの重心を挟んだ両側にそれぞれ少なくとも
1箇所ずつ設けられているものである。 尚、 ダンパーは、 減速機能部 の一例である。
これによつて、 引出しの重心がダンパーの間に位置し、 重心を挟ん だ両側を支持しながら自閉動作および減速動作をおこなうことができ るので、 自閉および減速の際の上下のがたつきが低減し、 安定した自 閉動作が可能となる。
本発明の扉装置は、 空間内に容器を備えた筐体と、 容器の前面に設 けられた扉とを備えた引出しと、 引出しを前後に移動可能にするため に筐体に配設されたレール部材と、 扉を自閉させる自閉機能部と、 自 閉機能部が動作している間のみ前記扉に作用するダンパーとを備え、 扉は長方形であるとともにレール部材およびダンパーは前記扉の長手 方向における中心軸を挟んだ両側にそれぞれ少なくとも 1箇所ずっ設 けられている。
これによつて、 引出しの長手方向の中心に対する両側を支持しなが ら自閉動作および減速動作をおこなうことができるので、 自閉および 減速の際の長手方向のがたつきが低減し、 安定した自閉動作が可能と なる。
本発明の扉装置は、 自閉および減速の際の上下のがたつきが低減し、 安定した自閉動作が可能どなるので、 自閉動作をスムーズに行うこと ができる、 冷蔵庫の使い勝手を向上させることができる。
本発明は、 空間内に容器を備えた筐体と、 容器の前面に設けられた 扉とを備えた引出しと、 引出しを前後に移動可能にするために筐体に 配設されたレール部材と、 扉を自閉させる自閉機能部と、 自閉機能部 が動作している間のみ扉に作用するダンパーとを備え、 扉は長方形で あるとともにレール部材およびダンバ一は引出しの重心を挾んだ両側 にそれぞれ少なくとも 1箇所ずつ設けられている。 こうすることで、 引出しの重心が上下に配設されたダンパーの間に位置し、 重心を挟ん だ両側を支持しながら自閉動作および減速動作をおこなうことができ るので、 自閉および減速の際の長手方向のがたつきが低減し、 安定し た自閉動作が可能となる。
また、 本発明は、 空間内に容器を備えた筐体と、 容器の前面に設け られた扉とを備えた引出しと、 引出しを前後に移動可能にするために 筐体に配設されたレール部材と、 扉を自閉させる自閉機能部と、 自閉 機能部が動作している間のみ扉に作用するダンパーとを備え、 扉は上 下方向を長手方向とするとともにレール部材およびダンパーは前記扉 の上下方向における中心線を挟んだ両側にそれぞれ少なくとも 1箇所 ずつ設けられている。 こうすることで、 縦長の引出しの長手方向の中 心に対する両側を支持しながら自閉動作および減速動作をおこなうこ とができるので、 自閉および減速の際の長手方向のがたつきが低減し、 安定した自閉動作が可能となる。
また、 本発明は、 扉は上下方向を長手方向とする縦長形状であるも のであり、 さらに、 少しの重力の移動によって不安定になりやすい上 下方向が長いタイプの引き出しにおいても、 引き出しの上下方向のが たつきを低減することができ、 安定した自閉動作が可能となる。
また、 本発明は、 レール部材扉に作用するダンパーの設置数よりも レール部材の設置数より多く したことで、 引き出しにおけるダンパー による減速動作を安定させた上で、 さらにレールを増やすことで、 自 閉および減速の際の長手方向のがたつきが低減し、 安定した自閉動作 が可能となる。
また、 本発明は、 レール部材は、 筐体内部の壁面に 3箇所以上備え られるとともに前面側から見た隣接するレール部材間をつなぐ仮想線 は略三角形もしくは略方形をなして配置されており、 ダンパーは、 少 なくとも略三角形もしくは略方形の長辺に位置する前記レール部材も しくはレール部材の近傍に配設されている。 こうすることにより、 略 三角形もしくは略方形の長辺に位置するレール部材の短辺に対して長 辺が顕著に大きな場合は、 引出しの重心が配設されたダンパーを結ぶ 仮想線に近くなり、 ダンパーの設置個数を低減しても比較的安定した 動作が可能となる。
また、 本発明は、 レール部材は、 筐体内部の壁面に 3箇所以上備え られるとともに前面側から見た隣接するレール部材間をつなぐ仮想線 は略三角形もしくは略方形をなして配置されており、 前記ダンパーは、 少なくとも対角に位置する前記レール部材もしくは前記レール部材の 近傍に配設されている。 こうすることにより、 引出しの重心が配設さ れたダンパーを結ぶ仮想線と近接することにより、 ダンパーの設置個 数を低減しても安定した動作が可能となる。.
また、 本発明は、 扉装置を冷蔵庫に搭載したことにより、 容量の変 化が大きくなりやすい冷蔵庫においても、 より安定した自閉動作を実 現すると共に低コスト化および開扉力の低減が可能となる。
以下、 本発明の実施の形態 7から 9について、 図面を参照しながら 説明するが、 従来例または先に説明した実施の形態と同一構成につい ては同一符号を付して、 その詳細な説明は省略する。
なお、 この実施の形態によってこの発明が限定されるものではなレ (実施の形態 7 )
図 4 0は本発明の実施の形態 7における扉装置を備えた冷蔵庫の正 面図である。 図 4 1は同実施の形態の扉装置を備えた冷蔵庫の内部構 成を示す図である。 図 4 2は図 4 1の C 一 C線断面図である。 図 4 3 は同実施の形態の扉装置のレール部材の構成を示す図である。
図 4 0、 図 4 1、 図 4 2、 図 4 3において、 筐体 3 1 0 0は複数の 空間に区画形成されており、 区画内にはそれぞれ扉装置 3 1 1 0と扉 装置 3 1 2 0が配設されている。
扉装置 3 1 1 0は、 略正方形の引出しであり、 主に扉 3 1 1 1 と、 容器 3 1 1 2と、 第一レール部材 3 1 3 0 aと、 ダンパー 3 1 4 0で 構成されている。 尚、 ダンバ一は、 減速機能部の一例である。
また、 扉装置 3 1 2 0は、 縦長の引出しであり、 主に扉 3 1 2 1と、 容器 3 1 2 2と、 第一レール部材 3 1 3 0 aと、 ダンパー 3 1 4 0で 構成されている。 ここで、 扉 3 1 1 1は、 横長の形状をしたプレートであり、 その内 面には物品を収納する容器 3 1 1 2が固定されている。
次に、 扉 3 1 2 1は、 縦長の形状をしたプレートであり、 その内面 には物品を収納する容器 3 1 2 2が縦方向に複数段配設されている。 第一レール部材 3 1 3 0 aは、 主に稼動レール 3 1 3 1 と中間レー ル 3 1 3 2と固定レール 3 1 3 3と、 自閉機能部 3 1 3 4とから構成 されている。 稼動レール 3 1 3 1は扉 3 1 1 1および扉 3 1 2 1 と共 に前後に水平移動可能である。 中間レール 3 1 3 2は、 稼動レール 3 1 3 1 と固定レール 3 1 3 3を連結するレールであり、 稼動レール 3 1 3 1及び固定レール 3 1 3 3双方と水平移動可能なように連結され ている。 固定レール 3 1 3 3は、 扉 3 1 1 1および扉 3 1 2 1を水平 移動可能なように筐体 3 1 0 0に固定されている。 ここで、 自閉機能 部 3 1 3 4は、 固定レール 3 1 3 3に配設されており、 稼動レール 3 1 3 1 との着脱を可能とする機構部 3 1 3 4 aと、 機構部 3 1 3 4 a を後方に引込む弾性体 3 1 34 bとで構成されている。
ダンパー 3 1 4 0は、 直進式のシリコンダンパーであり、 ダンパー 本体 3 1 4 0 aと、 稼動シャフト 3 1 4 0 bとから構成され、 稼動シ ャフ ト 3 1 4 0 bの前方端は機構部 3 1 3 4 aと連結されている。 ま た、 ダンパー本体 3 1 4 0 aの後方端と弾性体の後方端は固定されて いる
ここで、 扉装置 3 1 1 0においてレール部材 3 1 3 0 aは、 扉装置 3 1 1 0の重心位置 Aおよび扉装置 3 1 1 0の長手方向の中心軸 3 1 1 1 aを挟んで空間内の左右方向の内壁に対向するように配設されて おり、 ダンパー 3 1 4 0もそれぞれのレール部材 3 1 3 0 aの後方に 取付けられている。
次に、 扉装置 3 1 2 0においてレール部材 3 1 3 0 aは、 扉装置 3 1 2 0の重心位置 Bおよび扉装置 3 1 2 0の長手方向の中心軸 3 1 2 0 aを挟んで空間内の上下方向の内壁に対向するように配設されてお り、 ダンパー 3 1 4 0もそれぞれのレール部材 3 1 3 0 aの後方に取 付けられている。
以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
まず、 開放された状態の扉装置 3 1 1 0及び扉装置 3 1 2 0は、 人 の手により扉 3 1 1 1及び扉 3 1 2 1が押されることで徐々に後方に 移動し、 稼動レール 3 1 3 1 と機構部 3 1 3 4 aが連結された位置か ら減速しながら自閉する。
この時、 略正方形である扉装置 3 1 1 0は、 左右方向に対向してレ —ル部材 3 1 3 0 aを配設され、 2つの対向する稼動レール 3 1 3 1 を結ぶ仮想線と、 重心位置 Aが近接していることから、 扉装置 3 1 1 0は左右もしくは上下方向に対してぶれることなく安定した開閉動作 が可能であり、 加えて、 減速しながらの自閉動作中にはダンパー 3 1 4 0が稼動レールに対して抗カを発揮するが、 ぶれることなく安定し た動作が可能となる。
また、 収納物の積載量が変化して重心位置 Aが上下に移動してもそ の振れ幅は、 扉装置 3 1 1 0が略正方形であることから相対的に小さ なものであり安定した動作が可能となる。 .
次に、 扉装置 3 1 2 0も同様に左右方向にレール部材 3 1 3 0 aを 配置した場合、 2つの対向する稼動レール 3 1 3 1を結ぶ仮想線と、 重心位置 Bが近接している場合、 安定した動作が可能である。 しかし、 物品の積載量が変化して重心位置 Bが上下に移動するとその振れ幅は、 扉装置 3 1 2 0が縦長であることから相対的に大きなものとなり安定 した動作ができない。
これに対して本実施例の場合、 縦長の扉装置 3 1 2 0の上下方向に レール部材 3 1 3 0 aを配設したことで、 物品の積載位置が変化して 重心位置 Bが左右に移動してもその振れ幅は、 扉装置 3 1 2 0が縦長 であることから相対的に小さなものとなり比較的安定した動作が実現 できる。
以上のように本実施の形態の扉装置 3 1 2 0は、 縦長形状である扉 装置 3 1 2 0に対して、 レール部材 3 1 3 0 a及びレール部材 3 1 3 0 aを介してその抗カを扉に伝えるダンパー 3 1 4 0を上下方向に配 設したことにより、 物品の積載量や積載位置が変化して重心位置 Bが 上下左右に移動しても比較的安定した動作が実現できる。
(実施の形態 8 )
図 4 4は本発明の実施の形態 8における扉装置を備えた冷蔵庫の内 部構成を示す図である。 図 4 5は図 4 4の D— D線断面図である。 図 4 6は同実施の形態の扉装置のレール部材の構成を示す図である。 図 4 4、 図 4 5、 図 4 6において、 筐体 3 2 0 0は複数の空間に区 画形成されており、 区画内にはそれぞれ扉装置 3 2 1 0と扉装置 3 2 2 0が配設されている。
扉装置 3 2 2 0は、 縦長の引出しであり、 左右方向の長さ Xに比べ て上下方向の長さ Yが 6倍程度と大幅に長い。 また、 扉 3 2 2 1 と、 容器 3 2 2 2と、 レール部材 3 1 3 0 aと、 第二レール部材 3 1 3 0 bと、 扉装置 3 2 2 0の重心位置 Bおよび扉装置 3 2 2 0の長手方向 の中心軸 3 1 2 0 aを挾んで配設し、 またこの中心軸 3 1 2 0 aと略 対称となるレール部材 3 1 3 0 aにダンパー 3 1 4 0をそれぞれ 1箇 所ずつ計 2箇所に配設している。
扉 3 2 2 1は、 縦長形状をしたプレートであり、 その内面には物品 を収納する容器 3 2 2 2が縦方向に複数段配設されている。
ここで、 本実施例の場合、 実施の形態 7に記載の扉装置 3 1 2 0に 比べて扉装置 3 2 2 0の積載許容荷重を大きく設定したことから、 扉 装置 3 2 2 0の左右両壁の上下部に扉装置 3 2 2 0の重心位置 Bおよ び扉装置 3 2 2 0の長手方向の中心軸 3 1 2 0 aを挟んでそれぞれレ 一ル部材 3 1 3 0 a第一レール部材 3 1 3 0 aと、 第二レール部材 3 1 3 0 bを 2本ずつ計 4本のレール部材を配設した。
この時、 縦方向のレール部材 3 1 3 0 a第一レール部材 3 1 3 0 a 間のピッチは Yであり、 本実施例においては約 1 6 0 0 mmとした。 また、 横方向のレール部材 3 1 3 0 a第一レール部材 3 1 3 0 aと第 二レール部材 3 1 3 0 b間のピッチは Xで ¾り、 本実施例においては 約 2 8 0 mmとした。
第二レール部材 3 1 3 O bは、 主に稼動レール 3 1 3 1 と中間レー ル 3 1 3 2と固定レール 3 1 3 3と、 自閉機能部 3 1 34とから構成 されており、 レール部材 3 1 3 0 aと違い、 自閉機能部 3 1 34の後 方には、 ダンパー 3 1 40は取付けていない。
稼動レール 3 1 3 1は扉 3 2 2 1 と共に前後に水平移動可能である。 中間レール 3 1 3 2は、 稼動レール 3 1 3 1 と固定レール 3 1 3 3を 連結するレールであり、 稼動レール 3 1 3 1及び固定レール 3 1 3 3 双方と水平移動可能なように連結されている。 固定レール 3 1 3 3は、 扉 3 2 2 1 を水平移動可能なように筐体 3 1 0 0に固定されている。 ここで、 自閉機能部 3 1 3 4は、 固定レール 3 1 3 3に配設されてお り、 稼動レール 3 1 3 1 との着脱を可能とする機構部 3 1 3 4 aと、 機構部 3 1 34 aを後方に引込む弾性体 3 1 3 4 bとで構成されてい る。
以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
まず、 開放された状態の扉装置 3 2 2 0は、 人の手により扉 3 2 2 1が押されることで徐々に後方に移動し、 稼動レール 3 1 3 1 と機構 部 3 1 34 aが連結された位置から減速しながら自閉する。
ここで、 ダンパー 3 1 4 0を取付けたレール部材 3 1 3 0 a第一レ —ル部材 3 1 3 0 aは、 縦方向に Yのピツチを隔てて筐体 3 2 0 0の 内壁に固定されており、 2つのレール部材 3 1 3 0 a第一レール部材 3 1 3 0 aの稼動レール 3 1 3 1を結ぶ仮想線と、 重心位置 Bとの距 離の最大値は Xとなり、 本実施例においては、 Xに比べて Yが 6倍程 度と遥かに大きな値であることから、 減速しながらの自閉時に、 扉装 置 3 2 2 0はダンパー 3 1 4 0の抗力による左右方向のぶれ動作が比 較的小さく安定した自閉を行う。 このように本実施の形態では、 に 対して Yの長さが 6倍程度と大幅に大きいものとしたが、 上下方向に 長い縦長の引出しにおいては、 Xに対する Yの長さが 2倍以上となる と、 左右方向のぶれ動作が発生するため、 本発明によって長手方向の ぶれを解消することが、 スムーズな自閉を行うにあたっては非常に効 果的である。 尚、 ダンパー 3 1 4 0は、 減速機能部の一例である。
また、 扉装置 3 2 2 0の長手方向の中心軸 3 1 2 0 aに対して略対 称となるレール部材 3 1 3 0 aにダンパー 3 1 4 0をそれぞれ 1箇所 ずつ配設していることで、 より長手方向のぶれを解消することが、 ス ムーズな自閉を行うことができる。
さらに、 安定した自閉を行う為、 本実施例においては第一レール部 材 1 3 0 a第一レール部材 3 1 3 0 aおよび第二レール部材 3 1 3 0 bを計 4本配設することで、 さらにそれぞれのレールにかかる耐荷重 を低減するとともに、 バランスよく引き出しを支えることで、 より安 定した開閉動作が可能となっている。
以上のように本実施の形態の扉装置 3 2 2 0は、 第一レール部材 3
1 3 0 aおよび第二レール部材 3 1 3 0 bを 4個使用し、 縦方向ピッ チ Yが横方向ピッチ Xに比べて遥かに大きな条件において、 ダンパー 3 1 4 0を縦方向に配設された第一レール部材 3 1 3 0 aに設置した 上で、 さらに第二レール部材 3 1 3 0 bを設けることによって、 引き 出しの開閉動作をより安定させることができ、 使い勝手のよい冷蔵庫 を提供することがが可能になる。
(実施の形態 9)
図 4 7は本発明の実施の形態 9における扉装置を備えた冷蔵庫の正 面図である。. 図 4 8は同実施の形態の扉装置を備えた冷蔵庫の内部構 成を示す図である。 図 49は図 48の E— E線断面図である。
図 4 7、 図 4 8、 図 4 9において、 冷蔵庫本体 3 3 0 0は複数の空 間に区画形成されており、 冷蔵庫本体 3 3 0 0の上段に冷蔵室 3 3 1 0、 中段に野菜室 3 3 2 0、 中段及び下段に冷凍室 3 3 3 0が形成さ れている。
冷蔵室 3 3 1 0には、 回転式の扉装置 3 3 1 1 と引出し式の扉装置 3 3 1 2とが形成されている。
扉装置 3 3 1 2は、 縦長の引出しであり、 主に扉 3 3 1 3と、 容器 3 3 1 4と、 レール部材 3 1 3 0 a、 3 1 3 0 bと、 ダンパー 3 1 4 0で構成されている。
扉 3 3 1 3は、 縦長形状をしたプレートであり、 その内面には収納 物を収納する容器 3 3 1 4が縦方向に複数段配設されており、 本実施 例では扉 3 3 1 3の大きさを高さ 9 0 0 mm、 幅 240 mmとした。 加えて、 扉 3 3 1 3の前面にはハンドル 3 3 1 5が形成されており、 本実施例においてハンドル 3 3 1 5は隣接する冷蔵室 3 3 1 0側に形 成されている。
ここで、 扉装置 3 3 1 2は、 本実施例においてその積載許容荷重か ら 3個のレール部材を配設した。
第一レール部材 3 1 3 0 aは、 冷蔵室 3 3 1 0の内壁上部と、 これ と対角をなす冷蔵室 3 3 1 0の下部にそれぞれ 1つ、 計 2個が配設さ れており、 ダンパ一 3 1 4 0もそれぞれの第一レール部材 3 1 3 0 a の後方に取付けられている。 また、 第二レール部材 3 1 3 0 bは、 冷 蔵室 3 3 1 0の内壁下部に 1っ配設されており、 ダンパー 3 1 4 0は 取付られていない。
野菜室 3 3 2 0は、 冷蔵庫本体 3 3 0 0の中段に形成されており、 引出し式の扉装置 3 3 2 1が形成されている。
冷凍室 3 3 3 0は、 野菜室 3 3 2 0の下部に形成された第一冷凍室 3 3 3 1 と、 野菜室 3 3 2 0および第一冷凍室 3 3 3 1の側方に形成 された第二冷凍室 3 3 2とからなる。
第二冷凍室 3 3 3 2には、 縦長の引出し式の扉装置 3 3 3 3が形成 されており、 扉装置 3 3 3 3は主に扉 3 3 3 4と、 容器 3 3 3 5と、 第一レール部材 3 1 3 0 aと、 第二レール部材 3 1 3 0 bと、 ダンバ — 3 1 4 0で構成されている。
扉 3 3 3 4は、 上下方向を長手方向とした縦長形状をしたプレート であり、 その内面には収納物を収納する容器 3 3 3 5.が縦方向に複数 段配設されており、 本実施例では扉 3 3 3 4の大きさを上下方向の高 さ 9 0 0 mm、 左右方向の幅 2 4 0 mmとした。
加えて、 扉 3 3 3 4の前面にはハンドル 3 3 3 6が形成されており、 本実施例においてハンドル 3 3 3 6は隣接する第一冷凍室 3 3 3 1側 に形成されている。
ここで、 扉装置 3 3 3 3は、 本実施例においては 4個のレール部材 を配設した。
第一レール部材 3 1 3 0 aは、 第二冷凍室 3 3 3 2の内壁上部とこ れと対角をなす内壁下部に計 2個配設されている。
第二レール部材 3 1 3 0 bは、 第一レール部材 3 1 3 0 aとそれぞ れ対向するように、 第二冷凍室の内壁に計 2個対角配置されている。 以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
まず、 開放された状態の扉装置 3 3 1 2を閉める際には、 人の手に より扉 3 3 1 3が押されることで徐々に後方に移動し、 稼動レール 3 1 3 1 と機構部 3 1 3 4 aが連結された位置から減速しながら自閉動 作を行う。
ここで、 第一レール部材 3 1 3 0 aおよび第二レール部材 3 1 3 0 bの耐荷重上、 本実施例においては第一レール部材 3 1 3 0 aおよび 第二レール部材 3 1 3 0 bを計 3本配設したが、 この内ダンバ一3 1 4 0を取付けたレ第一レ一ル部材 3 1 3 0 aは、 冷蔵室 3 3 1 0の内 壁上部と、 これと対角をなす冷蔵室 3 3 1 0の下部にそれぞれ 1つず つ、 計 2個が配設されており、 2つの第一レール部材 3 1 3 0 aの稼 動レール 3 1 3 1を結ぶ仮想線と、 重心位置 Bが近接することとなり、 減速しながらの自閉時に、 扉装置 3 3 1 2はダンバ一 3 1 4 0の抗カ による上下左右方向のぶれ動作がなく安定した自閉を行う。 加えて、 積載荷重の増減や積載場所の偏りによる重心位置 Bの移動に対しても 影響を受け難く、 安定した自閉動作が可能となる。 このように、 ダン パー 3 1 4 0を結ぶ線が扉装置の重心 B近傍となるようにダンパー 3 1 4 0を設置することで、 自閉動作をより安定させることができる。 加えて、 実使用状態において、 冷蔵庫本体 3 3 0 0の上部に配設さ れた扉装置 3 3 1 2では、 ハンドル 3 3 1 5の下部近傍を操作するこ とになるが、 この場合でも、 操作部の近傍にレール部材 3 1 3 0 aが 配設されているので、 人の手により扉 3 3 1 3が押されたときの荷重 の偏りによる影響を受け難く、 安定した自閉動作が可能となる。
同様に、 計 4個のレール部材を配設した扉装置 3 3 3 3についても 上下左右方向のぶれ動作がなく安定した自閉を行う。 加えて、 積載荷 重の増減や積載場所の偏りによる重心位置 Bの移動に対しても影響を 受け難く、 安定した自閉動作が可能となる。
加えて、 実使用状態において、 冷蔵庫本体 3 3 0 0の下部に配設さ れた扉装置 3 3 3 4では、 ハンドル 3 3 3 6の上部近傍を操作するこ とになるが、 この場合でも、 操作部の近傍にレール部材 3 1 3 0 aが 配設されているので、 人の手により扉 3 3 3 4が押されたときの荷重 の偏りによる影響を受け難く、 安定した自閉動作が可能となる。
以上のように本実施の形態の扉装置 3 3 1 2および 3 3 3 0は、 ダ ンパー 3 1 4 0を対角に配設された第一レール部材 3 1 3 0 aに取付 け、 さらに積載許容荷重を向上させ、 開閉動作の安定化を図るために、 レール部材をダンパー 3 1 4 0の数よりもさらに多い 3個および 4個 使用することで、 引き出しの開閉動作をより安定させることができ、 使い勝手のよい冷蔵庫を提供することが可能になる。
さらに、 本発明によると安定した動作が可能となるので、 自閉時の 衝撃が緩和されて収納物の劣化や破損を防止することができる。
さらに、 ダンパー 3 1 4 0の使用数が少ないことで、 開放時にダン パ一 3 1 4 0に生じる抗カを低くすることができるので、 開扉力の低 減が可能になる。
なお、 本実施例においては、 ノ、ンドルの 3 3 1 5および 3 3 3 6を 冷蔵庫本体 3 3 0 0の中央部に形成し、 実使用状態において、 人が操 作する部分に近い場所にそれぞれレール部材 3 1 3 0 aを配設したが、 例えばハンドルが冷蔵庫本体 3 3 0 0の外部側面に配設されている場 合などは、 レール部材 3 1 3 0 aの配置を本実施例と左右対称に配置 することにより同様の効果が期待できる。 次に、 実施の形態 1 0から 1 3と供に本発明を以下に説明する。
上記従来の構成では、 例えば本体 4 0 0 2の前面開口部 4 0 0 2 a より被収納物が取出し可能な程度に扉 4 0 0 5が開いた位置からもコ ィルバネ 4 0 0 7 と、 下部カム機構 4 0 0 9 と上部カム機構 4 0 1 1 bとの二つの自閉力により扉 4 0 0 5が自閉するため、 閉位置付近 では扉 4 0 0 5の自閉速度が速くなり扉 4 0 0 5 と前面開口部 4 0 0 2 aとの間に使用者の腕や指を挟むことがあるという課題を有してい る。
更に扉 4 0 0 5 自身が重い場合や、 扉 4 0 0 5に被収納物を収納し て結果的に扉 4 0 0 5が重くなった場合にはコイルパネ 4 0 0 7の自 閉カは低減するが、 それ以上に下部カム機構 4 0 0 9 bと上部カム機 構 4 0 1 1 bとによる自閉が重力を利用したものであるため扉 4 0 0 5の自閉カは更に速まる。
本発明は上記従来の課題を解決するものであり、 扉自身の重さや扉 に収納した被収納物の重さにかかわらず安全な自閉機構を有する扉装 置を提供することを目的とする。
上記従来の課題を解決するために、 本発明の扉装置は、 扉を自閉さ せる自閉機能部と、 扉に動作する減速機能部を有する。
扉に動作する減速機能部を有することにより、 自閉機能部による扉 の自閉機能動作時だけでなく手動による扉閉時においても、 扉自身の 重さや扉に収納した被収納物の重さにかかわらず安全な閉扉動作を実 現することができる。
本発明の扉装置は、 扉自身の重さや扉に収納した被収納物の重さに かかわらず安全な閉扉動作を実現することができる。
本発明は、 前面開口部を有する筐体と、 前面開口部に備えられた扉 と、 扉を前記筐体に回動自在に連結させる連結部と、 扉を自閉させる 動作を行う自閉機能部と、 扉が閉まる際に前記扉の閉まる速度を減速 させる減速機能部とを有する。 こうすることにより、 扉が自閉可能か つ、 扉自身の重さや扉に収納した被収納物の重さに関係無く緩い速度 で閉扉動作を行なうことになり、 扉装置の使い勝手向上と安全な閉扉 動作を実現することができる。
また、 本発明は、 自閉機能部と減速機能部とを連結部に設けたこと により、 部品点数が少なくかつ省スペースで自閉機能と減速機能を有 することができるので、 安価でかつ使い勝手の良い扉装置を提供する ことができる。
また、 本発明は、 減速機能部が動作開始する第 1の位置を自閉機能 部が動作開始する第 2の位置より筐体側に位置させることにより、 減 速した後自閉させると、 閉扉時の扉の勢いを自閉に利用できなくなる ので自閉機能部に大きな自閉能力が必要となり自閉機能部が大型化と なること防ぎ、 自閉によって自動的に扉が閉まり始めた後に、 減速機 能が動作することで扉装置の安全性を向上することができる。
また、 本発明は、 減速機能部が動作開始する第 1の位置は、 扉と前 記筐体との間に人の指や腕を挟んでしまうことの有りうる位置とした ことにより、 誤って扉と筐体との間に人の指や腕を挟んでしまう危険 を回避し、 扉装置の安全性を更に高めることができる。
また、 本発明は、 扉を全開時から閉める際には、 自閉機能部が動作 開始する第 2の位置までは手動にて閉められ、 第 2の位置に扉が到達 すると自閉機能部により自閉し、 更に減速機能部が動作開始する第 1 の位置に扉が到達すると減速機能部により減速しながら自閉させるこ とにより、 扉の全開持には自閉機能が動作せず、 任意のタイミングで 手動により扉を閉めることができるので収納物の出し入れを円滑に行 うことができ、 扉装置の使い勝手を向上させることができる。 また、 閉扉動作に手動部により閉じた後に自閉機能を働かせることで自閉機 能部の自閉負荷を低減することができ、 自閉機能部の小型化やコスト ダウンを図ることができる。
また、 本発明は、 自閉機能部による扉の自閉の際に、 扉が完全に閉 まりきる直前の第 3の位置からは減速機能部の動作を解除することに より、 扉装置が完全に閉まりきる直前には自閉を阻害する減速機能は 動作せず自閉機能のみが動作することになり、 自閉機能による自閉が 確実に行われる為、 扉装置の信頼性向上を図ることができる。
また、 本発明は、 第 3の位置は扉と筐体の間に人の指が容易に入ら ない距離としたものであり、 指が挟まる危険性を回避した上で扉を確 実に閉めることができる。
また、 本発明は、 自閉機能部と相対応する扉側に形成され、 少なく とも扉が閉まる際に自閉機能部と着脱可能に連結される接続部とを備 え、 自閉機能部は、 連結部とは異なる箇所に配置されるとともに、 自 閉機能部が接続部を引き込むことで、 扉を自閉させるものであること により、 自閉機能部と接続部が連結されてから全閉状態まで、 自閉カ を扉に伝達することとなり、 自閉寸法を大きくすることができる。 また、 本発明は、 自閉機能部および接続部は、 冷蔵庫の幅方向の中 心軸に対して、 扉支持部側に配設されたことにより、 扉の開部から離 れた箇所に自閉機能部および接続部が配設されていることとなり、 冷 蔵庫のデザィン性を向上させることができる。
また、 本発明は、 自閉機能部と接続部は、 磁力により着脱可能に連 結されることにより、 自閉過程において、 ラッチ機構による反力が発 生しないこととなり、 扉の閉め忘れを防止することができる。
また、 本発明は、 自閉機能部と接続部は、 ラッチ機構により着脱可 能に連結されることにより、 自閉機能部と接続部が連結されてから全 閉状態まで、 自閉カを扉に伝達することとなり、 自閉寸法を大きくす ることができる。
また、 本発明は、 自閉機能部と接続部が連結された後、 自閉機能部 は、 弾性体による自閉力によって扉を閉めることにより、 簡潔な構造 で自閉カを得ることができ、 自閉機能部を低コスト化できる。
また、 本発明は、 自閉機能部と接続部が連結された後、 自閉機能部 は、 モ一夕の駆動力による自閉力によって扉を閉めることにより、 自 閉過程において均一な自閉カを得ることができ、 扉を確実に全閉させ ることができる。
また、 本発明は、 自閉機能部と接続部が連結された後、 自閉機能部 は、 ソレノィ ドの駆動力による自閉力によって扉を閉めることにより、 自閉過程において均一な自閉カを得ることができ、 扉を確実に全閉さ せることができる。
また、 本発明は、 自閉機能部には、 扉の開閉を検知するドアスイツ チが構成されてことにより、 別途冷蔵庫本体にドアスィッチを設ける 必要がなく、 冷蔵庫の組立て性を向上させることができる。
また、 本発明は、 自閉機能部および接続部は、 冷蔵庫の天井部に配 設されていることにより、 自閉機能部および接続部が人の手の届き難 い箇所にあり、 収納物の出し入れの際に誤って人が触れたりする頻度 を低ぐでき、 自閉機能部および接続部の信頼性を向上することができ る。
また、 本発明は、 自閉機能部は、 扉の回動に連動して扉が全閉状態 から所定角度のみ回転する第一機構部材と、 扉が自閉機能部と連結さ れた状態では第一機構を回動可能とし、 扉が自閉機能部との連結を解 除した状態では第一機構部材の回動を停止させる第二機構部材と、 第 一機構部材を冷蔵庫の後方に引く弾性体とを備え、 第一機構の前方端 には磁石が形成されていることにより、 自閉機能部と扉とが磁力によ り着脱可能に連結されることととなり、 自閉過程においてラッチ機構 による反力が発生しない。
また、 本発明は、 第一機構部材に配設された磁石と対向する扉の内 面に、 磁性体を配設したことにより、 自閉機能部と扉とが磁力により 着脱可能に連結されることとなり、 自閉過程においてラッチ機構によ る反力が発生しない。
また、 本発明は、 自閉機能部には、 第一機構部材の位置を検出する 位置検出スィッチを構成したことにより、 精度の高い位置検出ができ、 前記扉位置検出精度を向上させることができる。
また、 本発明は、 第一機構部材の回転中心は、 扉の回転中心と同軸 上に位置することにより、 自閉機能部と接続部の当接部は一定位置で あり、 簡潔な機構で自閉機能部および接続部を構成することができる。 また、 本発明は、 第一機構部材が前方へ移動した状態において、 第 一機構部材および磁石の前方端は、 冷蔵庫本体の前面より後方に位置 することにより、 可動部である第一機構部材が冷蔵庫の前面より吐出 することがなく、 冷蔵庫のデザィン性を向上することができる。
また、 本発明は、 第一機構部材に配設された磁石と対向する扉の内 面に、 冷蔵庫本体に向けて突起が形成され、 突起の先端に磁性体を配 設したことにより、 可動部である第一機構部材が冷蔵庫の前面より吐 出することがなく、 冷蔵庫のデザイン性を向上することができる。
また、 本発明は、 上述の扉装置を搭載することにより、 冷蔵庫が安 全で使い勝手の良い自閉機能や減速機能を有することで冷蔵庫の安全 性を確保しつつ使い勝手を向上させることができる。 また、 減速機能 部の作用により扉閉時の衝撃による冷蔵庫本体や扉に収納した食品や 飲料のこぼれや、 扉に収納した卵の割れ、 落下などの不具合を抑制す ることができる。
以下、 本発明の実施の形態 1 0から 1 3について、 図面を参照しな がら説明する。 なお、 この実施の形態によってこの発明が限定される ものではない。
(実施の形態 1 0 )
図 5 0は本発明の実施の形態 1 0における冷蔵庫の側断面図、 図 5 1は同実施の形態の冷蔵庫の冷蔵室ドア上部の斜視図、 図 5 2は同実 施の形態の冷蔵庫の冷蔵室ドア下部の分解斜視図、 図 5 3は同実施の 形態の冷蔵庫の冷蔵室ドア下部の縦断面図、 図 5 4は同実施の形態の 冷蔵庫の冷蔵室ドア下部の側断面図、 図 5 5は同実施の形態の冷蔵庫 の主要部品の斜視図、 図 5 6は同実施の形態の冷蔵庫の冷蔵室ドアが 全開した際の平面断面図、 図 5 7は同実施の形態の冷蔵庫の冷蔵室ド ァが第 2の位置に到達した際の平面断面図、 図 5 8は同実施の形態の 冷蔵庫の冷蔵室ドアが第 1の位置に到達した際の平面断面図、 図 5 9 は同実施の形態の冷蔵庫の冷蔵室ドアが第 3の位置に到達した際の平 面断面図である。
図 5 0から図 5 9において、 冷蔵庫 40 2 0の筐体である断熱箱体 4 0 2 1は内箱 4 0 2 2と外箱 4 0 2 3との間に発泡断熱材 4 0 2 4 を充填したものであり、 前面開口部 4 0 2 .1 aを有し、 仕切壁 4 0 2 5、 4 0 2 6、 4 0 2 7により、 上部より冷蔵室 4 0 2 8、 切替室 4 0 2 9、 野菜室 40 3 0、 冷凍室 40 3 1を形成している。
また、 各貯蔵室には閉時に前面開口部 4 0 2 1 aを閉塞し筐体であ る断熱箱体 4 0 2 1 と連結された扉である冷蔵室ドア 4 0 3 2、 切替 室ドア 4 0 3 3、 野菜室ドア 4 0 3 4、 冷凍室ドア 4 0 3 5を備える。 冷蔵室ドア 4 0 3 2は断熱箱体 4 0 2 1に固着された上部ヒンジ 4 0 3 6と、 仕切壁 4 0 2 5に固着された下部ヒンジ 4 0 3 7とにより 断熱箱体 4 0 2 1に回動自在に連結され、 残りの切替室ドア 4 0 3 3 と野菜室ドア 40 34と冷凍室ドア 4 0 3 5とは各貯蔵室内の断熱箱 体 4 0 2 1の両側部に固着されたレール部材 4 0 2 1 bにより断熱箱 体 40 2 1と前後に開閉可能であるように連結される。
上部ヒンジ 4 0 3 6は板状の上部ヒンジ本体 4 0 3 6 aを断熱箱体 4 0 2 1の上面に固着され、 上部ヒンジ本体 4 0 3 6 aの一部は前面 開口部 4 0 2 1 aより冷蔵室ドア 4 0 3 2側にはみ出し、 はみ出した 部分には下向きに突出した上部回転軸 40 3 6 bを備える。
冷蔵室ドア 4 0 3 2の上部は、 冷蔵室ドア 4 0 3 2の上面に設けた 上面孔 4 0 3 2 aに上部回転軸 4 0 3 6 bを揷入することにより回動 自在となる。
下部ヒンジ 4 0 3 7は板状のものを略直角に折り曲げ形成された上 下方向に平行な固定部 4 0 3 7 aと、 固定部 4 0 3 7 aの上面より伸 びて略水平なベース部 4 0 3 7 bと、 ベース部 4 0 3 7 に上向きに 備えられた下部回転軸 4 0 3 7 cと、 下部回転軸 4 0 3 7 cの上下ほ ぼ中央部に位置し下部回転軸 40 3 7 cより固定部 4 0 3 7 a側に突 出した円筒状のピン 40 3 7 dとからなり、 固定部 4 0 3 7 aは冷蔵 室ドア 40 3 2と切替室ドア 40 3 3との間の仕切壁 4 0 2 5前面に 固着され、 ベース部 40 3.7 b、 下部回転軸 4 0 3 7 c、 ピン 4 0 3 7 dは前面開口部 4 0 2 1 aより冷蔵室ドア 4 0 3 2側に突出してい る。
冷蔵室ドア 40 3 2の下部は冷蔵室ドア 4 0 3 2の下面に設けた凹 部 4 0 3 2 bと、 凹部 4 0 3 2 bに設けられ所定の深さを有する下面 孔 4 0 3 2 cと、 自閉機能と減速機能とを有するベース 4 0 3 8と、 カバ一 40 3 9と、 バネ 4040とから構成される。
まず、 バネ 40 4 0は下面孔 4 0 3 2 cに挿入方向と平行にバネ 4
04 0が弾性を有する様挿入され、 ベース 4 0 3 8のベース筒部 4 0 3 8 aはバネ 4 04 0の後に下面孔 4 0 3 2 cに挿入される。 この時、 丸穴形状のベース穴部 4 0 3 8 bを有するベースフランジ部 4 0 3 8 cは凹部 40 32 b内に収納される。
また、 ベース筒部 4 0 3 8 aはベースフランジ部 4 0 3 8 cより下 面孔 4 0 3 2 c奥側に円筒形状に凸であり、 ベース筒部 4 0 3 8 aの 下面孔 4 0 3 2 c奥側の端部は閉塞され、 バネ 40 4 0の長さとベ一 ス筒部 4 0 3 8 aの長さとの和は下面孔 4 0 3 8 aの深さより大きい ので、 ノ ネ 4 04 0はべ一ス 4 0 3 8の挿入により下面孔 4 0 3 2 c の中で圧縮された状態で保持される。
また、 ベース 4 0 3 8を下面孔 4 0 3 2 cに挿入後、 ベース 4 0 3 8の下側よりカバ一 40 3 9を凹部 4 0 3 2 bに固定することにより ベース 4 0 3 8はバネ 4 04 0の弾性により飛出すことなく下面孔 4
0 3 2 c内部に保持される。 カバー 4 0 3 9は下部ヒンジ 4 0 3 7のべ一ス部 4 0 3 7 b上面と 当接する当接部 4 0 3 9 aと、 当接部 4 0 3 9 aにベース 4 0 3 8の ベース筒部 4 0 3 8 aと同軸に丸穴で貫通したカバー穴部 4 0 3 9 b と、 ベースフランジ部 4 0 3 8 cを覆うカバーフランジ部 4 0 3 9 c と、 カバーフランジ部 4 0 3 9 cより凹部 4 0 3 2 c側に立ち上げら れ凹部 4 0 3 2 cに当接してカバー 4 0 3 9を凹部 4 0 3 2 cに固着 するカバ一凸部 4 0 3 9 dとからなる。
カバ一凸部 4 0 3 9 dはカバー 4 0 3 9を凹部 4 0 3 2 cに固着し た時にベ一ス穴部 4 0 3 8 bと同軸かつベース穴部 4 0 3 8 bよりわ ずかに直径の小さい円筒形状としている。
更にカバ一凸部 4 0 3 9 dが凹部 4 0 3 2 cに固着した際でもカバ ーフランジ部 4 0 3 9 c上面と凹部 4 0 3 2 c下面との空間にはべ一 スフランジ部 4 0 3 8 cのフランジ厚さに加え所定空間 4 0 4 1を有 している。
結果として、 冷蔵室ドアにバネ 4 0 4 0とベース 4 0 3 8とカバ一 4 0 3 9とを備えた状態では、 バネ 4 0 4 0の弾性力によりベース 4 0 3 8の下面はカバー 4 0 3 9の上面に当接することになり、 特に凹 部 4 0 3 2 cにおいてはカバ一フランジ部 4 0 3 9 c上面とベースフ ランジ部 4 0 3 8 c下面とが当接し、 かつベースフランジ部 4 0 3 8 cと凹部 4 0 3 2 c下面との間には所定空間 4 0 4 1 を有した状態と なる。
また、 ベース 4 0 3 8は上方向に力を受けた場合にはバネ 4 0 4 0 を更に圧縮しながらカバー 4 0 3 9から独立して所定空間 4 0 4 1分 上方に移動可能となっている。
ベース筒部 4 0. 3 8 aと当接部 4 0 3 9 aとは下部ヒンジ 4 0 3 7 の挿入時にピン 4 0 3 7 dが当たらぬ様、 それぞれベース垂直溝部 4 0 3 8 d、 カバー溝部 4 0 3 9 eを有する。 また、 ベース筒部 4 0 3 8 aの内径とカバ一穴部 4 0 3 9 bの内径 は共に下部ヒンジ 4 0 3 7の下部回転軸 4 0 3 7 cの直径よりわずか に大きく、 更に下部ヒンジ 4 0 3 7のピン 4 0 3 7 dの先端は逆にべ —ス筒部 4 0 3 8 aの内径とカバー穴部 4 0 3 9 bとの内径より大き くかつ少なく ともべ一ス筒部 4 0 3 8 aの外径より突出しない様に設 定されている。
また、 ベース垂直溝部 4 0 3 8 dはベース筒部 4 0 3 8 aの下面か ら上下方向の途中まで形成され、 ベース垂直溝部 4 0 3 8 d上端は下 部回転軸 4 0 3 7 c挿入時にはピン 4 0 3 7 d上端とベース垂直溝部 4 0 3 8 d上端とがわずかに当接し、 バネ 4 0 4 0を更に圧縮するこ とがほとんど無いように設定されており、 更にベース垂直溝部 4 0 3 8 d上端より冷蔵室ドア 4 0 3 2の回動方向にはピン 4 0 3 7 dが走 行可能な程度の上下方向の空間を有する経路 3 8 eを備える。
経路 40 3 8 eはベース垂直溝部 4 0 3 8 d下端より冷蔵室ドア 4 0 3 2の回動方向に下方に傾斜する傾斜部 4 0 3 8 f と、 傾斜部 40 3 8 f 上端よりさらに冷蔵室ドア 4 0 3 2の回動方向に略水平方向に 形成された水平部 4 0 3 8 gと、 水平部 4 0 3 8 gの端部で冷蔵室ド ァ 4 0 3 2の回動時にピン 4 0 3 7 dが当接して冷蔵室ドア 4 0 3 2 の回動を制限する終端部 40 3 8 hとを有する。
ピン 4 0 3 7 dは、 ベース 4 0 3 8がバネ 4 0 4 0を圧縮しながら 上下動することにより常に経路 4 0 3 8 eの上面と当接しながら終端 部 4 0 3 8 hに到達し、 所定空間 4 0 4 1は傾斜部 4 0 3 8 f の上下 端間の距離以上となるよう設定されている。
冷蔵室ドア 4 0 3 2が閉位置にあり、 ピン 4 0 3 7 dがベース垂直 溝部 4 0 3 8 d上端に当接している状態より冷蔵室ドア 4 0 3 2を開 放していく と、 ピン 4 0 3 7 dはまず見かけ上傾斜部 4 0 3 8 f 上面 上端より傾斜を下ることになるが、 この時ピン 4 0 3 7 d自身は動か ずべ一ス 4 0 3 8がバネ 4 0 4 0を更に圧縮しながら上方に移動し更 に冷蔵室ドア 4 0 3 2と共に開方向に回動している。 次にピン 4 0 3 7 dが傾斜部 4 0 3 8 f の上面下端に到達するとピン 4 0 3 7 dは水 平部 4 0 3 8 g上面を走行し、 ベース 4 0 3 8はバネ 4 0 4 0の圧縮 を保持したまま冷蔵室ドア 4 0 3 2と共に回動し、 ピン 4 0 3 7 dが 終端部 4 0 3 8 hに到達すると冷蔵室ドア 4 0 3 2の開放は止まる。 逆に冷蔵室ドア 4 0 3 2を全開時より閉める場合にはピン 4 0 3 7 dが水平部 4 0 3 8 gを通過して傾斜部 4 0 3 8 f の上面下端に到達 すると見かけ上傾斜部 4 0 3 8 f 上面下端より傾斜を上ることになる が、 この時もピン 4 0 3 7 d自身は動かずバネ 4 0 4 0は圧縮を開放 しながらベース 4 0 3 8は下方に移動し更に冷蔵 ¾ドア 4 0 3 2と共 に閉方向に回動する。
ピン 4 0 3 7 cTが傾斜部 4 0 3 8 f にある時にはバネ 4 0 4 0が圧 縮を開放するので、 ベース 4 0 3 8にはバネ 4 0 4 0の圧縮開放によ り常に下方向への力が加えられ、 結果として見かけ上傾斜部 4 0 3 8 f をピン 4 0 3 7 dが上ることにより冷蔵室ドア 4 0 3 2は自閉機能 を有する。
したがって、 冷蔵室ドア 4 0 3 2の自閉機能が動作を開始する第 2 の位置は傾斜部 4 0 3 8 f の上面下端の位置により決定することにな る。
また、 経路 4 0 3 8 eの下面は上面とほぼ平行にピン 4 0 3 7 dの 直径より大きな間隔を有して形成されており、 更に傾斜部 4 0 3 8 f の下面には傾斜の途中に緩衝部材 4 0 3 8 i を備える。
緩衝部材 4 0 3 8 i は冷蔵室ドア 4 0 3 2の開扉方向にはピン 4 0 3 7 dの走行をほとんど阻害せず、 閉扉方向にのみピン 4 0 3 7 dと の摩擦によりピン 4 0 3 7 dの走行を阻害して冷蔵室ドア 4 0 3 2の 閉扉時の速度を緩和するという減速機能に方向性を有し、 傾斜部 4 0 3 8 f 下面の傾斜上下端よりそれぞれ所定距離離れた位置に備えられ ている。
また、 緩衝部財 4 0 3 8 i上面と傾斜部 4 0 3 8 f 上面との間のみ、 ピン 4 0 3 7 dの直径よりわずかに狭く設定されており、 冷蔵室ドア 4 0 3 2の開閉時にピン 4 0 3 7 dが必ず緩衝部材 4 0 3 8 i と接す るようになる。
冷蔵室ドア 4 0 3 2が閉扉時に第 2の位置に到達し、 ピン 4 0 3 7 dが傾斜部 4 0 3 8 f の上面下端に 7、達すると冷蔵室ドア 4 0 3 2は自
2
閉を開始し、 更に所定距離閉扉してピン 4 0 3 7 dが緩衝部材 4 0 3 8 iの下端に達するとピン 4 0 3 7 dと緩衝部材 4.0 3 8 i との摩擦 によりピン 4 0 3 7 dの走行を阻害して冷蔵室ドア 4 0 3 2の閉扉時 の速度を減速するので、 冷蔵室ドア 4 0 3 2の減速機能が動作を開始 する第 1の位置は緩衝部材 4 0 3 8 i の下端の位置より決定すること になる。
更に冷蔵室ドア 4 0 3 2が第 1の位置より閉扉すると、 ピン 4 0 3 7 dと緩衝部材 4 0 3 8 i との摩擦により冷蔵室ドア 4 0 3 2の閉扉 時の速度は徐々に減速される力 ピン 40 3 7 dが緩衝部材 4 0 3 8 i の上端に達するとピン 4 0 3 7 dは緩衝部材 4 0 3 8 iからの摩擦 を受けなくなるので冷蔵室ドア 4 0 3 2の閉扉速度の減速は終了し、 そのままピン 4 0 3 7 dはベース垂直溝部 4 0 3 8 d上端に到達して 冷蔵室ドア 403 2は完全に閉扉することになる。
したがって、 冷蔵室ドア 4 0 3 2の減速機能が解除される第 3の位 置は緩衝部材 40 3 8 iの上端の位置により決定することになる。
冷蔵室ドア 4 0 3 2の下部は、 冷蔵室ドア 4 0 3 2の下面にパネ 4 04 0とベース 4 0 3 8とカバー 4 0 3 9とを備えた状態で、 ベース 溝部 4 0 3 8 d、 カバー溝部 4 0 3 9 eとピン 4 0 3 7 dの方向を合 わせながら下部回転軸 4 0 3 7 cを挿入し、 冷蔵室ドア 4 0 3 2の開 閉時にピン 4 0 3 7 dが経路 4 0 3 8 eを走行することにより回動自 在となる。
また、 冷蔵室ドア 4 0 3 2は断熱箱体 4 0 2 1側の面より断熱箱体 4 0 2 1側に立ち上げられ、 冷蔵室ドア 4 0 3 2の閉扉時には内箱 4 0 2 3と仕切壁 4 0 2 5とより更に冷蔵室 4 0 2 8の内側に位置する 冷蔵室ドア 4 0 3 2の上下方向に伸びた断面略長方形の土手部 4 0 3 2 dを有する。
土手部 4 0 3 2 dは冷蔵室ドア 4 0 3 2の左右方向に略平行に 2本 備えられ、 土手部 4 0 3 2 d間には飲料や卵な の被収納物 4 0 4 2 を収納する棚 4 0 4 3が被収納物 4 0 4 2を出し入れ可能な程度の空 間を有して上下方向に 3段備えられ、 更に棚 4 0 4 3の断熱箱体 4 0 2 1側の面は土手部 4 0 3 2 dの先端とほぼ同一面となる様構成され ている。
また、 冷蔵室ドア 4 0 3 2の自閉機能が動作を開始する第 2の位置 は冷蔵室ドア 4 0 3 2の閉扉時に断熱箱体 4 0 2 1の前面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dと の間に約 1 5 0 m mから 2 5 0 m mの空間を有し、 冷蔵室ドア 4 0 3 2の減速機能が動作を開始する第 1の位置は同じく冷蔵室ドア 4 0 3 2の閉扉時に断熱箱体 4 0 2 1の前面開口部 4 0 2 l aと冷蔵室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dとの間に約 1 0 0 m m から 1 5 0 m mの空間を有し、 冷蔵室ドア 4 0 3 2の減速機能が解除 される第 3の位置は同じく冷蔵室ドア 4 0 3 2の閉扉時に断熱箱体 4 0 2 1の前面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の回転軸と反対 側の土手部 4 0 3 2 dとの間に約 1 m mから 5 m mの空間を有する様 設定されている。
また、 冷蔵室ドア 4 0 3 2の全開時には冷蔵室ドアは第 2の位置よ りも大きく開放され、 約 1 2 0 ° 程度開放可能とし、 全開時より第 2 の位置までは手動にて閉扉動作を行なう様に構成している。
以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
まず、 冷蔵室ドア 4 0 3 2を全開し、 徐々に手動にて閉扉していき 冷蔵室ドア 4 0 3 2が前面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の 回転軸と反対側の土手部 4 0 3 2 dとの間に約 1 5 0 m mから 2 5 0 m mの空間を有する第 2の位置に到達すると冷蔵室ドア 4 0 3 2は見 かけ上べ一ス 4 0 3 8の傾斜部 4 0 3 8 f をピン 4 0 3 7 dが上るこ とにより自閉を開始する。 更に閉扉して前面開口部 4 0 2 1 aと冷蔵 室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dとの間に約 1 0 0 m mから 1 5 0 m mの空間を有する第 1の位置に冷蔵室ドア 4 0 3 2が到達すると冷蔵室ドア 4 0 3 2の閉扉速度は緩衝部材 4 0 3 8 i とピン 4 0 3 7 dとの摩擦により減速し始める。
更に冷蔵室ドアが閉扉していくにつれ冷蔵室ドア 4 0 3 2の閉扉速 度は徐々に減速し、 前面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の回 転軸と反対側の土手部 4 0 3 2 dとの間に約 1 m mから 5 m mの空間 を有する第 3の位置に到達すると冷蔵室ドア 4 0 3 2は減速機能を解 除され、 そのままピン 4 0 3 7 dがベース垂直溝部 4 0 3 8 dに到達 し冷蔵室扉 3 2は閉扉する。
また、 ピン 4 0 3 7 dが傾斜部 4 0 3 8 f に位置する間は常に冷蔵 室ドア 4 0 3 2に閉扉方向の力が作用するので、 冷蔵室ドア 4 0 3 2 を閉位置より開扉していく際でも、 冷蔵室ドアが冷蔵室ドア 4 0 3 2 の自閉機能が動作を開始する第 2の位置に達する前に開扉動作を解除 すると冷蔵室ドア 4 0 3 2は自閉する。
この時、 冷蔵室ドア 4 0 3 2の自閉機能が動作する第 2の位置を冷 蔵室ドア 4 0 3 2の閉扉時に断熱箱体 4 0 2 1の前面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dとの間 に約 1 5 0 m mから 2 5 0 m mの空間を有するとしたが、 自閉範囲を 広くする方が手動による閉扉動作を軽減できるので冷蔵庫 4 0 2 0の 使い勝手が良くなるように見えるが、 冷蔵庫 4 0 2 0は従来冷蔵室ド ァ 4 0 3 2を開放して被収納物 4 0 4 2を出し入れするものであるた め、 一度冷蔵室ドア 4 0 3 2を開扉して連続して複数の被収納物 4 0 4 2を出し入れする傺には冷蔵室ドア 4 0 3 2.は開放状態を保持でき る方が使い勝手が良いものとなる。
したがって、 本実施の形態では容易に被収納物 4 0 4 2が出し入れ できない前面開口部 4 0 2 1 aと回転軸と反対側の土手部 4 0 3 2 d との間の約 1 5 0 m mから 2 5 0 m mの空間を有する第 2の位置より 冷蔵室ドア 4 0 3 2の自閉を開始し、 第 2の位置より開扉側では自閉 機能は動作せず、 冷蔵室ドア 4 0 3 2は開放保持可能とした。
また、 冷蔵室ドア 4 0 3 2の減速機能が動作を開始するする第 1の 位置を冷蔵室ドア 4 0 3 2の閉扉時に断熱箱体 4 0 2 1の前面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dとの間に約 1 0 0 m mから 1 5 0 m mの空間を有するとしたが、 減 速機能が動作する範囲が広いと冷蔵室ドア 4 0 3 2の閉扉動作に時間 がかかることになり、 結果としてせつかく冷却された冷蔵室 4 0 2 8 内の冷気が逃げてしまうので消費電力量が増加したり冷蔵室 4 0 2 8 内の被収納物 4 0 4 2の劣化の要因となってしまう為、 減速機能が動 作する範囲は狭い方が良い。
しかしながら、 冷蔵室ドア 4 0 3 2の閉扉時に断熱箱体 4 0 2 1の 前面開口部 4 0 2 l aと冷蔵室ドア 4 0 3 2の回転軸と反対側の土手 部 4 0 3 2 dとの空間を狭くしたり、 もしくは回転軸と反対側の土手 部 4 0 3 2 dが前面開口部 4 0 2 1 aより更に冷蔵室 4 0 2 8内に入 り込んだ位置より減速機能が動作を開始すると前面開口部 4 0 2 1 a と回転軸と反対側の土手部 4 0 3 2 dとの間に使用者の指や腕を挟ん でしまうことが生じうる。
したがって、 本実施の形態では断熱箱体 4 0 2 1の前面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dと の空間に使用者の指や腕を挟んでしまうことが無い様、 約 1 0 0 m m から 1 5 0 mmの空間を有するとした。
また、 冷蔵室ドア 4 0 3 2の減速機能が解除される第 3の位置を前 面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dとの間に約 1 m mから 5 m mの空間を有するとしたが、 前 述のように減速機能が動作する範囲は狭い方が消費電力の増加ゃ被収 納物 4 0 4 2の劣化を抑制できる為、 冷蔵室ドア 4 0 3 2の減速機能 が解除される第 3の位置に関しては前面開口部 4 0 2 1 aと冷蔵室ド ァ 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dとの空間は広く取り、 早く減速機能を解除する方が望ましいが、 早すぎると閉扉動作中に使 用者の指や腕を挟んでしまう可能性が有りえる。 その為、 本実施の形 態では閉扉動作中に使用者の指や腕を挟むことが無い様、 前面開口部 4 0 2 1 aと冷蔵室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dとの間に約 1 m mから 5 m mの空間を有する位置を冷蔵室ドア 4 0 3 2の減速機能が解除される第 3の位置とした。
なお、 本実施の形態では冷蔵室ドア 4 0 3 2に土手部 4 0 3 2 dを 設けたが、 土手部 4 0 3 2 dが無い場合には冷蔵室ドア 4 0 3 2の断 熱箱体 4 0 2 1側の面と前面開口部 4 0 2 1 との空間を各所定値範 囲とすれば良レ^
また、 棚 4 0 4 3の断熱箱体 4 0 2 1側の面は土手部 4 0 3 2 dの 先端とほぼ同一面としたが、 棚 4 0 4 3の断熱箱体 4 0 2 1側の面が 土手部 4 0 3 2 dの先端より断熱箱体 4 0 2 1側に突出する場合は冷 蔵室ドア 4 0 3 2の回転軸と反対側の土手部 4 0 3 2 dの先端と棚 4 0 4 3の断熱箱体 4 0 2 1側の面との内、 前面開口部 4 0 2 1 aとの 距離が狭い方の空間を各所定値範囲とすれば良い。
また、 冷蔵庫 4 0 2 0の冷蔵室ドア 4 0 3 2が左右に分割された観 音開きドアの場合は開状態にある側の冷蔵室ドア 4 0 3 2の回転軸と 反対側の土手部 4 0 3 2 dの先端と棚 4 0 4 3の断熱箱体 4 0 2 1側 の面との内、 閉位置にある側の冷蔵室ドア 4 0 3 2の断熱箱体 4 0 1 と反対側の外観面との距離が狭い方の空間を各所定値範囲とすれば 良い。
以上のように本実施の形態においては冷蔵庫 4 0 2 0が冷蔵室ドア 4 0 3 2に動作する自閉機能と減速機能とを有する下部ヒンジ 4 0 3 7のピン 4 0 3 7 dやベース 4 0 3 8を備えることにより、 冷蔵室ド ァ 4 0 3 2が自閉可能かつ、 冷蔵室ドア 4 0 3 2自身の重さや棚 4 0 4 3に収納した被収納物 4 0 4 2の重さに関係無く緩い速度で閉扉動 作を行なうことになり、 冷蔵庫 4 0 2 0の使い勝手向上と安全な閉扉 動作を実現することができる。
また、 下部ヒンジ 4 0 3 7のピン 4 0 3 7 dやベース 4 0 3 8の減 速機能が動作を開始する第 1の位置は自閉機能が動作を開始する第 2 の位置より断熱箱体 4 0 2 1側に位置させることにより、 冷蔵室ドア 4 0 3 2の閉扉速度を減速した後自閉させると、 閉扉時の勢いを自閉 に利用できなくなるので自閉機能を有する下部ヒンジ 4 0 3 7のピン 4 0 3 7 dやベース 4 0 3 8に大きな自閉能力が必要となり自閉機能 部が大型化となることを抑制することができる。
また、 冷蔵室ドア 4 0 3 2の自閉距離に関し断熱箱体 4 0 2 1の前 面開口部 4 0 2 1 aと、 冷蔵室ドア 4 0 3 2の回転軸と反対側の土手 部 4 0 3 2 dとの間に所定値範囲の空間を取ることにより、 冷蔵庫 4 0 2 0の使用者の使用状況に合わせて下部ヒンジ 4 0 3 7のピン 4 0 3 7 dやベース 4 0 3 8による自閉距離を設定することで冷蔵庫 4 0 2 0の使い勝手を更に向上させることができる。 また、 冷蔵室ドア 40 3 2の減速機能が動作を開始する第 1の位置 を断熱箱体 4 0 2 1の前面開口部 4 0 2 l aと、 回転軸と反対側の冷 蔵室ドア 4 0 3 2の土手部 4 0 3 2 dとの間に所定値範囲の空間を取 、 ることにより、 冷蔵庫 4 0 2 0使用者の使用状況に合わせて下部ヒン ジ4 0.3 7のピン 4 0 3 7 (1やべ一ス 4 0 3 8による減速距離を設定 することで使用者の腕や指を挟むことを防止でき、 扉装置の安全性を 更に高めることができる。
また、 冷蔵室ドア 4 0 3 2を全開時から閉める際には、 下部ヒンジ 40 3 7のピン 4 0 3 7 dやベース 4 0 3 8による自閉機能が動作開 始する第 2の位置までは手動にて閉められ、 第 2の位置に扉が到達す ると下部ヒンジ 4 0 3 7のピン 4 0 3 7 dやベース 40 3 8により自 閉し、 更に下部ヒンジ 4 0 3 7のピン 4 0 3 7 dやベース 4 0 3 8に よる減速機能が動作開始する第 1の位置に扉が到達すると下部ヒンジ 4 0 3 7のピン 4 0 3 7 dやべ一ス 4 0 3 8による減速作用を受けて 減速しながら自閉させることにより、 閉扉動作に手動部を設けること で下部ヒンジ 4 0 3 7のピン 40 3 7 dやべ一ス 4 0 3 8による自閉 機能の自閉能力を低減することができ、 自閉機能を有する下部ヒンジ 40 3 7のピン 4 0 3 7 dやベース 4 0 3 8の小型化ゃコス トダウン を図ることができる。
また、 下部ヒンジ 40 3 7のピン 4 0 3 7 dやベース 4 0 3 8によ る冷蔵庫 4 0 2 0の自閉機能を利用した冷蔵室ドア 4 0 3 2の自閉動 作を阻害する下部ヒンジ 40 3 7のピン 4 0 3 7 dやベース 4 0 3 8 による減速機能を閉扉動作の途中から解除することにより、 冷蔵室ド ァ 4 0 3 2が完全に閉まりきる直前には自閉を阻害する減速機能は動 作せず自閉機能のみが動作することになり、 自閉機能による自閉の信 頼性向上を図ることができる。 ,
(実施の形態 1 1 ) 図 6 0は本発明の実施の形態 1 1における冷蔵庫の上部斜視図であ る。 図 6 1は本発明の実施の形態 1 1における冷蔵庫の平面図である。 図 6 2は本発明の実施の形態 1 1における自閉機能部の構成図である。 図 6 3は本発明の実施の形態 1 1における扉装置の要部拡大図である。 図 6 4は本発明の実施の形態 1 1における扉装置の動作図である。 図 6 5は本発明の実施の形態 1 1における扉装置の動作図である。 図 6 6は本発明の実施の形態 1 1における扉装置の動作図である。
図において、 前面開口部 4 1 0 2を有した冷蔵庫本体 4 1 0 0の上 部には、 扉 4 1 1 0がヒンジ 4 1 0 1を回転中心として回動可能に軸 支されている。
ヒンジカバー 1 2 0は、 ヒンジ 4 1 0 1の上部を覆う樹脂製のカバ 一である。
自閉機構部 4 1 3 0は、 冷蔵庫本体 4 1 0 0のヒンジ 4 1 0 1の近 傍の天井部に配設され、 主に第一機構 4 1 3 1と、 と、 永久磁石 4 1 3 3と、 ダンパー 4 1 3 4と、 第一バネ 4 1 3 5と、 第二バネ 4 1 3 6と、 位置検出スィツチ 4 1 3 7とから構成されている。
第一機構 4 1 3 1は、 ヒンジ 4 1 0 1の回転中心と同軸上に回転可 能に連結されており、 取付位置としては、 ヒンジカバー 4 1 2 0の上 面に形成された略 L字型の機構部材である。 材料としては、 ジユラコ ン、 鋼板等所定の強度が確保できる材料が好ましい。
ここで、 第一機構 4 1 3 1がヒンジ 4 1 0 1に固定された状態にお いて、 第一機構 4 1 3 1は、 ヒンジ 4 1 0 1から後方に向けた形状の 第一胴部 4 1 3 1 aと、 冷蔵庫の幅方向において、 第一胴部 4 1 3 1 aから反ヒンジ 4 1 0 1方向に向けた形状の第二胴部 4 1 3 1 bで構 成されており、 第二胴部 4 1 3 1 bの前方近傍には軸貫通穴 4 1 3 1 cが形成されている。
第二機構 4 1 3 2は、 第一機構 4 1 3 1に対して回転可能に取り付 けられた略 L字型の機構部材であり、 取付状態において、 冷蔵庫の幅 方向に対して略水平となる第一辺 4 1 3 2 aと、 後方に向けて構成さ れた第二辺 4 1 3 2 bとからなり、 材料としては、 ジユラコン、 鋼板 等所定の強度が確保できる材料が好ましい。
ここで、 第二機構 4 1 3 2には、 二つの軸が取付状態において下向 きに形成されている。
第一軸 4 1 3 2 cは、 L字のコーナー部に形成された略円筒形の軸 であり、 第一軸 4 1 3 2 cが軸貫通穴 4 1 3 1 cを貫通することで、 第二機構 4 1 3 2は第一機構 4 1 3 1に対して回転可能となる。
第二軸 1 3 2 dは、 第二辺 4 1 3 2 bの後方端部に形成された略円 筒形の軸である。
ここで、 ヒンジカバー 4 1 2 0には、 第一ガイ ド溝 4 1 2 1 と、 第 二ガイ ド溝 4 1 2 2が形成されている。
第一ガイ ド溝 4 1 2 1は、 ヒンジ 4 1 0 1を中心とした長丸穴であ り、 貫通軸穴 4 1 3 1 cを貫通した第一軸 4 1 3 2 cが第一ガイ ド溝 4 1 2 1を貫通していることで、 第一ガイ ド溝の範囲のみ第一機構 4
1 3 1は回転を許されることになる。 このとき、 第一ガイ ド溝 4 1 2
1の範囲は、 第一機構 4 1 3 1が第一停止位置から第二停止位置近傍 の間のみ移動可能に設定されている。
本実施例において第一停止位置は、 第一胴部 4 1 3 1 aが、 冷蔵庫 の幅方向に対して後方に 8 ° 傾斜した状態であり、 第二停止位置は、 第一胴部 4 1 3 1 aが、 冷蔵庫の幅方向に対して水平となる状態であ る。
第二ガイ ド溝 4 1 2 2は、 第一ガイ ド溝 4 1 2 1の後方に配置され たベース 4 1 2 3に形成されたへの字形状の長丸穴である。 第二ガイ ド溝 4 1 2 2の長辺 4 1 2 2 aは、 ヒンジ 4 1 0 1を中心としており、 短辺 4 1 2 2 bは、 第二停止位置における第一軸 4 1 3 2 cを中心と している。 ここで、 第二軸 4 1 3 2 dが、 第二ガイ ド溝 4 1 2 2を貫 通することで、 第一軸 4 1 3 2 cを中心とした第二機構 4 1 3 2の回 転運動は規制されることとなる。
つまり、 第二軸 4 1 3 2 dが長辺 4 1 2 2 aに位置する第一状態と き、 第一辺 4 1 3 2 aは第一機構 4 1 3 1および永久磁石 4 1 3 3と 略水平となり、 第一辺 4 1 3 2 aと、 第一機構 4 1 3 1および永久磁 石 4 1 3 3の前方端は上面図において重なることとなる。 この第一状 態において、 第一機構 4 1 3 1は、 ヒンジ 4 1 0 1を中心として回転 可能となる。 '
次に、 第二軸 4 1 3 2 dが短辺 4 1 2 2 bに位置する第二状態のと き、 第一辺 4 I 3 2 aは第一機構 4 1 3 1および永久磁石 4 1 3 3に 対し、 その前方端が前方へ突出す状態となる。 この第二状態において、 第一機構 4 1 3 1は、 ヒンジ 4 1 0 1を中心とした回転が不可能とな る。
永久磁石 4 1 3 3は、 第二胴部 4 1 3 1 bの前方に固定された磁石 であり、 磁石の材料としてはネオジムやフェライ ト磁石を用いること が望ましい。
ダンパー 4 1 3 4は、 ヒンジカバー 4 1 2 0に固定された直進式の ダンパーである。 尚、 ダンパー 4 1 4 34は、 減速機能部の一例であ る。
ここで、 ダンパー 4 1 3 4はダンバ一本体 4 1 3 4 aとダンパー本 体 4 1 34 aを収納するダンバ一ケース 4 1 3 4 bとから構成されて おり、 ダンパー本体 4 1 3 4 aの前方端は、 第一機構 4 1 3 1の動作 範囲において、 第一機構 4 1 3 1の後方端面に当接している。
ダンパー本体 4 1 3 4 a内にはシリコンオイルが充填されており、 かかる荷重に対して 2段階にその動作を切り替える構造となっている。 (詳細は図示せず) 具体的には、 高い荷重が負荷として発生した時に は、 ダンパー本体 4 1 3 4 aの動作荷重も大きくなる第一動作となり、 荷重が減少した時には、 ダンパー本体 4 1 3 4 aの動作荷重も小さく なる第二動作となる。
加えて、 ダンパー本体 4 1 3 4 aが圧縮される方向に対しては動作 荷重が発生し、 逆方向に対しては、 動作荷重が略 0になることが好ま しく、 ダンパー本体内には、 無負荷時に初期状態に復帰するための復 帰用パネが内蔵されている。
第一パネ 4 1 3 5は、 第一機構 4 1 3 1の反ヒンジ 4 1 0 1側端部 と、 ヒンジカバー 4 1 2 0の後方近傍を連結することにより、 第一機 構 4 1. 3 1を後方へ引っ張ることとなる。
ここで、 第一機構 4 1 3 1が第二停止位置にあるとき、 第一パネ 4 1 3 5の弾性力は最大となり、 第一停止位置にあるとき、 弾性カは最 小となるが、 本実施例においては、 この第一停止位置においても、 弾 性力が 0となることのないよう、 軽微な弾性力を与えた。
第二パネ 4 1 3 6は、 第一機構 4 1 3 1 と第二機構 4 1 3 2を連結 することにより、 第二機構 4 1 3 2の第一辺 4 1 3 2 aを前方に引つ 張ることとなる。
位置検出スィツチ 4 1 3 7は、 第一機構 4 1 3 1の後方端面に当接 するように配設され、 第一機構 4 1 3 1の位置を検出さるための位置 検出用のスィッチであり、 ホール I Cを組み込んでユニッ ト化された 基盤が使用されている (詳細は図示せず)。
ここで、 位置検出スィツチ 4 1 3 7の動作としては、 接点が押され た状態では電気的に開状態となり、 制御手段 (図示せず) は扉 4 1 1 0が閉状態であると判断する。 逆に接点が押されていない状態では電 気的に閉状態となり、 制御手段 (図示せず) は扉 4 1 1 0が開状態で あると判断する。
接続部 1 4 0は、 永久磁石 4 1 3 3と対向するドア内部に凸形状に 形成された突起 4 1 4 1 と、 突起 4 1 4 1の先端に形成された磁性体 4 1 4 2で構成されており、 磁性体 4 1 4 2の材料としては、 表面に 塗装を施した鋼板を用いることが望ましい。
ここで、 扉 4 1 1 0が全閉状態であるとき、 磁性体 4 1 4 2と、 第 一停止位置にある第一機構 4 1 3 1に固定された永久磁石 4 1 3 3と が当接するように突起 4 1 4 1の形状は定められている。
カバー 4 1 5 0は、 冷蔵庫本体 4 1 0 0の上部を覆う部材であり、 永久磁石 4 1 3 3と接続部 1 4 0が当接する位置には切欠き 4 1 5 1 が形成されている。
以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
まず、 扉 4 1 1 0が、 全閉状態の時、 接続部 4 1 4 0は、 切欠き 4 1 5 1 を貫通した状態で、 磁性体 4 1 4 2と、 第一停止位置にある第 一機構 4 1 3 1に固定された永久磁石 4 1 3 3とが当接し、 磁力によ り連結されている。
さらに、 第一辺 4 1 3 2 aと磁性体 4 1 4 2が当接することで、 第 二機構 4 1 3 2は第一状態となり、 第一機構 4 1 3 1は、 ヒンジ 4 1 0 1を中心として回転可能である。
加えて、 ダンパー本体 4 1 3 4 aは、 第一機構 4 1 3 1の後方端面 により、 後方に押し込まれた状態となっている。
さらに、 位置検出スィッチ 4 1 3 7は、 第一機構 4 1 3 1の後方端 面により、 接点が押されて電気的に開状態となっており、 制御手段 (図示せず) は扉 4 1 1 0が閉状態と判断する。
次に、 人の手により、 扉 4 1 1 0が開放された場合、 接続部 4 1 4 0と永久磁石 4 1 3 3が磁力により連結していることにより、 第一機 構 4 1 3 1、 第二機構 4 1 3 2、 永久磁石 4 1 3 3は、 ヒンジ 4 1 0 1を中心に回転しながら前方に移動する。 これに伴い、 第一パネ 4 1 3 5は引き伸ばされて弾性力を蓄えるとともに、 復帰用パネの働きに より、 ダンパー本体 4 1 3 4 aは前方に移動する。
この時、 位置検出スィツチ 4 1 3 7は、 第一機構 4 1 3 1 の後方端 面が接点から離れることで、 電気的に閉状態となっており、 制御手段 (図示せず) は扉 4 1 1 0が開状態と判断する。 ここで、 従来の冷蔵 庫のように扉 4 1 1 0の位置を直接検知することで、 扉 4 1 1 0の開 閉の識別にある程度のディファレンシャルが必要であつたのに比べ、 本実施例では、 非常に高い検出精度で閉状態から開状態の判別を行う ことができる。
次に、 人の手により、 扉 4 1 1 0がさらに開放されて、 本実施例に おいては、 扉 4 1 1 0が 8 ° より若千開放された呋態では、 第一機構 4 1 3 1はヒンジ 4 1 0 1を中心とした回転を、 第一ガイ ド溝 4 1 2 1により停止することで、 磁力による接続部 4 1 4 0と永久磁石 4 1 3 3の連結は解除される。
この時、 接続部 4 1 4 0と永久磁石 4 1 3 3の連結が解除されるこ とで、 第二バネ 4 1 3 6の作用により、 第二機構 4 1 3 2の第一辺 1 3 1 aは前方に回転を許され、 第二軸 4 1 3 2 dは、 短辺 4 1 2 2 b に移動して第二状態となることで、 第一機構 4 1 3 1、 第二機構 4 1 3 2、 永久磁石 4 1 3 3と共に、 ヒンジ 4 1 0 1を中心とした回転は 不可能となる。
しかし、 第二軸 4 1 3 2 dが短辺 4 1 2 2 bの端部に向けて後方に 若干移動することから、 本実施例においては、 第一胴部 4 1 3 1 aお よび永久磁石 4 1 3 3が、 冷蔵庫の水平方向と水平となる第二停止位 置で第一機構 4 1 3 1の回転は停止するとともに、 第二機構 4 1 3 2 の第一辺 4 1 3 2 aは、 永久磁石 4 1 3 3の前端面より前方に突出し た位置で停止する。 加えてダンパー本体 4 1 3 4 aも前方へ移動して 復帰することで、 第一機構 4 1 3 1の後方端面に当接した状態で停止 する。
つまり、 自閉機能部 4 1 3 0は、 第一バネ 4 1 3 5に弾性力を蓄え 前方に引き出されて停止する。
このとき、 自閉機能部 4 1 3 0および接続部 4 1 4 0は、 ヒンジ 4 1 0 1近傍に配設されており、 突起 4 1 4 1の突き出し代を小さくで きることで、 冷蔵庫のデザイン性を損なうことがない。 さらに、 自閉 機能部 4 1 3 0および接続部 4 1 4 0が、 天井部に構成されているの で、 容易に人が触れることができない。
次に、 人の手により、 全開状態の扉 4 1 1 0が閉じられ、 扉 4 1 1 0が 8 ° 開放された状態となると、 接続部 4 1 4 0と永久磁石 4 1 3 3が磁力により吸着して当接するとともに、 磁性体 4 1 4 2の上部が 第二機構 4 1 3 2と当接して第一辺 4 1 3 2 aが後方に移動して、 第 二状態から第一状態となることで、 第一機構 4 1 3 1は、 ヒンジ 4 1 0 1を中心とした回転が可能となり、 第一パネ 4 1 3 5に蓄えられた 弾性力により後方に引き込まれることで扉 4 1 ί 0は自閉されること となる。
ここで、 本実施例において、 扉 4 1 1 0が 8 ° 開放された状態にお いては、 扉 4 1 1 0の内壁とこれに対向する冷蔵庫本体 4 1 0 0およ びその他扉との間に、 人の手や指を挟むことの有りうる約 1 0 0 m m の隙間が形成されている。
扉 4 1 1 0が自閉を開始した後、 第一機構 4 1 3 1が第一停止位置 となるまで後方に移動するとともに、 第一機構の後方端面がダンパー 本体 4 1 3 4 aを後方に移動されることにより、 扉 4 1 1 0は全閉状 態となるまで減速しながら自閉することになる。
つまり、 人の手や指を挟むことのありうる状態においては、 減速さ せながら自閉することができる。
ここで、 人の手により扉 4 1 1 0に加えられた力の慣性力により、 永久磁石 4 1 3 3 と接続部 4 1 4 0が当接した瞬間には、 ダンパー 4 1 3 3 に対する荷重が最大となり、 ダンパー 4 1 3 3は第一動作とな り、 大きな減速効果が得られる。 次に一旦扉 4 1 1 0が減速すること により、 ダンパー 4 1 3 3は第二動作となり、 小さな荷重でもゆつく りとした速度で自閉する。
つまり、 小さな自閉力においても減速しながらの自閉が可能となる。 さらに、 本実施例においては、 第一パネ 4 1 3 5は、 第一停止位置 でも軽微な弾性力を維持しているので、 自閉開始から全閉状態まで、 自閉カを維持できることから、 大きな自閉寸法を確保することができ る。
加えて、 収納物が多い場合や扉 4 1 1 0が勢いよく閉じられた場合 など、 ダンパー 4 1 3 3にかかる負荷が大きいとき、 ダンパー 4 1 3 3は第一動作となり、 大きな減速効果が得られる。
また、 収納物が少ない場合や扉 4 1 1 0がゆっく りと閉じられた場 合など、 ダンパー 4 1 3 3にかかる負荷が小さいとき、 ダンパー 4 1 3 3は第二動作となり減速効果は低減する。
さらに、 扉 4 1 1 0が全閉状態となった場合、 第一機構 4 1 3 1の 後方端面により、 位置検出スィッチ 4 1 3 7の接点が押されることで、 電気的に開状態となり、 制御手段 (図示せず) は扉 4 1 1 0が閉状態 と判断する。 ここで、 従来の冷蔵庫のように扉 4 1 1 0の位置を直接 検知することで、 扉 4 1 1 0の開閉の識別にある程度のディ ファレン シャルが必要であつたのに比べ、 本実施例では、 非常に高い検出精度 でドアすきを検知することができる。
以上のように本実施の形態の冷蔵庫は、 前面開口部を有する冷蔵庫 本体 4 1 1 0 と、 冷蔵庫本体 4 1 1 0に対してヒンジ 4 1 0 1 におい て回動可能に配設された扉 4 1 1 0 と、 冷蔵庫本体 4 1 0 0に配設さ れ、 扉 4 1 1 0を自閉させる自閉機能部 4 1 3 0 と、 自閉機能部 4 1 3 0 と対向して扉 4 1 1 0に形成され、 少なく とも扉 4 1 1 0が閉ま る際に自閉機能部 4 1 3 0と着脱可能に連結される接続部 4 1 4 0 と を備える。 自閉機能部 4 1 3 0は、 ヒンジ 4 1 0 1 とは異なる個所に 備えられると共に、 自閉機能部 4 1 3 0が接続部 4 1 4 0を引き込む ことにより、 扉 4 1 1 0を閉方向に自閉させることとなり、 大きな自 閉寸法を得ることができる。
さらに、 自閉機能部 4 1 3 0および接続部 4 1 4 0は、 冷蔵庫本体 4 1 0 0の幅方向において、 ヒンジ 4 1 0 1近傍に配設されたことに より、 扉 4 1 1 0の開部から離れた箇所に自閉機能部 4 1 3 0および 接続部 4 1 4 0が配設されていることとなり、 冷蔵庫のデザイン性を 向上させることができる。
さらに、 自閉機能部 4 1 3 0と接続部 4 1 4 0は、 磁力により着脱 可能に連結されることにより、 自閉過程において、 ラッチ機構による 反力が発生しないこととなり、 扉 4 1 1 0の閉め忘れを防止すること ができる。
さらに、 自閉機能部 4 1 3 0と接続部 4 1 4 0が連結された後、 自 閉機能部 4 1 3 0は、 第一バネ 4 1 3 5による自閉力によって扉 4 1 1 0を閉めることにより、 簡潔な構造で自閉カを得ることができ、 自 閉機能部 4 1 3 0を低コスト化できる。
さらに、 自閉機能部 4 1 3 0には、 扉 4 1 1 0の開閉を検知する ド ァスィツチが構成されてことにより、 冷蔵庫本体 4 1 0 0にドアスィ ツチを設ける必要がなく、 冷蔵庫の組立て性を向上させることができ る。
さらに、 自閉機能部 4 1 3 0および接続部 4 1 4 0は、 冷蔵庫本体 4 1 0 0の天井部に配設されていることにより、 自閉機能部 4 1 3 0 および接続部 4 1 4 0が人の手の届き難い箇所にあり、 収納物の出し 入れの際に誤って人が触れたりする頻度を低くでき、 自閉機能部 4 1 3 0および接続部 4 1 4 0の信頼性を向上することができる。
さらに、 自閉機能部 4 1 3 0は、 扉 4 1 1 0の回動に連動して扉 4 1 1 0全閉状態から所定角度のみ回転する第一機構 4 1 3 1 と、 扉 4 1 1 0が自閉機能部 4 1 3 0と連結された状態では第一機構 4 1 3 1 を回動可能とし、 扉 4 1 1 0が自閉機能部 4 1 3 0との連結を解除し た状態では第一機構 4 1 3 1の回動を停止させる第二機構 4 1 3 2と、 第一機構 4 1 3 1を冷蔵庫の後方に引く第一パネ 4 1 3 5とを備え、 第一機構 4 1 3 1の前方端には永久磁石 4 1 3 3が形成されているこ とにより、 自閉機能部 4 1 3 0と扉 4 1 1 0とが磁力により着脱可能 に連結されることととなり、 自閉過程においてラッチ機構による反力 が発生しない。
さらに、 第一機構 4 1 3 1に配設された永久磁石 4 1 3 3と対向す る扉 4 1 1 0の内面に、 磁性体 4 1 4 2を配設したことにより、 自閉 機能部 4 1 3 0と扉 4 1 1 0とが磁力により着脱可能に連結されるこ とととなり、 自閉過程においてラッチ機構による反力が発生しない。 さらに、 自閉機能部 4 1 3 0には、 第一機構 4 1 3 1の位置を検出 する位置検出スィツチ 4 1 3 7を構成したことにより、 精度の高い位 置検出ができ、 扉 4 1 1 0の位置検出精度を向上させることができる。
さらに、 第一機構 4 1 3 1の回転中心は、 扉 4 1 1 0の回転中心と 同軸上に位置することにより、 自閉機能部 4 1 3 0と接続部 4 1 4 0 の当接部は一定位置であり、 簡潔な機構で自閉機能部 4 1 3 0および 接続部 4 1 4 0を構成することができる。
さらに、 第一機構 4 1 3 1が前方へ移動した状態において、 第一機 構 4 1 3 1および永久磁石 4 1 3 3の前方端は、 冷蔵庫本体 4 1 0 0 の前面より後方に位置することにより、 可動部である第一機構 4 1 3 1が冷蔵庫本体 4 1 0 0の前面より吐出することがなく、 冷蔵庫のデ ザィン性を向上することができる。 さらに、 第一機構 4 1 3 1に配設された永久磁石 4 1 3 3と対向す る扉 4 1 1 0の内面に、 冷蔵庫本体に向けて突起 4 1 4 1が形成され、 突起 4 1 4 1の先端に磁性体 4 1 4 2を配設したことにより、 可動部 である第一機構 4 1 3 1が冷蔵庫本体 4 1 0 0の前面より吐出するこ とがなく、 冷蔵庫のデザイン性を向上することができる。
なお、 本実施例においては、 扉 4 1 1 0の開閉を検知する位置検出 スィツチ 4 1 3 7を第一機構 4 1 3 1の位置を検出するように配設し たが、 接続部 4 1 4 0の位置を検出するように位置検出スィッチ 4 1 3 7を配設しても同様の効果が期待できる。
なお、 本実施例においては、 減速手段として直進式シリコンオイル ダンパーを用いたが、 直進式エアダンパーを用いても同様の効果が期 待できる。
(実施の形態 1 2 )
図 6 7は本発明の実施の形態 1 2における扉装置の要部構成図であ る。 図 6 8は本発明の実施の形態 1 2における特性図である。 図 6 9 は本発明の実施の形態 1 2における扉装置の動作図である。 図 7 0は 本発明の実施の形態 1 2における扉装置の動作図である。
図において、 自閉機構部 4 2 3 0は、 冷蔵庫本体 4 1 0 0のヒンジ 4 1 0 1の近傍の天井部に配設され、 主に第一機構 4 2 3 1 と、 駆動 源 4 2 3 2と、 位置検出スィッチ 4 2 3 3と、 第二機構 4 1 3 2と、 永久磁石 4 1 3 3と、 ダンパー 4 1 3 4と、 第二バネ 4 1 3 6とから 構成されている。
第一機構 4 2 3 1は、 ヒンジ 4 1 0 1の回転中心と同軸上に回転可 能に連結されており、 取付位置としては、 ヒンジカバー 4 1 2 0の上 面に形成された略 L字型の機構部材である。 材料としては、 ジユラコ ン、 鋼板等所定の強度が確保できる材料が好ましい。
ここで、 第一機構 4 2 3 1がヒンジ 4 1 0 1に固定された状態にお いて、 第一機構 4 2 3 1は、 ヒンジ 4 1 0 1から後方に向けた形状の 第一胴部 4 2 3 1 aと、 冷蔵庫の幅方向において、 第一胴部 4 2 3 1 aから反ヒンジ 4 1 0 1方向に向けた形状の第二胴部 4 2 3 1 bで構 成されており、 第二胴部 4 2 3 1 bの前方近傍には軸貫通穴 4 2 3 1 cが形成され、 また、 反ヒンジ 4 1 0 1側端近傍にはガイ ド溝 4 2 3 1 dが形成されている。
本実施例において第一停止位置は、 第一胴部 4 2 3 1 aが、 冷蔵庫 の水平方向に対して後方に 8 ° 傾斜した状態であり、 第二停止位置は、 第一胴部 4 2 3 1 aが、 冷蔵庫の幅方向に対して水平となる状態であ る。
駆動源 4 2 3 2は、 通電時に第一機構 4 2 3 1を後方へ引き込む動 作を行うもので、 本実施例においては第一機構 4 2 3 1の後方に配設 されたソレソイ ドであり、 電磁石となるコイル 4 2 3 2 aと、 鉄心 4 2 3 2 bとから構成され、 鉄心 4 2 3 2 bの前方端は、 ガイ ド溝 4 2 3 1 dと連結されている。
ここで、 図において、 移動距離と、 各駆動源および弾性体の持つ推 進力の関係を示した特性図であり、 弾性体の推進力が第二停止位置に おいて最大となるのに対して、 ソレノイ ド型の駆動減においては、 第 一停止位置近傍において推進力が最大となるように設定してある。
位置検出スィツチ 4 2 3 3は、 第一機構 4 2 3 1の上面に配設され、 接続部 4 1 4 0の位置を検出さるための位置検出用のスィツチであり、 ホール I Cを組み込んでュニッ ト化された基盤が使用されている (詳 細は図示せず)。
ここで、 位置検出スィッチ 4 2 3 3の動作としては、 接点が押され た状態では電気的に開状態となり、 制御手段 (図示せず) は扉 4 1 1 0が閉状態であると判断する。 逆に接点が押されていない状態では電 気的に閉状態となり、 制御手段 (図示せず) は扉 4 1 1 0が開状態で あると判断する。
この時制御手段は、 扉 4 1 1 0が開状態から閉状態へ移行した場合 のみ、 駆動源 4 2 3 2に所定時間通電するようにプログラムされてお り、 その逆の場合、 つまり扉 4 1 1 0が閉状態から開状態へ移行した 場合は駆動源 4 2 3 2への通電は行わない。
接続部 4 2 4 0は、 永久磁石 4 1 3 3と対向する扉 4 1 1 0内部に 形成された突起 4 2 4 1 と、 突起 4 2 4 1の先端に形成された磁性 4 2 4 2で構成されており、 磁性体 4 2 4 2の材料としては、 表面に塗 装を施した鋼板を用いることが望ましい。
ここで、 扉 4 1 1 0が全閉状態であるとき、 磁性体 4 2 4 2と、 第 一停止位置にある第一機構 4 2 3 1に固定された永久磁石 4 1 3 3が 当接し、 かつ、 位置検出スィッチ 4 2 3 3の接点とも当接し、 この状 態において位置検出スィツチ 4 2 3 3が電気的に開状態となるように 突起 4 2 4 1の形状は定められている。
以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
まず、 全閉状態の扉 4 1 1 0が人の手により開放され、 本実施例に おいては、 扉 4 1 1 0が 8 ° 開放された状態において、 第一機構 4 1 3 1はヒンジ 4 1 0 1を中心とした回転を、 第一ガイ ド溝 4 1 2 1に より停止することで、 磁力による接続部 4 2 4 0と永久磁石 4 1 3 3 の連結は解除される。
さらに、 第二機構 4 1 3 2の働きにより、 自閉機能部 2 3 0は、 第 二停止位置で停止する。
この時、 位置検出スィツチ 4 2 3 3と接続部 4 2 4 0の当接も解除 されることで、 制御手段は、 扉 4 1 1 0が閉状態から開状態へ移行し たと判断する。 つまり、 駆動源 4 2 3 2へは通電されない。
次に、 人の手により、 全開状態の扉 4 1 1 0が閉じられ、 扉 4 1 1 0が 8 ° 開放された状態となると、 接続部 4 2 4 0 と永久磁石 4 1 3 3が磁力により吸着して当接するとともに、 磁性体 4 2 4 2の上部が 第二機構 4 1 3 2 と当接して第一辺 4 1 3 2 aが後方に移動して第一 状態となることで、 第一機構 4 1 3 1 は、 ヒンジ 4 1 0 1 を中心とし た回転が可能となる。
加えて、 接続部 4 2 4 0 と、 位置検出スィ ツチ 4 2 3 3が当接する ことで、 制御手段は、 扉 4 1 1 0が開状態から閉状態へ移行したと判 断する。 つまり、 駆動源 4 2 3 2へ通電が行われることで、 駆動源 4
2 3 2は、 第一機構 4 2 3 1 とともに扉 4 1 1 0を後方へ引き込む。 この時、 第一機構 4 2 3 1の後方端面がダンパー本体 4 1 3 4 aを 後方に移動されることにより、 扉 4 1 1 0は全閉状態となるまで減速 しながら自閉することになる。
ここで、 駆動源 4 2 3 2は、 パネの推進力と異なり、 全閉状態直前 で最も高い推進力をえられる様に設定してあるので、 例えば扉 4 1 1 0の幅が広く、 大きな自閉力が必要な場合でも、 ダンパー 4 1 3 0の 抗力に打ち勝ちながら全閉状態まで確実に扉を閉めることができる。 以上のように本実施の形態の冷蔵庫は、 前面開口部を有する冷蔵庫 本体 4 1 1 0 と、 冷蔵庫本体 4 1 1 0に対してヒンジ 4 1 0 1 におい て回動可能に配設された扉 4 1 1 0 と、 冷蔵庫本体 4 1 0 0に配設さ れ、 扉 4 1 1 0を自閉させる自閉機能部 4 2 3 0 と、 自閉機能部 4 2
3 0 と対向して扉 4 1 1 0に形成され、 少なく とも扉 4 1 1 0が閉ま る際に自閉機能部 4 2 3 0と着脱可能に連結される接続部 4 2 4 0 と を備える。 自閉機能部 4 2 3 0 と接続部 4 2 4 0が連結された後、 自 閉機能部 4 2 3 0は、 ソレノィ ド型駆動源 4 2 3 2の駆動力により扉 4 1 1 0を閉めることにより、 全閉状態直前で最も高い推進力をえら れることとなり、 大きな自閉力が必要な扉 4 1 1 0を全閉状態まで確 実に扉を閉めることができる。 なお、 本実施例においては、 駆動源 4 2 3 2としてソレノイ ドを用 いたが、 モータ式の駆動源を用いても同様の効果が期待できる。
(実施の形態 1 3)
図 7 1は本発明の実施の形態 1 3における扉装置の要部構成図であ る。 図 7 2は本発明の実施の形態 1 3における扉装置の図 7 1の A矢 視図である。 図 7 3は本発明の実施の形態 1 3における動作図である。 図 74は本発明の実施の形態 1 3における動作図である。
図において、 自閉機能部 4 3 1 0は、 主に案内レール 4 3 1 1 と、 傾斜部材 4 3 1 2と、 弾性体 4 3 1 3から構成されており、 冷蔵庫本 体の天井面に固定されている。
案内レール 4 3 1 1は、 ダンパー 4 3 3 0に連結され、 冷蔵庫本体 の天井面に固定されている。 ここで、 案内レール 4 3 1 1の上壁には ダンパー 4 3 3 0側端を開口した溝 4 3 1 1 aが形成されており、 案 内レール 4 3 1 1の側壁には両端を閉じた溝 4 3 1 1 が形成されて いる。
さらに、 案内レール 4 3 1 1の前方端近傍に溝 4 3 1 1 b側を開口 した溝 4 3 1 1 cが形成されていると共に、 溝 4 3 1 1 bの反対側側 壁には両端を閉じた溝 3 1 1 dが形成されている。
傾斜部材 4 3 1 2は、 第一接続部 4 3 1 2 aにおいてダンバ一 4 3 3 0の端部と回転可能に連結されており、 第一接続部 4 3 1 2 aは溝 4 3 1 1 aにより水平移動可能に案内される。 さらに、 傾斜部材 4 3 1 2の側面には、 2つの突起 4 3 1 2 b、 4 3 1 2 cが形成されてお り、 この 2つの突起 4 3 1 2 b、 4 3 1 2 cが案内レ一ル 4 3 1 1の 側壁から突き出し、 溝 4 3 1 l bにはめ込まれて水平方向に移動する。 さらに、 第一接続部 4 3 1 2 aから突き出した第二接続部 4 3 1 2 d の端部は、 溝 4 3 1 1 dを突き抜けている。 尚、 ダンバ一 4 3 3 0は、 減速機能部の一例である。 弾性体 4 3 1 3弾性体 4 3 1 3は、 ダンパー 4 3 3 0の外部後方端 と傾斜部材 4 3 1 2の第二接続部 43 1 2 dとを連結している。
接続部 4 3 2 0は、 主にプレー卜 4 3 2 1 と、 ローラ 4 3 2 2 とか ら構成されている。
プレート 4 3 2 1は、 扉 4 1 1 0の上面に固定され、 冷蔵庫本体 4 1 0 0方向に突出した形状をしており、 材料としては、 表面処理を施 した鋼板を使用することが望ましい。
ローラ 4 3 2 2は、 プレート 4 3 2 1の冷蔵庫本体 4 1 0 0側端部 の下面に回転可能に配設された円筒胴形部材であり、 設置状態におい て、 2つの突起 4 3 1 2 b、 43 1 2 cの間に位置する。
ダンパ一 4 3 3 0は、 各区画の最後方部に配設され、 案内レール 4 3 1 1の後方端に連結された直進式のダンパーであり、 主にダンパー 本体 43 3 1と稼動シャフト 43 32から構成されている。
ダンパー本体 4 3 3 1は筒状のケーシング内にピストンを配設し、 シリコンオイルが充填されており、 かかる荷重に対して 2段階にその 動作を切り替える構造となっている。 具体的には、 高い荷重が負荷と して発生した時には、 ダンパー 4 3 3 1の動作荷重も大きくなる第一 動作となり、 荷重が減少した時には、 ダンパー 4 3 3 1の動作荷重も 小さくなる第二動作となる (詳細は図示せず)。 '
稼動シャフト 4 3 3 2は、 ダンパー本体 4 3 3 1のピストンと連結 されたシャフトであり、 その前方端は傾斜部材 4 3 1 2の第一接続部 43 1 2 aと連結されている。
以上のように構成された扉装置について、 以下その動作、 作用を説 明する。
まず、 扉 4 1 1 0が、 全閉状態の時、 傾斜部材 4 3 1 2は、 案内レ ール 4 3 1 1の後方端に位置し、 接続部 4 3 2 0の口一ラ 4 3 2 2は、 2つの突起 4 3 1 2 b、 43 1 2 cの間に位置する。 次に、 人の手により、 扉 4 1 1 0が開放された場合、 扉 4 1 1 0の 開放に伴い、 ローラ 4 3 2 2が突起 4 3 1 2 bに当接することで、 傾 斜部材 4 3 1 2は前方に移動する。
この時、 第一接続部 4 3 1 2 aと連結された稼動シャフト 4 3 3 2 も前方に移動する。
さらに、 第二接続部 4 3 1 2 dと連結された弾性体 4 3 1 3弾性体 43 1 3は引き伸ばされることで弾性力を蓄積させる。
次に、 人の手により、 扉 4 1 1 0がさらに開放されて、 本実施例に おいては、 扉 4 1 1 0が 8 ° 開放された状態において、 傾斜部材 4 3 1 2と接続部 4 3 2 0の連結は解除されるとともに、 突起 4 3 1 2 b が溝 4 3 1 1 cにはまり込むかたちで傾倒することで、 傾斜部材は、 案内レール 43 1 1の前方端で停止する。
次に、 人の手により、 全開状態の扉 4 1 1 0が閉じられ、 扉 4 1 1 0が 8 ° 開放された状態からさらに閉じられると、 ローラ 4 3 2 2と 突起 3 1 2 cが当接することで、 傾斜部材 4 3 1 2の傾倒が解除され、 ローラ 4 3 2 2が 2つの突起 4 3 1 2 b、 4 3 1 2 cに挾まれた状態 となり、 扉 4 1 1 0は弾性体 43 1 3弾性体 4 3 1 3に蓄積.された弾 性力により自閉を開始する。
ここで、 本実施例において、 扉 4 1 1 0が 8 ° 開放された状態にお いては、 扉 4 1 1 0の内壁とこれに対向する冷蔵庫本体 4 1 0 0およ びその他扉との間に、 人の手や指を挟むことの有りうる約 1 0 0 mm の隙間が形成されている。
この時、 稼動シャフト 4 3 3 2と傾斜部材 4 3 1 2が連結されてい るので、 ダンパー 4 3 3 0の減速効果により、 扉 4 1 1 0は全閉状態 となるまで減速しながら自閉することになる。
つまり、 人の手や指を挟むことの有りうる状態においては、 滅速さ せながら自閉することができる。 さらに、 本実施例においては、 弾性体 4 3 1 3弾性体 4 3 1 3は、 自閉開始から全閉状態まで、 自閉カを維持できることから、 大きな自 閉寸法を確保することができる。
以上のように本実施の形態の冷蔵庫は、 前面開口部を有する冷蔵庫 本体 4 1 0 0 と、 冷蔵庫本体 4 1 0 0に対して、 ヒンジ 4 1 0 1 にお いて回動可能に配設された扉 4 1 1 0 と、 冷蔵庫本体 4 1 0 0に配設 され、 扉 4 1 1 0を自閉させる自閉機能部 4 3 1 0 と、 自閉機能部 4 3 1 0 と対向して扉 4 1 1 0に形成され、 少なく とも扉 4 1 1 0が閉 まる際に自閉機能部 4 3 1 0 と連結される接続部 4 3 2 0 とを備え、 自閉機能部 4 3 1 0は、 ヒンジ 4 1 0 1 とは異なる個所に備えられる と共に、 自閉機能部 4 3 1 0 と接続部 4 3 2 0がラッチ機構により着 脱可能に連結されていることにより、 自閉機能部 4 3 1 0と接続部 4 3 2 0が連結されてから全閉状態まで、 自閉カを扉に伝達することと なり、 自閉寸法を大きくすることができる。 次に、 実施の形態 1 4から 1 7と供に本発明を以下に説明する。 しかしながら、 上記従来の扉装置の構成では、 収納物等の状態によ り扉の重さが異なる場合に、 収納部を減速する際の負荷が異なる為、 例えば扉の閉速度が大きい場合には、 体感的には負荷が大きい為に閉 速度で減速速度が相殺されてしまい、 減速機能が動作していても使用 者によって減速機能が体感できない為、 使い勝手が悪い印象を与える という課題を有している。
また、 十分に減速効果が体感できるように、 あらゆる負荷に対して 大きな減速を行う減速装置を用いると、 扉を確実に閉める為に減速装 置の抗力よりも大きな自閉カを有する自閉装置を備える必要があり、 自閉装置にかかる負荷が増大する為、 自閉装置が大型化するとともに 自閉装置のコストが高くなるという課題を有している。 また、 ダンパーとしてオイルダンパー等を用いた場合には、 周囲温 度が変化するとその温度特性の違いによってオイルダンパー内の油の 粘度が異なる為に衝撃吸収力も異なり、 扉の減速速度が周囲温度によ つて大きくばらつく為、 何らかのダンパー周囲温度の変化によって使 用者に扉装置の品位が悪く、 使い勝手が悪い印象を与えるという課題 を有している。
本発明は上記従来の課題を解決するもので、 減速動作の操作感を確 実に得られ、 使い勝手を向上させた扉装置およびこの扉装置を備えた 冷蔵庫を提供することを目的とする。
上記従来の課題を解決する為に、 本発明の扉装置は、 筐体内に形成 され冷却もしくは加温状態に維持される区画の前面開口部を回動可能 に開閉する扉と、 扉を自閉させる自閉機構部と、 扉を閉める際に前記 扉の閉まる速度を減速させるダンパーとを備える。 ダンバ一は、 扉の 閉速度が早い時に大きな減速を行う第一動作と、 扉の閉速度が遅い時 に小さな減速を行う第二動作とを切り替える特性を有し、 少なく とも ダンパーの第二動作は自閉機構部の動作範囲内で行わせる。 尚、 ダン パーは減速機能部の一例であり、 自閉機構部は自閉機能部の一例であ る。
これによつて、 使用者が扉を閉める際に大きな力で閉めた場合には、 扉の速度が速くなり大きな減速効果が得られ、 扉の速度が遅い場合に は小さな減速効果が得られるので、 扉装置の減速機能を官能的に体感 することができるようになる。
本発明の扉装置は、 使用者が扉を閉める際に大きな力で閉めた場合 には、 扉の速度が速くなり大きな減速効果が得られ、 扉の速度が遅い 場合には小さな減速効果が得られるので、 扉装置の減速機能を官能的 に体感することができるようになることで、 扉装置の使い勝手を大き く向上させることができる。 本発明の扉装置は、 筐体内に形成され冷却もしくは加温状態に維持 される区画の前面開口部を回動可能に開閉する扉と、 扉を自閉させる 自閉機構部と、 扉を閉める際に前記扉の閉まる速度を減速させるダン パーとを備え、 ダンパ一は、 前記扉の閉速度が早い時に大きな減速を 行う第一動作と、 扉の閉速度が遅い時に小さな減速を行う第二動作と を切り替える特性を有し、 少なくともダンパーの第二動作は前記自閉 機構部の動作範囲内で行わせるものである。. 使用者が扉を閉める際に 大きな力で閉めた場合には、 扉の速度が速くなり大きな減速効果が得 られ、 扉の速度が遅い場合には小さな減速効果が得られるので、 扉装 置の減速機能を官能的に体感することができるようになり、 扉装置の 使い勝手を大きく向上させることができる。
また、 手動により閉じられ所定の速度となった扉がダンパーの可動 部先端に当接した場合、 ダンバ一は第一動作となり扉は急激に減速し、 その後ダンパーが第二動作となった場合、 自閉機構部の効果で緩やか に自閉することにより、 扉と冷蔵庫本体が接触する際の衝突音を低減 することができる。
また、 本発明は、 ダンパーは自閉機構部が動作する際にのみ、 扉の 閉まる速度を減速させるものであるもので、 扉を閉める際に減速機能 によって扉の閉速度が小さくなることで、 扉の閉め損ないが発生する ことを防ぐことができる。
また、 本発明は、 ダンバ一は、 扉の閉速度が早い時に大きな減速を 行う第一動作の動作後に連続して、 第一の動作によって減速された閉 速度の遅い扉が前記第一の動作による減速よりも小さな減速を行う第 二動作を行うように段階的に切り替える特性を有するものであり、 常 に二段階の減速効果を有する為、 複数の区画に備えられた異なる扉間 においても減速動作の統一感が得られ、 減速動作の品位が向上するこ とで扉装置の使い勝手を大きく向上させることができる。 また、 本発明は、 扉の閉速度が遅い時に小さな減速を行う第二動作 の際の自閉速度は、 前記ダンパーの周囲温度が異なる温度帯でもほぼ 一定となることで、 ダンパーの周囲温度が変化しても、 扉が閉まる直 前の速度がほぼ一定であることで、 さらに減速動作の統一感が得られ 扉装置の使い勝手を大きく向上させることができる。
また、 ダンパーが冷蔵庫等の前面部分に位置する放熱パイプ近傍に 取り付けられた場合には冷蔵庫の運転状態によって温度変化が大きく なるが、 その場合にも扉が閉まる直前の速度がほぼ一定であることで、 冷蔵庫の運転状態によらず減速動作の統一感が得られる。
また、 本発明は、 ダンパーは、 内部にオイルを充填した直進式ダン パーであり、 オイルが流路を通る際の粘性抵抗によって減速を行うも のであって、 第一動作の際にオイルが通過する流路面積よりも第二動 作の際にオイルが通過する流路面積を大きくするとともに、 第二動作 の際のオイルが流路を通る際の粘性抵抗は温度変化の影響を受けにく い程度に小さいものであって、 扉が閉まる直前の速度がほぼ一定であ ることで、 さらに減速動作の統一感が得られ扉装置の使い勝手を大き く向上させることができる。
また、 本発明は、 ダンパーは、 内部にオイルを充填した直進式ダン パーであり、 ダンパーの周囲温度の異なる複数の区画に備えられた場 合、 温度の低い区画に配置されるダンパー内の前記オイルの粘度は、 温度帯の高い区画に配置されるダンパー内のオイルの粘度比べて粘度 の低いオイルが充填されていることより、 温度の低い区画に配置され る前記ダンパーの動作速度が上昇することとなり、 温度帯の異なる区 画に配置された扉装置においても動作感を均一にし得る。
また、 本発明は、 ダンパーが、 扉の幅方向の中心軸に対して回動軸 と反対側に配設されていることで、 ダンパーに生じる荷重を小さくで き、 信頼性の向上と低コス ト化が可能となる。 また、 本発明は、 扉の上部近傍に、 冷蔵庫本体に向けて形成された 突起と、 突起の先端とダンパーの可動部先端が当接して減速効果を得 るものにおいて、 ダンパーの可動部先端が前記冷蔵庫本体の前面より 後方に位置することにより、 扉開放時にダンパーが冷蔵庫本体の前面 に露出しないこととなり、 庫内の食材の収納や取出し時に人の手ゃ容 器が緩衝してダンパーが破損することを防止することができる。
また、 本発明は、 開口部を有する冷蔵庫本体と、 冷蔵庫本体に回動 可能に配設された扉と、 扉の内部に形成された棚部と、 扉を自閉させ る自閉機構部と、 冷蔵庫本体内の回動軸側側壁に配設され、 自閉機構 部が動作している間のみ扉に作用する直進式ダンパーとを有し、 ダン パーは棚部の側壁に当接することにより、 扉が閉状態となる前の必要 な範囲のみ減速効果が得られる。
また、 本発明は、 ダンパーの可動部先端には磁性体が構成され、 ダ ンパーの可動部先端と扉の当接部に磁石が形成されていることにより、 扉開放時にダンパーの可動部は前方に引き出されて待機状態となるの で、 ダンパー内部に復帰用パネの内蔵が不要となり低コスト化が図れ る。
また、 本発明は、 位置検出手段を備え、 位置検出手段がダンパーの 可動部の位置を検出することにより扉の開閉状態を識別するので、 位 置検出手段により扉が全閉状態であるかどうかを識別できるので、 扉 本体での扉開閉検出が不要となり低コス卜化及び検出制度の向上が可 能となる。
また、 本発明は、 冷蔵庫本体内に形成された貯蔵室の前面開口部に 対して上述の扉装置を備えたので、 使用者が扉を閉める際に大きな力 で閉めた場合には、 扉の速度が速くなり大きな減速効果が得られ、 扉 の速度が遅い場合には小さな減速効果が得られるので、 冷蔵庫用の扉 装置の減速機能を官能的に体感することができるようになる。 以下、 本発明の実施の形態について、 図面を参照しながら説明する が、 従来例または先に説明した実施の形態と同一構成については同一 符号を付して、 その詳細な説明は省略する。
なお、 この実施の形態によってこの発明が限定されるものではなレ 。 (実施の形態 1 4)
図 7 5は本発明の実施の形態 1 4における扉装置を備えた冷蔵庫の 上部斜視図である。 図 7 6は本発明の実施の形態 1 4における扉装置 を備えた冷蔵庫の平面図である。 図 7 7は本発明の実施の形態 1 4に おける扉装置の要部構成図である。 図 7 8は本発明の実施の形態 1 4 における扉の閉方向の動作図である。 図 7 9は本発明の実施の形態 1 4における扉の開方向における動作図である。 図 8 0は本発明の実施 の形態 1 4における扉装置のダンパーの当接点の動作図である。
図 7 5、 図 7 6、 図 7 7において、 前面開口部 5 1 0 2を有した冷 蔵庫本体 5 1 0 0の上部には、 扉 5 1 1 0がヒンジ 5 1 0 1を回転中 、として回動可能に軸支されている。
自閉機構部 5 1 2 0は、 扉 5 1 1 0に配設された第一突起 5 1 2 1 と、 冷蔵庫本体 5 1 0 0に配設された第二突起 5 1 2 2とから構成さ れる自閉手段である。 尚、 自閉機構部 5 1 2 0は自閉機能部の一例で ある。
第一突起 5 1 2 1は、 扉 5 1 1 0のヒンジ 5 1 0 1の近傍に形成さ れ、 扉 5 1 1 0が全閉状態において冷蔵庫本体 5 1 1 0方向に向けて 突き出した第一アーム 5 1 2 1 aと第一アーム 5 1 2 1 aの先端から ヒンジ 5 1 0 1方向に向けて突き出した第二アーム 5 1 2 1 bとから 構成されている。
なお、 第二アーム 5 1 2 1 bの先端形状は適切な R形状であること が望ましく、 また材料としては、 若干の変形が可能な樹脂材料を用い ることが望ましい。 第二 起 5 1 2 2は、 冷蔵庫本体 5 1 0 0のヒンジ 5 1 0 1の近傍 に形成され、 扉 5 1 1 0に向けて突き出した第一アーム 5 1 2 2 aと 第一アーム 5 1 2 2 aの先端から反ヒンジ 5 1 0 1方向に向けて突き 出した第二アーム 5 1 2 2 bとから構成されている。 なお、 第二ァ一 ム 5 1 2 2 bの先端形状は適切な R形状であることが望ましく、 また、 材料としては剛性の高い金属材料を用いることが望ましい。
ここで、 自閉機構部 5 1 2 0は、 扉 5 1 1 0が全閉状態では、 第二 アーム 5 1 2 1 bの先端が、 第二アーム 5 1 2 2 bよりも冷蔵庫本体 5 1 0 0側に位置し、 扉 5 1 1 0が第一の開度以上の開度であるとき、 第二アーム 5 1 2 1 bの先端は、 第二アーム 5 1 2 2 bよりも前方に 引き出された位置にある。
ダンバ一 5 1 3 0は、 冷蔵庫本体 5 1 0 0の天井部の内壁に埋設さ れた直進式のダンパーであり、 ヒンジ 5 1 0 1 と反対方向端部近傍に 配設されている。 尚、 ダンパー 5 1 3 0は減速機能部の一例である。
ここで、 ダンパー 5 1 3 0はダンパ一本体 5 1 3 1 とダンパ一本体 5 1 3 1に連なる直進式の可動部である可動シャフ ト 5 1 3 2から構 成されている。 ダンパー本体 5 1 3 1内にはシリコンオイルが充填さ れており、 かかる荷重に対して 2段階にその動作を切り替える構造と なっている。 具体的には、 高い荷重が負荷として発生した時には、 高 い減速効果が発揮するよう、 ダンパー本体 5 1 3 1 とピス トンの間の 流路面積が小さくなることで、 流路におけるシリコンオイルの粘性抵 杭が増加しダンパー本体 5 1 3 1の動作荷重も大きくなる第一動作と なる。 荷重が減少した時には、 やや小さい減速効果が発揮されるよう、 ダンバ一本体 5 1 3 1 とピス トンの間の流路面積が大きくなることで、 流路におけるシリコンオイルの粘性抵抗が減少しダンパー本体 5 1 3 1の動作荷重も小さくなる第二動作となる。
なお、 動作荷重は速度と扉 5 1 1 0の総重量によって決定するので、 扉の総重量が一定の場合には動作荷重の大小は、 使用者の目でみると 動作速度の大小として体感することができる。
加えて、 可動シャフト 5 1 3 2がダンパー本体 5 1 3 1に収納され る方向に対しては動作荷重が発生し、 逆方向に可動シャフ ト 5 1 3 2 が移動する時、 動作荷重が略 0になることが好ましく、 可動シャフ ト 5 1 3 2を前方に押し出す復帰用のパネ等を内蔵していない。
さらに、 可動シャフ ト 5 1 3 2の先端には磁性体 5 1 3 3が構成さ れている。 ここで磁性体 5 1 3 3の先端は略球形をしていることが望 ましい。
磁石 5 1 4 0は扉 5 1 1 0の内面に取り付けられており、 磁石の材 料としてはネオジムやフェライ ト磁石を用いることが望ましく、 扉 5 1 1 0が閉状態において、 磁性体 5 1 3 3と磁石 5 1 4 0は当接する。 以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
図 7 8、 図 7 9、 図 8 0において、 まず、 開放状態の扉 5 1 1 0が、 人の手により閉じられ、 第一の開度となった場合、 第一突起 5 1 2 1 の先端と第二突起 5 1 2 2の先端が当接し、 人の手により扉 5.1 1 0 に加えられた力により、 第一突起 5 1 2 1は反ヒンジ 5 1 0 1方向に 変形する。 以降、 この第一突起 5 1 2 1の変形に対する復元力により 扉 5 1 1 0は自閉を行う。
さらに、 扉 5 1 1 0が自閉して第二の開度となったとき、 磁性体 5 1 3 3と磁石 5 1 4 0が当接するとともに、 可動シャフト 5 1 3 2が ダンパー本体 5 1 3 1に収納される方向に移動することで減速作用が 生じる。 この時、 ダンバ一 5 1 3 0はヒンジ 5 1 0 1の回転中心から 離れた位置に配設されているので、 従来技術にあるようにヒンジ 5 1 0 1内にロー夕リ一ダンバ一を配設するのに比べてダンパーにかかる 荷重を低減することができる。 さらにヒンジ 5 1 0 1の反対方向にダ ンパ一 5 1 3 0を配設したので、 ダンパー 5 1 3 0による減速により ヒンジ 5 1 0 1に生じる反力が小さくなる。
ここで、 人の手により扉 5 1 1 0に加えられた力の慣性力により、 磁性体 5 1 3 3 と磁石 5 1 4 0が当接した瞬間には、 ダンパー 5 1 3 0に対する荷重が最大となり、 ダンパー 5 1 3 0は第一動作となり、 大きな減速効果が得られる。 次に一旦扉 5 1 1 0が減速することによ り、 ダンパー 5 1 3 0は第二動作となり、 小さな荷重でもゆつく りと した速度で自閉する。 つまり、 小さな自閉力においても減速しながら の自閉が可能となる。 ここで、 一定の流路面積をもった一般のダンバ 一の場合、 減速工程の全てにおいて、 温度変化に伴うシリコンオイル の粘度特性の影響を受けてしまい、 周囲温度の差に伴って扉装置 5 1 1 0の動作時間に顕著な差を生じる。 これに対して、 本実施例のよう に 2段階にその動作を切り替えるダンパー 5 1 3 0の場合、 第一動作 は、 ダンパー本体 5 1 3 1 とピス トンの間の流路面積が小さくなるこ とで、 流路におけるシリコンオイルの粘性抵抗が増加するのでダンバ — 5 1 3 0の動作荷重も大きくなり、 大きな減速効果が得られる。 ま た、 この時は流路における粘性抵抗が大きいので温度変化に伴うシリ コンオイルの粘度特性の影響を受け易い。 一方で、 第二動作は、 ダン パー本体とビス トンの間の流路面積が大きくなることで、 流路におけ るシリコンオイルの粘性抵抗が減少するので、 減速動作が小さく、 粘 性抵抗が小さい状態では周囲温度の差に伴う扉 5 1 1 0の動作時間に は顕著な差が生じず温度変化に伴うシリコンオイルの粘度特性の影響 を受け難い。
よって、 このように大きな負荷に対しては大きく減速し、 小さな負 荷に対しては小さい減速が得られるダンパーを備えることで、 収納物 等の状態により扉の重さが異なる場合であっても、 使用者は扉が閉ま る際の減速機能を体感することができ、 扉装置の品位を向上させるこ とができる。
また、 通常のダンパーのように、 常時減速効果が得られるダンパー に比べて、 減速効果が小さく温度変化による粘度特性の影響を受けに くい第二動作を有するダンパー 5 1 3 0は、 扉 5 1 1 0の周囲に温度 変化がある場合でも、 動作時間をある程度均一にすることができ、 温 度変化による粘度特性の影響を小さくできるので、 扉が閉まる直前の 第二動作においては、 ほぼ一定の扉の自閉速度が得られるので、 さら に扉装置の品位を向上させることができ、 使い勝手を向上させること ができる。
このように、 季節の変化や何らかの環境下においてダンパーの周囲 温度が変化した場合、 この温度差によってダンパ一の減速性能が大き く異なる為、 例えば店頭販売での減速効果と、 実使用での減速効果が 体感的に大きく異なることがあり、 使用者に減速機能の性能が悪いと いった印象を与えるという課題を有している。 しかし、 本発明による と、 減速装置の周囲に温度変化がある場合でも、 動作時間をある程度 均一にすることができ、 温度変化による粘度特性の影響を小さくでき るので、 扉が閉まる直前の第二動作においては、 冷蔵庫の運転時とほ ぼ同等の自閉速度が得られるので、 さらに扉装置の品位を向上させる ことができる。 なお、 冷蔵庫の庫内にダンパーを直接設置しない場合 でも、 冷蔵庫の庫内から何らかの温度影響をダンパーが受けるような 場合には同様に考えられることができる。
また同様に常温で保管されている冷蔵庫の店頭販売の際に、 常温と は大きく温度帯の異なる冷蔵庫の庫内にダンパーを配置する場合で、 特にオイルダンパーを用いた場合には、 温度特性の違いによってオイ ルダンパ一内の油の粘度が異なる為に衝撃吸収力も異なり、 冷蔵温度 帯や冷凍温度帯で適切な減速機能を発揮するようにオイルダンパー内 の油の粘度を設定すると、 常温ではオイルダンパー内の油の粘度が大 きくなり、 ダンパー機能がほとんど発揮されない為、 使用者は常温で 保管されている冷蔵庫の店頭販では減速動作を体感することができず、 店頭で減速動作の訴求を行う ことが難しい。 一方、 本発明によると、 常温保管の冷蔵庫においても減速動作を確実に体感することができ、 消費者への商品説明を効果的に行うことができる。
また、 冷蔵庫本体の前面側にダンパー 5 1 3 0を配置する場合には、 通常、 冷蔵庫の前面側の扉部分との係合面の内部に放熱パイプが配設 されている為、 ダンパーが放熱パイプの熱影響を受けることになる。 その場合、 冷蔵庫の高負荷運転時には温度が高くなり、 冷蔵庫の低負 荷運転時には、 温度が低くなる為、 冷蔵庫の運転中においても、 ダン パーの周囲温度が大きく変化するが、 その場合でも、 減速効果が小さ く温度変化による粘度特性の影響を受けにくい第二動作を有するダン パ一 5 1 3 0は温度変化による粘度特性の影響を小さくできるので、 扉が閉まる直前の第二動作においては、 ほぼ一定の扉の自閉速度が得 られるので、 さらに扉装置の品位を向上させることができ、 使い勝手 を向上させることができる。 加えて、 収納物が多い場合や扉 5 1 1 0 が勢いよく閉じられた場合など、 ダンパー 5 1 3 0にかかる負荷が大 きいとき、 ダンパー 5 1 3 0は第一動作となり、 大きな減速効果が得 られる。
また、 収納物が少ない場合や扉 5 1 1 0がゆっく りと閉じられた場 合など、 ダンパー 5 1 3 0にかかる負荷が小さいとき、 ダンバ一 5 1 3 0は第二動作となり減速効果は低減する。
さらに、 復帰用パネがダンパー 5 1 3 0に内蔵されていないことか ら、 自閉カを小さくすることができる。
次に、 全閉状態の扉 5 1 1 0が人の手により開放された場合、 磁 石 5 1 4 0 と磁性体 5 1 3 3が磁力により吸着されていることにより、 可動シャフ 卜 5 1 3 2は前方に移動して、 冷蔵庫本体 5 1 0 0の前方 に磁性体 5 1 3 3が突き出した待機状態となる。 この時、 ダンパー 5 1 3 0の動作荷重は略 0であることから、 小さな磁力の磁石でも可動 シャフ ト 5 1 3 2の移動が可能である。
さらに磁力の吸着で、 可動シャフ ト 5 1 3 2を前方に引き出すこと により、 別途設ける復帰用のパネ等を必要としない。
ここで、 図 8 0において、 磁性体 5 1 3 3の先端は略球形となって いるので、 扉 5 1 1 0が第二の開度における磁石 5 1 4 0と磁性体 5 1 3 3の当接位置と、 扉 5 1 1 0が全閉状態における磁石 5 1 4 0と 磁性体 5 1 3 3の当接位置の微妙なズレを緩和してダンパー 5 1 3 0 の横方向にかかる荷重を低減することができる。
以上のように本実施の形態の冷蔵庫は、 冷蔵庫本体 5 1 0 0に回動 可能に配設された扉 5 1 1 0と、 扉 5 1 1 0を自閉させる自閉機構部 5 1 2 0と、 自閉機構部 5 1 2 0が動作している間のみ扉 5 1 1 0に 作用する直進式ダンパー 5 1 3 0とを備え、 ダンパー 5 1 3 0は冷蔵 庫本体 5 1 0 0の天井部に配設されていることにより、 直進式ダンバ - 5 1 3 0の動作範囲のみ減速動作が得られることとなり、 庫外への 冷機漏れを最小限に抑えて扉 5 1 1 0の自閉が可能となる。
さらに、 天井部にダンパー 5 1 3 0が配設されているので、 可動シ ャフ ト 5 1 3 2が前方に引き出されて冷蔵庫本体 5 1 0 0の前方に突 き出した状態においても人の手の触れ難い場所であるため、 不慮の接 触等による破損を抑制することができる。
また、 前記ダンパーが、 扉 1 0 0の回動軸と反対側に配設されてい ることにより、 ダンパー 5 1 3 0にかかる荷重を低減できダンパー 5 1 3 0の小型化及び低コスト化が可能となる。
さらに、 前記ダンパーが、 反ヒンジ側に配設されていることにより、 ダンパ一 5 1 3 0による減速によりヒンジ 5 1 0 1に生じる反力が小 さくなることにより、 ヒンジ 5 1 0 1の耐久性が向上する。 また、 ダンパー 5 1 3 0は、 扉 5 1 1 0の閉スピードが早い時に高 い減速効果を得る第一動作を有することにより、 人の手により扉 5 1 1 0に加えられた力により加速された扉 5 1 1 0の速度を減速させる こととなり、 扉 5 1 1 0 と冷蔵庫本体が接触する際の衝突音を低減す ることができる。 また、 ダンパー 5 1 3 0は、 扉 5 1 1 0の閉スピー ドが遅い時に低い減速効果を得る第二動作を有することにより、 扉 5
1 1 0の自閉カを低減することができ、 自閉機構部 5 1 2 0の設計が 容易になる。
以上のように、 扉 5 1 1 0に内蔵される収納物の荷重の変化や人の 手により閉められる扉 5 1 1 0の勢いの違いに対して、 第一の動作と 第二の動作が生じる負荷により自動的に減速動作を切り替えることに より、 扉 5 1 1 0の自閉速度に大きな変化が生じない。
また、 ダンパー 5 1 3 0の可動部先端には磁性体 5 1 3 3が構成さ れており、 磁性体 5 1 3 3 と扉 5 1 1 0の当接部に磁石 5 1 4 0が形 成されており、 扉 5 1 1 0の開放時に前記ダンパーの可動部は前方に 引き出されて待機状態となり、 ダンパー 5 1 3 0内部もしく周辺に別 途設ける復帰用パネが不要で低コスト化が図れる。
さらに、 ダンパー 5 1 3 0内部もしく周辺に別途設ける復帰用パネ が不要となることで、 自閉力の低減ができ、 自閉機構部 5 1 2 0の設 計が容易になる。
なお、 本実施の形態においては、 ダンパー 5 1 3 0の可動シャフ ト 5 1 3 2の先端に磁性体 5 1 3 3を構成し、 これに当接する扉の内面 に磁石 5 1 4 0を構成したが、 可動シャフ ト 5 1 3 2の先端に磁石を 構成し、 これに当接する扉の内面に磁性体を構成しても同様の効果が 得られる。
なお、 本実施の形態においては、 自閉機構部 5 1 2 0が動作してい る時にのみ、 ダンパー 5 1 3 0が動作することとしたが、 例えば、 扉 を閉める際に大きな力で閉まるような場合においては、 まずダンパ一 5 1 3 0の第一動作によって扉の速度十分に減速した上で、 自閉機構 部 5 1 2 0を動作させるように設計することで、 自閉機構部 5 1 2 0 が外力によって故障するといつたことを回避し、 自閉装置にかかる負 荷を減らすことが出来る。 ただし、 こういった場合においても、 扉を 閉める際にある程度減速された第二動作の際には、 自閉装置を同時に 動作させることが必要であり、 これによつて扉を確実に全閉させるこ とができる。
(実施の形態 1 5 )
図 8 1は本発明の実施の形態 1 5における扉装置を備えた冷蔵庫の 上部斜視図である。 図 8 2は本発明の実施の形態 1 5における扉装置 の平面図である。
図 8 1、 図 8 2において、 ダンパー 5 1 3 0は冷蔵庫本体 5 1 0 0 の天井部の内壁に埋設されており、 可動シャフ ト 5 1 3 2が冷蔵庫本 体 5 1 0 0の前面方向に引き出された待機状態において、 磁性体 5 1 3 3が冷蔵庫本体 5 1 0 0内部に位置するように配設されている。 尚、 ダンパー 5 1 3 0は減速機能部の一例である。
当接部 5 2 0 0は、 扉 5 1 1 0の上部内壁に冷蔵庫本体 5 1 0 0方 向に向けて形成された突起であり、 先端には磁石 5 2 0 1が構成され ている。
ここで、 扉 5 1 1 0が全閉状態において、 当接部 5 2 0 0は冷蔵庫 本体 5 1 0 0の天井部の内壁にはまり込み、 磁石 5 2 0 1は磁性体 5 1 3 3と当接する。
以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
全閉状態の扉 5 1 1 0が、 人の手により開放された場合、 磁性体 5 1 3 3と磁石 5 2 0 1が磁力により吸着されていることにより、 可動 シャフ ト 5 1 3 2は前方に移動するが、 冷蔵庫本体 5 1 0 0の天井部 の内壁部に磁性体 5 1 3 3が位置したままで待機状態となる。
以上のように本実施の形態の冷蔵庫は、 扉 5 1 1 0の上部近傍に、 冷蔵庫本体 5 1 0 0に向けて形成された当接部 5 2 0 0と、 当接部 5 2 0 0の先端とダンバ一 5 1 3 0の可動シャフト 5 1 3 2先端が当接 して減速効果を得るものにおいて、 ダンパー 5 1 3 0の可動シャフト 5 1 3 2先端が冷蔵庫本体 5 1 0 0の前面より後方に位置することで、 扉 5 1 1 0開放時に可動シャフト 5 1 3 2の先端が冷蔵庫本体 5 1 0 0の前面に露出しないことにより、 庫内の食材の収納や取り出し時に 人の手や容器が緩衝してダンパーが破損することを防止することがで きる。
(実施の形態 1 6)
図 8 3は、 本発明の実施の形態 1 6における扉装置の要部構成図で ある。
図 8 3において、 ダンパー 5 1 3 0は、 ダンパー本体 5 1 3 1が冷 蔵庫本体 5 1 0 0のヒンジ 5 1 0 1側側壁に埋設するように配置され ており、 可動シャフト 5 1 3 2が冷蔵庫本体方向に向けて突き出すよ うにダンパー 5 1 3 0が取り付けられている。 尚、 ダンパー 5 1 3 0 は減速機能部の一例である。
扉 5 3 0 0はヒンジ 5 1 0 1を回転中心として回動可能に軸支され ている。 扉 5 3 0 0の内部には棚部 5 3 0 1が形成されており、 棚部 5 3 0 1の内部にはドアポケッ ト 5 3 0 2が取り付けられている。
磁石 5 3 0 3は、 棚部 5 3 0 1のヒンジ 5 1 0 1側壁に形成されて いる。
ここで、 扉 5 3 0 0が全閉状態において、 可動シャフ 卜 5 1 3 2の 先端に構成された磁性体 5 1 3 3と磁石 5 3 0 3は当接する位置にあ る。 以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
まず、 全閉状態の扉 5 3 0 0が、 人の手により開放された場合、 磁 性体 5 1 3 3と磁石 5 3 0 3が磁力により吸着されていることにより、 可動シャフ ト 5 1 3 2は冷蔵庫本体 5 1 0 0の内部方向に移動する。 扉 5 3 0 0が所定角度開いた状態で、 ダンパー 5 1 3 0の最大ス ト ロークとなり、 磁性体 5 1 3 3と磁性体 5 3 0 3の当接は解除され、 磁性体 5 1 3 3は冷蔵庫本体 5 1 0 0の内部に突き出したまま待機状 態となる。
次に、 開放状態の扉 5 3 0 0が、 人の手により閉じられ、 第一の開 度となった場合、 第一突起 5 1 2 1の先端と第二突起 5 1 2 2の先端 が当接し、 人の手により扉 5 1 1 0に加えられた力の慣性力により、 第一突起 5 1 2 1は反ヒンジ 5 1 0 1方向に変形する。 以降、 この第 一突起 5 1 2 1の変形に対する復元力により扉 5 1 1 0は自閉を行う。
さらに、 扉 5 3 0 0が第二の開度となったとき、 磁石 5 3 0 3と磁 性体 5 1 3 3が当接するとともに、 可動シャフ ト 5 1 3 2がダンパー 本体 5 1 3 1に収納される方向に移動することで減速作用が生じる。 以上のように本実施の形態の冷蔵庫は、 冷蔵庫本体 5 1 0 0に回動 可能に配設された扉 5 3 0 0と、 扉 5 3 0 0の内部に形成された棚部 5 3 0 1 と、 扉 5 3 0 0を自閉させる自閉機構部 5 1 2 0と、 冷蔵庫 本体 5 1 0 0内の回動軸側側壁に配設され、 自閉機構部 5 1 2 0が動 作している間のみ前記扉に作用する直進式ダンパー 5 1 3 0とを有し、 ダンパ一 5 1 3 0は棚部 5 3 0 1の側壁に当接することにより、 扉 5 3 0 0が閉状態となる前の必要な範囲のみ減速効果が得られる。 尚、 自閉機構部 5 1 2 0は自閉機能部の一例である。
(実施の形態 1 7)
図 8 4は、 本発明の実施の形態 1 7における扉装置の要部構成図で ある。
制御部 5 4 0 0は、 冷蔵庫の運転を制御している (詳細は図示せず)。 位置検出手段 5 4 0 1 は、 冷蔵庫本体 5 1 0 0の天井部でかつダン パー 5 1 3 0の近傍に配設された位置検出用のスィツチであり、 ホー ル I Cを組み込んでユニッ ト化された基盤が使用されている (詳細は 図示せず)。
位置検出手段 5 4 0 1 を動作させるための磁石 5 4 0 2は、 可動シ ャフ ト 5 1 3 2に固定され、 扉 5 1 1 0が全閉状態において磁石 5 4 0 2が検出手段 5 4 0 1に近接する。
以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
まず、 全閉状態の扉 5 1 1 0が、 人の手により開放された場合、 検 出手段 5 4 0 1位置検出手段 5 4 0 1 に近接していた磁石 5 4 0 2は、 可動シャフ ト 5 1 3 2が前方に引き出されるのに伴って前方に移動し、 検出手段 5 4 0 1位置検出手段 .5 4 0 1の動作は解除される。
次に、 開放状態の扉 5 1 1 0が、 人の手により閉じられ、 第一の開 度となった場合、 第一突起 5 1 2 1の先端と第二突起 5 1 2 2の先端 が当接し、 人の手により扉 5 1 1 0に加えられた力の慣性力により、 第一突起 5 1 2 1は反ヒンジ 5 1 0 1方向に変形する。 以降、 この第 —突起 5 1 2 1の変形に対する復元力により扉 5 1 1 0は自閉を行う。
さらに、 扉 5 3 0 0が第二の開度となったとき、 磁石 5 2 0. 1 と磁 性体 5 1 3 3が当接するとともに、 可動シャフ 卜 5 1 3 2がダンパー 本体 5 1 3 1 に収納される方向に移動することで、 磁石 5 4 0 2 も後 方に移動し、 扉 5 1 1 0が全閉となった段階で磁石 5 4 0 2は検出手 段 5 4 0 1位置検出手段 5 4 0 1 に近接して検出手段 5 4 0 1位置検 出手段 5 4 0 1が動作する。
以上のように本実施の形態の冷蔵庫は、 冷蔵庫の運転を制御する制 御部 5 4 0 0と、 扉 5 1 1 0が全閉状態であるかどうかを識別する検 出手段 5 4 0 1位置検出手段 5 4 0 1 とからなり、 検出手段 5 4 0 1 位置検出手段 5 4 0 1がダンパー 5 1 3 0の可動部の位置を検出する ことで、 扉 5 1 1 0の開閉状態を識別することができ、 扉 5 1 1 0本 体の位置を検出する従来の方式に比べて、 検出手段 5 4 0 1位置検出 手段 5 4 0 1の小型化が可能になると共に、 検出精度の向上が可能に なる。 . 次に、 実施の形態 1 8から 2 1と供に本発明を以下に説明する。
従来の構成では、 自閉装置開放時にダンバ一を自己復帰させる為に、 自閉時の力をゼンマイに蓄力して開扉力を低減させているので、 自閉 の際に抵抗になり、 別途設ける自閉機構に対する負荷が大きくなるの で、 自閉機構の所要能力が大きくなり自閉時の信頼性の低下や、 高コ スト化につながるという課題を有している。
本発明は上記従来の課題を解決するものであり、 開扉力ゃ自閉力に 対する影響が少なく、 かつ自動復帰が可能な扉装置を提供することを 目的とする。
また、 従来の構成では、 自閉装置開放時にダンパーを自己復帰させ る為に、 自閉時の力を弾性部材であるゼンマイに蓄力しているので、 長期間に渡る繰り返しの使用で弾性部材の弾性力が劣化し、 自己復帰 できなくなる可能性があるという課題を有している。
本発明は上記従来の課題を解決するものであり、 ダンパーの復帰を ダンパー内部の部品で行うことなく、 長期的に劣化の可能性が少ない 自動復帰が可能な扉装置を提供することを目的とする。
上記従来の課題を解決する為に、 本発明の扉装置は、 前面開口部を 有する本体と、 本体に回動可能に配設された扉と、 扉を自閉させる自 閉機構部と、 扉が閉まる際に扉の閉まる速度を減速させる直進式ダン パーとを備え、 ダンパーは本体に配設されているとともに扉が開く際 に前記扉によって引っ張られることで前面側へ引き出されるものであ る。 尚、 ダンパ一は減速機能部の一例である。
これによつて、 自閉の際の抵抗を低減し、 別途設ける自閉機構に対 する負荷を小さくすることができる。
また、 これによつて、 自閉装置の開放時にダンパーを自己復帰させ る必要がなく、 ダンパーの信頼性を向上させることができる。
本発明は、 自閉の際の抵抗を低減し、 別途設ける自閉機構に対する 負荷を小さくすることができるので、 扉装置のコストを低減するとと もに信頼性を向上させることができる。
また、 これによつて、 自閉装置の開放時にダンパーを自己復帰させ る必要がなく、 ダンパーの信頼性を向上させることができるので、 扉 装置の信頼性を向上させることができる。
本発明は、 前面開口部を有する本体と、 本体に回動可能に配設され た扉と、 扉を自閉させる自閉機構部と、 扉が閉まる際に扉の閉まる速 度を減速させる直進式の可動部を有するダンパーとを備え、 ダンパー は本体に配設されているとともに可動部は扉が開く際に扉によって引 つ張られることで前面側へ引き出されるものであることにより、 自閉 の際の抵抗を低減し、 自閉機構部に対する負荷を小さくすることがで きるので、 扉装置のコストを低減するとともに信頼性を向上させるこ とができる。 尚、 自閉機構部は自閉機能部の一例である。
また、 これによつて、 自閉装置の開放時にダンパーを自己復帰させ る必要がなく、 ダンパーの信頼性を向上させることができるので、 扉 装置の信頼性を向上させることができる。
また、 本発明は、 ダンパーが、 前記扉の回動軸と幅方向の中心軸に 対して反対側に配設されていることで、 ダンパーに生じる荷重を小さ くでき、 信頼性の向上と低コスト化が可能となる。 また、 本発明は、 扉の上部近傍に、 本体側が凸となるように形成さ れた突起と、 突起の先端とダンパーの可動部先端が当接して減速効果 を得るものにおいて、 ダンパーの可動部先端が本体の前面より後方に 位置することにより、 扉開放時にダンパーが本体の前面に露出しない こととなり、 庫内の食材の収納や取出し時に人の手や容器が緩衝して ダンパーが破損することを防止することができる。
また、 本発明は、 前面開口部を有する本体と、 本体に回動可能に配 設された扉と、 扉に備えられるとともに、 扉の内側方向に凸となるよ うに形成された棚部と、 扉を自閉させる自閉機構部と、 本体内の回動 軸側側壁に配設され、 扉が閉まる際に扉の閉まる速度を減速させる直 進式の可動部を有するダンパーとを備える。 ダンパーは棚部の側壁に 配設されるとともに扉が開く際に可動部は扉の棚部によって引っ張ら れることで庫内側へ引き出されるものであることにより、 扉の前面側 からは減速装置が見えにくい為、 扉装置の扉を開けた状態での意匠性 を損なうことなく、 ダンパーを備えることができる。
また、 自閉の際の抵抗を低減し、 別途設ける自閉機構に対する負荷 を小さくすることができるので、 扉装置のコス卜を低減するとともに 信頼性を向上させることができる。
また、 これによつて、 自閉装置の開放時にダンバ一を自己復帰させ る必要がなく、 ダンパーの信頼性を向上させることができるので、 扉 装置の信頼性を向上させることができる。 扉が閉状態となる前の必要 な範囲のみ減速効果が得られる。
また、 本発明は、 ダンパーの可動部先端には磁性体が構成され、 ダ ンパ一の可動部先端と扉の当接部に磁石が形成されていることにより、 扉開放時に前記ダンパーの可動部は前方に引き出されて待機状態とな るので、 簡単な構成でダンパーの復帰を半永久的に行うことができ、 扉装置の低コスト化を図るとともに、 信頼性を向上させることができ る。
また、 本発明は、 位置検出手段を備え、 位置検出手段がダンパーの 可動部の位置を検出することにより扉の開閉状態を識別するので、 扉 本体での扉開閉検出が不要となり低コスト化及び検出制度の向上が可 能となる。
また、 本発明は、 冷蔵庫本体内に形成された貯蔵室の前面開口部に 対して上述の扉装置を備えたものであり、 これによつて、 冷蔵庫のヒ ンジに枢支された回動式の扉に関しても、 自閉の際の抵抗を低減し、 別途設ける自閉機構に対する負荷を小さくすることができる。
また、 これによつて、 自閉装置の開放時にダンパーを自己復帰させ る必要がなく、 ダンパーの信頼性を向上させることができる。
以下、 本発明の実施の形態について、 図面を参照しながら説明する が、 従来例または先に説明した実施の形態と同一構成については同一 符号を付して、 その詳細な説明は省略する。
なお、 この実施の形態によってこの発明が限定されるものではなレ (実施の形態 1 8 )
図 8 5は本発明の実施の形態 1 8における扉装置を備えた冷蔵庫の 上部斜視図である。 図 8 6は本発明の実施の形態 1 8における扉装置 を備えた冷蔵庫の平面図である。 図 8 7は本発明の実施の形態 1 8に おける扉装置の要部構成図である。 図 8 8は本発明の実施の形態 1 8 における扉の閉方向の動作図である。 図 8 9は本発明の実施の形態 1 8における扉の開方向における動作図である。 図 9 0は本発明の実施 の形態 1 8におけるダンパーの当接点の動作図である。
図 8 5、 図 8 6、 図 8 7において、 前面開口部 6 1 0 2を有した冷 蔵庫本体 6 1 0 0の上部には、 扉 6 1 1 0がヒンジ 6 1 0 1を回転中 心として回動可能に軸支されている。
自閉機構部 6 1 2 0は、 扉 6 1 1 0に配設された第一突起 6 1 2 1 と、 冷蔵庫本体 6 1 0 0に配設された第二突起 6 1 2 2とから構成さ れる自閉手段である。 尚、 自閉機構部 6 1 2 0は自閉機能部の一例で ある。
第一突起 6 1 2 1は、 扉 6 1 1 0のヒンジ 6 1 0 1の近傍に形成さ れ、 扉 6 1 1 0が全閉状態において冷蔵庫本体 6 1 0 0方向に向けて 突き出した第一アーム 6 1 2 1 aと第一アーム 6 1 2 1 aの先端から ヒンジ 6 1 0 1方向に向けて突き出した第二アーム 6 1 2 1 とから 構成されている。
なお、 第二アーム 6 1 2 1 bの先端形状は適切な R形状であること が望ましく、 また材料としては、 若干の変形が可能な樹脂材料を用い ることが望ましい。
第二突起 6 1 2 2は、 冷蔵庫本体 6 1 0 0のヒンジ 6 1 0 1の近傍 に形成され、 扉 6 1 1 0に向けて突き出した第一アーム 6 1 2 2 aと 第一アーム 6 1 2 2 aの先端から反ヒンジ 6 1 0 1方向に向けて突き 出した第二アーム 6 1 2 2 bとから構成されている。 なお、 第二ァー ム 6 1 2 2 bの先端形状は適切な R形状であることが望ましく、 また、 材料としては剛性の高い金属材料を用いることが望ましい。
ここで、 自閉機構部 6 1 2 0は、 扉 6 1 1 0が全閉状態では、 第二 アーム 6 1 2 1 bの先端が、 第二アーム 6 1 2 2 bよりも冷蔵庫本体 6 1 0 0側に位置し、 扉 6 1 1 0が第一の開度以上の開度であるとき、 第二アーム 6 1 2 1 bの先端は、 第二アーム 6 1 2 2 bよりも前方に 引き出された位置にある。
ダンパー 6 1 3 0は、 冷蔵庫本体 6 1 0 0の天井部の内壁に埋設さ れた直進式のダンパーであり、 ヒンジ 6 1 0 1 と反対方向端部近傍に 配設されている。 尚、 ダンパー 6 1 3 0は減速機能部の一例である。 ■ ここで、 ダンパー 6 1 3 0はダンバ一本体 6 1 3 1 とダンパー本体 6 1 3 1に連なる可動部である可動シャフ ト 6 1 3 2から構成されて いる。 ダンパー本体 6 1 3 1内にはシリコンオイルが充填されており、 かかる荷重に対して 2段階にその動作を切り替える構造となっている。
(詳細は図示せず) 具体的には、 高い荷重が負荷として発生した時に は、 ダンパー本体 6 1 3 1の動作荷重も大きくなる第一動作となり、 荷重が減少した時には、 ダンパ一本体 6 1 3 1の動作荷重も小さくな る第二動作となる。
加えて、 可動シャフト 6 1 3 2がダンパー本体 6 1 3 1に収納され る方向に対しては動作荷重が発生し、 逆方向に可動シャフト 6 1 3 2 が移動する時、 動作荷重が略 0になることが好ましく、 稼動シャフ ト 6 1 3 2を前方に押し出す復帰用のパネ等を内蔵していない。
さらに、 可動シャフト 6 1 3 2の先端には磁性体 6 1 3 3が構成さ れている。 ここで磁性体 6 1 3 3の先端は略球形をしていることが望 ましい。
磁石 6 1 4 0は扉 6 1 1 0の内面に取り付けられており、 磁石の材 料としてはネオジムやフェライ ト磁石を用いることが望ましく、 扉 6 1 1 0が閉状態において、 磁性体 6 1 3 3と磁石 6 1 4 0は当接する。 以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
図 8 8、 図 8 9、 図 9 0において、 まず、 開放状態の扉 6 1 1 0が、 人の手により閉じられ、 第一の開度となった場合、 第一突起 6 1 2 1 の先端と第二突起 6 1 2 2の先端が当接し、 人の手により扉 6 1 1 0 に加えられた力により、 第一突起 6 1 2 1は反ヒンジ 6 1 0 1方向に 変形する。 以降、 この第一突起 6 1 2 1の変形に対する復元力により 扉 6 1 1 0は自閉を行う。
さらに、 扉 6 1 1 0が自閉して第二の開度となったとき、 磁性体 6 1 3 3と磁石 6 1 4 0が当接するとともに、 可動シャフト 6 1 3 2が ダンパー本体 6 1 3 1に収納される方向に移動することで減速作用が 生じる。 この時、 ダンパー 6 1 3 0はヒンジ 6 1 0 1の回転中心から 離れた位置に配設されているので、 従来技術にあるようにヒンジ 6 1 0 1内に口一タリ一ダンバ一を配設するのに比べてダンパーにかかる 荷重を低減することができる。 さらにヒンジ 6 1 0 1の反対方向にダ ンパ一 6 1 3 0を配設したので、 ダンパー 6 1 3 0による減速により ヒンジ 6 1 0 1に生じる反力が小さくなる。
ここで、 人の手により扉 6 1 1 0に加えられた力の慣性力により、 磁性体 6 1 3 3と磁石 6 1 4 0が当接した瞬間には、 ダンパー 6 1 3 0に対する荷重が最大となり、 ダンパー 6 1 3 0は第一動作となり、 大きな減速効果が得られる。 次に一旦扉 6 1 1 0が減速することによ り、 ダンバ一 6 1 3 0は第二動作となり、 小さな荷重でもゆつく りと した速度で自閉する。 つまり、 小さな自閉力においても減速しながら の自閉が可能となる。
加えて、 収納物が多い場合や扉 6 1 1 0が勢いよく閉じられた場合 など、 ダンバ一 6 1 3 0にかかる負荷が大きいとき、 ダンバ一6 1 3 0は第一動作となり、 大きな減速効果が得られる。
また、 収納物が少ない場合や扉 6 1 1 0がゆつく りと閉じられた場 合など、 ダンパ一 6 1 3 0にかかる負荷が小さいとき、 ダンパ一 6 1 3 0は第二動作となり減速効果は低減する。
さらに、 復帰用パネがダンパー 6 1 3 0に内蔵されておらず、 ダン パー 6 1 3 0の可動シャフ ト 6 1 3 2が扉 6 1 1 0が開く際に扉 6 1 1 0によって引っ張られることで前面側へ引き出されるものであるこ とにより、 自閉機構部 6 1 2 0の自閉負荷を小さくすることができる ので、 扉装置のコストを低減するとともに信頼性を向上させることが できる。 このように、 扉 6 1 1 0の開放時にダンパー 6 1 3 0の可動 シャフ ト 6 1 3 2を自己復帰させる必要がないので、 ダンパー内の部 品劣化等によってダンパーの復帰が行われなくなることを防止し、 信 頼性を向上させることができる。
次に、 全閉状態の扉 6.1 1 0が人の手により開放された場合、 磁石 6 1 4 0と磁性体 6 1 3 3が磁力により吸着されていることにより、 可動シャフ ト 6 1 3 2は前方に移動して、 冷蔵庫本体 6 1 0 0の前方 に磁性体 6 1 3 3が突き出した待機状態となる。 この時、 ダンパー 6 1 3 0の動作荷重は略 0であることから、 小さな磁力の磁石でも可動 シャフト 6 1 32の移動が可能である。
さらに磁力の吸着で、 可動シャフ ト 6 1 3 2を前方に引き出すこと により、 別途設ける復帰用のパネ等を必要とせず、 冷蔵庫を長期間使 用した場合でも、 磁石の吸着力がなくなるほどに劣化する可能性はほ とんどなく、 長期間の使用でもダンパー 6 1 3 0の復帰を確実に行う ことができ、 ダンパー 6 1 3 0の信頼性を向上させることが.できる。 ここで、 図 9 0において、 磁性体 6 1 3 3の先端は略球形となって いるので、 扉 6 1 1 0が第二の開度における磁石 6 1 4 0と磁性体 6 1 3 3の当接位置と、 扉 6 1 1 0が全閉状態における磁石 6 1 4 0と 磁性体 6 1 3 3の当接位置の微妙なズレを緩和してダンパー 6 1 3 0 の横方向にかかる荷重を低減することができる。
以上のように本実施の形態の冷蔵庫は、 冷蔵庫本体 6 1 0 0に回動 可能に配設された扉 6 1 1 0と、 扉 6 1 1 0を自閉させる自閉機構部 6 1 2 0と、 自閉機構部 6 1 2 0が動作している間のみ扉 6 1 1 0に 作用する直進式ダンパー 6 1 3 0とを備え、 ダンパー 6 1 3 0は冷蔵 庫本体 6 1 0 0の天井部に配設されていることにより、 直進式ダンバ - 6 1 3 0の動作範囲のみ減速動作が得られることとなり、 庫外への 冷機漏れを最小限に抑えて扉 6 1 1 0の自閉が可能となる。
さらに、 天井部にダンパ一 6 1 3 0が配設されているので、 可動シ ャフ ト 6 1 3 2が前方に引き出されて冷蔵庫本体 6 1 0 0の前方に突 き出した状態においても人の手の触れ難い場所であるため、 不慮の接 触等による破損を抑制することができる。
また、 前記ダンパーが、 扉 6 1 0 0の回動軸と反対側に配設されて いることにより、 ダンパー 6 1 3 0にかかる荷重を低減できダンパー 6 1 3 0の小型化及び低コスト化が可能となる。
さらに、 前記ダンパーが、 反ヒンジ側に配設されていることにより、 ダンパ一 6 1 3 0による減速によりヒンジ 6 1 0 1 に生じる反力が小 さくなることにより、 ヒンジ 6 1 0 1の耐久性が向上する。
また、 ダンバ一 6 1 3 0は、 扉 6 1 1 0の閉スピー ドが早い時に高 い減速効果を得る第一動作を有することにより、 人の手により扉 6 1 1 0に加えられた力により加速された扉 6 1 1 0の速度を減速させる こととなり、 扉 6 1 1 0 と冷蔵庫本体が接触する際の衝突音を低減す ることができる。 また、 ダンパー 6 1 3 0は、 扉 6 1 1 0の閉スピー ドが遅い時に低い減速効果を得る第二動作を有することにより、 扉 6 1 1 0の自閉カを低減することができ、 自閉機構部 6 1 2 0の設計が 容易になる。
以上のように、 扉 6 1 1 0に内蔵される収納物の荷重の変化や人の 手により閉められる扉 6 1 1 0の勢いの違いに対して、 第一の動作と 第二の動作が生じる負荷により自動的に減速動作を切り替えることに より、 扉 6 1 1 0の自閉速度に大きな変化が生じない。
また、 ダンパー 6 1 3 0の可動部先端には磁性体 6 1 3 3が構成さ れており、 磁性体 6 1 3 3 と扉 6 1 1 0の当接部に磁石 6 1 4 0が形 成されており、 扉 6 1 1 0の開放時に前記ダンパーの可動部は前方に 引き出されて待機状態となり、 ダンパー 6 1 3 0内部もしく周辺に別 途設ける復帰用パネが不要で低コスト化が図れる。
さらに、 ダンパー 6 1 3 0内部もしく周辺に別途設ける復帰用バネ が不要となることで、 自閉力の低減ができ、 自閉機構部 6 1 2 0の設 計が容易になる。 なお、 本実施例においては、 ダンバ一 6 1 3 0の可動シャフ ト 6 1 3 2の先端に磁性体 6 1 3 3を構成し、 これに当接する扉の内面に磁 石 6 1 4 0を構成したが、 可動シャフト 6 1 3 2の先端に磁石を構成 し、 これに当接する扉の内面に磁性体を構成しても同様の効果が得ら れる。
(実施の形態 1 9 )
図 9 1は本発明の実施の形態 1 9における扉装置を備えた冷蔵庫の 上部斜視図である。 図 9 2は本発明の実施の形態 1 9における扉装置 の平面図である。
図 9 1、 図 9 2において、 ダンパー 6 1 3 0は冷蔵庫本体 6 1 0 0 の天井部の内壁に埋設されており、 可動シャフ ト 6 1 3 2が冷蔵庫本 体 6 1 0 0の前面方向に引き出された待機状態において、 磁性体 6 1
3 3が冷蔵庫本体 6 1 0 0内部に位置するように配設されている。 尚、 ダンバ一6 1 3 0は減速機能部の一例である。
当接部 6 2 0 0は、 扉 6 1 1 0の上部内壁に冷蔵庫本体 6 1 0 0方 向に向けて形成された突起であり、 先端には磁石 6 2 0 1が構成され ている。
ここで、 扉 6 1 1 0が全閉状態において、 当接部 6 2 0 0は冷蔵庫 本体 6 1 0 0の天井部の内壁にはまり込み、 磁石 6 2 0 1は磁性体 6 1 3 3と当接する。
以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
全閉状態の扉 6 1 1 0が、 人の手により開放された場合、 磁性体 6 1 3 3と磁石 6 2 0 1が磁力により吸着されていることにより、 可動 シャフ ト 6 1 3 2は前方に移動するが、 冷蔵庫本体 6 1 0 0の天井部 の内壁部に磁性体 6 1 3 3が位置したままで待機状態となる。
以上のように本実施の形態の冷蔵庫は、 扉 6 1 1 0の上部近傍に、 冷蔵庫本体 6 1 0 0に向けて形成された当接部 6 2 0 0と、 当接部 6 2 0 0の先端とダンパー 6 1 3 0の可動シャフ ト 6 1 3 2先端が当接 して減速効果を得るものにおいて、 ダンパー 6 1 3 0の可動シャフト 6 1 3 2先端が冷蔵庫本体 6 1 0 0の前面より後方に位置することで、 扉 6 1 1 0開放時に可動シャフ ト 6 1 3 2の先端が冷蔵庫本体 6 1 0 0の前面に露出しないことにより、 庫内の食材の収納や取り出し時に 人の手や容器が緩衝してダンパーが破損することを防止することがで さる。
また可動シャフト 6 1 3 2の磁性体 6 1 3 3と磁石 6 2 0 1 との吸 着によって行っている為、 冷蔵庫を長期間使用した場合でも、 吸着力 がなくなるほどに劣化する可能性はなく、 長期間の使用でもダンパー 6 1 3 0の復帰を確実に行うことができ、 ダンパー 6 1 3 0の信頼性 を向上させることができる。
(実施の形態 2 0)
図 9 3は、 本発明の実施の形態 2 0における扉装置の要部構成図で ある。
図 9 3において、 ダンパー 6 1 3 0は、' ダンパー本体 6 1 3 1が冷 蔵庫本体 6 1 0 0のヒンジ 6 1 0 1側側壁に埋設するように配置され ており、 可動シャフト 6 1 3 2が冷蔵庫本体方向に向けて突き出すよ うにダンパ一 6 1 3 0が取付けられている。 尚、 ダンパー 6 1 3 0は 減速機能部の一例である。
扉 6 3 0 0のヒンジ 6 1 0 1を回転中心として回動可能に軸支され ている。 扉 6 3 0 0の内部には棚部 6 3 0 1が形成されており、 棚部 6 3 0 1の内部にはドアポケット 6 3 0 2が取付けられている。
磁石 6 3 0 3は、 棚部 6 3 0 1のヒンジ 6 1 0 1側側壁に形成され ている。
ここで、 扉 6 3 0 0が全閉状態において、 可動部である可動シャフ ト 6 1 3 2の先端に構成された磁性体 6 1 3 3と磁石 6 3 0 3は当接 する位置にある。
以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
まず、 全閉状態の扉 6 3 0 0が、 人の手により開放された場合、 磁 性体 6 1 3 3と磁石 6 3 0 3が磁力により吸着されていることにより、 可動シャフト 6 1 3 2は冷蔵庫本体 6 1 0 0の内部方向に移動する。 扉 6 3 0 0が所定角度開いた状態で、 ダンパー 6 1 3 0の最大スト ロークとなり、 磁性体 6 1 3 3と磁性体 3 0 3の当接は解除され、 磁 性体 6 1 3 3は冷蔵庫本体 6 1 0 0の内部に突き出したまま待機状態 となる。
次に、 開放状態の扉 6 3 0 0が、 人の手により閉じられ、 第一の開 度となった場合、 第一突起 6 1 2 1の先端と第二突起 6 1 2 2の先端 が当接し、 人の手により扉 6 1 1 0に加えられた力の慣性力により、 第一突起 6 1 2 1は反ヒンジ 6 1 0 1方向に変形する。 以降、 この第 一突起 6 1 2 1の変形に対する復元力により扉 6 1 1 0は自閉を行う。
さらに、 扉 6 3 0 0が第二の開度となったとき、 磁石 6 3 0 3と磁 性体 6 1 3 3が当接するとともに、 可動シャフ 卜 6 1 3 2がダンパー 本体 6 1 3 1に収納される方向に移動することで減速作用が生じる。 以上のように本実施の形態の冷蔵庫は、 冷蔵庫本体 6 1 0 0に回動 可能に配設された扉 6 3 0 0と、 扉 6 3 0 0の内部に形成された棚部 6 3 0 1 と、 扉 6 3 0 0を自閉させる自閉機構部 6 1 2 0と、 冷蔵庫 本体 6 1 0 0内の回動軸側側壁に配設され、 自閉機構部 6 1 2 0が動 作している間のみ前記扉に作用する直進式ダンバ一 6 1 3 0とを有し、 ダンパー 6 1 3 0は棚部 6 3 0 1の側壁に当接することにより、 扉 6 3 0 0が閉状態となる前の必要な範囲のみ減速効果が得られる。 尚、 自閉機構部 6 1 2 0.は自閉機能部の一例である。 また、 扉 6 3 0 0の前面側からはダンパー 6 1 3 0が見えにくい為、 使用者が扉 6 3 0 0を開けた状態での美観を損なうことなく、 ダンバ - 6 1 3 0を備えた冷蔵庫を提供することができる。
(実施の形態 2 1 )
図 9 4は、 本発明の実施の形態 2 1における扉装置の要部構成図で ある。
制御部 6 4 0 0は、 冷蔵庫の運転を制御している (詳細は図示せず)。 位置検出手段 6 4 0 1は、 冷蔵庫本体 6 1 0 0の天井部でかつダン パー 6 1 3 0の近傍に配設された位置検出用のスィツチであり、 ホー ル I Cを組み込んでュニット化された基盤が使用されている。
位置検出手段 6 4 0 1 を.動作させるための磁石 6 4 0 2は、 可動シ ャフ ト 6 1 .3 2に固定され、 扉 6 1 1 0が全閉状態において磁石 6 4 0 2が検出手段 6 4 0 1に近接する。
以上のように構成された冷蔵庫について、 以下その動作、 作用を説 明する。
まず、 全閉状態の扉 6 1 1 0が、 人の手により開放された場合、 位 置検出手段 6 4 0 1に近接していた磁石 6 4 0 2は、 可動シャフ ト 6 1 3 2が前方に引き出されるのに伴って前方に移動し、 位置検出手段 6 4 0 1の動作は解除される。
次に、 開放状態の扉 6 1 1 0が、 人の手により閉じられ、 第一の開 度となった場合、 第一突起 6 1 2 1 の先端と第二突起 6 1 2 2の先端 が当接し、 人の手により扉 6 1 1 0に加えられた力の慣性力により、 第一突起 6 1 2 1は反ヒンジ 6 1 0 1方向に変形する。 以降、 この第 一突起 6 1 2 1の変形に対する復元力により扉 6 1 1 0は自閉を行う。
さらに、 扉 6 3 0 0が第二の開度となったとき、 磁石 6 2 0 1 と磁 性体 6 1 3 3が当接するとともに、 可動シャフ 卜 6 1 3 2がダンパー 本体 6 1 3 1に収納される方向に移動することで、 磁石 6 4 0 2も後 方に移動し、 扉 6 1 1 0が全閉となった段階で磁石 6 4 0 2は位置検 出手段 6 4 0 1に近接して位置検出手段 6 4 0 1が動作する。
以上のように本実施の形態の冷蔵庫は、 冷蔵庫の運転を制御する制 御部 6 4 0 0と、 扉 6 1 1 0が全閉状態であるかどうかを識別する位 置検出手段 6 4 0 1 とからなり、 位置検出手段 6 4 0 1がダンパー 6 1 3 0の可動部の位置を検出することで、 扉 6 1 1 0の開閉状態を識 別することができ、 扉 6 1 1 0本体の位置を検出する従来の方式に比 ベて、 検出手段 6 4 0 1位置検出手段 6 4 0 1 の小型化が可能になる と共に、 検出精度の向上が可能になる。 尚、 ダンパー 6 1 3 0は減速 機能部の一例である。 次に、 実施の形態 2 2と供に本発明を以下に説明する。
従来の構成では、 冷蔵庫に扉装置を用いた場合、 固定枠体となる冷 蔵庫筐体より収納物が取出し可能な程度扉が開いた位置からも捻りコ ィルパネの自閉力により扉が自閉するため、 扉を開放した状態で食品 などの収納物を出し入れする際に、 扉が閉鎖する前に急いで出し入れ をしたり、 あるいは扉を手で持つなど別途扉の開放保持手段を用いな ければならず、 冷蔵庫の使い勝手が悪くなるという課題を有している。 本発明は上記従来の課題を解決するものであり、 冷蔵庫に用いた場 合でも使い勝手を悪化させない扉装置を提供することを目的とする。
また、 従来の構成では、 扉が閉扉中常に回転式ダンパーユニッ トが 作用するので扉の閉扉速度が遅くなり、 閉扉中に冷蔵庫の貯蔵室内か ら冷気が多量に漏洩して貯蔵室内の温度が上昇するため、 結果として 貯蔵室内の食品の劣化や、 上昇した貯蔵室内温度を元に戻す為の冷却 運転による消費電力の増加となってしまう課題を有している。
本発明は上記従来の課題を解決するものであり、 冷蔵庫に用いた場 合でも食品の劣化や消費電力の増加を抑制した扉装置を提供すること を目的とする。
上記従来の課題を解決するために、 本発明の扉装置は、 ヒンジ部が 扉が閉塞する際の所定範囲のみ扉を自閉させる自閉機能部と、 自閉機 能部が動作している間のみ扉に動作する減速機能部とを有する。
これによつて別途開放保持手段を用いること無く、 扉の開放保持が 可能となる。
また、 減速機能部による閉扉時間のロスを最小限に抑制可能となる。 本発明の扉装置は、 扉が自閉機能を有した上で扉の開放保持を行う ことができるので、 冷蔵庫に用いた場合でも使い勝手を悪化させず、 更に食品の劣化や消費電力の増加を抑制できる。
本発明は、 前面開口部を有する筐体と、 閉時に前面開口部を閉塞す る扉と、 扉上部に備えられ扉と筐体とを回動自在に連結する上部ヒン ジと、 扉下部に備えられ扉と筐体とを回動自在に連結する下部ヒンジ とからなり、 下部ヒンジが扉が閉塞する所定範囲のみ扉を自閉させる 自閉機能部と、 自閉機能部が動作している間の所定の範囲のみ扉に動 作する減速機能部とを有し、 減速機能部を下部ヒンジの回転軸内に構 成している。 こうしたことにより、 自閉開始位置を扉が閉塞する直前 の所定範囲とすることで冷蔵庫に適用した場合でも扉を開放した状態 で食品などの収納物を出し入れすることが容易になるので冷蔵庫の使 い勝手が悪くなることを抑制できる。
更に減速機能部が自閉機能部が動作している間のみ扉に動作すると したことで、 閉扉速度の減少を最低限に抑えることができ、 閉扉時の 衝撃減少という品位向上要素としての減速機能部の効果を有したまま、 冷蔵庫貯蔵室内の食品の劣化や消費電力の増加を抑制できる。
また、 減速機能部を下部ヒンジの回転軸内に収容することにより減 速機能部が外観から見えず見栄えを向上させることができる。
また、 本発明は、 下部ヒンジの自閉機能部の自閉手段にカム機構を 利用することにより、 自閉に関する高い信頼性と耐久性を得ることが できる。
また、 本発明は、 減速機能部の減速手段として直進式ダンパーを用 レ 扉の自閉時に自閉機能部のカム機構の変動を前記直進式ダンパー にて減速することにより扉の自閉機能部であるカム機構の動作時のみ に減速機能部を動作させることが容易に可能となる。
また、 扉の開扉時には直進式ダンパーは減速機能を動作しないので 軽い力で扉を開放することができる。
また、 本発明は、 減速機能部が動作開始する第 1の位置を自閉機能 部が動作開始する第 2の位置より筐体側に位置させることにより、 減 速した後自閉させると、 閉扉時の扉の勢いを自閉に利用できなくなる ので自閉機能部に大きな自閉能力が必要となり自閉機能部が大型化と なることを抑制することができる。
また、 本発明は、 自閉機能部による扉の自閉距離は使用者が容易に 収納物を出し入れできない所定値範囲の距離を有することにより、 扉 装置の使用者の使用状況に合わせて自閉機能部による自閉距離を設定 することで扉装置の使い勝手を更に向上させることができる。
また、 本発明は、 減速機能部が動作開始する第 1の位置は使用者の 指や腕が挟まることのある所定値範囲の距離を有することにより、 扉 装置の使用者の使用状況に合わせて減速機能部による減速距離を設定 することで使用者の腕や指を挟むことを防止でき、 扉装置の安全性を 更に高めることができる。
また、 本発明は、 扉を全開時から閉める際には、 自閉機能部が動作 開始する第 2の位置までは手動にて閉められ、 第 2の位置に扉が到達 すると自閉機能部により自閉し、 更に減速機能部が動作開始する第 1 の位置に扉が到達すると減速機能部により減速しながら自閉させるこ とにより、 閉扉動作に手動部を設けることで自閉機能部の自閉能力を 低減することができ、 自閉機能部の小型化ゃコストダウンを図ること ができる。
また、 本発明は、 冷蔵庫に上述の扉装置を搭載することにより、 冷 蔵庫が安全で使い勝手の良い自閉機能や減速機能を有することで冷蔵 庫の安全性を確保しつつ使い勝手を向上させることができる。
また、 減速機能部の作用により扉閉時の衝撃による冷蔵庫本体や扉 に収納した食品や飲料のこぼれや、 扉に収衲した卵の割れ、 落下など の不具合を抑制することができる。
以下、 本発明の実施の形態 2 2について、 図面を参照しながら説明 する。 なお、 この実施の形態によってこの発明が限定されるものでは ない。
(実施の形態 2 2 )
図 9 5は本発明の実施の形態 2 2における冷蔵庫の側断面図、 図 9 6は同実施の形態の冷蔵庫の冷蔵室ドア上部の斜視図、 図 9 7は同実 施の形態の冷蔵庫の冷蔵室ドア下部の分解斜視図、 図 9 8は同実施の 形態の冷蔵庫の冷蔵室ドア下部の正面図、 図 9 9は同実施の形態の冷 蔵庫の冷蔵室ドア閉時の側断面図、 .図 1 0 0は同実施の形態の冷蔵庫 の冷蔵室ドア開時の側断面図、 図 1 0 1は同実施の形態の冷蔵庫の冷 蔵室ドア閉時の平面断面図、 図 1 0 2は同実施の形態の冷蔵庫の冷蔵 室ドアが全開した際の平面断面図、 図 1 0 3は同実施の形態の冷蔵庫 の冷蔵室ドアが第 2の位置に到達した際の平面断面図、 図 1 0 4は同 実施の形態の冷蔵庫の冷蔵室ドアが第 1の位置に到達した際の平面断 面図である。
図 9 5から図 1 0 4において、 冷蔵庫 7 0 2 0の断熱箱体 7 0 2 1 は内箱 7 0 2 2と外箱 7 0 2 3との間に発泡断熱材 7 0 2 4を充填し たものであり、 前面開口部 7 0 2 1 aを有し、 仕切壁 7 0 2 5, 7 0 2 6、 7 0 2 7により、 上部より冷蔵室 7 0 2 8、 切替室 7 0 2 9、 野菜室 7 0 3 0、 冷凍室 7 0 3 1を形成している。
また、 各貯蔵室には閉時に前面開口部 7 0 2 1 aを閉塞し断熱箱体 7 0 2 1 と連結された冷蔵室ドア 7 0 3 2、 切替室ドア 7 0 3 3、 野 菜室ドア 7 0 3 4、 冷凍室ドア 7 0 3 5を備える。
冷蔵室ドア 7 0 3 2は断熱箱体 7 0 2 1に固着された上部ヒンジ 7 0 3 6と、 仕切壁 7 0 2 5に固着された下部ヒンジ 7 0 3 7とにより 断熱箱体 7 0 2 1に回動自在に連結され、 残りの切替室ドア 7 0 3 3 と野菜室ドア 7 0 3 4と冷凍室ドア 7 0 3 5とは各貯蔵室内の断熱箱 体 7 0 2 1の両側部に固着されたレール部材 7 0 2 1 bにより断熱箱 体 7 0 2 1 と前後に開閉可能であるように連結される。
上部ヒンジ 7 0 3 6は板状の上部ヒンジ本体 7 0 3 6 aを断熱箱体 7 0 2 1の上面に固着され、 上部ヒンジ本体 7 0 3 6 aの一部は前面 開口部 7 0 2 1 aより冷蔵室ドア 7 0 3 2側にはみ出し、 はみ出した 部分には下向きに突出した上部回転軸 7 0 3 6 bを備える。
冷蔵室ドア 7 0 3 2の上部は、 冷蔵室ドア 7 0 3 2の上面に設けた 上面孔 7 0 3 2 aに上部回転軸 Ί 0 3 6 bを挿入することにより回動 自在となる。
下部ヒンジ 7 0 3 7は板状のものを略直角に折り曲げ形成された上 下方向に平行な固定部 7 0 3 7 aと、 固定部 7 0 3 7 aの上面より伸 びて略水平なベース部 7 0 3 7 bと、 ベース部 7 0 3 7 bに上向きに 備えられ中空の円筒である下部回転軸 7 0 3 7 c と、 ベース部 7 0 3 7 に下部回転軸 7 0 3 7 cの外部に設けられた下部ヒンジ孔 7 0 3 7 dと、 からなる。 固定部 7 0 3 7 aは冷蔵室ドア 7 0 3 2と切替室 ドア 7 0 3 3との間の仕切壁 7 0 2 5前面に固着され、 ベース部 7 0 3 7 b , 下部回転軸 7 0 3 7 cは前面開口部 7 0 2 1 aより冷蔵室ド ァ 7 0 3 2側に突出している。
冷蔵室ドア 7 0 3 2の下部は冷蔵室ドア 7 0 3 2の下面に設けた凹 部 7 0 3 2 bと、 同じく冷蔵室ドア 7 0 3 2の下面に設けられ所定の 深さを有して一部を Dカツ 卜された略円筒形の下面孔 7 0 3 2 c と、 冷蔵室ドア 7 0 3 2の回動を制限するス トッパー 7 0 3 8 と、 カム機 構により自閉機能を有する ドア側カム 7 0 3 9 と、 ヒンジ側カム Ί 0 4 0と、 減速機能を有する直進式ダンバ一 7 0 4 1 とから構成される。 ス トッパー 7 0 3 8は略直角に折り曲げ形成された水平方向に平行 なス トッパ一固定部 7 0 3 8 aと、 ス トツパー固定部 7 0 3 8 aの下 面より下方向に伸びて略垂直なス トッパー当接部 7 0 3 7 bとからな り、 ス トツパー固定部 7 0 3 8 aを冷蔵室ドア 7 0 3 2の凹部 7 0 3 2 bに固着し、 冷蔵室ドア 7 0 3 2の全開時に下部ヒンジ 7 0 3 7の ベース部 7 0 3 7 とストッパー当接部 7 0 3 8 bとが当接することに より冷蔵室ドア 7 0 3 2の回動を制限する。
ドア側カム 7 0 3 9は、 外径は冷蔵室ドア 7 0 3 2の下面孔 7 0 3 2 cよりわずかに小さく、 かつ内径は下部ヒンジ 7 0 3 7の下部回転 軸 7 0 3 7 cよりわずかに大きくなるよう設定され、 更に一部を D力 ッ 卜された略円筒形のドア側カム筒部 7 0 3 9 aと、 ドア側カム筒部 7 0 3 9 aの一端を閉塞する ドア側カム閉塞部 7 0 3 9 bと、 ドア側 カム筒部 7 0 3 9 aの他端より突出し、 ドア側カム筒部 7 0 3 9 aの 円筒の中心に点対象に 2ケ所設けられたドア側カム凸部 7 0 3 9 c と からなる。
また、 ドア側カム凸部 7 0 3 9 cの回動方向の両側面はドア側カム 筒部 7 0 3 9 a端部より ドア側カム凸部 7 0 3 9 c の先端に向けて 徐々に狭くなるように傾斜し、 略台形形状となっている。
ヒンジ側カム 7 0 4 0は両端を開放された円筒形のヒンジ側カム筒 部 7 0 4 0 aと、 ヒンジ側カム筒部 7 0 4 0 aの円筒と同軸に設けら れ、 かつ下部ヒンジ 7 0 3 7の下部回転軸 7 0 3 7 cよりわずかに大 きい円形のヒンジ側カム孔 7 0 4 0 bと、 ヒンジ側カム筒部 7 0 4 0 2005/013196
132 aの円筒の一端より他端側に円筒の途中まで削られたヒンジ側カム凹 部 7 0 4 0 c と、 ヒンジ側カム筒部 7 0 4 0のヒンジ側カム凹部 7 0 4 0 cと反対側の円筒の端部よりより略水平に伸びたヒンジ側カムフ ランジ 7 0 4 0 dと、 ヒンジ側カムフランジ 7 0 4 0 dより更にヒン ジ側カム筒部 7 0 4 0ヒンジ側カム筒部 7 0 4 0 aの円筒の他端の外 側に伸びたヒンジ側カム凸部 7 04 0 eと、 からなる。
また、 ヒンジ側カム凹部 7 0 4 0 cは冷蔵室ドア 7 0 3 2の閉塞時 にドア側カム凸部 7 0 3 9 c と対向する位置に 2箇所設けられ、 更に 回動方向の両側面はヒンジ側カム筒部 7 0 4 0ヒンジ側カム筒部 Ί 0 4 0 a端部よりヒンジ側カム凹部 7 0 4 0 cの端部に向けて徐々に狭 くなるようにドア側カム凸部 7 0 3 9 cとほぼ同じ角度で傾斜し、 ド ァ側カム凸部 7 0 3 9 cよりわずかに大きい略台形形状となっている。 直進式ダンパー 7 0 4 1は下部ヒンジ 7 0 3 7の下部回転軸 7 0 3 7 cの円筒内径よりわずかに小さく設定された略円筒のュニッ ト部 7 0 4 1 aと、 ユニッ ト部 7 0 4 1 aより外部に突出して直線的に前後 に移動する可動部 7 0 4 1 bとからなり、 可動部 7 0 4 1 bが衝撃に より直線的にュニッ ト部 7 0 4 1 a側に移動することにより減速され、 逆に一度ュニッ ト部 7 0 4 1 a側に移動した可動部 7 0 4 1 bが元の 位置に復帰する際には減速効果はなくなる。
まず、 冷蔵室ドア 7 0 3 2の下面孔 7 0 3 2 cに Dカッ ト形状を合 わせてドア側カム 7 0 3 9をドア側カム閉塞部 7 0 3 9 b側から挿入 することにより ドア側カムは下面孔 7 0 3 2 c内では回動不可となる。 一方、 下部ヒンジ 7 0 3 7は固定部 7 0 3 7 aを仕切壁 7 0 2 5に 下部回転軸 7 0 3 7 cが上方向となるように固着されている。
また、 ヒンジ側カム 7 0 4 0はヒンジ側カム凹部 7 0 4 0 cが上側 となるように下部ヒンジ 7 0 3 7の下部回転軸 7 0 3 7 cにヒンジ側 カム孔 7 0 4 0 bを挿入し、 更にヒンジ側カム凸部 7 0 4 0 eを下部 ヒンジ孔 7 0 3 7 dに挿入することにより回動不可となるように固定 される。
更に下部回転軸 7 0 3 7 cの円筒内部に可動部 7 0 4 1 bが上側と なるようにュニッ ト部 7 0 4 1 aより挿入した後、 ドア側カム 7 0 3 9を挿入した状態の冷蔵室ドア 7 0 3 2のドア側カム筒部 7 0 4 0 a に下部回転軸 7 0 3 7 cを挿入することにより冷蔵室ドア 7 0 3 2の 下部は回動自在となる。
冷蔵室ドア 7 0 3 2の閉塞時にはドア側カム凸部 7 0 3 9 cは 2箇 所ともヒンジ側カム凹部 7 0 4 0 cに収容され、 ドア側カム凸部 7 0 3 9 cの根元となるドア側カム筒部 7 0 3 9 aの端面と、 ヒンジ側力 ム凹部 7 0 4 0 cの上端となるヒンジ側筒部 7 0 4 0 aの端面とが当 接する。
また、 ドア側カム閉塞部 7 0 3 9 bの外側の面は冷蔵室ドア 7 0 3 2の下面孔 7 0 3 2 cの端面と当接しており、 反対にドア側カム閉塞 部 7 0 3 9 bの内側の面は直進式ダンパー 7 0 4 1の可動部 7 0 4 1 b上端面と当接し更に直進式ダンパー 7 0 4 1は可動部 7 0 4 1 bが ユニット部 7 0 4 1 a側に所定値移動した状態で静止している。
冷蔵室ドア 7 0 3 2を閉塞時より徐々に開放していくと、 ドア側力 ム凸部 7 0 3 9 cの開放回動方向前側の側面がヒンジ側カム凹部 7 0 4 0 cの開放回動方向前側の側面の傾斜を上り始める。
これにより ドア側カム凸部 7 0 3 9 cの根元となるドア側カム筒部 7 0 3 9 aの端面と、 ヒンジ側カム凹部 7 0 4 0 cの上端となるヒン ジ側筒部 7 0 4 0 aの端面とは徐々に離れていき、 冷蔵室ドア 7 0 3 2も上昇する。
ドア側カム凸部 7 0 3 9 cの先端がヒンジ側筒部 7 0 4 0 aの端面 にかかると冷蔵室ドア 7 0 3 2の上昇も終了し、 冷蔵室ドア 7 0 3 2 はドア側カム凸部 7 0 3 9 cの先端がヒンジ側筒部 7 0 4 0 aの端面 とが当接した状態でス 卜ッパー当接部が下部ヒンジ 7 0 3 7のべ一ス 部 7 0 3 7とストッパー当接部 7 0 3 8 bとが当接するまで水平に回 動する。
直進式ダンパー 7 0 4 1の可動部 7 0 4 1 bは冷蔵室ドア 7 0 3 2 の上昇に伴い、 途中まではドア側カム閉塞部 7 0 3 9 bの内側の面と 当接しながら上昇していくが、 冷蔵室ドア 7 0 3 2の上昇が止まる前 に元の復帰位置まで戻るよう設定されているので冷蔵室ドア 7 0 3 2 の上昇が終了したときには、 ドア側カム閉塞部 7 0 3 9 bの内側の面 と所定空間 7 0 4 2を有することになる。
逆に冷蔵室ドア 7 0 3 2を全開時より閉めていくと、 冷蔵室ドア 7 0 3 2は閉塞時より上昇したままでドア側カム凸部 7 0 3 9 cの先端 がヒンジ側筒部 7 0 4 0 aの端面とが当接しながら閉扉していく。
そして再びドア側カム凸部 7 0 3 9 cの開放回動方向前側の側面の 下端がヒンジ側カム凹部 7 0 4 0 cの開放回動方向前側の側面の傾斜 の上端にかかると冷蔵室ドア 7 0 3 2の自重により冷蔵室ドア 7 0 3 2を下降させようとする力が働き、 ドア側カム凸部 7 0 3 9 cの開放 回動方向前側の側面がヒンジ側カム凹部 7 0 4 0 cの開放回動方向前 側の側面の傾斜を自力で降りることにより冷蔵室ドア 7 0 3 2は下降 しながら自閉する。
したがって、 冷蔵室ドア 7 0 3 2の自閉機能が動作を開始する第 2 の位置はヒンジ側カム凹部 7 0 4 0 cの開放回動方向前側の側面の傾 斜の上端の位置により決定することになり、 冷蔵室ドア 7 0 3 2の自 閉は閉塞する直前のみとすることが可能となる。
また、 冷蔵室ドア 7 0 3 2が自閉しながら下降するに伴ってドア側 カム 7 0 3 9も下降していくがその途中でドア側カム閉塞部 7 0 3 9 bの内側の面と直進式ダンパー 7 0 4 1の可動部 7 0 4 1 上端面と の間の所定空間 7 0 4 2は次第に狭まっていき、 冷蔵室ドア 7 0 3 2 の下降の途中でドア側カム閉塞部 7 0 3 9 の内側の面と直進式ダン パ一 7 0 4 1の可動部 7 0 4 1 b上端面とが当接することになる。
当接後より冷蔵室ドア 7 0 3 2の下降が止まり冷蔵室ドア 7 0 3 2 が閉塞するまで直進式ダンパー 7 0 4 1の可動部 7 0 4 1 bはドア側 カム閉塞部 7 0 3 9 bの内側の面と当接しながらュニッ ト部 7 0 4 1 a側に移動し、 その間冷蔵室ドア 7 0 3 2の下降を減速することで冷 蔵室ドア 7 0 3 2の閉扉速度を減速する。
したがって、 冷蔵室ドア 7 0 3 2の減速機能が動作を開始する第 1 の位置は所定空間 7 0 4 2の設定により決定することになり、 直進式 ダンパー 7 0 4 1の減速機能は冷蔵室ドア 7 0 3 2の自閉時の下降に よってのみ動作させることが可能となる。
また、 冷蔵室ドア 7 0 3 2は断熱箱体 7 0 2 1側の面より断熱箱体 7 0 2 1側に立ち上げられ、 冷蔵室ドア 7 0 3 2の閉扉時には内箱 7 0 2 3と仕切壁 7 0 2 5とより更に冷蔵室 7 0 2 8の内側に位置する 冷蔵室ドア 7 0 3 2の上下方向に伸びた断面略長方形の土手部 7 0 3 2 dを有する。
土手部 7 0 3 2 dは冷蔵室ドア 7 0 3 2の左右方向に略平行に 2本 備えられ、 両土手部 7 0 3 2 c間には飲料や卵などの収納物 7 0 4 3 を収納する棚 7 0 4 4が収納物 7 0 4 3を出し入れ可能な程度の空間 を有して上下方向に 3段備えられ、 更に棚 7 0 4 4の断熱箱体 7 0 2 1側の面は土手部 7 0 3 2 dの先端とほぼ同一面となる様構成されて いる。
また、 冷蔵室ドア 7 0 3 2の自閉機能が動作を開始する第 2の位置 は冷蔵室ドア 7 0 3 2の閉扉時に断熱箱体 7 0 2 1の前面開口部 7 0 2 1 aと冷蔵室ドア 7 0 3 2の回転軸と反対側の土手部 7 0 3 2 dと の間に約 1 5 0 m mから 2 5 0 m mの空間を有し、 冷蔵室ドア 7 0 3 2の減速機能が動作を開始する第 1の位置は同じく冷蔵室ドア 7 0 3 2の閉扉時に断熱箱体 7 0 2 1の前面開口部 7 0 2 1 aと冷蔵室ドァ 7 0 3 2の回転軸と反対側の土手部 7 0 3 2 dとの間に約 1 0 0 m m から 1 5 0 mmの空間を有する様設定されている。
また、 冷蔵室ドア 7 0 3 2の全開時には冷蔵室ドアは第 2の位置よ りも大きく開放され、 約 1 2 0 ° 程度開放可能とし、 全開時より第 2 の位置までは手動にて閉扉動作を行なう様に構成している。
以上のように構成された冷蔵庫について、.以下その動作、 作用を説 明する。
まず、 冷蔵室ドア 7 0 3 2を全開し、 徐々に手動にて閉扉していき 冷蔵室ドア 7 0 3 2が前面開口部 7 0 2 1 aと冷蔵室ドア 7 0 3 2の 回転軸と反対側の土手部 7 0 3 2 dとの間に約 1 5 0 m mから 2 5 0 m mの空間を有する第 2の位置に到達すると冷蔵室ドア 7 0 3 2はド ァ側カム凸部 7 0 3 9 cの開放回動方向前側の側面がヒンジ側カム凹 部 7 0 4 0 cの開放回動方向前側の側面の傾斜を自力で降りることに より冷蔵室ドア 7 0 3 2は下降しながら自閉を開始する。 更に閉扉し て前面開口部 7 0 2 1 aと冷蔵室ドア 7 0 3 2の回転軸と反対側の土 手部 7 0 3 2 dとの間に約 1 0 0 m mから 1 5 0 m mの空間を有する 第 1の位置に冷蔵室ドア 7 0 3 2が到達すると冷蔵室ドア 7 0 3 2の 閉扉速度は直進式ダンパー 7 0 4 1の動作により減速し始め、 最終的 に閉塞に至る。
また、 ドア側カム凸部 7 0 3 9 cの開放回動方向前側の側面がヒン ジ側カム凹部 7 0 4 0 cの開放回動方向前側の側面の傾斜に位置する 間は常に冷蔵室ドア 7 0 3 2に閉扉方向の力が作甩するので、 冷蔵室 ドア 7 0 3 2を閉位置より開扉していく際でも、 冷蔵室ドアが冷蔵室 ドア 7 0 3 2の自閉機能が動作を開始する第 2の位置に達する前に開 扉動作を解除すると冷蔵室ドア 7 0 3 2は自閎する。
この時、 冷蔵室ドア 7 0 3 2の自閉機能が動作する第 2の位置を冷 蔵室ドア 7 0 3 2の閉扉時に断熱箱体 7 0 2 1の前面開口部 7 0 2 1 aと冷蔵室ドア 7 0 3 2の回転軸と反対側の土手部 7 0 3 2 dとの間 に約 1 5 0 m mから 2 5 0 m mの空間を有するとしたが、 自閉範囲を 広くする方が手動による閉扉動作を軽減できるので冷蔵庫 7 0 2 0の 使い勝手が良くなるように見えるが、 冷蔵庫 7 0 2 0は従来冷蔵室ド ァ 7 0 3 2を開放して収納物 7 0 4 3を出し入れするものであるため、 一度冷蔵室ドア 7 0 3 2を開扉して連続して複数の収納物 7 0 4 3を 出し入れする際には冷蔵室ドア 7 0 3 2は開放状態を保持できる方が 使い勝手が良いものとなる。
したがって、 本実施の形態では容易に収納物 7 0 4 3が出し入れで きない前面開口部 7 0 2 1 aと回転軸と反対側の土手部 7 0 3 2 dと の間の約 1 5 0 m mから 2 5 0 m mの空間を有する第 2の位置より冷 蔵室ドア 7 0 3 2の自閉を開始し、 第 2の位置より開扉側では自閉機 能は動作せず、 冷蔵室ドア 7 0 3 2は開放保持可能とした。
また、 冷蔵室ドア 7 0 3 2の減速機能が動作を開始するする第 1の 位置を冷蔵室ドア 7 0 3 2の閉扉時に断熱箱体 7 0 2 1の前面開口部 7 0 2 1 aと冷蔵室ドア 7 0 3 2の回転軸と反対側の土手部 7 0 3 2 dとの間に約 1 0 0 m mから 1 5 0 m mの空間を有するとしたが、 減 速機能が動作する範囲が広いと冷蔵室ドア 7 0 3 2の閉扉動作に時間 がかかることになり、 結果としてせつかく冷却された冷蔵室 7 0 2 8 内の冷気が逃げてしまうので消費電力量が増加したり冷蔵室 7 0 2 8 内の収納物 7 0 4 3の劣化の要因となってしまう為、 減速機能が動作 する範囲は狭い方が良い。
しかしながら、 冷蔵室ドア 7 0 3 2の閉扉時に断熱箱体 7 0 2 1の 前面開口部 7 0 2 . 1 aと冷蔵室ドア 7 0 3 2の回転軸と反対側の土手 部 7 0 3 2 dとの空間を狭く したり、 もしくは回転軸と反対側の土手 部 7 0 3 2 dが前面開口部 7 0 2 1 aより更に冷蔵室 7 0 2 8内に入 り込んだ位置より減速機能が動作を開始すると前面開口部 7 0 2 1 a と回転軸と反対側の土手部 7 0 3 2 dとの間に使用者の指や腕を挾ん でしまうことが生じうる。
したがって、 本実施の形態では断熱箱体 7 0 2 1の前面開口部 7 0 2 1 aと冷蔵室ドア 7 0 3 2の回転軸と反対側の土手部 7 0 3 2 dと の空間に使用者の指や腕を挟んでしまうことが無い様、 約 1 0 0 m m から 1 5 0 m mの空間を有するとした。
なお、 本実施の形態では冷蔵室ドア 7 0 3 2に土手部 7 0 3 2 dを 設けたが、 土手部 7 0 3 2 dが無い場合には冷蔵室ドア 7 0 3 2の断 熱箱体 7 0 2 1側の面と前面開口部 7 0 2 1 aとの空間を各所定値範 囲とすれば良い。
また、 棚 7 0 4 4の断熱箱体 7 0 2 1側の面は土手部 7 0 3 2 dの 先端とほぼ同一面としたが、 棚 7 0 4 4の断熱箱体 7 0 2 1側の面が 土手部 7 0 3 2 dの先端より断熱箱体 7 0 2 1側に突出する場合は冷 蔵室ドア 7 0 3 2の回転軸と反対側の土手部 7 0 3 2 dの先端と棚 7 0 4 4の断熱箱体 7 0 2 1側の面との内、 前面開口部 7 0 2 1 aとの 距離が狭い方の空間を各所定値範囲とすれば良い。
また、 冷蔵庫 7 0 2 0の冷蔵室ドア 7 0 3 2が左右に分割された観 音開きドアの場合は開状態にある側の冷蔵室ドア 7 0 3 2の回転軸と 反対側の土手部 7 0 3 2 dの先端と棚 7 0 4 4の断熱箱体 7 0 2 1側 の面との内、 閉位置にある側の冷蔵室ドア 7 0 3 2の断熱箱体 7 0 2 1 と反対側の外観面との距離が狭い方の空間を各所定値範囲とすれば 良い。
以上のように本実施の形態においてはドア側カム機構 7 0 3 9とヒ ンジ側カム機構 7 0 4 0との動作により冷蔵室ドア 7 0 3 2が閉塞す る直前の所定範囲のみ冷蔵室ドア 7 0 3 2を自閉させることが可能と なり、 更に直進式ダンパー 7 0 4 1により ドア側カム機構 7 0 3 9と ヒンジ側カム機構 7 0 4 0 との動作による冷蔵室ドア 7 0 3 2の自閉 中のみ閉扉速度を減速可能となるので、 冷蔵庫に適用した場合でも冷 蔵室ドア 7 0 3 2を開放したまま収納物を出し入れすることが容易に なるので冷蔵庫の使い勝手が悪くなることを抑制できる。
更に直進式ダンパー 7 0 4 1 による減速機能部がドア側カム機構 7 0 3 9 とヒンジ側カム機構 7 0 4 0による自閉機能部が動作している 間のみ冷蔵室ドア 7 0 3 2に動作するとしたことで、 閉扉速度の減少 を最低限に抑えることができ、 閉扉時の衝撃減少という品位向上要素 としての減速機能部の効果を有したまま、 冷蔵室 7 0 2 8内の食品の 劣化や消費電力の増加を抑制できる。
また、 下部ヒンジ 7 0 3 7の下部回転軸 7 0 3 7 c を中空の円筒と し、 下部回転軸 7 0 3 7 cの中空空間内に減速機能を有する直進式ダ ンパー 7 0 4 1 を備えることにより減速機能部が外観から見えず冷蔵 庫 7 0 2 0の見栄えを向上させることができる。
また、 自閉手段にドア側カム機構 7 0 3 9とヒンジ側カム機構 7 0 4 0 とによるカム機構を利用することにより、 冷蔵室ドア 7 0 3 2の 自閉に関する高い信頼性と耐久性を得ることができる。
また、 減速手段として直進式ダンパー 7 0 4 1 を用い、 ドア側カム 機構 7 0 3 9 とヒンジ側カム機構 7 0 4 0による冷蔵室ドア 7 0 3 2 の自閉時の下降を直進式ダンパー 7 0 4 1 にて減速することにより冷 蔵室ドア 7 0 3 2の自閉動作時のみに減速機能を動作させることが容 易に可能となる。
また、 冷蔵室ドア 7 0 3 2の開扉時には直進式ダンパー 7 0 4 1は 減速機能を動作しないので軽い力で冷蔵室ドア 7 0 3 2を開放するこ とができる。
また、 直進式ダンパー 7 0 4 1 による減速機能が動作を開始する第 1の位置は自閉機能が動作を開始する第 2の位置より断熱箱体 7 0 2 1側に位置させることにより、 冷蔵室ドア 7 0 3 2の閉扉速度を減速 した後自閉させると、 閉扉時の勢いを自閉に利用できなくなるので自 閉機能を有する ドア側カム機構 7 0 3 9 とヒンジ側カム機構 7 0 4 0 に大きな自閉能力が必要となり自閉機能部が大型化となることを抑制 することができる。
また、 冷蔵室ドア 7 0 3 2の自閉距離に関し断熱箱体 7 0 2 1の前 面開口部 7 0 2 l aと、 冷蔵室ドア 7 0 3 .2の回転軸と反対側の土手 部 7 0 3 2 dとの間に所定値範囲の空間を取ることにより、 冷蔵庫 7 0 2 0の使用者の使用状況に合わせてドア側カム機構 7 0 3 9 とヒン ジ側カム機構 7 0 4 0による自閉距離を設定することで冷蔵庫 7 0 2 0の使い勝手を更に向上させることができる。
また、 冷蔵室ドア 7 0 3 2の減速機能が動作を開始する第 1の位置 を断熱箱体 7 0 2 1の前面開口部 7 0 2 1 aと、 回転軸と反対側の冷 蔵室ドア 7 0 3 2の土手部 7 0 3 2 dとの間に所定値範囲の空間を取 ることにより、 冷蔵庫 7 0 2 0使用者の使用状況に合わせて所定空間 7 0 4 2を設定することで使用者の腕や指を挟むことを防止でき、 扉 装置の安全性を高めることができる。
また、 冷蔵室ドア 7 0 3 2を全開時から閉める際には、 ドア側カム 機構 7 0 3 9とヒンジ側カム機構 7 0 4 0による自閉機能が動作開始 する第 2の位置までは手動にて閉められ、 第 2の位置に扉が到達する と ドア側カム機構 7 0 3 9 とヒンジ側カム機構 7 0 4 0により自閉し、 更に直進式ダンパー 7 0 4 1 による減速機能が動作開始する第 1の位 置に冷蔵室ドア 7 0 3 2が到達すると直進式ダンパー 7 0 4 1 による 減速作用を受けて減速しながら自閉させることにより、 閉扉動作に手 動部を設けることでドア側カム機構 7 0 3 9 とヒンジ側カム機構 7 0 4 0による自閉機能の自閉能力を低減することができ、 自閉機能を有 する ドア側カム機構 7 0 3 9 とヒンジ側カム機構 7 0 4 0の小型化や コス トダウンを図ることができる。 産業上の利用可能性
本発明による扉装置は自閉機能部と減速機能とを備え、 本発明によ る冷蔵庫はその本発明の扉装置を備える。 本発明による扉装置及び冷 蔵庫は機能性と操作作業性と効率と安全性の高いので、 システムキッ チン、 家具、 事務机、 業務用冷蔵庫等の用途にも適用できる。

Claims

請求の範囲
1 . 扉と
前記扉を自閉させる自閉機能を有する自閉機能部と、
前記扉を閉める際に前記扉の閉まる速度を減速させる減速機能 部と
を備えた扉装置。
2 . 筐体と、
前記筐体に係合された収納部材を有した引出しと、
前記筐体に対して前記収納部材を前後に移動可能とするレール 部材と
を更に備え、
前記扉は前記引出し前面側に設けられた請求項 1記載の扉装置。
3 . 前記自閉機能部は前記減速機能部内に備えた請求項 2に記載の 扉装置。
4 . 前記収納部材と前記自閉機能部とを連結する連結部材を更に備 、
前記自閉機能部が前記筐体側に構成された前記レール部材に固 定されるとともに、
前記扉を閉める際に前記連結部材によって前記収納部材と前記 自閉機能部とが連結される第 1位置に達した時、 前記自閉機能部が前 記扉を自閉させる自閉機能が動作する請求項 2または 3に記載の扉装 置。
5 . 前記扉を閉める際に、 前記扉の閉まる速度を減速させる前記減 速機能部が減速動作を開始する第 2位置は、 前記第 1位置よりも前記 筐体側である請求項 4に記載の扉装置。
6 . 前記第 2位置は前記扉と前記筐体の間に人の指や拳が挟まるこ とのありうる距離である請求項 5に記載の扉装置。
7 . 前記減速機能部は、 少なく とも前記収納部材が開かれる方向に 移動している状態においては減速動作を解除する請求項 2から 6のい ずれか一項に記載の扉装置。
8 . 前記連結部材は、 前記レール部材の中央近傍で前記収納部材と 連結されている請求項 4に記載の扉装置。 9 . 前記連結部材と前記収納部材は、 前記収納部材の移動により着 脱可能である請求項 4から 8のいずれか一項に記載の扉装置。
1 0 . 前記扉が前記第 2位置より前記筐体側にある第 3位置から全閉 位置の間の範囲にある場合には、 前記減速機能部は減速動作を解除す る請求項 4から 9のいずれか一項に記載の扉装置。
1 1 . 前記第 3位置は前記扉と前記筐体の間に人の指が容易に入らな い距離である請求項 1 0に記載の扉装置。 1 2 . 請求項 2から 1 1 のいずれか一項に記載の扉装置を搭載した冷 蔵庫。
1 3 . 物品を収納する収納部材と、
前記収納部材を前後に移動可能とするレール部材と、
を更に備え、
前記扉は、 筐体内に形成された冷却もしくは加温状態に維持さ れる区画の前面開口部を開閉し、
前記減速機能部は、 前記扉の閉速度が早い時に大きな減速を行 う第一動作と、 前記扉の閉速度が遅い時に小さな減速を行う第二動作 とを切り替える特性を有し、
少なく とも前記第二動作は前記自閉機能部の動作範囲内で行わ れる請求項 1に記載の扉装置。
1 4 . 前記減速機能部は前記自閉機能部が動作する際にのみ、 前記扉 の閉まる速度を減速させる請求項 1 3に記載の扉装置。 1 5 . 前記減速機能部は、 前記扉の閉速度が早い時に大きな減速を行 う第一動作の動作後に連続して、 前記第一の動作によって減速された 閉速度の遅い前記扉が前記第一の動作による減速よりも小さな減速を 行う第二動作を行うように段階的に切り替える特性を有する請求項 1 3または 1 4に記載の扉装置。
1 6 . 前記筐体は引出しを設けた複数の区画を有し、
前記複数の区画がそれぞれ異なる温度帯で用いられるものであり、 前記複数の区画に対応して前記減速機能部を複数備え、
複数の前記減速機能部の周囲温度がそれぞれ異なる温度帯であ り、
前記扉の閉速度が遅い時に小さな減速を行う第二動作の際の自 閉速度は、 異なる温度帯の区画に備えられた引出し間でもほぼ一定で ある請求項 1 3から 1 5のいずれか一項に記載の扉装置。
1 7 . 前記減速機能部は、 内部にオイルを充填した直進式ダンパーで あり、 前記オイルが流路を通る際の粘性抵抗によって減速を行うもの であって、 前記第一動作の際に前記オイルが通過する流路面積よりも 前記第二動作の際に前記オイルが通過する流路面積を大きくする請求 項 1 6に記載の扉装置。
1 8 . 前記減速機能部は、 内部にオイルを充填した直進式ダンパーで あり、 前記減速機能部の周囲温度の異なる複数の区画に備えられると ともに温度の低い区画に配置される前記減速機能部には、 温度帯の高 い区画に配置される前記減速機能部内のオイルの粘度比べて粘度の低 いオイルが充填されている請求項 1 3から 1 7のいずれか一項に記載 の扉装置。
1 9 . 前記減速機能部は、 減速効果が得られる有効範囲と、 減速効果 がほとんど得られない無効範囲とを有し、 前記減速機能部が動作する 方向に対して、 前記有効範囲が前方に、 前記無効範囲が後方に位置す る請求項 1 3から 1 8のいずれか一項に記載の扉装置。
2 0 . 前記減速機能部は、 前記減速機能部の周囲温度の異なる複数の 区画に備えられ、 温度の低い区画に配置される前記減速機能部の無効 範囲の長さは、 温度の高い空間に配置される前記減速機能部の無効範 囲の長さよりも大きい請求項 1 9に記載の扉装置。
2 1 . 前記減速機能部は、 前記筐体内奥部の前記レール部材に取り付 けられている請求項 1 3から 2 0のいずれか一項に記載の扉装置。
2 2 . 前記複数の区画はそれぞれ異なる温度帯であり、 前記扉を自閉させる前記自閉機能部は自閉カを得るために少な くとも弾性体を有し、
前記弾性体は、 異なる温度帯の区画に対応してそれぞれ弾性力 が異なる請求項 1 3に記載の扉装置。
2 3 . 温度帯の異なる区画の 、 温度の低い区画に配置される前記自 閉機能部の弾性力は、 温度の高い区画に配置される前記自閉機能部の 弾性力よりも大きい請求項 2 2に記載の扉装置。
2 4 . 前記複数の区画間を断熱壁で仕切ることによって密閉された複 数の貯蔵室が形成されており、
前記複数の貯蔵室の温度が少なくとも冷蔵温度帯と冷凍温度帯 であり、
前記減速機能部の周囲温度が常温に対して前記冷蔵温度帯また は前記冷凍温度帯といった大きく異なる温度帯であっても、 前記第二 動作の際の自閉速度はほぼ一定である請求項 1 3から 2 3のいずれか 一項に記載の扉装置を備えた冷蔵庫。
2 5 . 空間内に容器を備えた筐体と、
前記容器の前面に設けられた前記扉を備えた引出しと、 前記引出しを前後に移動可能にするために前記筐体に配設され たレール部材と
を備え、
前記扉は長方形であるとともに前記レール部材および前記減速 機能部は前記引出しの重心を挟んだ両側にそれぞれ少なくとも 1箇所 ずつ設けられている請求項 1に記載の扉装置。
2 6 . 空間内に容器を備えた筐体と、
前記容器の前面に設けられた前記扉を備えた引出しと、 前記引出しを前後に移動可能にするために前記筐体に配設され たレール部材と
を備え、
前記扉は長方形であるとともに前記レール部材および前記減速 機能部は前記引出しの長手方向における中心軸を挟んだ両側にそれぞ れ少なくとも 1箇所ずつ設けられている請求項 1に記載の扉装置。
2 7 . 前記扉は上下方向を長手方向とする縦長形状である請求項 2 5 または 2 6に記載の扉装置。 2 8 . 前記レール部材の設置数は、 前記扉に作用する減速機能部の設 置数よりも多い請求項 2 5から 2 7のいずれか一項に記載の扉装置。
2 9 . 前記レール部材は前記筐体内部の壁面に 3箇所以上備えられ、 前記減速機能部は前記引出しの長手方向の中心線に対して対称 に位置する前記レール部材もしくは前記レール部材の近傍に配設され る請求項 2 5から 2 8のいずれか一項に記載の扉装置。
3 0 . 前記レール部材は前記筐体内部の壁面に 3箇所以上備えられ、 前記減速機能部は前記引出しの対角に位置する前記レール部材 もしくは前記レール部材の近傍にそれぞれ 1箇所ずっ配設される請求 項 2 5から 2 8のいずれか一項に記載の扉装置。
3 1 . 請求項 2 5から 3 0のいずれか一項に記載の扉装置を搭載した 冷蔵庫。
3 2 . 前面開口部を有する筐体と、
連結部と
を更に備え、
前記扉は前記前面開口部に備えられ、 .
前記連結部は前記扉を前記筐体に回動自在に連結させる請求項 1に記載の扉装置。 '
3 3 . 前記自閉機能部と前記減速機能部とは前記連結部に設けられた 請求項 3 2に記載の扉装置。
3 4 . 前記減速機能部が動作開始する第 1の位置は前記自閉機能部が 動作開始する第 2の位置よりも前記筐体側に位置する請求項 3 2また は 3 3に記載の扉装置。
3 5 . 前記減速機能部が動作開始する第 1の位置は、 前記扉と前記筐 体との間に人の指や腕を挾んでしまうことのありうる位置である請求 項 3 2から 3 4のいずれか一項に記載の扉装置。
3 6 . 扉は全開時から閉める際には、 自閉機能部が動作開始する第 2 の位置までは手動にて閉められ、 前記第 2の位置に扉が到達すると前 記自閉機能部が動作開始することにより自閉し、 その後前記第 2の位 置よりも前記筐体側にある第 1の位置に前記扉が到達すると前記減速 機能部が動作開始することにより減速しながら自閉する請求項 3 4ま たは 3 5に記載の扉装置。
3 7 . 前記第 1 の位置よりもさらに前記筐体側にある第 3の位置から は前記 速機能部の動作は解除される請求項 3 4から 3 6のいずれか 一項に記載の扉装置。
3 8 . 前記第 3の位置は前記扉と前記筐体の間に人の指が容易に入ら ない距離である請求項 3 7に記載の扉装置。 .
3 9 . 前記自閉機能部と相対応する前記扉に形成され、 少なく とも前 記扉が閉まる際に前記自閉機能部と着脱可能に連結される接続部を更 に備え、
前記自閉機能部は、 前記連結部とは異なる箇所に配置されると ともに、 前記自閉機能部が前記接続部を引き込むことで、 前記扉を自 閉させる請求項 3 2またば請求項 3 4から 3 8のいずれか一項に記載 の扉装置。
4 0 . 前記自閉機能部および前記接続部は、 前記冷蔵庫の幅方向の中 心軸に対して、 前記扉支持.部側に配設された請求項 3 9に記載の扉装 置。
4 1 . 前記自閉機能部と前記接続部は、 磁力により着脱可能に連結さ れる請求項 3 9または 4 0に記載の扉装置。
4 2 . 前記自閉機能部と前記接続部は、 ラッチ機構により着脱可能に 連結される請求項 3 9または 4 0に記載の扉装置。
4 3 . 前記自閉機能部と前記接続部が連結された後、 前記自閉機能部 弾性体による自閉力によって前記扉を閉める請求項 3 9または 4 記載の扉装置。
4 4 . 前記自閉機能部と前記接続部が連結された後、 前記自閉機能部 は、 モー夕の駆動力による自閉力によって前記扉を閉める請求項 3 9 または 4 0に記載の扉装置。
4 5 . 前記自閉機能部と前記接続部が連結された後、 前記自閉機能部 は、 ソレノィ ドの駆動力による自閉力によって前記扉を閉める請求項 3 9または 4 0に記載の扉装置。
4 6 . 前記自閉機能部には、 前記扉の開閉を検知する ドアスィッチが 形成されている請求項 3 9または 4 0に記載の扉装置。 4 7 . 前記自閉機能部および前記接続部は、 前記冷蔵庫の天井部に配 設されている請求項 3 9から 4 6のいずれか一項に記載の扉装置。
4 8 . 前記自閉機能部は、
前記扉の回動に連動して前記扉が全閉状態から所定角度 のみ回転する第一機構部材と、
前記扉が前記自閉機能部と連結された状態では前記第一 機構を回動可能とし、 前記扉が前記自閉機能部との連結を解除した状 態では前記第一機構部材の回動を停止させる第二機構部材と、
前記第一機構部材を冷蔵庫の後方側に引っ張るような弾 性力を有する弾性体と
を備え、
前記第一機構の前方端には磁石が形成されている請求項 4 1 に 記載の扉装置。
4 9 . 前記磁石と対向する前記扉の内面に配置された磁性体を更に備 える請求項 4 8に記載の扉装置。
5 0 . 前記自閉機能部は、 前記第一機構部材の位置を検出する位置検 出スィツチを有する請求項 4 8または 4 9に記載の扉装置。
5 1 . 前記第一機構部材の回転中心は、 前記扉の回転中心と同軸上に 位置する請求項 4 9から 5 0のいずれか一項に記載の扉装置。
5 2 . 前記第一機構部材が前方へ移動した状態において、 前記第一機 構部材および前記磁石の前方端は、 前記筐体の前記前面開口部よりも 後方側に位置する請求項 4 9から 5 1のいずれか一項に記載の扉装置。
5 3 . 前記第一機構部材に配設された前記磁石と対向する前記扉の内 面に、 前記冷蔵庫本体に向けて突起が形成され、
前記突起の先端に磁性体を配設されている請求項 4 9から請求 項 5 2のいずれか一項に記載の扉装置。
5 4 . 請求項 3 2から 5 3のいずれか一項に記載の扉装置を搭載した 冷蔵庫。
5 5 . 前記扉は、 筐体内に形成され冷却もしくは加温状態に維持され る区画の前面開口部を回動可能に開閉し、
前記減速機能部は、 前記扉の閉速度が早い時に大きな減速を行 う第一動作と、 前記扉の閉速度が遅い時に小さな減速を行う第二動作 とを切り替える特性を有し、 少なく とも前記第二動作は前記自閉機能 部の動作範囲内で行われる請求項 1に記載の扉装置。
5 6 . 前記減速機能部は前記自閉機能部が動作する際にのみ、 前記扉 の閉まる速度を減速させる請求項 5 5に記載の扉装置。
5 7 . 前記減速機能部は、 前記扉の閉速度が早い時に大きな減速を行 う第一動作の動作後に連続して、 前記第一の動作によって減速された 閉速度の遅い前記扉が前記第一動作による減速よりも小さな減速を.行 う第二動作を行うように段階的に切り替える特性を有する請求項 5 5 または 5 6に記載の扉装置。
5 8 . 前記第二動作の際の自閉速度は、 前記減速機能部の周囲温度が 異なる温度帯でも一定である請求項 5 5から 5 7のいずれか一項に記 載の扉装置。
5 9 . 前記減速機能部は、 内部にオイルを充填した直進式ダンパーで あり、 前記オイルが流路を通る際の粘性抵抗によって減速を行うもの であって、 前記第一動作の際に前記オイルが通過する流路面積よりも 前記第二動作の際に前記オイルが通過する流路面積を大きくする請求 項 5 8に記載の扉装置。
6 0 . 前記減速機能部は、 内部にオイルを充填した直進式ダンパーで あり、
前記減速機能部が周囲温度の異なる複数の区画に備えられた場 合、 温度の低い区画に配置される前記減速機能部内の前記オイルの粘 度は、 温度帯の高い区画に配置される前記減速機能部内のオイルの粘 度比べて粘度の低いオイルが充填されている請求項 5 5から 5 8のい ずれか一項に記載の扉装置。
6 1 . 前記減速機能部は、 前記扉の幅方向の中心軸に対して回動軸と 反対側に相対する前記冷蔵庫本体に配設されている請求項 5 5に記載 の扉装置。
6 2 . 前記扉に備えられるとともに前記扉の内側方向が凸となるよう に形成された突起を更に備え、
前記突起の先端と前記減速機能部の可動部先端が当接して減速 効果が得られるものであって、
前記可動部先端が前記冷蔵庫本体の前面開口部より後方に位置 する請求項 5 5から 6 1のいずれか一項に記載の扉装置。 6 3 . 前記扉の内側方向に凸となるように形成された棚部を更に備え、 前記減速機能部は前記冷蔵庫本体内の回動軸側側壁に配設され、 前記扉が閉まる際に前記減速機能部は前記棚部と当接した後に 減速効果が得られる請求項 5 5から 6 0のいずれか一項に記載の扉装 置。
6 4 . 前記減速機能部の可動部先端と前記扉の当接部とは磁力によつ て吸着する請求項 5 5から 6 3のいずれか一項に記載の扉装置。
6 5 . 位置検出手段を更に備え、
前記位置検出手段が前記減速機能部の可動部の位置を検出する ことにより前記扉の開閉状態を識別する請求項 5 5から 6 4のいずれ か一項に記載の扉装置。
6 6 . 冷蔵庫本体内に形成された貯蔵室の前面開口部に対して請求項
5 5から 6 5のいずれか一項に記載の扉装置を備えた冷蔵庫。 6 7 . 前記扉は本体の前面開口部に回動可能に配設され、
前記減速機能部は前記本体に配設されているとともに前記扉が 開く際に前記可動部が前記扉によって引っ張られることで前面側へ引 き出される請求項 1に記載の扉装置。 6 8 . 前記減速機能部は、 前記扉の幅方向の中心軸に対して回動軸と 反対側に配設されている請求項 6 7に記載の扉装置。
6 9 . 前記扉の上部近傍に、 前記本体側が凸となるように形成された 突起を更に備え、
前記突起の先端と前記減速機能部の可動部先端が当接して減速 効果が得られ、
前記可動部先端は前記本体の前面より後方に位置する請求項 6 7または 6 8に記載の扉装置。 7 . 前記前面開口部を有し前記扉が回動可能に配設された本体と、 前記扉の内側方向に凸となるように形成された棚部と .
を更に備え、
前記減速機能部は前記本体内の回動軸側側壁に配設され、 前記 扉が閉まる際に前記扉の閉まる速度を減速させる直進式の可動部を有 し、
前記減速機能部は前記棚部の側壁に配設されるとともに前記扉 が開く際に前記可動部が前記扉の前記棚部によって引っ張られること で庫内側へ引き出される請求項 1に記載の扉装置。
7 1 . 前記減速機能部の可動部先端には磁性体が構成され、 前記可動 部先端と前記扉の当接部に磁石が形成されている請求項 6 7から 7 0 のいずれか一項に記載の扉装置。
7 2 . 位置検出手段を更に備え、
前記位置検出手段が前記減速機能部の可動部の位置を検出する ことにより前記扉の開閉状態を識別する請求項 6 7から 7 1のいずれ か一項に記載の扉装置。
7 3 . 冷蔵庫本体内に形成された貯蔵室の前面開口部に対して請求項 6 7から 7 2のいずれか一項に記載の扉装置を備えた冷蔵庫。 7 4 . 前面開口部を有し、 閉時に前記扉によって前記前面開口部が閉 塞する筐体と、
前記扉の上部に備えられ前記扉と前記筐体とを回動自在に連結 する上部ヒンジと、
前記扉の下部に備えられ前記扉と前記筐体とを回動自在に連結 する下部ヒンジと
を更に備え、
前記自閉機能部は、 前記下部ヒンジは前記扉が閉塞する際に所 定範囲内のみ前記扉を自閉させるように動作し、
前記減速機能部は前記自閉機能部が動作している間の所定範囲 内のみ前記扉に動作し、
前記減速機能部は前記下部ヒンジの回転軸内に構成されている 請求項 1に記載の扉装置。
7 5 . 前記自閉機能部の自閉手段はカム機構を利用している請求項 7 4に記載の扉装置。 7 6 . 前記減速機能部の減速手段は直進式ダンパーであり、 前記扉の 自閉時に前記カム機構の変動を前記直進式ダンパーにて減速する請求 項 7 5に記載の扉装置。
7 7 . 前記減速機能部が動作開始する第 1 の位置は前記自閉機能部が 動作開始する第 2の位置より前記筐体側に位置する請求項 7 4から 7 6のいずれか一項に記載の扉装置。
7 8 . 前記自閉機能部による扉の自閉距離は使用者が容易に収納物を 出し入れできない所定値範囲の距離である請求項 7 4から 7 7のいず れか一項に記載の扉装置。
7 9 . 前記減速機能部が動作開始する第 1の位置は使用者の指や腕が 挟まることのありうる所定値範囲の距離である請求項 7 4から 7 8の いずれか一項に記載の扉装置。
8 0 . 前記扉が全開時から閉められる際には、 前記自閉機能部が動作 開始する第 2の位置までは手動にて閉められ、 前記第 2の位置に前記 扉が到達すると前記自閉機能部により自閉し、 更に前記減速機能部が 動作開始する第 1の位置に前記扉が到達すると前記減速機能部により 減速しながら自閉する請求項 7 4から 7 9のいずれか一項に記載の扉 装置。
8 1 . 前記請求項 7 4から 8 0のいずれか一項に記載の扉装置を搭載 した冷蔵庫。
PCT/JP2005/013196 2004-07-09 2005-07-11 扉装置および冷蔵庫 WO2006006707A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006529204A JPWO2006006707A1 (ja) 2004-07-09 2005-07-11 扉装置および冷蔵庫
CN2005800231861A CN1985063B (zh) 2004-07-09 2005-07-11 门装置及冷藏库

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2004202874 2004-07-09
JP2004-202874 2004-07-09
JP2004-204390 2004-07-12
JP2004204390 2004-07-12
JP2004-214067 2004-07-22
JP2004214067 2004-07-22
JP2005040167 2005-02-17
JP2005-040167 2005-02-17
JP2005-085510 2005-03-24
JP2005085508 2005-03-24
JP2005-085508 2005-03-24
JP2005085509 2005-03-24
JP2005-085509 2005-03-24
JP2005085510 2005-03-24
JP2005173386 2005-06-14
JP2005-173386 2005-06-14

Publications (1)

Publication Number Publication Date
WO2006006707A1 true WO2006006707A1 (ja) 2006-01-19

Family

ID=35784037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013196 WO2006006707A1 (ja) 2004-07-09 2005-07-11 扉装置および冷蔵庫

Country Status (3)

Country Link
JP (1) JPWO2006006707A1 (ja)
CN (1) CN1985063B (ja)
WO (1) WO2006006707A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196753A (ja) * 2007-02-09 2008-08-28 Hitachi Appliances Inc 冷蔵庫
WO2008101666A2 (de) * 2007-02-19 2008-08-28 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder gefriergerät
JP2011239849A (ja) * 2010-05-17 2011-12-01 Nippon Akyuraido Kk 引込み機能を有するスライドレールにおける減速装置
JP2011239850A (ja) * 2010-05-17 2011-12-01 Nippon Akyuraido Kk 引込み機能を有するスライドレールにおける減速装置
JP2015068572A (ja) * 2013-09-30 2015-04-13 日本電産サンキョー株式会社 冷蔵庫
EP3153804A1 (en) * 2015-10-08 2017-04-12 Arçelik Anonim Sirketi A refrigerator comprising a self-closing drawer
WO2018143261A1 (ja) * 2017-02-01 2018-08-09 パナソニックIpマネジメント株式会社 冷蔵庫
US20190162006A1 (en) * 2017-11-27 2019-05-30 Lg Electronics Inc. Refrigerator
WO2020104175A1 (en) * 2018-11-22 2020-05-28 Arcelik Anonim Sirketi A cooling device
JP2020112348A (ja) * 2015-07-31 2020-07-27 パナソニックIpマネジメント株式会社 冷蔵庫
EP4450908A1 (en) * 2023-04-20 2024-10-23 LG Electronics Inc. Refrigerator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012103629A1 (de) * 2012-04-25 2013-10-31 Hettich-Oni Gmbh & Co. Kg Schlepptürbeschlag
CN104236002A (zh) * 2013-06-18 2014-12-24 珠海格力电器股份有限公司 一种开关门控制方法、开关门控制装置及空调器
CN106032958B (zh) * 2015-01-07 2018-10-19 海信容声(广东)冰箱有限公司 一种冰箱
CN107212648B (zh) * 2016-12-08 2019-07-09 温岭市兴庆机械设备有限公司 一种物品用的收藏架装置
DE102018203285A1 (de) * 2018-03-06 2019-09-12 BSH Hausgeräte GmbH Haushaltsgerät mit einem Positionserfassungssystem zum Detektieren einer Stellung eines Verschlusselements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122382A (ja) * 1989-09-23 1991-05-24 Mercedes Benz Ag 自動車用ドアーハンドル
JPH05317133A (ja) * 1992-05-15 1993-12-03 Sugatsune Ind Co Ltd 自動引き込み装置
JPH063948Y2 (ja) * 1988-01-19 1994-02-02 三菱製鋼株式会社 定張力装置付きスライドレール機構
JPH08218727A (ja) * 1995-02-20 1996-08-27 Daihatsu Diesel Kiki Kk 引戸閉鎖装置
JPH1082244A (ja) * 1996-09-06 1998-03-31 Nhk Spring Co Ltd 引き戸クローザー
JPH11264648A (ja) * 1998-03-18 1999-09-28 Matsushita Refrig Co Ltd 冷蔵庫

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230562A (en) * 1975-09-03 1977-03-08 Senkichi Nakakoshi Breakdown structure
GB1531338A (en) * 1976-08-05 1978-11-08 Ciba Geigy Ag Process for the production of an azomethine pigment
JPS6065878A (ja) * 1983-09-22 1985-04-15 三洋電機株式会社 自動閉扉装置
JPH0638781B2 (ja) * 1988-08-19 1994-05-25 株式会社三協精機製作所 便器等の調速装置
JPH03233283A (ja) * 1990-02-07 1991-10-17 Matsushita Refrig Co Ltd 冷蔵庫
JPH04258483A (ja) * 1991-02-08 1992-09-14 Mitsui Constr Co Ltd 建具
KR940000715A (ko) * 1992-06-08 1994-01-03 이문현 개량형 플로우 힌지
JPH08240061A (ja) * 1995-03-03 1996-09-17 Fujita Corp 閉扉衝撃緩和装置
JP4016148B2 (ja) * 1997-01-20 2007-12-05 中西金属工業株式会社 閉鎖緩衝装置
JP3122382B2 (ja) * 1997-02-14 2001-01-09 美津和タイガー株式会社 捕球用具
JPH116683A (ja) * 1998-06-19 1999-01-12 Toshiba Corp 冷蔵庫の引き出し構造
JP2001055863A (ja) * 1999-08-19 2001-02-27 Toshiba Corp 貯蔵庫の扉開放装置
JP2001182427A (ja) * 1999-12-28 2001-07-06 Kayaba Ind Co Ltd 扉の開閉機構
JP2001343620A (ja) * 2000-06-01 2001-12-14 Hitachi Cable Ltd ファラデー素子型光スイッチを用いたドア開閉検知センサ
JP3630417B2 (ja) * 2002-07-23 2005-03-16 株式会社ベスト 開き戸制動装置
JP3533395B1 (ja) * 2003-05-30 2004-05-31 裕司 山下 ロック装置付きクローザー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063948Y2 (ja) * 1988-01-19 1994-02-02 三菱製鋼株式会社 定張力装置付きスライドレール機構
JPH03122382A (ja) * 1989-09-23 1991-05-24 Mercedes Benz Ag 自動車用ドアーハンドル
JPH05317133A (ja) * 1992-05-15 1993-12-03 Sugatsune Ind Co Ltd 自動引き込み装置
JPH08218727A (ja) * 1995-02-20 1996-08-27 Daihatsu Diesel Kiki Kk 引戸閉鎖装置
JPH1082244A (ja) * 1996-09-06 1998-03-31 Nhk Spring Co Ltd 引き戸クローザー
JPH11264648A (ja) * 1998-03-18 1999-09-28 Matsushita Refrig Co Ltd 冷蔵庫

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196753A (ja) * 2007-02-09 2008-08-28 Hitachi Appliances Inc 冷蔵庫
WO2008101666A2 (de) * 2007-02-19 2008-08-28 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder gefriergerät
WO2008101666A3 (de) * 2007-02-19 2009-02-05 Liebherr Hausgeraete Kühl- und/oder gefriergerät
US8256064B2 (en) 2007-02-19 2012-09-04 Liebherr-Hausgeraete Ochsenhausen Gmbh Refrigerator and/or freezer with hinge
JP2011239849A (ja) * 2010-05-17 2011-12-01 Nippon Akyuraido Kk 引込み機能を有するスライドレールにおける減速装置
JP2011239850A (ja) * 2010-05-17 2011-12-01 Nippon Akyuraido Kk 引込み機能を有するスライドレールにおける減速装置
JP2015068572A (ja) * 2013-09-30 2015-04-13 日本電産サンキョー株式会社 冷蔵庫
JP2020112348A (ja) * 2015-07-31 2020-07-27 パナソニックIpマネジメント株式会社 冷蔵庫
JP2022008513A (ja) * 2015-07-31 2022-01-13 パナソニックIpマネジメント株式会社 冷蔵庫
JP7289044B2 (ja) 2015-07-31 2023-06-09 パナソニックIpマネジメント株式会社 冷蔵庫
EP3153804A1 (en) * 2015-10-08 2017-04-12 Arçelik Anonim Sirketi A refrigerator comprising a self-closing drawer
WO2018143261A1 (ja) * 2017-02-01 2018-08-09 パナソニックIpマネジメント株式会社 冷蔵庫
JPWO2018143261A1 (ja) * 2017-02-01 2019-11-21 パナソニックIpマネジメント株式会社 冷蔵庫
JP2022184969A (ja) * 2017-02-01 2022-12-13 パナソニックIpマネジメント株式会社 冷蔵庫
JP7515046B2 (ja) 2017-02-01 2024-07-12 パナソニックIpマネジメント株式会社 冷蔵庫
US20190162006A1 (en) * 2017-11-27 2019-05-30 Lg Electronics Inc. Refrigerator
US10927587B2 (en) * 2017-11-27 2021-02-23 Lg Electronics Inc. Refrigerator
WO2020104175A1 (en) * 2018-11-22 2020-05-28 Arcelik Anonim Sirketi A cooling device
EP4450908A1 (en) * 2023-04-20 2024-10-23 LG Electronics Inc. Refrigerator

Also Published As

Publication number Publication date
CN1985063A (zh) 2007-06-20
CN1985063B (zh) 2012-11-07
JPWO2006006707A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2006006707A1 (ja) 扉装置および冷蔵庫
KR102043198B1 (ko) 냉장고
US9429355B2 (en) Refrigerator
US20070262686A1 (en) Refrigerator
US8393694B2 (en) Refrigerator with vertically moving member attached to home bar door
KR20110046237A (ko) 냉장고의 자동 도어 닫힘 장치 및 이를 포함하는 냉장고
TWI229180B (en) Shelving unit and refrigerator having the same
US11892228B2 (en) Appliance bin
KR20150031011A (ko) 냉장고
CN215332160U (zh) 铰链及具有其的制冷设备
US8549872B2 (en) Refrigerator
US8104852B2 (en) Refrigerator
AU2019283768B2 (en) Refrigerator
KR101659957B1 (ko) 슬라이딩 도어를 갖는 냉장고
TW200940926A (en) Refrigerator
US11982117B2 (en) Hinge assembly for a door of a refrigerating compartment
JPH112483A (ja) 冷蔵庫の収納装置
JP4229659B2 (ja) 棚装置、およびその棚装置を備えた冷蔵庫
KR101175558B1 (ko) 냉장고의 도어포켓 구조
JP2004053211A (ja) 棚装置、およびその棚装置を備えた冷蔵庫
JP2004077070A (ja) 棚装置、および棚装置を備えた冷蔵庫
KR101341570B1 (ko) 양문형 냉장고
JP2006162229A (ja) 棚装置、および棚装置を備えた冷蔵庫
JP2005192650A (ja) 棚装置、および棚装置を備えた冷蔵庫
JP2004053210A (ja) 棚装置、およびその棚装置を備えた冷蔵庫

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529204

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12007500053

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 200580023186.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase