WO2006006301A1 - 内燃機関の回転数制御装置及びその回転数制御装置を備えた内燃機関 - Google Patents

内燃機関の回転数制御装置及びその回転数制御装置を備えた内燃機関 Download PDF

Info

Publication number
WO2006006301A1
WO2006006301A1 PCT/JP2005/009146 JP2005009146W WO2006006301A1 WO 2006006301 A1 WO2006006301 A1 WO 2006006301A1 JP 2005009146 W JP2005009146 W JP 2005009146W WO 2006006301 A1 WO2006006301 A1 WO 2006006301A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
cylinder
internal combustion
speed
combustion engine
Prior art date
Application number
PCT/JP2005/009146
Other languages
English (en)
French (fr)
Inventor
Hitoshi Adachi
Tomohiro Otani
Fumiya Kotou
Hideo Shiomi
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to EP05741578A priority Critical patent/EP1767767A1/en
Priority to US11/631,956 priority patent/US7467039B2/en
Publication of WO2006006301A1 publication Critical patent/WO2006006301A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the present invention relates to a rotation speed control device for an internal combustion engine (for example, a diesel engine) and an internal combustion engine (hereinafter referred to as an engine) provided with the rotation speed control device.
  • an engine for example, a diesel engine
  • the present invention relates to a measure for achieving both improvement in the responsiveness of the fuel injection system that determines the fuel injection amount by so-called rotational speed feedback control and stability of engine operation.
  • a fuel injection amount from a fuel injection valve is determined by electronic control. ing.
  • the fuel injection amount is adjusted according to the fluctuation state of the engine speed. In other words, when calculating the required fuel injection amount, the previous engine speed is recognized, and if the recognized engine speed is lower than the target speed, the fuel injection amount is increased, while this When the engine speed is higher than the target speed, so-called engine speed feedback control is performed whenever the fuel injection amount is reduced.
  • the compression top dead center force of each cylinder is determined from the time required for the crankshaft to rotate to a predetermined angle, and the engine speed in the expansion stroke of the cylinder is determined.
  • the current engine speed is calculated and recognized, and the fuel injection amount is determined by comparing the current engine speed with the target speed.
  • this engine speed feedback control is referred to as “immediate cylinder feedback control”.
  • Patent Document 2 JP 2002-371889 A
  • FIG. 6 is a diagram showing the relationship between the cylinder number and the exhaust temperature in a state where the variation in the exhaust temperature between the cylinders in the four-cylinder engine is large.
  • the expansion stroke is performed in the order of the first, third, fourth, and second cylinders.
  • the fuel injection amount in the first cylinder decreases, thereby reducing the engine speed and the exhaust temperature.
  • the amount of fuel injection that should recover from the decrease in engine speed in the first cylinder increases, thereby increasing the engine speed and increasing the exhaust temperature.
  • the fuel injection amounts of the cylinders alternately have a magnitude relationship, and the exhaust temperature variation between the cylinders increases.
  • the above-described “immediate cylinder feedback control” does not cause a problem, but it does not respond to load fluctuations or a target rotational speed change command during acceleration / deceleration. Responsiveness decreases.
  • the engine speed in the expansion stroke of that cylinder is calculated, and from the previous cylinder to the previous cylinder. Is determined as the current engine speed, and the fuel injection amount is determined by comparing the current engine speed with the target speed.
  • Fig. 5 (b) shows the fluctuation state of the engine speed when the command speed (target speed) rises rapidly in the fuel injection system that performs ⁇ multiple average feedback control ''.
  • Fig. 5 (a) shows the change in the command speed signal).
  • a time lag time t2 in the figure
  • time t3 time t3 in the figure
  • the present invention has been made in view of the points to be applied, and its purpose is to improve responsiveness in transient states such as load fluctuations and acceleration / deceleration commands, and to stabilize operation when the engine is in a steady state.
  • An object of the present invention is to provide a rotation speed control device that realizes a fuel injection operation capable of achieving both improvement in performance and an internal combustion engine equipped with the rotation speed control device.
  • the solution means of the present invention switches the control method for determining the fuel injection amount in accordance with the engine operating state. For example, in an operating state in which the variation in exhaust temperature between cylinders is small, the fuel injection amount is determined by a control method (“immediate cylinder feedback control”) that can follow sudden load fluctuations, and In an operating condition where the exhaust temperature variation at the The fuel injection amount is determined by switching to a control method (“multiple average feedback control”) that prioritizes suppression of exhaust temperature variation over follow-up performance.
  • the present invention detects the engine speed of an internal combustion engine having a plurality of cylinders, and controls the fuel injection amount such as the fuel injection means force so that the detected engine speed approaches the target speed.
  • An internal combustion engine speed control device that performs engine speed feedback control is assumed.
  • the engine speed during the expansion stroke of the cylinder is calculated from the time required for the crankshaft to rotate from the compression top dead center of each cylinder to a predetermined angle.
  • the stored engine speed is stored in the cylinders immediately before and immediately before.
  • the engine speed is fed back as the engine speed that is retroactively averaged up to the minute, and feedback rotation speed switching means for calculating the feedback speed by switching the retroactive cylinder speed according to the operating state of the internal combustion engine is provided.
  • the fuel injection amount is determined only for the immediately preceding cylinder, and an amount of fuel corresponding to this load change can be injected from the fuel injection means without timing delay.
  • the fuel injection amount is determined based on the average engine speed retroactively up to the previous cylinder, and against sudden disturbances. Stable engine operation becomes possible by suppressing fluctuations in fuel injection amount.
  • the predetermined angle is a half of the angle from the compression top dead center of one cylinder to the compression top dead center of the next cylinder.
  • the feedback rotation speed switching means may switch the retroactive cylinder number for calculating the average rotation speed to be fed back according to the engine load.
  • the number of retroactive cylinders for averaging is switched according to the engine load. Operation with good responsiveness and stability according to the load condition can be realized.
  • the condition for determining whether or not to feed back the number of revolutions obtained by averaging the number of revolutions up to the number of cylinders immediately before and immediately before the previous cylinder component force may be whether or not the internal combustion engine is in a steady operating state.
  • the feedback rotational speed switching means switches according to the deviation amount between the target rotational speed and the engine rotational speed of the immediately preceding cylinder. It may be a thing. At this time, if the deviation amount increases, the number of retroactive cylinders decreases, and if the deviation amount decreases, the number of retroactive cylinders increases, so that the fuel injection amount following the change in the target rotational speed can be obtained quickly. In situations where a rapid increase in engine speed, such as sudden acceleration, is required, it is possible to respond quickly to the request and realize an operating state with good responsiveness.
  • the feedback rotation speed switching means force may be switched according to the fluctuation amount of the engine load.
  • the number of retroactive cylinders is decreased, and when the amount of fluctuation is smaller, the number of retroactive cylinders is increased, so that the fuel injection amount following the load fluctuation can be obtained quickly.
  • the engine speed can be maintained by quickly increasing the fuel injection amount. Can also be operated with good responsiveness.
  • the feedback rotation speed switching means may feed back the average rotation speed retroactively from the previous cylinder to the previous cylinder during the reduced cylinder operation. This significantly increases the fuel injection amount in the cylinder immediately after the stop cylinder, leading to hunting of the fuel injection amount t, which can be avoided, and the exhaust temperature variation among the cylinders can be relaxed. .
  • the number of retroactive cylinders may be an integral multiple of the number of engine cylinders. According to this, since the engine speed in the expansion stroke of all cylinders of the internal combustion engine is reflected in the feedback speed, the influence of the rotational fluctuation can be mitigated regardless of the target speed and the engine load.
  • the feedback rotation speed switching means may feed back the engine rotation speed of the immediately preceding cylinder during idling operation of the internal combustion engine. According to this, acceleration command and engine load Responsiveness to fluctuations of the
  • the feedback rotation speed switching means predicts a change in engine load from a clutch connection / disconnection signal or the like
  • the engine rotation speed of the immediately preceding cylinder may be fed back during a preset load corresponding period. According to this, it is possible to suppress a decrease in engine rotation due to load fluctuation.
  • the load handling period can be arbitrarily set. As a result, even when the period from when a load change occurs to the transition to a steady state of force varies among internal combustion engines due to model differences, individual differences, aging deterioration, etc., such adjustments individually or by aging state Is possible.
  • the degree of past cylinders is determined when the engine speed fed back to determine the fuel injection amount is averaged from the previous cylinder to the previous cylinder. Whether the average is calculated retroactively or not can be switched according to the engine operating state, and by selecting this feedback speed, the response in transient states such as load fluctuations and acceleration / deceleration commands is improved, and the internal combustion engine It is possible to achieve both improvement in operational stability when in a state.
  • FIG. 1 is a view showing a pressure accumulation fuel injection device according to an embodiment.
  • FIG. 2 is a control block diagram for determining a fuel injection amount.
  • FIG. 3 is a diagram showing a fluctuation state of the engine speed in the embodiment.
  • FIG. 4 is a diagram showing a relationship between cylinder numbers and exhaust temperatures in the embodiment.
  • FIG. 5 is a diagram for explaining changes in the engine speed when the command speed increases rapidly.
  • FIG. 5 (a) shows the command speed signal and
  • FIG. ) Shows the change in engine speed in “multiple average feed knock control”, and
  • FIG. 5 (c) shows the change in engine speed in “immediate cylinder feedback control”.
  • FIG. 6 is a diagram showing the relationship between the cylinder number and the exhaust temperature in a state where the variation in the exhaust temperature between the cylinders in the conventional four-cylinder engine becomes large.
  • FIG. 7 is a diagram showing a fluctuation state of the engine speed when a failure occurs in the fuel injection valve of the first cylinder in the conventional example.
  • Fig. 1 shows a pressure accumulator fuel injection system equipped in a 4-cylinder marine diesel engine.
  • This accumulator type fuel injection device includes a plurality of fuel injection valves (hereinafter referred to as injectors) 1, 1,... Attached corresponding to respective cylinders of a diesel engine (hereinafter simply referred to as an engine).
  • injectors fuel injection valves
  • a pump 8 and a controller (ECU) 12 that electronically controls the injectors 1, 1,... And the high-pressure pump 8 are provided.
  • the high-pressure pump 8 is driven by an engine, for example, and boosts the fuel to a high pressure determined based on an operating state or the like, and supplies the fuel to the common rail 2 through the fuel supply pipe 9, so-called plunger-type fuel for supply Supply pump.
  • Each injector 1, 1, ... is a downstream end of a fuel pipe communicating with the common rail 2, respectively. Is attached.
  • the injection of fuel from the injector 1 is performed by, for example, energizing and stopping energization of a solenoid valve for injection control (not shown) that is integrated in the generator.
  • the injector 1 injects the high-pressure fuel supplied from the common rail 2 toward the combustion chamber of the engine while the injection control electromagnetic valve is open.
  • the controller 12 receives various engine information such as the engine speed and engine load, and performs the injection control so as to obtain the optimum fuel injection timing and fuel injection amount determined from these signals.
  • a control signal is output to the solenoid valve.
  • the controller 12 outputs a control signal to the high pressure pump 8 so that the fuel injection pressure becomes an optimum value according to the engine speed and the engine load.
  • a pressure sensor 13 for detecting the common rail internal pressure is attached to the common rail 2, and a high pressure is set so that the signal of the pressure sensor 13 becomes a preset optimum value according to the engine speed and the engine load. The amount of fuel discharged from the pump 8 to the common rail 2 is controlled.
  • each injector 1 The fuel supply operation to each injector 1 is performed from the common rail 2 through the branch pipe 3 constituting a part of the fuel flow path. That is, the fuel taken out from the fuel tank 4 through the filter 5 by the low-pressure pump 6 and pressurized to a predetermined suction pressure is sent to the high-pressure pump 8 through the fuel pipe 7.
  • the fuel supplied to the high-pressure pump 8 is stored in the common rail 2 in a state where the pressure is increased to a predetermined pressure, and is supplied from the common rail 2 to the injectors 1, 1,.
  • a plurality of the injectors 1 are provided according to the type of engine (the number of cylinders, 4 cylinders in this embodiment), and the fuel supplied from the common rail 2 is controlled to the optimal fuel injection timing by the controller 12.
  • An injection amount is injected into the corresponding combustion chamber (a method for determining this fuel injection amount will be described later). Since the injection pressure of the fuel injected from the injector 1 is substantially equal to the pressure of the fuel stored in the common rail 2, the fuel injection pressure is controlled by controlling the pressure in the common rail 2.
  • the controller 12 which is an electronic control unit, has information on the cylinder number and crank angle. Information has been entered.
  • the controller 12 is configured so that a target fuel injection condition (for example, target fuel injection timing, target fuel injection amount, target common rail) determined in advance based on the engine operating state so that the engine output becomes an optimum output in accordance with the operating state. (Internal pressure) is stored as a function, and target fuel injection conditions (that is, fuel injection timing and injection amount by the injector 1) are obtained by calculation corresponding to signals representing the current engine operating state detected by various sensors. The operation of the injector 1 and the fuel pressure in the common rail are controlled so that fuel injection is performed under these conditions.
  • a target fuel injection condition for example, target fuel injection timing, target fuel injection amount, target common rail
  • target fuel injection conditions that is, fuel injection timing and injection amount by the injector 1
  • FIG. 2 is a control block of the controller 12 for determining the fuel injection amount.
  • the calculation of the fuel injection amount is performed by the command rotational speed calculation means 12A receiving the opening signal of the regulator operated by the user, and the command rotational speed calculation means 12A corresponds to the opening of the regulator.
  • “command rotational speed (target rotational speed)” is calculated.
  • the injection amount calculation means 12B calculates the fuel injection amount so that the engine rotation speed becomes this command rotation speed.
  • Injector 1 of engine E performs the fuel injection operation with the fuel injection amount obtained by this calculation, and in this state, rotation speed calculation storage means 12C calculates the actual engine rotation speed, and the actual engine rotation speed and The fuel injection amount is corrected (engine speed feedback control) so that the actual engine speed approaches the command speed by comparing with the command speed.
  • the rotational speed calculation storage means 12C calculates the engine rotational speed in the expansion stroke of the cylinder from the time required for the crankshaft to rotate to a predetermined angle at the compression top dead center force of each cylinder. Store it in association with the number. Further, the calculated number of revolutions is temporarily stored for a certain amount.
  • a feedback rotation speed switching method in fuel injection control which is a feature of this embodiment, will be described.
  • the feature of this embodiment is that the feed knock speed in the fuel injection control is retroactive to the past cylinders to the extent that the average number of cylinders immediately before the previous cylinder component force is the same as the previous one. The average is calculated according to the engine operating condition.
  • a configuration for switching the feedback rotation speed in the fuel injection control and its operation will be described.
  • the injection amount calculation means 12B of the controller 12 Switching means 12D is provided. Further, the controller 12 includes target rotational speed determination means 12E, load fluctuation determination means 12F, and reduced cylinder operation determination means 12G.
  • the feedback rotation speed switching means 12D receives the outputs of the determination means 12E to 12G, and determines how many past cylinders are retroactively averaged according to the received signal. Then, the rotational speed of the feedback is changed, and the injection amount calculation means 12B is caused to execute a control operation (calculation processing operation) for determining the fuel injection amount.
  • the engine speed signal from the engine speed detection means 100 is input to the controller 12, and the engine speed signal is input to the controller 12C.
  • the engine speed is calculated, and the calculated engine speed is associated with the cylinder number and temporarily stored for a certain amount.
  • the injection amount calculation means 12B determines the fuel injection amount by calculation.
  • the engine speed detection means 100 is an electromagnetic pickup that has a plurality of protrusions formed on the outer periphery of the crankshaft synchronous rotating body (not shown) provided integrally with the crankshaft of the engine E.
  • the engine speed is calculated based on the time required for a predetermined number of protrusions to pass through the detector.
  • the engine speed used in the fuel injection control of the present embodiment is such that the speed calculation storage means 12C rotates a predetermined angle with the time point when the compression top dead center of a certain cylinder is reached as a “base point”.
  • the calculation is based on the time required (the base force is also the time required to detect a certain number of protrusions).
  • the predetermined angle is a half of the crank angle from the compression top dead center of one cylinder to the compression top dead center of the next cylinder.
  • the feedback rotation speed is determined according to the deviation amount between the target rotation speed determined by the target rotation speed determination means 12E and the rotation speed of the immediately preceding cylinder calculated and stored by the rotation speed calculation storage means 12C. Switch the number of retroactive cylinders for calculation. At this time, if the deviation amount increases, the retroactive cylinder number decreases, that is, the rotation speed of the immediately preceding cylinder is reflected in the feedback rotation speed, and if the deviation amount decreases, the retroactive cylinder number increases. The rotation speed of the cylinder immediately before is reflected in the feedback rotation speed.
  • the fuel injection amount following the load fluctuation (the engine load may fluctuate suddenly due to the effect of clutch engagement, waves, etc. in a ship) can be quickly achieved.
  • the engine speed can be maintained by increasing the fuel injection amount quickly even in a situation where the engine speed decreases sharply when the load suddenly increases during low-speed operation of the engine. It can be avoided.
  • the engine rotation speed fed back to determine the fuel injection amount is set to the average rotation speed from the previous cylinder to the previous cylinder. Whether the average is calculated retroactively or not can be switched according to the engine operating state.By selecting this feedback speed, the response in transient states such as load fluctuations and acceleration / deceleration commands is improved, and the engine is in a steady state. It is possible to achieve a balance with improved driving stability at a given time.
  • “#” indicates the cylinder number
  • “TDC” indicates the timing at which the piston of the cylinder reaches the top dead center of the compression stroke.
  • the combustion in the expansion stroke is not sufficient in the first cylinder due to poor fuel injection (in the figure).
  • Range of tl) Engine speed decreases.
  • FIG. 3 shows a fluctuation state of the engine speed when a failure occurs in the indicator 1 of the first cylinder and fuel is not supplied to the first cylinder.
  • “#” indicates the cylinder number
  • “TDC” indicates the timing when the piston of the cylinder reaches top dead center.
  • the engine speed decreases in the first cylinder due to poor fuel injection due to insufficient combustion in the expansion stroke (range tl in the figure). In this case, it is determined that the operation is reduced, and the average number of revolutions is fed back from the previous cylinder to the previous cylinder. Therefore, compared with Fig.
  • FIG. 4 is a diagram showing the relationship between the cylinder number and the exhaust temperature in the steady operation state.
  • the average number of rotations is fed back from the previous cylinder to the previous cylinder. Therefore, for example, even if the engine load is temporarily reduced, it is possible to avoid an excessive decrease in the fuel injection amount in the cylinder that immediately enters the expansion stroke. Therefore, it is possible to avoid the fuel injection amount alternately changing in magnitude between the cylinders, so that variation in the exhaust temperature between the cylinders as shown in FIG. 4 can be suppressed.
  • Fig. 5 shows that when the command rotation speed (target rotation speed) increases rapidly due to the regulator operation, the retroactive cylinder number is decreased and the rotation speed of the immediately preceding cylinder (for example, only for the immediately preceding cylinder) is reduced. It is a figure for demonstrating the fluctuation state of the engine speed at the time of feeding back the reflected speed.
  • the fuel injection control is performed by feeding back the rotation number reflecting the rotation number of the immediately preceding cylinder (for example, only for the immediately preceding cylinder).
  • the actual command speed is also measured in response to the rapid increase in the command speed signal. It rises quickly with almost no noise and stabilizes to an appropriate value in a short time without changing its command speed.
  • the present invention is applied to a four-cylinder marine diesel engine equipped with an accumulator fuel injection device.
  • the present invention is not limited to this, and can be applied to various types of engines such as a diesel engine and a six-cylinder diesel engine that are equipped with a pressure-accumulation fuel injection device. Moreover, it is applicable not only to marine engines but also to engines used for other purposes such as vehicles and generators.
  • the target engine speed is a constant value.
  • the present invention is useful for an internal combustion engine, particularly a diesel engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 各気筒の圧縮上死点から所定角度までクランク角度が回転するのに要した時間よりその気筒の膨張行程でのエンジン回転数を算出して記憶し、燃料噴射量を決定するために、フィードバックするエンジン回転数として、この記憶した回転数を直前気筒分から直前以前の気筒分まで平均した回転数とするに当たって、どの程度まで過去の気筒分まで遡及して平均化するのかをエンジン運転状態に応じて切換える。

Description

明 細 書
内燃機関の回転数制御装置及びその回転数制御装置を備えた内燃機 関
技術分野
[0001] 本発明は、内燃機関(例えばディーゼルエンジン)の回転数制御装置及びその回 転数制御装置を備えた内燃機関 (以下、エンジンという)に係る。特に、本発明は、所 謂回転数フィードバック制御によって燃料噴射量を決定する燃料噴射系の応答性の 向上と機関運転の安定性を両立するための対策に関する。
背景技術
[0002] 従来より、例えば下記の特許文献 1や特許文献 2に開示されている多気筒ディーゼ ルエンジンの燃料供給系として、電子制御によって燃料噴射弁からの燃料噴射量を 決定することが行われている。また、この燃料噴射量の決定手法として、エンジン回 転数の変動状態に応じて燃料噴射量を調整することも行われている。つまり、必要燃 料噴射量を演算する際に、それ以前のエンジン回転数を認識し、この認識したェン ジン回転数が目標回転数よりも低い場合には燃料噴射量を増量する一方、このェン ジン回転数が目標回転数よりも高い場合には燃料噴射量を減量するといつた所謂ェ ンジン回転数フィードバック制御が行われている。
[0003] これまでのエンジン回転数フィードバック制御の一つとして、各気筒の圧縮上死点 力 所定角度までクランク軸が回転するのに要した時間より、その気筒の膨張行程で のエンジン回転数を算出して、現エンジン回転数を認識し、この現エンジン回転数と 目標回転数とを比較して燃料噴射量を決定することが行われている。以下、このェン ジン回転数フィードバック制御を「直前気筒フィードバック制御」と呼ぶ。
[0004] また、各気筒の圧縮上死点力 所定角度までクランク軸が回転するのに要した時間 より、その気筒の膨張行程でのエンジン回転数を算出して、直前気筒分から直前以 前の気筒分までの平均値を現エンジン回転数であると認識し、この現エンジン回転 数と目標回転数とを比較して燃料噴射量を決定することも行われている。以下、この エンジン回転数フィードバック制御を「複数回平均フィードバック制御」と呼ぶ。 特許文献 1 :特開 2001— 41090号公報
特許文献 2 :特開 2002— 371889号公報
発明の開示
発明が解決しょうとする課題
[0005] ところが、上述した従来のエンジン回転数フィードバック制御にあっては、以下に述 ベる各不具合があった。
[0006] 「直前気筒フィードバック制御」を行う場合、目標回転数の変化に対する応答性は 向上するが、エンジンが定常運転状態のときに、この制御を行うと、各気筒の燃料噴 射量が交互に大小関係を生じてしまい、各気筒間の排気温度のバラツキが大きくな る。図 6は、 4気筒エンジンにおいて各気筒間での排気温度のバラツキが大きくなつ た状態の気筒番号と排気温度との関係を示す図である。この図 6に示すものでは、第 1、第 3、第 4、第 2気筒の順で膨張行程が行われる。ここで、例えば、エンジン負荷が 一時的に減少すると、第 1気筒での燃料噴射量が減少し、それによつてエンジン回 転数が減少すると共に排気温度が低下する。そして、次に膨張行程を行う第 3気筒 では第 1気筒でのエンジン回転数の減少を回復すベぐ燃料噴射量が増加し、それ によってエンジン回転数が増加するとともに排気温度が上昇する。以後、各気筒の燃 料噴射量が交互に大小関係を生じてしまい、各気筒間の排気温度のバラツキが大き くなる状態を示している。
[0007] また、故障等により減筒運転を行う場合には、停止気筒直後の気筒での燃料噴射 量が過剰となり、ハンチングが発生する場合がある。図 7は、例えば、第 1気筒の燃料 噴射弁にカーボンフラワーが発生等して、この第 1気筒に燃料供給が行われなくなつ た場合(=減筒運転状態)の機関回転数の変動状態を示して 、る。この図では「 #」 は気筒番号を示しており、「TDC」はその気筒のピストンが圧縮行程上死点に達する タイミングを示している。この図 7からも判るように、第 1気筒の圧縮行程上死点から次 の圧縮行程上死点である、第 3気筒の圧縮行程上死点に達する際に(図中の範囲 t 1)、第 1気筒での燃焼が十分でないためエンジン回転数が低下する。そして、次の 第 3気筒に対しては第 1気筒でのエンジン回転数低下を回復すべく燃料噴射量が大 幅に増量されるため、エンジン回転数が急上昇している(図中の点 pi参照)。以後、 各気筒の燃料噴射量の変動が大きくなることにより、エンジン回転数の急変が繰返さ れ、ハンチングが発生することを示している。
[0008] 一方、「複数回平均フィードバック制御」を行う燃料噴射系の場合、上述した「直前 気筒フィードバック制御」のような不具合は生じないものの、負荷変動や加減速時の 目標回転数変更指令に対する応答性が低下する。つまり、各気筒の圧縮上死点から 所定角度までクランク軸が回転するのに要した時間より、その気筒の膨張行程でのェ ンジン回転数を算出して、直前気筒分から直前以前の気筒分までの平均値を現ェン ジン回転数であると認識し、この現エンジン回転数と目標回転数とを比較して燃料噴 射量を決定するため、この急激な負荷変動や加減速時の目標回転数変更指令を反 映した制御 (燃料噴射量を迅速に増大してエンジン回転数を目標回転数に収束させ る制御)を行うまでにタイムラグが生じてしまう。図 5 (b)は、「複数回平均フィードバッ ク制御」を行う燃料噴射系にお 、て指令回転数 (目標回転数)が急激に上昇した場 合のエンジン回転数の変動状態を示している(図 5 (a)は指令回転数信号の変化を 示している)。この図 5 (b)からも判るように、指令回転数信号が急激に上昇したとして も実際の指令回転数が上昇するまでにはタイムラグ(図中の時間 t2)が生じ、その後 も、実際の指令回転数が指令回転数に落ち着くまでに長い時間(図中の時間 t3)を 要すること〖こなる。
[0009] 本発明は、力かる点に鑑みてなされたものであり、その目的は、負荷変動や加減速 指令等の過渡状態における応答性の向上と、エンジンが定常状態にあるときの運転 安定性の向上との両立を図ることが可能な燃料噴射動作を実現する回転数制御装 置及びその回転数制御装置を備えた内燃機関を提供することにある。
課題を解決するための手段
[0010] 一発明の概要
上記の目的を達成するために講じられた本発明の解決手段は、燃料噴射量を決定 するための制御手法を、エンジン運転状態に応じて切換えるようにしている。例えば 、各気筒間での排気温度のバラツキが小さい運転状態では、急激な負荷変動に追 従することが可能な制御手法(「直前気筒フィードバック制御」)によって燃料噴射量 を決定し、各気筒間での排気温度のバラツキが大きくなる運転状態では、負荷変動 の追従性よりも排気温度のバラツキの抑制を優先する制御手法(「複数回平均フィー ドバック制御」)に切換えて燃料噴射量を決定するようにして 、る。
[0011] 解決手段
具体的に、本発明は、複数の気筒を有する内燃機関の機関回転数を検知し、この 検知された機関回転数が目標回転数に近付くように燃料噴射手段力ゝらの燃料噴射 量を制御する機関回転数フィードバック制御を行う内燃機関の回転数制御装置を前 提としている。この回転数制御装置に対し、上記各気筒の圧縮上死点から所定角度 までクランク軸が回転するのに要した時間より、その気筒の膨張行程での機関回転 数を算出してその気筒番号と関連付けて記憶する回転数算出記憶手段と、この気筒 番号と関連付けされた機関回転数と目標回転数に基づき燃料噴射量を決定するに 当たって、この記憶した回転数を直前気筒分から直前以前の気筒分まで遡及して平 均した回転数を機関回転数としてフィードバックすると共に、上記内燃機関の運転状 態によって遡及気筒数を切換えてフィードバック回転数を算出するフィードバック回 転数切換手段を備えさせて 、る。
[0012] この特定事項により、上記内燃機関の運転状態に応じた適切なフィードバック回転 数を選定することができる。例えば急激な負荷変動が生じた場合には、直前気筒分 のみによって燃料噴射量を決定し、この負荷変動に応じた量の燃料をタイミング遅れ なく上記燃料噴射手段から噴射することが可能になる。逆に、定常運転状態等の目 標回転数や機関負荷が安定しているときは、直前以前の気筒分まで遡及して平均し た回転数によって燃料噴射量を決定し、瞬発的な外乱に対する過敏な燃料噴射量 の変動を抑制して安定した機関運転が可能になる。
[0013] なお、ここで、所定角度とは、ある気筒の圧縮上死点から、その次の気筒の圧縮上 死点までの角度を 2分の 1したものである。
[0014] 以下、上記フィードバック回転数切換手段によるフィードバック回転数の切換動作 について具体的に説明する。
[0015] 上記構成において、上記フィードバック回転数切換手段が、フィードバックする平均 回転数を算出するための遡及気筒数を機関負荷に応じて、切換える構成としてもよ い。この場合、機関負荷に応じて、平均化のための遡及気筒数を切換えるので、機 関負荷状態に応じた、応答性と安定性の良い運転が実現できる。
[0016] 直前気筒分力も直前以前の気筒分までの回転数を平均した回転数をフィードバッ クするか否かの判定条件としては、内燃機関が定常運転状態力否かでも良い。
[0017] また、目標回転数の変動に応じてフィードバック回転数を選定するものとしては、上 記フィードバック回転数切換手段が、目標回転数と直前気筒の機関回転数との偏差 量に応じて切換えるものであってもよい。このとき、偏差量が大きくなれば遡及気筒数 を減少し、偏差量が小さくなれば遡及気筒数を増加することにより、目標回転数の変 動に追従した燃料噴射量を迅速に得ることができ、急加速のような機関回転数の急 上昇が要求される状況にあっては、その要求に迅速に応えることができ応答性の良 好な運転状態を実現できる。
[0018] 更に、機関負荷の変動に応じてフィードバック制御手法を選定するものとしては、上 記フィードバック回転数切換手段力 機関負荷の変動量に応じて切換えるものであつ てもよい。変動量が大きくなれば遡及気筒数を減少し、変動量が小さくなれば遡及気 筒数を増加することにより、負荷変動に追従した燃料噴射量を迅速に得ることができ 、特に、内燃機関の低回転運転時に負荷が急激に大きくなつて機関回転数が急低 下する状況であっても迅速に燃料噴射量を増大させて機関回転数を維持することが できるので、機関負荷が変動しても応答性の良い運転を実現できる。
[0019] カロえて、上記フィードバック回転数切換手段が、減筒運転時には直前気筒分から 直前以前の気筒分まで遡及して、平均した回転数をフィードバックするものであって もよい。これにより、停止気筒直後の気筒で燃料噴射量が著しく増大して燃料噴射量 のハンチングを招 、てしまう t 、つたことが回避され、各気筒間での排気温度のバラ ツキを緩禾口できる。
[0020] そして、直前気筒分力 直前以前の気筒分までの回転数を平均するに当たって、 遡及気筒数を機関気筒数の整数倍としてもよい。これ〖こよれば、内燃機関の全気筒 の膨張行程での機関回転数が、フィードバック回転数に反映されるため、目標回転 数や機関負荷に起因せず、回転変動の影響を緩和できる。
[0021] また、上記フィードバック回転数切換手段が、内燃機関のアイドリング運転時、直前 気筒の機関回転数をフィードバックしてもよい。これによれば、加速指令や機関負荷 の変動に対する応答性が向上する。
[0022] また、上記フィードバック回転数切換手段が、クラッチ断接信号等から機関負荷の 変動を予測した場合に、直前気筒の機関回転数を予め設定された負荷対応期間中 フィードバックしてもよい。これによれば、負荷変動における機関回転の低下を抑制 できる。この場合、負荷対応期間を任意に設定可能とすることが好ましい。これにより 、負荷変動が発生して力 定常状態に移行するまでの期間が、機種差、個体差や経 年劣化等により各内燃機関で異なる場合でも、そのような個別又は経年状態別の調 整が可能となる。
[0023] 力!]えて、上述した各解決手段のうち何れか一つに記載の回転数制御装置を備えた 内燃機関も本発明の技術的思想の範疇である。
発明の効果
[0024] 以上の如ぐ本発明では、燃料噴射量を決定するためにフィードバックする機関回 転数を直前気筒分から直前以前の気筒分まで平均した回転数とするに当たって、ど の程度過去の気筒分まで遡及して平均を算出するのかを機関運転状態に応じて切 換可能とし、このフィードバック回転数の選定によって、負荷変動や加減速指令等の 過渡状態における応答性の向上と、内燃機関が定常状態にあるときの運転安定性の 向上との両立を図ることができる。
図面の簡単な説明
[0025] [図 1]図 1は、実施形態に係る蓄圧式燃料噴射装置を示す図である。
[図 2]図 2は、燃料噴射量を決定するための制御ブロック図である。
[図 3]図 3は、実施形態におけるエンジン回転数の変動状態を示す図である。
[図 4]図 4は、実施形態における気筒番号と排気温度との関係を示す図である。
[図 5]図 5は、指令回転数が急激に上昇した場合のエンジン回転数の変化を説明す るための図であって、図 5 (a)は指令回転数信号を、図 5 (b)は「複数回平均フィード ノ ック制御」におけるエンジン回転数の変化を、図 5 (c)は「直前気筒フィードバック制 御」におけるエンジン回転数の変化をそれぞれ示す図である。
[図 6]図 6は、従来の 4気筒エンジンにおいて各気筒間での排気温度のバラツキが大 きくなつた状態の気筒番号と排気温度との関係を示す図である。 [図 7]図 7は、従来例において第 1気筒の燃料噴射弁に故障が発生した場合のェン ジン回転数の変動状態を示す図である。
符号の説明
[0026] 1 インジェクタ (燃料噴射弁)
12C 回転数算出記憶手段
12D フィードバック回転数切換手段
12E 目標回転数判定手段
12F 負荷変動判定手段
12G 減筒運転判定手段
E エンジン (内燃機関)
発明を実施するための最良の形態
[0027] 以下、本発明の実施の形態を図面に基づいて説明する。本実施形態では、蓄圧配 管 (所謂コモンレール)を備えた蓄圧式 (コモンレール式)燃料噴射装置を備えた 4気 筒舶用ディーゼルエンジンに本発明を適用した場合について説明する。
[0028] 燃料噴射装置の構成説明
先ず、本実施形態に係るエンジンに適用される燃料噴射装置の全体構成にっ 、て 説明する。図 1は、 4気筒舶用ディーゼルエンジンに備えられた蓄圧式燃料噴射装 置を示している。
[0029] この蓄圧式燃料噴射装置は、ディーゼルエンジン(以下、単にエンジンと 、う)の各 気筒に対応して取り付けられた複数の燃料噴射弁 (以下、インジェクタという) 1, 1, …と、比較的高い圧力(コモンレール内圧:例えば lOOMPa)の高圧燃料を蓄圧する コモンレール 2と、燃料タンク 4力 低圧ポンプ(フィードポンプ) 6を経て吸入した燃料 を高圧に加圧してコモンレール 2内に吐出する高圧ポンプ 8と、上記インジェクタ 1, 1 ,…及び高圧ポンプ 8を電子制御するコントローラ (ECU) 12とを備えている。
[0030] 上記高圧ポンプ 8は、例えばエンジンによって駆動され、燃料を運転状態等に基づ いて定められる高圧に昇圧して燃料供給配管 9を通じてコモンレール 2に供給する所 謂プランジャ式のサプライ用の燃料供給ポンプである。
[0031] 各インジェクタ 1, 1,…は、コモンレール 2にそれぞれ連通する燃料配管の下流端 に取り付けられている。このインジェクタ 1からの燃料の噴射は、例えばこのインジエタ タに一体的に組み込まれた図示しない噴射制御用電磁弁への通電および通電停止
(ON/OFF)により制御される。つまり、インジェクタ 1は、この噴射制御用電磁弁が 開弁している間、コモンレール 2から供給された高圧燃料をエンジンの燃焼室に向け て噴射する。
[0032] また、上記コントローラ 12は、エンジン回転数やエンジン負荷等の各種エンジン情 報が入力され、これらの信号より判断される最適の燃料噴射時期及び燃料噴射量が 得られるように上記噴射制御用電磁弁に制御信号を出力する。同時に、コントローラ 12はエンジン回転数やエンジン負荷に応じて燃料噴射圧力が最適値となるように高 圧ポンプ 8に対して制御信号を出力する。更に、コモンレール 2にはコモンレール内 圧を検出するための圧力センサ 13が取り付けられており、この圧力センサ 13の信号 がエンジン回転数やエンジン負荷に応じて予め設定された最適値となるように高圧 ポンプ 8からコモンレール 2に吐出される燃料吐出量が制御される。
[0033] 各インジェクタ 1への燃料供給動作は、コモンレール 2から燃料流路の一部を構成 する分岐管 3を通じて行われる。つまり、燃料タンク 4からフィルタ 5を経て低圧ポンプ 6によって取り出されて所定の吸入圧力に加圧された燃料は、燃料管 7を通じて高圧 ポンプ 8に送られる。そして、この高圧ポンプ 8に供給された燃料は、所定圧力に昇 圧された状態でコモンレール 2に貯留され、コモンレール 2から各インジェクタ 1, 1, …に供給される。インジヱクタ 1は、エンジンの型式 (気筒数、本形態では 4気筒)に応 じて複数個設けられており、コントローラ 12の制御によって、コモンレール 2から供給 された燃料を最適な噴射時期に最適な燃料噴射量でもって、対応する燃焼室内に 噴射する(この燃料噴射量の決定手法については後述する)。インジヱクタ 1から噴射 される燃料の噴射圧は、コモンレール 2に貯留されて ヽる燃料の圧力に略等 、の で、コモンレール 2内の圧力を制御して燃料噴射圧を制御する。
[0034] また、分岐管 3からインジヱクタ 1に供給された燃料のうち燃焼室への噴射に費やさ れな力つた燃料やコモンレール内圧が過上昇した場合の余剰燃料は、戻し管 11を 通じて燃料タンク 4に戻される。
[0035] 電子制御ユニットである上記コントローラ 12には、気筒番号及びクランク角度の情 報が入力されている。このコントローラ 12は、エンジン出力が運転状態に即した最適 出力になるようにエンジン運転状態に基づ 、て予め定められた目標燃料噴射条件( 例えば, 目標燃料噴射時期、目標燃料噴射量、目標コモンレール内圧)を関数とし て記憶しており、各種センサが検出した現在のエンジン運転状態を表す信号に対応 して目標燃料噴射条件 (即ち、インジェクタ 1による燃料噴射タイミング及び噴射量) を演算により求めて、その条件で燃料噴射が行われるようにインジェクタ 1の作動とコ モンレール内燃料圧力とを制御している。
[0036] 図 2は燃料噴射量を決定するためのコントローラ 12の制御ブロックである。この図 2 に示すように、燃料噴射量の算出は、ユーザが操作するレギユレ一タの開度信号を 指令回転数算出手段 12Aが受け、この指令回転数算出手段 12Aがレギユレータの 開度に応じた「指令回転数(目標回転数)」を算出する。そして、エンジン回転数がこ の指令回転数となるように噴射量演算手段 12Bが燃料噴射量を演算する。エンジン Eのインジェクタ 1では、この演算により求められた燃料噴射量で燃料噴射動作が行 われ、この状態で回転数算出記憶手段 12Cが実際のエンジン回転数を算出し、この 実際のエンジン回転数と上記指令回転数とを比較して、この実際のエンジン回転数 が指令回転数に近付くように燃料噴射量を補正 (エンジン回転数フィードバック制御 )するようになっている。ここで、回転数算出記憶手段 12Cは、各気筒の圧縮上死点 力 所定角度までクランク軸が回転するのに要した時間より、その気筒の膨張行程で の機関回転数を算出してその気筒番号と関連付けて記憶する。さらに、この算出した 回転数を一定分、一時的に記憶しておく。
[0037] —燃料噴射制御におけるフィードバック回転数の切換手法—
次に、本形態の特徴である燃料噴射制御におけるフィードバック回転数の切換手 法について説明する。本形態の特徴とするところは、燃料噴射制御におけるフィード ノ ック回転数を直前気筒分力 直前以前の気筒分まで平均した回転数とするに当た つて、どの程度まで過去の気筒分まで遡及して平均を算出するのかを機関運転状態 に応じて切換える点にある。以下、この燃料噴射制御におけるフィードバック回転数 を切換えるための構成及びその動作について説明する。
[0038] 図 1に示すように、コントローラ 12の噴射量演算手段 12Bは、フィードバック回転数 切換手段 12Dを備えている。また、このコントローラ 12は、目標回転数判定手段 12E 、負荷変動判定手段 12F、減筒運転判定手段 12Gを備えている。
[0039] 上記フィードバック回転数切換手段 12Dは、これら判定手段 12E〜12Gの出力を 受信し、その受信信号に応じて、どの程度の過去の気筒分まで遡及して機関回転数 を平均するのかを決定し、フィードバック回転数を切換えて、噴射量演算手段 12Bに 燃料噴射量決定のための制御動作 (演算処理動作)を実行させるようになって 、る。
[0040] 更に、コントローラ 12には、エンジン回転数検出手段 100からのエンジン回転数信 号が入力されるようになっており、この入力されたエンジン回転数信号を上記回転数 算出記憶手段 12Cが受けることによってエンジン回転数を算出し、この算出した回転 数を気筒番号と関連付けて、一定分、一時的に記憶する。
[0041] そして、レギユレータ開度に応じた目標回転数に基づき燃料噴射量を決定するに 当たって、記憶した回転数を直前気筒分力 直前以前の気筒分まで平均した回転 数を機関回転数としてフィードバックすることによって、上記噴射量演算手段 12Bが 燃料噴射量を演算により決定する。
[0042] 尚、上記エンジン回転数検出手段 100は、エンジン Eのクランク軸に回転一体に設 けられた図示しな 、クランク軸同期回転体の外周囲に形成された複数の凸起を電磁 ピックアップ式の検出器によって検出し、この検出器を所定枚数の凸起が通過する のに要する時間に基づきエンジン回転数を算出するようになっている。特に、本形態 の燃料噴射制御において使用するエンジン回転数は、上記回転数算出記憶手段 1 2Cが、ある気筒の圧縮上死点に達した時点を「基点」として、所定角度を回転するの に要した時間 (基点力も所定個数分の凸起を検出するのに要した時間)に基づき、算 出したものである。なお、所定角度とは、ある気筒の圧縮上死点から、次の気筒の圧 縮上死点に達するまでのクランク角度を 2分の 1したものである。
[0043] 次に、上述した各判定手段 12E〜12Gの出力に応じたフィードバック回転数の選 定動作について説明する。
[0044] (A)目標回転数判定手段 12Eが目標回転数の変動が収束していると判定し、かつ 、負荷変動判定手段 12Fが負荷の変動が収束していると判定したときに、内燃機関 が定常状態にあると判定する。この場合には、フィードバック回転数として、回転数算 出記憶手段 12Cが直前気筒の回転数から直前以前の気筒分までの回転数を平均し た回転数をフィードバックする。
[0045] このようなフィードバック回転数の選定により、瞬発的な外乱に対する過敏な燃料噴 射量の変動を抑制して安定した機関運転が可能になる。
[0046] (B)目標回転数判定手段 12Eにより判定された目標回転数と回転数算出記憶手 段 12Cが算出し記憶した直前気筒の回転数との偏差量に応じて、フィーバック回転 数を算出するための遡及気筒数を切換える。この際に、偏差量が大きくなれば、遡及 気筒数を減少し、つまり、より直前気筒の回転数をフィードバック回転数に反映させ、 偏差量が小さくなれば、遡及気筒数を増加し、つまり、より直前以前の気筒の回転数 をフィードバック回転数に反映させる。
[0047] このようなフィードバック回転数の選定により、操縦者のレギユレータ操作等に伴う 目標回転数の変動に追従した燃料噴射量を迅速に得ることができ、エンジン回転数 の急上昇が要求される状況においてその要求に迅速に応えることができ応答性の良 好な運転状態を実現できる。
[0048] (C)上記負荷変動判定手段 12Fがエンジンに掛かる負荷の変動を検知し、その変 動信号をフィードバック回転数切換手段 12Dが受け、エンジンに掛カる負荷が変動 した際、その変動量に応じて、フィーバック回転数を算出するための遡及気筒数を切 換える。この際に、変動量が大きくなれば、遡及気筒数を減少し、変動量が小さくな れば、遡及気筒数を増加する。
[0049] このようなフィードバック回転数の選定により、負荷変動(船舶にあってはクラッチ嵌 入や波等の影響によってエンジン負荷が急変動することがある)に追従した燃料噴 射量を迅速に得ることができる。特に、エンジンの低回転運転時に負荷が急激に大き くなつてエンジン回転数が急低下する状況であっても迅速に燃料噴射量を増大させ てエンジン回転数を維持することができるので、エンストを回避することができる。
[0050] (D)上記減筒運転判定手段 12Gが少なくとも何れか一つの気筒での燃焼停止を 判定した際、直前気筒分から直前以前の気筒分まで遡及して、平均した回転数をフ イードバックする。
[0051] このようなフィードバック回転数の選定により、燃焼停止気筒直後の気筒で燃料噴 射量が著しく増大して燃料噴射量のハンチングを招いてしまうといったことが回避さ れ、各気筒間での排気温度のバラツキを緩和できる。
[0052] (E)さらに、遡及気筒数をエンジン気筒数の整数倍とすれば、エンジンの全気筒の 膨張行程での回転数が、フィードバック回転数に反映されるため、目標回転数や機 関負荷に起因せず、回転変動の影響を緩和できる。
[0053] (F)エンジンのアイドリング運転時には、直前気筒のエンジン回転数をフィードバッ クする。
[0054] このようなフィードバック回転数の選定により、加速指令や機関負荷の変動に対す る応答性が向上する。
[0055] (G)また、クラッチ断接信号等に基づきエンジン負荷の変動を予測し、直前気筒の エンジン回転数を予め設定された負荷対応期間中フィードバックすれば、負荷変動 におけるエンジン回転の低下を抑制できる。この場合、負荷対応期間を任意に設定 可能とすることで、負荷変動が発生して力 定常状態に移行するまでの期間が、機 種差、個体差や経年劣化等により各内燃機関で異なる場合でも、そのような個別又 は経年状態別の調整が可能となる。
[0056] 以上のように本形態では、燃料噴射量を決定するためにフィードバックするェンジ ン回転数を直前気筒分から直前以前の気筒分まで平均した回転数とするに当たって 、どの程度の過去の気筒分まで遡及して平均を算出するのかをエンジン運転状態に 応じて切換可能とし、このフィードバック回転数の選定によって、負荷変動や加減速 指令等の過渡状態における応答性の向上と、エンジンが定常状態にあるときの運転 安定性の向上との両立を図ることができる。
[0057] 具体的に本形態に掛カる制御動作を実施した場合のエンジンの運転状態 (ェンジ ン回転速度の変動、排気温度のバラツキ)について以下に説明する。
[0058] 図 7は、例えば、第 1気筒の燃料噴射弁にカーボンフラワー等が発生して、この第 1 気筒に燃料供給が行われなくなった場合(=減筒運転状態)のエンジン回転数の変 動状態を示している。この図では「#」は気筒番号を示しており、「TDC」はその気筒 のピストンが圧縮行程上死点に達するタイミングを示している。この図 7からも判るよう に、第 1気筒では燃料噴射不良により、膨張行程での燃焼が十分でないため(図中 の範囲 tl)エンジン回転数が低下する。
[0059] 図 3は、第 1気筒のインジヱクタ 1に故障が発生してこの第 1気筒に燃料供給が行わ れなくなった場合のエンジン回転数の変動状態を示して 、る。この図では「 #」は気 筒番号を示しており、「TDC」はその気筒のピストンが上死点に達するタイミングを示 している。この図 3からも判るように、第 1気筒では燃料噴射不良により、膨張行程で の燃焼が十分でないため(図中の範囲 tl)エンジン回転数が低下する。この場合に は、減筒運転と判定され、上述した如ぐ直前気筒分から直前以前の気筒分まで遡 及して、平均した回転数をフィードバックする。従って、図 7と比較して、第 1気筒での 低下したエンジン回転数のみがフィーノックされるのでなぐ燃焼が正常に行われて いる第 2、 4、 3気筒のエンジン回転数も反映された回転数がフィードバックされるため 、目標回転数との偏差が過大になるのを緩和できる。よって、次に膨張行程を迎える 第 3気筒に対する燃料噴射量が大幅に増量されることはなぐエンジン回転数は比較 的安定に維持されている(図中の点 P1参照)。また、その後に膨張行程を迎える第 4 気筒及び第 2気筒に対しても同様である。
[0060] 図 4は、定常運転状態における気筒番号と排気温度との関係を示す図である。この 場合も、上述した如ぐ直前気筒分から直前以前の気筒分まで遡及して、平均した回 転数をフィードバックする。従って、例えば、エンジン負荷が一時的に減少しても、そ の直後に膨張行程となる気筒での燃料噴射量の過剰な減少を回避できる。よって、 気筒間で燃料噴射量が交互に大小関係を生じることを回避できるので、図 4で示した 如ぐ各気筒間での排気温度のバラツキを抑制できる。
[0061] 図 5は、レギユレータ操作によって指令回転数(目標回転数)が急激に上昇した場 合に、遡及気筒数を減少して、より直前気筒の回転数 (例えば、直前気筒分のみ)を 反映した回転数をフィードバックした場合のエンジン回転数の変動状態を説明するた めの図である。上述したように、従来の「複数回平均フィードバック制御」では目標回 転数が急激に上昇した場合にそれに追従することができな力つた(図 5 (b)参照)。本 形態では、このような状況にあっては、より直前気筒の回転数 (例えば、直前気筒分 のみ)を反映した回転数をフィードバックして燃料噴射制御を行う。このため、図 5 (c) に示すように、指令回転数信号の急激上昇に対応して実際の指令回転数もタイムラ グが殆ど無く迅速に上昇し、その指令回転数も変動することなしに短時間で適正値 に安定することになる。
[0062] その他の実施形態
上述した実施形態にあっては、蓄圧式燃料噴射装置を備えた 4気筒舶用ディーゼ ルエンジンに本発明を適用した場合について説明した。本発明はこれに限らず、蓄 圧式燃料噴射装置を備えて ヽな 、ディーゼルエンジンや、 6気筒ディーゼルェンジ ン等、種々の形式のエンジンに対して適用可能である。また、舶用エンジンに限らず 、車両用や発電機用など他の用途に使用されるエンジンへの適用も可能である。尚 、発電機用として適用した場合、エンジン目標回転数は一定値となる。
[0063] なお、本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな 形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示 にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって 示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲 の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
[0064] また、この出願は、 2004年 7月 12日に日本で出願された特願 2004— 204347号 に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に 組み込まれるものである。
産業上の利用可能性
[0065] 本発明は、内燃機関、特にディーゼルエンジンに有用である。

Claims

請求の範囲
[1] 複数の気筒を有する内燃機関の機関回転数を検知し、この検知された機関回転数 が目標回転数に近付くように燃料噴射手段力ゝらの燃料噴射量を制御する機関回転 数フィードバック制御を行う内燃機関の回転数制御装置にお 、て、
上記各気筒の圧縮上死点力 所定角度までクランク軸が回転するのに要した時間 より、その気筒の膨張行程での機関回転数を算出してその気筒番号と関連付けて記 憶する回転数算出記憶手段と、この気筒番号と関連付けされた機関回転数と目標回 転数に基づき燃料噴射量を決定するに当たって、この記憶した回転数を直前気筒分 力も直前以前の気筒分まで遡及して平均した回転数を機関回転数としてフィードバッ クすると共に、上記内燃機関の運転状態によって遡及気筒数を切換えてフィードバッ ク回転数を算出するフィードバック回転数切換手段を備えていることを特徴とする内 燃機関の回転数制御装置。
[2] 請求項 1記載の内燃機関の回転数制御装置において、
上記フィードバック回転数切換手段は、平均回転数を算出するための遡及気筒数 を機関負荷に応じて、切換えることを特徴とする内燃機関の回転数制御装置。
[3] 請求項 1または 2記載の内燃機関の回転数制御装置において、
上記フィードバック回転数切換手段は、上記内燃機関が定常運転状態であると判 定した場合、直前気筒分力 直前以前の気筒分までを平均した回転数をフィードバ ックすることを特徴とする内燃機関の回転数制御装置。
[4] 請求項 1または 2に記載の内燃機関の回転数制御装置において、
上記フィードバック回転数切換手段は、目標回転数と直前気筒の機関回転数との 偏差量に応じて平均回転数を算出するための遡及気筒数を切換えると共に、偏差量 が大きくなれば平均回転数を算出するための遡及気筒数を減少し、偏差量が小さく なれば平均回転数を算出するための遡及気筒数を増加するよう構成されていること を特徴とする内燃機関の回転数制御装置。
[5] 請求項 1または 2に記載の内燃機関の回転数制御装置において、
上記フィードバック回転数切換手段は、機関負荷の変動量に応じて平均回転数を 算出するための遡及気筒数を切換えると共に、変動量が大きくなれば平均回転数を 算出するための遡及気筒数を減少し、変動量が小さくなれば平均回転数を算出する ための遡及気筒数を増加するよう構成されていることを特徴とする内燃機関の回転 数制御装置。
[6] 請求項 1または 2に記載の内燃機関の回転数制御装置において、
上記フィードバック回転数切換手段は、減筒運転時には直前気筒分から直前以前 の気筒分まで遡及して平均した回転数をフィードバックすることを特徴とする内燃機 関の回転数制御装置。
[7] 請求項 1〜6のうち何れか一つに記載の内燃機関の回転数制御装置において、 平均回転数を算出するための遡及気筒数を機関気筒数の整数倍とすることを特徴 とする内燃機関の回転数制御装置。
[8] 請求項 1または 2に記載の内燃機関の回転数制御装置において、
上記フィードバック回転数切換手段は、上記内燃機関のアイドリング運転時には直 前気筒の機関回転数をフィードバックすることを特徴とする内燃機関の回転数制御 装置。
[9] 請求項 2または 5記載の内燃機関の回転数制御装置において、
上記フィードバック回転数切換手段は、機関負荷の変動を予測した場合には直前 気筒の機関回転数を所定の負荷対応期間フィードバックすることを特徴とする内燃 機関の回転数制御装置。
[10] 請求項 9記載の内燃機関の回転数制御装置において、
上記負荷対応期間は、任意に設定可能であることを特徴とする内燃機関の回転数 制御装置。
[11] 請求項 1〜10のうち何れか一つに記載の回転数制御装置を備えたことを特徴とす る内燃機関。
PCT/JP2005/009146 2004-07-12 2005-05-19 内燃機関の回転数制御装置及びその回転数制御装置を備えた内燃機関 WO2006006301A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05741578A EP1767767A1 (en) 2004-07-12 2005-05-19 Engine speed controller of internal combustion engine, and internal combustion engine comprising it
US11/631,956 US7467039B2 (en) 2004-07-12 2005-05-19 Revolution control apparatus for an internal combustion engine, and internal combustion engine provided with that revolution control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-204347 2004-07-12
JP2004204347A JP4377294B2 (ja) 2004-07-12 2004-07-12 内燃機関の回転数制御装置及びその回転数制御装置を備えた内燃機関

Publications (1)

Publication Number Publication Date
WO2006006301A1 true WO2006006301A1 (ja) 2006-01-19

Family

ID=35783658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009146 WO2006006301A1 (ja) 2004-07-12 2005-05-19 内燃機関の回転数制御装置及びその回転数制御装置を備えた内燃機関

Country Status (5)

Country Link
US (1) US7467039B2 (ja)
EP (1) EP1767767A1 (ja)
JP (1) JP4377294B2 (ja)
CN (1) CN100472051C (ja)
WO (1) WO2006006301A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6356493B2 (ja) * 2014-06-05 2018-07-11 ヤンマー株式会社 エンジン装置
CN106762173B (zh) * 2016-12-15 2019-06-11 北京汽车研究总院有限公司 一种发动机转速控制方法、装置及汽车
CN114165345B (zh) * 2021-12-16 2023-11-17 潍柴动力股份有限公司 一种单缸机控制方法、装置、车辆及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155229A (ja) * 1982-03-12 1983-09-14 Nec Corp 内燃機関の調速装置
JPS6371542A (ja) * 1986-09-16 1988-03-31 Toyota Motor Corp デイ−ゼルエンジンのアイドル回転数制御方法
JPH0777091A (ja) * 1993-09-08 1995-03-20 Tokyo Gas Co Ltd 内燃機関の空燃比制御方法及びその装置
JPH10184431A (ja) * 1996-12-27 1998-07-14 Yamaha Motor Co Ltd エンジン制御方式
JP2000205021A (ja) * 1999-01-07 2000-07-25 Nissan Motor Co Ltd ディ―ゼルエンジンの燃料噴射制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8715130D0 (en) * 1987-06-27 1987-08-05 Lucas Ind Plc Adaptive control system for i c engine
JPH05195858A (ja) * 1991-11-08 1993-08-03 Nippondenso Co Ltd 多気筒内燃機関の失火検出装置
US5539644A (en) * 1992-11-17 1996-07-23 Nippondenso Co., Ltd. System for detecting misfire in a multi-cylinder internal combustion engine
SE9302769D0 (sv) * 1993-08-27 1993-08-27 Electrolux Ab Motorstyrning
JP3146891B2 (ja) 1994-12-08 2001-03-19 東レ株式会社 ろ過布
JP3358411B2 (ja) * 1995-11-30 2002-12-16 日産自動車株式会社 内燃機関の回転速度制御装置
US5819197A (en) * 1996-10-15 1998-10-06 Chrysler Corporation Method of misfire detection for an internal combustion engine
JP2000008939A (ja) * 1998-06-26 2000-01-11 Keihin Corp エンジン回転数算出装置
JP4089244B2 (ja) * 2002-03-01 2008-05-28 株式会社デンソー 内燃機関用噴射量制御装置
ITTO20030837A1 (it) * 2003-10-23 2005-04-24 Fiat Ricerche Metodo di bilanciamento della coppia generata dai cilindri di un motore a combustione interna, in particolare un motore diesel ad iniezione diretta provvisto di un impianto di iniezione a collettore comune.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155229A (ja) * 1982-03-12 1983-09-14 Nec Corp 内燃機関の調速装置
JPS6371542A (ja) * 1986-09-16 1988-03-31 Toyota Motor Corp デイ−ゼルエンジンのアイドル回転数制御方法
JPH0777091A (ja) * 1993-09-08 1995-03-20 Tokyo Gas Co Ltd 内燃機関の空燃比制御方法及びその装置
JPH10184431A (ja) * 1996-12-27 1998-07-14 Yamaha Motor Co Ltd エンジン制御方式
JP2000205021A (ja) * 1999-01-07 2000-07-25 Nissan Motor Co Ltd ディ―ゼルエンジンの燃料噴射制御装置

Also Published As

Publication number Publication date
US20070227505A1 (en) 2007-10-04
EP1767767A1 (en) 2007-03-28
CN100472051C (zh) 2009-03-25
JP4377294B2 (ja) 2009-12-02
CN1934347A (zh) 2007-03-21
JP2006029089A (ja) 2006-02-02
US7467039B2 (en) 2008-12-16

Similar Documents

Publication Publication Date Title
JP3966096B2 (ja) 内燃機関用噴射量制御装置
JP4089244B2 (ja) 内燃機関用噴射量制御装置
EP0905359B1 (en) A fuel injection method and device for engines
JP4509171B2 (ja) 内燃機関用噴射量制御装置
JP2005155601A (ja) 内燃機関用噴射量制御装置
JP4289280B2 (ja) 噴射量学習制御装置
JP2004169633A (ja) 蓄圧式燃料噴射装置
JP2003343331A (ja) 内燃機関用噴射率制御装置
JP3861550B2 (ja) 多気筒内燃機関の異常気筒検出装置
US8423266B2 (en) Engine
US9328683B2 (en) Electronically controlled diesel engine
KR100795406B1 (ko) 축압식 연료분사장치 및 그 축압식 연료분사장치를 구비한내연기관
JP2002122037A (ja) 多気筒内燃機関の異常気筒検出装置
JP3591428B2 (ja) 多気筒エンジン用燃料噴射装置
WO2006006301A1 (ja) 内燃機関の回転数制御装置及びその回転数制御装置を備えた内燃機関
JP3695411B2 (ja) 内燃機関用燃料噴射制御装置
JP2009030522A (ja) 燃料噴射量補正機能付エンジン
JP2009002204A (ja) 噴射量制御装置およびそれを用いた燃料噴射システム
JP3876766B2 (ja) 内燃機関用噴射率制御装置
JP4221574B2 (ja) 燃料噴射システム
JP4484604B2 (ja) エンジンの燃料噴射量制御方法およびこれを用いたエンジン運転状態判別方法
JP2006029096A (ja) 蓄圧式燃料噴射装置
JP2004019539A (ja) 内燃機関用燃料噴射制御装置
KR100817199B1 (ko) 내연 기관의 회전수 제어 장치 및 그 회전수 제어 장치를구비한 내연 기관
JP5381747B2 (ja) 燃料噴射装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067017421

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580008842.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005741578

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11631956

Country of ref document: US

Ref document number: 2007227505

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067017421

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005741578

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11631956

Country of ref document: US