WO2006003984A1 - 新規触媒担持構造体及びそれを用いたディーゼル微粒子除去装置 - Google Patents

新規触媒担持構造体及びそれを用いたディーゼル微粒子除去装置 Download PDF

Info

Publication number
WO2006003984A1
WO2006003984A1 PCT/JP2005/012063 JP2005012063W WO2006003984A1 WO 2006003984 A1 WO2006003984 A1 WO 2006003984A1 JP 2005012063 W JP2005012063 W JP 2005012063W WO 2006003984 A1 WO2006003984 A1 WO 2006003984A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
wire mesh
metal
exhaust gas
diesel
Prior art date
Application number
PCT/JP2005/012063
Other languages
English (en)
French (fr)
Inventor
Sakae Furukawa
Seiichi Sakai
Original Assignee
Micro Reactor System Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Reactor System Co., Ltd. filed Critical Micro Reactor System Co., Ltd.
Publication of WO2006003984A1 publication Critical patent/WO2006003984A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0218Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters the filtering elements being made from spirally-wound filtering material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification device for a vehicle equipped with a diesel engine, and more particularly to an exhaust gas purification device excellent in the effect of removing particulate matter in diesel exhaust gas.
  • a DPF device that uses a metal filter made of stainless steel and a catalyst together with an additional device such as a heater, a power source used for this, and special control of the engine, etc. are required.
  • an additional device such as a heater, a power source used for this, and special control of the engine, etc.
  • the usefulness of special push-ups that require special maintenance can be easily retrofitted to the vehicle in use.
  • the conventional catalyst carrier has a high operating temperature at which the fine particles burn, it is mainstream to use a highly heat-resistant strip metal plate (or metal foil).
  • the contact area is large! /, But it is actually impossible to adopt a wire mesh or other material that is feared for heat resistance.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-232214
  • the present invention solves the problems of the conventional DPF device described above, and efficiently decomposes particulate matter (PM) at a relatively low temperature while removing nitrogen oxides (NOx).
  • An object of the present invention is to provide a catalyst-supporting structure having a large surface area per unit volume.
  • Another object of the present invention is to provide a diesel particulate removal device that does not cause pressure loss due to clogging of a filter that has a high particulate matter removal rate by using the catalyst support structure. To do.
  • the present inventor has conducted intensive research, and as a result, used a wire mesh carrying a highly active catalyst that removes fine particles in at least one diesel exhaust gas. It has been found that a catalyst-carrying structure formed by rolling a catalyst in a roll shape is effective as a catalyst-carrying structure capable of decomposing particulate matter at a relatively low temperature with a large surface area per unit volume. It has also been found that the diesel particulate removal device provided with the catalyst supporting structure does not cause pressure loss due to clogging of the filter, which has a higher particulate matter removal rate than before.
  • the present invention provides the following catalyst-supporting structure, diesel particulate removal device, and diesel exhaust gas treatment method.
  • Item 1 A catalyst-carrying structure in which at least one wire mesh is wound in a roll shape, and the catalyst carrying structure for removing fine particles in diesel exhaust gas is carried on the wire mesh.
  • Item 2 The catalyst-supporting structure according to Item 1, wherein at least one of the wire meshes is an embossed wire mesh.
  • a catalyst support structure according to Item 1 or 2 which is a catalyst support structure in which two metal meshes are stacked and wound in a roll shape, and one or both of the metal meshes are embossed.
  • Item 4 A catalyst-supporting structure obtained by winding the wire mesh and a metal thin plate having a large number of fine holes in a roll shape, and one or both of the wire mesh and the metal thin plate are embossed. 3. The catalyst-supporting structure according to 1 or 2.
  • Item 5 The above-mentioned catalyst according to Item 1-4, wherein the catalyst is a catalyst in which noble metal ultrafine particles are supported on a metal oxide.
  • V the catalyst-supporting structure according to any one of the above.
  • the wire mesh is plain woven wire mesh, twill woven wire mesh, twill woven wire mesh, twill woven wire mesh, crimp woven wire mesh, rock crimp woven wire mesh, flat top wire mesh, ton cap woven wire mesh, tie rod woven wire mesh, and Item 6.
  • the catalyst-carrying structure according to any one of Items 1 to 5, which is at least one selected from a group power consisting of a rhombus wire mesh.
  • Item 7 A diesel particulate removal device comprising the catalyst-carrying structure according to any one of Items 1 to 6 in a cylindrical casing having an inlet and an outlet for diesel exhaust gas.
  • Item 8 The diesel particulate removal device according to Item 7, wherein the catalyst-supporting structure according to any one of Items 1 to 6 has a structure in which two or more stages are provided in a cylindrical housing.
  • Item 9 A method for treating diesel exhaust gas, the diesel exhaust gas being treated by the diesel particulate removing device according to Item 7 or 8.
  • the catalyst-carrying structure of the present invention comprises a wire mesh carrying a highly active catalyst for removing particulates in diesel exhaust gas, and is formed by winding at least one piece of the wire mesh in a roll shape.
  • This is a catalyst-supporting structure. Since this catalyst-supporting structure has a metal mesh as a constituent element and has a large surface area per unit volume and supports a highly active catalyst, it is capable of removing NOx significantly and in the form of fine particles at a relatively low temperature. The substance can be decomposed efficiently.
  • the diesel particulate removal device of the present invention uses the catalyst-supporting structure! / Sludge, it has an excellent particulate matter removal rate and does not cause pressure loss due to filter clogging or the like. . Moreover, the efficiency of decomposing and removing the particulate matter is high, so there is a merit that the apparatus can be downsized.
  • FIG. 6B is a cross-sectional view taken along line AA in FIG. 6A
  • FIG. 6C is a cross-sectional view taken along line BB in FIG. 6A.
  • FIG. 2 is a view of a thin metal plate having fine holes embossed.
  • FIG. 3 is an example of a corrugated thin metal plate having a large number of protrusions.
  • FIG. 4 is an example of a thin metal plate having a large number of cut and raised pieces.
  • FIG. 5 is another example of a thin metal plate having a large number of cut and raised pieces.
  • FIG. 6 is another example of a thin metal plate having a large number of cut and raised pieces.
  • FIG. 7 is a cross-sectional view of a laminate comprising a wire mesh laminate formed by sintering a plain woven wire mesh and an embossed plain woven wire mesh.
  • FIG. 8 A cross-sectional view of a combination of an embossed wire mesh and a cut and raised piece (one side only)!
  • FIG. 9 A roll-shaped cross-sectional view of a combination of embossed wire mesh and cut and raised pieces (one side only)!
  • FIG. 10 is a cross-sectional view of a combination of an embossed wire mesh and a wire mesh having fine holes.
  • FIG. 11 is a schematic cross-sectional view showing a schematic configuration of a single-cylinder diesel particulate removing device.
  • FIG. 12 is a schematic cross-sectional view showing a schematic configuration of a two-cylinder diesel particulate removing device. Explanation of symbols
  • the wire mesh material used in the catalyst support structure of the present invention is preferably a stainless steel wire (for example, SUS310, SUS316, etc.) from the viewpoint of heat resistance, workability, economy, etc.
  • the wire diameter is 0.01 About 1.5 mm (further about 0.1 to 0.5 mm, especially about 0.18 mm) is suitable.
  • the shape of the wire mesh is not particularly limited as long as the object of the present invention can be achieved. For example, plain woven wire mesh, twill woven wire mesh, flat woven wire mesh, twill woven wire mesh, crimp woven wire mesh, rock crimp woven wire mesh. Flat top wire mesh, ton cap woven wire mesh, tie rod woven wire mesh, rhombus wire mesh, etc. are used.
  • plain woven wire mesh In particular, plain woven wire mesh, plain woven wire mesh and the like are suitable.
  • the wire mesh is preferred to be embossed, so that when the wire mesh is rolled up, the wire mesh spacing is not too tight and the exhaust gas flow path is secured and clogging is suppressed.
  • the contact area with the catalyst supported on the wire mesh increases.
  • the embossing here refers to a protrusion that spreads with regularity in a three-dimensional pattern that is not just a streak or wavy line with two-dimensional (two-dimensional) streak lines of the same press-processed cross-sectional shape.
  • streaky protrusions are provided in the direction intersecting each other so that the metal meshes do not overlap to narrow the gap It is.
  • the catalyst-supporting structure of the present invention also includes a structure in which a thin metal plate having a large number of fine holes is overlapped with a wire mesh to form a roll.
  • the material of the metal thin plate is preferably SUS, especially 1 ⁇ 20-51; 31 ⁇ , stainless steel for high heat members (manufactured by Kawasaki Steel), etc. from the viewpoint of heat resistance, workability, economy and the like.
  • the thickness of the metal thin plate is about 10 to 500 m
  • the opening ratio of the fine holes is about 30 to 80%
  • the diameter of the fine holes 4a is about 20 to about LOO m.
  • the metal thin plate may have a waveform in the longitudinal direction, and the fine hole may have a protrusion, a cut and raised piece, or the like.
  • Examples include a thin metal plate having a large number of cut and raised pieces such as Ya and hb shown in FIG. 5, or a thin metal plate having a large number of cut and raised pieces such as Sa and he shown in FIG.
  • the metal thin plate of FIGS. 3 to 6 may have only fine holes that do not have protrusions and cut and raised pieces.
  • Figure 2 shows an embossed metal sheet with many fine holes.
  • the catalyst supported on the catalyst supporting structure of the present invention include those in which a noble metal or the like is supported on a metal oxide support.
  • the noble metal is preferably made of noble metal ultrafine particles having an average particle diameter of about 1 to 5 nm, particularly about 2 to 3 nm from the viewpoint of catalytic activity.
  • the particle size distribution is preferably such that the standard deviation force with respect to the average particle size is within 30%, particularly within 10%.
  • Such noble metal ultrafine particles can be produced by heating and stirring or ultrasonically irradiating an aqueous alcohol solution containing a noble metal salt, a water-soluble polymer and a surfactant under normal pressure.
  • Examples of the noble metal salt include inorganic salts such as Ru, Pt, Rh, Pd, Au, Cu, and Ag, and complex salts. And water-soluble ones in the presence of a surfactant.
  • H2RuC16, H2PtC16, NaAuC14, PdC12, AgN03 and the like are exemplified.
  • One or a mixture of two or more selected from these forces can also be used. When two or more kinds of mixtures are used, it becomes possible to produce ultrafine particles of precious metal alloys.
  • the water-soluble polymer may act as a stabilizer that suppresses aggregation and inactivation of the ultrafine particles by forming the polymer film on the surface of the ultrafine particles.
  • the water-soluble polymer includes a moiety having a substituent that interacts with a metal, for example, a carbonyl group, a carboxyl group, a hydroxyl group, an ammonium group, an amino group, a sulfol group, a thiol group, and a sulfide group.
  • a polymer comprising at least one substituent selected from the group consisting of carbon chain moieties forming a polymer backbone.
  • the polymer is preferably a polymer of a monomer having a bur group, and more preferably, the monomer has at least one substituent.
  • the molecular weight of such polymers is about 10,000 to 500,000, especially 10,000 to 100,000.
  • organic polymers include polybutyl ether, polyatalylate, poly (mercaptomethylenesulylene-l-bull-2-pyrrolidone), polyacrylonitrile, and the like.
  • Polyvinyl alcohol and poly (l-bule-2-) Pyrrolidone) (PVP) is preferably used.
  • the surfactant contributes to the dispersion stability of the ultrafine particles in the alcohol solution.
  • the surfactant include key-on surfactants such as sodium dodecyl sulfate (SDS).
  • SDS sodium dodecyl sulfate
  • the aqueous alcohol solution is an aqueous solution containing alcohol, and functions as a solvent and a reducing agent for reducing a noble metal ion to a metal.
  • the water is preferably ultrapure water.
  • the alcohol is preferably an alcohol having 2 or more carbon atoms.
  • C2-C6 monohydric alcohols such as ethanol, ⁇ -propanol, isopropanol, ⁇ -butanol, tert-butanol, n-pentanol, ethylene glycol, 1,3 propanol, glycerol, hexylene glycol
  • Examples thereof include polyhydric alcohols having 2 to 6 carbon atoms.
  • Ultrafine noble metal particles are alcohol containing a noble metal salt, a water-soluble polymer and a surfactant.
  • the aqueous solution is produced by heating and stirring under normal pressure or ultrasonic irradiation.
  • the alcohol used in the aqueous alcohol solution is as described above, and the volume ratio of alcohol to water is 1/9 to 9/1, preferably 1/3 to 3/1.
  • the alcohol ethylene glycol is preferred.
  • the desired noble metal ultrafine particles can be continuously prepared simply by heating without refluxing.
  • the noble metal salt is adjusted in an alcohol solution to be about 0.1 to about LOmM, preferably about 0.5 to 4mM. This is because nano-order fine particles having a desired particle distribution can be obtained within the range that works.
  • H2PtC16 and Na2PtC16 are preferably used.
  • the water-soluble polymer is prepared to be about 1 to 30 mM, preferably about 3 to 24 mM in an alcohol solution. If it is within the range, it is preferable because it becomes ultrafine particles of single crystal. Of the water-soluble polymers, PVP is particularly preferable.
  • the surfactant is preferably about 5 to 10 mM in an alcohol solution, preferably? It is prepared to be about ⁇ 9 mM. In particular, SDS is preferred.
  • the above alcohol aqueous solution is subjected to heat treatment under normal pressure (about 0.08 to 0.12 MPa) at about 80 to 120 ° C (preferably about 95 to 100 ° C), thereby precious metal. Ultra fine particles are produced. In the heat treatment, it is preferable to appropriately stir.
  • the above alcohol aqueous solution is subjected to ultrasonic treatment (about 100 to 200 kHz) under normal pressure (about 0.08 to 0.12 MPa) and room temperature (about 10 to 30 ° C), Precious metal ultrafine particles are produced.
  • activated carbon, alumina, silica, zircoure, titer, or the like that can serve as a support for the noble metal ultrafine particles is added to the above alcohol aqueous solution, so that the noble metal ultrafine particles can be supported on the surface thereof. It is.
  • noble metal ultrafine particles supported on a carrier can be produced by adding about 1 to 100 g of the carrier to 1 L of the aqueous alcohol solution.
  • the obtained noble metal ultrafine particles or the fine particles supported on the carrier are high! ⁇ Has catalytic activity Therefore, the particulate matter in the diesel exhaust gas can be efficiently removed by adopting the catalyst supporting structure of the present invention.
  • the catalyst-carrying structure of the present invention is formed by winding at least one wire mesh into a roll shape, and a catalyst for removing fine particles in diesel exhaust gas is supported on the wire mesh.
  • the catalyst support structure of the present invention is formed by stacking a plurality of metal meshes, or by superimposing metal meshes and metal thin plates having fine holes, and winding up to the center part in a roll shape.
  • a cross-sectional view of a laminate of wire mesh laminates 8 (plain woven wire mesh 7 and flat woven wire mesh 7) formed by sintering a plain woven wire mesh and an embossed flat woven wire mesh 6 are stacked. Shown in 7.
  • the metal mesh and a metal thin plate having a large number of fine holes are wound in a roll shape, and one or both of the metal mesh and the metal thin plate are embossed.
  • the combination shown in FIGS. 8 and 9 is a combination of an embossed wire mesh and a thin metal plate with cut and raised pieces (one side only).
  • a combination shown in FIG. 10 can be given as a combination of an embossed wire mesh and a wire mesh having fine holes.
  • the roll-shaped axial length is about 30 to 150 mm, and the roll diameter is about 150 to 500 mm. Good.
  • the catalyst supporting structure of the present invention supports the catalyst on a structure in which the above-described wire mesh and, if necessary, a metal thin plate are stacked and wound up in a tool shape.
  • a catalyst in which a noble metal or the like is supported on the above-described metal oxide support can be suitably used.
  • the catalyst is supported by, for example, coating the structure with a metal oxide (eg, titania, alumina, zirconium), firing (about 400 to 1000 ° C), surface treatment, and then precious metal ultrafine particles. It is possible to support the noble metal ultrafine particles on the structure by immersing in a liquid containing water (eg, water, alcohol).
  • the obtained catalyst-supporting structure may be heat-treated at about 100 to 200 ° C.
  • the content of the catalyst supported on the structure is 2 to 10 in the catalyst supporting structure. What is necessary is just about weight%. Further, the weight ratio of the metal oxide to the noble metal ultrafine particles in the supported catalyst may be, for example, about 99: 1 to 90:10.
  • the catalyst may be applied to the structure by spraying, wash coating, electrodeposition, dipping or the like so as to have a thickness of about 10 to: LOOm.
  • a catalyst in which noble metal ultrafine particles such as nickel and platinum are supported on a support such as alumina, silica, titanium (titanium oxide), and alumina is preferable.
  • a catalyst in which platinum is supported on an ⁇ -alumina carrier is preferable.
  • the catalyst supporting structure of the present invention as described above, an example in which the catalyst is supported on the structure wound up in an untreated roll is shown. After the catalyst is supported on the plate, it may be formed by rolling them up in a roll.
  • the surface area per unit volume is increased, and the contact efficiency between the exhaust gas and the catalyst supported on the structure surface is significantly improved.
  • unprecedented high catalytic activity is exhibited, and there is no clogging and the pressure loss problem is solved.
  • the diesel particulate removal device of the present invention basically has a structure including the catalyst support structure of the present invention in a cylindrical casing having an inlet and an outlet of diesel exhaust gas. Specific examples are shown in FIGS.
  • FIG. 11 is a schematic cross-sectional view showing a schematic configuration of a single-cylinder diesel particulate removing device (hereinafter also referred to as a single-cylinder device).
  • the one-cylinder device in this example is used by being mounted on a diesel vehicle.
  • a hollow branch portion having one inlet al of diesel exhaust gas and one outlet a2 is provided.
  • A is connected to a hollow confluence C having one inlet cl of diesel exhaust gas and one outlet c2, and an outlet a2 of the hollow branch A and an inlet cl of the hollow confluence
  • a device main body hereinafter also simply referred to as a cylinder B sandwiched between the two.
  • diesel exhaust is introduced into the hollow branch A at high speed from the inlet al.
  • An impingement plate S1 is provided to decelerate the gas and evenly distribute it to the outlet a2.
  • a collision plate S2 is provided in the hollow confluence C in order to decelerate the diesel exhaust gas introduced from the inlet cl at a high speed and evenly distribute it to the outlet c2. .
  • Each device main body B includes four raised catalyst-carrying structures Tl, spacers SP, and 4 raised catalyst-carrying structures T2 from the diesel exhaust gas introduction side. These are arranged in this order, and are housed in a cylindrical container CA.
  • the number of catalyst-supporting structures is not particularly limited, but it is preferable to stack at least two stages.
  • FIG. 12 is a schematic cross-sectional view showing a schematic configuration of a two-cylinder diesel particulate removing device (hereinafter also referred to as a “two-cylinder device”).
  • the two-cylinder device in this example is mounted on a diesel vehicle and has one inlet al for diesel exhaust, two outlets a2, a2 'as shown in Fig. 12.
  • Two device main bodies having the same configuration sandwiched between the hollow branch portion A and a hollow confluence portion C having two inflow ports cl and cl ′ and one outflow port c2 of diesel exhaust gas.
  • the collision plate S1 Is installed in the hollow branch portion A in order to decelerate the diesel exhaust gas introduced at high speed from the inflow port al and to distribute it evenly to the outflow ports a2 and a2 '.
  • a collision plate S 2 is provided in the hollow confluence C in order to decelerate the diesel exhaust gas introduced at high speed from the inlets cl and cl ′ and evenly distribute it to the outlet c2. ing.
  • Each of the main body parts B and B ' has four raised catalyst support structures ⁇ 1, ⁇ , a spacer SP, and four raised shapes from the diesel exhaust introduction side.
  • the structural force is arranged in the order of the catalyst supporting structures T2, T2 ′, and these are housed in the cylindrical containers B, B ′.
  • the number of catalyst support structures is not particularly limited, but it is preferable to stack at least two stages.
  • the number of catalyst-supporting structures used in the above-described one-cylinder apparatus and two-cylinder apparatus is not limited to the above-described ones, but is within a range where the object of the present invention can be achieved. Suitable You can choose that number.
  • the catalyst for the catalyst-supporting structure those mentioned above are preferable, among which the platinum fine particles are supported on alumina and the platinum fine particles supported on titania.
  • the spacer used in the one-cylinder apparatus and the two-cylinder apparatus described above is such that the diesel exhaust gas that has passed through the previous stage catalyst support structure in a laminar flow state is merged and diffused again, and the It is used to allow the reaction component concentration to flow to the subsequent catalyst support structure in a uniform state, but is optional.
  • a roll-shaped structure is used in which the above-described catalyst is not supported.
  • the diesel particulate removal device of the present invention can be suitably operated at the temperature of diesel exhaust gas (for example, 180 to 500 ° C). Therefore, an additional device such as a heater for activating the catalyst is not required in the device, and the manufacturing cost and running cost are reduced.
  • the structures T1 and T1 'carrying platinum fine particles on alumina are used as the four stages on the exhaust gas inlet side, and the titanium is used as the fourth stage on the exhaust gas outlet side.
  • the NOx removal rate of diesel exhaust gas is about 30 to 70%.
  • the smoke removal rate is about 60 to 90% and the PM removal rate is about 50 to 80%, both of which can achieve a high removal rate. Therefore, the diesel particulate removal apparatus of the present invention has excellent PM removal capability as well as NOx. However, even if it is operated for a long time, clogging does not occur and pressure loss does not occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 本発明は、窒素酸化物(NOx)を除去しつつ、かつ比較的低温で微粒子状物質(PM)を効率的に分解することができる、単位体積当たりの表面積が大きい触媒担持構造体を提供する。また、本発明は、該触媒担持構造体を用いることにより、微粒子状物質の除去率が高く、フィルタの目詰まり等による圧力損失が発生しないディーゼル微粒子除去装置を提供する。  少なくとも1枚の金網をロール状に巻いてなる触媒担持構造体であり、該金網にディーゼル排出ガス中の微粒子を除去する触媒が担持されている触媒担持構造体、該触媒担持構造体を備えたディーゼル微粒子除去装置、並びに該ディーゼル微粒子除去装置で処理することを特徴とするディーゼル排出ガスの処理方法に関する。

Description

新規触媒担持構造体及びそれを用レヽたディーゼル微粒子除去装置 技術分野
[0001] 本発明は、ディーゼルエンジン搭載車の排出ガス浄ィ匕装置に係り、特に、ディーゼ ル排出ガス中の粒子状物質の除去効果に優れた排気ガス浄ィ匕装置に関する。 背景技術
[0002] 従来、自動車排気ガスの規制に対する注目は、発ガン性物質とされる二酸化窒素 を主とする窒素酸ィ匕物 (NOx)等に向けられていた。しかし、ディーゼル車の排出ガ スの中には多量の炭素微粒子 (いわゆる黒煙)が存在し、この炭素微粒子は、人間が 吸い込むことで人体の中に入り込み、ガンや呼吸器系の疾患を起こすことが、近年 相次いで報告されている。そのため、窒素酸化物(NOx)に限らず、ディーゼル車か らの粒子状物質(Particulate Matter: PM)の排出規制が重要な課題となっている。
[0003] そのため、現在までに種々のディーゼル 'パーティキュレート'フィルタ(DPF)装置 が開発又は報告されているが、これらの装置は高価、かつ大型なもの、フィルタの交 換を必要とするもの、エンジンの制御を含む複雑なシステム、ヒーター等の付加的な 装置を含むものなど、現在使用過程にある車に装着することはコスト面等で困難であ るほか、さらにフィルタ自体に PMが溜まって、定期的にこれを燃焼させてやることを 必要とするシステムが多ぐ装置の複雑性が問題となっていた。
[0004] その中にあって、ステンレス等で作成した金属フィルタと、触媒を併用した DPF装 置については、ヒーター等の付加装置やこれに使用する電源、又エンジン等の特別 な制御を必要としないほか、触媒作用により DPF装置内部で燃焼したのち、外部に 排出されるため、特別なメンテナンスの必要なぐし力も容易に使用過程車に後付け できるため、その有用性が注目されている。
[0005] しかし、力かる金属フィルタを使用した DPF装置は、構成が簡便である一方、 PM 捕集及び除去性能にっ 、ては他の DPF装置と比較して十分とは言えな 、。
[0006] 近年、触媒担持体として、帯状金属板 (又は金属箔)を波板状に加工し、これを卷 き上げて構成されるものが報告されている(例えば、特許文献 1)。これによれば、排 気ガスは該巻き上げの軸方向に流れ、触媒が担持されている板表面に接触し分解さ れる。そして、触媒との接触面積を大きくし排気抵抗を小さくするために、複数の貫通 穴や突起を規則的に設ける手法が採られている。
[0007] し力しながら、力かる触媒担持体であっても、充分な単位体積当たりの表面積が充 分に確保されないため PM除去率が低ぐし力も排気抵抗が大きいため圧力損失が 大き 、ことも問題となって 、る。
[0008] また、従来の触媒担持体は、微粒子が燃焼する作動温度が高いため、耐熱性の高 い帯状金属板 (又は金属箔)を採用することが主流となっているため、排出ガスとの 接触面積は大き!/、が耐熱性が懸念される金網等の材料を採用できな 、のが実状で ある。
特許文献 1:特開 2003-232214号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、上記した従来の DPF装置の問題点を解決し、窒素酸化物 (NOx)を除 去しつつ、かつ比較的低温で微粒子状物質 (PM)を効率的に分解することができる 、単位体積当たりの表面積が大きい触媒担持構造体を提供することを目的とする。
[0010] また、本発明は、該触媒担持構造体を用いることにより、微粒子状物質の除去率が 高ぐフィルタの目詰まり等による圧力損失が発生しないディーゼル微粒子除去装置 を提供することを目的とする。
課題を解決するための手段
[0011] 本発明者は、上記の課題に鑑み、鋭意研究を行った結果、少なくとも 1枚のディー ゼル排出ガス中の微粒子を除去する高活性の触媒が担持されている金網を用い、 該金網をロール状に巻いてなる触媒担持構造体が、単位体積当たりの表面積が大 きぐ比較的低温で微粒子状物質を分解することができる触媒担持構造体として有 効であることを見出した。また、該触媒担持構造体を備えたディーゼル微粒子除去装 置が、従来よりも微粒子状物質の除去率が高ぐフィルタの目詰まりによる圧力損失 が発生しないことも見出した。
[0012] 本発明者は、上記の知見に基づきさらに研究を重ねて、本発明を完成するに至つ た。
[0013] 即ち、本発明は、次の触媒担持構造体、ディーゼル微粒子除去装置及びディーゼ ル排出ガスの処理方法を提供する。
[0014] 項 1.少なくとも 1枚の金網をロール状に巻いてなる触媒担持構造体であり、該金網 にディーゼル排出ガス中の微粒子を除去する触媒が担持されている触媒担持構造 体。
[0015] 項 2.前記金網の少なくとも 1枚がエンボスカ卩ェされている金網である項 1に記載の 触媒担持構造体。
[0016] 項 3.前記金網を 2枚重ねてロール状に巻いてなる触媒担持構造体であり、該金網 の一方又は双方がエンボス加工されている項 1又は 2に記載の触媒担持構造体。
[0017] 項 4.前記金網と、多数の微細孔を有する金属薄板とをロール状に巻いてなる触媒 担持構造体であり、該金網及び該金属薄板の一方又は双方がエンボス加工されて いる項 1又は 2に記載の触媒担持構造体。
[0018] 項 5.前記触媒が貴金属超微粒子を金属酸化物に担持した触媒である項 1〜4の
V、ずれかに記載の触媒担持構造体。
[0019] 項 6.前記金網が、平織金網、綾織金網、平畳織金網、綾畳織金網、クリンプ織金 網、ロッククリンプ織金網、フラットトップ金網、トンキャップ織金網、タイロッド織金網及 び菱形金網からなる群力 選ばれる少なくとも 1種である項 1〜5のいずれかに記載 の触媒担持構造体。
[0020] 項 7.ディーゼル排出ガスの流入口と流出口を有する筒状の筐体内に、項 1〜6の いずれかに記載の触媒担持構造体を備えたディーゼル微粒子除去装置。
[0021] 項 8.項 1〜6のいずれかに記載の触媒担持構造体が、筒状筐体内に 2段以上重 ねて設けられた構造を有する請求項 7に記載のディーゼル微粒子除去装置。
[0022] 項 9.ディーゼル排出ガスの処理方法であって、該ディーゼル排出ガスを項 7又は 8 に記載のディーゼル微粒子除去装置で処理することを特徴とする処理方法。
発明の効果
[0023] 本発明の触媒担持構造体は、ディーゼル排出ガス中の微粒子を除去する高活性 な触媒が担持された金網からなり、少なくとも 1枚の該金網をロール状に巻いてなる 触媒担持構造体である。この触媒担持構造体は、金網を構成要素とするため単位体 積当たりの表面積が大きぐし力も高活性な触媒を担持しているため、 NOxを有意に 除去しつつ、かつ比較的低温で微粒子状物質を効率的に分解することができる。
[0024] また、本発明のディーゼル微粒子除去装置は、該触媒担持構造体を用いて!/ヽるた め、微粒子状物質の除去率に優れ、フィルタの目詰まり等による圧力損失が発生し ない。しかも、微粒子状物質の分解除去効率が高いため、装置を小型化できるという メリツ卜ちある。
図面の簡単な説明
[0025] [図 1]平畳織金網を示し、 6Aは平面図、 6Bは図 6Aにおける A— A線断面図、 6Cは 図 6Aにおける B— B線断面図である。
[図 2]エンボスカ卩ェされた微細孔を有する金属薄板の図である。
[図 3]多数の突起部を有する波状の金属薄板の一例である。
[図 4]多数の切起片を有する金属薄板の一例である。
[図 5]多数の切起片を有する金属薄板の他の例である。
[図 6]多数の切起片を有する金属薄板の他の例である。
[図 7]平畳織金網を焼結してなる金網積層体とエンボス加工された平畳織金網とから なる積層体の断面図である。
[図 8]エンボス金網と切起片(片側のみ)のつ!/、た金属薄板との組合せの断面図であ る。
[図 9]エンボス金網と切起片(片側のみ)のつ!/、た金属薄板との組合せのロール状断 面図である。
[図 10]エンボス金網と微細孔を有する金網との組合せの断面図である。
[図 11] 1筒型のディーゼル微粒子除去装置の概略構成を示す模式断面図である。
[図 12]2筒型のディーゼル微粒子除去装置の概略構成を示す模式断面図である。 符号の説明
[0026] 4 金属薄板
4a 微細孔
4b 切起片 5 平織金網
6 エンボスカ卩ェした平織金網
7 平畳織金網
8 金網積層体
9 金網薄板
9a 微細孔
発明を実施するための最良の形態
[0027] 以下、本発明について詳細に説明する。 余網
本発明の触媒担持構造体に用いられる金網の素材は、耐熱性、加工性、経済性 等の観点からステンレス鋼線 (例えば、 SUS310、 SUS316等)等が好適であり、そ の線径は 0.01〜1.5mm程度(さらに、 0.1〜0.5mm程度、特に 0.18mm程度)が好適 である。また、該金網の形状は、本発明の目的を達成し得るものであれば特に限定 はなぐ例えば、平織金網、綾織金網、平畳織金網、綾畳織金網、クリンプ織金網、 ロッククリンプ織金網、フラットトップ金網、トンキャップ織金網、タイロッド織金網、菱形 金網などが用いられる。特に、平織金網、平畳織金網などが好適である。該金網は、 エンボス力卩ェを施したものが好ましぐこれにより金網をロール状に巻いた場合に金 網間隔が密になりすぎず排ガスの流路が確保され目詰まりが抑えられると共に、金網 に担持された触媒との接触面積が大きくなる。
[0028] ここでいうエンボス加工とは、単なる同じプレス加工された断面形状の(二次元の) 筋線が一定ピッチで並んだ筋状、波状ではなぐ三次元に規則性を持って広がる突 起であり、かつ、 2枚以上の金網を重ねてロール状に巻いた場合に、金網同士が重 なって間隙が狭まらないように、筋状の突起を各々に交差する方向に設けたものであ る。
[0029] 例えば、平織金網の場合、ステンレス鋼線等よりなる縦線と横線とが一定の間隔を 保ち一本づっ相互に交わしてなり、金網の線径が 0. 1〜0. 3mm (特に、 0. 15〜0 . 2mm)程度であり、エンボス(h)が l〜2mm (特に、 1. 2〜1. 7mm)程度、 xピッチ 力^〜 10mm (特に、 3〜7111111)、7ピッチが1〜15111111(特に、 5〜: LOmm)程度であ る。あるいは、メッシュ(25. 4mm平方に含まれる網の目数; JISZ8801)は 10〜100程 度である。力かる金網を採用することにより、排ガスとの接触面積を増大させることが できる。具体例として、平畳織金網の模式図を図 1に示す。
[0030] 金属薄板
本発明の触媒担持構造体には、上記の金網に加えて多数の微細孔を有する金属 薄板を金網と重ねてロール状に卷 、てなるものも含まれる。該金属薄板の素材は、 耐熱性、加工性、経済性等の観点から SUS、特に1^ 20— 51;31^、高熱部材用ス テンレス鋼 (川崎製鉄製)等が好適である。また、金属薄板の板厚は、 10〜500 m 程度、微細孔の開孔率は 30〜80%程度、微細孔 4aの孔径は 20〜: LOO m程度で ある。なお、金属薄板は、長手方向波形の形状を有していても良ぐまた微細孔には 、突起部、切起片等を有してもよい。
[0031] 具体的には、図 3に示される Wa、Wbなどの突起部を有する波状の金属薄板 17や 、図 4に示される Ca, haなどの多数の切起片を有する金属薄板、図 5に示される Ya、 hbなどの多数の切起片を有する金属薄板、又は、図 6に示される Sa、 heなどの多数 の切起片を有する金属薄板などが例示される。或いは、図 3〜図 6の金属薄版にお いて、突起部や切起片を有しない微細孔のみを有するものであってもよい。多数の 微細孔を有する金属薄板をエンボス加工したものを図 2に示す。
[0032] 醒
本発明の触媒担持構造体に担持される触媒としては、金属酸化物担体に貴金属 等を担持したものが挙げられる。特に、該貴金属は、触媒活性の点から平均粒径は 1 〜5nm程度、特に 2〜3nm程度の貴金属超微粒子とするのが好適である。その粒度 分布も平均粒径に対する標準偏差力 30%以内、特に 10%以内であるように揃って いるものが好ましい。
[0033] このような、貴金属超微粒子は、貴金属塩、水溶性高分子及び界面活性剤を含む アルコール水溶液を、常圧下で加熱撹拌或いは超音波照射することにより、製造す ることがでさる。
[0034] 上記貴金属塩としては、 Ru、 Pt、 Rh、 Pd、 Au、 Cu、 Ag等の無機塩或!ヽは錯塩な どが挙げられ、界面活性剤の共存下において水溶性のものが挙げられる。具体的に は、 H2RuC16、 H2PtC16、 NaAuC14、 PdC12、 AgN03等が例示される。これら力 ら選ばれる 1種或いは 2種以上の混合物を用いることもできる。 2種以上の混合物を 用いた場合は、貴金属合金の超微粒子の製造も可能となる。
[0035] 上記水溶性高分子は、超微粒子の表面に該高分子被膜を形成して、超微粒子の 凝集や不活性化を抑制する安定化剤としての働きを有して ヽる。水溶性高分子とし ては、金属と相互作用する置換基を有する部位、例えば、カルボニル基、カルボキシ ル基、水酸基、アンモ-ゥム基、アミノ基、スルホ-ル基、チオール基及びスルフイド 基から成る群から選択される少なくとも 1種の置換基を含み、ポリマー骨格を形成する 炭素鎖部位からなるポリマーである。
[0036] このポリマーはビュル基を有するモノマーの重合体であることが好ましぐ更にこの モノマーが上記置換基を少なくとも一つ有することがより好ましい。このようなポリマー の分子量 ίま 10000〜500000程度、特に 10000〜100000カ^好まし ヽ。このような 有機ポリマーとして、ポリビュルエーテル、ポリアタリレート、ポリ(メルカプトメチレンス リレン一 Ν—ビュル一 2—ピロリドン)、ポリアクリロニトリル等が挙げられる力 ポリビ- ルアルコールやポリ(Ν ビュル— 2—ピロリドン) (PVP)が好ましく用いられる。
[0037] 上記界面活性剤は、アルコール溶液中の超微粒子の分散安定性に寄与するもの である。界面活性剤としては、ドデシル硫酸ナトリウム(SDS)等のァ-オン系界面活 性剤が挙げられる。特に、 SDSを用いることが好ましぐ特に、超音波法では球形の 超微粒子を得られるとなるため好適である。
[0038] 上記アルコール水溶液は、アルコールを含有する水溶液であり、溶媒としてまた貴 金属イオンを金属に還元する還元剤として働く。水は超純水を用いるのが好ましい。 アルコールは、反応温度を考慮すると、炭素数 2以上のアルコールが好ましい。例え ば、エタノール、 η—プロパノール、イソプロパノール、 η—ブタノール、 tert—ブタノ一 ル、 n—ペンタノール等の炭素数 2〜6の 1価アルコール、エチレングリコール、 1, 3 プロパノール、グリセロール、へキシレングリコール等の炭素数 2〜6の多価アルコ ールなどが例示される。
[0039] 貴金属超微粒子は、貴金属塩、水溶性高分子及び界面活性剤を含むアルコール 水溶液を、常圧下で加熱撹拌或いは超音波照射することにより製造される。
[0040] アルコール水溶液中のアルコールは上記のものが用いられ、アルコールと水の体 積比は、 1/9〜9/1、好ましくは 1/3〜3/1である。アルコールとしてエチレンダリ コールが好ましい。エチレングリコールを用いることにより、還流することなく加熱する だけで所望の貴金属超微粒子を連続調製することができるため極めて効率的である
[0041] 貴金属塩は、アルコール溶液中、 0. 1〜: LOmM程度、好ましくは、 0. 5〜4mM程 度になるよう調整される。力かる範囲であれば、所望の粒子分布の揃ったナノオーダ 一の微粒子を得ることができるからである。貴金属塩は、 H2PtC16、 Na2PtC16が好 ましく採用される。
[0042] 水溶性高分子は、アルコール溶液中、 l〜30mM程度、好ましくは 3〜24mM程度 になるように調製される。力かる範囲であれば、単結晶の超微粒子となるため好まし い。水溶性高分子のうち、特に、 PVPが好適である。
[0043] また、界面活性剤は、アルコール溶液中、 5〜10mM程度、好ましくは?〜 9mM程 度になるように調製される。特に、 SDSが好適である。
[0044] 加熱撹拌法によれば、上記のアルコール水溶液を、常圧下(0.08〜0.12MPa程度 )、 80〜120°C程度 (好ましくは 95〜100°C程度)で加熱処理することにより、貴金属超 微粒子が製造される。加熱処理では、適宜撹拌することが好ましい。
[0045] 超音波法によれば、上記のアルコール水溶液を、常圧下(0.08〜0.12MPa程度)、 常温下(10〜30°C程度)で超音波処理(100〜200kHz程度)することにより、貴金属 超微粒子が製造される。
[0046] また、上記のアルコール水溶液に、貴金属超微粒子の担体となりうる活性炭、アル ミナ、シリカ、ジルコユア、チタ-ァ等を添加しておくと、その表面に貴金属超微粒子 を担持させることも可能である。例えば、上記のアルコール水溶液 1Lに対し、担体 1 〜100g程度を添加することにより担体に担持された貴金属超微粒子を製造すること ができる。
[0047] 上記の製造方法によれば、粒径の揃った高活性な貴金属超微粒子を製造できる。
得られた貴金属超微粒子或いは担体に担持された微粒子は、高!ヽ触媒活性を有し ており、本発明の本発明の触媒担持構造体に採用することによりディーゼル排出ガ ス中の粒子状物質効率的に除去することが可能となる。
[0048] 蝕 担持構; ί告体
本発明の触媒担持構造体は、少なくとも 1枚の金網をロール状に巻いてなり、該金 網にディーゼル排出ガス中の微粒子を除去する触媒が担持されて 、る。前記金網の 少なくとも 1枚がエンボス加工されている金網である。また、本発明の触媒担持構造 体は、複数の金網を重ねて、或いは金網と微細孔を有する金属薄板を重ねて、中心 部までロール状に巻き取って形成されたものである。
[0049] 具体的には、前記金網を 2枚以上 (特に、 2枚)重ねてロール状に巻いてなり、該金 網の一方又は双方がエンボスカ卩ェされているものが挙げられる。例えば、平畳織金 網を焼結してなる金網積層体 8 (平畳織金網 7と平畳織金網 7)とエンボスカ卩ェされた 平畳織金網 6とを重ねたものの断面図を図 7に示す。
[0050] 或いは、前記金網と、多数の微細孔を有する金属薄板とをロール状に巻いてなり、 該金網及び該金属薄板の一方又は双方がエンボスカ卩ェされているものが挙げられ る。例えば、エンボス金網と切起片(片側のみ)のついた金属薄板との組合せとして 図 8及び図 9に示される形態が挙げられる。また、例えば、エンボス金網と微細孔を有 する金網との組合せとして図 10に示される形態が挙げられる。
[0051] 本発明の触媒担持構造体は、車載のディーゼル微粒子除去装置に装着されるた め、ロール状の軸方向の長さが 30〜150mm程度、ロールの直径が 150〜500mm 程度であればよい。
[0052] 本発明の触媒担持構造体は、上記の金網及び必要に応じて金属薄板を重ねて口 ール状に巻き上げた構造体に、上記触媒を担持している。担持される触媒は、前記 した金属酸化物担体に貴金属等を担持した触媒を好適に用いることができる。
[0053] 触媒の担持方法は、例えば、該構造体を金属酸化物(例、チタニア、アルミナ、ジ ルコユア)で被覆して焼成 (400〜1000°C程度)し表面処理した後、貴金属超微粒子 を含有する液体 (例、水、アルコール)に浸漬して該構造体上に貴金属超微粒子を 担持させることができる。また、得られた触媒担持構造体は 100〜200°C程度で加熱 処理してもよい。構造体上に担持された触媒の含有量は、触媒担持構造体中 2〜10 重量%程度であればよい。また、担持される触媒中の金属酸化物と貴金属超微粒子 の重量比は、例えば、 99 : 1〜90 : 10程度であればよい。
[0054] 前記触媒を、構造体に約 10〜: LOO m厚になるように、吹きつけ、ゥォッシュコート 、電着、浸漬等でコーティングしてもよい。
[0055] PM分解除去の触媒活性の点から、アルミナ、シリカ、チタ-ァ (酸化チタン)、 a アルミナ等の担体にニッケル、白金等の貴金属超微粒子を担持した触媒が好適であ る。特に α アルミナ担体に白金を担持した触媒が好ましい。
[0056] なお、本発明の触媒担持構造体は、上記の様に、未処理のロール状に巻き上げた 構造体に触媒を担持させる例を示したが、ロール状に巻き上げる前の金網や金属薄 板に触媒を担持させた後、それらをロール状に巻き上げて形成しても良い。
[0057] 力べして、金網の網目、金網間の隙間、金網と金属薄板間の隙間、或いは金属薄 板の微細孔により数 m〜数百/ z m径、好ましくは 500 m以下、より好ましくは 100 〜300 /ζ πι程度の微細流路が形成される。これにより、単位体積当たりの表面積が 増大し、排ガスと構造体表面に担持された触媒との接触効率が格段に向上する。そ のため、従来にない高い触媒活性を発揮することとなり、目詰まりがなく圧力損失の 問題も解消される。
ΤΤ.ディーゼル微粒早除去 置
本発明のディーゼル微粒子除去装置は、基本的には、ディーゼル排出ガスの流入 口と流出口を有する筒状の筐体内に、本発明の触媒担持構造体を備えた構造を有 している。具体例を図 11及び図 12に示す。
[0058] 図 11は、 1筒型のディーゼル微粒子除去装置 (以下、 1筒型装置ともいう)の概略 構成を示す模式断面図である。この例の 1筒型装置は、ディーゼル車に搭載されて 使用されるもので、図 11に示すように、ディーゼル排出ガスの 1つの流入口 alと 1つ の流出口 a2とを有する中空分岐部 Aと、ディーゼル排出ガスの 1個の流入口 clと 1つ の流出口 c2とを有する中空合流部 Cと、中空分岐部 Aの流出口 a2と中空合流部じの 流入口 clとに連通状態に挟持された装置本体部(以下、単に筒とも言う) Bとから概 略構成されている。
[0059] なお、中空分岐部 Aの内部には、流入口 alから高速に導入されるディーゼル排出 ガスを、減速させ、かつ、流出口 a2に均等に分散させるために、衝突板 S1が設けら れている。
[0060] 中空合流部 Cの内部には、流入口 clから高速に導入されるディーゼル排出ガスを 、減速させ、かつ、流出口 c2に均等に分散させるために、衝突板 S2が設けられてい る。
[0061] 各装置本体部 Bは、ディーゼル排出ガスの導入側から、 4個の卷上げ状の触媒担 持構造体 Tl、スぺーサー SP、及び 4個の卷上げ状の触媒担持構造体 T2の順に配 設された構造からなり、これらは、筒状容器 CA内に収納されている。なお、触媒担持 構造体の数は特に限定されないが、少なくとも 2段以上積層するのが好ましい。
[0062] 図 12は、 2筒型のディーゼル微粒子除去装置(以下、 2筒型装置ともいう)の概略 構成を示す模式断面図である。この例の 2筒型装置は、ディーゼル車に搭載されて 使用されるもので、図 12に示すように、ディーゼル排出ガスの 1つの流入口 al、 2つ の流出口 a2、 a2'とを有する中空分岐部 Aと、ディーゼル排出ガスの 2個の流入口 cl 、 cl 'と 1つの流出口 c2とを有する中空合流部 Cとに連通状態に挟持された互いに同 一構成の 2個の装置本体部(以下、単に筒とも言う) B、 B'とから概略構成されている
[0063] なお、中空分岐部 Aの内部には、流入口 alから高速に導入されるディーゼル排出 ガスを、減速させ、かつ、流出口 a2、 a2'に均等に分散させるために、衝突板 S1が設 けられている。中空合流部 Cの内部には、流入口 cl、 cl 'から高速に導入されるディ ーゼル排出ガスを、減速させ、かつ、流出口 c2に均等に分散させるために、衝突板 S 2が設けられている。
[0064] 各装置本体部 B、 B'は、共にディーゼル排出ガスの導入側から、 4個の卷上げ状 の触媒担持構造体 Τ1、 Τ 、スぺーサー SP、及び 4個の卷上げ状の触媒担持構造 体 T2、 T2'の順に配設された構造力 なり、これらは、筒状容器 B、 B'内に収納され ている。なお、触媒担持構造体の数は特に限定されないが、少なくとも 2段以上積層 するのが好ましい。
[0065] なお、上記の 1筒型装置及び 2筒型装置で用いられる触媒担持構造体の数は、も ちろん上記したものに限定されるものではなぐ本発明の目的を達成しうる範囲で適 宜その数を選択できる。また、 1又は 2筒型装置だけでなぐ 3筒型以上の装置も可能 である。
[0066] 触媒担持構造体の触媒としては、上述したものが挙げられる力 そのうちアルミナに 白金微粒子を担持したもの、チタニアに白金微粒子を担持したものが好適である。
[0067] 上記の 1筒型装置及び 2筒型装置で用いられるスぺーサ一は、前段触媒担持構造 体を層流状態で通過したディーゼル排ガスが、再び合流、拡散し、ディーゼル排ガス 中の未反応成分濃度が均一な状態で後段触媒担持構造体に流れる様するために 用いられるが、任意である。該スぺーサ一は、例えば、上述した触媒が担持されてい な 、ロール状の構造体が用いられる。
[0068] 本発明のディーゼル微粒子除去装置では、ディーゼル排ガスの温度(例えば、 180 〜500°C)で好適に作動することができる。そのため、該装置内に触媒を活性化させ るヒーター等の付加装置を必要とせず、製造コストやランニングコストが低減される。
[0069] 例えば、前記図 12の 2筒型装置において、排ガス流入口側の 4段としてアルミナに 白金微粒子を担持した構造体 T1及び T1 'を用い、排ガス流出口側の 4段としてチタ ユアに白金微粒子を担持した構造体 T2及び T2 'を用いて、ディーゼル微粒子除去 装置を構成し、これを 4tトラックの排気系統に設けた場合、ディーゼル排出ガスの N Oxの除去率は 30〜70%程度、スモーク除去率は 60〜90%程度、 PM除去率は 5 0〜80%程度と、いずれも高い除去率を達成することができる。従って、本発明のデ イーゼル微粒子除去装置は、 NOxはもちろん、優れた PM除去能力を有している。し 力も、長時間作動した場合でも目詰まりは発生せず、圧力損失が発生しないという特 徴も有している。

Claims

請求の範囲
[1] 少なくとも 1枚の金網をロール状に巻いてなる触媒担持構造体であり、該金網にディ ーゼル排出ガス中の微粒子を除去する触媒が担持されている触媒担持構造体。
[2] 前記金網の少なくとも 1枚がエンボスカ卩ェされている金網である請求項 1に記載の触 媒担持構造体。
[3] 前記金網を 2枚重ねてロール状に巻いてなる触媒担持構造体であり、該金網の一方 又は双方がエンボス加工されている請求項 1又は 2に記載の触媒担持構造体。
[4] 前記金網と、多数の微細孔を有する金属薄板とをロール状に卷!、てなる触媒担持構 造体であり、該金網及び該金属薄板の一方又は双方がエンボス加工されて 、る請求 項 1又は 2に記載の触媒担持構造体。
[5] 前記触媒が貴金属超微粒子を金属酸ィ匕物に担持した触媒である請求項 1〜4のい ずれかに記載の触媒担持構造体。
[6] 前記金網が、平織金網、綾織金網、平畳織金網、綾畳織金網、クリンプ織金網、ロッ ククリンプ織金網、フラットトップ金網、トンキャップ織金網、タイロッド織金網及び菱形 金網からなる群力 選ばれる少なくとも 1種である請求項 1〜5のいずれかに記載の 触媒担持構造体。
[7] ディーゼル排出ガスの流入口と流出口を有する筒状の筐体内に、請求項 1〜6のい ずれかに記載の触媒担持構造体を備えたディーゼル微粒子除去装置。
[8] 請求項 1〜6のいずれかに記載の触媒担持構造体が、筒状筐体内に 2段以上重ね て設けられた構造を有する請求項 7に記載のディーゼル微粒子除去装置。
[9] ディーゼル排出ガスの処理方法であって、該ディーゼル排出ガスを請求項 7又は 8に 記載のディーゼル微粒子除去装置で処理することを特徴とする処理方法。
PCT/JP2005/012063 2004-06-30 2005-06-30 新規触媒担持構造体及びそれを用いたディーゼル微粒子除去装置 WO2006003984A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004192826A JP2006015181A (ja) 2004-06-30 2004-06-30 新規触媒担持構造体及びそれを用いたディーゼル微粒子除去装置
JP2004-192826 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006003984A1 true WO2006003984A1 (ja) 2006-01-12

Family

ID=35782791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012063 WO2006003984A1 (ja) 2004-06-30 2005-06-30 新規触媒担持構造体及びそれを用いたディーゼル微粒子除去装置

Country Status (3)

Country Link
JP (1) JP2006015181A (ja)
KR (1) KR20070045080A (ja)
WO (1) WO2006003984A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2649284A1 (en) * 2010-12-06 2013-10-16 Greene Environmental Corporation Systems and methods for improving fuel efficiency
EP3179065A1 (en) * 2015-12-08 2017-06-14 Jumbomaw Technology Co., Ltd. Catalytic converter
US10864474B2 (en) 2017-02-21 2020-12-15 Porvair Filtration Group Limited Reinforced filtration apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858996B1 (ko) * 2007-01-18 2008-09-18 화이버텍 (주) 차압성능이 개선된 필터
JP4982241B2 (ja) * 2007-04-27 2012-07-25 エヌ・イーケムキャット株式会社 自動車用排気ガス浄化触媒、排気ガス浄化触媒系、および排気ガスの浄化方法
US8057746B2 (en) 2007-05-02 2011-11-15 Acr Co., Ltd. Carrier for exhaust-gas purification and exhaust-gas purifier having the carrier
JP5015017B2 (ja) * 2007-05-18 2012-08-29 寛 松岡 排気ガス浄化触媒用担体構造
JP4986240B2 (ja) * 2007-12-25 2012-07-25 ニチコン株式会社 触媒反応器およびそれを用いた触媒反応装置
JP5363406B2 (ja) * 2010-04-23 2013-12-11 ニチダイフィルタ株式会社 ガソリンエンジン用排気ガス浄化装置の触媒担持体の基材と触媒担持体の製造方法
JP5512374B2 (ja) * 2010-04-23 2014-06-04 ニチダイフィルタ株式会社 プラズマ溶射による触媒担持体の製造方法及び触媒担持体
KR101353942B1 (ko) * 2011-12-30 2014-01-24 현대비앤지스틸 주식회사 선박용 배기가스 필터조립체
JP2015157272A (ja) * 2014-02-25 2015-09-03 日新製鋼株式会社 触媒担体とその製造方法並びに触媒担持体
JP2017203381A (ja) * 2016-05-09 2017-11-16 株式会社深井製作所 排気ガス浄化装置及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106854A (ja) * 1974-01-14 1975-08-22
JPH02171232A (ja) * 1988-12-23 1990-07-02 Showa Aircraft Ind Co Ltd ハニカム構造体
JPH04279714A (ja) * 1991-03-06 1992-10-05 Nissan Motor Co Ltd 内燃機関の排気フィルタ
JPH11257048A (ja) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd ディーゼルエンジン用金属製フィルタ
JP2003033725A (ja) * 2001-07-24 2003-02-04 Nagasawa Wire Cloth Co 金網と、金網製フィルターと、振動篩い機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106854A (ja) * 1974-01-14 1975-08-22
JPH02171232A (ja) * 1988-12-23 1990-07-02 Showa Aircraft Ind Co Ltd ハニカム構造体
JPH04279714A (ja) * 1991-03-06 1992-10-05 Nissan Motor Co Ltd 内燃機関の排気フィルタ
JPH11257048A (ja) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd ディーゼルエンジン用金属製フィルタ
JP2003033725A (ja) * 2001-07-24 2003-02-04 Nagasawa Wire Cloth Co 金網と、金網製フィルターと、振動篩い機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2649284A1 (en) * 2010-12-06 2013-10-16 Greene Environmental Corporation Systems and methods for improving fuel efficiency
EP2649284A4 (en) * 2010-12-06 2014-05-07 Greene Environmental Corp SYSTEMS AND METHODS FOR INCREASED FUEL EFFICIENCY
EP3179065A1 (en) * 2015-12-08 2017-06-14 Jumbomaw Technology Co., Ltd. Catalytic converter
US10864474B2 (en) 2017-02-21 2020-12-15 Porvair Filtration Group Limited Reinforced filtration apparatus

Also Published As

Publication number Publication date
JP2006015181A (ja) 2006-01-19
KR20070045080A (ko) 2007-05-02

Similar Documents

Publication Publication Date Title
WO2006003984A1 (ja) 新規触媒担持構造体及びそれを用いたディーゼル微粒子除去装置
Gopinath et al. Strategies to design modified activated carbon fibers for the decontamination of water and air
JP4225428B2 (ja) ディーゼルエンジンの排出ガスの浄化装置及びこの浄化装置の製造方法、並びに排出ガスの浄化方法
CN104039450B (zh) 光催化的金属氧化物纳米材料、通过h2-等离子体进行处理的制造方法、用于水中的有机废物净化的用途
WO2005005018A1 (ja) ハニカム構造体
Zhang et al. Carbonized wood impregnated with bimetallic nanoparticles as a monolithic continuous-flow microreactor for the reduction of 4-nitrophenol
CN211216181U (zh) 废气处理系统
CN105921007A (zh) 有机废气净化装置和方法
Han et al. Construction of Ag/3D-reduced graphene oxide nanocomposite with advanced catalytic capacity for 4-nitrophenol and methylene blue
Goncharova et al. Gold-based catalysts prepared by pulsed laser ablation: A review of recent advances
CN104307576A (zh) 催化剂载体及其应用
JP2006305406A (ja) 排NOx浄化用触媒
JP4591164B2 (ja) 排ガス浄化方法及び排ガス浄化装置
CN109414647A (zh) 一种用于低温气体清洁的方法和用于该方法的催化剂
Zulkifli et al. Immobilization of carbon nanotubes decorated gold nanoparticles on anodized aluminium oxide (Au-CNTs-AAO) membrane for enhanced catalytic performance
JP4984816B2 (ja) メソポーラス構造体の製造方法
JP4930910B2 (ja) オゾン分解除去用触媒及びオゾン分解除去用触媒の製造方法
JP2006081957A (ja) 排ガス浄化用触媒
Putla et al. Review of Shape-Controlled CeO2 Nanocatalysts for Purification of Auto-Exhaust Pollutants
KR20060127863A (ko) 디젤 엔진 배기 가스용 필터 및 장치
WO2006003987A1 (ja) 環境浄化マイクロリアクターシステム
JP4712406B2 (ja) 排NOx浄化用触媒
JP5011974B2 (ja) メソポーラス構造体の製造方法
JP4514644B2 (ja) 気体の清浄化方法および清浄化装置
JP2006212585A (ja) 排ガス浄化用フィルタおよびその製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020057019364

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067016068

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase