WO2006003987A1 - 環境浄化マイクロリアクターシステム - Google Patents

環境浄化マイクロリアクターシステム Download PDF

Info

Publication number
WO2006003987A1
WO2006003987A1 PCT/JP2005/012066 JP2005012066W WO2006003987A1 WO 2006003987 A1 WO2006003987 A1 WO 2006003987A1 JP 2005012066 W JP2005012066 W JP 2005012066W WO 2006003987 A1 WO2006003987 A1 WO 2006003987A1
Authority
WO
WIPO (PCT)
Prior art keywords
microreactor
gas
wire mesh
catalyst
air
Prior art date
Application number
PCT/JP2005/012066
Other languages
English (en)
French (fr)
Inventor
Sakae Furukawa
Yumiko Yoshino
Original Assignee
Micro Reactor System Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Reactor System Co., Ltd. filed Critical Micro Reactor System Co., Ltd.
Publication of WO2006003987A1 publication Critical patent/WO2006003987A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00844Comprising porous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing

Definitions

  • the present invention relates to an environmental purification microreactor system for detoxifying harmful gases discharged from hospitals and factories by using a microreactor.
  • Ethylene oxide acidic ethylene
  • Ethylene oxide is known to have carcinogenic and harmful effects on the human body, and this substance is often used for sterilization of hospitals and industrial equipment and industrial intermediates. Because it is used, it is also regulated by the Industrial Safety and Health Act. According to the revised Occupational Safety and Health Act (Enforcement Ordinance Article 21), in an indoor workplace where sterilization work is carried out in hospitals and factories, the working environment is measured once every six months since September 1, 2002. It is obliged to do so, and the management concentration in Article 2 (Evaluation of measurement results) of the work environment evaluation standard is lppm.
  • the sterilization gases that have been used in hospital or industrial sterilizers so far are 10 to 30% (100,000 to 300,000 ppm) ethylene oxide and 90 to 70% carbon dioxide.
  • ethylene oxide remover several tens of air-rates are used after the sterilization process.
  • the current situation is that the Chillon is repeated, and the local waste or venting force is discharged as it is.
  • the concentration of discharged ethylene oxide gas varies depending on the installation location, and the number of times of air-cleaning purification depends on the judgment of the user, and a considerable number of times of air-raising is performed.
  • the ethylene oxide gas is discharged at a considerably high concentration, which has a very bad influence on the surrounding environment.
  • local waste sterilizers discharge ethylene oxide at a concentration of several hundred ppm to several thousand ppm into the atmosphere at ducts, pipes, and exhaust outlets.
  • the device of the invention described in Patent Document 1 repeats the work of exhausting ethylene oxide gas remaining in a sterilization tank after sterilization and introducing air into the sterilization tank a plurality of times.
  • an exhaust gas treatment tank is provided on the exhaust side of the sterilization tank, a reflux path is provided for returning the exhaust gas from the treatment tank to the sterilization tank, and the treatment tank is filled with activated carbon or water as an adsorbent.
  • the ethylene oxide gas just returned to the sterilization tank is returned to the untreated state just by taking time. There is also a fear, and it is difficult to reduce the size of the apparatus.
  • Patent Document 2 incorporates a water-sealed vacuum pump for sending a sterilized power ethylene oxide gas together with water, or heat treatment by incorporating a sterilized power ethylene oxide.
  • a water-sealed vacuum pump for sending a sterilized power ethylene oxide gas together with water, or heat treatment by incorporating a sterilized power ethylene oxide.
  • Patent Document 3 discloses an ethylene oxide gas removing device that introduces an ethylene oxide gas into a water tank and discharges it as glycerin. Equipment power The amount of ethylene oxide gas discharged A large water tank is required for processing.
  • the ethylene oxide removing device proposed so far does not have a structure suitable for downsizing, and when these devices are used, occupational safety is not achieved. It is difficult to achieve the ethylene oxide emission standard (emission concentration of 1 ppm or less), which is the purpose of the Sanitation Law.
  • the present inventors are able to reduce the concentration to a concentration that is high performance (emission concentration of 1 ppm or less), ultra-compact, low price, safe and harmless to the human body.
  • concentration concentration that is high performance (emission concentration of 1 ppm or less)
  • ultra-compact low price
  • safe and harmless to the human body.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-312709
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-325751
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-205032
  • An object of the present invention is to solve the above-mentioned problems in the prior art, and to make ethylene oxide that is discharged in hospitals and industrial use, such as ethylene oxide-based sterilizers, have a high performance,
  • the aim is to provide a compact, low-cost, extremely safe ethylene oxide removal device, and an environmental purification microreactor system suitable for detoxification of other harmful gases.
  • such a microreactor system is used for various harmful gases other than ethylene oxide, that is, acrylonitrile, acetoaldehyde, chloride chloride monomer, chloroform, formaldehyde, chloromethyl methyl ether, 1,2-dichloroethane, dichloromethane. , Dioxins, tetrachloroethylene, trichloroethylene, 1,3-butadiene, benzene, benzo [a] pyrene, and formaldehyde, etc. It was also found that it can be applied as a kuta system.
  • the environmental purification microreactor system of the present invention introduces air from outside the apparatus, inhaling air outside the apparatus, heating the air with a heater, and sending the air at a constant flow rate.
  • the gas mixing chamber contains a gas mixing chamber in which mixing is performed by mixing the harmful gas generated and the heated air sent from the air heating unit, and a microreactor element carrying a catalyst in the reactor.
  • a catalytic reaction unit that achieves the detoxification treatment of the harmful gas by contacting the catalyst while the mixed gas mixed in the chamber moves while flowing in the microreactor element, and the microreactor
  • the element has a large number of microchannels (microchannels) with a diameter of several m, several hundreds / zm, which intersect, merge or branch three-dimensionally, and the microreactor element includes: Catalyst for detoxifying noxious gas passing through the serial micro flow path in which characterized in that it is carried.
  • the microreactor element is a roll of a metal sheet having a large number of fine holes and an embossed wire mesh or a spacer made of a flat wire mesh without embossing.
  • the harmful gas can be passed through the rolled microreactor element.
  • the microreactor elements are arranged so that the axis direction of the roll is substantially parallel to the flow direction of the gas mixture.
  • the microreactor element may be formed by alternately laminating a single wire net such as a plain woven wire mesh and a spacer having embossed wire mesh force.
  • the microreactor element includes a wire mesh laminate in which a plurality of flat woven wire meshes are stacked and joined together, and a spacer formed of an embossed wire mesh or a flat wire mesh without embossing. Can be alternately arranged in a laminated form.
  • the microreactor element includes a plurality of metal thin plates having a large number of micropores in parallel with a space therebetween in a direction substantially perpendicular to the flow direction of the mixed gas. It is also possible to arrange them.
  • the wire mesh material used in the microreactor element of the present invention is preferably a stainless steel wire (for example, SUS310, SUS316, etc.) from the viewpoint of heat resistance, workability, economic efficiency, etc. Is preferably about 0.01 to 1.5 mm (further, about 0.1 to 0.5 mm, especially about 0.18 mm). Further, the shape of the wire mesh is not particularly limited as long as the object of the present invention can be achieved.
  • plain woven wire mesh for example, plain woven wire mesh, twill woven wire mesh, flat woven wire mesh, twill woven wire mesh, crimp woven wire mesh, rock crimp woven fabric.
  • Wire mesh, flat top wire mesh, ton cap woven wire mesh, tie rod woven wire mesh, rhombus wire mesh, demister (knitted) wire mesh, etc. are used.
  • plain woven wire mesh and plain woven wire mesh are suitable.
  • the wire mesh is preferred to be embossed, so that when the wire mesh is wound into a roll, the wire mesh spacing is not too tight and a gas flow path is secured, thereby preventing clogging and preventing the wire mesh.
  • the contact area with the catalyst supported on the catalyst increases.
  • the embossing force here is processed into a shape having protrusions that spread regularly in three dimensions, but in addition, (two-dimensional) streaks of the same cross-sectional shape are constant. Including those processed into a streak-like or wavy shape lined up on the pitch.
  • the wire protrusions or metal thin plates overlap each other so that the gaps do not narrow and the gaps are narrowed. It is preferable that
  • embossed plain woven wire mesh a vertical line and a horizontal line made of stainless steel wire, etc., cross each other at a constant interval, and the wire mesh has a wire diameter of 0.1. ⁇ 0.3mm (especially 0.15 ⁇ 0.2mm), emboss (h) is 1 ⁇ 2mm (especially 1.2 ⁇ 1.7mm), X pitch is 1 ⁇ : LOmm ( In particular, 3 to 7 mm) and the y pitch is about 1 to 15 mm (especially 5 to 10 mm).
  • the mesh (number of meshes contained in 25.4 mm square; JISZ 8801) is about 10 to: LOO.
  • the material of the metal thin plate having a large number of fine holes used in the microreactor element of the present invention is SUS, particularly 1 ⁇ 20-51; 31 ⁇ from the viewpoints of heat resistance, workability, economy, etc.
  • Stainless steel for high heat members (made by Kawasaki Steel) is suitable.
  • the thickness of the metal thin plate is about 10 to 500 / ⁇ ⁇
  • the opening ratio of the fine holes is about 30 to 80%
  • the diameter of the fine holes is about 20 to about LOO m.
  • the thin metal plate has a corrugated shape in the longitudinal direction or the width direction.
  • the fine holes may have protrusions, cut and raised pieces, and the like.
  • a thin metal plate having a fine hole that is not embossed and an embossed wire net are wound in a roll shape, and have an embossed fine hole.
  • a metal sheet and an embossed wire mesh stacked in a round shape, a metal sheet having an embossed microhole and an embossed metal mesh, and a wire mesh stacked in a roll shape examples include an embossed wire mesh and an embossed metal mesh, and a wire mesh that is rolled up into a roll shape.
  • a plurality of (2 to 3) non-embossed wire meshes are stacked and joined together, and a single layer of embossed wire mesh is alternately laminated.
  • Examples include one rolled up, one layer embossed wire mesh and one layer metal thin plate with fine holes that are not embossed, and rolled into a roll.
  • microreactor elements can be appropriately selected according to the application, use conditions and the like.
  • harmful gas such as ethylene oxide is mixed with heated air, and this mixed gas is three-dimensionally crossed, merged or branched in the microreactor elements.
  • the catalyst reaction can be made dramatically more efficient, and high-concentration harmful gases can be reduced to lppm in a few seconds. It is possible to provide a very safe environmental purification microreactor system at a low price, which can be reduced to about 1Z10 of conventional equipment. It can be easily mounted on existing sterilizers, taking advantage of its ultra-small features.
  • a microreactor element As a microreactor element, a thin metal plate having a large number of fine holes and an embossed wire mesh or a spacer having a flat wire mesh force without embossing are overlapped and wound into a roll shape. This makes it possible to easily manufacture a microreactor having a large number of microchannels with a diameter of several to several hundreds of meters that intersect, merge or branch three-dimensionally, enabling mass production.
  • microreactor element As a microreactor element, a plurality of thin, flat-woven woven wire meshes are stacked and joined together. It is also possible to measure several m by using a wire mesh laminate and spacers made of embossed wire mesh or spacers made of flat wire mesh without embossing. Enables easy and mass production of microreactors with a large number of microchannels with a diameter of 100 / zm.
  • FIG. 1 shows the internal structure of a preferred embodiment of the environmental purification microreactor system of the present invention, wherein 1A is a longitudinal front view and 1B is a longitudinal side view.
  • FIG. 2 is an enlarged view of the catalytic reaction part of the environmental purification microreactor system of FIG.
  • FIG. 3 is an exploded view of the catalytic reaction section of FIG. 2.
  • FIG. 4 is a longitudinal front view of a partially enlarged microreactor element.
  • FIG. 5 is a cross-sectional plan view of a partially enlarged microreactor element.
  • FIG. 6 A plain woven wire mesh constituting a microreactor element of another example, 6A is a plan view, 6B is a cross-sectional view along line AA in FIG. 6A, and 6C is a cross-sectional view along line BB in FIG. 6A .
  • FIG. 7 is a cross-sectional view of a wire mesh laminate obtained by sintering the plain woven wire mesh shown in FIG.
  • FIG. 8 is a cross-sectional view of another example of a microreactor element.
  • FIG. 9 is a perspective view of a thin metal plate constituting a microreactor element of still another example.
  • FIG. 10 is a cross-sectional view of a microreactor element having a metal sheet force of FIG.
  • FIG. 11 is a chart showing the test results of Example 1.
  • FIG. 1 is a diagram showing an internal structure in a preferred example of an environmental purification microreactor system of the present invention.
  • 1A is a longitudinal front view
  • 1B is a longitudinal side view.
  • Fig. 2 is an enlarged view of the catalytic reaction section of the environmental purification microreactor system of Fig. 1
  • Fig. 3 is an exploded view of the catalytic reaction section of Fig. 2
  • Fig. 4 is a longitudinal front view of a partially enlarged microreactor element.
  • 5 is a cross-sectional plan view of a partially enlarged microreactor element.
  • the environmental purification microreactor system includes an air heating unit 1 and a gas mixing chamber. 2 and catalytic reaction part 3.
  • the air heating unit 1 is heated by a heater lc provided in the main body lb while air outside the apparatus (normal temperature) is sucked from the suction port la and passes through the tubular air heating unit main body lb.
  • a heater lc provided in the main body lb.
  • air sucked at room temperature is generally heated at a heater temperature of 190 to 500 ° C, and is heated to about 190 to 500 ° C to be sent to the gas mixing chamber 2. Is done.
  • a heating element that has a stable temperature characteristic that can obtain a predetermined temperature quickly, can be finely controlled, and can generate hot hot air continuously for a long time is preferable. It is preferable that the thermal conductivity to be transmitted to the air is high, for example, designed to be 80% or more.
  • the heated air from the air heating unit 1 is sent to the gas mixing chamber 2, and harmful gases such as ethylene oxide discharged from the sterilizer are also introduced into the gas mixing chamber 2, and both in the gas mixing chamber 2 Mixing is performed.
  • preheated air and harmful gas are mixed when the harmful gas to be detoxified is ethylene oxide gas, and the explosion limit of ethylene oxide is as wide as 3% to 100%. This is to prevent explosion when excessively high concentration ethylene oxide is heated.
  • a mixed gas heating unit may be provided after the gas mixing chamber 2 together with the air heating unit 1 or instead of the air heating unit 1 (not shown).
  • the ethylene oxide gas is pre-diluted to a concentration below the explosion limit of 3% before heating.
  • the heating temperature in the gas mixture heating section is usually about 250 to 500 ° C.
  • the mixing ratio of the harmful gas introduced from the outside of the apparatus and the heated air sent from the air heating unit 1 can be appropriately selected.
  • the harmful gas to be detoxified is ethylene oxide gas
  • the concentration of ethylene oxide in the mixed gas is generally about 0.3% (3,000 ppm) to 3% (30, OOOppm). I prefer to be.
  • the catalytic reaction unit 3 houses a microreactor element 32 carrying a catalyst in a reactor 31 having a substantially cylindrical or rectangular tube shape.
  • the microreactor element 32 has innumerable fine channels (microchannels) having a diameter / zm to several hundred ⁇ m diameter that intersect, merge or branch three-dimensionally.
  • a catalyst for detoxifying the harmful gas passing through the flow path is supported.
  • two reactors 31 are arranged in series, one force (see FIG. 3), or three or more may be arbitrarily arranged.
  • reference numeral 3a denotes a gas inlet (in the illustrated example, three locations are provided)
  • 3b denotes a gas outlet
  • 3c denotes a gas outlet.
  • the microreactor element 32 is made of stainless steel or the like having a large number of fine holes (square holes) 4a and cut and raised pieces 4b cut and raised when the fine holes 4a are punched.
  • a thin metal plate 4 and a spacer 6 formed by embossing a thin plain woven wire mesh 5 are stacked and rolled to the center.
  • the roll-shaped microreactor element 32 is accommodated in the reactor 31 so that the central axis thereof coincides with the central axis of the reactor 31 (see FIG. 2).
  • the aperture ratio of the thin metal plate 4 is 30 to 80%
  • the plate thickness is 10 to 500 ⁇ m
  • the hole diameter of the fine holes 4a is 20: LOO / zm.
  • the plain weave wire mesh 5 consists of a vertical line 5a and a horizontal line 5b made of stainless steel wires, etc., one at a time, and a mesh (number of meshes contained in 25.4 mm square) is 10 ⁇ : LOO.
  • the gap between the metal thin plate 4 and the plain weave wire mesh 5, and the mesh of the plain weave wire mesh 5, several / zm to several hundreds / zm diameter, preferably 500 m or less, more preferably 100 to 300 ⁇ m It is formed so that there are about 1 to 2 million micro flow channels (micro channels).
  • the spacer 6 may be made of a flat plain woven wire mesh 5 that is not embossed, or may be a wire mesh other than the plain woven wire mesh 5.
  • arrow 10 is the gas inflow side and arrow 11 is the gas. Indicates the outflow side.
  • Examples of the catalyst supported on the microreactor element 32 include a wide range of catalysts in which a noble metal or the like is supported on a metal oxide support.
  • the noble metal is preferably noble metal ultrafine particles from the viewpoint of catalytic activity.
  • the average particle size is preferably about 1 to 5 nm, particularly about 2 to 3 nm.
  • the particle size distribution is also uniform so that the standard deviation with respect to the average particle size is within 30%, particularly within 10%. Is preferred!
  • Such noble metal ultrafine particles can be produced by heating and stirring or ultrasonically irradiating an aqueous alcohol solution containing a noble metal salt, a water-soluble polymer and a surfactant under normal pressure.
  • noble metal salt examples include inorganic salts such as Ru, Pt, Rh, Pd, Au, Cu, and Ag, and complex salts, and water-soluble salts in the presence of a surfactant. It is done. Specific examples include H RuCl, H PtCl, NaAuCl, PdCl, AgNO and the like. Choose from these
  • One kind or a mixture of two or more kinds can be used.
  • a mixture of two or more kinds it becomes possible to produce ultrafine particles of a noble metal alloy.
  • the water-soluble polymer may act as a stabilizer that suppresses aggregation and inactivation of the ultrafine particles by forming the polymer film on the surface of the ultrafine particles.
  • the water-soluble polymer includes a moiety having a substituent that interacts with a metal, for example, a carbonyl group, a carboxyl group, a hydroxyl group, an ammonium group, an amino group, a sulfol group, a thiol group, and a sulfide group.
  • a polymer comprising at least one substituent selected from the group consisting of carbon chain moieties forming a polymer backbone.
  • the polymer is preferably a polymer of a monomer having a bur group, and more preferably, the monomer has at least one substituent.
  • the molecular weight of such polymers is about 10,000 to 500,000, especially 10,000 to 100,000.
  • Examples of such an organic polymer include polybute ether, polyatarylate, poly (mercaptomethylenesulylene-l-bull-2-pyrrolidone), polyacrylonitrile, and the like.
  • Polyvinyl alcohol and poly (l-bule-2) —Pyrrolidone) (PVP) is preferably used.
  • the surfactant contributes to the dispersion stability of the ultrafine particles in the alcohol solution.
  • key-on surface activity such as sodium dodecyl sulfate (SDS) Sex agents.
  • SDS sodium dodecyl sulfate
  • the aqueous alcohol solution is an aqueous solution containing alcohol, and functions as a solvent and a reducing agent for reducing a noble metal ion to a metal.
  • the water is preferably ultrapure water.
  • the alcohol is preferably an alcohol having 2 or more carbon atoms.
  • Examples thereof include polyhydric alcohols having 2 to 6 carbon atoms.
  • Noble metal ultrafine particles are produced by heating and stirring or ultrasonically irradiating an aqueous alcohol solution containing a noble metal salt, a water-soluble polymer and a surfactant under normal pressure.
  • the alcohol used in the aqueous alcohol solution is as described above, and the volume ratio of alcohol to water is 1/9 to 9/1, preferably 1/3 to 3/1.
  • the alcohol ethylene glycol is preferred.
  • the desired noble metal ultrafine particles can be continuously prepared simply by heating without refluxing.
  • the noble metal salt is adjusted so as to be about 0.1 to about LOmM, preferably about 0.5 to 4 mM in an alcohol solution. This is because nano-order fine particles having a desired particle distribution can be obtained within the range that works.
  • the precious metal salt is H PtCl
  • the water-soluble polymer is prepared to be about 1 to 30 mM, preferably about 3 to 24 mM in an alcohol solution. If it is within the range, it is preferable because it becomes ultrafine particles of single crystal. Of the water-soluble polymers, PVP is particularly preferable.
  • the surfactant is preferably about 5 to 10 mM in an alcohol solution, preferably? It is prepared to be about ⁇ 9 mM. In particular, SDS is preferred.
  • the above alcohol aqueous solution is subjected to heat treatment under normal pressure (about 0.08 to 0.12 MPa) at about 80 to 120 ° C (preferably about 95 to 100 ° C).
  • Noble metal ultrafine particles of the invention are produced.
  • the ultrasonic method the above alcohol aqueous solution is subjected to ultrasonic treatment (about 100 to 200 kHz) under normal pressure (about 0.08 to 0.12 MPa) and room temperature (about 10 to 30 ° C).
  • the ultrafine noble metal particles of the present invention are produced.
  • the noble metal ultrafine particles can be supported on the surface. It is.
  • the carrier-supported noble metal ultrafine particles can be produced by adding about 1 to 100 g of the carrier to 1 L of the above aqueous alcohol solution.
  • the obtained noble metal ultrafine particles or the fine particles supported on the carrier are high! It has a catalytic activity and can be removed very efficiently by adopting it in the microreactor system of the present invention.
  • the noble metal ultrafine particles are supported on the microreactor element 32 together with the metal oxide.
  • the microreactor element 32 is coated with a metal oxide (eg, tita, alumina, zirca), fired (about 400 to 1000 ° C.), surface-treated, and then contains ultrafine noble metal particles.
  • a metal oxide eg, tita, alumina, zirca
  • fired about 400 to 1000 ° C.
  • Noble metal ultrafine particles can be supported on the microreactor element by dipping in a liquid (eg, water, alcohol). Also, the microreactor element carrying precious metal ultrafine particles may be heat-treated at about 100 to 200 ° C. The ratio of the metal oxide supported on the microreactor element to the noble metal ultrafine particles may be, for example, about 99: 1 to 90:10.
  • alumina, silica, titer (acid titanium), a-alumina carrying a white metal is suitable, and silica, nickel, acid cerium, and Those carrying platinum are also preferably used.
  • a strong catalyst may be coated on the microreactor element 32 by wash coating, electrodeposition or the like to a thickness of about 10-100 ⁇ m.
  • a catalyst that supports platinum on a -alumina or a catalyst that supports nickel, cerium oxide, and platinum on silicic acid can reduce the high concentration of ethylene oxide (3, OOOppm) to lppm in a few seconds. The reaction is possible at a low temperature of about 200 ° C.
  • one metal thin plate 4 has a hole diameter of 30 to 100 / ⁇ ⁇ . Because there are about 100 million micro holes 4a, the mixed gas flow becomes laminar. Since the transfer time of mass transfer and heat transfer is proportional to the square of the microchannel diameter, the transfer time is very short in the microchannel (diffusion time 1Z10,000, specific surface area 100 times). As a result, the concentration of the mixed gas in the microchannel becomes uniform, the oxygen concentration in the vicinity of the surface of the metal thin plate 4 is always kept high, and the through-holes that serve as inlets and outlets for the microchannel effect. Combined with this effect, a highly efficient catalytic reaction can be performed by a synergistic effect of a very large surface area and a complicated flow such as crossing, merging and branching.
  • the microreactor comprising the microreactor element 32 has a larger space velocity (SV) than a conventional ceramic or activated carbon granular carrier or a ha-cam carrier, and therefore has a larger amount of catalytic reaction.
  • the amount of processing per hour is dramatically large.
  • the cut and raised pieces 4b attached to the respective fine holes 4a increase the surface area of the catalyst and exert the rectifying action of the mixed gas.
  • Spacer 6 made of plain woven wire mesh 5 exhibits not only the function of maintaining the gap between the layers of metal sheet 4 and the formation of fine flow paths, but also the rectifying action of the mixed gas, especially made of plain woven wire mesh 5 formed by embossing.
  • the spacer 6 can impart elasticity to the microreactor element 32.
  • a plurality of thin flat woven wire meshes 7 as shown in Fig. 6 are stacked and joined together by sintering or the like 8 ( 7) and a spacer 6 similar to the above-mentioned spacer 6 composed of a thin plain woven wire mesh 5 embossed or a flat thin woven wire mesh 5 not embossed. (See Figure 8).
  • the flat woven wire mesh 7 is woven by enlarging the mesh of the vertical lines 7a made of stainless steel wire and the like, and by sequentially adhering the horizontal lines 7b.
  • the mixed gas that passes through the planar “opening of the mesh” passes through a gap of ⁇ m order at the intersection of vertical line 7a and horizontal line 7b.
  • the mesh of this flat woven wire mesh 7 (number of vertical lines in 25.4 mm square X number of horizontal lines) is, for example, 12 X 64. As shown in Fig.
  • Innumerable fine channels are formed.
  • arrow 10 indicates the gas inflow side and arrow 11 indicates the gas outflow side.
  • the plurality of thin metal plates 9 are vertically moved so that the slit-like fine holes 9a of the lower metal plate 9 are perpendicular to the slit-like fine holes 9a of the upper metal thin plate 9. Stacked and arranged.
  • the microreactor of the above example has a large number of microchannels with a diameter of several ⁇ m to several hundreds of ⁇ m, so that it has the above-mentioned performance and exceeds the size of about 1Z10 of the conventional apparatus. It can be downsized.
  • a current can be directly applied to the microreactor element 32 to be used as a heater.
  • the catalyst since the catalyst is directly supported on the microreactor element 32, the temperature distribution and the reaction efficiency are remarkably increased. By supporting the catalyst on the microreactor element 32, the heat generated by the reaction can be used and the remaining heat can be used, so that the processing gas can have a function as a heat exchanger.
  • the environmental purification microreactor system having the microreactor power having the above features is ultra-compact and can be reduced in cost, and the power and running cost can be greatly reduced.
  • the environmental cleanup microreactor system of the present invention is an acrylonitrile, acetaldehyde, a salt solution, among the priority action substances established by Japan that only removes ethylene oxide.
  • vinylene monomers chlorohonolem, chloromethinolemethinoleethenole, 1,2-dichlorodiethane, dichloromethane, dioxins, tetrachloroethylene, trichloroethylene, 1,3-butadiene, benzene, benzo [a] pyrene, and formaldehyde Since the same performance as in the case of ethylene oxide removal can be obtained, the above substances can also be applied.
  • Example 1 Example 1
  • Platinum ultrafine particles having an average particle diameter of 2 to 3 nm were obtained by heating and stirring at 100 ° C for 5 to 30 minutes at the bottom (about O.lMPa).
  • a thin metal plate 4 such as stainless steel having a large number of fine holes (square holes) 4a as shown in FIG. 4 and FIG.
  • a microreactor element obtained by laminating a thin plain weave wire mesh 5 with a spacer 6 formed by embossing and rolling it to the center in a roll shape is impregnated with alumina sol, and is electrodeposited on the surface of the microreactor element. Alumina was accumulated and fired at 1000 ° C.
  • the microreactor element was impregnated with ultrafine platinum particles and dried at 150 ° C. This operation was repeated, and the weight ratio of alumina and platinum supported on the microreactor element was adjusted to 97: 3.
  • This microreactor element was accommodated in a reactor 31 having an inner diameter of 10 cm and a longitudinal length of 150 cm so that the central axis X of the microreactor element 32 was in the vertical and vertical directions.
  • the air heating section As the air heating section, a commercially available hot air generator (manufactured by Infridge Industry Co., Ltd., model number: SEN-100V-1000W-AS) was used, and the ring of the present invention having the structure shown in FIG. A Sakaipurin microreactor system was created. Air outside the device can be sucked so that it can be heated to about 250 ° C, and the amount of heated air introduced from the air heating section to the gas mixing chamber is 30 liters Z minutes, and 1% ethylene oxide gas (EO) The amount of EO introduced was 70 liters / minute, the flow rate was increased based on this concentration ratio, and the performance limit of the catalyst was investigated. Therefore, the EO concentration finally processed in the microreactor is 0.7%.
  • EO ethylene oxide gas
  • the result of the above experiment is shown in Fig. 11.
  • the EO gas decreased from 10,000 ppm to 0.2 ppm or less.
  • a catalyst is supported as a catalytic reaction section, and a number of microchannels (microchannels) of several ⁇ m to several hundred ⁇ m in diameter that cross, merge or branch three-dimensionally.
  • the environmental purification microreactor system of the present invention equipped with a microreactor having ()) is very effective for the detoxification treatment of ethylene oxide gas, can meet strict environmental standards, and the adoption of the microreactor makes the device extremely Smaller and more compact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 病院等のエチレンオキサイド(EO)利用滅菌器から排出されるEOを1ppm以下に低減できる高性能、超小型、低価格、極めて安全な環境浄化マイクロリアクターシステムを提供する。  装置外部の空気を吸入し、当該空気をヒーターにより加熱して一定流量にて送出可能な空気加熱部1と、装置外部より導入される有害ガスと空気加熱部1より送出された加熱空気とが流入し混合が行われる気体混合室2と、反応器31内に触媒が担持されたマイクロリアクター要素32を収納してなり、気体混合室2にて混合された混合気体が当該マイクロリアクター要素32内を流動しながら移動する間に触媒と接触することによって有害ガスの無害化処理が達成される触媒反応部3とを具備し、マイクロリアクター要素32は、三次元的に交差、合流もしくは分岐する数μm~数百μm径の多数の微細流路(マイクロチャンネル)を有してなる。

Description

環境浄ィ匕マイクロリアクターシステム
技術分野
[0001] 本発明は、マイクロリアクターを用いることによって病院や工場等力 排出される有 害なガスを無害化処理するための環境浄ィ匕マイクロリアクターシステムに関する。 背景技術
[0002] 平成 8年(1996年) 5月 9日に公布された「大気汚染物質法の一部を改正する法律 」にお 、て有害大気汚染物質 (優先取組物質)のひとつに挙げられて 、るエチレンォ キサイド (酸ィ匕エチレン)には発癌性及び人体への有害な影響があることが知られて おり、この物質は、病院や産業用器材の滅菌作業や工業用の中間物質に多く使用さ れていることから労働安全衛生法令でも規制されている。そして、改正労働安全衛生 法 (施行令第 21条)により、病院や工場などで滅菌作業を行う屋内作業場では、平 成 14年 9月 1日より、 6力月ごとに 1回作業環境測定を行うことが義務付けられ、その 作業環境評価基準第 2条 (測定結果の評価)の管理濃度は lppmとされている。
[0003] これまでに病院用又は産業用の滅菌器において使用されてきている滅菌ガスとし ては、 10〜30% (10万 ppm〜30万 ppm)のエチレンオキサイドと 90〜70%の炭酸 ガスと力もなる混合ガスや、 100% (100万 ppm)エチレンオキサイドガスなどが一般 的であり、エチレンオキサイド除去器を装着していない滅菌器の場合、滅菌処理を行 つた後に数十回のエアーレーシヨンを繰り返し、そのまま局所廃棄、あるいは通気口 力も排出しているのが現状である。このため、排出されるエチレンオキサイドガスの濃 度は各設置場所により異なり、又、エアーレーシヨン浄ィ匕回数も使用者の判断によつ て回数が異なり、相当な回数のエアーレーシヨンを行わない限りかなりの高濃度でェ チレンオキサイドガスが排出され、周辺環境に対して非常に悪影響を与えている。一 般に、局所廃棄型滅菌器はダクト、配管、排気口力も数百 ppm〜数千 ppmの濃度の エチレンオキサイドを大気中に排出して 、るのが現状である。
[0004] このような現状にもかかわらず、現在市場に出ているエチレンオキサイド除去装置 の中で、管理基準値である lppmをクリアできるものはほとんどなぐ又、装置全体が 非常に大きくて業務用の冷蔵庫程度のサイズであるために設置場所の点でも問題が あり、し力も装置自体が高価で (一般的には 500万円以上)、メンテナンス費用、ラン ユングコストも高ぐ病院や企業側にとって高負担であるという問題点もある。また、産 業用滅菌装置のエチレンオキサイド処理の技術は、大量のエチレンオキサイドを利 用するので 2日間にわたり連続燃焼処理を行っている力 ランニングコストに膨大な 費用を要し、企業にとって高負担を強いられている。
[0005] 今後、屋外排出基準の規制(ISO1400関係)も益々強まると予想されるので、それ をクリアする高性能、安価、コンパクトな機器の開発が重要になると考えられ、その開 発が遅れるほど地球環境に大きな影響を与えることにもなる。さらに、エチレンォキサ イドは有害であるだけでなぐその爆発限界が 3〜: LOO%と大きいために、安全に処 理可能な装置を開発することも要望されて 、る。
[0006] 最近提案されているエチレンオキサイドガス処理装置としては、例えば特許文献 1 〜3に記載されているものが挙げられる。
[0007] 特許文献 1に記載されている発明の装置は、滅菌処理した後に滅菌槽内に残った エチレンオキサイドガスを排出し、空気を滅菌槽内に導入する作業を複数回繰り返 すものであり、滅菌槽の排気側に排気ガス処理槽が設けられ、この処理槽からの排 気ガスを滅菌槽に還流する還流路が設けられ、処理槽内に吸着剤として活性炭や水 などが充填された構造を有しているが、吸着剤による吸着や水との接触を利用した処 理の場合には処理に時間が力かるだけでなぐエチレンオキサイドガスが未処理のま まで滅菌槽に戻される恐れもあり、また装置を小型化することは困難である。
[0008] また、特許文献 2に記載されて 、る装置は、滅菌庫力 のエチレンオキサイドガスを 水と共に送出するための水封式真空ポンプや、滅菌庫力 のエチレンオキサイドを 取り入れて加熱処理し、活性炭処理し、冷却処理するための排出処理装置本体を具 備するものであり、この装置の場合にも、処理時間がかかり、装置の小型化が困難で あるという問題点がある。
[0009] 更に、特許文献 3においても、エチレンオキサイドガス除去装置として、水槽内にェ チレンオキサイドガスを導入してグリセリンとして排出させるものが開示されているが、 この装置の場合も一般的な滅菌装置力 排出される量のエチレンオキサイドガスを 処理するには大きな水槽が必要となる。
[0010] このように、これまでに提案されて 、るエチレンオキサイド除去装置は 、ずれも小型 化するのに適した構造を有するものではなぐ又、これらの装置を用いた場合には、 労働安全衛生法が目的としているエチレンオキサイドの排出基準 (排出濃度 lppm 以下)を達成することは困難である。
[0011] そのような観点から、本発明者等は、高性能 (排出濃度 lppm以下)、超小型、低価 格、安全であり、人体にも無害である濃度にまで低減できて無害化処理できるェチレ ンオキサイド除去装置の量産試作機を研究開発してきた。
特許文献 1 :特開 2000— 312709号公報
特許文献 2 :特開 2000— 325751号公報
特許文献 3:特開 2001 - 205032号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明の課題は、上述の従来技術における問題点を解決し、病院や産業用にお けるエチレンオキサイド利用滅菌器等力も排出されるエチレンオキサイドを lppm以 下にするなど高性能、超小型、低価格、極めて安全なエチレンオキサイド除去装置、 又、その他の有害ガスの無害化処理にも好適な環境浄ィ匕マイクロリアクターシステム を提供しょうとするものである。
[0013] 本発明者等は種々検討を行った結果、エチレンオキサイドガスを加熱空気と混合し 、その後、触媒が担持されたマイクロリアクター要素の三次元的に交差、合流もしくは 分岐する数 μ mから数百 μ m径の多数の微細流路(マイクロチャンネル)を通過させ たところ、エチレンオキサイドガスが飛躍的に効率よく無害化処理できるとともに、上 記課題を解決できることを見出して本発明を完成した。
[0014] また、このようなマイクロリアクターシステムは、エチレンオキサイド以外の各種有害 ガス、すなわち、アクリロニトリル、ァセトアルデヒド、塩化ピ-ルモノマー、クロ口ホルム 、クロロメチルメチルエーテル、 1, 2—ジクロロェタン、ジクロロメタン、ダイォキシン類 、テトラクロロエチレン、トリクロロエチレン、 1, 3—ブタジエン、ベンゼン、ベンゾ [a]ピ レン、及びホルムアルデヒドなどの無害化処理にも有効であり、環境浄ィ匕マイクロリア クタ一システムとして適用できることも見出した。
課題を解決するための手段
[0015] 即ち、本発明の環境浄ィ匕マイクロリアクターシステムは、装置外部の空気を吸入し、 当該空気をヒーターにより加熱して一定流量にて送出可能な空気加熱部と、装置外 部より導入される有害ガスと前記空気加熱部より送出された加熱空気とが流入し混合 が行われる気体混合室と、反応器内に触媒が担持されたマイクロリアクター要素を収 納してなり、前記気体混合室にて混合された混合気体が当該マイクロリアクター要素 内を流動しながら移動する間に触媒と接触することによって前記有害ガスの無害化 処理が達成される触媒反応部とを具備し、前記マイクロリアクター要素は、三次元的 に交差、合流もしくは分岐する数 m力 数百/ z m径の多数の微細流路 (マイクロチ ヤンネル)を有してなり、前記マイクロリアクター要素には、前記微細流路を通過する 有害ガスを無害化処理するための触媒が担持されていることに特徴を有するもので ある。
[0016] この場合にお 、て、前記マイクロリアクター要素は、多数の微細孔を有する金属薄 板と、エンボス加工した金網又はエンボス加工しな 、平らな金網からなるスぺーサー とを重ねてロール状に巻いて成り、このロール巻き状のマイクロリアクター要素に前記 有害ガスを通過させることができる。この場合、各微細孔に突起部や切起片を付ける ことができる。また、前記マイクロリアクター要素は、ロールの軸の方向が前記混合気 体の流れ方向と実質的に平行になるように配列されている。
[0017] また、前記マイクロリアクター要素は、平畳織金網等の一枚の金網と、エンボスカロェ した金網力 なるスぺーサ一とを交互に積層状に配列して成るものとすることもできる
[0018] また、前記マイクロリアクター要素は、平畳織金網等を複数枚重ねて接合一体化し た金網積層体と、エンボス加工した金網又はエンボス加工しな 、平らな金網からなる スぺーサ一とを交互に積層状に配列して成るものとすることもできる。
[0019] また、前記マイクロリアクター要素は、多数の微細孔を有する金属薄板を、前記混 合気体の流れ方向に対して実質的に垂直となる方向に、互いに間隔をあけた状態で 平行に複数枚配列して成るものとすることもできる。 [0020] 本発明のマイクロリアクター要素に用いられる金網の素材は、耐熱性、加工性、経 済性等の観点からステンレス鋼線 (例えば、 SUS310、 SUS316等)等が好適であり 、その線径は 0.01〜1.5mm程度(さらに、 0.1〜0.5mm程度、特に 0.18mm程度)が 好適である。また、該金網の形状は、本発明の目的を達成し得るものであれば特に 限定はなぐ例えば、平織金網、綾織金網、平畳織金網、綾畳織金網、クリンプ織金 網、ロッククリンプ織金網、フラットトップ金網、トンキャップ織金網、タイロッド織金網、 菱形金網、デミスター (メリヤス編)金網などが用いられる。特に、平織金網、平畳織 金網などが好適である。該金網は、エンボス力卩ェを施したものが好ましぐこれにより 金網をロール状に巻いた場合に金網間隔が密になりすぎず気体の流路が確保され 目詰まりが抑えられると共に、金網に担持された触媒との接触面積が大きくなる。
[0021] ここでいうエンボス力卩ェとは、三次元に規則性を持って広がる突起を有する形状に 加工されたものであるが、加えて同じ断面形状の(二次元の)筋線が一定ピッチで並 んだ筋状又は波状の形状に加工されたものも含む。但し、 2枚以上の金網又は金属 薄板を重ねてロール状に巻いた場合に、金網又は金属薄板同士が重なって間隙が 狭まらないように、筋状の突起を各々に交差する方向に設けたものであることが好ま しい。
[0022] 例えば、エンボスカ卩ェされた平織金網の場合、ステンレス鋼線等よりなる縦線と横 線とが一定の間隔を保ち一本づっ相互に交わしてなり、金網の線径が 0. 1〜0. 3m m (特に、 0. 15〜0. 2mm)程度であり、エンボス(h)が l〜2mm (特に、 1. 2〜1. 7 mm)程度、 Xピッチが 1〜: LOmm (特に、 3〜7mm)、 yピッチが l〜15mm (特に、 5 〜10mm)程度である。あるいは、メッシュ(25. 4mm平方に含まれる網の目数; JISZ 8801)は 10〜: LOO程度である。力かる金網を採用することにより、排ガスとの接触面 積を増大させることができる。
[0023] 本発明の本発明のマイクロリアクター要素に用いられる多数の微細孔を有する金属 薄板の素材は、耐熱性、加工性、経済性等の観点から SUS、特に1^ 20— 51;31^、 高熱部材用ステンレス鋼 (川崎製鉄製)等が好適である。また、金属薄板の板厚は、 10〜500 /ζ πι程度、微細孔の開孔率は 30〜80%程度、微細孔の孔径は 20〜: LOO m程度である。なお、金属薄板は、長手方向又は幅方向に波形の形状を有してい ても良ぐまた微細孔には、突起部、切起片等を有してもよい。
[0024] 本発明におけるマイクロリアクター要素の具体例としては、エンボス加工しない微細 孔を有する金属薄板とエンボス加工された金網とを重ねてロール状に巻いたもの、ェ ンボス加工された微細孔を有する金属薄板とエンボス加工された金網とを重ねて口 ール状に卷 ヽたもの、エンボス加工された微細孔を有する金属薄板とエンボスカロェ しな 、金網とを重ねてロール状に卷 ヽたもの、エンボス加工された金網とエンボスカロ ェされて ヽな 、金網とを重ねてロール状に卷 、たものなどが挙げられる。
[0025] 他の具体的としては、エンボス加工しな ヽ金網を複数枚(2〜3枚)重ねて接合一体 化した金網積層体と 1層のエンボスカ卩ェされた金網とを交互に積層しロール状に卷 いたもの、 1層のエンボス加工された金網と 1層のエンボス加工しない微細孔を有す る金属薄板を交互に積層しロール状に巻いたものなどが挙げられる。
[0026] これらの種々のマイクロリアクター要素は、その用途、使用条件等に応じて適宜選 択することができる。
発明の効果
[0027] 本発明の上記構成の環境浄ィ匕マイクロリアクターシステムによれば、エチレンォキ サイド等有害ガスを加熱空気と混合し、この混合気体を、マイクロリアクター要素の三 次元的に交差、合流もしくは分岐する数/ z m力 数百/ z m径の多数の微細流路 (マ イク口チャンネル)に通すことにより、飛躍的に効率よく触媒反応させることができて高 濃度の有害ガスも数秒間で lppmにまで低減させることができ、しかも従来の装置の 約 1Z10程度にまで超小型化でき、低価格で、極めて安全な環境浄化マイクロリアク ターシステムを提供できる。超小型の特徴を生かして既存の滅菌装置等にも簡単に 装着できる。
[0028] マイクロリアクター要素として、多数の微細孔を有する金属薄板と、エンボス加工し た金網又はエンボス加工しない平らな金網力 なるスぺーサ一とを重ねてロール状 に巻いて成るものとすることにより、三次元的に交差、合流もしくは分岐する数 mか ら数百 m径の多数の微細流路を有するマイクロリアクターを簡単に製作でき、量産 化を可能にすることができる。
[0029] また、マイクロリアクター要素として、薄!ヽ平畳織金網を複数枚重ねて接合一体化し た金網積層体と、エンボスカ卩ェした金網又はエンボスカ卩ェしな 、平らな金網からなる スぺーサ一とを交互に積層状に配列して成るものとすることによつても数 m力 数 百/ z m径の多数の微細流路を有するマイクロリアクターの加工の容易化、量産化を 可能にする。
図面の簡単な説明
[0030] [図 1]本発明の環境浄ィ匕マイクロリアクターシステムの好ましい一実施例の内部構造 を示し、 1Aは縦断正面図、 1Bは縦断側面図である。
[図 2]図 1の環境浄ィ匕マイクロリアクターシステムの触媒反応部の拡大図である。
[図 3]図 2の触媒反応部の分解図である。
[図 4]マイクロリアクター要素の一部拡大の縦断正面図である。
[図 5]マイクロリアクター要素の一部拡大の横断平面図である。
[図 6]他例のマイクロリアクター要素を構成する平畳織金網を示し、 6Aは平面図、 6B は図 6Aにおける A— A線断面図、 6Cは図 6Aにおける B— B線断面図である。
[図 7]図 6の平畳織金網を焼結してなる金網積層体の断面図である。
[図 8]他例のマイクロリアクター要素の断面図である。
[図 9]更に他例のマイクロリアクター要素を構成する金属薄板の斜視図である。
[図 10]図 9の金属薄板力もなるマイクロリアクター要素の断面図である。
[図 11]実施例 1の試験結果を示す図表である。
符号の説明
[0031] 1 空気加熱部
la 空気取り入れ口
lb 加熱部筒
lc 空気通過部
2 気体混合室
3 触媒反応部
3a 結合部
3b ガス出口部
3b 整流室 3c 出口
4 金属薄板
4a 微細孔
4b 切起片
5 平織金網
5a 縦^:
5b 横線
6 スぺーサー
7 平畳織金網
7a 縦線
7b 横線
8 金網積層体
9 金属薄板
9a 微細孔
10 未反応空気
11 反応済空気
31 反応器
32 マイクロリアクター要素
発明を実施するための最良の形態
[0032] 本発明の環境浄ィ匕マイクロリアクターシステムをエチレンオキサイドガス除去装置に 適用した場合の好ましい-実施例を図面に基づき説明するが、本発明はこれに限定 されるものではない。
[0033] 図 1は、本発明の環境浄ィ匕マイクロリアクターシステムの好ましい一例における内部 構造を示す図であり、 1Aは縦断正面図、 1Bは縦断側面図である。図 2は、図 1の環 境浄化マイクロリアクターシステムの触媒反応部の拡大図、図 3は図 2の触媒反応部 の分解図、図 4はマイクロリアクター要素の一部拡大の縦断正面図、図 5はマイクロリ アクター要素の一部拡大の横断平面図である。
[0034] 図 1において、環境浄ィ匕マイクロリアクターシステムは空気加熱部 1と、気体混合室 2,および触媒反応部 3を備える。
[0035] 空気加熱部 1は、装置外部の空気(常温)が吸入口 laから吸入され、管状の空気 加熱部本体 lb内を通過する間に、本体 lb内に備えたヒーター lcによって加熱され て一定流量にて送出され、一定流量で加熱空気を送出するには、予熱前の空気を 流量計(図示せず)にて調節するのが一般的である。この図示例では、装置外部の 空気は装置の下方側から吸入されるようになっている力 このような構造に限定され るものではない。また、ヒーター lcは本体 lbの内周壁面、あるいは外周壁面に設ける ことちでさる。
[0036] この空気加熱部 1では、一般的に、常温で吸入された空気がヒーター温度 190〜5 00°Cで加熱され、約 190〜500°Cの加熱空気にして気体混合室 2へ送出される。空 気加熱部 1としては、迅速に所定の温度が得られ、微妙な温度コントロールが可能で 、高温の熱風を長時間持続的に発生できる安定した温度特性を有するものが好まし ぐ発熱体の温度が空気へ伝達される熱伝導率が高い、例えば 80%以上に設計さ れているものが好ましい。
[0037] 空気加熱部 1からの加熱空気は気体混合室 2に送られ、滅菌器等から排出される エチレンオキサイド等の有害ガスも気体混合室 2に導入されて、気体混合室 2内で両 者の混合が行われる。本発明の装置において、予め加熱された空気と有害ガスとを 混合するのは、無害化処理する有害ガスがエチレンオキサイドガスである場合、ェチ レンオキサイドの爆発限界が 3%〜100%と広ぐ高濃度のエチレンオキサイドをカロ 熱すると爆発する可能性があり、これを防止するためである。
[0038] なお、空気加熱部 1と共に、又は空気加熱部 1に代えて、気体混合室 2の後に混合 気体加熱部を備えてもよい(図示せず)。この場合、エチレンオキサイドガスをあらか じめ希釈して上記爆発限界 3%未満の濃度としてから加熱することになる。該混合気 体加熱部における加熱温度は、通常 250〜500°C程度であり、加熱することにより次 工程の触媒反応部 3におけるエチレンオキサイドガスの除去を効果的に行うことがで きる。
[0039] 本発明では、装置外部より導入される有害ガスと空気加熱部 1より送出される加熱 空気との混合比率 (単位時間当たりの各気体流入量)を適宜選択することができるが 、無害化処理する有害ガスがエチレンオキサイドガスである場合には、一般的に混合 後の気体のエチレンオキサイド濃度が 0. 3% (3, 000ppm)〜3% (30, OOOppm) 程度になるようにすることが好ま 、。
[0040] 触媒反応部 3は、図 1に示されるように、実質的に円筒状又は角筒状の形態を有す る反応器 31内に触媒の担持されたマイクロリアクター要素 32を収納してなり、気体混 合室 2にて混合された混合気体がマイクロリアクター要素 32内を流動しながら移動す る間に触媒と接触することによって有害ガスの無害化処理が達成される部分である。 マイクロリアクター要素 32は、三次元的に交差、合流もしくは分岐する数/ z m〜数百 μ m径の無数の微細流路(マイクロチャンネル)を有してなり、このマイクロリアクター 要素 32には、微細流路を通過する有害ガスを無害化処理するための触媒が担持さ れている。図 2において、反応器 31は上下 2個直列状に配列してある力 一個(図 3 参照)、又は 3個以上配列することは任意である。尚、図 2中、符号 3aはガス入口部 であり(図示例では 3箇所設けられている)、 3bはガス出口部、 3cはガス排出口であ る。
[0041] マイクロリアクター要素 32は、図 4、図 5に示すように、多数の微細孔(角孔) 4aと、 各微細孔 4aの打ち抜き時に切り起こされる切起片 4bとを有するステンレス等の金属 薄板 4と、薄い平織金網 5をエンボス加工してなるスぺーサー 6とを重ねて中心部まで ロール状に卷 、てなる。このロール巻き状のマイクロリアクター要素 32はこれの中心 軸が反応器 31の中心軸に一致するよう反応器 31内に収納される(図 2参照)。
[0042] 例えば、金属薄板 4の開孔率は、 30〜80%、板厚は、 10〜500 μ m、微細孔 4aの 孔径は 20〜: LOO /z mである。平織金網 5はステンレス鋼線等よりなる縦線 5aと横線 5 bとが一定の間隔を保ち一本ずつ相互に交わしてなり、メッシュ(25. 4mm平方に含 まれる網の目数)は 10〜: LOOである。金属薄板 4の微細孔 4a、金属薄板 4と平織金 網 5間の隙間、及び平織金網 5の網目により数/ z m〜数百/ z m径、好ましくは 500 m以下、より好ましくは 100〜300 μ m程度の微細流路(マイクロチャンネル)が 100 万〜 200万個程度存在するよう形成される。
[0043] スぺーサー 6としてはエンボス加工しない平らな平織金網 5よりなるもの、また平織 金網 5以外の金網であってもよい。尚、図 4中、矢印 10はガス流入側、矢印 11はガス 流出側を示す。
[0044] マイクロリアクター要素 32に担持される触媒としては、広く金属酸化物担体に貴金 属等を担持したものが挙げられる。特に、該貴金属は、触媒活性の点から貴金属超 微粒子とするのが好適である。その平均粒径は l〜5nm程度、特に 2〜3nm程度の ものが好ましぐその粒度分布も平均粒径に対する標準偏差が、 30%以内、特に 10 %以内であるように揃って 、るものが好まし!/、。
[0045] このような、貴金属超微粒子は、貴金属塩、水溶性高分子及び界面活性剤を含む アルコール水溶液を、常圧下で加熱撹拌或いは超音波照射することにより、製造す ることがでさる。
[0046] 上記貴金属塩としては、 Ru、 Pt、 Rh、 Pd、 Au、 Cu、 Ag等の無機塩或!ヽは錯塩な どが挙げられ、界面活性剤の共存下において水溶性のものが挙げられる。具体的に は、 H RuCl、 H PtCl、 NaAuCl、 PdCl、 AgNO等が例示される。これらから選
2 6 2 6 4 2 3
ばれる 1種或いは 2種以上の混合物を用いることもできる。 2種以上の混合物を用い た場合は、貴金属合金の超微粒子の製造も可能となる。
[0047] 上記水溶性高分子は、超微粒子の表面に該高分子被膜を形成して、超微粒子の 凝集や不活性化を抑制する安定化剤としての働きを有して ヽる。水溶性高分子とし ては、金属と相互作用する置換基を有する部位、例えば、カルボニル基、カルボキシ ル基、水酸基、アンモ-ゥム基、アミノ基、スルホ-ル基、チオール基及びスルフイド 基から成る群から選択される少なくとも 1種の置換基を含み、ポリマー骨格を形成する 炭素鎖部位からなるポリマーである。
[0048] このポリマーはビュル基を有するモノマーの重合体であることが好ましぐ更にこの モノマーが上記置換基を少なくとも一つ有することがより好ましい。このようなポリマー の分子量 ίま 10000〜500000程度、特に 10000〜100000カ^好まし ヽ。このような 有機ポリマーとして、ポリビュルエーテル、ポリアタリレート、ポリ(メルカプトメチレンス リレン一 Ν—ビュル一 2—ピロリドン)、ポリアクリロニトリル等が挙げられる力 ポリビ- ルアルコールやポリ(Ν—ビュル— 2—ピロリドン) (PVP)が好ましく用いられる。
[0049] 上記界面活性剤は、アルコール溶液中の超微粒子の分散安定性に寄与するもの である。界面活性剤としては、ドデシル硫酸ナトリウム(SDS)等のァ-オン系界面活 性剤が挙げられる。特に、 SDSを用いることが好ましぐ特に、超音波法では球形の 超微粒子を得られるとなるため好適である。
[0050] 上記アルコール水溶液は、アルコールを含有する水溶液であり、溶媒としてまた貴 金属イオンを金属に還元する還元剤として働く。水は超純水を用いるのが好ましい。 アルコールは、反応温度を考慮すると、炭素数 2以上のアルコールが好ましい。例え ば、エタノール、 n—プロパノール、イソプロパノール、 n—ブタノール、 tert—ブタノ一 ル、 n—ペンタノール等の炭素数 2〜6の 1価アルコール、エチレングリコール、 1, 3 プロパノール、グリセロール、へキシレングリコール等の炭素数 2〜6の多価アルコ ールなどが例示される。
[0051] 貴金属超微粒子は、貴金属塩、水溶性高分子及び界面活性剤を含むアルコール 水溶液を、常圧下で加熱撹拌或いは超音波照射することにより製造される。
[0052] アルコール水溶液中のアルコールは上記のものが用いられ、アルコールと水の体 積比は、 1/9〜9/1、好ましくは 1/3〜3/1である。アルコールとしてエチレンダリ コールが好ましい。エチレングリコールを用いることにより、還流することなく加熱する だけで所望の貴金属超微粒子を連続調製することができるため極めて効率的である
[0053] 貴金属塩は、アルコール溶液中、 0. 1〜: LOmM程度、好ましくは、 0. 5〜4mM程 度になるよう調整される。力かる範囲であれば、所望の粒子分布の揃ったナノオーダ 一の微粒子を得ることができるからである。貴金属塩は、 H PtCl
2 6、 Na PtClが好ま
2 6 しく採用される。
[0054] 水溶性高分子は、アルコール溶液中、 l〜30mM程度、好ましくは 3〜24mM程度 になるように調製される。力かる範囲であれば、単結晶の超微粒子となるため好まし い。水溶性高分子のうち、特に、 PVPが好適である。
[0055] また、界面活性剤は、アルコール溶液中、 5〜10mM程度、好ましくは?〜 9mM程 度になるように調製される。特に、 SDSが好適である。
[0056] 加熱撹拌法によれば、上記のアルコール水溶液を、常圧下(0.08〜0.12MPa程度 )、 80〜120°C程度 (好ましくは 95〜100°C程度)で加熱処理することにより、本発明の 貴金属超微粒子が製造される。加熱処理では、適宜撹拌することが好ましい。 [0057] 超音波法によれば、上記のアルコール水溶液を、常圧下(0.08〜0.12MPa程度)、 常温下(10〜30°C程度)で超音波処理(100〜200kHz程度)することにより、本発明 の貴金属超微粒子が製造される。
[0058] また、上記のアルコール水溶液に、貴金属超微粒子の担体となりうる活性炭、アル ミナ、シリカ、ジルコユア、チタ-ァ等を添加しておくと、その表面に貴金属超微粒子 を担持させることも可能である。例えば、上記のアルコール水溶液 1Lに対し、担体 1 〜100g程度を添加することにより担体担持貴金属超微粒子を製造することができる。
[0059] 上記の製造方法によれば、粒径の揃った高活性な貴金属超微粒子を製造できる。
得られた貴金属超微粒子或いは担体に担持された微粒子は、高!ヽ触媒活性を有し ており、本発明のマイクロリアクターシステムに採用することにより有害ガスを極めて効 率的に除去することが可能となる。
[0060] この貴金属超微粒子は、金属酸ィ匕物と共にマイクロリアクター要素 32に担持される 。例えば、マイクロリアクター要素 32を金属酸ィ匕物(例、チタ-ァ、アルミナ、ジルコ- ァ)で被覆して焼成 (400〜1000°C程度)し表面処理した後、貴金属超微粒子を含有 する
液体 (例、水、アルコール)に浸漬してマイクロリアクター要素上に貴金属超微粒子を 担持させることができる。また、貴金属超微粒子を担持させたマイクロリアクター要素 は 100〜200°C程度で加熱処理してもよ 、。マイクロリアクター要素上に担持された金 属酸ィ匕物と貴金属超微粒子の比は、例えば、 99 : 1〜90 : 10程度であればよい。
[0061] これらの触媒の中でも、アルミナ、シリカ、チタ-ァ(酸ィ匕チタン)、 a—アルミナに白 金を担持したものが好適であり、また、シリカにニッケル、酸ィ匕セリウム、及び白金を担 持したもの等も好適に用いられる。
[0062] 力かる触媒を、マイクロリアクター要素 32に約 10〜100 μ m厚にゥォッシュコート、 電着等でコーティングしてもよい。特に、 a—アルミナに白金を担持した触媒や、シリ 力にニッケル、酸化セリウム、及び白金を担持した触媒は、高濃度のエチレンォキサ イド(3, OOOppm)を数秒間で lppmにまで低減させることができ、し力も約 200°Cの 低温ィ匕で反応が可能である。
[0063] 上記マイクロリアクター要素 32においては、 1枚の金属薄板 4に孔径 30〜100 /ζ πι の微細孔 4aが約 1億数千万個存在するため、混合気体の流れが層流となる。そして 、物質移動と熱移動の移動時間は、マイクロチャンネル径の二乗に比例するために マイクロチャンネルでは非常に短時間となる(拡散時間 1Z10, 000、比表面積 100 倍)。この結果、マイクロチャンネル内の混合気体の濃度 '温度が均一となり、金属薄 板 4表面近傍での酸素濃度が常に高く保たれ、マイクロチャンネルィ匕の効果にインレ ット、アウトレット部となる貫通孔の効果も相まって極めて大きい表面積と、交差、合流 、分岐等の複雑な流れの相乗効果により、高効率の触媒反応を行わせることができ る。
[0064] こうしたマイクロリアクター要素 32からなるマイクロリアクターは、通常のセラミック、活 性炭等粒状担体ゃハ-カム担体に比べて、空間速度 (SV)が大きいため、触媒反応 量が多くなつて単位時間当たりの処理量が飛躍的に大きい。
[0065] 多数の微細孔 (角孔) 4aを有する金属薄板 4において、各微細孔 4aに付けた切起 片 4bは触媒の表面積増大、混合気体の整流作用を発揮する。平織金網 5よりなるス ぺーサ一 6は金属薄板 4の層間の間隔保持機能や微細流路形成以外に、混合気体 の整流作用をも発揮し、特にエンボスカ卩ェしてなる平織金網 5よりなるスぺーサー 6 はマイクロリアクター要素 32に弾性を付与することができる。
[0066] マイクロリアクター要素 32としては、その他に、図 6に示すような薄い平畳織金網 7 を複数枚 (図 7では 2枚)重ねて焼結等により接合一体化した金網積層体 8 (図 7参照 )と、エンボスカ卩ェした薄い平織金網 5又はエンボスカ卩ェしない平らな薄い平織金網 5からなる上記スぺーサー 6と同様のスぺーサー 6とを交互に積層状に配列したもの とすることもできる(図 8参照)。
[0067] 平畳織金網 7は、図 6に示すように、ステンレス鋼線等よりなる縦線 7aによる網目を 大きくし、横線 7bを順次密着させて織り上げたものであり、平織り等のような平面的な 「網目の開き」はなぐ混合気体は縦線 7aと横線 7bの交差部の μ mオーダーの隙間 を通過するようにしてある。この平畳織金網 7のメッシュ(25. 4mm平方にある縦線の 数 X横線の数)は、例えば、 12 X 64である。図 7に示すように、平畳織金網 7を 2枚 重ねて焼結等により接合一体化する場合、上側の平畳織金網 7と下側の平畳織金網 7とは互いに縦横の向きを 90° 変えて、つまり上側の平畳織金網 7の縦線 7aに対し 下側の平畳織金網 7の縦線 7aが直交するように重ね合わせることにより両金網 7, 7 どうしが互いに高密度に密着し合うことなくその重合面間に適度の隙間が形成される ように重ね合わされる。平畳織金網 7の網目、平畳織金網 7, 7同士間の隙間、平畳 織金網 7と平織金網 5間の隙間、及び平織金網 5の網目により数/ z m〜数百/ z m径 の無数の微細流路 (マイクロチャンネル)が形成される。なお、図 8中、矢印 10はガス 流入側、矢印 11はガス流出側を示す。
[0068] また、マイクロリアクター要素 32として、図 9に示すように、多数のスリット状の微細孔
(幅 400 μ m程度) 9aを所定間隔 (400 μ m程度)置きに列設したステンレス等の金 属薄板 9を製造し、この金属薄板 9と、エンボスカ卩ェした薄い平織金網 5又はエンボス 加工しな!、平らな薄!、平織金網 5からなる上記スぺーサー 6と同様のスぺーサー 6と を交互に積層状に配列したものとすることもできる。この場合、複数枚の金属薄板 9は 、上側の金属薄板 9のスリット状の微細孔 9aに対し、下側の金属板 9のスリット状の微 細孔 9aが直交する方向となるように上下に積層配列される。
[0069] 上記実施例のマイクロリアクターは、数 μ m〜数百 μ m径の多数のマイクロチャンネ ルを有することで、上記の性能を有しながら従来の装置の約 1Z10の大きさにまで超 小型化することができる。また、マイクロリアクター要素 32に直接電流を流しヒーター として使用できる。し力もマイクロリアクター要素 32に触媒を直接担持させるため、温 度分布及び反応効率が著しく増大する。マイクロリアクター要素 32に触媒を担持する ことにより、反応によって生ずる発生熱を利用し、余熱することができるので、処理ガ スを熱交 としての機能を持たすことができる。
[0070] なお、気体混合室 2を含む配管及び触媒反応部 3の外周部にヒーターを備え、反 応開始時に該ヒーターで必要な温度に昇温させ、発熱反応開始後は反応を保った めに必要な温度に温度制御できる様にしてもょ 、。
[0071] 上記の特徴を有するマイクロリアクター力 なる環境浄ィ匕マイクロリアクターシステム は、超小型でコストダウンが図れ、し力もランニングコストも大幅に低減できるものであ る。
[0072] 本発明の環境浄ィ匕マイクロリアクターシステムは、エチレンオキサイドの除去だけで なぐ日本国が定めた優先取組物質のうち、アクリロニトリル、ァセトアルデヒド、塩ィ匕 ビニノレモノマー、クロロホノレム、クロロメチノレメチノレエーテノレ、 1, 2—ジクロ口ェタン、 ジクロロメタン、ダイォキシン類、テトラクロロエチレン、トリクロロエチレン、 1, 3—ブタ ジェン、ベンゼン、ベンゾ [a]ピレン、及びホルムアルデヒドについても、エチレンォキ サイド除去の場合と同等の性能が得られるので、上記の物質についても適用できる。 実施例 1
[0073] ί%エチレンオキサイドガス 用いた無害化処理 験
(1)エタノールを含む水溶液 (エタノール含量 50体積%)中に、塩化白金酸 (H PtCl
2
) 0.5mM、 PVP 3mMになるよう各成分をカ卩えて溶液を調製した。この溶液を常圧
6
下(O.lMPa程度)、 100°Cで、 5〜30分加熱撹拌することにより、平均粒子径 2〜3n mの白金超微粒子を得た。(2)触媒反応部 3としては、図 4、図 5に示すような多数の 微細孔 (角孔) 4aを有しかつ各微細孔 4aに切起片 4bを有するステンレス等金属薄板 4と、薄い平織金網 5をエンボス加工してなるスぺーサー 6とを重ねて中心部までロー ル状に巻いて得られるマイクロリアクター要素を、アルミナゾルに含浸させて、電着に て該マイクロリアクター要素表面にアルミナを集積し、 1000°Cで焼成した。焼成後の マイクロリアクター要素を、上記(1)で得られた白金超微粒子を 0. 5mMの濃度で分 散させた水—エタノールの混合液 (水 Zエタノール = 1Z1 (vZv))に浸積し、白金 超微粒子をマイクロリアクター要素に含浸させ、 150°Cで乾燥した。この操作を繰り返 し、マイクロリアクター要素に担持されたアルミナと白金の重量比が 97:3になるように 調製した。
[0074] このマイクロリアクター要素を内径 10cmで縦長さ 150cmの反応器 31内にマイクロ リアクター要素 32の中心軸 Xが上下縦方向になるように収納した。
[0075] そして、空気加熱部としては、市販の熱風発生器 (インフリッジ工業株式会社製、型 番: SEN— 100V— 1000W-AS)を使用して、図 1に示される構造の本発明の環 境浄ィ匕マイクロリアクターシステムを作製した。装置外部の空気を吸引して約 250°C に加熱できるようにし、空気加熱部から気体混合室への加熱空気導入量を 30リットル Z分とするととも〖こ、 1%エチレンオキサイドガス (EO)の EO導入量を 70リットル/分 とし、この濃度比を基に流量を増やし、触媒の性能限界を調べた。従って、最終的に マイクロリアクター内で処理される EO濃度は、 0. 7%となる。 [0076] 上記試験においては、図 1に示されるガス排出口 3cよりサンプルをテドラーバッグ に採取後、ガスクロマトグラフ(GC)にて測定した。触媒設定温度は 350°Cとした。 (ガスクロマトグラフ)
測定値:ガスクロマトグラフ (GC - 14B :島津製作所製)
検出器: FID
カラム: Shincarnon SBS— 120
カラム温度: 130°C
上記の実験の結果は図 11に示す通りであり、 EOガスが 10,000ppmから 0.2ppm以下 に減少した。
[0077] 上記実験結果からもわかるように、触媒反応部として触媒が担持され三次元的に交 差、合流もしくは分岐する数 μ m〜数百 μ m径の多数の微細流路 (マイクロチャンネ ル)を有するマイクロリアクターを備えた本発明の環境浄ィ匕マイクロリアクターシステム はエチレンオキサイドガスの無害化処理に非常に有効であり、厳しい環境基準をタリ ァでき、マイクロリアクターの採用により装置が非常に小型化、コンパクトィ匕できる。
[0078] また、触媒として、所定の金属酸化物担体に所定の貴金属超微粒子を担持した触 媒を、マイクロリアクター要素に担持することにより、高い活性が発現されることも明ら カゝとなった。
産業上の利用可能性
[0079] エチレンオキサイド、アクリロニトリル、ァセトアルデヒド等有害ガスの無害化処理に 際し高性能、極めて安全で超小型の環境浄ィ匕マイクロリアクターシステムを低価格で 提供できる。

Claims

請求の範囲
[1] 装置外部の空気を吸入し、当該空気をヒーターにより加熱して一定流量にて送出可 能な空気加熱部と、装置外部より導入される有害ガスと前記空気加熱部より送出され た加熱空気とが流入し混合が行われる気体混合室と、反応器内に触媒が担持された マイクロリアクター要素を収納してなり、前記気体混合室にて混合された混合気体が 当該マイクロリアクター要素内を流動しながら移動する間に触媒と接触することによつ て前記有害ガスの無害化処理が達成される触媒反応部とを具備し、前記マイクロリア クタ一要素は、三次元的に交差、合流もしくは分岐する数 m〜数百/ z m径の多数 の微細流路を有して成ることを特徴とする、環境浄ィ匕マイクロリアクターシステム。
[2] 前記マイクロリアクター要素が、多数の微細孔を有する金属薄板と、エンボス加工し た金網又はエンボス加工しない平らな金網力 なるスぺーサ一とを重ねてロール状 に卷 、て成る、請求項 1記載の環境浄ィ匕マイクロリアクターシステム。
[3] 前記金属薄板の各微細孔に突起部又は切起片を付けている、請求項 2記載の環境 浄化マイクロリアクターシステム。
[4] 前記マイクロリアクター要素が、ロールの軸の方向が前記混合気体の流れ方向と実 質的に平行になるように配列して成る、請求項 2又は 3記載の環境浄ィ匕マイクロリアク ターシステム。
[5] 前記マイクロリアクター要素力 一枚の平畳織金網と、エンボスカ卩ェした金網力もなる スぺーサ一とを交互に積層状に配列して成る、請求項 1記載の環境浄ィ匕マイクロリア クタ一システム。
[6] 前記マイクロリアクター要素が、平畳織金網を複数枚重ねて接合一体化した金網積 層体と、エンボス加工した金網又はエンボス加工しな 、平らな金網からなるスぺーサ 一とを交互に積層状に配列して成る、請求項 1記載の環境浄ィ匕マイクロリアクターシ ステム。
[7] 前記マイクロリアクター要素が、多数の微細孔を有する金属薄板を、前記混合気体の 流れ方向に対して実質的に垂直となる方向に、互いに間隔をあけた状態で平行に複 数枚配列して成る、請求項 5又は 6記載の環境浄ィ匕マイクロリアクターシステム。
[8] 前記有害ガス力 エチレンオキサイド、アクリロニトリル、ァセトアルデヒド、塩ィ匕ビュル モノマー、クロロホノレム、クロロメチノレメチノレエーテノレ、 1, 2—ジクロ口エタン、ジクロロ メタン、ダイォキシン類、テトラクロロエチレン、トリクロロエチレン、 1, 3 ブタジエン、 ベンゼン、ベンゾ [a]ピレン、及びホルムアルデヒドからなるグループより選ばれたも のである、請求項 1ないし 7のいずれか 1項に記載の環境浄ィ匕マイクロリアクターシス テム。
[9] 前記触媒が、金属酸ィ匕物担体に貴金属を担持したものである請求項 1ないし 8のい ずれ力 1項に記載の環境浄ィ匕マイクロリアクターシステム。
[10] 前記触媒が、 ex アルミナに白金を担持したものである、請求項 9記載の環境浄ィ匕 マイクロリアクターシステム。
[11] 前記触媒が、シリカにニッケル、酸ィ匕セリウム、及び白金を担持したものである、請求 項 9記載の環境浄ィ匕マイクロリアクターシステム。
[12] 前記空気加熱部と共に又は前記空気加熱部に代えて、前記気体混合室の後に混合 気体加熱部を備えて成る請求項 1記載の環境浄ィ匕マイクロリアクターシステム。
[13] 有毒ガスの処理方法であって、該有毒ガスを請求項 1ないし 12のいずれかに記載の 環境浄ィ匕マイクロリアクターシステムで処理することを特徴とする処理方法。
PCT/JP2005/012066 2004-06-30 2005-06-30 環境浄化マイクロリアクターシステム WO2006003987A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004192849A JP2006015184A (ja) 2004-06-30 2004-06-30 環境浄化マイクロリアクターシステム
JP2004-192849 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006003987A1 true WO2006003987A1 (ja) 2006-01-12

Family

ID=35782794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012066 WO2006003987A1 (ja) 2004-06-30 2005-06-30 環境浄化マイクロリアクターシステム

Country Status (2)

Country Link
JP (1) JP2006015184A (ja)
WO (1) WO2006003987A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986174B2 (ja) * 2008-10-30 2012-07-25 独立行政法人産業技術総合研究所 マイクロリアクター用反応管及びその製造方法
JP2011230017A (ja) * 2010-04-23 2011-11-17 Nichidai Filter Corp オゾンガス還元触媒担持体の製造方法及び触媒担持体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225742A (ja) * 1983-06-03 1984-12-18 Daido Steel Co Ltd 触媒構成
JPH02171232A (ja) * 1988-12-23 1990-07-02 Showa Aircraft Ind Co Ltd ハニカム構造体
JPH0829088A (ja) * 1994-07-11 1996-02-02 Nisshin Steel Co Ltd プレス成形した金属板を積層した多孔体
JP2003033725A (ja) * 2001-07-24 2003-02-04 Nagasawa Wire Cloth Co 金網と、金網製フィルターと、振動篩い機
JP2004162963A (ja) * 2002-11-12 2004-06-10 Sumitomo Electric Ind Ltd ガス加熱方法及び加熱装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225742A (ja) * 1983-06-03 1984-12-18 Daido Steel Co Ltd 触媒構成
JPH02171232A (ja) * 1988-12-23 1990-07-02 Showa Aircraft Ind Co Ltd ハニカム構造体
JPH0829088A (ja) * 1994-07-11 1996-02-02 Nisshin Steel Co Ltd プレス成形した金属板を積層した多孔体
JP2003033725A (ja) * 2001-07-24 2003-02-04 Nagasawa Wire Cloth Co 金網と、金網製フィルターと、振動篩い機
JP2004162963A (ja) * 2002-11-12 2004-06-10 Sumitomo Electric Ind Ltd ガス加熱方法及び加熱装置

Also Published As

Publication number Publication date
JP2006015184A (ja) 2006-01-19

Similar Documents

Publication Publication Date Title
WO2006003984A1 (ja) 新規触媒担持構造体及びそれを用いたディーゼル微粒子除去装置
KR102532936B1 (ko) 유체 여과 시스템 및 사용 방법
CN109803749B (zh) 空气处理系统和方法
van Walsem et al. CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions
US20240024809A1 (en) Porous Materials For Treating Contaminants
EP2916932B1 (en) Method and system for mixing gas and liquid for gravitational, physical and chemical collection of compounds
WO2006003987A1 (ja) 環境浄化マイクロリアクターシステム
JP2005254194A (ja) 環境浄化マイクロリアクターシステム
Lee et al. Predicting collision efficiencies of colloidal nanoparticles in single spherical and fibrous collectors using an individual particle tracking method
CN211216181U (zh) 废气处理系统
CN111375303B (zh) 一种去除实验室空气化学气态污染物的环保机
EP4209723A1 (en) Device for generating hydroxyl radicals
EP3710407B1 (en) Fluid decontamination apparatus and method
JP2018102888A (ja) 室内空間にナノ微細粒子水を噴霧し、空間に浮遊している、細菌・臭気・粉塵・pm・coガス・油煙・ホルムアルデヒト・voc等の汚染物質をその微細水に捕捉、吸着回収する。その回収装置の製造方法。
Nazarenko et al. Organic sorbents for air purification: a new application for recyclable hyper-cross-linked polystyrene
RU87098U1 (ru) Фильтр очистки воздуха от токсических примесей и микробиологических загрязнений
CN212819090U (zh) 一种气液混合板及烟气净化装置
CN208320476U (zh) 一种高效节能光氧催化废气处理装置
JP2005307944A (ja) 微粒子除去装置
Hogg et al. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas–liquid contactors
EP4360734A1 (en) Air purification apparatus
JP4300444B2 (ja) 有害ガス処理装置
JP3645613B2 (ja) 地下空間の空気浄化装置
EP4331721A1 (en) Catalytic system with photocatalyst and gas depollution apparatus containing the same
JP2006272083A (ja) ガス処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase