WO2006002720A1 - Duplexer - Google Patents

Duplexer Download PDF

Info

Publication number
WO2006002720A1
WO2006002720A1 PCT/EP2005/005615 EP2005005615W WO2006002720A1 WO 2006002720 A1 WO2006002720 A1 WO 2006002720A1 EP 2005005615 W EP2005005615 W EP 2005005615W WO 2006002720 A1 WO2006002720 A1 WO 2006002720A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
duplexer according
path
resonator
resonators
Prior art date
Application number
PCT/EP2005/005615
Other languages
English (en)
French (fr)
Inventor
Edgar Schmidhammer
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to US11/630,406 priority Critical patent/US20070296521A1/en
Priority to JP2007518471A priority patent/JP2008504756A/ja
Publication of WO2006002720A1 publication Critical patent/WO2006002720A1/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the invention relates to a duplexer, which is provided in particular for the separation of transmission and reception signals of a Mobilfunkban ⁇ .
  • the receiving filter is a reactance filter in Laddertype design.
  • the receive filter is connected to a balun or a further link for the symmetrization of the ladder type arrangement.
  • SAW, BAW SAW, BAW
  • the object of the present invention is to provide a duplexer, which is characterized by a high performance compatibility.
  • the invention provides a duplexer that identifies a receive path and a transmit path. These paths can be connected to a common transmit / receive antenna.
  • a reception filter operating with surface acoustic waves is arranged in the reception path.
  • a working with bulk acoustic waves transmission filter is arranged.
  • SAW technology has the advantage over thin-film technology - FBAR technology - that it is easier to manufacture.
  • SAW technology has the disadvantage of filter structures which are suitable for transmitting RF signals above 1 GHz, in particular above approximately 2 GHz, the disadvantage of low power compatibility due to a small finger width.
  • the implementation of the transmission filter in a thin-film technology is therefore particularly advantageous for applications at about 2 GHz and above.
  • the transmission filter which works with bulk acoustic waves, has the advantage of low insertion loss in the passband.
  • the receive filter is preferably a bandpass filter.
  • the transmit filter is preferably also a bandpass filter.
  • the transmission filter can also be a low-pass filter.
  • the filters are preferably designed as two separate chips.
  • the chip in which the surface acoustic wave reception filter is realized is called a SAW chip.
  • the chip in which the transmission filter working with acoustic volume waves is realized is referred to as a BAW chip.
  • the chips can in one variant be untracked for themselves. In another variant, the chips for be yourself.
  • the transmit-receive path is preferably arranged in a carrier substrate, on which the chips are fastened and to which they are electrically connected.
  • the distance between the SAW chip and the BAW chip is preferably at least ⁇ / 1000, where ⁇ is the free-space wavelength at a center frequency of the component.
  • the center frequency is typically a frequency arranged between the transmitting and receiving bands of the duplexer.
  • a metal shielding may be provided which is preferably grounded.
  • the component structures implemented in thin-film technology are characterized by high quality and high power compatibility.
  • the carrier substrate may be a ceramic substrate with hidden patterned metal layers in which the structures of the transmit-receive path -.
  • Non-linear or active components can be arranged on or in the carrier substrate: diodes, switches, and the like. a. micromechanical switches, power amplifiers and low-noise amplifiers.
  • the carrier substrate also serves to dissipate the heat which develops, in particular, in the sensor.
  • the carrier substrate may also be made of a different material, for. FR4, LCP (liquid crystalline polymers) or Si.
  • the FBAR resonators can be membrane-like thin-film resonators.
  • the FBAR resonators may alternatively have an acoustic mirror.
  • the transmission filter can have a plurality of BAW resonators, which are connected to one another in ladder-type construction.
  • the transmission filter has a resonator stack arranged in the transmission path with two resonators stacked on top of one another.
  • the resonators can have a common electrode.
  • an acoustically partially transmissive coupling layer is arranged between the resonators, which separates the resonators galvanically from one another.
  • additional circuits can be provided in addition to the receive filter, which circuits are preferably connected in series with the receive filter.
  • These circuits can be SAW device structures or other elements, u. a. Have BAW device structures.
  • These circuits can, for. B. realize a balun or an impedance converter.
  • the arranged in the receiving path further circuits can, for. B. be formed of conductor tracks, which are arranged in the metal layers of the carrier substrate.
  • the BAW component structures, which are arranged in the receiving path can be, for. B. may be arranged on the BAW chip with the transmission filter.
  • the reception path is preferably symmetrical on the output side or divided into two partial paths.
  • the reception path can also be unbalanced on the output side.
  • the reception filter is preferably connected asymmetrically / symmetrically.
  • the transmission filter is preferably formed with two asymmetrical electrical gates and connected in an asymmetrical transmission path.
  • the transmission path can also be asymmetrically formed on the output side (antenna side) and symmetrically on the input side.
  • the receiving filter on the input and output side may each have an asymmetrical electric gate, preferably followed by a balun.
  • the reception filter can also comprise two symmetrical electric gates, with a balun preferably being connected upstream of it.
  • a balun can be designed as a strain gauge track or a correspondingly connected (see FIG. 16) resonator stack.
  • Figure 1 shows a duplexer according to the invention.
  • Figure 2 shows the receive filter with a DMS track.
  • FIG. 3 shows the receive filter with a DMS track, which is connected on the input side to a series resonator.
  • FIG. 4 shows the receive filter with a DMS track, which is connected on the output side to two series resonators.
  • FIG. 5 shows the receive filter with a DMS track, which is connected on the output side to a two-port resonator.
  • FIG. 6 shows the receive filter with a DMS track, which is connected on the input side to a series resonator and on the output side to a two-port resonator.
  • FIG. 7 shows the receive filter with a DMS track, which is connected to a ladder type element.
  • FIG. 8 shows the receive filter with a DMS track which is connected to a ladder type element.
  • Figure 9 shows a transmission filter with BAW resonators Laddertype- construction.
  • FIG. 10A shows a transmission filter with a resonator stack comprising BAW resonators.
  • FIG. 10B shows an equivalent circuit diagram of the transmission filter with the resonator stack according to FIG. 10A.
  • FIGS. 11, IIA each show a transmission filter with two resonator stacks connected in series.
  • FIGS. 12, 12A each show a transmission filter with a resonator stack and two parallel resonators.
  • FIGS. 14, 14A each show a component with a duplexer according to the invention in a schematic cross section.
  • FIG. 15 shows a receive filter with a DMS track, which is connected with a ladder type element implemented as a BAW resonator stack.
  • FIG. 16 shows a receive filter with a two-port resonator and a balun connected upstream of it.
  • FIG. 1 shows a duplexer according to the invention with a transmission path TX and a reception path RX.
  • the reception path RX is divided on the output side into two partial paths RX1 and RX2 and is suitable for transmitting a symmetrical signal.
  • the duplexer has a reception filter 1 arranged in the reception path and a transmission filter 2 arranged in the transmission path.
  • the reception filter 1 works with surface acoustic waves.
  • the transmission filter 2 works with bulk acoustic waves.
  • the reception filter 1 is arranged between an antenna terminal ANT and a reception output RX-OUT.
  • the receiving filter has an asymmetrical design on the input side (that is to say on the antenna side). On the output side, this filter is symmetrical.
  • the receive filter is thus also a balun.
  • the transmission filter 2 is arranged between the antenna connection ANT and the transmission input TX-IN.
  • the transmission filter is designed to be asymmetrical on the input side and on the output side.
  • FIG. 2 shows a receive filter 1, which has a strain gauge 5 with three transducers 51, 52, 53, which is asymmetrically connected on the input side and symmetrically on the output side.
  • the acoustic track is bordered by two acoustic reflectors.
  • the transducers are arranged next to one another in the acoustic track and are acoustically coupled to one another.
  • the Ein ⁇ gangswandler 52 is disposed between two output transducers 51 and 53 and not electrically connected to these.
  • the input converter 52 is arranged in the receiving path RX on the input side.
  • the output converter 51 is arranged in a partial path RX1 of the symmetrical reception path RX.
  • the output converter 53 is arranged in the partial path RX2 of the reception path RX.
  • the strain gauge track can also have more than just three transducers, the input and output transducers preferably being alternately arranged in the acoustic track.
  • the reception filter 1 may consist of the DMS track as shown in FIG. It is also possible that the DMS track forms only a part of the reception filter 1.
  • FIGS. 3 to 8 show further variants of the receive filter with a DMS track.
  • FIG. 3 shows the strain gauge track 5, which is connected on the input side to a series resonator SR.
  • the series resonator is an acoustic surface resonator.
  • the series resonator SR is connected in series with the input transducer 52 of the DMS track (see Fig. 2) and arranged in the reception path RX.
  • FIG. 4 shows another receiving filter 1, in which the strain gauge track 5 is connected on the output side to two series resonators SRI and SR2 operating with surface acoustic waves.
  • the series resonator SRI is connected in series with the output converter 51 (cf., FIG. 2) and arranged in the partial path RX1 of the reception path.
  • the series resonator SR2 is connected in series with the output converter 52 and arranged in the partial path RX2 of the reception path.
  • FIG. 5 shows a receiving filter 1 with the DMS track 5, which is connected in series on the output side with a two-port resonator.
  • the two-port resonator represents an acoustic track 4 bounded by acoustic reflectors with two transducers 41 and 42 arranged next to one another.
  • the first output transducer 51 of the strain gauge track is connected in series with the transducer 41 arranged in the acoustic track 4. This series circuit is arranged in the partial path RXl.
  • the second output transducer 52 of the DMS track is connected in series with the transducer 42 arranged in the acoustic track. This series circuit is arranged in the partial path RX2.
  • FIG. 6 shows a receive filter 1 in which the DMS track 5 is connected on the input side as in FIG. 3 to a series resonator SR and on the output side as in FIG. 5 to a second resonator 41, 42.
  • FIGS. 7, 8 show a receive filter with the DMS track 5 according to FIG. 2, which is input on the receive path RX is connected in series with a ladder type element.
  • the ladder type element consists of a series resonator SR and a parallel resonator PR.
  • the resonators SR and PR preferably operate with surface acoustic waves. It is also possible that the ladder type element consists of BAW resonators.
  • the parallel resonator PR is connected downstream of the series resonator SR.
  • the parallel resonator PR is connected upstream of the series resonator SR.
  • an arbitrary number of series resonators or parallel resonators can be arranged in the receive path or the strain gauge track 5 can be connected upstream.
  • FIG. 9 shows a transmission filter 2, which is realized in a ladder-type construction and has a plurality of resonators. All resonators in the arrangement shown here work with bulk acoustic waves (BAW).
  • BAW bulk acoustic waves
  • impedances Z1 to Z4 are provided in the TX signal path and in the shunt branches, which impedances Z1 to Z4 may be formed, for example, by the inductances of the electrical connections of a housing.
  • FIG. 10A shows a resonator stack 6 which works with bulk acoustic waves and, according to a further variant, is part of the transmit filter 2.
  • the resonator stack 6 comprises a first resonator R 1, a second resonator R 2 arranged underneath, and a coupling layer K 1, by means of which the two resonators R 1, R 2 are acoustically coupled to one another are.
  • the first resonator has a piezoelectric layer PSl, which is arranged between electrodes El and E2.
  • the resonator R2 has a piezoelectric layer PS2 disposed between the electrodes E3 and E4.
  • an acoustic mirror AS is arranged between the resonator stack 6 and a base substrate BS.
  • FIG. 10B shows an electrical equivalent circuit diagram of a filter with the resonator stack 6 according to FIG. 10A.
  • the resonator stack 6 can form the complete transmission filter 2.
  • the transmission filter can have, in addition to the resonator stack 6, further elements, see FIGS. 11 to 13.
  • FIG. 11 shows a transmission filter with two resonator stacks connected electrically in series with each other.
  • a further resonator stack 6 ' is arranged next to the first resonator stack 6, in which an acoustically partially transparent further coupling layer K2 is arranged between the resonators R1' and R2 '.
  • the resonators Rl 1 and R2 ' are acoustically coupled to each other through the coupling layer K2.
  • An electrode E3 of the first resonator stack 6 facing the coupling layer Kl is electrically connected to an electrode E3 'of the second resonator stack 6' facing the coupling layer K2.
  • impedances Z10 to Z16 are provided in the TX signal path as well as in the transverse branches.
  • B. may be formed by the inductances of the electrical connections of a housing.
  • the impedances Z10 to Z16 can also be capacitances.
  • FIG. 12 shows a further transmission filter with a resonator stack which is connected to further BAW resonators. Between the transmit path TX and ground, a transverse branch is provided on each side of the input and output, with a parallel resonator R3, R4 arranged therein and working with bulk acoustic waves.
  • FIG. 13 shows a further transmission filter with a resonator stack, which is connected in series with a ladder type element on the input and output side.
  • the series resonators R5, R6 are BAW resonators arranged in the transmission path TX.
  • the series resonator R5 and the parallel resonator R3 together form an input side an ⁇ arranged Laddertype member.
  • the series resonator R6 and the parallel resonator R4 together form an output side an ⁇ ordered Laddertype member.
  • the resonator stack 6 can in principle be interconnected with any desired number of ladder type elements.
  • FIG. 14 shows a component with a duplexer according to the invention in schematic cross section.
  • a SAW chip CHI and a BAW chip CH2 are mounted in flip-chip construction.
  • the chips CHI, CH2 are fixed by means of bumps BU on the carrier substrate 3 and electrically connected thereto.
  • the carrier substrate 3 has a plurality of dielectric layers, between which metal layers 32 are formed with structured conductor tracks.
  • the printed conductors realize hidden electrical structures, which in particular can realize a part of the duplexer circuit.
  • the metal layers are electrically connected to each other as well the chips CHI, CH2 and external terminals 33 connected by fürkon- taktmaschineen 31.
  • the chips CHI, CH2 are preferably the so-called naked chips. However, it is also possible that these chips are available as packaged components and are electrically and mechanically connected to the carrier substrate by means of the SMD technology (surface mounted design).
  • the carrier substrate 3 preferably forms part of a housing which, in one variant, encloses both chips CH1 and CH2 in a common cavity or in separate cavities.
  • Such a component or module (modular with two independent chips) has the advantage that due to the spatial separation between the chips CH1, CH2, the crosstalk between the receive path and the transmit path is small.
  • the use of a common carrier substrate 3 has the advantage that the interfaces between the antenna, the receive filter and the transmit filter in the module are hidden and therefore "well-defined" for later applications with regard to the electrical adaptation reduces signal losses.
  • FIG. 14A shows a further component with a duplexer according to the invention.
  • the SAW chip CHI and the BAW chip CH2 are mounted and electrically connected to them by means of bonding wires.
  • FIG. 15 shows a receiving filter 1 embodied as a strain gauge track 5, which is connected to a resonator stack 6 operating with bulk acoustic waves.
  • the resonators SR and PR are arranged one above the other.
  • the series resonator SR is present in the reception path RX. arranged on the output side.
  • the parallel resonator PR is arranged in a shunt branch, which runs between the reception path RX and ground.
  • the resonators SR, PR are acoustically and electrically coupled together.
  • FIG. 16 shows a receive filter 1 embodied as a resonator filter or second-order resonator, in which the transducers 41, 42 arranged in different sub-paths RX1, RX2 of the receive path are arranged in an acoustic track and acoustically coupled to one another.
  • the receive filter is here connected symmetrically / symmetrically and connected on the input side electrically to the symmetrical port of a balun.
  • the balun represents a resonator stack 6 according to FIG. 10A.
  • the resonators R1 and R2 are electrically insulated from one another by the coupling layer K1.
  • the resonator R2 forms the symmetrical gate.
  • the resonator Rl is arranged in a transverse branch connected to the reception path RX.
  • the invention is not limited to the exemplary embodiments shown here.
  • the presented elements can be combined with one another in any number and arrangement.
  • the carrier substrate can be unbalanced on the input and output sides.
  • the receive filter can realize an impedance converter at the same time, its output impedance (eg 50 to 200 ohms) preferably being chosen to be higher than its input impedance (eg 50 ohms).
  • the transmission filter can simultaneously implement an impedance converter, its output impedance (eg 50 ohms) preferably being higher than its output impedance Input impedance (eg 10 to 50 ohms) is selected.
  • RX-OUT receive output

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Die Erfindung betrifft einen Duplexer mit einem Sendeempfangspfad, der sich ausgangsseitig in einen Empfangspfad und einen Sendepfad verzweigt. Der Empfangspfad ist vorzugsweise eingangsseitig zur Übertragung eines unsymmetrischen Signals und ausgangsseitig zur Übertragung eines symmetrischen Signals ausgelegt. Im Empfangspfad ist ein Empfangsfilter angeordnet, das mit akustischen Oberflächenwellen arbeitet. Im Sendepfad ist ein Sendefilter angeordnet, das mit akustischen Volumenwellen arbeitet. Die Filter sind vorzugsweise als separate Chips ausgebildet, die auf einem gemeinsamen Trägersubstrat montiert sind.

Description

Beschreibung
Duplexer
Die Erfindung betrifft einen Duplexer, der insbesondere zur Trennung von Sende- und Empfangssignalen eines Mobilfunkban¬ des vorgesehen ist .
Aus der Druckschrift US 2001/0013815 Al ist ein Duplexer be¬ kannt, der mit akustischen Oberflächenwellen (SAW = Surface Acoustic Wave) arbeitet. Im Empfangs- und Sendefilter ist ein Balun durch eine mit Serienresonatoren verschaltete DMS-Spur realisiert .
Aus der Druckschrift US 2002/0140520 Al ist ein weiterer Du¬ plexer bekannt, bei dem das Empfangsfilter ein Reaktanzfilter in Laddertype-Bauweise ist. Das Empfangsfilter ist ausgangs- seitig mit einem Balun bzw. einem weiteren Glied zur Symmet- risierung der Laddertype-Anordnung verschaltet. Der Balun kann auch durch LC-Komponenten oder durch eine Anordnung von SAW- oder BAW-Resonatoren (BAW = BuIk Acoustic Wave) reali¬ siert werden. Die Verwendung von in verschiedenen Technolo¬ gien (SAW, BAW) ausgeführten Elementen in einer Filterschal¬ tung z. B. auf einem und demselben Basissubstrat ist aller¬ dings mit einem hohen Aufwand verbunden.
Die Aufgabe der vorliegenden Erfindung ist es, einen Duplexer anzugeben, der sich durch eine hohe Leistungsverträglichkeit auszeichnet.
Diese Aufgabe wird erfindungsgemäß durch einen Duplexer mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestal¬ tungen der Erfindung sind aus weiteren Ansprüchen zu entneh¬ men. Die Erfindung gibt einen Duplexer an, der einen Empfangspfad und einen Sendepfad ausweist. Diese Pfade sind an eine ge¬ meinsame Sende/Empfangs-Antenne anschließbar. Im Empfangspfad ist ein mit akustischen Oberflächenwellen arbeitendes Emp¬ fangsfilter angeordnet. Im Sendepfad ist ein mit akustischen Volumenwellen arbeitendes Sendefilter angeordnet .
Die SAW-Technologie hat gegenüber der Dünnschichttechnologie - FBAR-Technologie - den Vorteil, dass sie einfacher bei der Herstellung ist. Die SAW-Technologie hat allerdings bei Fil¬ terstrukturen, die zur Übertragung von HF-Signalen oberhalb von 1 GHz, insbesondere ab ca. 2 GHz geeignet sind, den Nach¬ teil einer geringen Leistungsverträglichkeit aufgrund einer geringen Fingerbreite. Die Ausführung des Sendefilters in einer Dünnschichttechnologie ist daher besonders vorteilhaft für Anwendungen bei ca. 2 GHz und darüber.
Das Sendefilter, das mit akustischen Volumenwellen arbeitet, hat den Vorteil einer geringen Einfügedämpfung im Durchlass- bereich.
Das Empfangsfilter ist vorzugsweise ein Bandpassfilter. Das Sendefilter ist vorzugsweise auch ein Bandpassfilter. Das Sendefilter kann aber auch ein Tiefpassfilter sein.
Die Filter sind vorzugsweise als zwei separate Chips ausge¬ führt. Der Chip, in dem das mit akustischen Oberflächenwellen arbeitende Empfangsfilter realisiert ist, wird als SAW-Chip bezeichnet. Der Chip, in dem das mit akustischen Volumenwel¬ len arbeitende Sendefilter realisiert ist, wird als BAW-Chip bezeichnet. Die Chips können in einer Variante für sich unge¬ naust sein. In einer anderen Variante können die Chips für sich gehaust sein. Der Sendeempfangspfad ist vorzugsweise in einem Trägersubstrat angeordnet, auf dem die Chips befestigt und mit dem sie elektrisch verbunden sind.
Der Abstand zwischen dem SAW-Chip und dem BAW-Chip beträgt vorzugsweise mindestens λ/1000, wobei λ die Freiraumwellen¬ länge bei einer Mittenfrequenz des Bauelements ist. Die Mit¬ tenfrequenz ist typischerweise eine zwischen dem Sende- und dem Empfangsband des Duplexers angeordnete Frequenz.
Die räumliche und bauliche Trennung des Sende- und des Emp¬ fangspfades voneinander sorgt für eine verbesserte Isolation zwischen den Sende- und den Empfangssignalen. Zwischen dem SAW-Chip und dem BAW-Chip kann zusätzlich eine Schirmung aus Metall vorgesehen sein, die vorzugsweise auf Masse liegt.
Die in der Dünnschichttechnologie ausgeführten Bauelement- Strukturen zeichnen sich durch eine hohe Güte und eine hohe Leistungsverträglichkeit aus.
Das Trägersubstrat kann ein Keramiksubstrat mit verborgenen strukturierten Metalllagen sein, in denen die Strukturen des Sendeempfangspfades - z. B. Kapazitäten, Induktivitäten und/oder Widerstände - realisiert sind. Auf oder in dem Trä¬ gersubstrat können nichtlineare oder aktive Komponenten ange¬ ordnet sein: Dioden, Schalter, u. a. mikromechanische Schal¬ ter, Leistungsverstärker und rauscharme Verstärker. Das Trä¬ gersubstrat dient auch zum Ableiten der insbesondere im Sen¬ defilter entstehenden Wärme.
Das Trägersubstrat kann auch aus einem anderen Material her¬ gestellt sein, z. B. FR4, LCP (flüssigkristalline Polymere) oder Si. Die FBAR-Resonatoren können membranartige Dünnschichtresona¬ toren sein. Die FBAR-Resonatoren können alternativ auch einen akustischen Spiegel aufweisen.
Das Sendefilter kann in einer Variante der Erfindung mehrere BAW-Resonatoren aufweisen, die miteinander in Laddertype- Bauweise verschaltet sind.
Das Sendefilter weist in einer anderen Ausführungsform einen im Sendepfad angeordneten Resonatorstapel mit zwei überein¬ ander gestapelten Resonatoren auf. Die Resonatoren können eine gemeinsame Elektrode haben. In einer bevorzugten Varian¬ te ist zwischen den Resonatoren eine akustisch teilweise durchlässige Koppelschicht angeordnet, welche die Resonatoren galvanisch voneinander trennt.
Im Empfangspfad können neben dem Empfangsfilter weitere Schaltungen vorgesehen sein, die vorzugsweise mit dem Emp¬ fangsfilter in Serie geschaltet sind. Diese Schaltungen kön¬ nen SAW-BauelementStrukturen oder andere Elemente, u. a. BAW- Bauelementstrukturen aufweisen. Diese Schaltungen können z. B. einen Balun oder einen Impedanzwandler realisieren. Die im Empfangspfad angeordneten weiteren Schaltungen können z. B. aus Leiterbahnen gebildet sein, die in den Metalllagen des Trägersubstrats angeordnet sind. Die BAW-Bauelementstruktu- ren, die im Empfangspfad angeordnet sind, können z. B. auf dem BAW-Chip mit dem Sendefilter angeordnet sein.
Der Empfangspfad ist vorzugsweise ausgangsseitig symmetrisch bzw. in zwei Teilpfade aufgeteilt. Der Empfangspfad kann aus¬ gangsseitig auch unsymmetrisch sein. Das Empfangsfilter ist vorzugsweise unsymmetrisch/symmetrisch beschaltet . Das Sendefilter ist vorzugsweise mit zwei unsym¬ metrischen elektrischen Toren ausgebildet und in einem un¬ symmetrischen Sendepfad geschaltet. Der Sendepfad kann auch ausgangsseitig (antennenseitig) unsymmetrisch und eingangs- seitig symmetrisch ausgebildet sein.
In einer Variante der Erfindung kann das Empfangsfilter ein- und ausgangsseitig je ein unsymmetrisches elektrisches Tor aufweisen, wobei ihm vorzugsweise ein Balun nachgeschaltet ist. In einer weiteren Variante der Erfindung kann das Emp¬ fangsfilter auch zwei symmetrische elektrische Tore aufwie¬ sen, wobei ihm vorzugsweise ein Balun vorgeschaltet ist.
Ein Balun kann als eine DMS-Spur oder ein entsprechend be- schalteter (siehe Fig. 16) Resonatorstapel ausgebildet sein.
Im folgenden wird die Erfindung anhand von Ausführungsbei¬ spielen und der dazugehörigen Figuren näher erläutert . Die Figuren zeigen anhand schematischer und nicht maßstabsgetreu¬ er Darstellungen verschiedene Ausführungsbeispiele der Erfin¬ dung. Gleiche oder gleich wirkende Teile sind mit gleichen Bezugszeichen bezeichnet. Es zeigen schematisch
Figur 1 einen Duplexer gemäß Erfindung.
Figur 2 das Empfangsfilter mit einer DMS-Spur.
Figur 3 das Empfangsfilter mit einer DMS-Spur, die eingangs- seitig mit einem Serienresonator verschaltet ist.
Figur 4 das Empfangsfilter mit einer DMS-Spur, die ausgangs¬ seitig mit zwei Serienresonatoren verschaltet ist. Figur 5 das Empfangsfilter mit einer DMS-Spur, die ausgangs- seitig mit einem Zweitorresonator verschaltet ist.
Figur 6 das Empfangsfilter mit einer DMS-Spur, die eingangs- seitig mit einem Serienresonator und ausgangsseitig mit einem Zweitorresonator verschaltet ist.
Figur 7 das Empfangsfilter mit einer DMS-Spur, die mit einem Laddertype-Glied verschaltet ist.
Figur 8 das Empfangsfilter mit einer DMS-Spur, die mit einem Laddertype-Glied verschaltet ist.
Figur 9 ein Sendefilter mit BAW-Resonatoren in Laddertype- Bauweise.
Figur 10A ein Sendefilter mit einem Resonatorstapel, der BAW- Resonatoren umfasst.
Figur 1OB ein Ersatzschaltbild des Sendefilters mit dem Reso¬ natorstapel gemäß Figur 10A.
Figuren 11, IIA jeweils ein Sendefilter mit zwei hintereinander geschalteten Resonatorstapeln.
Figuren 12, 12A jeweils ein Sendefilter mit einem Resonatorstapel und zwei Parallelresonatoren.
Figuren 13, 13A jeweils ein Sendefilter mit einem Resonatorstapel, der mit Serienresonatoren sowie Parallelresonatoren verschaltet ist. Figuren 14, 14A jeweils ein Bauelement mit einem Duplexer gemäß Erfindung in einem schematischen Querschnitt.
Figur 15 ein Empfangsfilter mit einer DMS-Spur, die mit einem als BAW-Resonatorstapel realisierten Laddertype-Glied ver¬ schaltet ist .
Figur 16 ein Empfangsfilter mit einem Zweitorresonator und einem ihm vorgeschalteten Balun.
In Figur 1 ist ein Duplexer gemäß Erfindung mit einem Sende¬ pfad TX und einem Empfangspfad RX gezeigt . Der Empfangspfad RX teilt sich ausgangsseitig in zwei Teilpfade RXl und RX2 auf und ist zur Übertragung eines symmetrischen Signals ge¬ eignet. Der Duplexer weist ein im Empfangspfad angeordnetes Empfangsfilter 1 und ein im Sendepfad angeordnetes Sende- filter 2 auf. Das Empfangsfilter 1 arbeitet mit akustischen Oberflächenwellen. Das Sendefilter 2 arbeitet mit akustischen Volumenwellen.
Das Empfangsfilter 1 ist zwischen einem Antennenanschluss ANT und einem Empfangsausgang RX-OUT angeordnet. Das Empfangsfil¬ ter ist eingangsseitig (d. h. antennenseitig) unsymmetrisch ausgebildet. Ausgangsseitig ist dieses Filter symmetrisch ausgebildet. Das Empfangsfilter ist also gleichzeitig ein Balun.
Das Sendefilter 2 ist zwischen dem Antennenanschluss ANT und dem Sendeeingang TX-IN angeordnet. Das Sendefilter ist in diesem Beispiel eingangsseitig sowie ausgangsseitig unsymmet¬ risch ausgebildet. In Figur 2 ist ein Empfangsfilter 1 gezeigt, das eine ein- gangsseitig unsymmetrisch und ausgangsseitig symmetrisch be¬ schaltete DMS-Spur 5 mit drei Wandlern 51, 52, 53 aufweist. Die akustische Spur ist durch zwei akustische Reflektoren be¬ grenzt. Die Wandler sind in der akustischen Spur nebeneinan¬ der angeordnet und akustisch miteinander gekoppelt. Der Ein¬ gangswandler 52 ist zwischen zwei Ausgangswandlern 51 bzw. 53 angeordnet und elektrisch nicht mit diesen verbunden.
Der Eingangswandler 52 ist im Empfangspfad RX eingangsseitig angeordnet. Der Ausgangswandler 51 ist in einem Teilpfad RXl des symmetrischen Empfangspfades RX angeordnet. Der Ausgangs¬ wandler 53 ist im Teilpfad RX2 des Empfangspfads RX ange¬ ordnet.
Die DMS-Spur kann auch mehr als nur drei Wandler aufweisen, wobei die Ein- und Ausgangswandler in der akustischen Spur vorzugsweise abwechselnd angeordnet sind.
Das Empfangsfilter 1 kann, wie in Fig. 2 gezeigt, aus der DMS-Spur bestehen. Möglich ist aber auch, dass die DMS-Spur nur einen Teil des Empfangsfilters 1 bildet. In den Figuren 3 bis 8 sind weitere Varianten des Empfangsfilters mit einer DMS-Spur vorgestellt.
Figur 3 zeigt die DMS-Spur 5, die eingangsseitig mit einem Serienresonator SR verschaltet ist. Der Serienresonator ist ein mit akustischen Oberflächen arbeitender Resonator. Der Serienresonator SR ist mit dem Eingangswandler 52 der DMS- Spur (vgl. Fig. 2) in Serie geschaltet und im Empfangspfad RX angeordnet . In Figur 4 ist ein weiteres Empfangsfilter 1 vorgestellt, bei dem die DMS-Spur 5 ausgangsseitig mit zwei mit akustischen Oberflächenwellen arbeitenden Serienresonatoren SRI und SR2 verschaltet ist. Der Serienresonator SRI ist mit dem Aus¬ gangswandler 51 (vgl. Fig. 2) in Reihe geschaltet und im Teilpfad RXl des Empfangspfades angeordnet. Der Serienreso¬ nator SR2 ist mit dem Ausgangswandler 52 in Reihe geschaltet und im Teilpfad RX2 des Empfangspfades angeordnet.
Es ist möglich, in der in Figur 4 vorgestellten Variante im unsymmetrischen Teil des Empfangspfades RX einen Serienreso¬ nator wie in Figur 3 anzuordnen.
In Figur 5 ist ein Empfangsfilter 1 mit der DMS-Spur 5 ge¬ zeigt, die ausgangsseitig mit einem Zweitorresonator in Serie geschaltet ist. Der Zweitorresonator stellt eine durch akus¬ tische Reflektoren begrenzte akustische Spur 4 mit zwei ne¬ beneinander angeordneten Wandlern 41 und 42 dar.
Der erste Ausgangswandler 51 der DMS-Spur ist mit dem in der akustischen Spur 4 angeordneten Wandler 41 in Serie geschal¬ tet. Diese Serienschaltung ist im Teilpfad RXl angeordnet. Der zweite Ausgangswandler 52 der DMS-Spur ist mit dem in der akustischen Spur angeordneten Wandler 42 in Serie geschaltet. Diese Serienschaltung ist im Teilpfad RX2 angeordnet .
In Figur 6 ist ein Empfangsfilter 1 gezeigt, bei dem die DMS- Spur 5 eingangsseitig wie in Figur 3 mit einem Serienresona¬ tor SR und ausgangsseitig wie in Figur 5 mit einem Zweitor¬ resonator 41, 42 verschaltet ist.
In Figuren 7, 8 ist ein Empfangsfilter mit der DMS-Spur 5 gemäß Figur 2 gezeigt, die im Empfangspfad RX eingangsseitig mit einem Laddertype-Glied in Serie geschaltet ist. Das Laddertype-Glied besteht aus einem Serienresonator SR und einem Parallelresonator PR. Die Resonatoren SR und PR arbeiten vorzugsweise mit akustischen Oberflächenwellen. Möglich ist aber auch, dass das Laddertype-Glied aus BAW- Resonatoren besteht.
In Figur 7 ist der Parallelresonator PR dem Serienresonator SR nachgeschaltet. In Figur 8 ist der Parallelresonator PR dem Serienresonator SR vorgeschaltet . Prinzipiell können im Empfangspfad beliebig viele Serienresonatoren oder Parallel- resonatoren angeordnet bzw. der DMS-Spur 5 vorgeschaltet sein.
Figur 9 zeigt ein Sendefilter 2 , das in einer Laddertype-Bau¬ weise realisiert ist und mehrere Resonatoren aufweist. Alle Resonatoren in der hier dargestellten Anordnung arbeiten mit akustischen Volumenwellen (BAW) .
Im Sendepfad TX sind mehrere Serienresonatoren angeordnet. An den Sendepfad TX sind zwei Querzweige angeschlossen, die zur Masse führen und jeweils einen Parallelresonator umfassen. Im TX-Signalpfad sowie in den Querzweigen sind darüber hinaus Impedanzen Zl bis Z4 vorgesehen, die beispielsweise durch die Induktivitäten der elektrischen Anschlüsse eines Gehäuses ge¬ bildet sein können.
Figur 10A zeigt einen mit akustischen Volumenwellen arbei¬ tenden Resonatorstapel 6, der gemäß einer weiteren Variante Teil des Sendefilters 2 ist. Der Resonatorstapel 6 umfasst einen ersten Resonator Rl, einen darunter angeordneten zweiten Resonator R2 und eine Koppelschicht Kl, durch die die beiden Resonatoren Rl, R2 akustisch miteinander gekoppelt sind. Der erste Resonator weist eine piezoelektrische Schicht PSl, die zwischen Elektroden El und E2 angeordnet ist. Der Resonator R2 weist eine piezoelektrische Schicht PS2 auf, die zwischen den Elektroden E3 und E4 angeordnet ist. Zwischen dem Resonatorstapel 6 und einem Basissubstrat BS ist ein akustischer Spiegel AS angeordnet .
Figur 1OB zeigt ein elektrisches Ersatzschaltbild eines Sen¬ defilters mit dem Resonatorstapel 6 gemäß der Figur 10A.
Der Resonatorstapel 6 kann das komplette Sendefilter 2 bil¬ den. Das Sendefilter kann neben dem Resonatorstapel 6 weitere Elemente aufweisen, siehe Figuren 11 bis 13.
In Figur 11 ist ein Sendefilter mit zwei elektrisch mitein¬ ander in Reihe verschalteten Resonatorstapeln gezeigt.
Im Sendepfad TX ist neben dem ersten Resonatorstapel 6 ein weiterer Resonatorstapel 6' angeordnet, bei dem zwischen den Resonatoren Rl' und R2' eine akustisch teilweise durchlässige weitere Koppelschicht K2 angeordnet ist.
Die Resonatoren Rl1 und R2 ' sind durch die Koppelschicht K2 akustisch miteinander gekoppelt . Eine zur Koppelschicht Kl gewandte Elektrode E3 des ersten Resonatorstapeis 6 ist elektrisch mit einer zur Koppelschicht K2 gewandten Elektrode E3' des zweiten Resonatorstapels 6' verbunden.
In Figuren IIA, 12A und 13A sind im TX-Signalpfad sowie in den Querzweigen Impedanzen ZlO bis Z16 vorgesehen, die z. B. durch die Induktivitäten der elektrischen Anschlüsse eines Gehäuses gebildet sein können. Die Impedanzen ZlO bis Z16 können auch Kapazitäten sein. In Figur 12 ist ein weiteres Sendefilter mit einem Resonator¬ stapel gezeigt, der mit weiteren BAW-Resonatoren verschaltet ist. Zwischen dem Sendepfad TX und Masse ist ein- und aus- gangsseitig jeweils ein Querzweig mit einem darin angeordne¬ ten, mit akustischen Volumenwellen arbeitenden Parallelreso¬ natoren R3, R4 vorgesehen.
Figur 13 zeigt ein weiteres Sendefilter mit einem Resonator¬ stapel, der ein- und ausgangsseitig mit einem Laddertype- Glied in Serie verschaltet ist.
Die Serienresonatoren R5, R6 sind BAW-Resonatoren, die im Sendepfad TX angeordnet sind. Der Serienresonator R5 und der Parallelresonator R3 bilden zusammen ein eingangsseitig an¬ geordnetes Laddertype-Glied. Der Serienresonator R6 und der Parallelresonator R4 bilden zusammen ein ausgangsseitig an¬ geordnetes Laddertype-Glied. Der Resonatorstapel 6 kann prin¬ zipiell mit einer beliebigen Anzahl von Laddertype-Gliedern verschaltet werden.
In Figur 14 ist ein Bauelement mit einem Duplexer gemäß Er¬ findung im schematischen Querschnitt gezeigt. Auf einem Trä¬ gersubstrat 3 ist ein SAW-Chip CHI sowie ein BAW-Chip CH2 in Flipchip-Bauweise montiert. Die Chips CHI, CH2 sind mittels Bumps BU auf dem Trägersubstrat 3 befestigt und elektrisch mit diesem verbunden. Das Trägersubstrat 3 weist mehrere dielektrische Lagen auf, zwischen denen Metalllagen 32 mit strukturierten Leiterbahnen ausgebildet sind. Die Leiter¬ bahnen realisieren verborgene elektrische Strukturen, die insbesondere einen Teil der Duplexerschaltung realisieren können. Die Metalllagen sind elektrisch miteinander sowie mit den Chips CHI, CH2 und Außenanschlüssen 33 mittels Durchkon- taktierungen 31 verbunden.
Die Chips CHI, CH2 sind vorzugsweise die sogenannten nackten Chips. Möglich ist aber auch, dass diese Chips als gehäuste Bauelemente zur Verfügung stehen und mittels der SMD-Technik (Surface Mounted Design) mit dem Trägersubstrat elektrisch und mechanisch verbunden sind. Das Trägersubstrat 3 bildet vorzugsweise einen Teil eines Gehäuses, welches in einer Variante beide Chips CHI und CH2 in einem gemeinsamen Hohl¬ raum oder in separaten Hohlräumen umschließt .
Ein derart (modular mit zwei voneinander unabhängigen Chips) gebildetes Bauelement bzw. Modul hat den Vorteil, dass auf¬ grund der räumlichen Trennung zwischen den Chips CHI, CH2 das Übersprechen zwischen dem Empfangspfad und dem Sendepfad ge¬ ring ist . Die Verwendung eines gemeinsamen Trägersubstrats 3 hat dabei den Vorteil, dass die Schnittstellen zwischen der Antenne, dem Empfangsfilter und dem Sendefilter im Modul ver¬ borgen und daher für spätere Anwendungen bezüglich der elek¬ trischen Anpassung „gut definiert" sind. Eine gute Impe¬ danzanpassung reduziert die Signalverluste.
In Figur 14A ist ein weiteres Bauelement mit einem Duplexer gemäß Erfindung gezeigt. Auf der Oberfläche des Trägersub- strats 3 ist der SAW-Chip CHI sowie der BAW-Chip CH2 montiert und elektrisch mit diesen mittels Bonddrähte verbunden.
In Figur 15 ist ein als DMS-Spur 5 ausgeführtes Empfangsfil¬ ter 1 gezeigt, das mit einem mit akustischen Volumenwellen arbeitenden Resonatorstapel 6 verschaltet ist. Im Resonator¬ stapel 6 sind die Resonatoren SR und PR übereinander ange¬ ordnet. Der Serienresonator SR ist im Empfangspfad RX ein- gangsseitig angeordnet. Der Parallelresonator PR ist in einem Querzweig angeordnet, der zwischen dem Empfangspfad RX und Masse verläuft. Die Resonatoren SR, PR sind akustisch sowie elektrisch miteinander gekoppelt.
In Figur 16 ist ein als ein Resonatorfilter bzw. Zweitorre¬ sonator ausgebildetes Empfangsfilter 1 gezeigt, bei dem die in verschiedenen Teilpfaden RXl, RX2 des Empfangspfades ange¬ ordneten Wandler 41, 42 in einer akustischen Spur angeordnet und akustisch miteinander gekoppelt sind. Das Empfangsfilter ist hier symmetrisch/symmetrisch beschaltet und eingangssei- tig elektrisch mit dem symmetrischen Tor eines Baluns verbun¬ den. Der Balun stellt einen Resonatorstapel 6 gemäß Figur 10A dar. Die Resonatoren Rl und R2 sind durch die Koppelschicht Kl elektrisch voneinander isoliert. Der Resonator R2 bildet das symmetrische Tor. Der Resonator Rl ist in einem an den Empfangspfad RX angeschlossenen Querzweig angeordnet.
Die Erfindung ist nicht auf die hier gezeigten Ausführungs- beispiele beschränkt. Die vorgestellten Elemente können in beliebiger Anzahl und Anordnung miteinander kombiniert wer¬ den.
Auf dem Trägersubstrat können neben dem SAW-Chip und BAW-Chip weitere Komponenten (z. B. Schalter, Dioden, Spulen, Konden¬ satoren, Widerstände, weitere Chips) angeordnet sein. Das Empfangsfilter kann ein- und ausgangsseitig unsymmetrisch sein. Das Empfangsfilter kann gleichzeitig einen Impedanz¬ wandler realisieren, wobei seine Ausgangsimpedanz (z. B. 50 bis 200 Ohm) vorzugsweise höher als seine Eingangsimpedanz (z. B. 50 Ohm) gewählt wird. Das Sendefilter kann gleich¬ zeitig einen Impedanzwandler realisieren, wobei seine Aus¬ gangsimpedanz (z. B. 50 Ohm) vorzugsweise höher als seine Eingangsimpedanz (z. B. 10 bis 50 Ohm) gewählt wird.
Bezugszeichenliste
ANT Antennenanschluss
TX-IN Sendeeingang
RX-OUT Empfangsausgang
RX Empfangspfad
RXl, RX2 Telpfade des Empfangspfads RX
TX Sendepfad
TR Sendeempfangspfad
1 Empfangsfilter
2 Sendefilter
3 Trägersubstrat
31 Durchkontaktierung
32 Metalllage
33 Anschluss
4 akustische Spur eines Zweitorresonstors
41, 42 Wandler, die in der akustischen Spur 4 angeordnet sind
CHI Chip mit dem Empfangsfilter 1 CH2 Chip mit dem Sendefilter 2 BU Bumps
5 DMS-Spur
51, 53 Ausgangswandler der DMS-Spur 52 Einganswandler der DMS-Spur
6 Resonatorstapel BS Basissubstrat
AS akustischer Spiegel
El bis E4 Elektroden
PSl, PS2 piezoelektrische Schicht
Kl, K2 Koppelschicht
Rl, R2 übereinander angeordnete BAW-Resonatoren
Rl", R2^ übereinander angeordnete BAW-Resonatoren
R3, R4 Parallelresonatoren (BAW) SR, SRI, SR2 Serienresonatoren (SAW) PR Parallelresonator (SAW) Zl bis Z4 Impedanz

Claims

Patentansprüche
1. Duplexer mit einem Empfangspfad (RX) und einem Sendepfad (TX) , mit einem im Empfangspfad (RX) angeordneten Empfangsfilter (1) , das mit akustischen Oberflächenwellen arbeitet, mit einem im Sendepfad (TX) angeordneten Sendefilter (2) , das mit akustischen Volumenwellen arbeitet .
2. Duplexer nach Anspruch 1, mit einem eirsgangsseitig unsymmetrisch ausgebildeten Empfangspfad (RX) , der ausgangsseitig symmetrisch ausgebildet ist und zwei Teilpfade (RXl, RX2) aufweist.
3. Duplexer nach Anspruch 2, bei dem das Empfangsfilter eine eingangsseitig unsymmet¬ risch und ausgangsseitig symmetrisch beschaltete DMS-Spur aufweist, die zwei Ausgangswandler (51, 53) und einen dazwischen angeordneten Eingangswandler (52) aufweist.
4. Duplexer nach Anspruch 2 oder 3 , mit einem Resonatorstapel (6) , der mit BAW arbeitende Resonatoren aufweist, von denen mindestens einer im Empfangspfad (RX) angeordnet und in Reihe mit dem Empfangsfilter (1) geschaltet ist.
5. Duplexer nach einem der Ansprüche 1 bis 4, bei dem eine akustische Spur (4) mit zwei darin nebenein¬ ander angeordneten Wandlern (41, 42) vorgesehen ist, welche jeweils in verschiedenen Teilpfaden (RXl, RX2) des Empfangspfades (RX) angeordnet sind.
6. Duplexer nach Anspruch 5, bei dem das Empfangsfilter eine unsymmetrisch/symmetrisch beschaltete DMS-Spur aufweist, deren symmetrisch beschal¬ tete Seite mit den in der akustischen Spur angeordneten Wandlern in Serie geschaltet ist.
7. Duplexer nach Anspruch 4, wobei das Empfangsfilter (1) mit akustischen Oberflächen¬ wellen arbeitende Serienresonatoren (SRI, SR2) aufweist, die der DMS-Spur nachgeschaltet und in den Teilpfaden (RXl, RX2) des Empfangspfades angeordnet sind.
8. Duplexer nach einem der Ansprüche 3 bis 7, wobei das Empfangsfilter (1) einen mit SAW oder BAW arbei¬ tenden Serienresonator (SR) aufweist, welcher der DMS-Spur vorgeschaltet ist .
9. Duplexer nach einem der Ansprüche 3 bis 8, wobei das Empfangsfilter (1) einen mit SAW oder BAW arbeitenden Parallelresonator (PR) aufweist, welches in einem Querzweig angeordnet ist, welcher der DMS-Spur vorgeschaltet ist .
10. Duplexer nach einem der Ansprüche 1 bis 9, bei dem das Sendefilter (2) mehrere mit akustischen Volumenwellen arbeitende Resonatoren aufweist, die in einer Laddertype-Anordnung miteinander verschaltet sind.
11. Duplexer nach einem der Ansprüche 1 bis 10, bei dem das Sendefilter (2) einen im Sendepfad (TX) ange¬ ordneten Resonatorstapel mit zwei übereinander gestapelten Resonatoren (Rl, R2) aufweist.
12. Duplexer nach Anspruch 11, bei dem die Resonatoren (Rl, R2) eine gemeinsame Elektrode haben.
13. Duplexer nach Anspruch 11, bei dem zwischen den Resonatoren (Rl, R2) eine akustisch teilweise durchlässige Koppelschicht (Kl) angeordnet ist.
14. Duplexer nach Anspruch 13 , mit einem im Sendepfad (TX) angeordneten weiteren Resona¬ torstapel (6"), der Resonatoren (Rl', R2') und eine dazwi¬ schen angeordnete akustisch teilweise durchlässige Koppel- schicht (K2) aufweist, wobei eine zur Koppelschicht (Kl) gewandte Elektrode (E3) des ersten Resonatorstapels (6) elektrisch mit einer, zur Koppelschicht (K2) des weiteren Resonatorstapels (6') ge¬ wandten, Elektrode (E3") des weiteren Resonatorstapels verbunden ist.
15. Duplexer nach Anspruch 13, bei dem zwischen dem Sendepfad (TX) und Masse mindestens ein Querzweig mit einem darin angeordneten, mit akusti¬ schen Volumenwellen arbeitenden Parallelresonator (R3, R4) vorgesehen ist.
16. Duplexer nach einem der Ansprüche 13 bis 15, bei dem im Sendepfad (TX) ein mit akustischen Volumenwellen arbeitender Serienresonator vorgesehen ist .
17. Duplexer nach einem der Ansprüche 1 bis 16, wobei das Empfangsfilter (1) in einem SAW-Chip (CHI) ausgebildet ist, wobei das Sendefilter (2) in einem BAW- Chip (CH2) ausgebildet ist, wobei der SAW-Chip und der BAW-Chip auf einem geraeinsamen Trägersubstrat (3) befestigt und elektrisch mit diesem verbunden sind.
18. Duplexer nach Anspruch 17, wobei der SAW-Chip und der BAW-Chip um mindestens λ/1000 voneinander beabstandet sind, wobei λ die Wellenlänge der elektrischen Welle bei einer Mittenfrequenz des Bauelements ist.
19. Duplexer nach Anspruch 17 oder 18, bei dem der SAW-Chip und der BAW-Chip auf dem Trägersub¬ strat (3) in der Flip-Chip-Anordnung montiert ist.
20. Duplexer nach Anspruch 17 oder 18, bei dem der SAW-Chip und der BAW-Chip auf dem Trägersub¬ strat (3) mittels Drahtbonden montiert ist.
21. Duplexer nach einem der Ansprüche 1 bis 20, bei dem das Sendefilter (2) eingangsseitig und ausgangs- seitig unsymmetrisch beschaltet ist.
22. Duplexer nach einem der Ansprüche 1 bis 21, bei dem das Sendefilter (2) eine Impedanztransformation durchführt.
23. Duplexer nach einem der Ansprüche 1 bis 22, bei dem das Empfangsfilter (1) eine Impedanztransformation durchführt.
24. Duplexer nach einem der Ansprüche 1 bis 23, bei dem das Empfangsfilter (1) einen unsymmetrischen Eingang aufweist.
PCT/EP2005/005615 2004-06-29 2005-05-24 Duplexer WO2006002720A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/630,406 US20070296521A1 (en) 2004-06-29 2005-05-24 Duplexer
JP2007518471A JP2008504756A (ja) 2004-06-29 2005-05-24 デュプレクサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004031397A DE102004031397A1 (de) 2004-06-29 2004-06-29 Duplexer
DE102004031397.0 2004-06-29

Publications (1)

Publication Number Publication Date
WO2006002720A1 true WO2006002720A1 (de) 2006-01-12

Family

ID=34970406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005615 WO2006002720A1 (de) 2004-06-29 2005-05-24 Duplexer

Country Status (4)

Country Link
US (1) US20070296521A1 (de)
JP (1) JP2008504756A (de)
DE (1) DE102004031397A1 (de)
WO (1) WO2006002720A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103083A1 (en) * 2007-02-19 2008-08-28 Telefonaktiebolaget Lm Ericsson (Publ) An apparatus and a method for directing a received signal in an antenna system
EP1976116A1 (de) * 2007-03-29 2008-10-01 Laird Technologies AB Antennenanordnung für ein tragbares Funkkommunikationsgerät
WO2010052969A1 (ja) * 2008-11-04 2010-05-14 株式会社村田製作所 弾性波フィルタ装置および、それを備えるモジュール

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031397A1 (de) * 2004-06-29 2006-01-26 Epcos Ag Duplexer
DE102004035812A1 (de) * 2004-07-23 2006-03-16 Epcos Ag Mit akustischen Volumenwellen arbeitender Resonator
DE102006035874B3 (de) * 2006-08-01 2008-02-07 Epcos Ag Mit akustischen Volumenwellen arbeitendes Filter
DE102006057340B4 (de) * 2006-12-05 2014-05-22 Epcos Ag DMS-Filter mit verbesserter Anpassung
DE102007024895B4 (de) * 2007-05-29 2015-08-27 Epcos Ag Multiband-Filter
FR2927743B1 (fr) * 2008-02-15 2011-06-03 St Microelectronics Sa Circuit de filtrage comportant des resonateurs acoustiques couples
US7855618B2 (en) * 2008-04-30 2010-12-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator electrical impedance transformers
JP4586897B2 (ja) 2008-06-24 2010-11-24 株式会社村田製作所 分波器
WO2010007805A1 (ja) * 2008-07-17 2010-01-21 株式会社 村田製作所 分波器
DE102008052222B4 (de) * 2008-10-17 2019-01-10 Snaptrack, Inc. Antennen Duplexer mit hoher GPS-Unterdrückung
JP4539788B2 (ja) * 2008-12-10 2010-09-08 株式会社村田製作所 高周波モジュール
DE102009014068B4 (de) * 2009-03-20 2011-01-13 Epcos Ag Kompaktes, hochintegriertes elektrisches Modul mit Verschaltung aus BAW-Filter und Symmetrierschaltung und Herstellungsverfahren
KR20110077781A (ko) * 2009-12-30 2011-07-07 삼성전기주식회사 듀플렉서 소자 및 그 제조방법
JP5187597B2 (ja) * 2010-07-05 2013-04-24 株式会社村田製作所 弾性波素子
JP5792554B2 (ja) * 2011-08-09 2015-10-14 太陽誘電株式会社 弾性波デバイス
JP5890670B2 (ja) * 2011-12-05 2016-03-22 太陽誘電株式会社 フィルタ及び分波器
DE102014111901B4 (de) * 2014-08-20 2019-05-23 Snaptrack, Inc. Duplexer
DE102014111912B4 (de) 2014-08-20 2024-06-13 Snaptrack, Inc. HF-Filter
DE102014112676A1 (de) * 2014-09-03 2016-03-03 Epcos Ag Filter mit verbesserter Linearität
JP6573851B2 (ja) * 2016-08-04 2019-09-11 太陽誘電株式会社 マルチプレクサ
US10541673B2 (en) 2016-10-28 2020-01-21 Skyworks Solutions, Inc. Acoustic wave filter including two types of acoustic wave resonators
CN111512550B (zh) * 2017-12-25 2024-01-16 株式会社村田制作所 高频装置
SG10201902753RA (en) 2018-04-12 2019-11-28 Skyworks Solutions Inc Filter Including Two Types Of Acoustic Wave Resonators
US11121696B2 (en) 2018-07-17 2021-09-14 Ii-Vi Delaware, Inc. Electrode defined resonator
DE102019115589B4 (de) 2018-07-17 2024-06-13 Ii-Vi Delaware, Inc. Elektrodenbegrenzter resonator
US11738539B2 (en) 2018-07-17 2023-08-29 II-VI Delaware, Inc Bonded substrate including polycrystalline diamond film
US12076973B2 (en) 2018-07-17 2024-09-03 Ii-Vi Delaware, Inc. Bonded substrate including polycrystalline diamond film
US11750169B2 (en) 2018-07-17 2023-09-05 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
US11658688B2 (en) 2019-05-01 2023-05-23 Skyworks Solutions, Inc. Multiplexer with bulk acoustic wave filter and multilayer piezoelectric substrate filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112768A1 (en) * 2001-12-13 2003-06-19 Frank Michael Louis Duplexer with a differential receiver port implemented using acoustic resonator elements
US20030222539A1 (en) * 2002-06-03 2003-12-04 Murata Manufacturing Co., Ltd. Piezoelectric filter and electronic component including the same
DE10228328A1 (de) * 2002-06-25 2004-01-22 Epcos Ag Elektronisches Bauelement mit einem Mehrlagensubstrat und Herstellungsverfahren
EP1418672A2 (de) * 2002-11-08 2004-05-12 Murata Manufacturing Co., Ltd. Duplexer und zusammentgesetztes Modul
FR2848745A1 (fr) * 2002-12-17 2004-06-18 Temex Sa Filtre dms a faibles pertes d'insertion et symetrie optimisee

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205342A (ja) * 1996-01-26 1997-08-05 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ
DE19638370C2 (de) * 1996-09-19 2001-06-13 Epcos Ag Oberflächenwellenfilter für unsymmetrische/symmetrische und symmetrische/symmetrische Betriebsweise
US5910756A (en) * 1997-05-21 1999-06-08 Nokia Mobile Phones Limited Filters and duplexers utilizing thin film stacked crystal filter structures and thin film bulk acoustic wave resonators
US6262637B1 (en) * 1999-06-02 2001-07-17 Agilent Technologies, Inc. Duplexer incorporating thin-film bulk acoustic resonators (FBARs)
US6720842B2 (en) * 2000-02-14 2004-04-13 Murata Manufacturing Co., Ltd. Surface acoustic wave filter device having first through third surface acoustic wave filter elements
DE10007178A1 (de) * 2000-02-17 2001-08-23 Epcos Ag Oberflächenwellenfilter mit Reaktanzelementen
JP2001267885A (ja) * 2000-03-17 2001-09-28 Fujitsu Media Device Kk 弾性表面波装置
US6424238B1 (en) * 2001-01-08 2002-07-23 Motorola, Inc. Acoustic wave filter and method of forming the same
FR2821997B1 (fr) * 2001-03-06 2003-05-30 Thomson Csf Filtre a ondes acoustiques de surface
JP3973915B2 (ja) * 2001-03-30 2007-09-12 株式会社日立メディアエレクトロニクス 高周波フィルタ、高周波回路、アンテナ共用器及び無線端末
EP1263137B1 (de) * 2001-05-31 2017-07-26 Skyworks Filter Solutions Japan Co., Ltd. Akustisches Oberflächenwellenfilter, symmetrisches Filter und Kommunikationsgerät
JP3873802B2 (ja) * 2001-06-12 2007-01-31 株式会社村田製作所 弾性表面波フィルタ
DE10160617A1 (de) * 2001-12-11 2003-06-12 Epcos Ag Akustischer Spiegel mit verbesserter Reflexion
US6670866B2 (en) * 2002-01-09 2003-12-30 Nokia Corporation Bulk acoustic wave resonator with two piezoelectric layers as balun in filters and duplexers
EP1372263A3 (de) * 2002-04-15 2009-09-16 Panasonic Corporation Hochfrequenzbauelement und Kommunikationsvorrichtung
DE60220143T2 (de) * 2002-05-16 2008-01-31 Tdk Corp. Antennenweiche
JP4147817B2 (ja) * 2002-05-23 2008-09-10 株式会社村田製作所 圧電フィルタ、およびそれを有する電子部品
DE20221966U1 (de) * 2002-06-06 2010-02-25 Epcos Ag Mit akustischen Wellen arbeitendes Bauelement mit einem Anpaßnetzwerk
JP3931767B2 (ja) * 2002-08-29 2007-06-20 株式会社村田製作所 弾性表面波装置、通信装置
DE10246791B4 (de) * 2002-10-08 2017-10-19 Snaptrack, Inc. Mit akustischen Volumenwellen arbeitender Resonator und Schaltung mit dem Resonator
KR100820556B1 (ko) * 2002-11-15 2008-04-07 엘지이노텍 주식회사 듀플렉서 제조방법
DE10305379A1 (de) * 2003-02-10 2004-08-19 Epcos Ag Frontendschaltung
DE10316719B4 (de) * 2003-04-11 2018-08-02 Snaptrack, Inc. Frontendschaltung für drahtlose Übertragungssysteme
DE10316716A1 (de) * 2003-04-11 2004-10-28 Epcos Ag Bauelement mit einer piezoelektrischen Funktionsschicht
DE10317969B4 (de) * 2003-04-17 2005-06-16 Epcos Ag Duplexer mit erweiterter Funktionalität
JP4010504B2 (ja) * 2003-06-04 2007-11-21 日立金属株式会社 マルチバンド用送受信機およびそれを用いた無線通信機
DE10335331A1 (de) * 2003-08-01 2005-03-03 Epcos Ag Elektrisches Bauelement mit überlappenden Elektroden und Verfahren zur Herstellung
US6992400B2 (en) * 2004-01-30 2006-01-31 Nokia Corporation Encapsulated electronics device with improved heat dissipation
DE102004028068A1 (de) * 2004-06-09 2005-12-29 Epcos Ag Oszillator
DE102004031397A1 (de) * 2004-06-29 2006-01-26 Epcos Ag Duplexer
DE102004032930A1 (de) * 2004-07-07 2006-02-02 Epcos Ag Beidseitig symmetrisch betreibbares Filter mit Volumenwellenresonatoren
DE102004035812A1 (de) * 2004-07-23 2006-03-16 Epcos Ag Mit akustischen Volumenwellen arbeitender Resonator
DE102004037818B4 (de) * 2004-08-04 2022-02-17 Snaptrack, Inc. Filteranordnung mit zwei Volumenwellenresonatoren
DE102004037820A1 (de) * 2004-08-04 2006-03-16 Epcos Ag Elektrische Schaltung und Bauelement mit der Schaltung
JP4504278B2 (ja) * 2004-08-04 2010-07-14 パナソニック株式会社 アンテナ共用器、ならびに、それを用いた高周波モジュールおよび通信機器
DE102004053319A1 (de) * 2004-11-04 2006-05-11 Epcos Ag Frequenzweiche
DE102005057762A1 (de) * 2005-12-02 2007-06-06 Epcos Ag Mit akustischen Volumenwellen arbeitender Resonator
DE102005061344A1 (de) * 2005-12-21 2007-06-28 Epcos Ag Mit akustischen Volumenwellen arbeitender Resonator
DE102006031548A1 (de) * 2006-07-07 2008-01-17 Epcos Ag Sendeempfangsschaltung
DE102006035874B3 (de) * 2006-08-01 2008-02-07 Epcos Ag Mit akustischen Volumenwellen arbeitendes Filter
DE102006047698B4 (de) * 2006-10-09 2009-04-09 Epcos Ag Mit akustischen Volumenwellen arbeitender Resonator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112768A1 (en) * 2001-12-13 2003-06-19 Frank Michael Louis Duplexer with a differential receiver port implemented using acoustic resonator elements
US20030222539A1 (en) * 2002-06-03 2003-12-04 Murata Manufacturing Co., Ltd. Piezoelectric filter and electronic component including the same
DE10228328A1 (de) * 2002-06-25 2004-01-22 Epcos Ag Elektronisches Bauelement mit einem Mehrlagensubstrat und Herstellungsverfahren
EP1418672A2 (de) * 2002-11-08 2004-05-12 Murata Manufacturing Co., Ltd. Duplexer und zusammentgesetztes Modul
FR2848745A1 (fr) * 2002-12-17 2004-06-18 Temex Sa Filtre dms a faibles pertes d'insertion et symetrie optimisee

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103083A1 (en) * 2007-02-19 2008-08-28 Telefonaktiebolaget Lm Ericsson (Publ) An apparatus and a method for directing a received signal in an antenna system
EP1976116A1 (de) * 2007-03-29 2008-10-01 Laird Technologies AB Antennenanordnung für ein tragbares Funkkommunikationsgerät
WO2010052969A1 (ja) * 2008-11-04 2010-05-14 株式会社村田製作所 弾性波フィルタ装置および、それを備えるモジュール
EP2346166A1 (de) * 2008-11-04 2011-07-20 Murata Manufacturing Co. Ltd. Elastische wellenfiltervorrichtung und modul mit der elastischen wellenfiltervorrichtung
US8319585B2 (en) 2008-11-04 2012-11-27 Murata Manufacturing Co., Ltd. Elastic wave filter device and module including the same
EP2346166A4 (de) * 2008-11-04 2015-04-01 Murata Manufacturing Co Elastische wellenfiltervorrichtung und modul mit der elastischen wellenfiltervorrichtung

Also Published As

Publication number Publication date
JP2008504756A (ja) 2008-02-14
US20070296521A1 (en) 2007-12-27
DE102004031397A1 (de) 2006-01-26

Similar Documents

Publication Publication Date Title
WO2006002720A1 (de) Duplexer
DE10317969B4 (de) Duplexer mit erweiterter Funktionalität
DE112016002335B4 (de) Multiplexer, Sendevorrichtung, Empfangsvorrichtung, Hochfrequenz-Frontend-Schaltkreis, Kommunikationsvorrichtung und Impedanzanpassungsverfahren für einen Multiplexer
DE102005032058B4 (de) HF-Filter mit verbesserter Gegenbandunterdrückung
DE10225202B4 (de) Mit akustischen Wellen arbeitendes Bauelement mit einem Anpassnetzwerk
DE10024956C2 (de) Antennenduplexer
EP1683275B1 (de) Schaltung mit verringerter einfügedämpfung und bauelement mit der schaltung
DE112006001884B4 (de) Elektrisches Bauelement
DE112011103586B4 (de) Demultiplexer für elastische Wellen
DE60220143T2 (de) Antennenweiche
DE10138335B4 (de) Oberflächenwellen-Bauteil
DE102005010658A1 (de) Duplexer mit verbesserter Leistungsverträglichkeit
DE10248493A1 (de) Verzweigungsfilter und Kommunikationsvorrichtung
WO2008009281A2 (de) Elektrisches modul
DE102008052222B4 (de) Antennen Duplexer mit hoher GPS-Unterdrückung
WO2004001963A1 (de) Elektronisches bauelement mit einem mehrlagensubstrat und herstellungsverfahren
DE102018102891A1 (de) Multiplexierer, Übertragungsvorrichtung und Empfangsvorrichtung
WO2004034579A1 (de) Mit akustischen volumenwellen arbeitender resonator und schaltung mit dem resonator
EP2891244A1 (de) Multiplexer mit verringerten intermodulationsprodukten
DE10115775A1 (de) Duplexervorrichtung
DE102004037819A1 (de) Elektroakustisches Bauelement mit geringen Verlusten
DE10225201A1 (de) Abstimmbares Filter und Verfahren zur Frequenzabstimmung
DE10325798B4 (de) SAW-Filter mit verbesserter Selektion oder Isolation
DE112012000675B4 (de) Filtermodul
DE112015003080T5 (de) Rf-filterschaltung, rf-filter mit verbesserter dämpfung und duplexer mit verbesserter isolierung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007518471

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11630406

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11630406

Country of ref document: US