WO2006001356A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2006001356A1
WO2006001356A1 PCT/JP2005/011578 JP2005011578W WO2006001356A1 WO 2006001356 A1 WO2006001356 A1 WO 2006001356A1 JP 2005011578 W JP2005011578 W JP 2005011578W WO 2006001356 A1 WO2006001356 A1 WO 2006001356A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
film
alloy
protective film
alloy wiring
Prior art date
Application number
PCT/JP2005/011578
Other languages
English (en)
French (fr)
Inventor
Mari Amano
Munehiro Tada
Yoshihiro Hayashi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US11/571,251 priority Critical patent/US8188600B2/en
Priority to JP2006528605A priority patent/JP5012022B2/ja
Publication of WO2006001356A1 publication Critical patent/WO2006001356A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76835Combinations of two or more different dielectric layers having a low dielectric constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76847Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned within the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76864Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating

Definitions

  • the present invention relates to a semiconductor device having a wiring structure, and more particularly to a semiconductor device having a trench wiring (damascene wiring) structure mainly composed of copper and a method for manufacturing the same.
  • a first mode of electo-port migration is a mode in which a void is formed in the vicinity of a connection portion between a lower layer wiring and a via in the lower layer wiring in a structure in which the lower layer wiring and the upper layer wiring are connected by a via. It is.
  • FIG. 22 is a cross-sectional view of a wiring in which a defect has occurred due to electret migration.
  • 22 (a) is a cross-sectional view showing the first embodiment.
  • the lower layer wiring 100, the wiring protective film 101, the upper layer wiring 102, and the wiring protective film 103 are laminated in this order, and the lower layer wiring 100 and the upper layer wiring 102 are formed. Is connected via via 104.
  • a void 105 is generated in the vicinity of the connection portion between the lower layer wiring 100 and the via 104.
  • a second aspect of electo-port migration is a structure in which the lower layer wiring and the upper layer wiring are connected by vias, and the upper layer wiring is bonded at the interface between the upper layer wiring and the wiring protective film. It is an aspect in which id is formed.
  • FIG. 22 (b) is a cross-sectional view showing the second embodiment.
  • the void 106 is formed in the upper layer wiring 10 within the upper layer wiring 102.
  • the electoric migration of the first mode occurs when the electrons 110 flow from the upper layer wiring 102 into the lower layer wiring 100, and an electron is generated at the location where the void 105 is generated.
  • These are the inside of the lower layer wiring 100 in the vicinity of the connection portion between the lower layer wiring 100 and the via 104 and the interface between the lower layer wiring 100 and the wiring protective film 101.
  • the electo-port migration of the second mode occurs when electrons 110 flow from the lower layer wiring 100 into the upper layer wiring 102, and the void 105 is formed in the upper layer wiring 10.
  • FIG. 23 is a cross-sectional view showing the state of occurrence of stress-induced voids in damascene wiring
  • a lower layer wiring 120, a wiring protective film 121, an interlayer insulating film 122, a wiring protective film 123, an upper layer wiring 124, and a wiring protective film 125 are laminated in this order, and the lower layer
  • the wiring 120 and the upper layer wiring 123 are connected through a via 122 formed so as to penetrate the interlayer insulating film 122.
  • the stress-inducing void 126 in the damascene wiring may occur in a relatively wide region inside the lower layer wiring 120 with which the bottom surface of the via 125 contacts.
  • Wiring and wiring protective film that cause electoric port migration and stress-induced voids As a method for preventing the diffusion of copper at the interface and the diffusion of vacancies inside the copper, the following techniques are disclosed.
  • the first is to increase the number of vias connected to the wiring (multi-via).
  • the second method is to improve the migration resistance of copper itself by alloying copper as a wiring material.
  • Patent Document 1 a copper alloy obtained by adding silver or the like to copper is used.
  • a method for forming a copper alloy film to which silver or the like is added a sputtering method using a target in which silver is added and an alloy is formed, a method of forming an alloy by plating of tin or chromium and copper, CVD ( There is a method of forming by chemical vapor deposition).
  • the third is a method of improving the adhesion at the interface between the wiring and the wiring protective film.
  • Patent Document 2 the technique of using a conductive film as a wiring protective film, that is, electorical migration by selectively growing or preferentially growing a conductive wiring protective film such as tungsten on the wiring. And technology to reduce the occurrence of stress migration.
  • Patent Document 1 JP-A-9-289214
  • Patent Document 2 JP 2001-319928
  • Non-Patent Literature 1 E. T. Ogawa, et ai., IEEE International Reliability Physics symposium Proceedings, 2002, pp. 312—321.
  • Non-Patent Document 2 K.YOSHIDA, et al., IEEE International Electron Device Meeting, 200 2, pp. 753-756.
  • Patent Document 2 a method of suppressing diffusion of copper atoms by using a conductive film having excellent adhesion to copper as a wiring protective film (the above-mentioned third conventional technique) It is very difficult to selectively grow or preferentially grow a conductive film only on the wiring, and the leakage current between wirings is increased due to the strong growth of the conductive film on the wiring interlayer film. It was a problem. For this reason, it is possible to improve the adhesion between copper and the wiring protective film without increasing the leakage current between the wirings, suppress the generation of voids at the interface between copper and the wiring protective film, and improve the reliability. A technology that can do this has been desired.
  • the object of the present invention is to improve the adhesion at the interface between the wiring protective film and copper, suppress the copper diffusion at the interface, prevent the occurrence of electoric port migration and stress-induced voids, and improve reliability.
  • Means for Solving the Problems in Providing a Semiconductor Device Having a High-Speed Wiring and a Manufacturing Method Therefor the present invention has an alloy wiring and a first wiring protective film covering the upper surface of the alloy wiring, and the first wiring protective film is in the alloy wiring.
  • a semiconductor device comprising at least one metal element among the metal elements contained in is provided.
  • the present invention further includes an alloy wiring, a first wiring protective film covering the upper surface of the alloy wiring, and a second wiring protective film formed on the first wiring protective film,
  • the first wiring protective film contains at least one metal element among the metal elements contained in the alloy wiring, and the second wiring protective film does not contain the at least one metal element.
  • a semiconductor device is provided.
  • the present invention further includes an alloy wiring and a first wiring protective film covering the upper surface of the alloy wiring, and the concentration of the metal element other than the main component of the alloy wiring is a central portion of the alloy wiring.
  • a semiconductor device characterized in that it is higher in the vicinity of the first wiring protective film.
  • the metal element contained in the alloy wiring for example, one or more of aluminum, copper, tin, titanium, tungsten, silver, zirconium, indium, and magnesium is selected. be able to.
  • the present invention further includes an alloy wiring and a first wiring protective film covering the upper surface of the alloy wiring, and the first wiring protective film is a metal element contained in the alloy wiring.
  • Metal contained in the alloy wiring containing at least one metal element and having a concentration of metal elements other than the main component of the alloy wiring higher in the vicinity of the first wiring protective film than in the central portion of the alloy wiring
  • the element is at least one of aluminum, copper, tin, titanium, tungsten, silver, zirconium, indium, and magnesium.
  • the semiconductor device according to the present invention preferably further includes a second wiring protective film formed on the first wiring protective film.
  • This second wiring protective film should contain the at least one metal element contained in the first wiring protective film.
  • the alloy wiring is formed, for example, as a copper alloy wiring mainly composed of copper.
  • a semiconductor device has a barrier metal film covering the alloy wiring.
  • the concentration of the metal element other than the main component in the alloy wiring is less than 0. lat.% In the central portion of the alloy wiring, and more than 0. lat.% And 1 in the vicinity of the first wiring protective film. It is preferably 5 at.% Or less.
  • the concentration of the metal element other than the main component in the alloy wiring is less than 0. lat.% In the central portion of the alloy wiring, and the first wiring protection In the vicinity of the film and in the vicinity of the noria metal film, it is preferably 0. lat.% Or more and 1.5 at.% Or less.
  • Examples of the first wiring protective film include a SiN film, a SiC film, a SiCN film, a SiOC film, a SiOCH film, a film containing an organic substance in these films, a film containing an organic substance as a main component, and One of the films containing SiO can be selected as the film containing organic material as a main component.
  • the second wiring protective film for example, a SiN film, a SiC film, a SiCN film, a SiOC film, a SiOCH film, a film containing an organic substance in these films, a film containing an organic substance as a main component, Any one of the films containing SiO can be selected as the film containing an organic substance as a main component.
  • the concentration of the metal element is preferably as high as that of the alloy wiring.
  • the alloy wiring can be formed as a copper aluminum alloy wiring containing copper as a main component and containing aluminum
  • the first wiring protective film can be formed as a SiCN film containing copper and aluminum.
  • the alloy wiring is formed as a copper-aluminum alloy wiring containing copper as a main component and containing aluminum, and the concentration of aluminum in the alloy wiring is 0.3 lat. It is preferable that it is not less than 0. lat.% And not more than 1.5 at.% In the vicinity of the first wiring protective film and in the vicinity of the barrier metal film.
  • the present invention further includes a step of forming an alloy wiring, a first element containing at least one metal element of the metal elements contained in the alloy wiring, and covering the upper surface of the alloy wiring. And a method of manufacturing a semiconductor device having at least a step of forming a wiring protective film.
  • the method for manufacturing a semiconductor device according to the present invention further includes a step of forming a second wiring protective film not containing the at least one metal element on the first wiring protective film.
  • the present invention comprises: a first step of forming an alloy wiring; and a second step of forming a first wiring protective film covering an upper surface of the alloy wiring.
  • the alloy wiring is formed so that the concentration of the metal element other than the main component of the alloy wiring is higher in the vicinity of the first wiring protective film than in the central portion of the alloy wiring.
  • the method for manufacturing a semiconductor device according to the present invention includes a step of forming a barrier metal film covering the alloy wiring.
  • the alloy wiring is a main component in the alloy wiring. It is preferable that the metal element is formed so that the concentration of the other metal element is higher in the vicinity of the first wiring protective film and in the vicinity of the noria metal film than in the central portion of the alloy wiring.
  • the concentration of the metal element other than the main component in the alloy wiring is less than 0. lat.% In the central portion of the alloy wiring, and in the vicinity of the first wiring protective film, It is preferably formed so as to be not less than 0. lat.% And not more than 1.5 at.%.
  • the alloy wiring has a concentration of metal elements other than the main component in the alloy wiring of less than 0.3 lat.% At the center of the alloy wiring. In the vicinity of the wiring protective film and in the vicinity of the noria metal film, it is preferably formed to be not less than 0. lat.% And not more than 1.5 at.%.
  • the first wiring protective film is formed such that the concentration of the metal element in the first wiring protective film becomes higher as close to the alloy wiring.
  • the alloy wiring is formed as a copper-aluminum alloy wiring containing copper as a main component and containing aluminum
  • the alloy wiring has a concentration force of aluminum in the alloy wiring.
  • it is 0. lat.% Or more and 1.5 at. It is preferably formed so as to be not more than%.
  • the inventor improves the adhesion between the alloy wiring and the wiring protective film by satisfying any of the following conditions, and suppresses the diffusion of the metal of the alloy wiring and the vacancies therein. We found that the reliability of wiring can be improved.
  • the wiring protective film contains at least one of the metal elements contained in the alloy wiring.
  • the concentration of metal elements other than the main component inside the alloy wiring is made higher in the vicinity of the wiring protective film than in the center of the alloy wiring.
  • the present invention has been made based on this discovery.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a semiconductor device according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a semiconductor device according to a third embodiment of the present invention.
  • FIG. 4 is a sectional view of a semiconductor device according to a fourth embodiment of the present invention.
  • FIG. 5 is a graph showing measurement results of electromigration lifetime in the wiring structure according to the conventional method and in the semiconductor device according to the first embodiment.
  • FIG. 6 is a graph showing measurement results of stress-induced void resistance in the wiring structure according to the conventional method and the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing each step in the manufacturing method of the semiconductor device to which the structure of the semiconductor device according to the first embodiment is applied.
  • FIG. 8 is a cross-sectional view of a first modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG. [9]
  • FIG. 9 is a cross-sectional view of a second modification of the semiconductor device manufactured by the method of manufacturing a semiconductor device shown in FIG.
  • FIG. 10 is a cross-sectional view of a fourth modification of the semiconductor device manufactured by the method of manufacturing a semiconductor device shown in FIG.
  • FIG. 11 is a cross-sectional view of a fifth modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • FIG. 12 is a cross-sectional view of a sixth modification of the semiconductor device manufactured by the method of manufacturing a semiconductor device shown in FIG.
  • FIG. 13 is a cross-sectional view of a seventh modification of the semiconductor device manufactured by the method of manufacturing a semiconductor device shown in FIG.
  • FIG. 16 is a cross-sectional view of a second modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • FIG. 17 is a cross-sectional view of a third modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • FIG. 18 is a cross-sectional view showing each step in the method of manufacturing a semiconductor device to which the structure of the semiconductor device according to the first embodiment is applied.
  • FIG. 19 (a) is a graph showing the distribution of aluminum concentration in the depth direction of the semiconductor device manufactured by the manufacturing method according to the fifth embodiment, and FIG. It is a graph which shows the distribution of the same aluminum concentration when no sulfur is added.
  • FIG. 20 (a) is a graph showing the oxygen concentration distribution in the depth direction of the semiconductor device manufactured by the manufacturing method according to the fifth embodiment, and FIG. 5 is a graph showing the oxygen concentration distribution when the aluminum concentration in the alloy wire has no dependence on the depth direction.
  • the wiring protective film contains no metal elements, but the concentration profile inside the alloy wiring
  • FIG. 10 is a cross-sectional view showing each step in a method of manufacturing a semiconductor device whose reliability is improved by control.
  • FIG. 22 is a cross-sectional view of a wiring in which a defect has occurred due to elect port migration.
  • FIG. 23 is a cross-sectional view showing the occurrence of stress-induced voids in damascene wiring.
  • FIG. 24 is a cross-sectional view showing a central region of the alloy wiring, a region in the vicinity of the wiring protective film, and a region in the vicinity of the barrier metal film.
  • an alloy means a metal composed of a main component and a metal element other than the main component.
  • the alloy refers only to those in which other metal elements are intentionally added to the main component, and those that inevitably contain impurities are not applicable to the alloy.
  • copper alloy indicates that the main component is copper and that a metal element other than copper is included in the copper! /.
  • copper aluminum alloy indicates that the main component is copper and that aluminum is contained in copper.
  • the noria metal film refers to a conductive film having a barrier property that covers the side and bottom surfaces of the wiring in order to prevent the metal elements constituting the wiring from diffusing into the interlayer insulating film or the lower layer.
  • the noria metal film includes tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), and tungsten carbonitride (W CN).
  • Ta tantalum
  • TaN tantalum nitride
  • TiN titanium nitride
  • W CN tungsten carbonitride
  • Such a high melting point metal, a film having a nitride power thereof, or a laminated film thereof is used.
  • a semiconductor substrate is a substrate on which a semiconductor device is configured.
  • a semiconductor device is configured.
  • substrates such as substrates.
  • An interlayer insulating film is a film that electrically insulates and separates wiring layers from each other. In order to reduce the capacitance between the wirings, a film including holes in the film may be used.
  • interlayer insulating film for example, SiO, HSQ (Neudrogen Silsesquioxane: Hydr
  • ogenSilsesquioxane membrane eg Type 12®
  • MSQ (methylsilsesquio) Xan: MethylSilsesquioxane) membranes eg JSR—LKD®, ALCAP®, NCS®, IPS®, HOSP®
  • organic polymer membranes SiLK®
  • Flare registered trademark
  • SiOCH SiOC
  • SiOC eg Black Diamond (registered trademark)
  • CORAL registered trademark
  • AuroraULK registered trademark
  • Orion registered trademark
  • insulation containing them A typical example is a thin film.
  • the sputtering method in addition to the usual sputtering method, in order to improve the embedding characteristics, the film quality, and the film thickness uniformity in the wafer surface, for example, a long throw sputtering method, collimated sputtering, etc.
  • sputtering methods with high directivity such as the ionized sputtering method can be used.
  • the metal film can be used as an alloy film by previously containing a metal other than the main component in the metal target at a ratio below the solid solubility limit.
  • the CMP (Chemical Mechanical Polishing) method is a method in which unevenness on the wafer surface that occurs during the multilayer wiring formation process is polished by contacting it with a polishing pad that is rotated while flowing a polishing liquid over the wafer surface. It is a method of flattening. In the formation of wiring by the damascene method, CMP is used to obtain a flat wiring surface by removing excess metal parts after embedding metal in wiring grooves or via holes.
  • a hard mask is laminated on an interlayer insulating film to protect the interlayer insulating film when it is difficult to perform CMP directly due to a decrease in strength due to the low dielectric constant of the interlayer insulating film.
  • EM (Electromigration) lifetime refers to the probability of failure when the resistance increase or disconnection change of wiring due to electron wind is estimated by accelerated tests and the probability of failure in the actual use area is predicted.
  • a predetermined acceleration current for example, 6.4 MA / cm 2
  • a TEG Transmission Element Group
  • a predetermined acceleration temperature for example, 300 ° C
  • SIV (Stress Induced Voiding) life or stress-induced void life is the wiring stress. This indicates the predicted value when the resistance increase or disconnection change due to wiring is predicted by keeping it at constant temperature for a long time.
  • a TEG (Test Element Group) consisting of predetermined wiring and vias is stored at a constant acceleration temperature (eg, 150 ° C) for about 500 hours, and the storage time and TEG resistance change It is possible to compare the superiority and inferiority of SIV life by calculating the destruction time from (First embodiment)
  • FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment of the present invention.
  • the wiring structure of the semiconductor device according to the present embodiment will be described with reference to FIG.
  • the first embodiment of the present invention is an embodiment in which the present invention is applied to a dual damascene wiring structure.
  • the semiconductor device includes a semiconductor substrate 1 on which a semiconductor element (not shown) is formed, and an interlayer insulation formed on the semiconductor substrate 1.
  • the film 2, the first etching stop film 3a formed on the interlayer insulating film 2, the first noor metal film 4a formed on the first etching stop film 3a, and the damascene on the first noor metal film 4a A first alloy wiring 5a formed by the method, a first wiring protective film 6a partially formed on the first alloy wiring 5a, a via interlayer insulating film 7 formed on the first wiring protective film 6a, and
  • the second alloy wiring 5b surrounded by the noria metal film 4b forms both a via and a wiring.
  • the first wiring protective film 6a covering the upper surface of the first alloy wiring 5a contains at least one metal element of the metal elements contained in the first alloy wiring 5a.
  • the second wiring protective film 6b covering the upper surface of the second alloy wiring 5b contains at least one of the metal elements contained in the second alloy wiring 5b.
  • the first etching stop film 3a and the second etching stop film 3b are, for example, SiO films SiN film, SiC film, SiCN film, SiOC film, SiOCH film, films containing organic substances in these films, films containing organic substances as main components, and films containing organic substances as main components include SiO films One or a combination of two or more can be used.
  • the first etching stop film 3a and the second etching stop film 3b are provided in order to improve the workability of the dual damascene wiring grooves and via holes, and should be changed according to the material to be processed. Is possible. Particularly preferred materials are SiO or plastic.
  • the via interlayer insulating film 7 for example, SiO, SiC, SiCN, HSQ (hydrogen silsess).
  • Schioxane Hydrogen Silsesquioxane membrane (eg, Typel2 (registered trademark)), MSQ (Methyl Silsesquioxane) membrane (eg, JSR—LKD (registered trademark), ALCAP (registered trademark), NCS (registered trademark) ), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiOC (for example, Black Diamond (registered trademark), CORAL (registered trademark)) , AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), insulating thin films containing organic substances in them, multiple layers of any of these, or composition and density of any of these films A film changed in the direction can be used.
  • JSR—LKD registered trademark
  • ALCAP registered trademark
  • NCS registered trademark
  • IPS registered trademark
  • HOSP registered trademark
  • organic polymer film SiLK (registered
  • the first noria metal film 4a and the second noria metal film 4b can be formed by using a sputtering method, a CVD method, an ALCVD (Atomic Layer Chemical Vapor Deposition) method, or the like.
  • the first alloy wiring 5a and the second alloy wiring 5b are formed by a sputtering method using an alloy target, a CV D method, or an electrolytic plating method using a film formed by these methods as an electrode. be able to.
  • the metal element contained in the first alloy wiring 5a and the second alloy wiring 5b is a main component.
  • a metal element that dissolves in the selected metal and satisfies any of the following conditions is selected:
  • the metal elements contained in the first alloy wiring 5a and the second alloy wiring 5b include at least one of the medium forces of aluminum, copper, tin, titanium, tungsten, silver, zirconium, indium, and magnesium. You can choose.
  • a copper aluminum alloy seed layer is formed by ionized sputtering using a copper aluminum alloy target containing 0.5 to 2. Oat.% Of aluminum in the copper target. It is preferable to embed copper using the electroplating method with the electrode as the electrode.
  • the concentration of the metal element in the first alloy wiring 5a and the second alloy wiring 5b is equal to or lower than the concentration in the alloy target.
  • the first wiring protective film 6a and the second wiring protective film 6b covering the upper surfaces of the first alloy wiring 5a and the second alloy wiring 5b are contained in the first alloy wiring 5a and the second alloy wiring 5b.
  • a film containing at least one of the metal elements for example, a SiN film, a SiC film, a SiCN film, a SiOC film, a SiOCH film, a film containing an organic substance in these films, a film containing an organic substance as a main component, At least one of the films containing SiO can be used as the film containing an organic substance as a main component.
  • Examples of the first wiring protective film 6a and the second wiring protective film 6b include a DVS-BCB (dibutylsiloxane benzocyclobutene) film prepared by a plasma polymerization method, and a DVS-B CB composite.
  • a film made of a material can be used. What are BCB compounds? BCB and multiple gas feeds Is a compound formed by mixing and forming a film. By using a BCB film or a BCB composite film, the relative dielectric constant between wirings can be reduced.
  • the addition of metal to the first wiring protective film 6a and the second wiring protective film 6b needs to be performed within a range in which the insulating properties of the film are maintained even if the metal is added.
  • the metal concentration in the first wiring protective film 6a and the second wiring protective film 6b is reduced to lat.% Or less, thereby insulating the first wiring protective film 6a and the second wiring protective film 6b.
  • the first wiring protective film 6a and the second wiring protective film 6b are heated by heat treatment for 1 to 30 minutes in a temperature range of 200 ° C to 350 ° C.
  • Method of diffusing a metal element in the first wiring protective film 6a and the second wiring protective film 6b by thermal diffusion from the alloy wiring 5a and the second alloy wiring 5b, the first alloy wiring 5a and the second alloy wiring 5b A method of growing the first wiring protective film 6a and the second wiring protective film 6b selectively containing a metal element on top, a metal element on both the first alloy wiring 5a and the second alloy wiring 5b and on the insulating film And a method of selectively growing a first wiring protective film 6a and a second wiring protective film 6b containing a metal element on the first alloy wiring 5a and the second alloy wiring 5b.
  • the effect of the present invention is further improved by increasing the distribution of metal elements in the first wiring protective film 6a and the second wiring protective film 6b in the regions closer to the first alloy wiring 5a and the second alloy wiring 5b. It is possible to increase.
  • the concentration of the metal element other than the main component in the first alloy wiring 5a and the second alloy wiring 5b, which is contained in the first wiring protective film 6a and the second wiring protective film 6b is contained in the first wiring protective film 6a and the second wiring protective film 6b.
  • the adhesion between the first alloy wiring 5a and the second alloy wiring 5b and the first wiring protective film 6a and the second wiring protective film 6b is improved.
  • Yong resistance and stress-induced void resistance can be improved. That is, the first wiring protective film 6a that covers the upper surfaces of the first alloy wiring 5a and the second alloy wiring 5b with at least one metal element contained in the first alloy wiring 5a and the second alloy wiring 5b. And an intermediate composition between the first alloy wiring 5a and the second alloy wiring 5b and the first wiring protective film 6a and the second wiring protective film 6b.
  • An adhesion layer is formed, and the adhesion between the surfaces of the first alloy wiring 5a and the second alloy wiring 5b and the surfaces of the first wiring protective film 6a and the second wiring protective film 6b is improved. It is possible to suppress diffusion of alloy wiring metal at both interfaces, which causes migration, and diffusion of vacancies in alloy wiring, which cause stress-induced voids, which can significantly improve wiring reliability. it can.
  • FIG. 24 is a cross-sectional view showing a central region of the alloy wiring, a region in the vicinity of the wiring protective film, and a region in the vicinity of the barrier metal film.
  • the central region 130 of the alloy wiring is, for example, within a distance of 10% of the height in the height direction of the alloy wiring from the center 131 of the alloy wiring and in the width direction of the alloy wiring. Indicates an area located within the distance of%.
  • the region 132 in the vicinity of the wiring protective film indicates, for example, a region located within a distance of 10% of the height of the alloy wiring from the wiring protective film 6.
  • the first alloy wiring 5a is made of copper-aluminum alloy containing copper as a main component and containing lat.% Or less of aluminum as a metal element
  • the first wiring protective film 6a is made of a SiCN film.
  • the concentration of aluminum in the first alloy wiring 5a which is also within the distance of 10nm, is the lat.% Of the first wiring protective film 6a (SiCN film).
  • the concentration of aluminum in the first alloy wiring 5a existing at a distance is 0.08 By setting at.%, the resistance increase of the first alloy wiring 5a can be suppressed and the reliability of the first alloy wiring 5a can be improved.
  • the first alloy wiring 5a By simultaneously using the technology for improving the adhesion between the first alloy wiring 5a and the second alloy wiring 5b and the first wiring protective film 6a and the second wiring protective film 6b and the present technology, the first alloy wiring 5a In addition, the adhesion at all the interfaces surrounding the second alloy wiring 5b is improved, and the reliability of the alloy wiring can be further improved.
  • the region 133 in the vicinity of the noria metal film is, for example, a region located within a distance of 10% of the height of the alloy wiring from the noria metal film 4 force on the bottom surface and the noria metal film 4 force on the side surface. Indicates an area located within 10% of the width.
  • the first alloy wiring 5a has a copper-aluminum alloy force containing copper as a main component and lat.% Or less of aluminum as a metal element, and the noria metal film 4 has a TaZTaN force.
  • the concentration of aluminum in the first alloy wiring 5a within the distance of 2 Onm from the noria metal film (TaZTaN film) 4 is lat.%, And the first alloy at the distance of 10 Onm
  • concentration of aluminum in the wiring 5a it is possible to suppress the oxidation of the surface of the noria metal film 4 and further improve the reliability of the first alloy wiring 5a. That's it.
  • first alloy wiring 5a and the second alloy wiring 5b which are inherently difficult to be contained in the wiring protective film due to metal elements other than the main component contained in the first alloy wiring 5a and the second alloy wiring 5b. It is also possible to improve the adhesion by containing a metal element which is the main component of.
  • the first alloy wiring 5a has a copper-aluminum alloy force containing copper as a main component and containing lat.% Or less of aluminum as a metal element, and the first wiring protective film 6a is made of a SiCN film.
  • the first wiring protective film 6a is made of a SiCN film.
  • the adhesion between the first wiring protective film 6a (SiCN film) and the first alloy wiring 5a (copper alloy) is, for example, When evaluated by a thin film adhesion test method such as the 4-point bending method, it was confirmed that the adhesion was improved.
  • FIG. 5 shows the result of measuring the discharge port migration lifetime in the wiring structure according to the conventional method and the wiring structure according to the present embodiment.
  • test conditions for the electo-port migration lifetime are 300 ° C and 6.4 MA / m 2 .
  • the figure
  • a shows the measurement result of the wiring structure according to the conventional method
  • shows the measurement result of the wiring structure according to the present invention
  • Figure 5 shows a lognormal distribution with the time to failure occurring on the horizontal axis and the failure distribution plotted on the vertical axis.
  • FIG. 6 shows the results of measurement of stress-induced void resistance in the wiring structure according to the conventional method and the wiring structure according to the present embodiment.
  • the horizontal axis of Fig. 6 represents the wiring width (Line Width: m) of the evaluation TEG, and the vertical axis represents the failure rate (Failure Rate:%).
  • the failure rate ( ⁇ ) of the wiring structure according to the conventional method was 27 to 100%.
  • the failure rate (/ 3) was almost zero.
  • the failure rate is greatly reduced by using the wiring structure (
  • the leakage current between the alloy wirings of the wiring structure according to the present embodiment was measured. It was confirmed that the leakage current value was the same as that of the conventional wiring structure.
  • the metal element common to the metal element contained in the copper alloy wiring is within a range that does not impair the insulating property of the wiring protective film. Therefore, it is possible to improve the resistance to electorization migration and stress-induced void resistance without causing an increase in leakage current. This makes it possible to obtain higher adhesion to the copper alloy than when an insulating film is used as the wiring protective film without containing metal elements contained in the alloy wiring. Can be suppressed.
  • the wiring structure according to the present embodiment can be easily confirmed from the product.
  • DRA M Dynamic Random Access Memory
  • 3 ⁇ 4 AM Static Random Access Memory;
  • flash memory FRAM (Ferro Electric Random Access Memory)
  • MRAM Magnetic Random Access Memory
  • memory circuit such as variable resistance memory
  • semiconductor products semiconductor products with logic circuits such as microprocessors, mixed-type semiconductor products that have been posted on them simultaneously, or SIP (Silicon in package) that stacks multiple semiconductor devices.
  • SIP Silicon in package
  • the contrast of a TEM observation image obtained by cutting a semiconductor product in the cross-sectional direction can be used to compare metal wiring with a wiring protective film.
  • Element analysis such as Loss spectroscopy and EuX (Energy— DispersiveX—ray spectroscopy can confirm the metal concentration in the metal wiring and in the wiring protective film.
  • the processing method of the dual damascene groove is arbitrary, and is not particularly limited.
  • FIG. 2 is a sectional view of a semiconductor device according to the second embodiment of the present invention.
  • the wiring structure of the semiconductor device according to the present embodiment will be described with reference to FIG.
  • the structure of the wiring protective film is changed as compared with the semiconductor device according to the first embodiment.
  • the first wiring protective film 6a and the second wiring protective film 6b both have a single-layer structure!
  • Such a semiconductor device has a two-layer structure of a first wiring protection film 6a and a third wiring protection film 8a instead of the single-layer structure of the first wiring protection film 6a, and further has a second wiring protection film.
  • a two-layer structure of the second wiring protective film 6b and the fourth wiring protective film 8b may be provided.
  • the semiconductor device according to this embodiment has the same structure as that of the semiconductor device according to the first embodiment, except that the structure of the wiring protective film is changed.
  • the third wiring protective film 8a and the fourth wiring protective film 8b are, for example, a SiN film, a SiC film, a SiCN film, a SiOC film, a SiOCH film, a film containing an organic substance in these films, or an organic substance as a main component.
  • the film can be composed of any one of a film containing SiO and a film containing an organic substance as a main component, or any two or more stacked films.
  • the first alloy wiring 5a and the second alloy wiring 5b, the first wiring protective film 6a and the second wiring are the same as in the semiconductor device according to the first embodiment. Adhesiveness with the wiring protective film 6b can be improved, and dual damascene wiring with high resistance to electo-port migration and stress-induced voids can be obtained.
  • the third wiring protective film 8a and the fourth wiring protective film 8b made of a film not containing a metal element are formed on the upper surfaces of the first wiring protective film 6a and the second wiring protective film 6b.
  • the wiring protective film is formed in a two-layer structure.
  • FIG. 3 is a cross-sectional view of a semiconductor device according to the third embodiment of the present invention.
  • the wiring structure of the semiconductor device according to the present embodiment will be described with reference to FIG.
  • the present invention is applied to a single damascene wiring structure.
  • the semiconductor device includes a semiconductor substrate 1 on which a semiconductor element (not shown) is formed, and an interlayer insulation formed on the semiconductor substrate 1
  • the film 2 the first etching stop film 3a formed on the interlayer insulating film 2, the first noria metal film 4a formed on the first etching stop film 3a, and the single damascene method on the first noria metal film 4a
  • a third burr formed to cover the exposed surface of the single alloy wiring 5a A via film 5c, a via contact 5c formed by a single damascene method in a via hole covered with the third noria metal film 4c, a via layer hard mask 9, the third noria metal film 4c, and an alloy via 5c are formed.
  • the first wiring protective film 6a covering the upper surface of the first alloy wiring 5a contains at least one metal element of the metal elements contained in the first alloy wiring 5a.
  • the second wiring protective film 6b covering the upper surface of the second alloy wiring 5b contains at least one of the metal elements contained in the second alloy wiring 5b.
  • the via contact 5c is made of an alloy.
  • the via contact 5c does not necessarily need to be an alloy, and can be formed of a single metal cover if sufficient wiring reliability can be obtained according to the desired wiring characteristics.
  • the first etching stop film 3a and the via layer hard mask 9 are, for example, a SiO film, a SiN film SiC film, SiCN film, SiOC film, SiOCH film, films containing organic substances in these films, films containing organic substances as the main component, films containing organic substances as the main component, films containing SiO Or a combination of two or more can be used.
  • the via interlayer insulating film 7 for example, SiO, SiC, SiCN, HSQ (hydrogen silsess
  • Schioxane Hydrogen Silsesquioxane membrane (eg, Typel2 (registered trademark)), MSQ (Methyl Silsesquioxane) membrane (eg, JSR—LKD (registered trademark), ALCAP (registered trademark), NCS (registered trademark) ), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiOC (for example, Black Diamond (registered trademark), CORAL (registered trademark)) , AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), insulating thin films containing organic substances in them, multiple layers of any of these, or composition and density of any of these films A film changed in the direction can be used.
  • JSR—LKD registered trademark
  • ALCAP registered trademark
  • NCS registered trademark
  • IPS registered trademark
  • HOSP registered trademark
  • organic polymer film SiLK (registered
  • the first noria metal film 4a and the second nori metal film 4b can be formed using a sputtering method, a CVD method, an ALCVD (Atomic Layer Chemical Vapor Deposition) method, or the like.
  • the first noria metal film 4a and the second nori metal film 4b include, for example, high melting point metals such as tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), and tungsten carbonitride (WCN). Or a film having a nitride power thereof or a laminated film thereof.
  • the first alloy wiring 5a, the second alloy wiring 5b, and the via contact 5c are formed by sputtering using an alloy target, CVD, or electroplating using a film formed by these methods as an electrode. Can be formed.
  • the metal element contained in the first alloy wiring 5a, the second alloy wiring 5b, and the via contact 5c is a metal element that dissolves in the metal that is the main component, and satisfies any of the following conditions: The one is selected.
  • metal elements contained in the first alloy wiring 5a, the second alloy wiring 5b, and the via contact 5c include aluminum, copper, tin, titanium, tungsten, silver, zirconium, indium, and magnesium. At least one force can be selected.
  • a copper aluminum alloy seed layer was formed by ionized sputtering using a copper aluminum alloy target containing 0.5 to 2. Oat.% Of aluminum in the copper target. It is preferable to embed copper using the electroplating method with the electrode as the electrode.
  • the concentration of the metal element in the first alloy wiring 5a, the second alloy wiring 5b, and the via contact 5c is equal to or lower than the concentration in the alloy target.
  • the first wiring protective film 6a and the second wiring protective film 6b covering the upper surfaces of the first alloy wiring 5a and the second alloy wiring 5b are contained in the first alloy wiring 5a and the second alloy wiring 5b.
  • a film containing at least one of the metal elements for example, a SiN film, a SiC film, a SiCN film, a SiOC film, a SiOCH film, a film containing an organic substance in these films, a film containing an organic substance as a main component, At least one of the films containing SiO can be used as the film containing an organic substance as a main component.
  • Examples of the first wiring protective film 6a and the second wiring protective film 6b include a DVS-BCB (dibutylsiloxane benzocyclobutene) film prepared by a plasma polymerization method, and a DVS-B CB composite.
  • a film made of a material can be used.
  • the BCB compound means a compound formed by mixing BCB and a plurality of gaseous raw materials to form a film.
  • the addition of metal to the first wiring protective film 6a and the second wiring protective film 6b needs to be performed within a range in which the insulating property of the film is maintained even if the metal is added.
  • the first wiring By ensuring that the metal concentration in the protective film 6a and the second wiring protective film 6b is lat.% Or less, the insulation of the first wiring protective film 6a and the second wiring protective film 6b is ensured and the effect of the present invention is achieved. It was found that both electoric port migration and suppression of stress-induced voids can be achieved.
  • the first wiring protective film 6a and the second wiring protective film 6b may be heated by heat treatment for 1 to 30 minutes in a temperature range of 200 ° C to 350 ° C.
  • Method of diffusing a metal element in the first wiring protective film 6a and the second wiring protective film 6b by thermal diffusion from the alloy wiring 5a and the second alloy wiring 5b, the first alloy wiring 5a and the second alloy wiring 5b A method of growing the first wiring protective film 6a and the second wiring protective film 6b selectively containing a metal element on top, a metal element on both the first alloy wiring 5a and the second alloy wiring 5b and on the insulating film And a method of selectively growing a first wiring protective film 6a and a second wiring protective film 6b containing a metal element on the first alloy wiring 5a and the second alloy wiring 5b.
  • the effect of the present invention is further improved by increasing the distribution of the metal element in the first wiring protective film 6a and the second wiring protective film 6b in the regions closer to the first alloy wiring 5a and the second alloy wiring 5b. It is possible to increase.
  • the concentration of the metal element other than the main component in the first alloy wiring 5a and the second alloy wiring 5b which is contained in the first wiring protective film 6a and the second wiring protective film 6b.
  • the first alloy wiring 5a and the second alloy wiring 5b and the first wiring protective film 6a and the second wiring protective film 6b It is possible to improve the adhesion between the electrodes and the resistance to electo-mouth migration and stress-induced voids.
  • the first wiring protective film 6a that covers the upper surfaces of the first alloy wiring 5a and the second alloy wiring 5b with at least one metal element contained in the first alloy wiring 5a and the second alloy wiring 5b.
  • the second wiring protective film 6b by containing the first alloy wiring 5a and the second wiring protective film 6b.
  • An adhesion layer having an intermediate composition is formed between the alloy wiring 5b and the first wiring protective film 6a and the second wiring protective film 6b, and the surface of the first alloy wiring 5a and the second alloy wiring 5b Adhesion between the surfaces of the first wiring protective film 6a and the second wiring protective film 6b is improved, so that the diffusion of alloy wiring metal at both interfaces and stress-induced void It is possible to suppress the diffusion of vacancies in the alloy wiring, which is a cause, and to obtain a significant improvement in wiring reliability.
  • the first alloy wiring 5a is made of copper-aluminum alloy containing copper as a main component and containing lat.% Or less of aluminum as a metal element
  • the first wiring protective film 6a is made of a SiCN film.
  • the concentration of aluminum in the first alloy wiring 5a which is also within the distance of 10nm, is the lat.% Of the first wiring protective film 6a (SiCN film).
  • the first alloy wiring 5a By simultaneously using the technology for improving the adhesion between the first alloy wiring 5a and the second alloy wiring 5b and the first wiring protective film 6a and the second wiring protective film 6b and the present technology, the first alloy wiring 5a And improved adhesion to the alloy wiring due to improved adhesion at all interfaces surrounding the second alloy wiring 5b Can be achieved.
  • the first alloy wiring 5a has a copper-aluminum alloy force containing copper as a main component and lat.% Or less of aluminum as a metal element, and the noria metal film 4a has a TaZTaN force.
  • the concentration of aluminum in the first alloy wiring 5a within the distance of 20 nm from the noria metal film (TaZTaN film) 4a is lat.%
  • the first alloy wiring at the distance of lOOnm By setting the concentration of aluminum in 5a to 0.08 at.%, It becomes possible to suppress the oxidation of the surface of the noria metal film 4a and further improve the reliability of the first alloy wiring 5a.
  • the first alloy wiring 5a and the second alloy wiring 5b that are inherently difficult to be contained in the wiring protective film due to metal elements other than the main component contained in the first alloy wiring 5a and the second alloy wiring 5b. It is also possible to improve the adhesion by containing a metal element which is the main component of.
  • the first alloy wiring 5a has a copper-aluminum alloy force containing copper as a main component and containing lat.% Or less of aluminum as a metal element, and the first wiring protective film 6a is made of a SiCN film.
  • the first wiring protective film 6a is made of a SiCN film.
  • the adhesion between the first wiring protective film 6a (SiCN film) and the first alloy wiring 5a (copper alloy) is, for example, When evaluated by a thin film adhesion test method such as the 4-point bending method, it was confirmed that the adhesion was improved.
  • the wiring structure according to the present embodiment can be easily confirmed from the product.
  • DRA M Dynamic Random Access Memory
  • 3 ⁇ 4 AM Static Random Access Memory;
  • flash memory FRAM (Ferro Electric Random Access Memory)
  • MRAM Magnetic Random Access Memory
  • memory circuit such as variable resistance memory
  • semiconductor products semiconductor products with logic circuits such as microprocessors, mixed-type semiconductor products that have been posted on them simultaneously, or SIP (Silicon in package) that stacks multiple semiconductor devices.
  • SIP Silicon in package
  • the wiring structure according to this embodiment is suitable by measuring the metal concentration in the metal wiring and the wiring protective film. It is possible to confirm whether or not it is used.
  • the contrast of a TEM observation image obtained by cutting a semiconductor product in the cross-sectional direction enables comparison between metal wiring and a wiring protective film.
  • Element analysis such as Loss spectroscopy and EuX (Energy— DispersiveX—ray spectroscopy can confirm the metal concentration in the metal wiring and in the wiring protective film.
  • the metal concentration in the metal wiring and the wiring protective film can be detected accurately. wear.
  • a metal element can be confirmed by selecting a predetermined portion and performing elemental analysis such as SIMS (Second Ion Mass Spectroscopy) on the sample cut out in the horizontal direction.
  • SIMS Simple Ion Mass Spectroscopy
  • the method of processing the single damascene groove is arbitrary and not particularly limited.
  • FIG. 4 is a sectional view of a semiconductor device according to the fourth embodiment of the present invention.
  • the wiring structure of the semiconductor device according to this embodiment will be described below with reference to FIG.
  • the structure of the wiring protective film is changed as compared with the semiconductor device according to the third embodiment.
  • the first wiring protective film 6a and the second wiring protective film 6b both have a single layer structure!
  • Such a semiconductor device has a two-layer structure of a first wiring protection film 6a and a third wiring protection film 8a instead of the single-layer structure of the first wiring protection film 6a, and further has a second wiring protection film.
  • a two-layer structure of the second wiring protective film 6b and the fourth wiring protective film 8b may be provided.
  • the semiconductor device according to this embodiment has the same structure as that of the semiconductor device according to the third embodiment except that the structure of the wiring protective film is changed.
  • the third wiring protective film 8a and the fourth wiring protective film 8b are, for example, a SiN film, a SiC film, a SiCN film, a SiOC film, a SiOCH film, a film containing an organic substance in these films, or an organic substance as a main component. Any one of the films containing SiO, the film containing organic matter as the main component, or any two It can be composed of two or more laminated films.
  • the first alloy wiring 5a and the second alloy wiring 5b, the first wiring protective film 6a and the second wiring are the same as in the semiconductor device according to the third embodiment. Adhesion with the wiring protective film 6b can be improved, and single damascene wiring with high resistance to electoric port migration and stress-induced voids can be obtained.
  • the third wiring protective film 8a and the fourth wiring protective film 8b made of a film not containing a metal element are formed on the upper surfaces of the first wiring protective film 6a and the second wiring protective film 6b.
  • the wiring protective film is formed as a two-layer structure, but it may be formed as a film having a three-layer structure or a laminated structure of four layers or more.
  • FIG. 7 is a cross-sectional view showing each step in the semiconductor device manufacturing method to which the structure of the semiconductor device according to the first embodiment shown in FIG. 1 is applied.
  • the manufacturing method of the semiconductor device will be described with reference to FIG.
  • a first wiring interlayer insulating film 10a made of 2 2 is formed by laminating in this order.
  • a wiring trench 11a is formed in the first wiring interlayer insulating film 10a by a damascene method.
  • Examples of the first wiring interlayer insulating film 10a include SiO, SiC, SiCN, HSQ (hydrogen
  • Nsilsesquioxane Hydrogen Silsesquioxane membrane (eg, Typel2®), MSQ (Methyl Silsesquioxane) membrane (eg, JSR— LKD®, ALCAP®, NCS ( Registered trademark), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiO C (for example, Black Diamond (registered trademark), CORAL) (Registered Trademark), AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), an insulating thin film containing organic substances, a film in which any one of these is laminated, or the composition of any of these films Alternatively, a film whose density is changed in the film thickness direction can be used. [0172] As an example of a laminated film (laminated structure), SiO ZAuroraULK (
  • the upper layer SiO is an Auror during Cu CMP.
  • the exposed surface of the first wiring interlayer insulating film 10a and the side wall and bottom surface of the wiring trench 1la are formed by sputtering.
  • a first noria metal film 4a made of a stacked film of Ta / TaN ( upper layer Z lower layer) is formed.
  • a copper alloy seed film 12 is formed on the first noria metal film 4a.
  • the copper alloy seed film 12 a copper-aluminum alloy formed by ionized sputtering using a copper aluminum alloy target containing 1.2 at.% Aluminum in a copper target is used.
  • the copper film 13 is formed on the copper alloy seed film 12 by electrolytic plating using the copper alloy seed film 12 as an electrode. As a result, the wiring trench 11 a is filled with the copper film 13.
  • the aluminum contained in the copper alloy seed film 12 does not diffuse uniformly into the copper film 13, and the aluminum concentration in the formed alloy film 14 is in the vicinity of the first noria metal film 4a. The area is getting higher.
  • the aluminum concentration is 1. Oat.% Or less even in the vicinity of the highest first noria metal film 4a.
  • the alloy film 14 is removed by CMP (chemical mechanical polishing) method until the first wiring interlayer insulating film 10a is exposed to form the first alloy wiring 5a. .
  • the upper surface of the first alloy wiring 5a is covered with a first wiring protective film 15a having SiCN force.
  • heat treatment is performed at a temperature of 350 ° C for 30 minutes to diffuse the copper and aluminum contained in the first alloy wiring 5a made of the copper-aluminum alloy into the first wiring protective film 15a.
  • the first wiring protective film 6a covering the upper surface of the first alloy wiring 5a is at least one metal element among the metal elements contained in the first alloy wiring 5a. It comes to contain.
  • the metal element concentration in the first wiring protective film 6a covering the upper surface of the first alloy wiring 5a is in the range of lat.% Or less, and becomes higher as the surface is closer to the surface of the first alloy wiring 5a. ing.
  • the aluminum contained in the first alloy wiring 5a prays to the interface by this heat treatment, and the aluminum concentration in the vicinity of the interface between the first wiring protective film 6a and the first alloy wiring 5a is It is higher than the inside of alloy wiring 5a.
  • the second wiring interlayer insulating film 10b has the same configuration as the first wiring interlayer insulating film 10a.
  • the via interlayer insulating film 7 for example, SiO, SiC, SiCN, HSQ (hydrogen silsess).
  • Schioxane Hydrogen Silsesquioxane membrane (eg, Typel2 (registered trademark)), MSQ (Methyl Silsesquioxane) membrane (eg, JSR—LKD (registered trademark), ALCAP (registered trademark), NCS (registered trademark) ), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiOC (for example, Black Diamond (registered trademark), CORAL (registered trademark)) , AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), insulating thin films containing organic substances in them, multiple layers of any of these, or composition and density of any of these films A film changed in the direction can be used.
  • JSR—LKD registered trademark
  • ALCAP registered trademark
  • NCS registered trademark
  • IPS registered trademark
  • HOSP registered trademark
  • organic polymer film SiLK (registered
  • a via hole 11c and a wiring groove l ib penetrating the second wiring interlayer insulating film 10b are formed.
  • the wiring groove 1 lb has a larger diameter than the Via Honoré 1 lc.
  • via holes 11c and wiring trenches 11 are formed by sputtering.
  • the second alloy wiring 5b is formed inside the via hole 11c and the wiring groove 1lb.
  • the upper surfaces of the second alloy wiring 5b and the second wiring interlayer insulating film 10b are covered with the second wiring protective film 15b having SiCN force.
  • the second wiring protective film 6b covering the upper surface of the second alloy wiring 5b is made of at least one metal element among the metal elements contained in the second alloy wiring 5b. Contains elements.
  • the metal element concentration in the second wiring protective film 6b covering the upper surface of the second alloy wiring 5b is in the range of lat.% Or less, and the higher the closer to the surface of the second alloy wiring 5b, the higher the concentration becomes. ing.
  • the concentration of aluminum contained in the second alloy wiring 5b is higher in the vicinity of the second nino-rear metal film 4b.
  • the aluminum concentration in the vicinity of the interface between the second wiring protective film 6b and the second alloy wiring 5b is higher than that in the second alloy wiring 5b.
  • the aluminum concentration in the second alloy wiring 5b is 1. Oat.% Or less even in the vicinity of the highest second-layer rear metal film 4b.
  • FIG. 8 is a cross-sectional view of a first modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the semiconductor device it is contained in the steps shown in FIGS. 7 (f) and (i), that is, in the first alloy wiring 5a and the second alloy wiring 5b that also have a copper aluminum alloy force.
  • the diffusion region of the metal element is made shorter than the first wiring protective film 15a and the second wiring protective film 15b.
  • the first wiring protective film 6a and the second wiring protective film 6a containing at least one of the metal elements contained in the first alloy wiring 5a and the second alloy wiring 5b are formed.
  • the third wiring protective film 8a and the fourth wiring protective film 8b do not contain a metal element on the second wiring protective film 6b.
  • an interlayer insulating film formed on the upper surfaces of the third wiring protective film 8a and the fourth wiring protective film 8b and at least one of the metal elements contained in the first alloy wiring 5a and the second alloy wiring 5b It was possible to obtain a structure in which the first wiring protective film 6a and the second wiring protective film 6b containing the metal element were not in direct contact.
  • the third wiring protective film 8a and the fourth wiring protective film 8b of the same type as the first wiring protective film 15a and the second wiring protective film 15b are formed on the upper surfaces of the first wiring protective film 6a and the second wiring protective film 6b.
  • a similar structure could be obtained by forming.
  • the adhesion between the first alloy wiring 5a and the second alloy wiring 5b and the first wiring protective film 6a and the second wiring protective film 6b can be improved. As a result, it was possible to improve electostatic migration resistance and stress-induced void resistance.
  • FIG. 9 is a cross-sectional view of a second modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the process shown in FIG. 9 could be obtained by processing the process 11c and the wiring groove l ib without using the second etching stop film 3b in the process of processing the dual damascene method.
  • the semiconductor device according to this embodiment is a third modification of the semiconductor device manufactured by the method for manufacturing a semiconductor device shown in FIG.
  • the semiconductor device according to this modification has the same structure as the semiconductor device having the cross section shown in FIG. 7 (i), but as the first wiring protective film 15a and the second wiring protective film 15b, A DVS-BCB (dibulosiloxane-benzocyclobutene) film prepared by plasma polymerization was used.
  • DVS-BCB dibulosiloxane-benzocyclobutene
  • FIG. 10 is a cross-sectional view of a fourth modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the steps shown in FIGS. 7A and 7G that is, the wiring groove l la, the via hole 11c, and the wiring groove l ib are processed by the damascene method.
  • DVS- BCB dibutylsiloxane benzocyclobutene films prepared by plasma polymerization were formed as side wall protective films 16a, 16c and 16b, respectively, for protecting those side walls.
  • the semiconductor device of the present modification it is possible to improve the resistance to the electoric migration and the stress-induced void resistance, and to obtain the effect of reducing the leakage between wirings by protecting the side wall of the interlayer insulating film. did it.
  • the first wiring interlayer film 10a, the second wiring layer When a porous film such as AuroraULK is used as at least a part of the interlayer film 10b or the via interlayer film 7, a remarkable effect can be obtained.
  • FIG. 11 is a cross-sectional view of a fifth modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the semiconductor device according to this modification has the same structure as the semiconductor device having the cross section shown in FIG. 7 (i), but the first wiring interlayer insulating film 10a and the second wiring interlayer insulating film 10b.
  • the laminated structure of AuroraULK, which is a porous film, and SiO, which is a wiring layer hard mask Fig.
  • wiring layer hard masks are indicated by 17a and 17b), and a film made of Black Diamond was used for the via interlayer insulating film 7.
  • the resistance to the electoric port migration and the stress-induced void resistance can be improved, and the relative permittivity is higher than that of the SiO film.
  • a black diamond film is used as the wiring layer hard masks 17a and 17b, and a via interlayer insulating film is used.
  • AuroraULK membrane was used as 7.
  • the resistance to the electoric port migration and the stress-induced void resistance can be improved, the effective dielectric constant of the wiring can be reduced, and the parasitic capacitance between the wirings can be reduced. Was able to be reduced.
  • FIG. 12 is a cross-sectional view of a sixth modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the semiconductor device according to this embodiment is a modification of the seventh embodiment shown in FIG.
  • the first wiring interlayer insulating film 4a and the second wiring interlayer insulating film 4b in the seventh embodiment shown in FIG. The laminated structure of roraULK and SiO of the wiring layer hard mask (in Fig. 12, the wiring layer hard mask
  • Aurora ULK film was used as the via interlayer insulation film 7.
  • the resistance to the electoric port migration and the stress-induced void resistance can be improved, the effective dielectric constant of the wiring can be reduced, and the parasitic capacitance between the wirings can be reduced. Was able to be reduced.
  • FIG. 13 is a cross-sectional view of a seventh modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the semiconductor device according to this embodiment is a modification of the tenth embodiment shown in FIG.
  • the sidewall protective films 16a, 16c, and 16b are formed by plasma polymerization on the sidewalls of the wiring and vias in the tenth embodiment shown in FIG.
  • the prepared DVS- BCB (dibulosiloxane-benzocyclobutene) film was formed.
  • the resistance to the electoric port migration and the stress-induced void resistance can be improved, the side wall of the interlayer insulating film can be protected, and the wiring interlayer insulating film and the hard The effect of reducing inter-wiring leakage by protecting the interface with the mask was obtained.
  • FIG. 14 is a cross-sectional view showing each step in the semiconductor device manufacturing method to which the structure of the semiconductor device according to the third embodiment shown in FIG. 3 is applied.
  • the method for manufacturing the semiconductor device will be described with reference to FIG.
  • the first wiring interlayer insulating film 10a having 2 2 force is laminated in this order.
  • a wiring groove 11a is formed in the first wiring interlayer insulating film 10a by a damascene method.
  • the first wiring interlayer insulating film 10a for example, SiO, SiC, SiCN, HSQ (hydrogen Nsilsesquioxane: Hydrogen Silsesquioxane) membrane (eg, Typel2®), MSQ (Methyl Silsesquioxane) membrane (eg, JSR— LKD®, ALCAP®, NCS ( Registered trademark), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiO C (for example, Black Diamond (registered trademark), CORAL) (Registered Trademark), AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), an insulating thin film containing organic substances, a film in which any one of these is laminated, or the composition of any of these films Alternatively, a film whose density is changed in the film thickness direction can be used.
  • HSQ hydrogen Nsilsesquiox
  • laminated films examples include SiO ZAurora ULK (
  • the upper layer SiO is an Auror during Cu CMP.
  • the exposed surface of the first wiring interlayer insulating film 10a and the side walls and the bottom surface of the wiring trench 1la are formed by sputtering.
  • a first noria metal film 4a made of a laminated film of Ta / TaN ( upper layer Z lower layer) is formed.
  • a copper alloy seed film 12 is formed on the first noria metal film 4a.
  • the copper alloy seed film 12 a copper aluminum nickel alloy formed by ionized sputtering using a copper aluminum alloy target containing 1.2 at.% Aluminum in a copper target is used.
  • the copper film 13 is formed on the copper alloy seed film 12 by electrolytic plating using the copper alloy seed film 12 as an electrode. As a result, the wiring trench 11 a is filled with the copper film 13.
  • the aluminum contained in the copper alloy seed film 12 is uniformly in the copper film 13.
  • the aluminum concentration in the alloy film 14 that is not diffused and formed is higher in the region near the first noria metal film 4a.
  • the aluminum concentration is 1. Oat.% Or less even in the vicinity of the highest first noria metal film 4a.
  • the alloy film 14 is removed by CMP (Chemical Mechanical Polishing) until the first wiring interlayer insulating film 10a is exposed to form the first alloy wiring 5a. .
  • the first wiring protective film 6a covering the upper surface of the first alloy wiring 5a is at least one of the metal elements contained in the first alloy wiring 5a. It comes to contain.
  • the metal element concentration in the first wiring protective film 6a covering the upper surface of the first alloy wiring 5a is in the range of lat.% Or less, and the higher the closer to the surface of the first alloy wiring 5a, the higher the concentration becomes. ing.
  • the aluminum contained in the first alloy wiring 5a prays to the interface by this heat treatment, and the aluminum concentration in the vicinity of the interface between the first wiring protective film 6a and the first alloy wiring 5a is It is higher than the inside of alloy wiring 5a.
  • a via interlayer insulating film 7 having a SiO force is formed on the upper surfaces of the first wiring protective films 6a and 15a.
  • the via interlayer insulating film 7 for example, SiO, SiC, SiCN, HSQ (hydrogen silsess).
  • Schioxane Hydrogen Silsesquioxane membrane (eg, Typel2 (registered trademark)), MSQ (Methyl Silsesquioxane) membrane (eg, JSR—LKD (registered trademark), ALCAP (registered trademark), NCS (registered trademark) ), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiOC (for example, Black Diamond (registered trademark), CORAL (registered trademark)) , AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), insulating thin films containing organic substances in them, multiple layers of any of these, or composition and density of any of these films Change direction A film or the like can be used.
  • JSR—LKD registered trademark
  • ALCAP registered trademark
  • NCS registered trademark
  • IPS registered trademark
  • HOSP registered trademark
  • organic polymer film SiLK (registere
  • the procedure for forming the alloy via 5c is the same as the procedure for forming the first alloy wiring 5a in the wiring groove 1la.
  • a second etching stop film 3b and a second wiring interlayer insulating film 10b are formed in this order on the alloy via 5c and the via interlayer insulating film 7.
  • the second alloy wiring 5b surrounded by the second ninoria metal film 4b is formed inside the via hole.
  • the procedure for forming the second alloy wiring 5b is as follows.
  • the second wiring interlayer insulating film 10b has the same configuration as the first wiring interlayer insulating film 10a.
  • the upper surface of the second alloy wiring 5b is covered with a second wiring protective film 15b having SiCN force.
  • the second wiring protective film 6b covering the upper surface of the second alloy wiring 5b is at least one of the metal elements contained in the second alloy wiring 5b. It comes to contain.
  • the metal element concentration in the second wiring protective film 6b covering the upper surface of the second alloy wiring 5b is in the range of lat.% Or less, and becomes higher as it is closer to the surface of the second alloy wiring 5b. ing.
  • the concentration of aluminum contained in the second alloy wiring 5b is higher in the vicinity of the second nino-rear metal film 4b.
  • the concentration of aluminum in the vicinity of the interface between the second wiring protective film 6b and the second alloy wiring 5b is higher than that in the second alloy wiring 5.
  • the aluminum concentration in the second alloy wiring 5b is 1. Oat.% Or less even in the vicinity of the highest nino-rear metal film 4b.
  • the adhesion between the first alloy wiring 5a and the second alloy wiring 5b and the first wiring protective film 6a and the second wiring protective film 6b is improved.
  • the resistance to electostatic migration and the resistance to stress-induced voids could be improved.
  • FIG. 15 is a cross-sectional view of a first modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the diffusion region of the metal element is defined as the first wiring protective film 15a and the second wiring protective film.
  • the first wiring protective film 6a containing at least one of the metal elements contained in the first alloy wiring 5a and the second alloy wiring 5b and The third wiring protective film 8a and the fourth wiring protective film 8b are present on the second wiring protective film 6b.
  • the same structure could be obtained by forming the third wiring protective film 8a and the fourth wiring protective film 8b of the same type as the first wiring protective film 15a and the second wiring protective film 15b.
  • the semiconductor device of this modification as in the fourteenth embodiment, the first alloy wiring 5a and the second alloy wiring 5b, the first wiring protective film 6a, and the second wiring protective film 6b As a result, it was possible to improve the resistance to electo port migration and the resistance to stress-induced voids.
  • FIG. 16 is a cross-sectional view of a second modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the semiconductor device according to this modification has the same structure as the semiconductor device having the cross section shown in FIG. 14 (i), but the first wiring interlayer insulating film 10a and the second wiring interlayer insulating film 10b.
  • a laminated structure of AuroraULK as a porous film and SiO as a wiring layer hard mask Fig. 16
  • wiring layer hard masks are indicated by 17a and 17b), and a film made of Black Diamond was used for the via interlayer insulating film 7.
  • FIG. 17 is a cross-sectional view of a third modification of the semiconductor device manufactured by the method for manufacturing the semiconductor device shown in FIG.
  • the DVS-BC produced by the plasma polymerization method on the side walls of the first alloy wiring 5a and the second alloy wiring 5b of the semiconductor device shown in FIG. B (divinylsiloxane-benzocyclobutene) films were formed as side wall protective films 16a, 16c and 16b, respectively, for protecting those side walls.
  • the resistance to electorite migration and the stress-induced void resistance can be improved, and the side wall of the interlayer insulating film and the interface between the wiring interlayer insulating film and the hard mask are protected. The effect of reducing the inter-wiring leakage was obtained.
  • FIG. 18 is a cross-sectional view showing each step in the manufacturing method of the semiconductor device to which the structure of the semiconductor device according to the first embodiment shown in FIG. 1 is applied.
  • the method for manufacturing the semiconductor device will be described with reference to FIG.
  • the first wiring interlayer insulating film 10a having 2 2 force is laminated in this order.
  • a wiring groove 11a is formed in the first wiring interlayer insulating film 10a by a damascene method.
  • Examples of the first wiring interlayer insulating film 10a include SiO, SiC, SiCN, HSQ (hydrogen
  • Nsilsesquioxane Hydrogen Silsesquioxane membrane (eg, Typel2®), MSQ (Methyl Silsesquioxane) membrane (eg, JSR— LKD®, ALCAP®, NCS ( Registered trademark), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiO C (for example, Black Diamond (registered trademark), CORAL) (Registered Trademark), AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), an insulating thin film containing organic substances, a film in which any one of these is laminated, or the composition of any of these films Alternatively, a film whose density is changed in the film thickness direction can be used.
  • An example of a multi-layered film (laminated structure) is SiO ZAuroraULK (
  • the upper layer SiO is an Auror during Cu CMP. It is used as a protective film for aULK film, and the structure using lower SiO as an adhesion layer
  • a first noria metal film 4a made of a laminated film of Ta / TaN ( upper layer Z lower layer) is formed.
  • a copper alloy seed film 12 is formed on the first noria metal film 4a.
  • the copper alloy seed film 12 a copper aluminum nickel alloy formed by ionized sputtering using a copper aluminum alloy target containing 1.2 at.% Aluminum in a copper target is used.
  • the copper alloy seed film 12 is used as an electrode, and the copper film 13 is formed on the copper alloy seed film 12 by electrolytic plating. As a result, the wiring trench 11 a is filled with the copper film 13.
  • the aluminum contained in the copper alloy seed film 12 does not diffuse uniformly into the copper film 13, and the aluminum concentration in the formed alloy film 14 is in the vicinity of the first noria metal film 4a. The area is getting higher.
  • the aluminum concentration in the alloy film 14 is 1. Oat.% Or less even in the vicinity of the highest first noria metal film 4a.
  • the alloy film 14 is removed by CMP (chemical mechanical polishing) method until the first wiring interlayer insulating film 10a is exposed to form the first alloy wiring 5a. .
  • first alloy wiring 5a is covered with a first wiring protective film 6a made of SiCN and containing aluminum formed by a plasma CVD method.
  • the amount of aluminum added is adjusted so that the metal element concentration in the first wiring protective film 6a covering the upper surface of the first alloy wiring 5a is in the range of lat.
  • the second wiring interlayer insulating film 10b has the same configuration as the first wiring interlayer insulating film 10a.
  • the via interlayer insulating film 7 for example, SiO, SiC, SiCN, HSQ (hydrogen silsess
  • Schioxane Hydrogen Silsesquioxane membrane (eg, Typel2 (registered trademark)), MSQ (Methyl Silsesquioxane) membrane (eg, JSR—LKD (registered trademark), ALCAP (registered trademark), NCS (registered trademark) ), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiOC (for example, Black Diamond (registered trademark), CORAL (registered trademark)) , AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), insulating thin films containing organic substances in them, multiple layers of any of these, or composition and density of any of these films A film changed in the direction can be used.
  • JSR—LKD registered trademark
  • ALCAP registered trademark
  • NCS registered trademark
  • IPS registered trademark
  • HOSP registered trademark
  • organic polymer film SiLK (registered
  • the second wiring interlayer insulating film 10b, the second etching stop film 3b, the via interlayer insulating film 7 and the first wiring protective film 6a are formed by the dual damascene method.
  • a penetrating via hole 11c and a wiring trench l ib penetrating the second wiring interlayer insulating film 10b are formed.
  • the wiring groove 1 lb has a larger diameter than the Via Honoré 1 lc.
  • the sputter method is used to cover the via hole 11c and the wiring trench 1 lb. Form.
  • the second alloy wiring 5b is formed inside the via hole 11c and the wiring groove 1lb.
  • the upper surfaces of the second alloy wiring 5b and the second wiring interlayer insulating film 10b are covered with a second wiring protective film 6b having an SiCN force containing aluminum formed by a plasma CVD method.
  • the amount of aluminum added is adjusted so that the metal element concentration in the second wiring protective film 6b covering the upper surface of the second alloy wiring 5b is in the range of lat.
  • the aluminum contained in the second alloy wiring 5b The concentration is higher in the vicinity of the second nino rear metal film 4b.
  • the aluminum concentration in the vicinity of the interface between the second wiring protective film 6b and the second alloy wiring 5b is higher than that in the second alloy wiring 5b.
  • the aluminum concentration in the second alloy wiring 5b is 1. Oat.% Or less even in the vicinity of the highest second-layer rear metal film 4b.
  • FIG. 19 (a) shows the first noria metal film 4a, the first alloy wiring 5a, and the first wiring protective film 6a in the semiconductor device (FIG. 7 (i)) manufactured by the manufacturing method according to the fifth embodiment.
  • FIG. 19 (b) is a graph showing a similar aluminum concentration distribution when no aluminum is added.
  • FIG. 19 (b) is a graph showing the aluminum concentration distribution in the depth direction.
  • FIG. 20A shows a semiconductor device manufactured by the manufacturing method according to the fifth embodiment.
  • FIG. 20 (b) is a graph showing the oxygen concentration distribution in the depth direction in the first noria metal film 4a, the first alloy wiring 5a, and the first wiring protective film 6a in FIG. 7 (i).
  • 5 is a graph showing the distribution of oxygen concentration when the aluminum concentration in one alloy wiring 5a has no dependency on the depth direction.
  • the aluminum concentration is controlled so that the aluminum concentration is high on the first barrier metal film 4a side in the first alloy wiring 5a and on the surface side of the first alloy wiring 5a.
  • the resistance to etatromigration and stress-induced voids could be improved as compared to alloy wiring that uniformly contained aluminum having the same resistance.
  • the aluminum concentration shown in the figure is quantified in the first alloy wiring 5a (CuAl film) by SIMS analysis from the surface side of the first wiring protective film 6a (SiCN film).
  • the interface portion between the first wiring protective film 6a and the first alloy wiring 5a is affected by the matrix effect, but Cu and A1 are present in the first wiring protective film 6a (SiCN film). It shows that [0292] This is clear when compared with the aluminum concentration profile in the case of not adding the aluminum shown in FIG. 19 (b)!
  • the silicon addition range be limited to the vicinity of the first wiring protective film 6a (SiCN film). This is for the purpose of preserving the effect of controlling the aluminum concentration to be higher on the first noor metal film 4a side and on the surface side of the first alloy wiring 5a.
  • a method for controlling the aluminum concentration profile a method using an alloy seed as in the fifth embodiment, that aluminum is attracted to a tensile stress field such as a grain boundary or surface having a larger atomic radius than copper, is used.
  • a method of depositing on the interface (surface) by heat treatment, a method of diffusing aluminum from the surface side of the first alloy wiring 5a, or the like can be used.
  • the reliability of the semiconductor device manufactured by the manufacturing method according to the fifth embodiment is improved by improving the adhesion between the first alloy wiring 5a and the first wiring protective film 6a.
  • the oxidation of the surface of the first nore metal film 4a is suppressed, and the adhesion between the first alloy wiring 5a and the first nore metal film 4a is also improved.
  • the oxygen concentration profile in the depth direction there is an oxygen concentration peak in the first alloy wiring 5a (CuAl film).
  • step shown in (c) that is, in the step of forming the alloy seed film 12, a stable oxide film on the surface of the alloy seed film 12 by the oxidation of aluminum (in the region where the peak of the oxygen concentration exists, the copper This is because there is no change in the signal intensity, and the film thickness is considered to be extremely thin), and the oxidation of the surface of the first nore metal film 4a is suppressed.
  • FIG. 20 (b) that is, compared to the oxygen concentration profile in the case where the aluminum concentration in the first alloy wiring 4a has no depth dependence, in FIG. 20 (a), the first barrier metal The oxygen concentration peak on the surface of film 4a is reduced.
  • FIG. 10 is a cross-sectional view showing each step in a method of manufacturing a semiconductor device whose reliability is improved by controlling a cable.
  • FIG. 21 a manufacturing method of the semiconductor device will be described.
  • the first wiring interlayer insulating film 10a having 2 2 force is laminated in this order.
  • a wiring groove 11a is formed in the first wiring interlayer insulating film 10a by a damascene method.
  • Examples of the first wiring interlayer insulating film 10a include SiO, SiC, SiCN, HSQ (hydrogen
  • Nsilsesquioxane Hydrogen Silsesquioxane membrane (eg, Typel2®), MSQ (Methyl Silsesquioxane) membrane (eg, JSR— LKD®, ALCAP®, NCS ( Registered trademark), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiO C (for example, Black Diamond (registered trademark), CORAL) (Registered Trademark), AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), an insulating thin film containing organic substances, a film in which any one of these is laminated, or the composition of any of these films Alternatively, a film whose density is changed in the film thickness direction can be used.
  • SiO ZAuroraULK As an example of a multi-layered film (laminated structure), SiO ZAuroraULK (laminated structure), SiO ZAuroraULK (laminated structure), SiO ZAuroraULK (laminated structure), SiO ZAuroraULK (laminated structure), SiO ZAuroraULK (laminated structure), SiO ZAuroraULK (laminated structure), SiO ZAuroraULK (
  • the upper layer SiO is an Auror during Cu CMP.
  • the exposed surface of the first wiring interlayer insulating film 10a and the side wall and bottom surface of the wiring groove 1la are formed by sputtering.
  • a first noria metal film 4a made of a laminated film of Ta / TaN ( upper layer Z lower layer) is formed.
  • a copper alloy seed film 12 is formed on the first noria metal film 4a.
  • the copper alloy seed film 12 As the copper alloy seed film 12, a copper target containing 1.2 at.% Aluminum in a copper target is used. A copper-aluminum alloy formed by ionized sputtering using a mini-alloy target is used.
  • the copper film 13 is formed on the copper alloy seed film 12 by electrolytic plating using the copper alloy seed film 12 as an electrode. As a result, the wiring trench 11 a is filled with the copper film 13.
  • the copper alloy seed film 12 and the copper film 13 made of a copper aluminum alloy are integrated by heat treatment at a temperature of 200 ° C for 30 minutes.
  • an alloy film 14 having a copper aluminum alloy force is formed on the first barrier metal film 4a.
  • the heat treatment performed here is for preventing the occurrence of defects and peeling during the subsequent flattening by the CMP method.
  • the alloy film 14 is removed by CMP (Chemical Mechanical Polishing) until the first wiring interlayer insulating film 10a is exposed to form the first alloy wiring 5a. .
  • the via interlayer insulating film 7 having the SiO force and the SiCN force are also formed.
  • the concentration of aluminum contained in the first alloy wiring 5a is higher in the vicinity of the first noria metal film 4a.
  • the aluminum concentration in the vicinity of the interface between the first wiring protective film 15a and the first alloy wiring 5a is higher than that in the first alloy wiring 5a.
  • the aluminum concentration of the first alloy wiring 5a is the highest, and is 1. Oat.% Or less even in the vicinity of the first noria metal film 4a.
  • the second wiring interlayer insulating film 10b has the same configuration as the first wiring interlayer insulating film 10a.
  • Schioxane Hydrogen Silsesquioxane membrane (eg, Typel2 (registered trademark)), MSQ (Methyl Silsesquioxane) membrane (eg, JSR—LKD (registered trademark), ALCAP (registered trademark), NCS (registered trademark) ), IPS (registered trademark), HOSP (registered trademark)), organic polymer film (SiLK (registered trademark), Flare (registered trademark)), SiOCH, SiOC (for example, Black Diamond (registered trademark), CORAL (registered trademark)) , AuroraULK (Registered Trademark), Orion (Registered Trademark), etc.), insulating thin films containing organic substances in them, multiple layers of any of these, or composition and density of any of these films A film changed in the direction can be used.
  • JSR—LKD registered trademark
  • ALCAP registered trademark
  • NCS registered trademark
  • IPS registered trademark
  • HOSP registered trademark
  • organic polymer film SiLK (registered
  • the second wiring interlayer insulating film 10b, the second etching stop film 3b, the via interlayer insulating film 7 and the first wiring protective film 15a are formed by a dual damascene method.
  • a via hole 11c that penetrates and a wiring groove l ib that penetrates the second wiring interlayer insulating film 10b are formed.
  • the wiring groove l ib has a larger diameter than the via hole 11c.
  • the second alloy wiring 5b is formed inside the via hole 11c and the wiring groove l ib.
  • the procedure for forming the second alloy wiring 5b is the same as the procedure for forming the first alloy wiring 5a formed in the wiring groove 1la.
  • the aluminum contained in the second barrier metal film 4b side in the second alloy wiring 5b in the second alloy wiring 5b also having a copper-aluminum alloy force is contained. Part of the aluminum is diffused into the second alloy wiring 5b and further deposited on the surface. As a result, the aluminum concentration on the side of the second ninolia metal film 4b and on the surface side of the second alloy wiring 5b is made higher than that in the central portion of the second alloy wiring 5b.
  • the upper surfaces of the second alloy wiring 5b and the second wiring interlayer insulating film 10b are covered with a second wiring protective film 15b made of SiCN force.
  • the concentration of aluminum contained in the second alloy wiring 5b is higher in the vicinity of the second nino-rear metal film 4b.
  • the aluminum concentration in the vicinity of the interface between the second wiring protective film 15b and the second alloy wiring 5b is higher than that in the second alloy wiring 5b.
  • the aluminum concentration of the second alloy wiring 5b is the highest, and it is 1. Oat.% Or less even in the vicinity of the second barrier metal film 4b.
  • the adhesion between the first alloy wiring 5a and the second alloy wiring 5b and the first wiring protective film 15a and the second wiring protective film 15b should be improved. Furthermore, the adhesion at the interface between the first alloy wiring 5a and the second alloy wiring 5b and the first noria metal film 4a and the second noria metal film 4b can be improved. For this reason, it was possible to improve the electostatic migration resistance and the stress-induced void resistance.
  • the aluminum concentration is low in the vicinity of the central portions of the first alloy wiring 5a and the second alloy wiring 5b, the first alloy wiring 5a and the second alloy wiring 5b are improved while improving the reliability. It is also possible to suppress an increase in resistance.
  • the metal element in the first alloy wiring 5a and the second alloy wiring 5b is changed to the first wiring protective film 15a. Further, by including it in the second wiring protective film 15b, further improvement in reliability can be achieved.
  • the present invention is applicable to any wiring structure of a (multi-layer) wiring composed of a wiring structure using a copper alloy containing copper as a main component as a wiring material and a manufacturing method thereof. It is possible to use.
  • the power described in detail regarding the semiconductor device having the CMOS circuit as the background of the present invention is not limited thereto.
  • DRAM Dynamic Random Access Memory
  • SRAM Static Random Access Memory
  • Semiconductor products having a memory circuit such as flash memory, FRAM (Ferro Electric Random Access Memory), MRAM (Magnetic Random Access Memory), resistance change type memory, etc.
  • microprocessor The present invention can also be applied to semiconductor products having logic circuits such as those described above, or mixed-type semiconductor products in which these are listed simultaneously.
  • the present invention can also be applied to a semiconductor device, an electronic circuit device, an optical circuit device, a quantum circuit device, a micromachine, or the like that has an embedded alloy wiring structure at least partially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 配線保護膜と銅との界面における密着性を向上させ、界面における銅拡散を抑制してエレクトロマイグレーションやストレス誘起ボイドの発生を防止し、信頼性の高い配線を有する半導体装置を提供する。  半導体素子が形成された半導体基板1上に層間絶縁膜2、第一エッチングストップ膜3aが積層されており、その上部に、ダマシン法により、第一バリアメタル膜4aに囲まれた第一合金配線5aが形成され、第一合金配線5aの上面は第一配線保護膜6aにより覆われている。第一合金配線5aの上面を被覆する第一配線保護膜6a中には、第一合金配線5a中に含まれる金属元素のうちの少なくとも一つの金属元素が含まれている。

Description

半導体装置及びその製造方法
技術分野
[0001] 本発明は、配線構造を有する半導体装置に関し、特に、銅を主成分とする溝配線( ダマシン配線)構造を有する半導体装置及びその製造方法に関する。
背景技術
[0002] シリコン半導体集積回路 (LSI)にお 、て、従来、導電性配線材料としては、アルミ -ゥム (A1)またはアルミニウム (A1)合金が広く用いられてきた力 近年の LSIにおけ る配線寸法の微細化に伴い、配線における配線抵抗の低減と信頼性の向上のため に、アルミニウム (A1)またはアルミニウム (A1)合金に代えて、導電性配線材料として 銅 (Cu)が使用されるようになってきた。
[0003] し力しながら、近年の LSIの微細化の進展に伴って、配線寸法の微細化が更に進 み、銅配線のマイグレーションが容易に発生しやすくなつた。特に、エレクトロマイダ レーシヨンやストレス誘起ボイドなどの問題、すなわち、ビアと配線との接続部におい てボイドが発生する現象が深刻な問題となっている。
[0004] エレクト口マイグレーションは二つの態様に大別される。
[0005] エレクト口マイグレーションの第一の態様は、下層配線と上層配線とをビアで接続す る構造において、下層配線内において、下層配線とビアとの接続部の近傍にボイド が形成される態様である。
[0006] 図 22はエレクト口マイグレーションによって不良が発生した配線の断面図であり、図
22 (a)は第一の態様を示す断面図である。
[0007] 図 22 (a)に示すように、下層配線 100と配線保護膜 101と上層配線 102と配線保 護膜 103とがこの順に積層されて形成されており、下層配線 100と上層配線 102とは ビア 104を介して接続されている。下層配線 100の内部において、下層配線 100とビ ァ 104との接続部の近傍にはボイド 105が発生している。
[0008] エレクト口マイグレーションの第二の態様は、下層配線と上層配線とをビアで接続す る構造において、上層配線内において、上層配線と配線保護膜との界面においてボ イドが形成される態様である。
[0009] 図 22 (b)は第二の態様を示す断面図である。
[0010] 図 22 (b)に示すように、ボイド 106は、上層配線 102の内部において、上層配線 10
2と配線保護膜 103との界面において、発生している。
[0011] 第一の態様のエレクト口マイグレーションは、図 22 (a)に示すように、電子 110が上 層配線 102から下層配線 100に流れ込む場合に発生し、ボイド 105の発生箇所は電 子が流れ込む、下層配線 100とビア 104との接続部の近傍の下層配線 100の内部 及び下層配線 100と配線保護膜 101との間の界面である。
[0012] 第二の態様のエレクト口マイグレーションは、図 22 (b)に示すように、電子 110が下 層配線 100から上層配線 102に流れ込む場合に発生し、ボイド 105は、上層配線 10
2の内部において、上層配線 102と配線保護膜 103との界面において形成される。
[0013] これは、配線保護膜 101、 103と、下層配線 100または上層配線 102を形成する銅 との界面にぉ 、て、銅のマイグレーションが発生しやす 、ためである。
[0014] 図 23は、ダマシン配線におけるストレス誘起ボイドの発生状況を示す断面図である
[0015] 図 23に示すように、下層配線 120、配線保護膜 121、層間絶縁膜 122、配線保護 膜 123、上層配線 124、配線保護膜 125がこの順に積層されて形成されており、下 層配線 120と上層配線 123とは、層間絶縁膜 122を貫通して形成されたビア 122を 介して、接続されている。
[0016] 図 23に示すように、ダマシン配線におけるストレス誘起ボイド 126は、ビア 125の底 面が接触する下層配線 120の内部の比較的幅の広い領域において発生する場合が ある。
[0017] このようなストレス誘起ボイド 126の発生のメカニズムは、銅からなる上層配線 123ま たは下層配線 120中に含まれる空孔が、これらの配線の内部で最も応力が集中する ビア 125と下層配線 120との接続部に、下層配線 120と配線保護膜 121との界面や 粒界を拡散経路として集まり、ボイド 126を形成して応力を緩和するというモデルによ つて説明されている(非特許文献 l、p. 318, Fig. 9)。
[0018] エレクト口マイグレーションやストレス誘起ボイドの原因となる、配線と配線保護膜と の界面における銅の拡散や銅内部の空孔の拡散を防ぐ方法として、以下に示すよう な技術が開示されている。
[0019] 第一は、配線に接続するビアの個数を増やすこと(マルチビア)である。
[0020] 配線に接続するビアの個数を増やすことにより、各ビア内の電流密度を低減するこ とができ、その結果として、エレクト口マイグレーション耐性を向上させることができる。
[0021] また、ストレス誘起ボイドに関しても、マルチビアとすることにより、応力を緩和し、耐 性を向上させることができることが報告されている。詳しくは、例えば、非特許文献 2 に記載されている。
[0022] 第二は、配線材料の銅を合金化することにより、銅自身のマイグレーション耐性を 向上させるという方法である。
[0023] 特許文献 1においては、銅合金として、銅に対して銀などを添加したものが用いら れている。銀などを添加した銅合金膜の形成方法としては、銀が添加され合金となつ ているターゲットを用いたスパッタリング法や、錫もしくはクロムと銅とのメツキにより合 金を形成する方法や、 CVD (Chemical Vapor Deposition)法により形成する方法が 挙げられている。
[0024] 第三は、配線と配線保護膜との界面の密着性を向上させる方法である。
[0025] 特許文献 2にお ヽては、配線保護膜として導電性膜を用いる技術、すなわち、配線 上にタングステンなどの導電性配線保護膜を選択成長もしくは優先成長させることに より、エレクト口マイグレーションやストレスマイグレーションの発生を抑える技術が開 示されている。
特許文献 1 :特開平 9- 289214号公報
特許文献 2 :特開 2001 - 319928号公報
非特干文献 1 : E. T.Ogawa, et ai., IEEE International Reliability Physics symposium Proceedings,2002, pp. 312—321.
非特許文献 2 : K.YOSHIDA, et al., IEEE International Electron Device Meeting, 200 2, pp. 753-756.
発明の開示
発明が解決しょうとする課題 [0026] し力しながら、上述の従来の技術は以下に示すような問題を有していた。
[0027] 配線パターンの変更や、マルチビアによってビア内部の電流密度や配線内部の応 力勾配を低減する方法 (上記の第一の従来技術)においては、レイアウトにおける設 計制限が必要であり、微細化によるチップ面積の縮小を行うことができず、配線に対 する信頼性の確保とチップの微細化との両立が非常に困難であるという問題点があ つた。このため、微細化の効果を最大限に活用できる、レイアウトによる設計制限を必 要としな!/ヽ半導体構造が望まれて!/、た。
[0028] 上記の第二の従来技術のように、銅配線に対して他の金属元素を添加して銅合金 配線とすると、配線の信頼性を向上させることができる力 添加する金属元素の量が 多いと配線の抵抗が増大し、回路の高速性が損なわれるという問題点が発生する。
[0029] 配線抵抗の増大を抑制するために添加する金属元素の量を低減すると、逆に、所 望の配線信頼性を確保できない場合があった。そこで、銅配線あるいは銅合金配線 に対して用いることができ、さらに、配線抵抗の増大のない技術が望まれていた。
[0030] 従来の配線及び配線保護膜を用いた場合、銅と配線保護膜との界面における密 着性が低いため、その界面での銅原子あるいは銅中の空孔の拡散が起こりやすくな る。このため、高信頼性の配線を得ることが困難であった。
[0031] 特許文献 2に開示されているように、配線保護膜に銅との密着性に優れる導電性膜 を用いることにより、銅原子の拡散を抑制する方法 (上記の第三の従来技術)がある 力 導電性膜を配線上のみに選択成長あるいは優先成長させることは非常に困難で あり、さらに、配線層間膜上への導電性膜のわず力な成長による配線間リーク電流の 増大が問題となっていた。このため、配線間のリーク電流を増カロさせることなぐ銅と 配線保護膜との間の密着性を向上させ、銅と配線保護膜との界面におけるボイドの 発生を抑制し、信頼性を向上させることができる技術が望まれていた。
[0032] 本発明の目的は、配線保護膜と銅との界面における密着性を向上させ、界面にお ける銅拡散を抑制してエレクト口マイグレーションやストレス誘起ボイドの発生を防止 し、信頼性の高 ヽ配線を有する半導体装置及びその製造方法を提供することにある 課題を解決するための手段 [0033] 上記の目的を達成するため、本発明は、合金配線と、該合金配線の上面を被覆す る第一配線保護膜とを有し、前記第一配線保護膜は、前記合金配線中に含有される 金属元素のうち少なくとも一つの金属元素を含むことを特徴とする半導体装置を提供 する。
[0034] 本発明は、さらに、合金配線と、該合金配線の上面を被覆する第一配線保護膜と、 前記第一配線保護膜上に形成される第二配線保護膜と、を有し、前記第一配線保 護膜は、前記合金配線中に含有される金属元素のうち少なくとも一つの金属元素を 含み、かつ、前記第二配線保護膜は前記少なくとも一つの金属元素を含まないこと を特徴とする半導体装置を提供する。
[0035] 本発明は、さらに、合金配線と、該合金配線の上面を被覆する第一配線保護膜とを 有し、前記合金配線の主成分以外の金属元素の濃度が前記合金配線の中央部より も前記第一配線保護膜の近傍にぉ ヽて高 ヽことを特徴とする半導体装置を提供する
[0036] 前記合金配線中に含有される金属元素としては、例えば、アルミニウム、銅、錫、チ タン、タングステン、銀、ジルコニウム、インジウム及びマグネシウムのうちのいずれか 一つまたは二つ以上を選択することができる。
[0037] 本発明は、さらに、合金配線と、該合金配線上面を被覆する第一配線保護膜とを 有し、前記第一配線保護膜は、前記合金配線中に含有される金属元素のうち少なく とも一つの金属元素を含み、前記合金配線の主成分以外の金属元素の濃度が前記 合金配線の中央部よりも前記第一配線保護膜の近傍において高ぐ前記合金配線 中に含有される金属元素は、アルミニウム、銅、錫、チタン、タングステン、銀、ジルコ 二ゥム、インジウム及びマグネシウムのうちの少なくとも一つであることを特徴とする半 導体装置を提供する。
[0038] 本発明に係る半導体装置は、前記第一配線保護膜上に形成される第二配線保護 膜をさらに備えることが好ましい。この第二配線保護膜は、前記第一配線保護膜に含 まれる前記少なくとも一つの金属元素を含んで ヽな 、。
[0039] 前記合金配線は、例えば、銅を主成分とする銅合金配線として形成される。
[0040] 本発明に係る半導体装置は、前記合金配線を被覆するバリアメタル膜を有するもの として形成することができる。この場合、前記合金配線における主成分以外の金属元 素の濃度が前記合金配線の中央部よりも前記第一配線保護膜の近傍及び前記バリ ァメタル膜の近傍にぉ 、て高くなるようにされる。
[0041] 前記合金配線における主成分以外の金属元素の濃度が前記合金配線の中央部 において 0. lat. %未満であり、前記第一配線保護膜の近傍においては 0. lat. % 以上かつ 1. 5at. %以下であることが好ましい。
[0042] また、バリアメタル膜を形成する場合には、前記合金配線における主成分以外の金 属元素の濃度が前記合金配線の中央部において 0. lat. %未満であり、前記第一 配線保護膜の近傍及び前記ノリアメタル膜の近傍においては、 0. lat. %以上かつ 1. 5at. %以下であることが好ましい。
[0043] 前記第一配線保護膜としては、例えば、 SiN膜、 SiC膜、 SiCN膜、 SiOC膜、 SiO CH膜、これらの膜に有機物を含んだ膜、有機物を主成分とする膜、及び、有機物を 主成分とする膜に SiOを含む膜のいずれか一つを選択することができる。
[0044] 同様に、前記第二配線保護膜としては、例えば、 SiN膜、 SiC膜、 SiCN膜、 SiOC 膜、 SiOCH膜、これらの膜に有機物を含んだ膜、有機物を主成分とする膜、有機物 を主成分とする膜に SiOを含む膜のいずれか一つを選択することができる。
[0045] 前記第一配線保護膜にお!ヽて、前記金属元素濃度は前記合金配線に近!ヽほど高 いことが好ましい。
[0046] 例えば、前記合金配線は、銅を主成分とし、アルミニウムを含有する銅アルミニウム 合金配線として、前記第一配線保護膜は、銅及びアルミニウムを含む SiCN膜として 形成することができる。
[0047] 例えば、前記合金配線は、銅を主成分とし、アルミニウムを含有する銅アルミニウム 合金配線として形成し、前記合金配線中のアルミニウムの濃度は、前記合金配線の 中央部においては 0. lat. %未満であり、前記第一配線保護膜の近傍及び前記バリ ァメタル膜の近傍においては 0. lat. %以上かつ 1. 5at. %以下であるようにするこ とが好ましい。
[0048] 本発明は、さらに、合金配線を形成する工程と、前記合金配線に含有される金属元 素のうち少なくとも一つの金属元素を含有し、前記合金配線の上面を被覆する第一 配線保護膜を形成する工程と、を少なくとも有する半導体装置の製造方法を提供す る。
[0049] 本発明に係る半導体装置の製造方法は、前記少なくとも一つの金属元素を含まな い第二配線保護膜を前記第一配線保護膜上に形成する工程をさらに備えることが 好ましい。
[0050] 本発明は、さら〖こ、合金配線を形成する第一の工程と、前記合金配線の上面を被 覆する第一配線保護膜を形成する第二の工程と、を備え、前記第一の工程において は、前記合金配線の主成分以外の金属元素の濃度が前記合金配線の中央部よりも 前記第一配線保護膜の近傍にぉ ヽて高くなるように、前記合金配線が形成されるこ とを特徴とする半導体装置の製造方法を提供する。
[0051] 本発明に係る半導体装置の製造方法は、前記合金配線を被覆するバリアメタル膜 を形成する工程を備えることが好ましぐこの場合には、前記合金配線は、前記合金 配線における主成分以外の金属元素の濃度が前記合金配線の中央部よりも前記第 一配線保護膜の近傍及び前記ノリアメタル膜の近傍にぉ 、て高くなるように、形成さ れることが好ましい。
[0052] 前記合金配線は、前記合金配線における主成分以外の金属元素の濃度が前記合 金配線の中央部において 0. lat. %未満であり、前記第一配線保護膜の近傍にお いては 0. lat. %以上かつ 1. 5at. %以下であるように形成されることが好ましい。
[0053] ノリアメタル膜を形成する場合には、前記合金配線は、前記合金配線における主 成分以外の金属元素の濃度が前記合金配線の中央部において 0. lat. %未満であ り、前記第一配線保護膜の近傍及び前記ノリアメタル膜の近傍においては、 0. lat . %以上かつ 1. 5at. %以下であるように形成されることが好ましい。
[0054] 前記第一配線保護膜は、前記第一配線保護膜における前記金属元素の濃度が前 記合金配線に近 ヽほど高くなるように形成されることが好ま ヽ。
[0055] 前記合金配線が、銅を主成分とし、アルミニウムを含有する銅アルミニウム合金配 線として形成される場合には、前記合金配線は、前記合金配線中のアルミニウムの 濃度力 前記合金配線の中央部においては 0. lat. %未満であり、前記第一配線 保護膜の近傍及び前記ノリアメタル膜の近傍においては 0. lat. %以上かつ 1. 5at . %以下であるように形成されることが好ましい。
[0056] 発明者は、以下のいずれかの条件を満足させることにより、合金配線と配線保護膜 との密着性を向上させ、合金配線の金属及びその内部の空孔の拡散が抑制され、 合金配線の信頼性を向上できることを見出した。
(1)合金配線中に含まれる金属元素のうちの少なくとも一つの金属元素を配線保護 膜中に含有させる、
(2)合金配線と配線保護膜との間に、合金配線中に含まれる金属元素のうちの少な くとも一つの金属元素と配線保護膜とからなる密着層を形成する、
(3)合金配線内部の主成分以外の金属元素の濃度が合金配線の中央部よりも配線 保護膜の近傍で高くする。
[0057] 本発明は、この発見に基づいて、なされたものである。
発明の効果
[0058] 本発明により、半導体装置における配線と配線保護膜との間の密着性を向上させ、 エレクト口マイグレーション耐性及びストレス誘起ボイド耐性を向上させることが可能と なる。
図面の簡単な説明
[0059] [図 1]本発明の第 1の実施の形態に係る半導体装置の断面図である。
[図 2]本発明の第 2の実施の形態に係る半導体装置の断面図である。
[図 3]本発明の第 3の実施の形態に係る半導体装置の断面図である。
[図 4]本発明の第 4の実施の形態に係る半導体装置の断面図である。
[図 5]従来方法による配線構造と第 1の実施形態に係る半導体装置とにおけるエレク トロマイグレーション寿命の測定結果を示すグラフである。
[図 6]従来方法による配線構造と第 1の実施形態に係る半導体装置とにおけるストレ ス誘起ボイド耐性の測定結果を示すグラフである。
[図 7]第 1の実施の形態に係る半導体装置の構造を応用した半導体装置の製造方法 における各工程を示す断面図である。
[図 8]図 7に示した半導体装置の製造方法により製造された半導体装置の第一の変 形例の断面図である。 圆 9]図 7に示した半導体装置の製造方法により製造された半導体装置の第二の変 形例の断面図である。
圆 10]図 7に示した半導体装置の製造方法により製造された半導体装置の第四の変 形例の断面図である。
圆 11]図 7に示した半導体装置の製造方法により製造された半導体装置の第五の変 形例の断面図である。
圆 12]図 7に示した半導体装置の製造方法により製造された半導体装置の第六の変 形例の断面図である。
圆 13]図 7に示した半導体装置の製造方法により製造された半導体装置の第七の変 形例の断面図である。
圆 14]第 3の実施の形態に係る半導体装置の構造を応用した半導体装置の製造方 法における各工程を示す断面図である。
圆 15]図 14に示した半導体装置の製造方法により製造された半導体装置の第一の 変形例の断面図である。
圆 16]図 14に示した半導体装置の製造方法により製造された半導体装置の第二の 変形例の断面図である。
圆 17]図 14に示した半導体装置の製造方法により製造された半導体装置の第三の 変形例の断面図である。
圆 18]第 1の実施の形態に係る半導体装置の構造を応用した半導体装置の製造方 法における各工程を示す断面図である。
圆 19]図 19 (a)は、第 5の実施の形態に係る製造方法により製造された半導体装置 の深さ方向におけるアルミニウム濃度の分布を示すグラフであり、図 19 (b)は、アルミ -ゥムを添加しな ヽ場合の、同様のアルミニウム濃度の分布を示すグラフである。 圆 20]図 20 (a)は、第 5の実施の形態に係る製造方法により製造された半導体装置 の深さ方向における酸素濃度の分布を示すグラフであり、図 20 (b)は、第一合金配 線内のアルミニウム濃度に深さ方向に対する依存性がない場合における酸素濃度の 分布を示すグラフである。
圆 21]配線保護膜に金属元素が含まれないが、合金配線内部の濃度プロファイルの コントロールによって信頼性を向上させた半導体装置の製造方法における各工程を 示す断面図である。
[図 22]エレクト口マイグレーションによって不良が発生した配線の断面図である。
[図 23]ダマシン配線におけるストレス誘起ボイドの発生状況を示す断面図である。
[図 24]合金配線の中央部の領域、配線保護膜の近傍の領域及びバリアメタル膜の 近傍の領域を示す断面図である。
符号の説明
1 半導体基板
2
3a 第一エッチングストップ膜
3b
4a 第一バリアメタル膜
4b 第二バリアメタル膜
4c 第三バリアメタル膜
5a 第一合金配線
5b 第二合金配線
5c 合金ビア
6a、 15a 第一配線保護膜
6bゝ 15b 第二配線保護膜
7 ビア層間絶縁膜
8a 第三配線保護膜
8b 第四配線保護膜
9 ビア層ハードマスク
10a 第一配線層間絶縁膜
10b 第二配線層間絶縁膜
l la- l lb 配線溝
11c ビアホーノレ
12 銅合金シード膜 13 銅膜
14 銅合金膜
16a- 16b - 16c 側壁保護膜
17a- 17b 配線層ハードマスク
発明を実施するための最良の形態
[0061] 本発明に係る実施形態を説明する前に、本明細書において使用する用語の意味 を説明する。
[0062] 本明細書にぉ 、て、合金とは、主成分と主成分以外の金属元素からなる金属を意 図する。この場合、合金は、主成分に対して意図的に他の金属元素を添加したもの のみを指し、プロセス上、不可避的に不純物を含んだものは合金には該当しない。
[0063] 例えば、「銅合金」と表現した場合には、主成分は銅であり、銅以外の金属元素が 銅に含まれて!/、ることを示す。
[0064] また、「銅アルミニウム合金」と表現した場合には、主成分は銅であり、アルミニウム が銅に含まれて 、ることを示す。
[0065] ノリアメタル膜とは、配線を構成する金属元素が層間絶縁膜や下層へ拡散すること を防止するために、配線の側面及び底面を被覆する、バリア性を有する導電性膜を 示す。
[0066] 例えば、配線が銅を主成分とする金属元素力もなる場合には、ノリアメタル膜として は、タンタル (Ta)、窒化タンタル (TaN)、窒化チタン (TiN)、炭窒化タングステン (W CN)のような高融点金属やその窒化物力もなる膜またはそれらの積層膜が使用され る。
[0067] 半導体基板とは、半導体装置が構成された基板であり、特に、単結晶シリコン基板 上に作られたものだけでなぐ SOI (Siliconon Insulator)基板や TFT (Thin film transi stor)液晶製造用基板などの基板も含む。
[0068] 層間絶縁膜とは、配線層を相互に電気的に絶縁分離する膜である。配線間の容量 を低減するため、膜内に空孔を含む膜などであっても良い。
[0069] 層間絶縁膜としては、例えば、 SiO、 HSQ (ノヽイドロゲンシルセスキォキサン: Hydr
2
ogenSilsesquioxane)膜(例えば、 Type 12 (登録商標))、 MSQ (メチルシルセスキォ キサン: MethylSilsesquioxane)膜(例えば、 JSR—LKD (登録商標)、 ALCAP (登録 商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登録商標) )、有機ポリマー膜( SiLK (登録商標)、 Flare (登録商標))、もしくは、 SiOCH、 SiOC (例えば、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登録商標)、 Orion ( 登録商標)など)もしくはそれらに有機物を含んだ絶縁薄膜、をその典型例として挙 げることができる。
[0070] スパッタ法としては、通常のスパッタリング法の他に、埋め込み特性の向上、膜質の 向上、ウェハ面内における膜厚の均一性を図るためには、例えば、ロングスロースパ ッタリング法、コリメートスパッタリング法、ィォナイズドスノ ッタリング法などの指向性の 高いスパッタリング法を用いることもできる。合金をスパッタする場合には、あらかじめ 金属ターゲット内に主成分以外の金属を固溶限以下の比率で含有させることにより、 成膜された金属膜を合金膜とすることができる。
[0071] CMP (Chemical Mechanical Polishing)法とは、多層配線形成プロセス中に生じるゥ ェハ表面の凹凸を、研磨液をウェハ表面に流しながら回転させた研磨パッドに接触さ せて研磨することによって、平坦化する方法である。ダマシン法による配線形成にお いては、 CMPは、特に、配線溝あるいはビアホールに対して金属を埋設した後に、 余剰の金属部分を除去し、平坦な配線表面を得るために用いられる。
[0072] ハードマスクとは、層間絶縁膜の低誘電率ィ匕による強度低下により、 CMPを直接 的に行うことが困難である場合に、層間絶縁膜上に積層し、層間絶縁膜を保護する 役割を有する絶縁膜を指す。
[0073] EM (Electromigration)寿命とは、電子風による配線の抵抗上昇変化あるいは断線 変化を加速試験によって見積もり、実使用領域における破壊確率を予測した場合の その破壊確率を指す。
[0074] 例えば、所定の配線及びビアからなる TEG (Test Element Group)に対して、所定 の加速温度(例えば、 300°C)において、所定の加速電流(例えば、 6. 4MA/cm2) を印加し、試験時間と TEGの抵抗変化から破壊時間を算出して、 EM寿命の優劣を it較することができる。
[0075] SIV (Stress Induced Voiding)寿命またはストレス誘起ボイド寿命とは、配線応力に よる配線の抵抗上昇変化あるいは断線変化を、長期間恒温保管することによって予 測した場合のその予測値を指す。
[0076] 例えば、所定の配線及びビアからなる TEG (Test Element Group)に対して、所定 の加速温度(例えば、 150°C)において、 500時間程度恒温保管し、保管時間と TE Gの抵抗変化から破壊時間を算出して、 SIV寿命の優劣を比較することができる。 (第 1の実施の形態)
図 1は、本発明の第 1の実施の形態に係る半導体装置の断面図である。以下、本 実施形態に係る半導体装置の配線構造について図 1を用いて説明する。
[0077] 本発明の第 1の実施の形態は、本発明をデュアルダマシン配線構造に適用した形 態である。
[0078] 図 1に示すように、本発明の第 1の実施形態に係る半導体装置は、半導体素子(図 示せず)が形成された半導体基板 1と、半導体基板 1上に形成された層間絶縁膜 2と 、層間絶縁膜 2上に形成された第一エッチングストップ膜 3aと、第一エッチングストツ プ膜 3a上に形成された第一ノ リアメタル膜 4aと、第一ノ リアメタル膜 4a上にダマシン 法により形成された第一合金配線 5aと、第一合金配線 5a上に部分的に形成された 第一配線保護膜 6aと、第一配線保護膜 6a上に形成されたビア層間絶縁膜 7と、ビア 層間絶縁膜 7上に形成された第二エッチングストップ膜 3bと、第二エッチングストップ 膜 3bの上面を覆い、かつ、第二エッチングストップ膜 3b、ビア層間絶縁膜 7及び第一 配線保護膜 6aを貫通して形成されたビア孔の側壁ならびに第一合金配線 5aの上面 を覆う第ニノくリアメタル膜 4bと、第ニノくリアメタル膜 4bを覆って形成された第二合金 配線 5bと、第二合金配線 5b上に形成された第二配線保護膜 6bと、を備えている。
[0079] ノリアメタル膜 4bに囲まれた第二合金配線 5bはビア及び配線の双方を形成して ヽ る。
[0080] 第一合金配線 5aの上面を被覆する第一配線保護膜 6a中には、第一合金配線 5a 中に含まれる金属元素のうちの少なくとも一つの金属元素が含まれて 、る。
[0081] 第二合金配線 5bの上面を被覆する第二配線保護膜 6b中には、第二合金配線 5b 中に含まれる金属元素のうちの少なくとも一つの金属元素が含まれて 、る。
[0082] 第一エッチングストップ膜 3a及び第二エッチングストップ膜 3bは、例えば、 SiO膜 、 SiN膜、 SiC膜、 SiCN膜、 SiOC膜、 SiOCH膜、これらの膜に有機物を含んだ膜、 有機物を主成分とする膜、有機物を主成分とする膜に SiOを含む膜の中のいずれか 一つまたは二つ以上の組み合わせを用いることができる。
[0083] 第一エッチングストップ膜 3a及び第二エッチングストップ膜 3bはデュアルダマシン 形状の配線溝及びビアホールの加工性を向上するために設けられた膜であり、加工 する材料に応じて、変更することが可能である。特に好ましい材質は、 SiOまたはプ
2 ラズマ重合法により作成した DVS— BCB (ジビュルシロキサン ベンゾシクロブテン )である。
[0084] ビア層間絶縁膜 7としては、例えば、 SiO、 SiC、 SiCN, HSQ (ハイドロゲンシルセ
2
スキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標))、MSQ ( メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR—LKD (登録商 標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登録商標) )、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiOC (例えば 、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのいずれかを複 数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向に変化させ た膜、などを用いることができる。
[0085] 第一ノリアメタル膜 4a及び第ニノくリアメタル膜 4bは、スパッタ法、 CVD法または A LCVD (Atomiclayer chemical vapor deposition)法などを用いて形成することができ る。
[0086] 第一ノリアメタル膜 4a及び第ニノくリアメタル膜 4bとしては、例えば、タンタル (Ta)、 窒化タンタル (TaN)、窒化チタン (TiN)、炭窒化タングステン (WCN)のような高融 点金属やその窒化物力もなる膜またはそれらの積層膜が使用される。特に、 Ta/Ta N ( =上層 Z下層)の積層膜を用いることが好まし 、。
[0087] 第一合金配線 5a及び第二合金配線 5bは、合金ターゲットを用いたスパッタ法、 CV D法、あるいは、それらの方法で形成した膜を電極として用いる電解めつき法などに より形成することができる。
[0088] 第一合金配線 5a及び第二合金配線 5bに含まれる金属元素としては、主成分であ る金属に固溶する金属元素であって、次の何れかの条件を満たすものが選択される
( 1)その金属の添カ卩により合金の拡散が抑制される金属、すなわち、主成分たる金 属の粒界を安定化させる効果がある金属
(2)主成分たる金属よりも優先的にマイグレーションし、主成分たる金属のマイグレー シヨンの発生を遅らせる効果がある金属
(3)合金配線の主成分たる金属の酸化を防止する金属、すなわち、主成分たる金属 よりも酸化しやすい金属
(4)酸化により安定な酸化被膜を配線表面に形成し、合金配線内部への酸素の侵 入を防ぐ効果がある金属
第一合金配線 5a及び第二合金配線 5bに含まれる金属元素としては、具体的には 、アルミニウム、銅、錫、チタン、タングステン、銀、ジルコニウム、インジウム、及びマ グネシゥムの中力も少なくとも一つを選択することができる。
[0089] 特に、銅ターゲット中にアルミニウムを 0. 5乃至 2. Oat. %含む銅アルミニウム合金 ターゲットを用いたィォナイズドスパッタリング法により、銅アルミニウム合金シード層 を形成し、この銅アルミニウム合金シード層を電極として、電解めつき法により、銅を 埋め込んで作製することが好ま U、。
[0090] 合金シード層と電解めつき法とを組み合わせる場合には、第一合金配線 5a及び第 二合金配線 5b中の金属元素の濃度は合金ターゲット中の濃度以下となる。
[0091] 第一合金配線 5a及び第二合金配線 5bの上面を被覆する第一配線保護膜 6a及び 第二配線保護膜 6bとしては、第一合金配線 5a及び第二合金配線 5b中に含有され る金属元素のうち少なくとも一つを含む膜であって、例えば、 SiN膜、 SiC膜、 SiCN 膜、 SiOC膜、 SiOCH膜、これらの膜に有機物を含んだ膜、有機物を主成分とする 膜、有機物を主成分とする膜に SiOを含む膜の中の少なくとも一つを用いることがで きる。
[0092] 第一配線保護膜 6a及び第二配線保護膜 6bとしては、例えば、プラズマ重合法によ り作成した DVS - BCB (ジビュルシロキサン ベンゾシクロブテン)膜や、 DVS - B CBィ匕合物からなる膜を用いることができる。 BCB化合物とは BCBと複数の気体原料 とを混合して成膜することにより形成された化合物を意味する。 BCB膜または BCBィ匕 合物膜を用いることにより、配線間の比誘電率を低減することが可能となる。
[0093] 第一配線保護膜 6a及び第二配線保護膜 6bへの金属の添カ卩は、金属を添加しても 膜の絶縁性が保たれる範囲で行う必要がある。発明者らが検討した結果、第一配線 保護膜 6a及び第二配線保護膜 6b中の金属濃度を lat. %以下とすることにより、第 一配線保護膜 6a及び第二配線保護膜 6bの絶縁性の確保と、本発明の効果である エレクト口マイグレーション及びストレス誘起ボイドの抑制とを両立できることが判明し た。
[0094] 第一配線保護膜 6a及び第二配線保護膜 6bに金属を添加する方法としては、例え ば、 200°C乃至 350°Cの温度範囲で 1乃至 30分熱処理することにより、第一合金配 線 5a及び第二合金配線 5b中からの熱拡散によって第一配線保護膜 6a及び第二配 線保護膜 6b中に金属元素を拡散させる方法、第一合金配線 5a及び第二合金配線 5b上に選択的に金属元素を含む第一配線保護膜 6a及び第二配線保護膜 6bを成 長させる方法、第一合金配線 5a及び第二合金配線 5b上及び絶縁膜上の双方に金 属元素を含む元素を拡散させる方法、第一合金配線 5a及び第二合金配線 5b上に 選択的に金属元素を含む第一配線保護膜 6a及び第二配線保護膜 6bを成長させる 方法などがある。
[0095] 第一配線保護膜 6a及び第二配線保護膜 6b内における金属元素の分布を第一合 金配線 5a及び第二合金配線 5bに近い領域ほど高くすることにより、更に本発明の効 果を高めることが可能である。
[0096] また、第一合金配線 5a及び第二合金配線 5b中の主成分以外の金属元素であって 、第一配線保護膜 6a及び第二配線保護膜 6b中に含有される金属元素の濃度を、第 一配線保護膜 6a及び第二配線保護膜 6bの近傍及び第一ノリアメタル膜 4a及び第 ニノリアメタル膜 4bの近傍で高くすることによって、更に本発明の効果を高めることが 可能である。
[0097] 以上の配線構造を用いると、第一合金配線 5a及び第二合金配線 5bと第一配線保 護膜 6a及び第二配線保護膜 6bとの間の密着性を向上させ、エレクト口マイグレーシ ヨン耐性及びストレス誘起ボイド耐性を向上させることが可能となる。 [0098] すなわち、第一合金配線 5a及び第二合金配線 5b中に含まれる少なくとも一つの金 属元素を、第一合金配線 5a及び第二合金配線 5bの上面を被覆する第一配線保護 膜 6a及び第二配線保護膜 6b中に含有させることにより、第一合金配線 5a及び第二 合金配線 5bと第一配線保護膜 6a及び第二配線保護膜 6bとの間に、中間的な組成 をもつ密着層を形成することとなり、第一合金配線 5a及び第二合金配線 5bの表面と 第一配線保護膜 6a及び第二配線保護膜 6bの表面との間の密着性が向上するため 、エレクト口マイグレーションの原因となる、両界面における合金配線金属の拡散、及 び、ストレス誘起ボイドの原因となる合金配線中の空孔の拡散を抑制することができ、 配線信頼性の著しい向上を得ることができる。
[0099] さらに、第一合金配線 5a及び第二合金配線 5bと、その上面を被覆する第一配線 保護膜 6a及び第二配線保護膜 6b中に共通に含有される金属元素の第一合金配線 5a及び第二合金配線 5b内部での濃度を、第一合金配線 5a及び第二合金配線 5b の中央部の領域よりも、第一配線保護膜 6a及び第二配線保護膜 6bの近傍の領域に おいて、高くすることにより、第一合金配線 5a及び第二合金配線 5bと第一配線保護 膜 6a及び第二配線保護膜 6bとの界面の密着性の改善と、配線抵抗上昇の抑制を 両立することができる。
[0100] 図 24は、合金配線の中央部の領域、配線保護膜の近傍の領域及びバリアメタル膜 の近傍の領域を示す断面図である。
[0101] 合金配線の中央部の領域 130とは、例えば、合金配線の中心 131から、合金配線 の高さ方向に高さの 10%の距離内、かつ、合金配線の幅方向に幅の 10%の距離内 に位置する領域を示す。
[0102] また、配線保護膜の近傍の領域 132とは、例えば、配線保護膜 6から合金配線の 高さの 10%の距離内に位置する領域を示す。
[0103] 例えば、第一合金配線 5aが、銅を主成分とし、金属元素として lat. %以下のアル ミニゥムを含有した銅アルミニウム合金力 なり、第一配線保護膜 6aが SiCN膜から なり、第一合金配線 5aの高さが 200nmである場合、第一配線保護膜 6a (SiCN膜) 力も 10nmの距離内に存在する第一合金配線 5a内のアルミニウムの濃度は lat. % であり、 lOOnmの距離に存在する第一合金配線 5a内のアルミニウムの濃度は 0. 08 at. %とすることにより、第一合金配線 5aの抵抗上昇を抑制し、かつ、第一合金配線 5aの信頼性を向上させることができるようになる。
[0104] さらに、第一ノリアメタル膜 4a及び第ニノくリアメタル膜 4bの近傍における第一合金 配線 5a及び第二合金配線 5b中の主成分以外の金属元素濃度を高くすることによつ て、第一ノリアメタル膜 4a及び第ニノくリアメタル膜 4bの表面の酸ィ匕が抑制されるた め、第一合金配線 5a及び第二合金配線 5bと第一ノリアメタル膜 4a及び第ニノくリアメ タル膜 4bとの界面の密着性が向上する。第一合金配線 5a及び第二合金配線 5bと 第一配線保護膜 6a及び第二配線保護膜 6bとの間の密着性を向上させる技術と本 技術とを同時に用いることにより、第一合金配線 5a及び第二合金配線 5bを囲む全て の界面における密着性の向上が達成され、合金配線に対する信頼性のさらなる向上 を達成することができる。
[0105] また、ノリアメタル膜の近傍の領域 133とは、例えば、底面のノリアメタル膜 4力ら合 金配線の高さの 10%の距離内に位置する領域及び側面のノリアメタル膜 4力も合金 配線の幅の 10%の距離内に位置する領域を示す。
[0106] 例えば、第一合金配線 5aが銅を主成分とし、金属元素として lat. %以下のアルミ -ゥムを含有した銅アルミニウム合金力 なり、ノリアメタル膜 4が TaZTaN力 なり、 合金配線の高さ及び幅が 200nmである場合、ノリアメタル膜 (TaZTaN膜) 4から 2 Onmの距離内にある第一合金配線 5a内のアルミニウムの濃度は lat. %であり、 10 Onmの距離にある第一合金配線 5a内のアルミニウムの濃度は 0. 08at. %とすること により、ノリアメタル膜 4の表面の酸ィ匕を抑制し、第一合金配線 5aの信頼性を更に向 上させることがでさるよう〖こなる。
[0107] また、第一合金配線 5a及び第二合金配線 5b中に含有させた主成分以外の金属 元素によって、本来、配線保護膜に含有しにくい第一合金配線 5a及び第二合金配 線 5bの主成分である金属元素を含有させ、密着性を向上させることも可能である。
[0108] 例えば、第一合金配線 5aが銅を主成分とし、金属元素として lat. %以下のアルミ -ゥムを含有した銅アルミニウム合金力 なり、第一配線保護膜 6aが SiCN膜からな る場合、 350°Cの熱処理による熱拡散によって第一配線保護膜 6a中にアルミニウム を含有させると、アルミニウムの固溶に伴って、銅も第一配線保護膜 6a中に拡散し、 更に密着性を向上させ、第一合金配線 5aに対する信頼性を向上させることができる ことが確認できた。
[0109] このようにして作製した銅合金力もなる第一合金配線 5aにつ 、て、第一配線保護 膜 6a (SiCN膜)と第一合金配線 5a (銅合金)の密着性を、例えば、 4点曲げ法などの 薄膜の密着性試験法により評価したところ、密着性が向上したことが確認できた。
[0110] 実際、従来方法では、例えば、配線として銅または銅アルミニウム合金、第一配線 保護膜 6aとして SiCN膜を用いるのに対して、本実施形態においては、配線として銅 アルミニウム合金、第一配線保護膜 6aとして銅あるいはアルミニウムを含有する SiC N膜を用いることにより、 lOOnmのビアに接続する合金配線と配線保護膜との界面 におけるボイドの発生を抑制することができることを発明者らは実験的に確認してい る。
[0111] 図 5は、上記の従来方法による配線構造と本実施形態による配線構造とにおけるェ レクト口マイグレーション寿命を測定した結果を示す。
[0112] エレクト口マイグレーション寿命の試験条件は、 300°C、 6. 4MA/m2である。図中、
aが従来方法による配線構造の測定結果、 βが本発明による配線構造の測定結果 を示している。図 5は、横軸に故障発生までの時間をとり、縦軸に故障分布をプロット した対数正規分布である。
[0113] 図 5に示した測定結果によると、本実施形態による配線構造を用いることにより、ェ レクト口マイグレーション寿命を従来方法よりも大幅に伸ばすことができた。例えば、 F
50%においては、 10倍以上の改善が確認できる。
[0114] また、図 6は、上記の従来方法による配線構造と本実施形態による配線構造とにお けるストレス誘起ボイド耐性を測定した結果を示す。
[0115] 図 6の横軸には評価 TEGの配線幅(Line Width : m)をとり、縦軸には故障率( Failure Rate: %)をプロットした。
[0116] 150°Cの温度において 500時間までの恒温保管試験を行ったところ、従来方法に よる配線構造の故障率( α )は 27乃至 100%であったが、本実施形態による配線構 造の故障率( /3 )はほぼゼロであった。このように、従来方法による配線構造( α )と比 較して、本実施形態による配線構造(|8 )を用いることにより、大幅に故障率を低減す ることができることが半 u明した。
[0117] さらに、本実施形態による配線構造について、合金配線間のリーク電流を測定した ところ。従来方法による配線構造と同一のリーク電流値を示すことが確認された。
[0118] 本実施形態による配線構造においては、絶縁膜である配線保護膜中に、その配線 保護膜の絶縁性を損なわな 、範囲で、銅合金配線中に含まれる金属元素と共通の 金属元素を添加するため、リーク電流の増大を招くことなぐエレクト口マイグレーショ ン耐性及びストレス誘起ボイド耐性を向上させることが可能である。これにより、配線 保護膜として、合金配線中に含まれる金属元素を含まな!/、絶縁膜を用いる場合よりも 、銅合金と高い密着性を得ることが可能となり、エレクト口マイグレーションやストレス 誘起ボイドの発生を抑制することができる。
[0119] 本実施形態による配線構造は、製造物からも容易に確認することができる。 DRA M (Dynamic RandomAccess Memory)、 ¾ AM (Static Random Access Memory;、フ ラッシュメモリ、 FRAM (Ferro Electric Random Access Memory)、 MRAM (Magnetic Random Access Memory)、抵抗変化型メモリ等のようなメモリ回路を有する半導体製 品、マイクロプロセッサなどの論理回路を有する半導体製品、それらを同時に掲載し た混載型の半導体製品、あるいは、それらの半導体装置を複数積層した SIP (Silicon in package)などにおいて、少なくとも一部に(多層)配線を有する場合、金属配線及 び配線保護膜中の金属濃度を測定することにより、本実施形態による配線構造が適 用されているカゝ否かを確認することができる。
[0120] 具体的には、半導体製品を断面方向に切り出した TEMの観察像のコントラストによ り、金属配線と配線保護膜とを比較することができ、 TEMにカ卩ぇ EELS (Electron En ergy— Loss spectroscopyノ及び EuX (Energy— DispersiveX— ray spectroscopyノなとの 元素分析により、金属配線中及び配線保護膜中の金属濃度を確認することができる
[0121] 特に、 TEM像のコントラストから金属配線内の粒界を特定し、粒界近傍の元素分 析を行うことより、金属配線及び配線保護膜中の金属精密に濃度を検出することがで きる。
[0122] また、水平方向に切り出した試料につ!、て、所定の箇所を選んで SIMS (Second Io n MassSpectroscopy)などの元素分析をすることにより、金属元素の確認をすることが できる。
[0123] なお、デュアルダマシン溝の加工方法は任意であり、特に限定されな!、。
(第 2の実施の形態)
図 2は、本発明の第 2の実施の形態に係る半導体装置の断面図である。以下、本 実施形態に係る半導体装置の配線構造について図 2を用いて説明する。
[0124] 本実施形態に係る半導体装置においては、第 1の実施形態に係る半導体装置と比 較して、配線保護膜の構造が変更されている。
[0125] すなわち、第 1の実施形態に係る半導体装置においては第一配線保護膜 6a及び 第二配線保護膜 6bは ヽずれも単層構造を有して!/ヽるが、本実施形態に係る半導体 装置においては、第一配線保護膜 6aの単層構造に代えて、第一配線保護膜 6a及 び第三配線保護膜 8aの二層構造を有しており、さらに、第二配線保護膜 6bの単層 構造に代えて、第二配線保護膜 6b及び第四配線保護膜 8bの二層構造を有して ヽ る。配線保護膜の構造が変更されている点を除いて、本実施形態に係る半導体装置 は第 1の実施形態に係る半導体装置と同様の構造を有している。
[0126] 第三配線保護膜 8a及び第四配線保護膜 8bは、例えば、 SiN膜、 SiC膜、 SiCN膜 、 SiOC膜、 SiOCH膜又はこれらの膜に有機物を含んだ膜、有機物を主成分とする 膜、有機物を主成分とする膜に SiOを含む膜の何れか一つ、あるいは、いずれか二 つ以上の積層膜から構成することができる。
[0127] 本実施形態に係る半導体装置によれば、第 1の実施の形態に係る半導体装置と同 様に、第一合金配線 5a及び第二合金配線 5bと第一配線保護膜 6a及び第二配線保 護膜 6bとの密着性を向上させ、エレクト口マイグレーション耐性及びストレス誘起ボイ ド耐性の高いデュアルダマシン配線を得ることができる。
[0128] さらに、第一配線保護膜 6a及び第二配線保護膜 6bの上面に、金属元素を含まな い膜からなる第三配線保護膜 8a及び第四配線保護膜 8bが形成されているため、第 三配線保護膜 8a及び第四配線保護膜 8bとその上層の層間絶縁膜との間の密着性 の高 、配線構造を得ることができる。
[0129] なお、本実施形態においては、配線保護膜を二層構造として形成したが、三層また は四層以上の積層構造を有する膜として形成することも可能である。
(第 3の実施の形態)
図 3は、本発明の第 3の実施の形態に係る半導体装置の断面図である。以下、本 実施形態に係る半導体装置の配線構造について図 3を用いて説明する。
[0130] 本発明の第 3の実施の形態は、本発明をシングルダマシン配線構造に適用した形 態である。
[0131] 図 3に示すように、本発明の第 3の実施形態に係る半導体装置は、半導体素子(図 示せず)が形成された半導体基板 1と、半導体基板 1上に形成された層間絶縁膜 2と 、層間絶縁膜 2上に形成された第一エッチングストップ膜 3aと、第一エッチングストツ プ膜 3a上に形成された第一ノリアメタル膜 4aと、第一ノリアメタル膜 4a上にシングル ダマシン法により形成された第一合金配線 5aと、第一合金配線 5a上に部分的に形 成された第一配線保護膜 6aと、第一配線保護膜 6a上に形成されたビア層間絶縁膜 7と、ビア層間絶縁膜 7上に形成されたビア層ハードマスク 9と、ビア層ハードマスク 9 とビア層間絶縁膜 7と第一配線保護膜 6aとを貫通して形成されたビアホールの側壁 と、第一合金配線 5aの露出した表面とを覆うように形成された第三バリアメタル膜 4c と、第三ノリアメタル膜 4cに覆われたビアホール内にシングルダマシン法により形成 されたビアコンタクト 5cと、ビア層ハードマスク 9と第三ノリアメタル膜 4cと合金ビア 5c とを覆って形成された第ニノくリアメタル膜 4bと、第ニノくリアメタル膜 4b上にシングル ダマシン法により形成された第二合金配線 5bと、第二合金配線 5b上に形成された 第二配線保護膜 6bと、を備えている。
[0132] 第一合金配線 5aの上面を被覆する第一配線保護膜 6a中には、第一合金配線 5a 中に含まれる金属元素のうちの少なくとも一つの金属元素が含まれて 、る。
[0133] 第二合金配線 5bの上面を被覆する第二配線保護膜 6b中には、第二合金配線 5b 中に含まれる金属元素のうちの少なくとも一つの金属元素が含まれて 、る。
[0134] なお、本実施形態においては、ビアコンタクト 5cは合金でつくられている。ただし、 ビアコンタクト 5cは必ずしも合金である必要はなぐ所望する配線の特性に応じて、 十分な配線の信頼性が得られる場合には、単一の金属カゝら構成することもできる。
[0135] 第一エッチングストップ膜 3a及びビア層ハードマスク 9は、例えば、 SiO膜、 SiN膜 、 SiC膜、 SiCN膜、 SiOC膜、 SiOCH膜、これらの膜に有機物を含んだ膜、有機物 を主成分とする膜、有機物を主成分とする膜に SiOを含む膜の中のいずれか一つま たは二つ以上の組み合わせを用いることができる。
[0136] ビア層間絶縁膜 7としては、例えば、 SiO、 SiC、 SiCN, HSQ (ハイドロゲンシルセ
2
スキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標))、MSQ ( メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR—LKD (登録商 標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登録商標) )、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiOC (例えば 、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのいずれかを複 数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向に変化させ た膜、などを用いることができる。
[0137] 第一ノリアメタル膜 4a及び第ニノくリアメタル膜 4bは、スパッタ法、 CVD法または A LCVD (Atomiclayer chemical vapor deposition)法などを用いて形成することができ る。
[0138] 第一ノリアメタル膜 4a及び第ニノくリアメタル膜 4bとしては、例えば、タンタル (Ta)、 窒化タンタル (TaN)、窒化チタン (TiN)、炭窒化タングステン (WCN)のような高融 点金属やその窒化物力もなる膜またはそれらの積層膜が使用される。特に、 Ta/Ta
N ( =上層 Z下層)の積層膜を用いることが好まし 、。
[0139] 第一合金配線 5a、第二合金配線 5b及びビアコンタクト 5cは、合金ターゲットを用い たスパッタ法、 CVD法、あるいは、それらの方法で形成した膜を電極として用いる電 解めつき法などにより形成することができる。
[0140] 第一合金配線 5a、第二合金配線 5b及びビアコンタクト 5cに含まれる金属元素とし ては、主成分である金属に固溶する金属元素であって、次の何れかの条件を満たす ものが選択される。
( 1)その金属の添カ卩により合金の拡散が抑制される金属、すなわち、主成分たる金 属の粒界を安定化させる効果がある金属
(2)主成分たる金属よりも優先的にマイグレーションし、主成分たる金属のマイグレー シヨンの発生を遅らせる効果がある金属
(3)合金配線の主成分たる金属の酸化を防止する金属、すなわち、主成分たる金属 よりも酸化しやすい金属
(4)酸化により安定な酸化被膜を配線表面に形成し、合金配線内部への酸素の侵 入を防ぐ効果がある金属
第一合金配線 5a、第二合金配線 5b及びビアコンタクト 5cに含まれる金属元素とし ては、具体的には、アルミニウム、銅、錫、チタン、タングステン、銀、ジルコニウム、ィ ンジゥム、及びマグネシウムの中力も少なくとも一つを選択することができる。
[0141] 特に、銅ターゲット中にアルミニウムを 0. 5乃至 2. Oat. %含む銅アルミニウム合金 ターゲットを用いたィォナイズドスパッタリング法により、銅アルミニウム合金シード層 を形成し、この銅アルミニウム合金シード層を電極として、電解めつき法により、銅を 埋め込んで作製することが好ま U、。
[0142] 合金シード層と電解めつき法とを組み合わせる場合には、第一合金配線 5a、第二 合金配線 5b及びビアコンタクト 5c中の金属元素の濃度は合金ターゲット中の濃度以 下となる。
[0143] 第一合金配線 5a及び第二合金配線 5bの上面を被覆する第一配線保護膜 6a及び 第二配線保護膜 6bとしては、第一合金配線 5a及び第二合金配線 5b中に含有され る金属元素のうち少なくとも一つを含む膜であって、例えば、 SiN膜、 SiC膜、 SiCN 膜、 SiOC膜、 SiOCH膜、これらの膜に有機物を含んだ膜、有機物を主成分とする 膜、有機物を主成分とする膜に SiOを含む膜の中の少なくとも一つを用いることがで きる。
[0144] 第一配線保護膜 6a及び第二配線保護膜 6bとしては、例えば、プラズマ重合法によ り作成した DVS - BCB (ジビュルシロキサン ベンゾシクロブテン)膜や、 DVS - B CBィ匕合物からなる膜を用いることができる。 BCB化合物とは BCBと複数の気体原料 とを混合して成膜することにより形成された化合物を意味する。 BCB膜または BCBィ匕 合物膜を用いることにより、配線間の比誘電率を低減することが可能となる。
[0145] 第一配線保護膜 6a及び第二配線保護膜 6bへの金属の添カ卩は、金属を添加しても 膜の絶縁性が保たれる範囲で行う必要がある。発明者らが検討した結果、第一配線 保護膜 6a及び第二配線保護膜 6b中の金属濃度を lat. %以下とすることにより、第 一配線保護膜 6a及び第二配線保護膜 6bの絶縁性の確保と、本発明の効果である エレクト口マイグレーション及びストレス誘起ボイドの抑制とを両立できることが判明し た。
[0146] 第一配線保護膜 6a及び第二配線保護膜 6bに金属を添加する方法としては、例え ば、 200°C乃至 350°Cの温度範囲で 1乃至 30分熱処理することにより、第一合金配 線 5a及び第二合金配線 5b中からの熱拡散によって第一配線保護膜 6a及び第二配 線保護膜 6b中に金属元素を拡散させる方法、第一合金配線 5a及び第二合金配線 5b上に選択的に金属元素を含む第一配線保護膜 6a及び第二配線保護膜 6bを成 長させる方法、第一合金配線 5a及び第二合金配線 5b上及び絶縁膜上の双方に金 属元素を含む元素を拡散させる方法、第一合金配線 5a及び第二合金配線 5b上に 選択的に金属元素を含む第一配線保護膜 6a及び第二配線保護膜 6bを成長させる 方法などがある。
[0147] 第一配線保護膜 6a及び第二配線保護膜 6b内における金属元素の分布を第一合 金配線 5a及び第二合金配線 5bに近い領域ほど高くすることにより、更に本発明の効 果を高めることが可能である。
[0148] また、第一合金配線 5a及び第二合金配線 5b中の主成分以外の金属元素であって 、第一配線保護膜 6a及び第二配線保護膜 6b中に含有される金属元素の濃度を、第 一合金配線 5a及び第二合金配線 5bの近傍及び第一バリアメタル膜 4a及び第二バリ ァメタル膜 4bの近傍で高くすることによって、更に本発明の効果を高めることが可能 である。
[0149] 以上の配線構造を用いると、第 1の実施の形態の場合と同様に、第一合金配線 5a 及び第二合金配線 5bと第一配線保護膜 6a及び第二配線保護膜 6bとの間の密着性 を向上させ、エレクト口マイグレーション耐性及びストレス誘起ボイド耐性を向上させる ことが可能となる。
[0150] すなわち、第一合金配線 5a及び第二合金配線 5b中に含まれる少なくとも一つの金 属元素を、第一合金配線 5a及び第二合金配線 5bの上面を被覆する第一配線保護 膜 6a及び第二配線保護膜 6b中に含有させることにより、第一合金配線 5a及び第二 合金配線 5bと第一配線保護膜 6a及び第二配線保護膜 6bとの間に、中間的な組成 をもつ密着層を形成することとなり、第一合金配線 5a及び第二合金配線 5bの表面と 第一配線保護膜 6a及び第二配線保護膜 6bの表面との間の密着性が向上するため 、エレクト口マイグレーションの原因となる、両界面における合金配線金属の拡散、及 び、ストレス誘起ボイドの原因となる合金配線中の空孔の拡散を抑制することができ、 配線信頼性の著しい向上を得ることができる。
[0151] さらに、第一合金配線 5a及び第二合金配線 5bと、その上面を被覆する第一配線 保護膜 6a及び第二配線保護膜 6b中に共通に含有される金属元素の第一合金配線 5a及び第二合金配線 5b内部での濃度を、第一合金配線 5a及び第二合金配線 5b の中央部の領域よりも、第一配線保護膜 6a及び第二配線保護膜 6bの近傍の領域に おいて、高くすることにより、第一合金配線 5a及び第二合金配線 5bと第一配線保護 膜 6a及び第二配線保護膜 6bとの界面の密着性の改善と、配線抵抗上昇の抑制を 両立することができる。
[0152] 例えば、第一合金配線 5aが、銅を主成分とし、金属元素として lat. %以下のアル ミニゥムを含有した銅アルミニウム合金力 なり、第一配線保護膜 6aが SiCN膜から なり、第一合金配線 5aの高さが 200nmである場合、第一配線保護膜 6a (SiCN膜) 力も 10nmの距離内に存在する第一合金配線 5a内のアルミニウムの濃度は lat. % であり、 lOOnmの距離に存在する第一合金配線 5a内のアルミニウムの濃度は 0. 08 at. %とすることにより、第一合金配線 5aの抵抗上昇を抑制し、かつ、第一合金配線 5aの信頼性を向上させることができるようになる。
[0153] さらに、第一ノリアメタル膜 4a及び第ニノくリアメタル膜 4bの近傍における第一合金 配線 5a及び第二合金配線 5b中の主成分以外の金属元素濃度を高くすることによつ て、第一ノリアメタル膜 4a及び第ニノくリアメタル膜 4bの表面の酸ィ匕が抑制されるた め、第一合金配線 5a及び第二合金配線 5bと第一ノリアメタル膜 4a及び第ニノくリアメ タル膜 4bとの界面の密着性が向上する。第一合金配線 5a及び第二合金配線 5bと 第一配線保護膜 6a及び第二配線保護膜 6bとの間の密着性を向上させる技術と本 技術とを同時に用いることにより、第一合金配線 5a及び第二合金配線 5bを囲む全て の界面における密着性の向上が達成され、合金配線に対する信頼性のさらなる向上 を達成することができる。
[0154] 例えば、第一合金配線 5aが銅を主成分とし、金属元素として lat. %以下のアルミ -ゥムを含有した銅アルミニウム合金力 なり、ノリアメタル膜 4aが TaZTaN力 なり 、合金配線の高さ及び幅が 200nmである場合、ノリアメタル膜 (TaZTaN膜) 4aか ら 20nmの距離内にある第一合金配線 5a内のアルミニウムの濃度は lat. %であり、 lOOnmの距離にある第一合金配線 5a内のアルミニウムの濃度は 0. 08at. %とする ことにより、ノリアメタル膜 4aの表面の酸ィ匕を抑制し、第一合金配線 5aの信頼性を更 に向上させることができるようになる。
[0155] また、第一合金配線 5a及び第二合金配線 5b中に含有させた主成分以外の金属 元素によって、本来、配線保護膜に含有しにくい第一合金配線 5a及び第二合金配 線 5bの主成分である金属元素を含有させ、密着性を向上させることも可能である。
[0156] 例えば、第一合金配線 5aが銅を主成分とし、金属元素として lat. %以下のアルミ -ゥムを含有した銅アルミニウム合金力 なり、第一配線保護膜 6aが SiCN膜からな る場合、 350°Cの熱処理による熱拡散によって第一配線保護膜 6a中にアルミニウム を含有させると、アルミニウムの固溶に伴って、銅も第一配線保護膜 6a中に拡散し、 更に密着性を向上させ、第一合金配線 5aに対する信頼性を向上させることができる ことが確認できた。
[0157] このようにして作製した銅合金力もなる第一合金配線 5aにつ 、て、第一配線保護 膜 6a (SiCN膜)と第一合金配線 5a (銅合金)の密着性を、例えば、 4点曲げ法などの 薄膜の密着性試験法により評価したところ、密着性が向上したことが確認できた。
[0158] 本実施形態による配線構造は、製造物からも容易に確認することができる。 DRA M (Dynamic RandomAccess Memory)、 ¾ AM (Static Random Access Memory;、フ ラッシュメモリ、 FRAM (Ferro Electric Random Access Memory)、 MRAM (Magnetic Random Access Memory)、抵抗変化型メモリ等のようなメモリ回路を有する半導体製 品、マイクロプロセッサなどの論理回路を有する半導体製品、それらを同時に掲載し た混載型の半導体製品、あるいは、それらの半導体装置を複数積層した SIP (Silicon in package)などにおいて、少なくとも一部に(多層)配線を有する場合、金属配線及 び配線保護膜中の金属濃度を測定することにより、本実施形態による配線構造が適 用されているカゝ否かを確認することができる。
[0159] 具体的には、半導体製品を断面方向に切り出した TEMの観察像のコントラストによ り、金属配線と配線保護膜とを比較することができ、 TEMにカ卩ぇ EELS (Electron En ergy— Loss spectroscopyノ及び EuX (Energy— DispersiveX— ray spectroscopyノなとの 元素分析により、金属配線中及び配線保護膜中の金属濃度を確認することができる
[0160] 特に、 TEM像のコントラストから金属配線内の粒界を特定し、粒界近傍の元素分 析を行うことより、金属配線及び配線保護膜中の金属精密に濃度を検出することがで きる。
[0161] また、水平方向に切り出した試料につ!、て、所定の箇所を選んで SIMS (Second Io n MassSpectroscopy)などの元素分析をすることにより、金属元素の確認をすることが できる。
[0162] なお、シングルダマシン溝の加工方法は任意であり、特に限定されな!、。
(第 4の実施の形態)
図 4は、本発明の第 4の実施の形態に係る半導体装置の断面図である。以下、本 実施形態に係る半導体装置の配線構造について図 4を用いて説明する。
[0163] 本実施形態に係る半導体装置においては、第 3の実施形態に係る半導体装置と比 較して、配線保護膜の構造が変更されている。
[0164] すなわち、第 3の実施形態に係る半導体装置においては第一配線保護膜 6a及び 第二配線保護膜 6bは ヽずれも単層構造を有して!/ヽるが、本実施形態に係る半導体 装置においては、第一配線保護膜 6aの単層構造に代えて、第一配線保護膜 6a及 び第三配線保護膜 8aの二層構造を有しており、さらに、第二配線保護膜 6bの単層 構造に代えて、第二配線保護膜 6b及び第四配線保護膜 8bの二層構造を有して ヽ る。配線保護膜の構造が変更されている点を除いて、本実施形態に係る半導体装置 は第 3の実施形態に係る半導体装置と同様の構造を有している。
[0165] 第三配線保護膜 8a及び第四配線保護膜 8bは、例えば、 SiN膜、 SiC膜、 SiCN膜 、 SiOC膜、 SiOCH膜又はこれらの膜に有機物を含んだ膜、有機物を主成分とする 膜、有機物を主成分とする膜に SiOを含む膜の何れか一つ、あるいは、いずれか二 つ以上の積層膜から構成することができる。
[0166] 本実施形態に係る半導体装置によれば、第 3の実施の形態に係る半導体装置と同 様に、第一合金配線 5a及び第二合金配線 5bと第一配線保護膜 6a及び第二配線保 護膜 6bとの密着性を向上させ、エレクト口マイグレーション耐性及びストレス誘起ボイ ド耐性の高いシングルダマシン配線を得ることができる。
[0167] さらに、第一配線保護膜 6a及び第二配線保護膜 6bの上面に、金属元素を含まな い膜からなる第三配線保護膜 8a及び第四配線保護膜 8bが形成されているため、第 三配線保護膜 8a及び第四配線保護膜 8bとその上層の層間絶縁膜との間の密着性 の高 、配線構造を得ることができる。
[0168] なお、本実施形態においては、配線保護膜を二層構造として形成したが、三層また は四層以上の積層構造を有する膜として形成することも可能である。
(第 5の実施の形態)
図 7は、図 1に示した第 1の実施の形態に係る半導体装置の構造を応用した半導体 装置の製造方法における各工程を示す断面図である。以下、図 7を参照して、本半 導体装置の製造方法を説明する。
[0169] まず、図 7 (a)に示すように、半導体素子(図示せず)が形成された半導体基板 1上 に SiO力もなる層間絶縁膜 2、 SiCN力もなる第一エッチングストップ膜 3a、 SiO力
2 2 らなる第一配線層間絶縁膜 10aをこの順に積層して形成する。
[0170] 次いで、ダマシン法により、第一配線層間絶縁膜 10a中に配線溝 11aを形成する。
[0171] 第一配線層間絶縁膜 10aとしては、例えば、 SiO、 SiC、 SiCN、 HSQ (ハイドロゲ
2
ンシルセスキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標)) 、 MSQ (メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR— LKD (登録商標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登 録商標))、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiO C (例えば、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登 録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのい ずれかを複数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向 に変化させた膜、などを用いることができる。 [0172] 複数積層した膜 (積層構造)の例としては、 SiO ZAuroraULK(
2 =上層 Z下層) 力もなる 2層構造とし、 SiO膜を Cuの CMP時における AuroraULK膜の保護膜とし
2
て使用する構造や、配線間容量を低減するため、 Black Diamond/ AuroraULK (=上層 Z下層)を使用する構造がある。あるいは、 SiO /AuroraULK/SiO (=
2 2 上層 Z中層 Z下層)からなる 3層構造とし、上層 SiOを Cuの CMP時における Auror
2
aULK膜の保護膜として使用し、下層の SiOを密着層として使用する構造がある。
2
[0173] その後、図 7 (b)に示すように、スパッタ法を用いて、第一配線層間絶縁膜 10aの露 出面及び配線溝 1 laの側壁及び底面 (層間絶縁膜 2の露出面)を覆って、 Ta/TaN (=上層 Z下層)の積層膜からなる第一ノリアメタル膜 4aを形成する。
[0174] 次に、図 7 (c)に示すように、第一ノリアメタル膜 4a上に銅合金シード膜 12を形成 する。
[0175] 銅合金シード膜 12としては、銅ターゲット中にアルミニウムを 1. 2at.%含む銅アル ミニゥム合金ターゲットを用いた、ィォナイズドスパッタリング法により形成した銅アルミ ニゥム合金を用いる。
[0176] その後、銅合金シード膜 12を電極として、電解めつき法により、銅膜 13を銅合金シ ード膜 12上に形成する。これにより、配線溝 11aは銅膜 13により埋められる。
[0177] 次に、 350°Cの温度で 30分熱処理することにより、銅アルミニウム合金からなる銅 合金シード膜 12から銅膜 13にアルミニウムを熱拡散させ、図 7 (d)に示すように、銅 アルミニウム合金力もなる合金膜 14が第一ノリアメタル膜 4a上に形成される。
[0178] この時、銅合金シード膜 12中に含有されているアルミニウムは銅膜 13中に均一に 拡散せず、形成される合金膜 14中のアルミニウム濃度は第一ノリアメタル膜 4aの近 傍の領域ほど高くなつている。
[0179] 但し、アルミニウム濃度は、最も高い第一ノリアメタル膜 4aの近傍でも、 1. Oat. % 以下になっている。
[0180] その後、図 7 (e)に示すように、 CMP (化学機械研磨)法により合金膜 14を第一配 線層間絶縁膜 10aが露出するまで除去し、第一合金配線 5aを形成する。
[0181] 次いで、第一合金配線 5aの上面を SiCN力もなる第一配線保護膜 15aにより被覆 する。 [0182] 次に、 350°Cの温度で 30分熱処理することによって、銅アルミニウム合金からなる 第一合金配線 5a中に含有される銅及びアルミニウムを第一配線保護膜 15a中に拡 散させる。この結果、図 7 (f)に示すように、第一合金配線 5aの上面を被覆する第一 配線保護膜 6aは、第一合金配線 5a中に含まれる金属元素のうちの少なくとも一つの 金属元素を含有するようになる。
[0183] このとき、第一合金配線 5aの上面を被覆する第一配線保護膜 6a中の金属元素濃 度は lat.%以下の範囲であり、第一合金配線 5aの表面に近いほど高くなつている。
[0184] さらに、第一合金配線 5a中に含有されるアルミニウムは、この熱処理により界面に 偏祈し、第一配線保護膜 6aと第一合金配線 5aの界面近傍におけるアルミニウム濃 度は、第一合金配線 5aの内部よりも上昇している。
[0185] 次に、第一配線保護膜 6a及び 15aの上面に、 SiO力もなるビア層間絶縁膜 7、 Si
2
CN力もなる第二エッチングストップ膜 3b、 SiO力もなる第二配線層間絶縁膜 10bを
2
この順に形成する。
[0186] 第二配線層間絶縁膜 10bは第一配線層間絶縁膜 10aと同様の構成を有している。
[0187] ビア層間絶縁膜 7としては、例えば、 SiO、 SiC、 SiCN、 HSQ (ハイドロゲンシルセ
2
スキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標))、MSQ ( メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR—LKD (登録商 標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登録商標) )、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiOC (例えば 、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのいずれかを複 数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向に変化させ た膜、などを用いることができる。
[0188] 次に、図 7 (g)に示すように、デュアルダマシン法により、第二配線層間絶縁膜 10b 、第二エッチングストップ膜 3b、ビア層間絶縁膜 7及び第一配線保護膜 6aを貫通す るビアホール 11cと、第二配線層間絶縁膜 10bを貫通する配線溝 l ibとを形成する。 配線溝 1 lbはビアホーノレ 1 lcよりも大径である。
[0189] その後、図 7 (h)に示すように、スパッタ法を用いて、ビアホール 11c及び配線溝 11 bを覆うように TaZTaN ( =上層 Z下層)の積層膜からなる第ニノくリアメタル膜 4bを 形成する。
[0190] 次いで、配線溝 11a内に形成された第一合金配線 5aと同様にして、ビアホール 11 c及び配線溝 1 lbの内部に第二合金配線 5bを形成する。
[0191] 次いで、第二合金配線 5b及び第二配線層間絶縁膜 10bの上面を SiCN力もなる 第二配線保護膜 15bにより被覆する。
[0192] 次いで、 350°Cの温度で 30分熱処理することにより、銅アルミニウム合金力もなる第 二合金配線 5b中に含有される銅及びアルミニウムが第二配線保護膜 15b中に拡散 する。この結果として、図 7 (i)に示すように、第二合金配線 5bの上面を被覆する第二 配線保護膜 6bは、第二合金配線 5b中に含まれる金属元素のうちの少なくとも一つの 金属元素を含有するようになる。
[0193] このとき、第二合金配線 5bの上面を被覆する第二配線保護膜 6b中の金属元素濃 度は lat.%以下の範囲であり、第二合金配線 5bの表面に近いほど高くなつている。
[0194] さらに、第一合金配線 5aと同様、第二合金配線 5b中に含有されるアルミニウムの 濃度は第ニノくリアメタル膜 4bの近傍ほど高 ヽ。
[0195] また、第二配線保護膜 6bと第二合金配線 5bとの界面近傍におけるアルミニウムの 濃度が第二合金配線 5bの内部よりも高くなつている。
[0196] 但し、第二合金配線 5b中のアルミニウム濃度は、最も高い第ニノくリアメタル膜 4bの 近傍でも 1. Oat. %以下となっている。
[0197] 以上の工程により形成された半導体装置においては、第一合金配線 5a及び第二 合金配線 5bと第一配線保護膜 6a及び第二配線保護膜 6bとの間の密着性を向上さ せることができ、このため、エレクト口マイグレーション耐性及びストレス誘起ボイド耐性 を向上させることができた。
(第 6の実施の形態)
図 8は、図 7に示した半導体装置の製造方法により製造された半導体装置の第一 の変形例の断面図である。
[0198] 本変形例に係る半導体装置においては、図 7 (f)及び (i)に示す工程、すなわち、 銅アルミニウム合金力もなる第一合金配線 5a及び第二合金配線 5b中に含有される 銅及びアルミニウムを第一配線保護膜 15a及び第二配線保護膜 15b中に拡散させ る工程において、金属元素の拡散領域を第一配線保護膜 15a及び第二配線保護膜 15bよりち短くする。
[0199] これ〖こより、図 8に示すように、第一合金配線 5a及び第二合金配線 5b中に含まれる 金属元素のうちの少なくとも一つの金属元素を含有した第一配線保護膜 6a及び第 二配線保護膜 6b上に、金属元素を含まな!/、第三配線保護膜 8a及び第四配線保護 膜 8bが存在することとなる。この結果、第三配線保護膜 8a及び第四配線保護膜 8b の上面に形成される層間絶縁膜と、第一合金配線 5a及び第二合金配線 5b中に含ま れる金属元素のうちの少なくとも一つの金属元素を含有した第一配線保護膜 6a及び 第二配線保護膜 6bとが直接に接触しない構造を得ることができた。
[0200] あるいは、銅アルミニウム合金カゝらなる第一合金配線 5a及び第二合金配線 5b中に 含有される銅及びアルミニウムを第一配線保護膜 15a及び第二配線保護膜 15b中 に拡散させる工程の後に、第一配線保護膜 6a及び第二配線保護膜 6bの上面に、 第一配線保護膜 15a及び第二配線保護膜 15bと同種の第三配線保護膜 8a及び第 四配線保護膜 8bを形成することによつても同様の構造を得ることができた。
[0201] 本変形例に係る半導体装置によれば、第一合金配線 5a及び第二合金配線 5bと第 一配線保護膜 6a及び第二配線保護膜 6bとの間の密着性を向上させることができ、 その結果、エレクト口マイグレーション耐性及びストレス誘起ボイド耐性を向上させるこ とができた。
[0202] 力!]えて、本変形例に係る半導体装置においては、金属元素を含む第一合金配線 5 a及び第二合金配線 5bの上面を被覆する第一配線保護膜 6a及び第二配線保護膜 6bの上面に、金属元素を含まない膜からなる第三配線保護膜 8a及び第四配線保護 膜 8bが形成されているため、第三配線保護膜 8a及び第四配線保護膜 8bとその上 層の層間絶縁膜との間の密着性の高い配線構造を得ることができた。
(第 7の実施の形態)
図 9は、図 7に示した半導体装置の製造方法により製造された半導体装置の第二 の変形例の断面図である。
[0203] 本変形例に係る半導体装置にぉ 、ては、図 7 (g)に示した工程、すなわち、ビアホ ール 11c及び配線溝 l ibをデュアルダマシン法により加工する工程において、第二 エッチングストップ膜 3bを用いずに加工することによって、図 9に示す構造の半導体 装置を得ることができた。
[0204] 本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性及びストレス 誘起ボイド耐性を向上させることができるとともに、配線の実効的な誘電率を低減し、 配線間の寄生容量を低減することができた。
(第 8の実施の形態)
本実施形態に係る半導体装置は図 7に示した半導体装置の製造方法により製造さ れた半導体装置の第三の変形例である。
[0205] 本変形例に係る半導体装置は図 7 (i)に示した断面を有する半導体装置と同様の 構造を有しているが、第一配線保護膜 15a及び第二配線保護膜 15bとして、プラズ マ重合法により作成した DVS - BCB (ジビュルシロキサン―ベンゾシクロブテン)膜 を用いた。
[0206] これにより、本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性 及びストレス誘起ボイド耐性を向上させることができるとともに、配線の実効的な誘電 率を低減し、配線間の寄生容量を低減することができた。
(第 9の実施の形態)
図 10は、図 7に示した半導体装置の製造方法により製造された半導体装置の第四 の変形例の断面図である。
[0207] 本変形例に係る半導体装置にぉ 、ては、図 7 (a)及び (g)に示した工程、すなわち 、配線溝 l la、ビアホール 11c及び配線溝 l ibをダマシン法により加工する工程にお いて、プラズマ重合法により作成した DVS— BCB (ジビュルシロキサン ベンゾシク ロブテン)膜をそれらの側壁を保護する側壁保護膜 16a、 16c, 16bとしてそれぞれ 形成した。
[0208] この結果、図 10に示す構造の半導体装置を得ることができた。
[0209] 本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性及びストレス 誘起ボイド耐性を向上させることができるとともに、層間絶縁膜の側壁の保護による配 線間リーク低減の効果を得ることができた。特に、第一配線層間膜 10a、第二配線層 間膜 10bまたはビア層間膜 7の少なくとも一部として、 AuroraULKのようなポーラス 膜を用いる場合に、顕著な効果を得ることができた。
(第 10の実施の形態)
図 11は、図 7に示した半導体装置の製造方法により製造された半導体装置の第五 の変形例の断面図である。
[0210] 本変形例に係る半導体装置は図 7 (i)に示した断面を有する半導体装置と同様の 構造を有しているが、第一配線層間絶縁膜 10a及び第二配線層間絶縁膜 10bとして 、ポーラス膜である AuroraULKと、配線層ハードマスクの SiOとの積層構造(図 11
2
中では配線層ハードマスクを 17a及び 17bで示す)を用い、ビア層間絶縁膜 7には、 Black Diamondからなる膜を用いた。
[0211] これにより、本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性 及びストレス誘起ボイド耐性を向上させることができるとともに、 SiO膜よりも比誘電率
2
の低い AuroraULK膜及び Black Diamond膜を用いることにより、配線の実効的 な誘電率を低減し、配線間の寄生容量を低減することができた。
(第 11の実施の形態)
本実施形態においては、第 10の実施の形態として示した第五の変形例において、 配線層ハードマスク 17a及び 17bとして Black Diamond膜を用い、ビア層間絶縁膜
7として AuroraULK膜を用いた。
[0212] これにより、本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性 及びストレス誘起ボイド耐性を向上させることができるとともに、配線の実効的な誘電 率を低減し、配線間の寄生容量を低減することができた。
(第 12の実施の形態)
図 12は、図 7に示した半導体装置の製造方法により製造された半導体装置の第六 の変形例の断面図である。
[0213] 本実施形態に係る半導体装置は、図 9に示した第 7の実施の形態の変形例である
[0214] 本実施形態に係る半導体装置においては、図 9に示した第 7の実施の形態におけ る第一配線層間絶縁膜 4a及び第二配線層間絶縁膜 4bとして、ポーラス膜である Au roraULKと、配線層ハードマスクの SiOとの積層構造(図 12中では配線層ハードマ
2
スクを 17a及び 17bで示す)を用い、ビア層間絶縁膜 7として、 AuroraULK膜を用い た。
[0215] これにより、本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性 及びストレス誘起ボイド耐性を向上させることができるとともに、配線の実効的な誘電 率を低減し、配線間の寄生容量を低減することができた。
(第 13の実施の形態)
図 13は、図 7に示した半導体装置の製造方法により製造された半導体装置の第七 の変形例の断面図である。
[0216] 本実施形態に係る半導体装置は、図 11に示した第 10の実施の形態の変形例であ る。
[0217] 本実施形態に係る半導体装置においては、図 11に示した第 10の実施の形態にお ける配線やビアの側壁に対して、側壁保護膜 16a、 16c、 16bとして、プラズマ重合 法により作成した DVS— BCB (ジビュルシロキサン—ベンゾシクロブテン)膜を形成 した。
[0218] これにより、本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性 及びストレス誘起ボイド耐性を向上させることができるとともに、層間絶縁膜の側壁の 保護、ならびに、配線層間絶縁膜とハードマスクとの界面の保護による配線間リーク の低減の効果を得ることができた。
(第 14の実施の形態)
図 14は、図 3に示した第 3の実施の形態に係る半導体装置の構造を応用した半導 体装置の製造方法における各工程を示す断面図である。以下、図 14を参照して、本 半導体装置の製造方法を説明する。
[0219] まず、図 14 (a)に示すように、半導体素子(図示せず)が形成された半導体基板 1 上に SiO力もなる層間絶縁膜 2、 SiCN力もなる第一エッチングストップ膜 3a、 SiO
2 2 力もなる第一配線層間絶縁膜 10aをこの順に積層して形成する。
[0220] 次いで、第一配線層間絶縁膜 10a中にダマシン法により配線溝 11aを形成する。
[0221] 第一配線層間絶縁膜 10aとしては、例えば、 SiO、 SiC、 SiCN、 HSQ (ハイドロゲ ンシルセスキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標)) 、 MSQ (メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR— LKD (登録商標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登 録商標))、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiO C (例えば、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登 録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのい ずれかを複数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向 に変化させた膜、などを用いることができる。
[0222] 複数積層した膜 (積層構造)の例としては、 SiO ZAuroraULK(
2 =上層 Z下層) 力もなる 2層構造とし、 SiO膜を Cuの CMP時における AuroraULK膜の保護膜とし
2
て使用する構造や、配線間容量を低減するため、 Black Diamond/ AuroraULK (=上層 Z下層)を使用する構造がある。あるいは、 SiO /AuroraULK/SiO (=
2 2 上層 Z中層 Z下層)からなる 3層構造とし、上層 SiOを Cuの CMP時における Auror
2
aULK膜の保護膜として使用し、下層の SiOを密着層として使用する構造がある。
2
[0223] その後、図 14 (b)に示すように、スパッタ法を用いて、第一配線層間絶縁膜 10aの 露出面及び配線溝 1 laの側壁及び底面 (層間絶縁膜 2の露出面)を覆って、 Ta/T aN ( =上層 Z下層)の積層膜からなる第一ノリアメタル膜 4aを形成する。
[0224] 次に、図 14 (c)に示すように、第一ノリアメタル膜 4a上に銅合金シード膜 12を形成 する。
[0225] 銅合金シード膜 12としては、銅ターゲット中にアルミニウムを 1. 2at.%含む銅アル ミニゥム合金ターゲットを用いた、ィォナイズドスパッタリング法により形成した銅アルミ ニゥム合金を用いる。
[0226] その後、銅合金シード膜 12を電極として、電解めつき法により、銅膜 13を銅合金シ ード膜 12上に形成する。これにより、配線溝 11aは銅膜 13により埋められる。
[0227] 次に、 350°Cの温度で 30分熱処理することにより、銅アルミニウム合金からなる銅 合金シード膜 12から銅膜 13にアルミニウムを熱拡散させ、図 14 (d)に示すように、銅 アルミニウム合金力もなる合金膜 14が第一ノリアメタル膜 4a上に形成される。
[0228] この時、銅合金シード膜 12中に含有されているアルミニウムは銅膜 13中に均一に 拡散せず、形成される合金膜 14中のアルミニウム濃度は第一ノリアメタル膜 4aの近 傍の領域ほど高くなつている。
[0229] 但し、アルミニウム濃度は、最も高い第一ノリアメタル膜 4aの近傍でも、 1. Oat. % 以下になっている。
[0230] その後、図 14 (e)に示すように、 CMP (化学機械研磨)法により合金膜 14を第一配 線層間絶縁膜 10aが露出するまで除去し、第一合金配線 5aを形成する。
[0231] 次いで、第一合金配線 5aの上面を SiCN力もなる第一配線保護膜 15aにより被覆 する。
[0232] 次に、 350°Cの温度で 30分熱処理することによって、銅アルミニウム合金からなる 第一合金配線 5a中に含有される銅及びアルミニウムを第一配線保護膜 15a中に拡 散させる。この結果、図 14 (f)に示すように、第一合金配線 5aの上面を被覆する第一 配線保護膜 6aは、第一合金配線 5a中に含まれる金属元素のうちの少なくとも一つの 金属元素を含有するようになる。
[0233] このとき、第一合金配線 5aの上面を被覆する第一配線保護膜 6a中の金属元素濃 度は lat.%以下の範囲であり、第一合金配線 5aの表面に近いほど高くなつている。
[0234] さらに、第一合金配線 5a中に含有されるアルミニウムは、この熱処理により界面に 偏祈し、第一配線保護膜 6aと第一合金配線 5aの界面近傍におけるアルミニウム濃 度は、第一合金配線 5aの内部よりも上昇している。
[0235] 次に、第一配線保護膜 6a及び 15aの上面に、 SiO力もなるビア層間絶縁膜 7を形
2
成する。
[0236] ビア層間絶縁膜 7としては、例えば、 SiO、 SiC、 SiCN、 HSQ (ハイドロゲンシルセ
2
スキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標))、MSQ ( メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR—LKD (登録商 標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登録商標) )、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiOC (例えば 、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのいずれかを複 数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向に変化させ た膜、などを用いることができる。
[0237] 次いで、図 14 (g)に示すように、ビア層間絶縁膜 7及び第一配線保護膜 6aを貫通 し、第一合金配線 5aに到達するビアホール 1 lcを形成する。
[0238] 次いで、図 14 (h)〖こ示すように、ビアホール 11cの内壁上に TaZTaN ( =上層 Z 下層)の積層膜からなる第三ノ リアメタル膜 4cを形成する。
[0239] 次いで、ビアホール 11cの内部に第三バリアメタル膜 4cに囲まれた状態の合金ビア
5cを形成する。
[0240] 合金ビア 5cの形成の手順は、配線溝 1 la中に第一合金配線 5aを形成した手順と 同様である。
[0241] 次いで、図 14 (h)に示すように、合金ビア 5c及びビア層間絶縁膜 7上に第二エッチ ングストップ膜 3b、第二配線層間絶縁膜 10bをこの順に形成する。
[0242] 次いで、第二エッチングストップ膜 3b及び第二配線層間絶縁膜 10bを貫通し、合 金ビア 5c及びビア層間絶縁膜 7に到達するビアホール(図示せず)を形成する。
[0243] 次いで、このビアホールの内壁上に TaZTaN ( =上層 Z下層)の積層膜からなる 第ニノくリアメタル膜 4bを形成する。
[0244] 次いで、ビアホールの内部に第ニノリアメタル膜 4bに囲まれた状態の第二合金配 線 5bを形成する。第二合金配線 5bの形成の手順は、配線溝 11a中に第一合金配線
5aを形成した手順と同様である。
[0245] 第二配線層間絶縁膜 10bは第一配線層間絶縁膜 10aと同様の構成を有している。
[0246] 次いで、第二合金配線 5bの上面を SiCN力もなる第二配線保護膜 15bにより被覆 する。
[0247] 次に、 350°Cの温度で 30分熱処理することによって、銅アルミニウム合金からなる 第二合金配線 5b中に含有される銅及びアルミニウムを第二配線保護膜 15b中に拡 散させる。この結果、図 14 (i)に示すように、第二合金配線 5bの上面を被覆する第二 配線保護膜 6bは、第二合金配線 5b中に含まれる金属元素のうちの少なくとも一つの 金属元素を含有するようになる。
[0248] このとき、第二合金配線 5bの上面を被覆する第二配線保護膜 6b中の金属元素濃 度は lat.%以下の範囲であり、第二合金配線 5bの表面に近いほど高くなつている。 [0249] さらに、第一合金配線 5aと同様に、第二合金配線 5b中に含有されるアルミニウムの 濃度は、第ニノくリアメタル膜 4bの近傍ほど高い。
[0250] また、第二配線保護膜 6bと第二合金配線 5bとの界面の近傍におけるアルミニウム の濃度は第二合金配線 5の内部よりも高くなつている。
[0251] 但し、第二合金配線 5b中のアルミニウム濃度は、最も高い第ニノくリアメタル膜 4bの 近傍でも 1. Oat. %以下となっている。
[0252] 以上の工程により形成された半導体装置においては、第一合金配線 5a及び第二 合金配線 5bと第一配線保護膜 6a及び第二配線保護膜 6bとの間の密着性を向上さ せることができ、このため、エレクト口マイグレーション耐性及びストレス誘起ボイド耐性 を向上させることができた。
(第 15の実施の形態)
図 15は、図 14に示した半導体装置の製造方法により製造された半導体装置の第 一の変形例の断面図である。
[0253] 本変形例に係る半導体装置においては、図 14 (f)及び (i)に示す工程、すなわち、 銅アルミニウム合金力もなる第一合金配線 5a及び第二合金配線 5b中に含有される 銅及びアルミニウムを第一配線保護膜 15a及び第二配線保護膜 15b中に拡散させ る工程において、金属元素の拡散領域を第一配線保護膜 15a及び第二配線保護膜
15bよりち短くする。
[0254] これ〖こより、図 15に示すように、第一合金配線 5a及び第二合金配線 5b中に含まれ る金属元素のうちの少なくとも一つの金属元素を含有した第一配線保護膜 6a及び第 二配線保護膜 6b上に、金属元素を含まな!/、第三配線保護膜 8a及び第四配線保護 膜 8bが存在することとなる。この結果、第三配線保護膜 8a及び第四配線保護膜 8b の上面に形成される層間絶縁膜と、第一合金配線 5a及び第二合金配線 5b中に含ま れる金属元素のうちの少なくとも一つの金属元素を含有した第一配線保護膜 6a及び 第二配線保護膜 6bとが直接に接触しない構造を得ることができた。
[0255] あるいは、銅アルミニウム合金カゝらなる第一合金配線 5a及び第二合金配線 5b中に 含有される銅及びアルミニウムを第一配線保護膜 15a及び第二配線保護膜 15b中 に拡散させる工程の後に、第一配線保護膜 6a及び第二配線保護膜 6bの上面に、 第一配線保護膜 15a及び第二配線保護膜 15bと同種の第三配線保護膜 8a及び第 四配線保護膜 8bを形成することによつても同様の構造を得ることができた。
[0256] 本変形例に係る半導体装置によれば、第 14の実施の形態と同様に、第一合金配 線 5a及び第二合金配線 5bと第一配線保護膜 6a及び第二配線保護膜 6bとの間の 密着性を向上させることができ、その結果、エレクト口マイグレーション耐性及びストレ ス誘起ボイド耐性を向上させることができた。
[0257] 力!]えて、本変形例に係る半導体装置においては、金属元素を含む第一合金配線 5 a及び第二合金配線 5bの上面を被覆する第一配線保護膜 6a及び第二配線保護膜 6bの上面に、金属元素を含まない膜からなる第三配線保護膜 8a及び第四配線保護 膜 8bが形成されているため、第三配線保護膜 8a及び第四配線保護膜 8bとその上 層の層間絶縁膜との間の密着性の高い配線構造を得ることができた。
(第 16の実施の形態)
図 16は、図 14に示した半導体装置の製造方法により製造された半導体装置の第 二の変形例の断面図である。
[0258] 本変形例に係る半導体装置は図 14 (i)に示した断面を有する半導体装置と同様の 構造を有しているが、第一配線層間絶縁膜 10a及び第二配線層間絶縁膜 10bとして 、ポーラス膜である AuroraULKと、配線層ハードマスクの SiOとの積層構造(図 16
2
中では配線層ハードマスクを 17a及び 17bで示す)を用い、ビア層間絶縁膜 7には、 Black Diamondからなる膜を用いた。
[0259] これにより、本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性 及びストレス誘起ボイド耐性を向上させることができるとともに、 SiO膜よりも比誘電率
2
の低い AuroraULK膜及び Black Diamond膜を用いることにより、配線の実効的 な誘電率を低減し、配線間の寄生容量を低減することができた。
(第 17の実施の形態)
図 17は、図 14に示した半導体装置の製造方法により製造された半導体装置の第 三の変形例の断面図である。
[0260] 本変形例に係る半導体装置においては、図 16に示した半導体装置の第一合金配 線 5a及び第二合金配線 5bの側壁上に、プラズマ重合法により作成した DVS— BC B (ジビニルシロキサン—ベンゾシクロブテン)膜をそれらの側壁を保護する側壁保護 膜 16a、 16c、 16bとしてそれぞれ形成した。
[0261] 本変形例に係る半導体装置によれば、エレクト口マイグレーション耐性及びストレス 誘起ボイド耐性を向上させることができるとともに、層間絶縁膜の側壁の保護及び配 線層間絶縁膜とハードマスク界面の保護による配線間リーク低減の効果を得ることが できた。
(第 18の実施の形態)
図 18は、図 1に示した第 1の実施の形態に係る半導体装置の構造を応用した半導 体装置の製造方法における各工程を示す断面図である。以下、図 18を参照して、本 半導体装置の製造方法を説明する。
[0262] まず、図 18 (a)に示すように、半導体素子(図示せず)が形成された半導体基板 1 上に SiO力もなる層間絶縁膜 2、 SiCN力もなる第一エッチングストップ膜 3a、 SiO
2 2 力もなる第一配線層間絶縁膜 10aをこの順に積層して形成する。
[0263] 次いで、ダマシン法により、第一配線層間絶縁膜 10a中に配線溝 11aを形成する。
[0264] 第一配線層間絶縁膜 10aとしては、例えば、 SiO、 SiC、 SiCN、 HSQ (ハイドロゲ
2
ンシルセスキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標)) 、 MSQ (メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR— LKD (登録商標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登 録商標))、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiO C (例えば、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登 録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのい ずれかを複数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向 に変化させた膜、などを用いることができる。
[0265] 複数積層した膜 (積層構造)の例としては、 SiO ZAuroraULK(
2 =上層 Z下層) 力もなる 2層構造とし、 SiO膜を Cuの CMP時における AuroraULK膜の保護膜とし
2
て使用する構造や、配線間容量を低減するため、 Black Diamond/ AuroraULK (=上層 Z下層)を使用する構造がある。あるいは、 SiO /AuroraULK/SiO (=
2 2 上層 Z中層 Z下層)からなる 3層構造とし、上層 SiOを Cuの CMP時における Auror aULK膜の保護膜として使用し、下層の SiOを密着層として使用する構造が
2
その後、図 18 (b)に示すように、スパッタ法を用いて、第一配線層間絶縁膜 10aの 露出面及び配線溝 1 laの側壁及び底面 (層間絶縁膜 2の露出面)を覆って、 Ta/T aN ( =上層 Z下層)の積層膜からなる第一ノリアメタル膜 4aを形成する。
[0266] 次に、図 18 (c)に示すように、第一ノリアメタル膜 4a上に銅合金シード膜 12を形成 する。
[0267] 銅合金シード膜 12としては、銅ターゲット中にアルミニウムを 1. 2at.%含む銅アル ミニゥム合金ターゲットを用いた、ィォナイズドスパッタリング法により形成した銅アルミ ニゥム合金を用いる。
[0268] その後、銅合金シード膜 12を電極として、電解めつき法により、銅膜 13を銅合金シ ード膜 12上に形成する。これにより、配線溝 11aは銅膜 13により埋められる。
[0269] 次に、 350°Cの温度で 30分熱処理することにより、銅アルミニウム合金からなる銅 合金シード膜 12から銅膜 13にアルミニウムを熱拡散させ、図 18 (d)に示すように、銅 アルミニウム合金力もなる合金膜 14が第一ノリアメタル膜 4a上に形成される。
[0270] この時、銅合金シード膜 12中に含有されているアルミニウムは銅膜 13中に均一に 拡散せず、形成される合金膜 14中のアルミニウム濃度は第一ノリアメタル膜 4aの近 傍の領域ほど高くなつている。
[0271] 但し、合金膜 14中のアルミニウム濃度は、最も高い第一ノリアメタル膜 4aの近傍で も、 1. Oat. %以下になっている。
[0272] その後、図 18 (e)に示すように、 CMP (化学機械研磨)法により合金膜 14を第一配 線層間絶縁膜 10aが露出するまで除去し、第一合金配線 5aを形成する。
[0273] 次いで、第一合金配線 5aの上面を、プラズマ CVD法により形成したアルミニウムを 含有する SiCN力 なる第一配線保護膜 6aにより被覆する。
[0274] このとき、第一合金配線 5aの上面を被覆する第一配線保護膜 6a中の金属元素濃 度が lat.%以下の範囲になるように、アルミニウムの添加量を調整する。
[0275] 第一合金配線 5a中に含有されるアルミニウムは、第一配線保護膜 6aの成膜時の 熱により、第一配線保護膜 6aと第一合金配線 5aとの界面に偏祈し、この界面の近傍 におけるアルミニウムの濃度が第一合金配線 5aの内部よりも上昇している。 [0276] 次に、第一配線保護膜 6a及び 15aの上面に、 SiO力もなるビア層間絶縁膜 7、 Si
2
CN力もなる第二エッチングストップ膜 3b、 SiO力もなる第二配線層間絶縁膜 10bを
2
この順に形成する。
[0277] 第二配線層間絶縁膜 10bは第一配線層間絶縁膜 10aと同様の構成を有している。
[0278] ビア層間絶縁膜 7としては、例えば、 SiO、 SiC、 SiCN、 HSQ (ハイドロゲンシルセ
2
スキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標))、MSQ ( メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR—LKD (登録商 標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登録商標) )、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiOC (例えば 、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのいずれかを複 数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向に変化させ た膜、などを用いることができる。
[0279] 次に、図 18 (g)に示すように、デュアルダマシン法により、第二配線層間絶縁膜 10 b、第二エッチングストップ膜 3b、ビア層間絶縁膜 7及び第一配線保護膜 6aを貫通す るビアホール 11cと、第二配線層間絶縁膜 10bを貫通する配線溝 l ibとを形成する。 配線溝 1 lbはビアホーノレ 1 lcよりも大径である。
[0280] その後、図 18 (h)に示すように、スパッタ法を用いて、ビアホール 11c及び配線溝 1 lbを覆うように TaZTaN ( =上層/下層)の積層膜からなる第ニノくリアメタル膜 4bを 形成する。
[0281] 次いで、配線溝 11a内に形成された第一合金配線 5aと同様にして、ビアホール 11 c及び配線溝 1 lbの内部に第二合金配線 5bを形成する。
[0282] 次 、で、第二合金配線 5b及び第二配線層間絶縁膜 10bの上面を、プラズマ CVD 法により形成したアルミニウムを含有する SiCN力もなる第二配線保護膜 6bにより被 覆する。
[0283] このとき、第二合金配線 5bの上面を被覆する第二配線保護膜 6b中の金属元素濃 度が lat.%以下の範囲になるように、アルミニウムの添加量を調整する。
[0284] さらに、第一合金配線 5aと同様に、第二合金配線 5b中に含有されるアルミニウムの 濃度は第ニノくリアメタル膜 4bの近傍ほど高 ヽ。
[0285] また、第二配線保護膜 6bと第二合金配線 5bとの界面近傍におけるアルミニウムの 濃度が第二合金配線 5bの内部よりも高くなつている。
[0286] 但し、第二合金配線 5b中のアルミニウム濃度は、最も高い第ニノくリアメタル膜 4bの 近傍でも 1. Oat. %以下となっている。
[0287] 以上の工程により形成された半導体装置においては、第一合金配線 5a及び第二 合金配線 5bと第一配線保護膜 6a及び第二配線保護膜 6bとの間の密着性を向上さ せることができ、このため、エレクト口マイグレーション耐性及びストレス誘起ボイド耐性 を向上させることができた。
(第 19の実施の形態)
図 19 (a)は、第 5の実施の形態に係る製造方法により製造された半導体装置(図 7 (i) )における第一ノリアメタル膜 4a、第一合金配線 5a及び第一配線保護膜 6a中の 深さ方向におけるアルミニウム濃度の分布を示すグラフであり、図 19 (b)は、アルミ- ゥムを添加しな 、場合の、同様のアルミニウム濃度の分布を示すグラフである。
[0288] また、図 20 (a)は、第 5の実施の形態に係る製造方法により製造された半導体装置
(図 7 (i) )における第一ノリアメタル膜 4a、第一合金配線 5a及び第一配線保護膜 6a 中の深さ方向における酸素濃度の分布を示すグラフであり、図 20 (b)は、第一合金 配線 5a内のアルミニウム濃度に深さ方向に対する依存性がない場合における酸素 濃度の分布を示すグラフである。
[0289] 図 19 (a)に示すように、第一合金配線 5a中の第一バリアメタル膜 4a側と第一合金 配線 5aの表面側とでアルミニウム濃度が高くなるようにアルミニウム濃度を制御するこ とにより、同程度の抵抗を有するアルミニウムを均一に含有した合金配線よりも、エレ タトロマイグレーション耐性及びストレス誘起ボイド耐性を高めることができた。
[0290] 図中に示すアルミニウム濃度は、第一配線保護膜 6a (SiCN膜)の表面側からの SI MS分析により、第一合金配線 5a (CuAl膜)中で定量されている。
[0291] また、第一配線保護膜 6aと第一合金配線 5aと界面部分はマトリクス効果の影響を 受けているが、第一配線保護膜 6a (SiCN膜)中に Cu及び A1が存在していることを 示している。 [0292] これは、図 19 (b)に示したアルミニウムを添カ卩しな!/、場合のアルミニウム濃度プロフ アイルと比較すると、明らかである。
[0293] このとき、第一配線保護膜 6a (SiCN膜)を形成する前の第一合金配線 5aの表面に
、シリコンを添加する方法を併用することによって、信頼性をさらに向上させる効果が 得られることち確認して 、る。
[0294] 但し、この場合のシリコンの添加範囲は第一配線保護膜 6a (SiCN膜)の近傍に限 ることが望ましい。これは、第一ノ リアメタル膜 4a側と第一合金配線 5aの表面側とで アルミニウム濃度が高くなるようコントロールした効果を保存するためである。
[0295] アルミニウム濃度プロファイルのコントロール方法としては、第五の実施形態のよう に合金シードを用いる方法、アルミニウムが銅よりも原子半径が大きぐ粒界や表面な どの引張応力場に引き寄せられることを利用し、熱処理により界面 (表面)に析出させ る方法、第一合金配線 5aの表面側からアルミニウムを拡散させる方法、などを用いる ことができる。
[0296] 第 5の実施の形態に係る製造方法により製造された半導体装置の信頼性が向上す るのは、第一合金配線 5aと第一配線保護膜 6aとの間の密着性の向上に加え、第一 ノ リアメタル膜 4aの表面の酸ィ匕が抑制され、第一合金配線 5aと第一ノ リアメタル膜 4 aとの間の密着性も向上するためである。
[0297] これは、図 20 (a)、すなわち、深さ方向における酸素濃度プロファイルに示すように 、第一合金配線 5a (CuAl膜)中には酸素濃度のピークが存在しており、図 7 (c)に示 す工程、すなわち、合金シード膜 12を形成する工程において、アルミニウムの酸ィ匕 により合金シード膜 12の表面に安定な酸化被膜 (酸素濃度のピークが存在する領域 において、銅の信号強度に変化がないため、膜厚は極薄と考えられる)が形成され、 第一ノ リアメタル膜 4aの表面の酸ィ匕が抑制されるためである。
[0298] 図 20 (b)、すなわち、第一合金配線 4a内のアルミニウム濃度に深さ方向依存性が ない場合における酸素濃度プロファイルと比較して、図 20 (a)においては、第一バリ ァメタル膜 4aの表面の酸素濃度ピークが減少している。
(第 20の実施の形態)
図 21は、配線保護膜に金属元素が含まれないが、合金配線内部の濃度プロフアイ ルのコントロールによって信頼性を向上させた半導体装置の製造方法における各ェ 程を示す断面図である。以下、図 21を参照して、本半導体装置の製造方法を説明 する。
[0299] まず、図 21 (a)に示すように、半導体素子(図示せず)が形成された半導体基板 1 上に SiO力もなる層間絶縁膜 2、 SiCN力もなる第一エッチングストップ膜 3a、 SiO
2 2 力もなる第一配線層間絶縁膜 10aをこの順に積層して形成する。
[0300] 次いで、ダマシン法により、第一配線層間絶縁膜 10a中に配線溝 11aを形成する。
[0301] 第一配線層間絶縁膜 10aとしては、例えば、 SiO、 SiC、 SiCN、 HSQ (ハイドロゲ
2
ンシルセスキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標)) 、 MSQ (メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR— LKD (登録商標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登 録商標))、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiO C (例えば、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登 録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのい ずれかを複数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向 に変化させた膜、などを用いることができる。
[0302] 複数積層した膜 (積層構造)の例としては、 SiO ZAuroraULK(
2 =上層 Z下層) 力もなる 2層構造とし、 SiO膜を Cuの CMP時における AuroraULK膜の保護膜とし
2
て使用する構造や、配線間容量を低減するため、 Black Diamond/ AuroraULK (=上層 Z下層)を使用する構造がある。あるいは、 SiO /AuroraULK/SiO (=
2 2 上層 Z中層 Z下層)からなる 3層構造とし、上層 SiOを Cuの CMP時における Auror
2
aULK膜の保護膜として使用し、下層の SiOを密着層として使用する構造がある。
2
[0303] その後、図 21 (b)に示すように、スパッタ法を用いて、第一配線層間絶縁膜 10aの 露出面及び配線溝 1 laの側壁及び底面 (層間絶縁膜 2の露出面)を覆って、 Ta/T aN ( =上層 Z下層)の積層膜からなる第一ノリアメタル膜 4aを形成する。
[0304] 次に、図 21 (c)に示すように、第一ノリアメタル膜 4a上に銅合金シード膜 12を形成 する。
[0305] 銅合金シード膜 12としては、銅ターゲット中にアルミニウムを 1. 2at.%含む銅アル ミニゥム合金ターゲットを用いた、ィォナイズドスパッタリング法により形成した銅アルミ ニゥム合金を用いる。
[0306] その後、銅合金シード膜 12を電極として、電解めつき法により、銅膜 13を銅合金シ ード膜 12上に形成する。これにより、配線溝 11aは銅膜 13により埋められる。
[0307] 次に、 200°Cの温度で 30分熱処理することにより、銅アルミニウム合金からなる銅 合金シード膜 12と銅膜 13とを一体化させる。
[0308] 次 、で、図 21 (d)に示すように、銅アルミニウム合金力もなる合金膜 14を第一バリ ァメタル膜 4a上に形成する。ここで行う熱処理は、この後の CMP法による平坦ィ匕の 際に、欠陥や剥離の発生を防止するためのものである。
[0309] その後、図 21 (e)に示すように、 CMP (化学機械研磨)法により合金膜 14を第一配 線層間絶縁膜 10aが露出するまで除去し、第一合金配線 5aを形成する。
[0310] 次いで、 350°Cの温度で 30分熱処理することによって、銅アルミニウム合金からな る第一合金配線 5a中の第一ノリアメタル膜 4a側に比較的高い濃度で含有されてい るアルミニウムの一部を第一合金配線 5a中に拡散させ、さらに、表面に析出させる。 これにより、第一ノリアメタル膜 4a側及び第一合金配線 5aの表面側でのアルミニウム 濃度を第一合金配線 5aの中央部よりも高くする。
[0311] 次いで、図 21 (f)に示すように、第一合金配線 5aの上面を SiCN力もなる第一配線 保護膜 15aにより被覆する。
[0312] 次いで、第一配線保護膜 15a上に、 SiO力もなるビア層間絶縁膜 7、 SiCN力もな
2
る第二エッチングストップ膜 3b、 SiOカゝらなる第二配線層間絶縁膜 10bをこの順に
2
形成する。
[0313] このとき、第一合金配線 5a中に含有されるアルミニウムの濃度は、第一ノリアメタル 膜 4aの近傍ほど高い。
[0314] また、第一配線保護膜 15aと第一合金配線 5aとの界面の近傍におけるアルミ-ゥ ム濃度が第一合金配線 5aの内部よりも高くなつている。
[0315] 但し、第一合金配線 5aのアルミニウム濃度は、最も高 、第一ノリアメタル膜 4a近傍 でも 1. Oat. %以下となっている。
[0316] 第二配線層間絶縁膜 10bは第一配線層間絶縁膜 10aと同様の構成を有している。 [0317] ビア層間絶縁膜 7としては、例えば、 SiO、 SiC、 SiCN、 HSQ (ハイドロゲンシルセ
2
スキォキサン: Hydrogen Silsesquioxane)膜(例えば、 Typel2 (登録商標))、MSQ ( メチルシルセスキォキサン: Methyl Silsesquioxane)膜(例えば、 JSR—LKD (登録商 標)、 ALCAP (登録商標)、 NCS (登録商標)、 IPS (登録商標)、 HOSP (登録商標) )、有機ポリマー膜 (SiLK (登録商標)、 Flare (登録商標))、 SiOCH、 SiOC (例えば 、 Black Diamond (登録商標)、 CORAL (登録商標)、 AuroraULK (登録商標)、 Orion (登録商標)など)、これらに有機物を含んだ絶縁薄膜、これらのいずれかを複 数積層した膜、または、それらのいずれかの膜の組成や密度を膜厚方向に変化させ た膜、などを用いることができる。
[0318] 次に、図 21 (g)に示すように、デュアルダマシン法により、第二配線層間絶縁膜 10 b、第二エッチングストップ膜 3b、ビア層間絶縁膜 7及び第一配線保護膜 15aを貫通 するビアホール 11cと、第二配線層間絶縁膜 10bを貫通する配線溝 l ibとを形成す る。配線溝 l ibはビアホール 11cよりも大径である。
[0319] その後、図 21 (h)に示すように、スパッタ法を用いて、ビアホール 11c及び配線溝 1 lbを覆うように TaZTaN ( =上層/下層)の積層膜からなる第ニノくリアメタル膜 4bを 形成する。
[0320] 次いで、ビアホール 11c及び配線溝 l ibの内部に第二合金配線 5bを形成する。第 二合金配線 5bの形成の手順は、配線溝 1 la内に形成された第一合金配線 5aを形 成した手順と同様である。
[0321] 次いで、 350°Cの温度で 30分熱処理することにより、銅アルミニウム合金力もなる第 二合金配線 5b中の第二バリアメタル膜 4b側に比較的高い濃度で含有されているァ ルミ-ゥムの一部を第二合金配線 5b中に拡散させ、さらに、表面に析出させる。これ により、第ニノリアメタル膜 4b側及び第二合金配線 5bの表面側でのアルミニウム濃 度を第二合金配線 5bの中央部よりも高くする。
[0322] 次いで、図 21 (i)に示すように、第二合金配線 5b及び第二配線層間絶縁膜 10bの 上面を SiCN力 なる第二配線保護膜 15bにより被覆する。
[0323] 第一合金配線 5aと同様に、第二合金配線 5b中に含有されるアルミニウムの濃度は 、第ニノくリアメタル膜 4bの近傍ほど高い。 [0324] また、第二配線保護膜 15bと第二合金配線 5bとの界面の近傍におけるアルミ-ゥ ム濃度が第二合金配線 5bの内部よりも高くなつている。
[0325] 但し、第二合金配線 5bのアルミニウム濃度は、最も高 、第二バリアメタル膜 4b近傍 でも 1. Oat. %以下となっている。
[0326] 以上の工程により形成された半導体装置においては、第一合金配線 5a及び第二 合金配線 5bと第一配線保護膜 15a及び第二配線保護膜 15bとの間の密着性を向上 させることができ、さらに、第一合金配線 5a及び第二合金配線 5bと第一ノリアメタル 膜 4a及び第ニノリアメタル膜 4bとの界面における密着性を向上させることもできる。 このため、エレクト口マイグレーション耐性及びストレス誘起ボイド耐性を向上させるこ とができた。
[0327] 更に、第一合金配線 5a及び第二合金配線 5bの中央部の付近では、アルミニウム 濃度が低くなつているため、信頼性を向上させつつ、第一合金配線 5a及び第二合金 配線 5bの抵抗の上昇を抑制することもできる。
[0328] なお、図 21 (i)に示す第一合金配線 5a及び第二合金配線 5bを形成した後に、第 一合金配線 5a及び第二合金配線 5b中の金属元素を第一配線保護膜 15a及び第二 配線保護膜 15b中に含有させることによつても、さらなる信頼性の向上を達成すること ができる。
[0329] なお、本発明は、銅を主成分とする銅合金を配線材に用いた配線構造で構成され る(多層)配線の配線構造とその製造方法に関するものであれば、あらゆるものに適 用することが可能である。
[0330] 幾つかの好適な実施の形態に関連付けて本発明を説明したが、これら実施の形態 は単に実例を挙げて発明を説明するためのものであって、本発明の範囲を何ら限定 するものではない。
[0331] 例えば、本発明の背景となった CMOS回路を有する半導体装置に関して詳述した 力 本発明はそれに限定されるものではなぐ例えば、 DRAM (Dynamic Random Ac cess Memory)、 SRAM (StaticRandom Access Memory)、フラッシュメモリ、 FRAM ( Ferro ElectricRandom Access Memory)、 MRAM (Magnetic Random Access Memor y)、抵抗変化型メモリ等のようなメモリ回路を有する半導体製品、マイクロプロセッサ などの論理回路を有する半導体製品、あるいは、それらを同時に掲載した混載型の 半導体製品にも適用することができる。
また、本発明は、少なくとも一部に埋め込み型合金配線構造を有する半導体装置、 電子回路装置、光回路装置、量子回路装置、マイクロマシンなどにも適用することが できる。

Claims

請求の範囲
[1] 合金配線と、該合金配線の上面を被覆する第一配線保護膜とを有し、
前記第一配線保護膜は、前記合金配線中に含有される金属元素のうち少なくとも 一つの金属元素を含むことを特徴とする半導体装置。
[2] 合金配線と、該合金配線の上面を被覆する第一配線保護膜と、前記第一配線保 護膜上に形成される第二配線保護膜と、を有し、
前記第一配線保護膜は、前記合金配線中に含有される金属元素のうち少なくとも 一つの金属元素を含み、かつ、前記第二配線保護膜は前記少なくとも一つの金属 元素を含まな ヽことを特徴とする半導体装置。
[3] 合金配線と、該合金配線の上面を被覆する第一配線保護膜とを有し、
前記合金配線の主成分以外の金属元素の濃度が前記合金配線の中央部よりも前 記第一配線保護膜の近傍にぉ 、て高 、ことを特徴とする半導体装置。
[4] 前記合金配線中に含有される金属元素は、アルミニウム、銅、錫、チタン、タンダス テン、銀、ジルコニウム、インジウム及びマグネシウムのうちの少なくとも一つであるこ とを特徴とする請求項 1乃至 3のいずれか一項に記載の半導体装置。
[5] 合金配線と、該合金配線上面を被覆する第一配線保護膜とを有し、
前記第一配線保護膜は、前記合金配線中に含有される金属元素のうち少なくとも 一つの金属元素を含み、
前記合金配線の主成分以外の金属元素の濃度が前記合金配線の中央部よりも前 記第一配線保護膜の近傍において高ぐ
前記合金配線中に含有される金属元素は、アルミニウム、銅、錫、チタン、タンダス テン、銀、ジルコニウム、インジウム及びマグネシウムのうちの少なくとも一つであるこ とを特徴とする半導体装置。
[6] 前記第一配線保護膜上に形成される第二配線保護膜をさらに備え、前記第二配 線保護膜は前記少なくとも一つの金属元素を含まないことを特徴とする請求項 5に記 載の半導体装置。
[7] 前記合金配線は、銅を主成分とする銅合金配線であることを特徴とする請求項 1乃 至 6の 、ずれか一項に記載の半導体装置。
[8] 前記合金配線を被覆するバリアメタル膜を有し、前記合金配線における主成分以 外の金属元素の濃度が前記合金配線の中央部よりも前記第一配線保護膜の近傍及 び前記ノリアメタル膜の近傍にぉ 、て高 、ことを特徴とする請求項 1乃至請求項 7の V、ずれかに記載の半導体装置。
[9] 前記合金配線における主成分以外の金属元素の濃度が前記合金配線の中央部 において 0. lat. %未満であり、前記第一配線保護膜の近傍においては 0. lat. % 以上かつ 1. 5at. %以下であることを特徴とする請求項 1乃至 7のいずれか一項に記 載の半導体装置。
[10] 前記合金配線における主成分以外の金属元素の濃度が前記合金配線の中央部 において 0. lat. %未満であり、前記第一配線保護膜の近傍及び前記バリアメタル 膜の近傍においては、 0. lat. %以上かつ 1. 5at. %以下であることを特徴とする請 求項 8に記載の半導体装置。
[11] 前記第一配線保護膜は、 SiN膜、 SiC膜、 SiCN膜、 SiOC膜、 SiOCH膜、これら の膜に有機物を含んだ膜、有機物を主成分とする膜、及び、有機物を主成分とする 膜に SiOを含む膜のいずれか一つであることを特徴とする請求項 1乃至 10のいずれ か一項に記載の半導体装置。
[12] 前記第一配線保護膜及び前記第二配線保護膜は、 SiN膜、 SiC膜、 SiCN膜、 Si OC膜、 SiOCH膜、これらの膜に有機物を含んだ膜、有機物を主成分とする膜、有 機物を主成分とする膜に SiOを含む膜のいずれか一つからなることを特徴とする請 求項 2、 4、 6乃至 11のいずれか一項に記載の半導体装置。
[13] 前記第一配線保護膜にお!ヽて、前記金属元素濃度は前記合金配線に近!ヽほど高 いことを特徴とする請求項 1乃至 12のいずれか一項に記載の半導体装置。
[14] 前記合金配線は、銅を主成分とし、アルミニウムを含有する銅アルミニウム合金配 線であり、前記第一配線保護膜は、銅及びアルミニウムを含む SiCN膜であることを 特徴とする請求項 1乃至 13のいずれか一項に記載の半導体装置。
[15] 前記合金配線は、銅を主成分とし、アルミニウムを含有する銅アルミニウム合金配 線であり、前記合金配線中のアルミニウムの濃度は、前記合金配線の中央部におい ては 0. lat. %未満であり、前記第一配線保護膜の近傍及び前記バリアメタル膜の 近傍においては 0. lat. %以上かつ 1. 5at. %以下であることを特徴とする請求項 1 乃至 14のいずれか一項に記載の半導体装置。
[16] 合金配線を形成する工程と、
前記合金配線に含有される金属元素のうち少なくとも一つの金属元素を含有し、前 記合金配線の上面を被覆する第一配線保護膜を形成する工程と、
を少なくとも有する半導体装置の製造方法。
[17] 前記少なくとも一つの金属元素を含まない第二配線保護膜を前記第一配線保護 膜上に形成する工程を含む請求項 16に記載の半導体装置の製造方法。
[18] 合金配線を形成する第一の工程と、
前記合金配線の上面を被覆する第一配線保護膜を形成する第二の工程と、 を備え、
前記第一の工程にお!、ては、前記合金配線の主成分以外の金属元素の濃度が前 記合金配線の中央部よりも前記第一配線保護膜の近傍において高くなるように、前 記合金配線が形成されることを特徴とする半導体装置の製造方法。
[19] 前記合金配線を被覆するバリアメタル膜を形成する工程を備え、
前記合金配線は、前記合金配線における主成分以外の金属元素の濃度が前記合 金配線の中央部よりも前記第一配線保護膜の近傍及び前記バリアメタル膜の近傍に おいて高くなるように、形成されることを特徴とする請求項 16乃至 18のいずれか一項 に記載の半導体装置の製造方法。
[20] 前記合金配線は、前記合金配線における主成分以外の金属元素の濃度が前記合 金配線の中央部において 0. lat. %未満であり、前記第一配線保護膜の近傍にお いては 0. lat. %以上かつ 1. 5at. %以下であるように形成されることを特徴とする 請求項 16乃至 18のいずれか一項に記載の半導体装置の製造方法。
[21] 前記合金配線は、前記合金配線における主成分以外の金属元素の濃度が前記合 金配線の中央部において 0. lat. %未満であり、前記第一配線保護膜の近傍及び 前記バリアメタノレ膜の近傍においては、 0. lat. %以上かつ 1. 5at. %以下であるよ うに形成されることを特徴とする請求項 19に記載の半導体装置の製造方法。
[22] 前記第一配線保護膜は、前記第一配線保護膜における前記金属元素の濃度が前 記合金配線に近いほど高くなるように形成されることを特徴とする請求項 16乃至 21 の!、ずれか一項に記載の半導体装置の製造方法。
前記合金配線は、銅を主成分とし、アルミニウムを含有する銅アルミニウム合金配 線として形成され、
前記合金配線は、前記合金配線中のアルミニウムの濃度が、前記合金配線の中央 部においては 0. lat. %未満であり、前記第一配線保護膜の近傍及び前記バリアメ タル膜の近傍においては 0. lat. %以上かつ 1. 5at. %以下であるように形成され ることを特徴とする請求項 16乃至 22のいずれか一項に記載の半導体装置の製造方 法。
PCT/JP2005/011578 2004-06-24 2005-06-24 半導体装置及びその製造方法 WO2006001356A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/571,251 US8188600B2 (en) 2004-06-24 2005-06-24 Semiconductor device and method of fabricating the same
JP2006528605A JP5012022B2 (ja) 2004-06-24 2005-06-24 半導体装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004187044 2004-06-24
JP2004-187044 2004-06-24

Publications (1)

Publication Number Publication Date
WO2006001356A1 true WO2006001356A1 (ja) 2006-01-05

Family

ID=35781806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011578 WO2006001356A1 (ja) 2004-06-24 2005-06-24 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US8188600B2 (ja)
JP (1) JP5012022B2 (ja)
WO (1) WO2006001356A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189061A (ja) * 2006-01-13 2007-07-26 Renesas Technology Corp 半導体装置および半導体装置の製造方法
JP2008135569A (ja) * 2006-11-28 2008-06-12 Rohm Co Ltd 半導体装置の製造方法および半導体装置
JP2008147252A (ja) * 2006-12-06 2008-06-26 Renesas Technology Corp 半導体装置とその製造方法
JP2008198659A (ja) * 2007-02-08 2008-08-28 Tokyo Electron Ltd プラズマエッチング方法
JP2009277729A (ja) * 2008-05-12 2009-11-26 Panasonic Corp 半導体装置および半導体装置の製造方法
JP2011009439A (ja) * 2009-06-25 2011-01-13 Renesas Electronics Corp 半導体装置の製造方法および半導体装置
JP2012169665A (ja) * 2012-05-10 2012-09-06 Renesas Electronics Corp 半導体装置および半導体装置の製造方法
US10978394B2 (en) 2018-08-02 2021-04-13 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959267B2 (ja) * 2006-03-07 2012-06-20 ルネサスエレクトロニクス株式会社 半導体装置および電気ヒューズの抵抗値の増加方法
JP2010502841A (ja) * 2006-09-08 2010-01-28 トーソー エスエムディー,インク. 非常に小さな結晶粒径と高エレクトロマイグレーション抵抗とを有する銅スパッタリングターゲットおよびそれを製造する方法
US8486743B2 (en) 2011-03-23 2013-07-16 Micron Technology, Inc. Methods of forming memory cells
US8461683B2 (en) * 2011-04-01 2013-06-11 Intel Corporation Self-forming, self-aligned barriers for back-end interconnects and methods of making same
US8994489B2 (en) * 2011-10-19 2015-03-31 Micron Technology, Inc. Fuses, and methods of forming and using fuses
US8546231B2 (en) 2011-11-17 2013-10-01 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US8723155B2 (en) 2011-11-17 2014-05-13 Micron Technology, Inc. Memory cells and integrated devices
US9252188B2 (en) 2011-11-17 2016-02-02 Micron Technology, Inc. Methods of forming memory cells
US8765555B2 (en) 2012-04-30 2014-07-01 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
US9136467B2 (en) 2012-04-30 2015-09-15 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
US9553262B2 (en) 2013-02-07 2017-01-24 Micron Technology, Inc. Arrays of memory cells and methods of forming an array of memory cells
US9881971B2 (en) 2014-04-01 2018-01-30 Micron Technology, Inc. Memory arrays
US9362494B2 (en) 2014-06-02 2016-06-07 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
US9343506B2 (en) 2014-06-04 2016-05-17 Micron Technology, Inc. Memory arrays with polygonal memory cells having specific sidewall orientations
JP6527420B2 (ja) * 2015-07-31 2019-06-05 ルネサスエレクトロニクス株式会社 半導体装置
KR102616489B1 (ko) 2016-10-11 2023-12-20 삼성전자주식회사 반도체 장치 제조 방법
US10658233B2 (en) * 2018-10-17 2020-05-19 International Business Machines Corporation Dielectric damage-free dual damascene Cu interconnects without barrier at via bottom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177128A (ja) * 1992-12-07 1994-06-24 Japan Energy Corp 半導体装置とその製造方法
JPH09289214A (ja) * 1996-04-24 1997-11-04 Nippon Telegr & Teleph Corp <Ntt> 半導体装置およびその製造方法
JPH11204524A (ja) * 1998-01-12 1999-07-30 Matsushita Electron Corp 半導体装置及びその製造方法
JP2002075995A (ja) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2003257979A (ja) * 2001-12-25 2003-09-12 Nec Electronics Corp 銅配線構造およびその製造方法
JP2004039916A (ja) * 2002-07-04 2004-02-05 Nec Electronics Corp 半導体装置およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601509A1 (en) * 1992-12-07 1994-06-15 Nikko Kyodo Co., Ltd. Semiconductor devices and method of manufacturing the same
US5913147A (en) * 1997-01-21 1999-06-15 Advanced Micro Devices, Inc. Method for fabricating copper-aluminum metallization
JP3285509B2 (ja) * 1997-03-18 2002-05-27 三菱電機株式会社 半導体装置
JP2001319928A (ja) 2000-05-08 2001-11-16 Hitachi Ltd 半導体集積回路装置およびその製造方法
US6309959B1 (en) * 2000-08-03 2001-10-30 Advanced Micro Devices, Inc. Formation of self-aligned passivation for interconnect to minimize electromigration
US6387806B1 (en) * 2000-09-06 2002-05-14 Advanced Micro Devices, Inc. Filling an interconnect opening with different types of alloys to enhance interconnect reliability
JP2002134610A (ja) 2000-10-24 2002-05-10 Toshiba Corp 半導体装置の製造方法
US6800554B2 (en) * 2000-12-18 2004-10-05 Intel Corporation Copper alloys for interconnections having improved electromigration characteristics and methods of making same
JP2003142579A (ja) 2001-11-07 2003-05-16 Hitachi Ltd 半導体装置の製造方法および半導体装置
JP4152619B2 (ja) 2001-11-14 2008-09-17 株式会社ルネサステクノロジ 半導体装置およびその製造方法
US20030134499A1 (en) * 2002-01-15 2003-07-17 International Business Machines Corporation Bilayer HDP CVD / PE CVD cap in advanced BEOL interconnect structures and method thereof
US6764951B1 (en) * 2002-02-28 2004-07-20 Advanced Micro Devices, Inc. Method for forming nitride capped Cu lines with reduced hillock formation
US6693356B2 (en) 2002-03-27 2004-02-17 Texas Instruments Incorporated Copper transition layer for improving copper interconnection reliability
US6664185B1 (en) * 2002-04-25 2003-12-16 Advanced Micro Devices, Inc. Self-aligned barrier formed with an alloy having at least two dopant elements for minimized resistance of interconnect
JP3556206B2 (ja) 2002-07-15 2004-08-18 沖電気工業株式会社 金属配線の形成方法
JP2004095865A (ja) 2002-08-30 2004-03-25 Nec Electronics Corp 半導体装置およびその製造方法
JP3715626B2 (ja) * 2003-01-17 2005-11-09 株式会社東芝 半導体装置の製造方法および半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177128A (ja) * 1992-12-07 1994-06-24 Japan Energy Corp 半導体装置とその製造方法
JPH09289214A (ja) * 1996-04-24 1997-11-04 Nippon Telegr & Teleph Corp <Ntt> 半導体装置およびその製造方法
JPH11204524A (ja) * 1998-01-12 1999-07-30 Matsushita Electron Corp 半導体装置及びその製造方法
JP2002075995A (ja) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2003257979A (ja) * 2001-12-25 2003-09-12 Nec Electronics Corp 銅配線構造およびその製造方法
JP2004039916A (ja) * 2002-07-04 2004-02-05 Nec Electronics Corp 半導体装置およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189061A (ja) * 2006-01-13 2007-07-26 Renesas Technology Corp 半導体装置および半導体装置の製造方法
JP2008135569A (ja) * 2006-11-28 2008-06-12 Rohm Co Ltd 半導体装置の製造方法および半導体装置
JP2008147252A (ja) * 2006-12-06 2008-06-26 Renesas Technology Corp 半導体装置とその製造方法
JP2008198659A (ja) * 2007-02-08 2008-08-28 Tokyo Electron Ltd プラズマエッチング方法
US8138096B2 (en) 2007-02-08 2012-03-20 Tokyo Electron Limited Plasma etching method
JP2009277729A (ja) * 2008-05-12 2009-11-26 Panasonic Corp 半導体装置および半導体装置の製造方法
JP2011009439A (ja) * 2009-06-25 2011-01-13 Renesas Electronics Corp 半導体装置の製造方法および半導体装置
JP2012169665A (ja) * 2012-05-10 2012-09-06 Renesas Electronics Corp 半導体装置および半導体装置の製造方法
US10978394B2 (en) 2018-08-02 2021-04-13 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2006001356A1 (ja) 2008-04-17
US8188600B2 (en) 2012-05-29
JP5012022B2 (ja) 2012-08-29
US20080054470A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
WO2006001356A1 (ja) 半導体装置及びその製造方法
US7867906B2 (en) Semiconductor device and method for manufacturing same
JP4940950B2 (ja) 半導体装置の製造方法
US8133813B2 (en) Semiconductor device with a barrier film
JP4819501B2 (ja) 配線構造およびその製造方法
US8362596B2 (en) Engineered interconnect dielectric caps having compressive stress and interconnect structures containing same
US7514352B2 (en) Method of manufacturing a semiconductor device having an interconnect structure that increases in impurity concentration as width increases
KR100383204B1 (ko) 반도체 장치 및 그 제조 방법
JP2005223021A (ja) 半導体装置
JP2004235548A (ja) 半導体装置およびその製造方法
JP5613272B2 (ja) 半導体装置
US20100123249A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2010003906A (ja) 半導体装置及びその製造方法
JP2008060316A (ja) 半導体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528605

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11571251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11571251

Country of ref document: US